

THE CSOUND FLOSS MANUAL

00 INTRODUCTION

A. PREFACE

B. HOW TO USE THIS MANUAL

C. ON THIS RELEASE

D. CREDITS

01 BASICS

A. DIGITAL AUDIO

B. PITCH AND FREQUENCY

C. INTENSITIES

D. RANDOM

02 QUICK START

A. MAKE CSOUND RUN

B. CSOUND SYNTAX

C. CONFIGURING MIDI

D. LIVE AUDIO

E. RENDERING TO FILE

03 CSOUND LANGUAGE

A. INITIALIZATION AND PERFORMANCE PASS

B. LOCAL AND GLOBAL VARIABLES

C. CONTROL STRUCTURES

D. FUNCTION TABLES

E. ARRAYS

F. LIVE EVENTS

G. USER DEFINED OPCODES

H. MACROS

I. FUNCTIONAL SYNTAX

04 SOUND SYNTHESIS

A. ADDITIVE SYNTHESIS

B. SUBTRACTIVE SYNTHESIS

C. AMPLITUDE AND RING MODULATION

D. FREQUENCY MODULATION

E. WAVESHAPING

F. GRANULAR SYNTHESIS

G. PHYSICAL MODELLING

H. SCANNED SYNTHESIS

05 SOUND MODIFICATION

A. ENVELOPES

B. PANNING AND SPATIALIZATION

C. FILTERS

D. DELAY AND FEEDBACK

E. REVERBERATION

F. AM / RM / WAVESHAPING

G. GRANULAR SYNTHESIS

H. CONVOLUTION

I. FOURIER ANALYSIS / SPECTRAL PROCESSING

K. ATS RESYNTHESIS

06 SAMPLES

A. RECORD AND PLAY SOUNDFILES

B. RECORD AND PLAY BUFFERS

07 MIDI

A. RECEIVING EVENTS BY MIDIIN

B. TRIGGERING INSTRUMENT INSTANCES

C. WORKING WITH CONTROLLERS

D. READING MIDI FILES

E. MIDI OUTPUT

08 OTHER COMMUNICATION

A. OPEN SOUND CONTROL

B. CSOUND AND ARDUINO

09 CSOUND IN OTHER APPLICATIONS

A. CSOUND IN PD

B. CSOUND IN MAXMSP

C. CSOUND AS A VST PLUGIN

10 CSOUND FRONTENDS

A. CSOUNDQT

B. CABBAGE

C. BLUE

D. WINXOUND

E. CSOUND VIA TERMINAL

F. WEB BASED CSOUND

11 CSOUND UTILITIES

A. ANALYSIS

B. FILE INFO AND CONVERSION

C. MISCELLANEOUS

12 CSOUND AND OTHER PROGRAMMING LANGUAGES

A. THE CSOUND API

B. PYTHON AND CSOUND

C. LUA AND CSOUND

D. CSOUND IN iOS

E. CSOUND ON ANDROID

F. CSOUND AND HASKELL

G. CSOUND IN HTML AND JAVASCRIPT

13 EXTENDING CSOUND

A. DEVELOPING PLUGIN OPCODES

14 MISCELLANEA

A. METHODS OF WRITING CSOUND SCORES

B. PYTHON IN CSOUNDQT

C. AMPLITUDE AND PITCH TRACKING

15 APPENDIX

A. OPCODE GUIDE

B. GLOSSARY

C. LINKS

PREFACE

Csound is one of the best known and longest established programs in the field of audio programming. It was developed in the mid-1980s at the Massachusetts Institute of Technology (MIT) by Barry Vercoe but Csound’s history lies even deeper within the roots of computer music: it is a direct descendant of the oldest computer program for sound synthesis, MusicN, by Max Mathews. Csound is free and open source, distributed under the LGPL licence, and it is maintained and expanded by a core of developers with support from a wider global community.

Csound has been growing for 30 years. There is rarely anything related to audio that you cannot do with Csound. You can work by rendering offline, or in real-time by processing live audio and synthesizing sound on the fly. You can control Csound via MIDI, OSC, through a network, within a browser or via the Csound API (Application Programming Interface). Csound will run on all major platforms, on phones, tablets and tinyware computers. In Csound you will find the widest collection of tools for sound synthesis and sound modification, arguably offering a superset of features offered by similar software and with an unrivaled audio precision.

Csound is simultaneously both old school and new school.

Is Csound difficult to learn? Generally speaking, graphical audio programming languages like Pure Data, Max or Reaktor are easier to learn than text-coded audio programming languages such as Csound or SuperCollider. In Pd, Max or Reaktor you cannot make a typo which produces an error that you do not understand. You program without being aware that you are programming. The user experience mirrors that of patching together various devices in a studio. This is a fantastically intuitive approach but when you deal with more complex projects, a text-based programming language is often easier to use and debug, and many people prefer to program by typing words and sentences rather than by wiring symbols together using the mouse.

Yet Csound can straddle both approaches: it is also very easy to use Csound as an audio engine inside Pd or Max. Have a look at the chapter Csound in Other Applications for further information.

Amongst text-based audio programming languages, Csound is arguably the simplest. You do not need to know any specific programming techniques or to be a computer scientist. The basics of the Csound language are a straightforward transfer of the signal flow paradigm to text.

For example, to create a 400 Hz sine oscillator with an amplitude of 0.2, this is the signal flow:

[image: Simple signal flow]Simple signal flow

Here is a possible transformation of the signal graph into Csound code:

instr Sine
 aSig poscil 0.2, 400
 out aSig
endin

The oscillator is represented by the opcode poscil and receives its input arguments on the right-hand side. These are amplitude (0.2) and frequency (400). It produces an audio signal called aSig at the left side which is in turn the input of the second opcode out. The first and last lines encase these connections inside an instrument called Sine.

With the release of Csound version 6, it is possible to write the same code in an even more condensed fashion using so-called functional syntax, as shown below:

instr Sine
 out poscil:a(0.2, 400)
endin

We will use both, traditional and functional style, throughout this textbook. More details on functional style can be found in chapter 03 I.

It is often difficult to find up to date resources that show and explain what is possible with Csound. Documentation and tutorials produced by developers and experienced users tend to be scattered across many different locations. This issue was one of the main motivations for producing this manual; to facilitate a flow between the knowledge of contemporary Csound users and those wishing to learn more about Csound.

Throughout this manual we will attempt to maintain a balance between providing users with knowledge of most of the important aspects of Csound whilst also remaining concise and simple enough to avoid overwhelming the reader through the shear number of possibilities offered by Csound. Frequently this manual will link to other more detailed resources such as the Canonical Csound Reference Manual, the main support documentation provided by the Csound developers and associated community over the years, and the Csound Journal (edited by James Hearon and Iain McCurdy), a roughly quarterly online publication with many great Csound-related articles. The Csound Community Home Page points to a lot of additional resources of learning Csound and informs about recent developments. Other resources (books, mailing lists, social media, videos) are listed in the Links section of this manual.

We hope you enjoy reading this textbook and wish you happy Csounding!

HOW TO USE THIS MANUAL

The goal of this manual is to provide a readable introduction to Csound. In no way is it meant as a replacement for the Canonical Csound Reference Manual. It is intended as an introduction-tutorial-reference hybrid, gathering together the most important information you will need to work with Csound in a variety of situations. In many places links are provided to other resources such as The Canonical Csound Reference Manual, the Csound Journal, example collections and more.

It is not necessary to read each chapter in sequence, feel free to jump to any chapter that interests you, although bear in mind that occasionally a chapter may make reference to a previous one.

If you are new to Csound, the QUICK START section will be the best place to go to help you get started. BASICS provides a general introduction to key concepts about digital sound, vital to understanding how Csound deals with audio. The CSOUND LANGUAGE section provides greater detail about how Csound works and how to work with Csound.

SOUND SYNTHESIS introduces various methods of creating sound from scratch and SOUND MODIFICATION describes various methods of transforming sounds that already exist. SAMPLES outlines various ways you can record and playback audio samples in Csound; an area that might be of particular interest to those intent on using Csound as a real-time performance instrument. The MIDI and OPEN SOUND CONTROL chapters focus on different methods of controlling Csound using external software or hardware. The final chapters introduce various front-ends that can be used to interface with the Csound engine and Csound’s communication with other applications.

If you would like to know more about a topic, and in particular about the use of any opcode, please refer first to the Canonical Csound Reference Manual.

All files - examples and audio files - can be downloaded at www.csound-tutorial.net. If you use CsoundQt, you can find all the examples in CsoundQt’s examples menu under Floss Manual Examples. When learning Csound (or any other programming language), you may find it beneficial to type the examples out by hand as it will help you to memorise Csound’s syntax as well as how to use its opcodes. The more familiar you become with typing out Csound code, the more proficient you will become at implementing your own ideas from low level principles; your focus will shift from the code itself to the musical idea behind the code.

Like other audio tools, Csound can produce an extreme dynamic range (before considering Csound’s ability to implement compression and limiting). Be careful when you run the examples! Set the volume on your amplifier low to start with and take special care when using headphones.

You can help to improve this manual either by reporting bugs or by sending requests for new topics or by joining as a writer. Just contact one of the maintainers (see ON THIS RELEASE).

Some issues of this textbook can be ordered as a print-on-demand hard copy at www.lulu.com. Just use Lulu’s search utility and look for Csound.

ON THIS RELEASE

This (7th) is a major release, thanks to Hlöðver Sigurðsson. At the Csound conference in Cagli september 2019, we had a chat about how we could make the examples of this manual executable in a web browser, without any previous installation of Csound. We agreed that this requires a new repository for the text base and the programming interface. The text is now hosted at csound-flossmanual on github. It is written in Markdown, and Hlöðver created an environment which makes it easy to edit. Those who are interested should have a look at the readme and the descriptions on how to contribute.

The URL to access the new Csound FLOSS Manual is: https://flossmanual.csound.com

The whole text has been revised. Many figures have been substituted or added. Math formulas are now written in TexMath. Some chapters have been updated or even completely rewritten; amongst them:

	01 A Digital Audio

	01 B Pitch and Frequency

	03 E Arrays

	04 C AM

	04 D FM (thanks to Marijana Janevska)

	04 H Scanned Synthesis

	05 G Granular Synthesis

	05 H Convolution

	05 I Spectral Processing

	08 A Open Sound Control

	10 B Cabbage (thanks to Rory Walsh)

	12 A Csound API (thanks to François Pinot)

	12 B Python and Csound

	12 C Lua and Csound (thanks for Philipp Henkel)

	12 D Csound in iOS (thanks to Alessandro Petrolati)

	12 E Csound on Android (thanks to Michael Gogins)

	12 F Csound in Haskell (thanks to Anton Kholomiov)

	12 G Csound in HTML and Javascript (thanks to Michael Gogins)

	15 A Opcode Guide

The chapter about amplitude and pitch tracking has now been moved to 14 C together with other miscellaneous articles.

The explanations and examples try to find a balance between no previous knowledge (as basic as possible) and interesting also for advanced users (as elaborate as possible). On the one hand certainly an impossible mission, but to put it as request to the reader: Please tolerate that some examples may be either too simple or too complex for you – it cannot be different.

Since the first release of this textbook in 2010, Iain McCurdy was my compagnion in the attempt to keep it up to date and improve it. He showed us all how Csound can sound, and the best parts of this book (both descriptions and examples) are his work. His inexhaustible collection of Csound Realtime Examples should be used all the time, in my opinion.

Previous releases can be found at http://files.csound-tutorial.net/floss_manual, as well as the current csd files and audio samples.

I hope the ones who still enjoy reading texts find this resource useful to learn more about music and realizing their music in Csound.

This release is dedicated to the memory of Eugenio Giordani, collegue, friend, pioneer of computer music in Italy and one of the hosts of the memorable Csound Conference 2019 in Cagli. He passed away in April, much too early for us. I hope he would have enjoyed the development of this textbook.

Hannover, September 2020

joachim heintz

CREDITS

00 INTRODUCTION

A. PREFACE Joachim Heintz, Andres Cabrera, Alex Hofmann, Iain McCurdy, Alexandre Abrioux

B. HOW TO USE THIS MANUAL Joachim Heintz, Andres Cabrera, Iain McCurdy, Alexandre Abrioux

C. ON THIS RELEASE Joachim Heintz, Iain McCurdy

01 BASICS

A. DIGITAL AUDIO Alex Hofmann, Rory Walsh, Iain McCurdy, Joachim Heintz

B. PITCH AND FREQUENCY Rory Walsh, Iain McCurdy, Joachim Heintz

C. INTENSITIES Joachim Heintz

D. RANDOM Joachim Heintz, Martin Neukom, Iain McCurdy

02 QUICK START

A. MAKE CSOUND RUN Alex Hofmann, Joachim Heintz, Andres Cabrera, Iain McCurdy, Jim Aikin, Jacques Laplat, Alexandre Abrioux, Menno Knevel

B. CSOUND SYNTAX Alex Hofmann, Joachim Heintz, Andres Cabrera, Iain McCurdy

C. CONFIGURING MIDI Andres Cabrera, Joachim Heintz, Iain McCurdy

D. LIVE AUDIO Alex Hofmann, Andres Cabrera, Iain McCurdy, Joachim Heintz

E. RENDERING TO FILE Joachim Heintz, Alex Hofmann, Andres Cabrera, Iain McCurdy

03 CSOUND LANGUAGE

A. INITIALIZATION AND PERFORMANCE PASS Joachim Heintz

B. LOCAL AND GLOBAL VARIABLES Joachim Heintz, Andres Cabrera, Iain McCurdy

C. CONTROL STRUCTURES Joachim Heintz

D. FUNCTION TABLES Joachim Heintz, Iain McCurdy

E. ARRAYS Joachim Heintz

F. LIVE CSOUND Joachim Heintz, Iain McCurdy

G. USER DEFINED OPCODES Joachim Heintz

H. MACROS Iain McCurdy

I. FUNCTIONAL SYNTAX Joachim Heintz

04 SOUND SYNTHESIS

A. ADDITIVE SYNTHESIS Andres Cabrera, Joachim Heintz, Bjorn Houdorf

B. SUBTRACTIVE SYNTHESIS Iain McCurdy

C. AMPLITUDE AND RINGMODULATION Alex Hofmann

D. FREQUENCY MODULATION Alex Hofmann, Bjorn Houdorf, Marijana Janevska, Joachim Heintz

E. WAVESHAPING Joachim Heintz, Iain McCurdy

F. GRANULAR SYNTHESIS Iain McCurdy

G. PHYSICAL MODELLING Joachim Heintz, Iain McCurdy, Martin Neukom

H. SCANNED SYNTHESIS Christopher Saunders. Joachim Heintz

05 SOUND MODIFICATION

A. ENVELOPES Iain McCurdy

B. PANNING AND SPATIALIZATION Iain McCurdy, Joachim Heintz

C. FILTERS Iain McCurdy

D. DELAY AND FEEDBACK Iain McCurdy

E. REVERBERATION Iain McCurdy

F. AM / RM / WAVESHAPING Alex Hofmann, Joachim Heintz

G. GRANULAR SYNTHESIS Iain McCurdy, Oeyvind Brandtsegg, Bjorn Houdorf, Joachim Heintz

H. CONVOLUTION Iain McCurdy

I. FOURIER ANALYSIS / SPECTRAL PROCESSING Joachim Heintz

K. ANALYSIS TRANSFORMATION SYNTHESIS Oscar Pablo di Liscia

L. AMPLITUDE AND PITCH TRACKING Iain McCurdy

06 SAMPLES

A. RECORD AND PLAY SOUNDFILES Iain McCurdy, Joachim Heintz

B. RECORD AND PLAY BUFFERS Iain McCurdy, Joachim Heintz, Andres Cabrera

07 MIDI

A. RECEIVING EVENTS BY MIDIIN Iain McCurdy

B. TRIGGERING INSTRUMENT INSTANCES Joachim Heintz, Iain McCurdy

C. WORKING WITH CONTROLLERS Iain McCurdy

D. READING MIDI FILES Iain McCurdy

E. MIDI OUTPUT Iain McCurdy

08 OTHER COMMUNICATION

A. OPEN SOUND CONTROL Alex Hofmann, Joachim Heintz

B. CSOUND AND ARDUINO Iain McCurdy

09 CSOUND IN OTHER APPLICATIONS

A. CSOUND IN PD Joachim Heintz, Jim Aikin

B. CSOUND IN MAXMSP Davis Pyon

C. CSOUND IN ABLETON LIVE Rory Walsh

D. CSOUND AS A VST PLUGIN Rory Walsh

10 CSOUND FRONTENDS

A. CSOUNDQT Andrés Cabrera, Joachim Heintz, Peiman Khosravi

B. CABBAGE Rory Walsh, Menno Knevel, Iain McCurdy

C. BLUE Steven Yi, Jan Jacob Hofmann

D. WINXOUND Stefano Bonetti, Menno Knevel

E. CSOUND VIA TERMINAL Iain McCurdy

F. WEB BASED CSOUND Victor Lazzarini, Iain McCurdy, Ed Costello

11 CSOUND UTILITIES

A. ANALYSIS Iain McCurdy

B. FILE INFO AND CONVERSION Iain McCurdy

C. MISCELLANEOUS Iain McCurdy

12 CSOUND AND OTHER PROGRAMMING LANGUAGES

A. THE CSOUND API François Pinot, Rory Walsh

B. PYTHON AND CSOUND Andrés Cabrera, Joachim Heintz, Jim Aikin

C. LUA AND CSOUND Michael Gogins, Philipp Henkel

D. CSOUND IN IOS Nicholas Arner, Nikhil Singh, Richard Boulanger, Alessandro Petrolati

E. CSOUND ON ANDROID Michael Gogins

F. CSOUND AND HASKELL Anton Kholomiov

G. CSOUND AND HTML Michael Gogins

13 EXTENDING CSOUND

A. DEVELOPING PLUGIN OPCODES Victor Lazzarini

14 MISCELLANEA

A. METHODS OF WRITING CSOUND SCORES Iain McCurdy, Joachim Heintz, Jacob Joaquin, Menno Knevel

B. PYTHON IN CSOUNDQT Tarmo Johannes, Joachim Heintz

15 APPENDIX

A. OPCODE GUIDE Joachim Heintz, Iain McCurdy

B. GLOSSARY Joachim Heintz, Iain McCurdy

C. LINKS Joachim Heintz, Stefano Bonetti

V.1 - Final Editing Team in March 2011:

Joachim Heintz, Alex Hofmann, Iain McCurdy

V.2 - Final Editing Team in March 2012:

Joachim Heintz, Iain McCurdy

V.3 - Final Editing Team in March 2013:

Joachim Heintz, Iain McCurdy

V.4 - Final Editing Team in September 2013:

Joachim Heintz, Alexandre Abrioux

V.5 - Final Editing Team in March 2014:

Joachim Heintz, Iain McCurdy

V.6 - Final Editing Team March-June 2015:

Joachim Heintz, Iain McCurdy

V.7 - Final Editing and Programming Team 2019/20:

Joachim Heintz, Hlöðver Sigurðsson

01 A. DIGITAL AUDIO

At a purely physical level, sound is simply a mechanical disturbance of a medium. The medium in question may be air, solid, liquid, gas or a combination of several of these. This disturbance in the medium causes molecules to move back and forth in a spring-like manner. As one molecule hits the next, the disturbance moves through the medium causing sound to travel. These so called compressions and rarefactions in the medium can be described as sound waves. The simplest type of waveform, describing what is referred to as simple harmonic motion, is a sine wave.

[image: Sine wave]Sine wave

Each time the waveform signal goes above zero the molecules are in a state of compression meaning that each molecule within the waveform disturbance is pushing into its neighbour. Each time the waveform signal drops below zero the molecules are in a state of rarefaction meaning the molecules are pulling away from their neighbours. When a waveform shows a clear repeating pattern, as in the case above, it is said to be periodic. Periodic sounds give rise to the sensation of pitch.

Elements of a Sound Wave

Periodic waves have some main parameters:

	Period: The time it takes for a waveform to complete one cycle, measured in seconds.

	Frequency: The number of cycles or periods per second, measured in Hertz (Hz). If a sound has a frequency of 440 Hz it completes 440 cycles every second. Read more about frequency in the next chapter.

	Phase: This is the starting point of a waveform. It can be expressed in degrees or in radians. A complete cycle of a waveform will cover 360 degrees or 2π radians. A sine with a phase of 90° or π/2 results in a cosine.

	Amplitude: Amplitude is represented by the y-axis of a plotted pressure wave. The strength at which the molecules pull or push away from each other, which will also depend upon the resistance offered by the medium, will determine how far above and below zero - the point of equilibrium - the wave fluctuates. The greater the y-value the greater the amplitude of our wave. The greater the compressions and rarefactions, the greater the amplitude.

Transduction

The analogue sound waves we hear in the world around us need to be converted into an electrical signal in order to be amplified or sent to a soundcard for recording. The process of converting acoustical energy in the form of pressure waves into an electrical signal is carried out by a device known as a a transducer.

A transducer, which is usually found in microphones, produces a changing electrical voltage that mirrors the changing compression and rarefaction of the air molecules caused by the sound wave. The continuous variation of pressure is therefore transduced into continuous variation of voltage. The greater the variation of pressure the greater the variation of voltage that is sent to the computer.

Ideally, the transduction process should be as transparent as possible: whatever goes in should come out as a perfect analogy in a voltage representation. In reality, however, this will not be the case. Low quality devices add noise and deformation. High quality devices add certain characteristics like warmth or transparency.

Sampling

The analogue voltage that corresponds to an acoustic signal changes continuously, so that at each point in time it will have a different value. It is not possible for a computer to receive the value of the voltage for every instant because of the physical limitations of both the computer and the data converters (remember also that there are an infinite number of instances between every two instances!).

What the soundcard can do, however, is to measure the power of the analogue voltage at intervals of equal duration. This is how all digital recording works and this is known as sampling. The result of this sampling process is a discrete, or digital, signal which is no more than a sequence of numbers corresponding to the voltage at each successive moment of sampling.

Below is a diagram showing a sinusoidal waveform. The vertical lines that run through the diagram represent the points in time when a snapshot is taken of the signal. After the sampling has taken place, we are left with what is known as a discrete signal, consisting of a collection of audio samples, as illustrated in the bottom half of the diagram.

[image: Sampling of an analog signal]Sampling of an analog signal

It is important to remember that each sample represents the amount of voltage, positive or negative, that was present in the signal at the point in time at which the sample or snapshot was taken.

The same principle applies to recording of live video: a video camera takes a sequence of pictures of motion and most video cameras will take between 30 and 60 still pictures a second. Each picture is called a frame and when these frames are played in sequence at a rate corresponding to that at which they were taken we no longer perceive them as individual pictures, we perceive them instead as a continuous moving image.

Sample Rate and the Sampling Theorem

The sample rate describes the number of samples (pictures/snapshots) taken each second. To sample an audio signal correctly, it is important to pay attention to the sampling theorem:

To represent digitally a signal containing frequencies up to X Hz, it is necessary to use a sampling rate of at least 2X samples per second.

According to this theorem, a soundcard or any other digital recording device will not be able to represent any frequency above 1/2 the sampling rate. Half the sampling rate is also referred to as the Nyquist frequency, after the Swedish physicist Harry Nyquist who formalized the theory in the 1920s. What it all means is that any signal with frequencies above the Nyquist frequency will be misrepresented and will actually produce a frequency lower than the one being sampled. When this happens it results in what is known as aliasing or foldover.

Aliasing

Here is a graphical representation of aliasing.

[image: Aliasing (red) of a high frequency (blue)]Aliasing (red) of a high frequency (blue)

The sinusoidal waveform in blue is being sampled at the vertical black lines. The line that joins the red circles together is the captured waveform. As you can see, the captured waveform and the original waveform express different frequencies.

Here is another example, showing for a sample rate of 40 kHz in the upper section a sine of 10 kHz, and in the lower section a sine of 30 kHz:

[image: Aliasing of a 30 kHz sine at 40 kHz sample rate]Aliasing of a 30 kHz sine at 40 kHz sample rate

We can see that if the sample rate is 40 kHz there is no problem with sampling a signal that is 10 KHz. On the other hand, in the second example it can be seen that a 30 kHz waveform is not going to be correctly sampled. In fact we end up with a waveform that is 10 kHz, rather than 30 kHz. This may seem like an academic proposition in that we will never be able to hear a 30KHz waveform anyway but some synthesis and DSP techniques procedures will produce these frequencies as unavoidable by-products and we need to ensure that they do not result in unwanted artifacts.

In computer music we can produce any frequency internally, much higher than we can hear, and much higher than the Nyquist frequency. This may occur intentionally, or by accident, for instance when we multiply a frequency of 2000 Hz by the 22nd harmonic, resulting in 44000 Hz. In the following example, instrument 1 plays a 1000 Hz tone first directly, and then as result of 43100 Hz input which is 1000 Hz lower than the sample rate of 44100 Hz. Instrument 2 demonstrates unwanted aliasing as a result of harmonics beyond Nyquist: the 22nd partial of 1990 Hz is 43780 Hz which sounds as 44100-43780 = 320 Hz.

EXAMPLE 01A01_Aliasing.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

//wave form with harmonics 1, 11 and 22
giHarmonics ftgen 0, 0, 8192, 9, 1,.1,0, 11,.1,0, 22,1,0

instr 1
 asig poscil .1, p4
 out asig, asig
endin

instr 2
 asig poscil .2, p4, giHarmonics
 out asig, asig
endin

</CsInstruments>
<CsScore>
i 1 0 2 1000 ;1000 Hz sine
i 1 3 2 43100 ;43100 Hz sine sounds like 1000 Hz because of aliasing
i 2 6 4 1990 ;1990 Hz with harmonics 1, 11 and 22
 ;results in 1990*22=43780 Hz so aliased 320 Hz
 ;for the highest harmonic
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The same phenomenon happens in film and video, too. You may recall having seen wagon wheels apparently turn in the wrong direction in old Westerns. Let us say for example that a camera is taking 30 frames per second of a wheel moving. In one example, if the wheel is completing one rotation in exactly 1/30th of a second, then every picture looks the same and as a result the wheel appears to be motionless. If the wheel speeds up, i.e. it increases its rotational frequency, it will appear as if the wheel is slowly turning backwards. This is because the wheel will complete more than a full rotation between each snapshot.

As an aside, it is worth observing that a lot of modern 'glitch' music intentionally makes a feature of the spectral distortion that aliasing induces in digital audio. Csound is perfectly capable of imitating the effects of aliasing while being run at any sample rate - if that is what you desire.

Audio-CD Quality uses a sample rate of 44100 Hz (44.1 kHz). This means that CD quality can only represent frequencies up to 22050 Hz. Humans typically have an absolute upper limit of hearing of about 20 Khz thus making 44.1 KHz a reasonable standard sampling rate. Higher sample rates offer better time resolution and the Nyquist frequency is not that close to the limit of hearing. But on the other hand twice the sample rate creates twice as much data. The choice has to be made depending on the situation; in this book we stick on the sample rate of 44100 Hz for the examples.

Bits, Bytes and Words

All digital computers represent data as a collection of bits (short for binary digit). A bit is the smallest possible unit of information. One bit can only be in one of two states: off or on, 0 or 1. All computer data — a text file on disk, a program in memory, a packet on a network — is ultimately a collection of bits.

Bits in groups of eight are called bytes, and one byte historically represented a single character of data in the computer memory. Mostly one byte is the smallest unit of data, and bigger units will be created by using two, three or more bytes. A good example is the number of bytes which is used to store the number for one audio sample. In early games it was 1 byte (8 bit), on a CD it is 2 bytes (16 bit), in sound cards it is often 3 bytes (24 bit), in most audio software it is internally 4 bytes (32 bit), and in Csound 8 bytes (64 bit).

The word length of a computer is the number of bits which is handled as a unit by the processor. The transition from 32-bit to 64-bit word length around 2010 in the most commonly used processors required new compilations of Csound and other applications, in particular for the Windows installers. To put it simple: A 32-bit machine needs an application compiled for 32-bit, a 64-bit machine needs an application compiled for 64-bit.

Bit-depth Resolution

The sample rate determines the finer or rougher resolution in time. The number of bits for each single sample determines the finer or rougher resultion in amplitude. The standard resolution for CDs is 16 bit, which allows for 65536 different possible amplitude levels, 32767 on either side of the zero axis. Using bit rates lower than 16 is not a good idea as it will result in noise being added to the signal. This is referred to as quantization noise and is a result of amplitude values being excessively rounded up or down when being digitized.

The figure below shows the quantization issue in simplified version, assuming a depth of only 3 bit. This is like a grid of 23 = 8 possible levels which can be used for each sample. At each sampling period the soundcard plots an amplitude which is adjusted to the next possible vertical position. For a signal with lower amplitude the distortion would even be stronger.

[image: Inaccurate amplitude values due to insufficient bit depth resolution]Inaccurate amplitude values due to insufficient bit depth resolution

Quantization noise becomes most apparent when trying to represent low amplitude (quiet) sounds. Frequently a tiny amount of noise, known as a dither signal, will be added to digital audio before conversion back into an analogue signal. Adding this dither signal will actually reduce the more noticeable noise created by quantization. As higher bit depth resolutions are employed in the digitizing process the need for dithering is reduced. A general rule is to use the highest bit rate available.

Many electronic musicians make use of deliberately low bit depth quantization in order to add noise to a signal. The effect is commonly known as bit-crunching and is easy to implement in Csound. Example 05F02 in chapter 05F shows one possibility.

ADC / DAC

The entire process, as described above, of taking an analogue signal and converting it to a digital signal is referred to as analogue to digital conversion, or ADC. Of course digital to analogue conversion, DAC, is also possible. This is how we get to hear our music through our PC's headphones or speakers. If a sound is played back or streamed, the software will send a series of numbers to the soundcard. The soundcard converts these numbers back to voltage. When the voltages reaches the loudspeaker they cause the loudspeaker’s membrane to move inwards and outwards. This induces a disturbance in the air around the speaker — compressions and rarefactions as described at the beginning of this chapter — resulting in what we perceive as sound.

01 B. PITCH AND FREQUENCY

Pitch and frequency are related but different terms.1 Pitch is used by musicians to describe the “height” of a tone, most obvious on a keyboard. Frequency is a technical term. We will start with the latter and then return to pitch in some of its numerous aspects, including intervals, tuning systems and different conversions between pitch and frequency in Csound.

Frequencies

As mentioned in the previous chapter, frequency is defined as the number of cycles or periods per second. The SI unit is Hertz where 1 Hertz means 1 period per second. If a tone has a frequency of 100 Hz it completes 100 cycles every second. If a tone has a frequency of 200 Hz it completes 200 cycles every second.

Given a tone’s frequency, the time for one period can be calculated straightforwardly. For 100 periods per seconds (100 Hz), the time for one period is 1/100 or 0.01 seconds. For 200 periods per second (200 Hz), the time for each period is only half as much: 1/200 or 0.005 seconds. Mathematically, the period is the reciprocal of the frequency and vice versa. In equation form, this is expressed as follows:

Frequency=1PeriodFrequency = \frac{1}{Period}

Period=1FrequencyPeriod = \frac{1}{Frequency}

Wavelength

In physical reality, one cycle of a periodic sound can not only be measured in time, but also as extension in space. This is called the wavelength. It is usually abbreviated with the greek letter λ (lambda). It can be calculated as the ratio between the velocity and the frequency of the wave.

λ=VelocityFrequency\lambda = \frac{Velocity}{Frequency}

As the velocity of a sound in air (at 20° Celsius) is about 340 m/s, we can calculate the wavelength of a sound as

λ=340msNumberofCycless=340NumberofCyclesm\lambda = \frac{\frac{340 m}{s}}{\frac{Number\ of\ Cycles}{s}} = \frac{340}{Number\ of\ Cycles} m

For instance, a sine wave of 1000 Hz has a length of approximately 340/1000 m = 34 cm, whereas a wave of 100 Hz has a length of 340/100 m = 3.4 m.

Periodic and Nonperiodic Sounds

Not all sounds are periodic. In fact, periodic sounds are only one end of a range. The other end is noise. In between is a continuum which can be described from both points of view: a periodic sound which has noisy parts, or a noise which has periodic parts. The following example shows these aspects in one of their numerous possibilities. It starts with a sine tone of 1000 Hz and slowly adds aperiodicity. This is done by changing the frequency of the sine oscillator faster and faster, and in a wider and wider range. At the end noise is reached. The other way, from noise to a periodic tone, is shown with a band filter. Its band width is at first 10000 Hz around a center frequency of 1000 Hz, i.e. essentially not altering the white noise. Then the band width decreases dramatically (from 10000 Hz to 0.1 Hz) so that at the end a sine tone is nearly reached.

EXAMPLE 01B01_PeriodicAperiodic.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>

sr = 44100
nchnls = 2
0dbfs = 1
ksmps = 32

instr SineToNoise
 kMinFreq = expseg:k(1000, p3*1/5, 1000, p3*3/5, 20, p3*1/5, 20)
 kMaxFreq = expseg:k(1000, p3*1/5, 1000, p3*3/5, 20000, p3*1/5, 20000)
 kRndFreq = expseg:k(1, p3*1/5, 1, p3*3/5, 10000, p3*1/5, 10000)
 aFreq = randomi:a(kMinFreq, kMaxFreq, kRndFreq)
 aSine = poscil:a(.1, aFreq)
 aOut = linen:a(aSine, .5, p3, 1)
 out(aOut, aOut)
endin

instr NoiseToSine
 aNoise = rand:a(.1, 2, 1)
 kBw = expseg:k(10000, p3*1/5, 10000, p3*3/5, .1, p3*1/5, .1)
 aFilt = reson:a(aNoise, 1000, kBw, 2)
 aOut = linen:a(aFilt, .5, p3, 1)
 out(aOut, aOut)
endin

</CsInstruments>
<CsScore>
i "SineToNoise" 0 10
i "NoiseToSine" 11 10
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

This is what the signal looks like at the start and the end of the SineToNoise process:

[image: Sine to noise]Sine to noise

And this is what the signal looks like at the start and the end of the NoiseToSine process:

[image: Noise to sine]Noise to sine

Only when a sound is periodic, we perceive a pitch. But the human ear is very sensitive, and it is quite fascinating to observe how little periodicity is needed to sense some pitch.

Upper and Lower Limits of Hearing

It is generally stated that the human ear can hear sounds in the range 20 Hz to 20,000 Hz (20kHz). This upper limit tends to decrease with age due to a condition known as presbyacusis, or age related hearing loss. Most adults can hear frequencies up to about 16 kHz while most children can hear beyond this. At the lower end of the spectrum the human ear does not respond to frequencies below 20 Hz, and very low frequencies need more power to be heard than medium or high frequencies. (This is explained more in detail in the paragraph about the Fletscher-Munson-Curves in the next chapter.)

So, in the following example, you will not hear the first (10 Hz) tone, and probably not the last (20 kHz) one, but hopefully the other ones (100 Hz, 1000 Hz, 10000 Hz):

EXAMPLE 01B02_LimitsOfHearing.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m0
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1
 prints "Playing %d Hertz!\n", p4
 asig poscil .2, p4
 outs asig, asig
endin

</CsInstruments>
<CsScore>
i 1 0 2 10
i . + . 100
i . + . 1000
i . + . 10000
i . + . 20000
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Pitches

Musicians tune their instruments, and theorists concern themselves with the rationale, describing intervals and scales. This has happened in different cultures, for ages, long before the term frequency was invented and long before it was possible to measure a certain frequency by technical devices. What is the relationship between musical terms like octave, major third, semitone and the frequency we have to specify for an oscillator? And why are frequencies often described as being on a “logarithmic scale”?

Logarithms, Frequency Ratios and Intervals

A lot of basic maths is about simplification of complex equations. Shortcuts are taken all the time to make things easier to read and equate. Multiplication can be seen as a shorthand for repeated additions, for example, 5x10 = 5+5+5+5+5+5+5+5+5+5. Exponents are shorthand for repeated multiplications, 35 = 3x3x3x3x3. Logarithms are shorthand for exponents and are used in many areas of science and engineering in which quantities vary over a large range. Examples of logarithmic scales include the decibel scale, the Richter scale for measuring earthquake magnitudes and the astronomical scale of stellar brightnesses.

Intervals in music describe the distance between two notes. When dealing with standard musical notation it is easy to determine an interval between two adjacent notes. For example a perfect 5th is always made up of seven semitones, so seven adjacent keys on a keyboard. When dealing with Hz values things are different. A difference of say 100 Hz does not always equate to the same musical interval. This is because musical intervals are represented as ratios between two frequencies. An octave for example is always defines by the ratio 2:1. That is to say every time you double a Hz value you will jump up by a musical interval of an octave.

Consider the following. A flute can play the note A4 at 440 Hz. If the player plays A5 an octave above it at 880 Hz the difference in Hz is 440. Now consider the piccolo, the highest pitched instrument of the orchestra. It can play A6 with a frequency of 1760 Hz but it can also play A7 an octave above this at 3520 Hz (2 x 1760 Hz). While the difference in Hertz between A4 and A5 on the flute is only 440 Hz, the difference between A6 and A7 on a piccolo is 1760 Hz yet they are both only playing notes one octave apart.

The following example shows the difference between adding a certain frequency and applying a ratio. First, the frequencies of 100, 400 and 800 Hz all get an addition of 100 Hz. This sounds very different, though the added frequency is the same. Second, the ratio 3/2 (perfect fifth) is applied to the same frequencies. This spacing sounds constant, although the frequency displacement is different each time.

EXAMPLE 01B03_Adding_vs_ratio.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m0
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1
 prints "Playing %d Hertz!\n", p4
 asig poscil .2, p4
 aout linen asig, 0, p3, p3
 outs aout, aout
endin

instr 2
 prints "Adding %d Hertz to %d Hertz!\n", p5, p4
 asig poscil .2, p4+p5
 aout linen asig, 0, p3, p3
 outs aout, aout
endin

instr 3
 prints "Applying the ratio of %f (adding %d Hertz) to %d Hertz!\n",
 p5, p4*p5, p4
 asig poscil .2, p4*p5
 aout linen asig, 0, p3, p3
 outs aout, aout
endin

</CsInstruments>
<CsScore>
;adding a certain frequency (instr 2)
i 1 0 1 100
i 2 1 1 100 100
i 1 3 1 400
i 2 4 1 400 100
i 1 6 1 800
i 2 7 1 800 100
;applying a certain ratio (instr 3)
i 1 10 1 100
i 3 11 1 100 [3/2]
i 1 13 1 400
i 3 14 1 400 [3/2]
i 1 16 1 800
i 3 17 1 800 [3/2]
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Equal tempered scale

As some readers will know, the current preferred method of tuning western instruments is based on equal temperament. Essentially this means that all octaves are split into 12 equal intervals, called semitones. Therefore a semitone has a ratio of 21/12, which is approximately 1.059463.2 The next semitone will have the ratio 22/12 (1.122462…), the third one 23/12 (1.189207…), and so on. The exponents increase linear (1/12, 2/12, 3/12, …), thus yielding the same proportion between each subsequent semitone.

So what about the reference to logarithms? As stated previously, logarithms are shorthand for exponents. 21/12 = 1.059463 can also be written as log2(1.059463) = 1/12. Therefore, frequencies representing musical scales or intervals can be described on a logarithmic scale. The linear progression of the exponents (with base 2) as 1/12, 2/12, 3/12 … represent the linear progression of semitones.

MIDI Notes

The equal-tempered scale is present on each MIDI keyboard. So the most common way to work with pitches is to use MIDI note numbers. In MIDI speak A4 (= 440 Hz) is MIDI note 69.3 The semitone below, called A flat or G sharp, is MIDI note 68, and so on. The MIDI notes 1-127 cover the frequency range from 9 Hz to 12544 Hz which is pretty well suited to the human hearing (and to a usual grand piano which would correspond to MIDI keys 21-108).

Csound can easily deal with MIDI notes and comes with functions that will convert MIDI notes to Hertz values (mtof) and back again (ftom). The next example shows a small chromatic melody which is given as MIDI notes in the array iMidiKeys[], and then converted to the corresponding frequencies, related to the definition of A4 (440 Hz as default). The opcode mton returns the note names.

EXAMPLE 01B04_Midi_to_frequency.csd

<CsoundSynthesizer>
<CsOptions>
-o dac -m128
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
A4 = 457

instr LetPlay

 iMidiKeys[] fillarray 69, 69, 69, 68, 67, 66, 65, 64
 iDurations[] fillarray 2, 1, 1, 1, 1, 1, 1, 4
 iIndex = 0
 iStart = 0
 while iIndex < lenarray(iMidiKeys) do
 schedule "Play", iStart, iDurations[iIndex]*3/2, iMidiKeys[iIndex]
 iStart += iDurations[iIndex]
 iIndex += 1
 od

endin

instr Play

 iMidiKey = p4
 iFreq mtof iMidiKey
 S_name mton iMidiKey
 printf_i "Midi Note = %d, Frequency = %f, Note name = %s\n",
 1, iMidiKey, iFreq, S_name
 aPluck pluck .2, iFreq, iFreq, 0, 1
 aOut linen aPluck, 0, p3, p3/2
 aL, aR pan2 aOut, (iMidiKey-61)/10
 out aL, aR

endin

</CsInstruments>
<CsScore>
i "LetPlay" 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

As A4 is set in the header to 457 Hz (overwriting the default 440 Hz), this is the printout:

Midi Note = 69, Frequency = 457.000000, Note name = 4A
Midi Note = 69, Frequency = 457.000000, Note name = 4A
Midi Note = 69, Frequency = 457.000000, Note name = 4A
Midi Note = 68, Frequency = 431.350561, Note name = 4G#
Midi Note = 67, Frequency = 407.140714, Note name = 4G
Midi Note = 66, Frequency = 384.289662, Note name = 4F#
Midi Note = 65, Frequency = 362.721140, Note name = 4F
Midi Note = 64, Frequency = 342.363167, Note name = 4E

Other Pitch Representation

In addition to raw frequency input and MIDI note numbers, Csound offers two more possibilities to specify a certain pitch. The pch notation is a floating point number, in which the integer part denotes the octave number and the fractional part denotes the semitones. The octave numbers are not the same as in the common system – the middle octave is number 8 rather than 4. So C4, the “middle c” on a piano, has the number 8.00. Semitones upwards are then 8.01, 8.02 and so on, reaching A4 as 8.09. B4 is 8.11 and C5 is 9.00.

The oct notation also uses floating point numbers. The integer part has the same meaning as in the pch notation. The fractional part divides one octave in acoustically equal steps. For 8.00 as C4 and 9.00 as C5, 8.5 denotes a pitch which is acoustically in the middle between C4 and C5, which means that the proportion between this frequency and the C4 frequency is the same as the proportion between the C5 frequency and this tone’s frequency. Csound calculates this as:

 instr 1
 iC4 = cpsoct(8)
 iC5 = cpsoct(9)
 iNew = cpsoct(8.5)
 prints "C4 = %.3f Hz, C5 = %.3f Hz, oct(8.5) = %.3f Hz.\n",
 iC4, iC5, iNew
 prints "Proportion New:C4 = %.3f, C5:New = %.3f\n",
 iNew/iC4, iC5/iNew
 endin
 schedule(1,0,0)

And the output is:

 C4 = 261.626 Hz, C5 = 523.251 Hz, oct(8.5) = 369.994 Hz.
 Proportion New:C4 = 1.414, C5:New = 1.414

On a keyboard, this pitch which divides the octave in two acoustically equal halves, is F#4. It can be notated in pch notation as 8.06, or in MIDI notation as key number 66. So why was oct notation added? – The reason is that by this notation it becomes very simple to introduce for instance the division of an octave into 10 equal steps: 8.1, 8.2, …, or in 8 equal steps as 8.125, 8.25, 8.375, …

The following code shows that things like these can also be achieved with a bit of math, but for simple cases it is quite convenient to use the oct notation. A scale consisting of ten equal steps based on A3 (= 220 Hz) is constructed.

 instr 1
 puts "Calculation with octpch():", 1
 iOctDiff = 0
 while iOctDiff < 1 do
 prints "oct(%.2f)=%.3f ", 7.75+iOctDiff, cpsoct(7.75+iOctDiff)
 iOctDiff += 1/10
 od
 puts "",1
 puts "Calculation with math:", 1
 iExp = 0
 while iExp < 1 do
 prints "pow(2,%.1f)=%.3f ", pow(2,iExp), pow(2,iExp) * 220
 iExp += 1/10
 od
 puts "",1
 endin
 schedule(1,0,0)

Cent

One semitone in the equal-tempered tuning system can be divided into 100 Cent. It is a common way to denote small or “microtonal” deviations. It can be used in Csound’s MIDI notation as fractional part. MIDI note number 69.5 is a quarter tone (50 Cent) above A4; 68.75 is an eight tone (25 Cent) below A4. In the pch notation we would write 8.095 for the first and 8.0875 for the second pitch.

All musical intervals can be described as ratios or multipliers. The ratio for the perfect fifth is 3:2, or 1.5 when used as multiplier. Also one Cent is a multiplier. As one octave consists of 12 semitones, and each semitone consists of 100 Cent, one octave consists of 1200 Cent. So one Cent, described as multiplier, is 21/1200 (1.000577…), and 50 Cent is 250/1200 (1.0293022…). To return this multiplier, Csound offers the cent converter. So cent(50) returns the number by which we must multiply a certain frequency to get a quarter tone higher, and cent(-25) returns the multiplier for calculating an eighth tone lower.

 instr 1
 prints "A quater tone above A4 (440 Hz):\n"
 prints " 1. as mtof:i(69.5) = %f\n", mtof:i(69.5)
 prints " 2. as cpspch(8.095) = %f\n", cpspch(8.095)
 prints " 3. as 2^(50/1200)*440 = %f\n", 2^(50/1200)*440
 prints " 4. as cent(50)*440 = %f\n", cent(50)*440
 endin
 schedule(1,0,0)

The result of this comparison is:

 A quater tone above A4 (440 Hz):
 1. as mtof:i(69.5) = 452.892984
 2. as cpspch(8.095) = 452.880211
 3. as 2\^(50/1200)*440 = 452.892984
 4. as cent(50)*440 = 452.892984

Tuning Systems

The equal-tempered tuning system which can be found on each MIDI keyboard is not the only tuning system in existence. For many musical contexts it is not approriate. In european history there were many different systems, for instance the Pythagorean and the Meantone tuning. Each of the countless traditional music cultures all over the world, for instance Arabic Maqam, Iranian Dastgah, Indian Raga, has its own tuning system. And in comtemporary music we find also numerous different tuning systems.

Audio programming languages like Csound, which can synthesize sounds with any frequency, are particularily suited for this approach. It is even simple to “tune” a MIDI keyboard in quarter tones or to any historical tuning using Csound. The following example shows the fundamentals. It plays the five notes C D E F G (= MIDI 60 62 64 65 67) first in Pythoagorean tuning, then in Meantone, then as quatertones, then as partials 1-5.

<CsoundSynthesizer>
<CsOptions>
-o dac -m128
</CsOptions>
<CsInstruments>

sr = 44100
nchnls = 2
0dbfs = 1
ksmps = 32

instr Pythagorean
 giScale[] fillarray 1, 9/8, 81/64, 4/3, 3/2
 schedule("LetPlay",0,0)
 puts "Pythagorean scale",1
endin

instr Meantone
 giScale[] fillarray 1, 10/9, 5/4, 4/3, 3/2
 schedule("LetPlay",0,0)
 puts "Meantone scale",1
endin

instr Quatertone
 giScale[] fillarray 1, 2^(1/24), 2^(2/24), 2^(3/24), 2^(4/24)
 schedule("LetPlay",0,0)
 puts "Quatertone scale",1
endin

instr Partials
 giScale[] fillarray 1, 2, 3, 4, 5
 schedule("LetPlay",0,0)
 puts "Partials scale",1
endin

instr LetPlay
 indx = 0
 while indx < 5 do
 schedule("Play",indx,2,giScale[indx])
 indx += 1
 od
endin

instr Play
 iFreq = mtof:i(60) * p4
 print iFreq
 aSnd vco2 .2, iFreq, 8
 aOut linen aSnd, .1, p3, p3/2
 out aOut, aOut
endin

</CsInstruments>
<CsScore>
i "Pythagorean" 0 10
i "Meantone" 10 10
i "Quatertone" 20 10
i "Partials" 30 10
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Frequently Used Formulas

New Frequency from Frequency and Proportion

Given:

	Frequency ff

	Proportion pp

Searched:

	New Frequency fnewf_{new}

Solution: fnew=f⋅pf_{new} = f \cdot p

Example: Which frequency is in 5/4 proportion to 440 Hz? →fnew=440Hz⋅5/4=550Hz\to f_{new} = 440 Hz \cdot 5/4 = 550\ Hz

Csound code: iFreq_new = 440 * 5/4

New Frequency from Frequency and Cent Difference

Given:

	Frequency ff

	Cent difference cc

Searched:

	New Frequency fnewf_{new}

Solution: fnew=f⋅2c/1200f_{new} = f \cdot 2^{c/1200}

Example: Which frequency is 50 Cent below 440 Hz? fnew=440⋅2−50/1200=427.474Hzf_{new} = 440 \cdot 2^{-50/1200} = 427.474\ Hz

Csound code: iFreq_new = 440 * 2^(-50/1200)

Cent Difference of two Frequencies

Given:

	Frequency_1 f1f_1

	Frequency_2 f2f_2

Searched:

	Cent difference cc

Solution: c=log2f1f2⋅1200c = \log_2{\frac{f1}{f2}} \cdot 1200

Example: What is the Cent difference between 550 Hz and 440 Hz? →c=log2550440⋅1200=386.314Cent\to c = \log_2{\frac{550}{440}} \cdot 1200 = 386.314\ Cent

Csound code: iCent = log2(550/440) * 1200

	Similar to volume and amplitude – see next chapter.↩︎

	21/12 is the same as 212\sqrt[12]{2} thus the number which yields 2 if multiplied by itself 12 times.↩︎

	Caution: like many standards there is occasional disagreement about the mapping between frequency and octave number. You may occasionally encounter A 440 Hz being described as A3.↩︎

01 C. INTENSITIES

As musicians we are dealing with volume, loudness, sound intensity. (In classical western music called dynamics, designated as forte, piano and its variants.) In digital audio, however, we are dealing with amplitudes. We are asked, for instance, to set the amplitude of an oscillator. Or we see this message at the end of a Csound performance in the console telling us the “overall amps” (= amplitudes):

[image: Csound console printout]Csound console printout

Amplitudes are related to sound intensities, but in a more complicated way than we may think. This chapter starts with some essentials about measuring intensities and the decibel (dB) scale. It continues with rms measurement and ends with the Fletcher-Munson curves.

Real World Intensities and Amplitudes

SIL — Sound Intensity Level

There are many ways to describe a sound physically. One of the most common is the Sound Intensity Level (SIL). It describes the amount of power on a certain surface, so its unit is Watts per square meter W/m2.

The range of human hearing is about 10-12 W/m2 at the threshold of hearing to 100 W/m2 at the threshold of pain. For ordering this immense range, and to facilitate the measurement of one sound intensity based upon its ratio with another, a logarithmic scale is used. The unit Bel describes the relation of one intensity II to a reference intensity I0I_0 as follows:

log10II0\log_{10} \frac{I}{I_0} Sound Intensity Level in Bel

If, for example, the ratio I/I0 is 10, this is 1 Bel. If the ratio is 100, this is 2 Bel.

For real world sounds, it makes sense to set the reference value I0I_0 to the threshold of hearing which has been fixed as 10-12 W/m2 at 1000 Hertz. So the range of human hearing covers about 12 Bel. Usually 1 Bel is divided into 10 decibel, so the common formula for measuring a sound intensity is:

10⋅log10II010 \cdot \log_{10} \frac{I}{I_0} Sound Intensity Level (SIL) in deci Bel (dB) with I0 = 10 -12 W/m2

SPL — Sound Pressure Level

While the sound intensity level is useful in describing the way in which human hearing works, the measurement of sound is more closely related to the sound pressure deviations. Sound waves compress and expand the air particles and by this they increase and decrease the localized air pressure. These deviations are measured and transformed by a microphone. But what is the relationship between the sound pressure deviations and the sound intensity? The answer is: sound intensity changes II are proportional to the square of the sound pressure changes PP. As a formula:

I∝P2I \propto P^2 Relation between Sound Intensity and Sound Pressure

Let us take an example to see what this means. The sound pressure at the threshold of hearing can be fixed at 2·10-5 Pa. This value is the reference value of the Sound Pressure Level (SPL). If we now have a value of 2·10-4 Pa, the corresponding sound intensity relationship can be calculated as

(2⋅10−42⋅10−5)2=102=100\left(\frac{2 \cdot 10^{-4}}{2 \cdot 10^{-5}}\right)^2 = 10^2 = 100.

Therefore a factor of 10 in a pressure relationship yields a factor of 100 in the intensity relationship. In general, the dB scale for the pressure PP related to the pressure P0P_0 is:

10⋅log10(PP0)2=2⋅10⋅log10PP0=20⋅log10PP010 \cdot log_{10} \left(\frac{P}{P_0}\right)^2 = 2 \cdot 10 \cdot log_{10} \frac{P}{P_0} = 20 \cdot log_{10} \frac{P}{P_0}
 Sound Pressure Level (SPL) in Decibels (dB) with P0 = 2·10-5 Pa

Sound Intensity and Amplitudes

Working with digital audio means working with amplitudes. Any audio signal is a sequence of amplitudes. What we generate in Csound and write either to the DAC in realtime or to a sound file, is again nothing but a sequence of amplitudes. As amplitudes are directly related to the sound pressure deviations, all the relationships between sound intensity and sound pressure can be transferred to relationships between sound intensity and amplitudes:

I∝A2I \propto A^2 Relationship between Intensity and Amplitude

This yields the same transformation as described above for the sound pressure; so finally the relation in Decibel of any amplitude AA to a reference amplitude A0A_0 is:

20⋅log10AA020 \cdot \log_{10} \frac{A}{A_0} Decibel (dB) Scale of Amplitudes

If we drive an oscillator with an amplitude of 1, and another oscillator with an amplitude of 0.5 and we want to know the difference in dB, this is the calculation:

20⋅log1010.5=20⋅log102=20⋅0.30103=6.0206 𝑑𝐵20 \cdot \log_{10} \frac{1}{0.5} = 20 \cdot log_{10} 2 = 20 \cdot 0.30103 = 6.0206 \textit{ dB}

The most useful thing to bear in mind is that when we double an amplitude this will provide a change of +6 dB, or when we halve an amplitude this will provide a change of -6 dB.

What is 0 dB?

As described in the last section, any dB scale - for intensities, pressures or amplitudes - is just a way to describe a relationship. To have any sort of quantitative measurement you will need to know the reference value referred to as 0 dB. For real world sounds, it makes sense to set this level to the threshold of hearing. This is done, as we saw, by setting the SIL to 10-12 W/m2, and the SPL to 2·10-5 Pa.

When working with digital sound within a computer, this method for defining 0 dB will not make any sense. The loudness of the sound produced in the computer will ultimately depend on the amplification and the speakers, and the amplitude level set in your audio editor or in Csound will only apply an additional, and not an absolute, sound level control. Nevertheless, there is a rational reference level for the amplitudes. In a digital system, there is a strict limit for the maximum number you can store as amplitude. This maximum possible level is normally used as the reference point for 0 dB.

Each program connects this maximum possible amplitude with a number. Usually it is 1 which is a good choice, because you know that everything above 1 is clipping, and you have a handy relation for lower values. But actually this value is nothing but a setting, and in Csound you are free to set it to any value you like via the 0dbfs opcode. Usually you should use this statement in the orchestra header:

0dbfs = 1

This means: “Set the level for zero dB as full scale to 1 as reference value.” Note that for historical reasons the default value in Csound is not 1 but 32768. So you must have this 0dbfs=1 statement in your header if you want to use the amplitude convention used by most modern audio programming environments.

dB Scale Versus Linear Amplitude

Now we will consider some practical consequences of what we have discussed so far. One major point is that for achieving perceivably smooth changes across intensity levels you must not use a simple linear transition of the amplitudes, but a linear transition of the dB equivalent. The following example shows a linear rise of the amplitudes from 0 to 1, and then a linear rise of the dB’s from -80 to 0 dB, both over 10 seconds.

EXAMPLE 01C01_db_vs_linear.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1 ;linear amplitude rise
kamp line 0, p3, 1 ;amp rise 0->1
asig poscil 1, 1000 ;1000 Hz sine
aout = asig * kamp
 outs aout, aout
endin

instr 2 ;linear rise of dB
kdb line -80, p3, 0 ;dB rise -80 -> 0
asig poscil 1, 1000 ;1000 Hz sine
kamp = ampdb(kdb) ;transformation db -> amp
aout = asig * kamp
 outs aout, aout
endin

</CsInstruments>
<CsScore>
i 1 0 10
i 2 11 10
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The first note, which employs a linear rise in amplitude, is perceived as rising quickly in intensity with the rate of increase slowing quickly. The second note, which employs a linear rise in decibels, is perceived as a more constant rise in intensity.

RMS Measurement

Sound intensity depends on many factors. One of the most important is the effective mean of the amplitudes in a certain time span. This is called the Root Mean Square (RMS) value. To calculate it, you have (1) to calculate the squared amplitudes of N samples. Then you (2) divide the result by N to calculate the mean of it. Finally (3) take the square root.

Let us consider a simple example and then look at how to derive rms values within Csound. Assuming we have a sine wave which consists of 16 samples, we get these amplitudes:

[image: 16 times sampled Sine Wave]16 times sampled Sine Wave

These are the squared amplitudes:

[image: Squared Amplitudes of Sine]Squared Amplitudes of Sine

The mean of these values is:

0+0.146+0.5+0.854+1+0.854+0.5+0.146+0+0.146+0.5+0.854+1+0.854+0.5+0.14616\frac{0+0.146+0.5+0.854+1+0.854+0.5+0.146+0+0.146+0.5+0.854+1+0.854+0.5+0.146}{16} =816=0.5\ \ = \frac{8}{16} = 0.5

And the resulting RMS value is 0.5=0.707\sqrt{0.5} = 0.707.

The rms opcode in Csound calculates the RMS power in a certain time span, and smoothes the values in time according to the ihp parameter: the higher this value is (the default is 10 Hz), the quicker this measurement will respond to changes, and vice versa. This opcode can be used to implement a self-regulating system, in which the rms opcode prevents the system from exploding. Each time the rms value exceeds a certain value, the amount of feedback is reduced. This is an example1:

EXAMPLE 01C02_rms_feedback_system.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine ftgen 0, 0, 2^10, 10, 1 ;table with a sine wave

instr 1
 a3 init 0
 kamp linseg 0, 1.5, 0.2, 1.5, 0 ;envelope for initial input
 asnd poscil kamp, 440, giSine ;initial input
 if p4 == 1 then ;choose between two sines ...
 adel1 poscil 0.0523, 0.023, giSine
 adel2 poscil 0.073, 0.023, giSine,.5
 else ;... or a random movement
 ;for the delay lines
 adel1 randi 0.05, 0.1, 2
 adel2 randi 0.08, 0.2, 2
 endif
 a0 delayr 1 ;delay line of 1 second
 a1 deltapi adel1 + 0.1 ;first reading
 a2 deltapi adel2 + 0.1 ;second reading
 krms rms a3 ;rms measurement
 delayw asnd + exp(-krms) * a3 ;feedback depending on rms
 a3 reson -(a1+a2), 3000, 7000, 2 ;calculate a3
 aout linen a1/3, 1, p3, 1 ;apply fade in and fade out
 outs aout, aout
endin
</CsInstruments>
<CsScore>
i 1 0 60 1 ;two sine movements of delay with feedback
i 1 61 . 2 ;two random movements of delay with feedback
</CsScore>
</CsoundSynthesizer>
;example by Martin Neukom, adapted by Joachim Heintz

Fletcher-Munson Curves

The range of human hearing is roughly from 20 to 20000 Hz, but within this range, the hearing is not equally sensitive to intensity. The most sensitive region is around 3000 Hz. If a sound is operating in the upper or lower limits of this range, it will need greater intensity in order to be perceived as equally loud.

These curves of equal loudness are mostly called Fletcher-Munson Curves because of the paper of H. Fletcher and W. A. Munson in 1933. They look like this:

Try the following test. During the first 5 seconds you will hear a tone of 3000 Hz. Adjust the level of your amplifier to the lowest possible level at which you still can hear the tone. Next you hear a tone whose frequency starts at 20 Hertz and ends at 20000 Hertz, over 20 seconds. Try to move the fader or knob of your amplification exactly in a way that you still can hear anything, but as soft as possible. The movement of your fader should roughly be similar to the lowest Fletcher-Munson-Curve: starting relatively high, going down and down until 3000 Hertz, and then up again. Of course, this effectiveness of this test will also depend upon the quality of your speaker hardware. If your speakers do not provide adequate low frequency response, you will not hear anything in the bass region.

EXAMPLE 01C03_FletcherMunson.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1
 kfreq expseg p4, p3, p5
 printk 1, kfreq ;prints the frequencies once a second
 asin poscil .2, kfreq
 aout linen asin, .01, p3, .01
 outs aout, aout
endin
</CsInstruments>
<CsScore>
i 1 0 5 1000 1000
i 1 6 20 20 20000
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

It is very important to bear in mind when designing instruments that the perceived loudness of a sound will depend upon its frequency content. You must remain aware that projecting a 30 Hz sine at a certain amplitude will be perceived differently to a 3000 Hz sine at the same amplitude; the latter will sound much louder.

	cf Martin Neukom, Signale Systeme Klangsynthese, Zürich 2003, p.383↩︎

01 D. RANDOM

This chapter is in three parts. Part I provides a general introduction to the concepts behind random numbers and how to work with them in Csound. Part II focusses on a more mathematical approach. Part III introduces a number of opcodes for generating random numbers, functions and distributions and demonstrates their use in musical examples.

I. GENERAL INTRODUCTION

Random is Different

The term random derives from the idea of a horse that is running so fast it becomes out of control or beyond predictability.1 Yet there are different ways in which to run fast and to be out of control; therefore there are different types of randomness.

We can divide types of randomness into two classes. The first contains random events that are independent of previous events. The most common example for this is throwing a die. Even if you have just thrown three One’s in a row, when thrown again, a One has the same probability as before (and as any other number). The second class of random number involves random events which depend in some way upon previous numbers or states. Examples here are Markov chains and random walks.

The use of randomness in electronic music is widespread. In this chapter, we shall try to explain how the different random horses are moving, and how you can create and modify them on your own. Moreover, there are many pre-built random opcodes in Csound which can be used out of the box (see the overview in the Csound Manual and the Opcode Guide). The final section of this chapter introduces some musically interesting applications of them.

Random Without History

A computer is typically only capable of computation. Computations are deterministic processes: one input will always generate the same output, but a random event is not predictable. To generate something which looks like a random event, the computer uses a pseudo-random generator.

The pseudo-random generator takes one number as input, and generates another number as output. This output is then the input for the next generation. For a huge amount of numbers, they look as if they are randomly distributed, although everything depends on the first input: the seed. For one given seed, the next values can be predicted.

Uniform Distribution and Seed

The output of a classical pseudo-random generator is uniformly distributed: each value in a given range has the same likelihood of occurence. The first example shows the influence of a fixed seed (using the same chain of numbers and beginning from the same location in the chain each time) in contrast to a seed being taken from the system clock (the usual way of imitating unpredictability). The first three groups of four notes will always be the same because of the use of the same seed whereas the last three groups should always have a different pitch.

EXAMPLE 01D01_different_seed.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m0
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr generate
 ;get seed: 0 = seeding from system clock
 ; otherwise = fixed seed
 seed p4
 ;generate four notes to be played from subinstrument
iNoteCount = 0
 while iNoteCount < 4 do
iFreq random 400, 800
 schedule "play", iNoteCount, 2, iFreq
iNoteCount += 1 ;increase note count
 od
endin

instr play
iFreq = p4
 print iFreq
aImp mpulse .5, p3
aMode mode aImp, iFreq, 1000
aEnv linen aMode, 0.01, p3, p3-0.01
 outs aEnv, aEnv
endin
</CsInstruments>
<CsScore>
;repeat three times with fixed seed
r 3
i "generate" 0 2 1
;repeat three times with seed from the system clock
r 3
i "generate" 0 1 0
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Note that a pseudo-random generator will repeat its series of numbers after as many steps as are given by the size of the generator. If a 16-bit number is generated, the series will be repeated after 65536 steps. If you listen carefully to the following example, you will hear a repetition in the structure of the white noise (which is the result of uniformly distributed amplitudes) after about 1.5 seconds in the first note.2 In the second note, there is no perceivable repetition as the random generator now works with a 31-bit number.

EXAMPLE 01D02_white_noises.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr white_noise
iBit = p4 ;0 = 16 bit, 1 = 31 bit
 ;input of rand: amplitude, fixed seed (0.5), bit size
aNoise rand .1, 0.5, iBit
 outs aNoise, aNoise
endin

</CsInstruments>
<CsScore>
i "white_noise" 0 10 0
i "white_noise" 11 10 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Two more general notes about this:

	The way to set the seed differs from opcode to opcode. There are several opcodes such as rand featured above, which offer the choice of setting a seed as input parameter. For others, such as the frequently used random family, the seed can only be set globally via the seed statement. This is usually done in the header so a typical statement would be:

<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
seed 0 ;seeding from current time

	Random number generation in Csound can be done at any rate. The type of the output variable tells you whether you are generating random values at i-, k- or a-rate. Many random opcodes can work at all these rates, for instance random:

1) ires random imin, imax
2) kres random kmin, kmax
3) ares random kmin, kmax

In the first case, a random value is generated only once, when an instrument is called, at initialisation. The generated value is then stored in the variable ires. In the second case, a random value is generated at each k-cycle, and stored in kres. In the third case, in each k-cycle as many random values are stored as the audio vector has in size, and stored in the variable ares. Have a look at example 03A16_Random_at_ika.csd to see this at work. Chapter 03A tries to explain the background of the different rates in depth, and how to work with them.

Other Distributions

The uniform distribution is the one each computer can output via its pseudo-random generator. But there are many situations you will not want a uniformly distributed random, but any other shape. Some of these shapes are quite common, but you can actually build your own shapes quite easily in Csound. The next examples demonstrate how to do this. They are based on the chapter in Dodge/Jerse3 which also served as a model for many random number generator opcodes in Csound.4

Linear

A linear distribution means that either lower or higher values in a given range are more likely:

To get this behaviour, two uniform random numbers are generated, and the lower is taken for the first shape. If the second shape with the precedence of higher values is needed, the higher one of the two generated numbers is taken. The next example implements these random generators as User Defined Opcodes. First we hear a uniform distribution, then a linear distribution with precedence of lower pitches (but longer durations), at least a linear distribution with precedence of higher pitches (but shorter durations).

EXAMPLE 01D03_linrand.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m0
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
seed 0

;****DEFINE OPCODES FOR LINEAR DISTRIBUTION****

opcode linrnd_low, i, ii
 ;linear random with precedence of lower values
iMin, iMax xin
 ;generate two random values with the random opcode
iOne random iMin, iMax
iTwo random iMin, iMax
 ;compare and get the lower one
iRnd = iOne < iTwo ? iOne : iTwo
 xout iRnd
endop

opcode linrnd_high, i, ii
 ;linear random with precedence of higher values
iMin, iMax xin
 ;generate two random values with the random opcode
iOne random iMin, iMax
iTwo random iMin, iMax
 ;compare and get the higher one
iRnd = iOne > iTwo ? iOne : iTwo
 xout iRnd
endop

;****INSTRUMENTS FOR THE DIFFERENT DISTRIBUTIONS****

instr notes_uniform
 prints "... instr notes_uniform playing:\n"
 prints "EQUAL LIKELINESS OF ALL PITCHES AND DURATIONS\n"
 ;how many notes to be played
iHowMany = p4
 ;trigger as many instances of instr play as needed
iThisNote = 0
iStart = 0
 until iThisNote == iHowMany do
iMidiPch random 36, 84 ;midi note
iDur random .5, 1 ;duration
 event_i "i", "play", iStart, iDur, int(iMidiPch)
iStart += iDur ;increase start
iThisNote += 1 ;increase counter
 enduntil
 ;reset the duration of this instr to make all events happen
p3 = iStart + 2
 ;trigger next instrument two seconds after the last note
 event_i "i", "notes_linrnd_low", p3, 1, iHowMany
endin

instr notes_linrnd_low
 prints "... instr notes_linrnd_low playing:\n"
 prints "LOWER NOTES AND LONGER DURATIONS PREFERRED\n"
iHowMany = p4
iThisNote = 0
iStart = 0
 until iThisNote == iHowMany do
iMidiPch linrnd_low 36, 84 ;lower pitches preferred
iDur linrnd_high .5, 1 ;longer durations preferred
 event_i "i", "play", iStart, iDur, int(iMidiPch)
iStart += iDur
iThisNote += 1
 enduntil
 ;reset the duration of this instr to make all events happen
p3 = iStart + 2
 ;trigger next instrument two seconds after the last note
 event_i "i", "notes_linrnd_high", p3, 1, iHowMany
endin

instr notes_linrnd_high
 prints "... instr notes_linrnd_high playing:\n"
 prints "HIGHER NOTES AND SHORTER DURATIONS PREFERRED\n"
iHowMany = p4
iThisNote = 0
iStart = 0
 until iThisNote == iHowMany do
iMidiPch linrnd_high 36, 84 ;higher pitches preferred
iDur linrnd_low .3, 1.2 ;shorter durations preferred
 event_i "i", "play", iStart, iDur, int(iMidiPch)
iStart += iDur
iThisNote += 1
 enduntil
 ;reset the duration of this instr to make all events happen
p3 = iStart + 2
 ;call instr to exit csound
 event_i "i", "exit", p3+1, 1
endin

;****INSTRUMENTS TO PLAY THE SOUNDS AND TO EXIT CSOUND****

instr play
 ;increase duration in random range
iDur random p3, p3*1.5
p3 = iDur
 ;get midi note and convert to frequency
iMidiNote = p4
iFreq cpsmidinn iMidiNote
 ;generate note with karplus-strong algorithm
aPluck pluck .2, iFreq, iFreq, 0, 1
aPluck linen aPluck, 0, p3, p3
 ;filter
aFilter mode aPluck, iFreq, .1
 ;mix aPluck and aFilter according to MidiNote
 ;(high notes will be filtered more)
aMix ntrpol aPluck, aFilter, iMidiNote, 36, 84
 ;panning also according to MidiNote
 ;(low = left, high = right)
iPan = (iMidiNote-36) / 48
aL, aR pan2 aMix, iPan
 outs aL, aR
endin

instr exit
 exitnow
endin

</CsInstruments>
<CsScore>
i "notes_uniform" 0 1 23 ;set number of notes per instr here
;instruments linrnd_low and linrnd_high are triggered automatically
e 99999 ;make possible to perform long (exit will be automatically)
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Triangular

In a triangular distribution the values in the middle of the given range are more likely than those at the borders. The probability transition between the middle and the extrema are linear:

The algorithm for getting this distribution is very simple as well. Generate two uniform random numbers and take the mean of them. The next example shows the difference between uniform and triangular distribution in the same environment as the previous example.

EXAMPLE 01D04_trirand.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m0
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
seed 0

;****UDO FOR TRIANGULAR DISTRIBUTION****
opcode trirnd, i, ii
iMin, iMax xin
 ;generate two random values with the random opcode
iOne random iMin, iMax
iTwo random iMin, iMax
 ;get the mean and output
iRnd = (iOne+iTwo) / 2
 xout iRnd
endop

;****INSTRUMENTS FOR UNIFORM AND TRIANGULAR DISTRIBUTION****

instr notes_uniform
 prints "... instr notes_uniform playing:\n"
 prints "EQUAL LIKELINESS OF ALL PITCHES AND DURATIONS\n"
 ;how many notes to be played
iHowMany = p4
 ;trigger as many instances of instr play as needed
iThisNote = 0
iStart = 0
 until iThisNote == iHowMany do
iMidiPch random 36, 84 ;midi note
iDur random .25, 1.75 ;duration
 event_i "i", "play", iStart, iDur, int(iMidiPch)
iStart += iDur ;increase start
iThisNote += 1 ;increase counter
 enduntil
 ;reset the duration of this instr to make all events happen
p3 = iStart + 2
 ;trigger next instrument two seconds after the last note
 event_i "i", "notes_trirnd", p3, 1, iHowMany
endin

instr notes_trirnd
 prints "... instr notes_trirnd playing:\n"
 prints "MEDIUM NOTES AND DURATIONS PREFERRED\n"
iHowMany = p4
iThisNote = 0
iStart = 0
 until iThisNote == iHowMany do
iMidiPch trirnd 36, 84 ;medium pitches preferred
iDur trirnd .25, 1.75 ;medium durations preferred
 event_i "i", "play", iStart, iDur, int(iMidiPch)
iStart += iDur
iThisNote += 1
 enduntil
 ;reset the duration of this instr to make all events happen
p3 = iStart + 2
 ;call instr to exit csound
 event_i "i", "exit", p3+1, 1
endin

;****INSTRUMENTS TO PLAY THE SOUNDS AND EXIT CSOUND****

instr play
 ;increase duration in random range
iDur random p3, p3*1.5
p3 = iDur
 ;get midi note and convert to frequency
iMidiNote = p4
iFreq cpsmidinn iMidiNote
 ;generate note with karplus-strong algorithm
aPluck pluck .2, iFreq, iFreq, 0, 1
aPluck linen aPluck, 0, p3, p3
 ;filter
aFilter mode aPluck, iFreq, .1
 ;mix aPluck and aFilter according to MidiNote
 ;(high notes will be filtered more)
aMix ntrpol aPluck, aFilter, iMidiNote, 36, 84
 ;panning also according to MidiNote
 ;(low = left, high = right)
iPan = (iMidiNote-36) / 48
aL, aR pan2 aMix, iPan
 outs aL, aR
endin

instr exit
 exitnow
endin

</CsInstruments>
<CsScore>
i "notes_uniform" 0 1 23 ;set number of notes per instr here
;instr trirnd will be triggered automatically
e 99999 ;make possible to perform long (exit will be automatically)
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

More Linear and Triangular

Having written this with some very simple UDOs, it is easy to emphasise the probability peaks of the distributions by generating more than two random numbers. If you generate three numbers and choose the smallest of them, you will get many more numbers near the minimum in total for the linear distribution. If you generate three random numbers and take the mean of them, you will end up with more numbers near the middle in total for the triangular distribution.

If we want to write UDOs with a flexible number of sub-generated numbers, we have to write the code in a slightly different way. Instead of having one line of code for each random generator, we will use a loop, which calls the generator as many times as we wish to have units. A variable will store the results of the accumulation. Re-writing the above code for the UDO trirnd would lead to this formulation:

opcode trirnd, i, ii
iMin, iMax xin
 ;set a counter and a maximum count
iCount = 0
iMaxCount = 2
 ;set the accumulator to zero as initial value
iAccum = 0
 ;perform loop and accumulate
 until iCount == iMaxCount do
iUniRnd random iMin, iMax
iAccum += iUniRnd
iCount += 1
 enduntil
 ;get the mean and output
iRnd = iAccum / 2
 xout iRnd
endop

To get this completely flexible, you only have to get iMaxCount as input argument. The code for the linear distribution UDOs is quite similar. – The next example shows these steps:

	Uniform distribution.

	Linear distribution with the precedence of lower pitches and longer durations, generated with two units.

	The same but with four units.

	Linear distribution with the precedence of higher pitches and shorter durations, generated with two units.

	The same but with four units.

	Triangular distribution with the precedence of both medium pitches and durations, generated with two units.

	The same but with six units.

Rather than using different instruments for the different distributions, the next example combines all possibilities in one single instrument. Inside the loop which generates as many notes as desired by the iHowMany argument, an if-branch calculates the pitch and duration of one note depending on the distribution type and the number of sub-units used. The whole sequence (which type first, which next, etc) is stored in the global array giSequence. Each instance of instrument notes increases the pointer giSeqIndx, so that for the next run the next element in the array is being read. If the pointer has reached the end of the array, the instrument which exits Csound is called instead of a new instance of notes.

EXAMPLE 01D05_more_lin_tri_units.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m0
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
seed 0

;****SEQUENCE OF UNITS AS ARRAY****/
giSequence[] array 0, 1.2, 1.4, 2.2, 2.4, 3.2, 3.6
giSeqIndx = 0 ;startindex

;****UDO DEFINITIONS****
opcode linrnd_low, i, iii
 ;linear random with precedence of lower values
iMin, iMax, iMaxCount xin
 ;set counter and initial (absurd) result
iCount = 0
iRnd = iMax
 ;loop and reset iRnd
 until iCount == iMaxCount do
iUniRnd random iMin, iMax
iRnd = iUniRnd < iRnd ? iUniRnd : iRnd
iCount += 1
 enduntil
 xout iRnd
endop

opcode linrnd_high, i, iii
 ;linear random with precedence of higher values
iMin, iMax, iMaxCount xin
 ;set counter and initial (absurd) result
iCount = 0
iRnd = iMin
 ;loop and reset iRnd
 until iCount == iMaxCount do
iUniRnd random iMin, iMax
iRnd = iUniRnd > iRnd ? iUniRnd : iRnd
iCount += 1
 enduntil
 xout iRnd
endop

opcode trirnd, i, iii
iMin, iMax, iMaxCount xin
 ;set a counter and accumulator
iCount = 0
iAccum = 0
 ;perform loop and accumulate
 until iCount == iMaxCount do
iUniRnd random iMin, iMax
iAccum += iUniRnd
iCount += 1
 enduntil
 ;get the mean and output
iRnd = iAccum / iMaxCount
 xout iRnd
endop

;****ONE INSTRUMENT TO PERFORM ALL DISTRIBUTIONS****
;0 = uniform, 1 = linrnd_low, 2 = linrnd_high, 3 = trirnd
;the fractional part denotes the number of units, e.g.
;3.4 = triangular distribution with four sub-units

instr notes
 ;how many notes to be played
iHowMany = p4
 ;by which distribution with how many units
iWhich = giSequence[giSeqIndx]
iDistrib = int(iWhich)
iUnits = round(frac(iWhich) * 10)
 ;set min and max duration
iMinDur = .1
iMaxDur = 2
 ;set min and max pitch
iMinPch = 36
iMaxPch = 84

 ;trigger as many instances of instr play as needed
iThisNote = 0
iStart = 0
iPrint = 1

 ;for each note to be played
 until iThisNote == iHowMany do

 ;calculate iMidiPch and iDur depending on type
 if iDistrib == 0 then
printf_i "%s", iPrint, "... uniform distribution:\n"
printf_i "%s", iPrint, "EQUAL LIKELIHOOD OF ALL PITCHES AND DURATIONS\n"
iMidiPch random iMinPch, iMaxPch ;midi note
iDur random iMinDur, iMaxDur ;duration
 elseif iDistrib == 1 then
printf_i "... linear low distribution with %d units:\n", iPrint, iUnits
printf_i "%s", iPrint, "LOWER NOTES AND LONGER DURATIONS PREFERRED\n"
iMidiPch linrnd_low iMinPch, iMaxPch, iUnits
iDur linrnd_high iMinDur, iMaxDur, iUnits
 elseif iDistrib == 2 then
printf_i "... linear high distribution with %d units:\n", iPrint, iUnits
printf_i "%s", iPrint, "HIGHER NOTES AND SHORTER DURATIONS PREFERRED\n"
iMidiPch linrnd_high iMinPch, iMaxPch, iUnits
iDur linrnd_low iMinDur, iMaxDur, iUnits
 else
printf_i "... triangular distribution with %d units:\n", iPrint, iUnits
printf_i "%s", iPrint, "MEDIUM NOTES AND DURATIONS PREFERRED\n"
iMidiPch trirnd iMinPch, iMaxPch, iUnits
iDur trirnd iMinDur, iMaxDur, iUnits
 endif

 ;call subinstrument to play note
 event_i "i", "play", iStart, iDur, int(iMidiPch)

 ;increase start tim and counter
iStart += iDur
iThisNote += 1
 ;avoid continuous printing
iPrint = 0
 enduntil

 ;reset the duration of this instr to make all events happen
p3 = iStart + 2

 ;increase index for sequence
giSeqIndx += 1
 ;call instr again if sequence has not been ended
 if giSeqIndx < lenarray(giSequence) then
 event_i "i", "notes", p3, 1, iHowMany
 ;or exit
 else
 event_i "i", "exit", p3, 1
 endif
endin

;****INSTRUMENTS TO PLAY THE SOUNDS AND EXIT CSOUND****
instr play
 ;increase duration in random range
iDur random p3, p3*1.5
p3 = iDur
 ;get midi note and convert to frequency
iMidiNote = p4
iFreq cpsmidinn iMidiNote
 ;generate note with karplus-strong algorithm
aPluck pluck .2, iFreq, iFreq, 0, 1
aPluck linen aPluck, 0, p3, p3
 ;filter
aFilter mode aPluck, iFreq, .1
 ;mix aPluck and aFilter according to MidiNote
 ;(high notes will be filtered more)
aMix ntrpol aPluck, aFilter, iMidiNote, 36, 84
 ;panning also according to MidiNote
 ;(low = left, high = right)
iPan = (iMidiNote-36) / 48
aL, aR pan2 aMix, iPan
 outs aL, aR
endin

instr exit
 exitnow
endin

</CsInstruments>
<CsScore>
i "notes" 0 1 23 ;set number of notes per instr here
e 99999 ;make possible to perform long (exit will be automatically)
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

With this method we can build probability distributions which are very similar to exponential or gaussian distributions.5 Their shape can easily be formed by the number of sub-units used.

Scalings

Random is a complex and sensible context. There are so many ways to let the horse go, run, or dance – the conditions you set for this way of moving are much more important than the fact that one single move is not predictable. What are the conditions of this randomness?

	Which Way. This is what has already been described: random with or without history, which probability distribution, etc.

	Which Range. This is a decision which comes from the composer/programmer. In the example above I have chosen pitches from Midi Note 36 to 84 (C2 to C6), and durations between 0.1 and 2 seconds. Imagine how it would have been sounded with pitches from 60 to 67, and durations from 0.9 to 1.1 seconds, or from 0.1 to 0.2 seconds. There is no range which is “correct”, everything depends on the musical idea.

	Which Development. Usually the boundaries will change in the run of a piece. The pitch range may move from low to high, or from narrow to wide; the durations may become shorter, etc.

	Which Scalings. Let us think about this more in detail.

In the example above we used two implicit scalings. The pitches have been scaled to the keys of a piano or keyboard. Why? We do not play piano here obviously … – What other possibilities might have been instead? One would be: no scaling at all. This is the easiest way to go – whether it is really the best, or simple laziness, can only be decided by the composer or the listener.

Instead of using the equal tempered chromatic scale, or no scale at all, you can use any other ways of selecting or quantising pitches. Be it any which has been, or is still, used in any part of the world, or be it your own invention, by whatever fantasy or invention or system.

As regards the durations, the example above has shown no scaling at all. This was definitely laziness…

The next example is essentially the same as the previous one, but it uses a pitch scale which represents the overtone scale, starting at the second partial extending upwards to the 32nd partial. This scale is written into an array by a statement in instrument 0. The durations have fixed possible values which are written into an array (from the longest to the shortest) by hand. The values in both arrays are then called according to their position in the array.

EXAMPLE 01D06_scalings.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m0
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
seed 0

;****POSSIBLE DURATIONS AS ARRAY****
giDurs[] array 3/2, 1, 2/3, 1/2, 1/3, 1/4
giLenDurs lenarray giDurs

;****POSSIBLE PITCHES AS ARRAY****
 ;initialize array with 31 steps
giScale[] init 31
giLenScale lenarray giScale
 ;iterate to fill from 65 hz onwards
iStart = 65
iDenom = 3 ;start with 3/2
iCnt = 0
 until iCnt = giLenScale do
giScale[iCnt] = iStart
iStart = iStart * iDenom / (iDenom-1)
iDenom += 1 ;next proportion is 4/3 etc
iCnt += 1
 enduntil

;****SEQUENCE OF UNITS AS ARRAY****
giSequence[] array 0, 1.2, 1.4, 2.2, 2.4, 3.2, 3.6
giSeqIndx = 0 ;startindex

;****UDO DEFINITIONS****
opcode linrnd_low, i, iii
 ;linear random with precedence of lower values
iMin, iMax, iMaxCount xin
 ;set counter and initial (absurd) result
iCount = 0
iRnd = iMax
 ;loop and reset iRnd
 until iCount == iMaxCount do
iUniRnd random iMin, iMax
iRnd = iUniRnd < iRnd ? iUniRnd : iRnd
iCount += 1
enduntil
 xout iRnd
endop

opcode linrnd_high, i, iii
 ;linear random with precedence of higher values
iMin, iMax, iMaxCount xin
 ;set counter and initial (absurd) result
iCount = 0
iRnd = iMin
 ;loop and reset iRnd
 until iCount == iMaxCount do
iUniRnd random iMin, iMax
iRnd = iUniRnd > iRnd ? iUniRnd : iRnd
iCount += 1
enduntil
 xout iRnd
endop

opcode trirnd, i, iii
iMin, iMax, iMaxCount xin
 ;set a counter and accumulator
iCount = 0
iAccum = 0
 ;perform loop and accumulate
 until iCount == iMaxCount do
iUniRnd random iMin, iMax
iAccum += iUniRnd
iCount += 1
enduntil
 ;get the mean and output
iRnd = iAccum / iMaxCount
 xout iRnd
endop

;****ONE INSTRUMENT TO PERFORM ALL DISTRIBUTIONS****
;0 = uniform, 1 = linrnd_low, 2 = linrnd_high, 3 = trirnd
;the fractional part denotes the number of units, e.g.
;3.4 = triangular distribution with four sub-units

instr notes
 ;how many notes to be played
iHowMany = p4
 ;by which distribution with how many units
iWhich = giSequence[giSeqIndx]
iDistrib = int(iWhich)
iUnits = round(frac(iWhich) * 10)

 ;trigger as many instances of instr play as needed
iThisNote = 0
iStart = 0
iPrint = 1

 ;for each note to be played
 until iThisNote == iHowMany do

 ;calculate iMidiPch and iDur depending on type
 if iDistrib == 0 then
printf_i "%s", iPrint, "... uniform distribution:\n"
printf_i "%s", iPrint, "EQUAL LIKELINESS OF ALL PITCHES AND DURATIONS\n"
iScaleIndx random 0, giLenScale-.0001 ;midi note
iDurIndx random 0, giLenDurs-.0001 ;duration
 elseif iDistrib == 1 then
printf_i "... linear low distribution with %d units:\n", iPrint, iUnits
printf_i "%s", iPrint, "LOWER NOTES AND LONGER DURATIONS PREFERRED\n"
iScaleIndx linrnd_low 0, giLenScale-.0001, iUnits
iDurIndx linrnd_low 0, giLenDurs-.0001, iUnits
 elseif iDistrib == 2 then
printf_i "... linear high distribution with %d units:\n", iPrint, iUnits
printf_i "%s", iPrint, "HIGHER NOTES AND SHORTER DURATIONS PREFERRED\n"
iScaleIndx linrnd_high 0, giLenScale-.0001, iUnits
iDurIndx linrnd_high 0, giLenDurs-.0001, iUnits
 else
printf_i "... triangular distribution with %d units:\n", iPrint, iUnits
printf_i "%s", iPrint, "MEDIUM NOTES AND DURATIONS PREFERRED\n"
iScaleIndx trirnd 0, giLenScale-.0001, iUnits
iDurIndx trirnd 0, giLenDurs-.0001, iUnits
 endif

 ;call subinstrument to play note
iDur = giDurs[int(iDurIndx)]
iPch = giScale[int(iScaleIndx)]
 event_i "i", "play", iStart, iDur, iPch

 ;increase start time and counter
iStart += iDur
iThisNote += 1
 ;avoid continuous printing
iPrint = 0
enduntil

 ;reset the duration of this instr to make all events happen
p3 = iStart + 2

 ;increase index for sequence
giSeqIndx += 1
 ;call instr again if sequence has not been ended
 if giSeqIndx < lenarray(giSequence) then
 event_i "i", "notes", p3, 1, iHowMany
 ;or exit
 else
 event_i "i", "exit", p3, 1
 endif
endin

;****INSTRUMENTS TO PLAY THE SOUNDS AND EXIT CSOUND****
instr play
 ;increase duration in random range
iDur random p3*2, p3*5
p3 = iDur
 ;get frequency
iFreq = p4
 ;generate note with karplus-strong algorithm
aPluck pluck .2, iFreq, iFreq, 0, 1
aPluck linen aPluck, 0, p3, p3
 ;filter
aFilter mode aPluck, iFreq, .1
 ;mix aPluck and aFilter according to freq
 ;(high notes will be filtered more)
aMix ntrpol aPluck, aFilter, iFreq, 65, 65*16
 ;panning also according to freq
 ;(low = left, high = right)
iPan = (iFreq-65) / (65*16)
aL, aR pan2 aMix, iPan
 outs aL, aR
endin

instr exit
 exitnow
endin
</CsInstruments>
<CsScore>
i "notes" 0 1 23 ;set number of notes per instr here
e 99999 ;make possible to perform long (exit will be automatically)
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Random With History

There are many ways a current value in a random number progression can influence the next. Two of them are used frequently. A Markov chain is based on a number of possible states, and defines a different probability for each of these states. A random walk looks at the last state as a position in a range or field, and allows only certain deviations from this position.

Markov Chains

A typical case for a Markov chain in music is a sequence of certain pitches or notes. For each note, the probability of the following note is written in a table like this:

This means: the probability that element a is repeated, is 0.2; the probability that b follows a is 0.5; the probability that c follows a is 0.3. The sum of all probabilities must, by convention, add up to 1. The following example shows the basic algorithm which evaluates the first line of the Markov table above, in the case, the previous element has been a.

EXAMPLE 01D07_markov_basics.csd

<CsoundSynthesizer>
<CsOptions>
-ndm0
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
0dbfs = 1
nchnls = 1
seed 0

instr 1
iLine[] array .2, .5, .3
iVal random 0, 1
iAccum = iLine[0]
iIndex = 0
 until iAccum >= iVal do
iIndex += 1
iAccum += iLine[iIndex]
 enduntil
printf_i "Random number = %.3f, next element = %c!\n", 1, iVal, iIndex+97
endin
</CsInstruments>
<CsScore>
r 10
i 1 0 0
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The probabilities are 0.2 0.5 0.3. First a uniformly distributed random number between 0 and 1 is generated. An acculumator is set to the first element of the line (here 0.2). It is interrogated as to whether it is larger than the random number. If so then the index is returned, if not, the second element is added (0.2+0.5=0.7), and the process is repeated, until the accumulator is greater or equal the random value. The output of the example should show something like this:

Random number = 0.850, next element = c!
Random number = 0.010, next element = a!
Random number = 0.805, next element = c!
Random number = 0.696, next element = b!
Random number = 0.626, next element = b!
Random number = 0.476, next element = b!
Random number = 0.420, next element = b!
Random number = 0.627, next element = b!
Random number = 0.065, next element = a!
Random number = 0.782, next element = c!

The next example puts this algorithm in an User Defined Opcode. Its input is a Markov table as a two-dimensional array, and the previous line as index (starting with 0). Its output is the next element, also as index. – There are two Markov chains in this example: seven pitches, and three durations. Both are defined in two-dimensional arrays: giProbNotes and giProbDurs. Both Markov chains are running independently from each other.

EXAMPLE 01D08_markov_music.csd

<CsoundSynthesizer>
<CsOptions>
-m128 -odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
0dbfs = 1
nchnls = 2
seed 0

;****USER DEFINED OPCODES FOR MARKOV CHAINS****
 opcode Markov, i, i[][]i
iMarkovTable[][], iPrevEl xin
iRandom random 0, 1
iNextEl = 0
iAccum = iMarkovTable[iPrevEl][iNextEl]
 until iAccum >= iRandom do
iNextEl += 1
iAccum += iMarkovTable[iPrevEl][iNextEl]
 enduntil
 xout iNextEl
 endop
 opcode Markovk, k, k[][]k
kMarkovTable[][], kPrevEl xin
kRandom random 0, 1
kNextEl = 0
kAccum = kMarkovTable[kPrevEl][kNextEl]
 until kAccum >= kRandom do
kNextEl += 1
kAccum += kMarkovTable[kPrevEl][kNextEl]
 enduntil
 xout kNextEl
 endop

;****DEFINITIONS FOR NOTES****
 ;notes as proportions and a base frequency
giNotes[] array 1, 9/8, 6/5, 5/4, 4/3, 3/2, 5/3
giBasFreq = 330
 ;probability of notes as markov matrix:
 ;first -> only to third and fourth
 ;second -> anywhere without self
 ;third -> strong probability for repetitions
 ;fourth -> idem
 ;fifth -> anywhere without third and fourth
 ;sixth -> mostly to seventh
 ;seventh -> mostly to sixth
giProbNotes[][] init 7, 7
giProbNotes fillarray 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0,
 0.2, 0.0, 0.2, 0.2, 0.2, 0.1, 0.1,
 0.1, 0.1, 0.5, 0.1, 0.1, 0.1, 0.0,
 0.0, 0.1, 0.1, 0.5, 0.1, 0.1, 0.1,
 0.2, 0.2, 0.0, 0.0, 0.2, 0.2, 0.2,
 0.1, 0.1, 0.0, 0.0, 0.1, 0.1, 0.6,
 0.1, 0.1, 0.0, 0.0, 0.1, 0.6, 0.1

;****DEFINITIONS FOR DURATIONS****
 ;possible durations
gkDurs[] array 1, 1/2, 1/3
 ;probability of durations as markov matrix:
 ;first -> anything
 ;second -> mostly self
 ;third -> mostly second
gkProbDurs[][] init 3, 3
gkProbDurs array 1/3, 1/3, 1/3,
 0.2, 0.6, 0.3,
 0.1, 0.5, 0.4

;****SET FIRST NOTE AND DURATION FOR MARKOV PROCESS****
giPrevNote init 1
gkPrevDur init 1

;****INSTRUMENT FOR DURATIONS****
 instr trigger_note
kTrig metro 1/gkDurs[gkPrevDur]
 if kTrig == 1 then
 event "i", "select_note", 0, 1
gkPrevDur Markovk gkProbDurs, gkPrevDur
 endif
 endin

;****INSTRUMENT FOR PITCHES****
 instr select_note
 ;choose next note according to markov matrix and previous note
 ;and write it to the global variable for (next) previous note
giPrevNote Markov giProbNotes, giPrevNote
 ;call instr to play this note
 event_i "i", "play_note", 0, 2, giPrevNote
 ;turn off this instrument
 turnoff
 endin

;****INSTRUMENT TO PERFORM ONE NOTE****
 instr play_note
 ;get note as index in ginotes array and calculate frequency
iNote = p4
iFreq = giBasFreq * giNotes[iNote]
 ;random choice for mode filter quality and panning
iQ random 10, 200
iPan random 0.1, .9
 ;generate tone and put out
aImp mpulse 1, p3
aOut mode aImp, iFreq, iQ
aL, aR pan2 aOut, iPan
 outs aL, aR
 endin

</CsInstruments>
<CsScore>
i "trigger_note" 0 100
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Random Walk

In the context of movement between random values, walk can be thought of as the opposite of jump. If you jump within the boundaries A and B, you can end up anywhere between these boundaries, but if you walk between A and B you will be limited by the extent of your step - each step applies a deviation to the previous one. If the deviation range is slightly more positive (say from -0.1 to +0.2), the general trajectory of your walk will be in the positive direction (but individual steps will not necessarily be in the positive direction). If the deviation range is weighted negative (say from -0.2 to 0.1), then the walk will express a generally negative trajectory.

One way of implementing a random walk will be to take the current state, derive a random deviation, and derive the next state by adding this deviation to the current state. The next example shows two ways of doing this.

The pitch random walk starts at pitch 8 in octave notation. The general pitch deviation gkPitchDev is set to 0.2, so that the next pitch could be between 7.8 and 8.2. But there is also a pitch direction gkPitchDir which is set to 0.1 as initial value. This means that the upper limit of the next random pitch is 8.3 instead of 8.2, so that the pitch will move upwards in a greater number of steps. When the upper limit giHighestPitch has been crossed, the gkPitchDir variable changes from +0.1 to -0.1, so after a number of steps, the pitch will have become lower. Whenever such a direction change happens, the console reports this with a message printed to the terminal.

The density of the notes is defined as notes per second, and is applied as frequency to the metro opcode in instrument walk. The lowest possible density giLowestDens is set to 1, the highest to 8 notes per second, and the first density giStartDens is set to 3. The possible random deviation for the next density is defined in a range from zero to one: zero means no deviation at all, one means that the next density can alter the current density in a range from half the current value to twice the current value. For instance, if the current density is 4, for gkDensDev=1 you would get a density between 2 and 8. The direction of the densities gkDensDir in this random walk follows the same range 0..1. Assumed you have no deviation of densities at all (gkDensDev=0), gkDensDir=0 will produce ticks in always the same speed, whilst gkDensDir=1 will produce a very rapid increase in speed. Similar to the pitch walk, the direction parameter changes from plus to minus if the upper border has crossed, and vice versa.

EXAMPLE 01D09_random_walk.csd

<CsoundSynthesizer>
<CsOptions>
-m128 -odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
0dbfs = 1
nchnls = 2
seed 1 ;change to zero for always changing results

;****SETTINGS FOR PITCHES****
 ;define the pitch street in octave notation
giLowestPitch = 7
giHighestPitch = 9
 ;set pitch startpoint, deviation range and the first direction
giStartPitch = 8
gkPitchDev init 0.2 ;random range for next pitch
gkPitchDir init 0.1 ;positive = upwards

;****SETTINGS FOR DENSITY****
 ;define the maximum and minimum density (notes per second)
giLowestDens = 1
giHighestDens = 8
 ;set first density
giStartDens = 3
 ;set possible deviation in range 0..1
 ;0 = no deviation at all
 ;1 = possible deviation is between half and twice the current density
gkDensDev init 0.5
 ;set direction in the same range 0..1
 ;(positive = more dense, shorter notes)
gkDensDir init 0.1

;****INSTRUMENT FOR RANDOM WALK****
 instr walk
 ;set initial values
kPitch init giStartPitch
kDens init giStartDens
 ;trigger impulses according to density
kTrig metro kDens
 ;if the metro ticks
 if kTrig == 1 then
 ;1) play current note
 event "i", "play", 0, 1.5/kDens, kPitch
 ;2) calculate next pitch
 ;define boundaries according to direction
kLowPchBound = gkPitchDir < 0 ? -gkPitchDev+gkPitchDir : -gkPitchDev
kHighPchBound = gkPitchDir > 0 ? gkPitchDev+gkPitchDir : gkPitchDev
 ;get random value in these boundaries
kPchRnd random kLowPchBound, kHighPchBound
 ;add to current pitch
kPitch += kPchRnd
 ;change direction if maxima are crossed, and report
 if kPitch > giHighestPitch && gkPitchDir > 0 then
gkPitchDir = -gkPitchDir
 printks " Pitch touched maximum - now moving down.\n", 0
 elseif kPitch < giLowestPitch && gkPitchDir < 0 then
gkPitchDir = -gkPitchDir
 printks "Pitch touched minimum - now moving up.\n", 0
 endif
 ;3) calculate next density (= metro frequency)
 ;define boundaries according to direction
kLowDensBound = gkDensDir < 0 ? -gkDensDev+gkDensDir : -gkDensDev
kHighDensBound = gkDensDir > 0 ? gkDensDev+gkDensDir : gkDensDev
 ;get random value in these boundaries
kDensRnd random kLowDensBound, kHighDensBound
 ;get multiplier (so that kDensRnd=1 yields to 2, and kDens=-1 to 1/2)
kDensMult = 2 ^ kDensRnd
 ;multiply with current duration
kDens *= kDensMult
 ;avoid too high values and too low values
kDens = kDens > giHighestDens*1.5 ? giHighestDens*1.5 : kDens
kDens = kDens < giLowestDens/1.5 ? giLowestDens/1.5 : kDens
 ;change direction if maxima are crossed
 if (kDens > giHighestDens && gkDensDir > 0) ||
 (kDens < giLowestDens && gkDensDir < 0) then
gkDensDir = -gkDensDir
 if kDens > giHighestDens then
printks " Density touched upper border - now becoming less dense.\n", 0
 else
printks " Density touched lower border - now becoming more dense.\n", 0
 endif
 endif
 endif
 endin

;****INSTRUMENT TO PLAY ONE NOTE****
 instr play
 ;get note as octave and calculate frequency and panning
iOct = p4
iFreq = cpsoct(iOct)
iPan ntrpol 0, 1, iOct, giLowestPitch, giHighestPitch
 ;calculate mode filter quality according to duration
iQ ntrpol 10, 400, p3, .15, 1.5
 ;generate tone and throw out
aImp mpulse 1, p3
aMode mode aImp, iFreq, iQ
aOut linen aMode, 0, p3, p3/4
aL, aR pan2 aOut, iPan
 outs aL, aR
 endin

</CsInstruments>
<CsScore>
i "walk" 0 999
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

II. SOME MATHS PERSPECTIVES ON RANDOM

Random Processes

The relative frequency of occurrence of a random variable can be described by a probability function (for discrete random variables) or by density functions (for continuous random variables).

When two dice are thrown simultaneously, the sum x of their numbers can be 2, 3, …12. The following figure shows the probability function p(x) of these possible outcomes. p(x) is always less than or equal to 1. The sum of the probabilities of all possible outcomes is 1.

For continuous random variables the probability of getting a specific value x is 0. But the probability of getting a value within a certain interval can be indicated by an area that corresponds to this probability. The function f(x) over these areas is called the density function. With the following density the chance of getting a number smaller than 0 is 0, to get a number between 0 and 0.5 is 0.5, to get a number between 0.5 and 1 is 0.5 etc. Density functions f(x) can reach values greater than 1 but the area under the function is 1.

Generating Random Numbers With a Given Probability or Density

Csound provides opcodes for some specific densities but no means to produce random number with user defined probability or density functions. The opcodes rand_density and rand_probability (see below) generate random numbers with probabilities or densities given by tables. They are realized by using the so-called rejection sampling method.

Rejection Sampling

The principle of rejection sampling is to first generate uniformly distributed random numbers in the range required and to then accept these values corresponding to a given density function (or otherwise reject them). Let us demonstrate this method using the density function shown in the next figure. (Since the rejection sampling method uses only the shape of the function, the area under the function need not be 1). We first generate uniformly distributed random numbers rnd1 over the interval [0, 1]. Of these we accept a proportion corresponding to f(rnd1). For example, the value 0.32 will only be accepted in the proportion of f(0.32) = 0.82. We do this by generating a new random number rand2 between 0 and 1 and accept rnd1 only if rand2 < f(rnd1); otherwise we reject it. (see Signals, Systems and Sound Synthesis6 chapter 10.1.4.4)

EXAMPLE 01D10_Rejection_Sampling.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 10
nchnls = 1
0dbfs = 1

; random number generator to a given density function
; kout random number; k_minimum,k_maximum,i_fn for a density function

opcode rand_density, k, kki
kmin,kmax,ifn xin
loop:
krnd1 random 0,1
krnd2 random 0,1
k2 table krnd1,ifn,1
 if krnd2 > k2 kgoto loop
 xout kmin+krnd1*(kmax-kmin)
endop

; random number generator to a given probability function
; kout random number
; in: i_nr number of possible values
; i_fn1 function for random values
; i_fn2 probability functionExponential: Generate a uniformly distributed
; number between 0 and 1 and take its natural logarithm.

opcode rand_probability, k, iii
inr,ifn1,ifn2 xin
loop:
krnd1 random 0,inr
krnd2 random 0,1
k2 table int(krnd1),ifn2,0
 if krnd2 > k2 kgoto loop
kout table krnd1,ifn1,0
 xout kout
endop

instr 1
krnd rand_density 400,800,2
aout poscil .1,krnd,1
 out aout
endin

instr 2
krnd rand_probability p4,p5,p6
aout poscil .1,krnd,1
 out aout
endin

</CsInstruments>
<CsScore>
;sine
f1 0 32768 10 1
;density function
f2 0 1024 6 1 112 0 800 0 112 1
;random values and their relative probability (two dice)
f3 0 16 -2 2 3 4 5 6 7 8 9 10 11 12
f4 0 16 2 1 2 3 4 5 6 5 4 3 2 1
;random values and their relative probability
f5 0 8 -2 400 500 600 800
f6 0 8 2 .3 .8 .3 .1

i1 0 10
i2 0 10 4 5 6
</CsScore>
</CsoundSynthesizer>
;example by martin neukom

Random Walk

In a series of random numbers the single numbers are independent upon each other. Parameter (left figure) or paths in the room (two-dimensional trajectory in the right figure) created by random numbers wildly jump around.

Example 1

Table[RandomReal[{-1, 1}], {100}];

We get a smoother path, a so-called random walk, by adding at every time step a random number r to the actual position x (x += r).

Example 2

x = 0; walk = Table[x += RandomReal[{-.2, .2}], {300}];

The path becomes even smoother by adding a random number r to the actual velocity v.

v += r
x += v

The path can be bounded to an area (figure to the right) by inverting the velocity if the path exceeds the limits (min, max):

vif(x < min || x > max) v *= -1

The movement can be damped by decreasing the velocity at every time step by a small factor d

v *= (1-d)

Example 3

x = 0; v = 0; walk = Table[x += v += RandomReal[{-.01, .01}], {300}];

The path becomes again smoother by adding a random number r to the actual acelleration a, the change of the aceleration, etc.

a += r
v += a
x += v

Example 4

x = 0; v = 0; a = 0;
Table[x += v += a += RandomReal[{-.0001, .0001}], {300}];

(see Martin Neukom, Signals, Systems and Sound Synthesis chapter 10.2.3.2)

EXAMPLE 01D11_Random_Walk2.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 128
nchnls = 1
0dbfs = 1

; random frequency
instr 1
kx random -p6, p6
kfreq = p5*2^kx
aout oscil p4, kfreq, 1
out aout
endin

; random change of frequency
instr 2
kx init .5
kfreq = p5*2^kx
kv random -p6, p6
kv = kv*(1 - p7)
kx = kx + kv
aout oscil p4, kfreq, 1
out aout
endin

; random change of change of frequency
instr 3
kv init 0
kx init .5
kfreq = p5*2^kx
ka random -p7, p7
kv = kv + ka
kv = kv*(1 - p8)
kx = kx + kv
kv = (kx < -p6 || kx > p6?-kv : kv)
aout oscili p4, kfreq, 1
out aout

endin

</CsInstruments>
<CsScore>

f1 0 32768 10 1
; i1 p4 p5 p6
; i2 p4 p5 p6 p7
; amp c_fr rand damp
; i2 0 20 .1 600 0.01 0.001
; amp c_fr d_fr rand damp
; amp c_fr rand
; i1 0 20 .1 600 0.5
; i3 p4 p5 p6 p7 p8
i3 0 20 .1 600 1 0.001 0.001
</CsScore>
</CsoundSynthesizer>
;example by martin neukom

III. MISCELLANEOUS EXAMPLES

Csound has a range of opcodes and GEN routine for the creation of various random functions and distributions. Perhaps the simplest of these is random which simply generates a random value within user defined minimum and maximum limit and at i-time, k-rate or a-rate according to the variable type of its output:

 ires random imin, imax
 kres random kmin, kmax
 ares random kmin, kmax

Values are generated according to a uniform random distribution, meaning that any value within the limits has equal chance of occurence. Non-uniform distributions in which certain values have greater chance of occurence over others are often more useful and musical. For these purposes, Csound includes the betarand, bexprand, cauchy, exprand, gauss, linrand, pcauchy, poisson, trirand, unirand and weibull random number generator opcodes. The distributions generated by several of these opcodes are illustrated below.

In addition to these so called x-class noise generators Csound provides random function generators, providing values that change over time at various ways. Remember that most of these random generators will need to have seed set to zero if the user wants to get always different random values.

randomh generates new random numbers at a user defined rate. The previous value is held until a new value is generated, and then the output immediately assumes that value.

The instruction:

 kmin = -1
 kmax = 1
 kfreq = 2
 kout randomh kmin,kmax,kfreq

will produce and output a random line which changes its value every half second between the minimum of -1 and the maximum of 1. Special care should be given to the fourth parameter imode which is by default 0, but can be set to 1, 2, or 3. For imode=0 and imode=1 the random lines will start at the minimum (here -1) and will hold this value until the first period has been finished. For imode=2 it will start at a value set by the user (by default 0), wheras for imode=3 it will start at a random value between minimum und maximum. This is a generation for five seconds:

[image: Opcode randomh with different values for imode]Opcode randomh with different values for imode

Usually we will use imode=3, as we want the random line to start immediately at a random value. The same options are valid for randomi which is an interpolating version of randomh. Rather than jump to new values when they are generated, randomi interpolates linearly to the new value, reaching it just as a new random value is generated. Now we see the difference between imode=0 and imode=1. The former remains one whole period on the minimum, and begins its first interpolation after it; the latter also starts on the minimum but begins interpolation immediately. Replacing randomh with randomi in the above code snippet would result in the following output:

[image: Opcode randomi with different values for imode]Opcode randomi with different values for imode

In practice randomi’s angular changes in direction as new random values are generated might be audible depending on the how it is used. rspline (or the simpler jspline) allows us to specify not just a single frequency but a minimum and a maximum frequency, and the resulting function is a smooth spline between the minimum and maximum values and these minimum and maximum frequencies. The following input:

 kmin = -0.95
 kmax = 0.95
 kminfrq = 1
 kmaxfrq = 4
 asig rspline kmin, kmax, kminfrq, kmaxfrq

would generate an output something like:

We need to be careful with what we do with rspline’s output as it can exceed the limits set by kmin and kmax. Minimum and maximum values can be set conservatively or the limit opcode could be used to prevent out of range values that could cause problems.

The following example uses rspline to humanise a simple synthesiser. A short melody is played, first without any humanising and then with humanising. rspline random variation is added to the amplitude and pitch of each note in addition to an i-time random offset.

EXAMPLE 01D12_humanising.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
seed 0

giWave ftgen 0, 0, 2^10, 10, 1,0,1/4,0,1/16,0,1/64,0,1/256,0,1/1024

 instr 1 ; an instrument with no 'humanising'
inote = p4
aEnv linen 0.1,0.01,p3,0.01
aSig poscil aEnv,cpsmidinn(inote),giWave
 outs aSig,aSig
 endin

 instr 2 ; an instrument with 'humanising'
inote = p4

; generate some i-time 'static' random paramters
iRndAmp random -3,3 ; amp. will be offset by a random number of decibels
iRndNte random -5,5 ; note will be offset by a random number of cents

; generate some k-rate random functions
kAmpWob rspline -1,1,1,10 ; amplitude 'wobble' (in decibels)
kNteWob rspline -5,5,0.3,10 ; note 'wobble' (in cents)

; calculate final note function (in CPS)
kcps = cpsmidinn(inote+(iRndNte*0.01)+(kNteWob*0.01))

; amplitude envelope (randomisation of attack time)
aEnv linen 0.1*ampdb(iRndAmp+kAmpWob),0.01+rnd(0.03),p3,0.01
aSig poscil aEnv,kcps,giWave
 outs aSig,aSig
endin

</CsInstruments>
<CsScore>
t 0 80
\#define SCORE(i) \#
i $i 0 1 60
i . + 2.5 69
i . + 0.5 67
i . + 0.5 65
i . + 0.5 64
i . + 3 62
i . + 1 62
i . + 2.5 70
i . + 0.5 69
i . + 0.5 67
i . + 0.5 65
i . + 3 64 \#
$$SCORE(1) ; play melody without humanising
b 17
$$SCORE(2) ; play melody with humanising
e
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

The final example implements a simple algorithmic note generator. It makes use of GEN17 to generate histograms which define the probabilities of certain notes and certain rhythmic gaps occuring.

EXAMPLE 01D13_simple_algorithmic_note_generator.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m0
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giNotes ftgen 0,0,-100,-17,0,48, 15,53, 30,55, 40,60, 50,63,
 60,65, 79,67, 85,70, 90,72, 96,75
giDurs ftgen 0,0,-100,-17,0,2, 30,0.5, 75,1, 90,1.5

 instr 1
kDur init 0.5 ; initial rhythmic duration
kTrig metro 2/kDur ; metronome freq. 2 times inverse of duration
kNdx trandom kTrig,0,1 ; create a random index upon each metro 'click'
kDur table kNdx,giDurs,1 ; read a note duration value
 schedkwhen kTrig,0,0,2,0,1 ; trigger a note!
 endin

 instr 2
iNote table rnd(1),giNotes,1 ; read a random value from the function table
aEnv linsegr 0, 0.005, 1, p3-0.105, 1, 0.1, 0 ; amplitude envelope
iPlk random 0.1, 0.3 ; point at which to pluck the string
iDtn random -0.05, 0.05 ; random detune
aSig wgpluck2 0.98, 0.2, cpsmidinn(iNote+iDtn), iPlk, 0.06
 out aSig * aEnv
 endin
</CsInstruments>

<CsScore>
i 1 0 300 ; start 3 long notes close after one another
i 1 0.01 300
i 1 0.02 300
e
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

	http://www.etymonline.com/index.php?term=random↩︎

	Because the sample rate is 44100 samples per second. So a repetition after 65536 samples will lead to a repetition after 65536/44100 = 1.486 seconds.↩︎

	 Charles Dodge and Thomas A. Jerse, Computer Music, New York 1985, Chapter 8.1, in particular page 269-278.↩︎

	 Most of them have been written by Paris Smaragdis in 1995: betarnd, bexprnd, cauchy, exprnd, gauss, linrand, pcauchy, poisson, trirand, unirand and weibull.↩︎

	 According to Dodge/Jerse, the usual algorithms for exponential and gaussian are:

Exponential: Generate a uniformly distributed number between 0 and 1 and take its natural logarithm.

Gauss: Take the mean of uniformly distributed numbers and scale them by the standard deviation.↩︎

	 Neukom, Martin. Signals, systems and sound synthesis. Bern: Peter Lang, 2013. Print.↩︎

02 A. MAKE CSOUND RUN

Csound and Frontends

The core element of Csound is an audio engine for the Csound language. It has no graphical interface and it is designed to take Csound text files (called .csd files) and produce audio, either in realtime, or by writing to a file. It can still be used in this way but most users nowadays prefer to use Csound via a frontend. A frontend is an application which assists you in writing code and running Csound. Beyond the functions of a simple text editor, a frontend environment will offer colour coded highlighting of language specific keywords and quick access to an integrated help system. A frontend can also expand possibilities by providing tools to build interactive interfaces (GUI widgets) as well, sometimes, as advanced compositional tools.

From 2009 to 2019, the CsoundQt frontend was included in the Csound installer. Since Csound 6.15 (August 2020) the Csound installer only contains “pure” Csound, without any frontend. This means that Csound will work from the Command Line after installing, but the user must download the frontend seperately. These are the download pages:

- CsoundQt: https://github.com/CsoundQt/CsoundQt/releases

- Cabbage: https://cabbageaudio.com/download/

- Blue: https://blue.kunstmusik.com/#download

Section 10 of this manual provides more information about the frontends.

How to Download and Install Csound

To get Csound you first need to download the package for your system from the Download page of the Csound project: https://csound.com/download

There are many files here, so here are some guidelines to help you choose the appropriate version.

Windows

Windows installers are the ones ending in .exe. Look for the latest version of Csound and find a file which should be called something like: 64bit Full Installer v6.14.0.

After you have downloaded the installer simply double-click it to start the installation process. This will invoke 8 simple steps:

	A welcome screen advises you to close other programs.

	After reading and accepting the licence agreement click Next.

	Select the destination for the Csound program files. The default is C:\Program Files (x86)\Csound6.

	Choose the components to be installed. Currently (ver. 6.13) there are only 3 items: Core Csound is obligatory. Python features are optional but will be required if you intend to use CsoundQt as a frontend for Csound. You will also need to install Python 2.7. Pure data Csound6~ object will allow you to run Csound from within Pure Data. To do this will require installing Pure Data.

	Select Start Menu Folder allows you to define a folder name other than the default Csound 6 for the folder containing the various Csound components. Alternatively you can choose not to create a start menu folder.

	Next there is an option to add the Csound application directory to your PATH variable. Adding this will allow you to run Csound from the command line from any directory location.

	Next a window reminds you of what will be installed and what changes will be made to your system.

	Upon clicking install the installation takes place.

	A window informs you that installation is complete. You can click Finish.

Mac OS X

The Mac OS X installers are the files ending in .dmg, for instance Csound6.14.0-MacOS_x86_64.dmg. When you double click the downloaded file, you will have a disk image on your desktop with the Csound installer. Double-click the installer and follow the instructions. Csound and the basic Csound utilities will be installed.

Linux and others

Csound is available from the official package repositories for many distributions like OpenSuse, Debian, Ubuntu, Fedora, Archlinux and Gentoo. If there are no binary packages for your platform, or you need a more recent version, you can get the sources from the Github page and build from source. You will find the most recent build instructions in the Build.md file in the Csound sources or in the Github Csound Wiki.

iOS

If you would just like to run Csound on your iPad, there is an app for iOS called CsoundPad

If you are a developer, Csound can be run in an iOS app that you are programming by including the Csound-for-iOS files in your Xcode project. The SDK can be found on the Csound Download Page, for instance Csound6.14.0-iOS.zip. It contains an archive of an example project and a PDF manual.

Some sample projects:

	AudioKit (http://audiokit.io) is an Objective-C and Swift framework for building iOS and OSX apps using Csound as the audio engine.

	csGrain, developed by the Boulanger Labs (http://www.boulangerlabs.com), is a complex audio effects app that works with audio files or live audio input.

	Portable Dandy, an innovative sampler synthesiser for iOS (see http://www.barefoot-coders.com).

	iPulsaret, an impressive synthesizer app (see http://www.densitytigs.com).

Android

If you want to play your .csd files on your Android smartphone or tablet, follow the Android App link on Csound’s Download page. This leads you to the Google Play Store from which you can install it for free. Chapter 12E in this manual describes how to use Csound on Android.

If you are a developer, download the Android SDK, for instance Csound6.14.0-Android.zip.

On Google's Play Store there are some apps that use Csound. Below is a small sample of such apps:

	DIY Sound Salad, developed by Zatchu (http://zatchu.com/category/story/), is a multi sample record and playback app. Quite enjoyable to use.

	Chime Pad, developed by Arthur B. Hunkins (http://www.arthunkins.com), is a soothing chime player app.

	Psycho Flute developed by Brian Redfern (source code available at http://github.com/bredfern/PsychoFlute), it is a physical modelling flute synth. Both fun and interesting.

Install Problems?

If, for any reason, you can’t find the CsoundQt frontend on your system after install, or if you want to install the most recent version of CsoundQt, or if you prefer another frontend altogether: see the CSOUND FRONTENDS section of this manual for further information. If you have any install problems, consider joining the Csound Mailing List to report your issues, or use any other community channel.

The Csound Reference Manual

The Csound Reference Manual is an indispensable companion to Csound. It is available in various formats from the same place as the Csound installers, and it is installed with the packages for OS X and Windows. It can also be browsed online at https://csound.com/docs/manual/index.html. Many frontends will provide you with direct and easy access to it.

How to Execute a Simple Example

Using CsoundQt

Launch CsoundQt. Go into the CsoundQt menubar and choose: Examples->Getting started...-> Basics-> HelloWorld

You will see a very basic Csound file (.csd) with a lot of comments in green.

Click on the RUN icon in the CsoundQt control bar to start the realtime Csound engine. You should hear a 440 Hz sine tone.

You can also run the Csound engine in the terminal from within CsoundQt. Just click on Run in Term. A console will pop up and Csound will be executed as an independent process. The result should be the same - the 440 Hz beep.

Using the Terminal / Console

1. Save the following code in any plain text editor as HelloWorld.csd.

EXAMPLE 02A01_HelloWorld.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
instr 1
 aSin poscil 0dbfs/4, 440
 out aSin
endin
</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>
;Example by Alex Hofmann

2. Open the Terminal / Prompt / Console

3. Type: csound /full/path/HelloWorld.csd

where /full/path/HelloWorld.csd is the complete path to your file. You also execute this file by just typing csound then dragging the file into the terminal window and then hitting return.

You should hear a 440 Hz tone.

Using Cabbage

Cabbage is an alternative frontend for working with Csound. It is most similar to CsoundQt but its main differences with CsoundQt are that graphical user interface (GUI) can be created either by drawing (click and drag) or by typing code. In CsoundQt the GUI code is hidden from us in the editor so that we only create GUI using the mouse. Cabbage can also export instruments and effects as VST and AU plugins, and even includes its own host, Cabbage Studio, for graphically connecting multiple instruments and effect in a manner similar to Pure Data. Cabbage is a less comprehensive frontend that CsoundQt but some users prefer this simplicity.

To get started with Cabbage you will need to first download Cabbage. Cabbage will normally come bundled with its own version of Csound and will not require a separate installation of Csound. Any currently installed versions of Csound will be ignored by Cabbage.

Once installed, launch Cabbage and then go to Options->New Cabbage...->Instrument to create a new patch (called a Cabbage patch). Cabbage will start you off with a simple functional instrument with a virtual keyboard but you can also use the one listed below which features a virtual keyboard and a volume control. To open Cabbage's integrated code editor go to Options->View Source Editor. You can then paste in the code shown below, or just make modifications to the default instrument code. If you want to make changes to what external hardware devices Cabbage uses, such as audio and MIDI hardware, go to Options->Audio Settings. The options available will vary depending on your specific system, so will not be discussed any further here.

When creating a realtime instrument, there is no necessity to include any Csound score events (or any <score> tags). With earlier versions of Csound it used to be that we needed to include a dummy score event to keep realtime performance going but with more recent versions of Csound this is no longer the case.

The key element that differentiates Cabbage from standard Csound is the inclusion of Cabbage specific code, mainly used for creating a graphical user interface, held within the start and end tags: <Cabbage> and </Cabbage>. Communication from the Cabbage GUI to Csound is either transparent, as in the case of the keyboard widget, or via named channels and the chnget opcode in the Csound orchestra when using most other Cabbage widgets such as rslider (a rotary slider). For additional information on Cabbage please consult the chapter on Cabbage.

EXAMPLE 02A02_HelloCabbage.csd

<Cabbage>
form size(420,100)
keyboard bounds(10,10,300,80)
rslider bounds(325,15,80,80), channel("level"), text("Level"), range(0,1,0.3)
</Cabbage>

<CsoundSynthesizer>

<CsOptions>
-dm0 -n -+rtmidi=null -M0
</CsOptions>

<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1
 icps cpsmidi
 klev chnget "level"
 a1 poscil klev*0.2,icps
 outs a1,a1
endin

</CsInstruments>

</CsoundSynthesizer>
;example by Iain McCurdy

02 B. CSOUND SYNTAX

This chapter is a brief introduction about how to write Csound code. For a detailed discussion of Csound Syntax see section 3 of this manual.

Orchestra and Score

In Csound, you must define instruments, which are units which do things, for instance creating a sine wave as audio signal and play it (= output it to the audio card). These instruments must be called or turned on by a score. The Csound score is a list of events which describe how the instruments are to be played in time. It can be thought of as a timeline in text.

A Csound instrument is contained within an Instrument Block, which starts with the keyword instr and ends with the keyword endin. All instruments are given a number (or a name) to identify them.

instr 1
 ... instrument instructions come here...
endin

Score events in Csound are individual text lines, which can turn on instruments for a certain time. For example, to turn on instrument 1, at time 0, for 2 seconds you will use:

i 1 0 2

Note that orchestra and score are two completely different types of code. The orchestra contains the actual Csound code.1 The instruments are written in the Csound Programming Language. The score is mainly a list of events. The Score Language is poor and offers only some very basic tools.

In modern Csound code, the score often remains empty. The events derive from orchestra code,2 or from real-time interaction, like MIDI, OSC, mouse clicks or any other live input.

The Csound Document Structure

A Csound document is structured into three main sections:

	CsOptions: Contains the configuration options for Csound. For example using -o dac in this section will make Csound run in real-time instead of writing a sound file.

	CsInstruments: Contains the instrument definitions and optionally some global settings and definitions like sample rate, etc.

	CsScore: Contains the score events which trigger the instruments.

Each of these sections is opened with a <xyz> tag and closed with a </xyz> tag. Every Csound file starts with the <CsoundSynthesizer> tag, and ends with </CsoundSynthesizer>. Only the text in-between will be used by Csound.

EXAMPLE 02B01_DocStruct.csd

<CsoundSynthesizer> ; START OF CSOUND FILE

<CsOptions> ; START OF CSOUND CONFIGURATION
 -odac ; realtime audio output
</CsOptions> ; END OF CSOUND CONFIGURATION

<CsInstruments> ; START OF INSTRUMENT DEFINITIONS

sr = 44100 ; set audio sample rate to 44100 Hz
ksmps = 64 ; set audio vector size to 64 samples
nchnls = 2 ; set number of channels to 2 (stereo)
0dbfs = 1 ; set zero dB full scale as 1

instr 1 ; play a 440 Hz Sine Wave
 aSin poscil 0dbfs/4, 440
 out aSin
endin

</CsInstruments> ; END OF INSTRUMENT DEFINITIONS

<CsScore> ; START OF SCORE EVENTS
i 1 0 1 ; start instrument 1 at time 0 for 1 second
</CsScore>

</CsoundSynthesizer> ; END OF THE CSOUND FILE

Comments, which are lines of text that Csound will ignore, are started with the ";" character or two slashes "//". Multi-line comments can be made by encasing them between "/*" and "*/".

Opcodes

Opcodes or Unit Generators are the basic building blocks of Csound. Opcodes can do many things like produce oscillating signals, filter signals, perform mathematical functions or even turn on and off instruments. Opcodes, depending on their function, will take inputs and produce outputs. Each input or output is called, in programming terms, an argument. Opcodes always take input arguments on the right and output their results on the left, like this:

output OPCODE input1, input2, input3, .., inputN

For example the poscil opcode has two mandatory inputs: amplitude and frequency, and produces a sine wave signal:

aSin poscil 0dbfs/4, 440

In this case, a 440 Hertz oscillation with an amplitude of 0dbfs/4 (a quarter of 0 dB as full scale) will be created and its output will be stored in a container called aSin. The order of the arguments is important: the first input to poscil will always be amplitude and the second input will always be read by Csound as frequency.

Since Csound6, the code can be written in a way which is knows from many other programming languages:

aSin = poscil(0dbfs/4,440)

Or better, as more explicit (declaring the audio rate output): 3

aSin = poscil:a(0dbfs/4,440)

Many opcodes include optional input arguments and occasionally optional output arguments. These will always be placed after the essential arguments. In the Csound Manual documentation they are indicated using square brackets "[]". If optional input arguments are omitted they are replaced with the default values indicated in the Csound Manual. The addition of optional output arguments normally initiates a different mode of that opcode: for example, a stereo as opposed to mono version of the opcode.

aMono diskin "mono_file.wav"
aLeft, aRight diskin "stereo_file.wav"

Variables

A variable is a named container. It is a place to store things like signals or values from where they can be recalled by using their name. In Csound there are various types of variables. The easiest way to deal with variables when getting to know Csound is to imagine them as cables.

If you want to patch this together:

Sound Generator -> Filter -> Output,

you need two cables, one going out from the generator into the filter and one from the filter to the output. The cables carry audio signals, which are variables beginning with the letter a.

aSource buzz 0.8, 200, 10, 1
aFiltered moogladder aSource, 400, 0.8
 out aFiltered

In the example above, the buzz opcode produces a complex waveform as signal aSource. This signal is fed into the moogladder opcode, which in turn produces the signal aFiltered. The out opcode takes this signal, and sends it to the output whether that be to the realtime audio output or to a rendered file.

Other common variable types are k variables which store control signals, which are updated less frequently than audio signals, and i variables which are constants within each instrument note.

You can find more information about variable types in chapter 03 B in this manual, or here in the Csound Journal.

Using the Manual

The Csound Reference Manual is a comprehensive source regarding Csound’s syntax and opcodes. All opcodes have their own manual entry describing their syntax and behavior, and the manual contains a detailed reference on the Csound language and options.

In CsoundQt you can find the Csound Manual in the Help Menu. You can quickly go to a particular opcode entry in the manual by putting the cursor on the opcode and pressing Shift+F1. WinXsound , Cabbage and Blue also provide easy access to the manual.

	 Its characteristics are described in detail in section 03 CSOUND LANGUAGE.↩︎

	For instance using the schedule or event opcode.↩︎

	 See chapter 03 I for more information about functional style in Csound.↩︎

02 C. CONFIGURING MIDI

This is a brief description of Csound’s MIDI configuration. More details can be found in section 7.

Csound can receive MIDI events (like MIDI notes and MIDI control changes) from an external MIDI interface or from another program via a virtual MIDI cable. This information can be used to control any aspect of synthesis or performance.

Most frontends are using their own MIDI handler. See the chapters about CsoundQt, Cabbage and Blue in this manual, or have a look at the built-in documentation of these environments. The following description is only relevant when you use Csound’s own MIDI handlers, for instance when running Csound via Command Line.

Csound receives MIDI data through MIDI Realtime Modules. These are special Csound plugins which enable MIDI input using different methods according to a specific platform. They are enabled using the -+rtmidi command line flag in the <CsOptions> section of your .csd file.

There is the universal portmidi module. PortMidi is a cross-platform module for MIDI I/O and should be available on all platforms. To enable the portmidi module, use the flag (option):

-+rtmidi=portmidi

After selecting the RT MIDI module from a front-end or the command line, you need to select the MIDI devices for input and output. These are set using the flags -M and -Q respectively followed by the number of the interface. You can usually use:

-M999

To get a performance error with a listing of available interfaces.

For the PortMidi module (and others like ALSA), you can specify no number to use the default MIDI interface or the a character to use all devices (which is actually the most common case). This will even work when no MIDI devices are present.

-Ma

So if you want MIDI input using the portmidi module, using device 2 for input and device 1 for output, your <CsOptions> section should contain:

-+rtmidi=portmidi -M2 -Q1

There is a special virtual RT MIDI module which enables MIDI input from a virtual keyboard. To enable it, you can use:

 -+rtmidi=virtual -M0

Platform Specific Modules

If the portmidi module is not working properly for some reason, you can try other platform specific modules.

Linux

On Linux systems, you might also have an alsa module to use the alsa raw MIDI interface. This is different from the more common alsa sequencer interface and will typically require the snd-virmidi module to be loaded.

OS X

On OS X you may have a coremidi module available.

Windows

On Windows, you may have a winmme MIDI module.

How to Use a MIDI Keyboard

Once you have set up the hardware, you are ready to receive MIDI information and interpret it in Csound. By default, when a MIDI note is received, it turns on the Csound instrument corresponding to its channel number, so if a note is received on channel 3, it will turn on instrument 3, if it is received on channel 10, it will turn on instrument 10 and so on.

If you want to change this routing of MIDI channels to instruments, you can use the massign opcode. For instance, this statement lets you route your MIDI channel 1 to instrument 10:

 massign 1, 10

On the following example, a simple instrument, which plays a sine wave, is defined in instrument 1. There are no score note events, so no sound will be produced unless a MIDI note is received on channel 1.

EXAMPLE 02C01_Midi_Keybd_in.csd

<CsoundSynthesizer>
<CsOptions>
-+rtmidi=portmidi -Ma -odac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 massign 0, 1 ;assign all MIDI channels to instrument 1

instr 1
iCps cpsmidi ;get the frequency from the key pressed
iAmp ampmidi 0dbfs * 0.3 ;get the amplitude
aOut poscil iAmp, iCps ;generate a sine tone
 outs aOut, aOut ;write it to the output
endin

</CsInstruments>
<CsScore>
</CsScore>
</CsoundSynthesizer>
;Example by Andrés Cabrera

Note that Csound has an unlimited polyphony in this way: each key pressed starts a new instance of instrument 1, and you can have any number of instrument instances at the same time.

How to Use a MIDI Controller

To receive MIDI controller events, opcodes like ctrl7 can be used. In the following example instrument 1 is turned on for 60 seconds. It will receive controller #1 (modulation wheel) on channel 1 and convert MIDI range (0-127) to a range between 220 and 440. This value is used to set the frequency of a simple sine oscillator.

EXAMPLE 02C02_Midi_Ctl_in.csd

<CsoundSynthesizer>
<CsOptions>
-+rtmidi=virtual -M1 -odac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1
; --- receive controller number 1 on channel 1 and scale from 220 to 440
kFreq ctrl7 1, 1, 220, 440
; --- use this value as varying frequency for a sine wave
aOut poscil 0.2, kFreq
 outs aOut, aOut
endin
</CsInstruments>
<CsScore>
i 1 0 60
</CsScore>
</CsoundSynthesizer>
;Example by Andrés Cabrera

Other Type of MIDI Data

Csound can receive other type of MIDI, like pitch bend, and aftertouch through the usage of specific opcodes. Generic MIDI Data can be received using the midiin opcode. The example below prints to the console the data received via MIDI.

EXAMPLE 02C03_Midi_all_in.csd

<CsoundSynthesizer>
<CsOptions>
-+rtmidi=portmidi -Ma -odac
</CsOptions>
<CsInstruments>
;Example by Andrés Cabrera

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1
kStatus, kChan, kData1, kData2 midiin

if kStatus != 0 then ;print if any new MIDI message has been received
 printk 0, kStatus
 printk 0, kChan
 printk 0, kData1
 printk 0, kData2
endif

endin

</CsInstruments>
<CsScore>
i1 0 3600
</CsScore>
</CsoundSynthesizer>

02 D. LIVE AUDIO

Similar to the MIDI configuration, the standard Csound frontends CsoundQt, Cabbage and Blue all provide their own way how to configure audio. The following description is useful to understand what happens behind the curtains, and must be regarded if you use Csound via Command Line.

Select the Audio Device

Csound relates to the various inputs and outputs of sound devices installed on your computer as a numbered list. If you wish to send or receive audio to or from a specific audio connection you will need to know the number by which Csound knows it. If you are not sure of what that is you can trick Csound into providing you with a list of available devices by trying to run Csound using an obviously out of range device number, like this:

EXAMPLE 02D01_GetDeviceList.csd

<CsoundSynthesizer>
<CsOptions>
-iadc999 -odac999
</CsOptions>
<CsInstruments>
;Example by Andrés Cabrera
instr 1
endin
</CsInstruments>
<CsScore>
</CsScore>
</CsoundSynthesizer>

The input (-i) and output (-o) devices will be listed seperately.1 Specify your input device with the -iadc flag and the number of your input device, and your output device with the -odac flag and the number of your output device. For instance, if you select one of the devices from the list above both, for input and output, you may include something like

-iadc2 -odac3

in the <CsOptions> section of your .csd file.

If you do not specify any device number, the default device of your system configuration will be used by Csound. So usually it is sufficient to write:

-iadc -odac

If you have no real-time (microphone) input, you only need to declare -odac. Without this option, Csound will not produce real-time audio output, but write to an audio file as output instead.

Select the Audio Driver

The RT (= real-time) output module can be set with the -+rtaudio flag. If you don’t use this flag, the PortAudio driver will be used. Other possible drivers are jack and alsa (Linux), mme (Windows) or CoreAudio (Mac). So, this sets your audio driver to mme instead of Port Audio:

-+rtaudio=mme

Tuning Performance and Latency

Live performance and latency depend mainly on the sizes of the software and the hardware buffers. They can be set in the <CsOptions> using the -B flag for the hardware buffer, and the -b flag for the software buffer.2 For instance, this statement sets the hardware buffer size to 512 samples and the software buffer size to 128 sample:

-B512 -b128

The other factor which affects Csound’s live performance is the ksmps value which is set in the header of the <CsInstruments> section. By this value, you define how many samples are processed every Csound control cycle.

Try your realtime performance with -B512, -b128 and ksmps=32.3 With a software buffer of 128 samples, a hardware buffer of 512 and a sample rate of 44100 you will have around 12ms latency, which is usable for live keyboard playing. If you have problems with either the latency or the performance, tweak the values as described here.

The "--realtime" Option

When you have instruments that have substantial sections that could block out execution, for instance with code that loads buffers from files or creates big tables, you can try the option --realtime.

This option will give your audio processing the priority over other tasks to be done. It places all initialisation code on a separate thread, and does not block the audio thread. Instruments start performing only after all the initialisation is done. That can have a side-effect on scheduling if your audio input and output buffers are not small enough, because the audio processing thread may “run ahead” of the initialisation one, taking advantage of any slack in the buffering.

Given that this option is intrinsically linked to low-latency, realtime audio performance, and also to reduce the effect on scheduling these other tasks, it is recommended that small ksmps and buffer sizes, for example ksmps=16, 32, or 64, -b32 or 64, and -B256 or 512.

Csound Can Produce Extreme Dynamic Range!

Csound can produce extreme dynamic range, so keep an eye on the level you are sending to your output. The number which describes the level of 0 dB, can be set in Csound by the 0dbfs assignment in the <CsInstruments> header. There is no limitation, if you set 0dbfs = 1 and send a value of 32000, this can damage your ears and speakers!

Using Live Audio Input and Output

To process audio from an external source (for example a microphone), use the inch opcode to access any of the inputs of your audio input device. For the output, outch gives you all necessary flexibility. The following example takes a live audio input and transforms its sound using ring modulation. The Csound Console should output five times per second the input amplitude level.

EXAMPLE 02D02_LiveInput.csd

<CsoundSynthesizer>
<CsOptions>
;CHANGE YOUR INPUT AND OUTPUT DEVICE NUMBER HERE IF NECESSARY!
-iadc -odac -B512 -b128
</CsOptions>
<CsInstruments>
sr = 44100 ;set sample rate to 44100 Hz
ksmps = 32 ;number of samples per control cycle
nchnls = 2 ;use two audio channels
0dbfs = 1 ;set maximum level as 1

instr 1
aIn inch 1 ;take input from channel 1
kInLev downsamp aIn ;convert audio input to control signal
 printk .2, abs(kInLev)
;make modulator frequency oscillate 200 to 1000 Hz
kModFreq poscil 400, 1/2
kModFreq = kModFreq+600
aMod poscil 1, kModFreq ;modulator signal
aRM = aIn * aMod ;ring modulation
 outch 1, aRM, 2, aRM ;output to channel 1 and 2
endin
</CsInstruments>
<CsScore>
i 1 0 3600
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Live Audio is frequently used with live devices like widgets or MIDI. You will find various examples in the example collections of your preferred frontend.

	 You may have to run -iadc999 and -odac999 seperately.↩︎

	As Victor Lazzarini explains (mail to Joachim Heintz, 19 march 2013), the role of -b and -B varies between the Audio Modules: "1. For portaudio, -B is only used to suggest a latency to the backend, whereas -b is used to set the actual buffersize. 2. For coreaudio, -B is used as the size of the internal circular buffer, and -b is used for the actual IO buffer size. 3. For jack, -B is used to determine the number of buffers used in conjunction with -b , num = (N + M + 1) / M. -b is the size of each buffer. 4. For alsa, -B is the size of the buffer size, -b is the period size (a buffer is divided into periods). 5. For pulse, -b is the actual buffersize passed to the device, -B is not used. In other words, -B is not too significant in 1), not used in 5), but has a part to play in 2), 3) and 4), which is functionally similar."↩︎

	 It is always preferable to use power-of-two values for ksmps (which is the same as "block size" in PureData or "vector size" in Max). Just with ksmps = 1, 2, 4, 8, 16 ... you will take advantage of the "full duplex" audio, which provides best real time audio. Make sure your ksmps divides your buffer size with no remainder. So, for -b 128, you can use ksmps = 128, 64, 32, 16, 8, 4, 2 or 1.↩︎

02 E. RENDERING TO FILE

When to Render to File

Csound can also render audio straight to a sound file stored on your hard drive instead of as live audio sent to the audio hardware. This gives you the possibility to hear the results of very complex processes which your computer can’t produce in realtime. Or you want to render something in Csound to import it in an audio editor, or as the final result of a “tape” piece.1

Csound can render to formats like wav, aiff or ogg (and other less popular ones), but not mp3 due to its patent and licencing problems.

Rendering to File

Save the following code as Render.csd:

EXAMPLE 02E01_Render.csd

<CsoundSynthesizer>
<CsOptions>
-o Render.wav
</CsOptions>
<CsInstruments>
instr 1
aSin poscil 0dbfs/4, 440
 out aSin
endin
</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>
;Example by Alex Hofmann

Open the Terminal / Prompt / Console and type:

csound /path/to/Render.csd

Now, because you changed the -o flag in the <CsOptions> from "-o dac" to "-o filename", the audio output is no longer written in realtime to your audio device, but instead to a file. The file will be rendered to the default directory (usually the user home directory). This file can be opened and played in any audio player or editor, e.g. Audacity.

The -o flag can also be used to write the output file to a certain directory. Something like this for Windows ...

<CsOptions>
-o c:/music/samples/Render.wav
</CsOptions>

... and this for Linux or Mac OSX:

<CsOptions>
-o /Users/JSB/organ/tatata.wav
</CsOptions>

Rendering Options

The internal rendering of audio data in Csound is done with 64-bit floating point numbers. Depending on your needs, you should decide the precision of your rendered output file:

	If you want to render 32-bit floats, use the option flag -f.

	If you want to render 24-bit, use the flag -3 (= 3 bytes).

	If you want to render 16-bit, use the flag -s (or nothing, because this is also the default in Csound).

For making sure that the header of your soundfile will be written correctly, you should use the -W flag for a WAV file, or the -A flag for a AIFF file. So these options will render the file "Wow.wav" as WAV file with 24-bit accuracy:

<CsOptions>
-o Wow.wav -W -3
</CsOptions>

Realtime and Render-To-File at the Same Time

Sometimes you may want to simultaneously have realtime output and file rendering to disk, like recording your live performance. This can be achieved by using the fout opcode. You just have to specify your output file name. File type and format are given by a number, for instance 18 specifies "wav 24 bit" (see the manual page for more information). The following example creates a random frequency and panning movement of a sine wave, and writes it to the file "live_record.wav" (in the same directory as your .csd file):

EXAMPLE 02E02_RecordRT.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 seed 0 ;each time different seed for random

 instr 1
kFreq randomi 400, 800, 1 ;random sliding frequency
aSig poscil .2, kFreq ;sine with this frequency
kPan randomi 0, 1, 1 ;random panning
aL, aR pan2 aSig, kPan ;stereo output signal
 outs aL, aR ;live output
 fout "live_record.wav", 18, aL, aR ;write to soundfile
 endin

</CsInstruments>
<CsScore>
i 1 0 10
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

	or bit-depth, see the section about Bit-depth Resolution in chapter 01A (Digital Audio)↩︎

03 A. INITIALIZATION AND PERFORMANCE PASS

Not only for beginners, but also for experienced Csound users, many problems result from the misunderstanding of the so-called i-rate and k-rate. You want Csound to do something just once, but Csound does it continuously. You want Csound to do something continuously, but Csound does it just once. If you experience such a case, you will most probably have confused i- and k-rate-variables.

The concept behind this is actually not complicated. But it is something which is more implicitly mentioned when we think of a program flow, whereas Csound wants to know it explicitely. So we tend to forget it when we use Csound, and we do not notice that we ordered a stone to become a wave, and a wave to become a stone. This chapter tries to explicate very carefully the difference between stones and waves, and how you can profit from them, after you understood and accepted both qualities.

Basic Distinction

We will explain at first the difference between i-rate and k-rate. Then we will look at some properties of k-rate signals, and finally introduce the audio vector.

Init Pass

Whenever a Csound instrument is called, all variables are set to initial values. This is called the initialization pass.

There are certain variables, which stay in the state in which they have been put by the init-pass. These variables start with an i if they are local (= only considered inside an instrument), or with a gi if they are global (= considered overall in the orchestra). This is a simple example:

EXAMPLE 03A01_Init-pass.csd

<CsoundSynthesizer>
<CsInstruments>

giGlobal = 1/2

instr 1
iLocal = 1/4
 print giGlobal, iLocal
endin

instr 2
iLocal = 1/5
 print giGlobal, iLocal
endin

</CsInstruments>
<CsScore>
i 1 0 0
i 2 0 0
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The output should include these lines:

SECTION 1:
new alloc for instr 1:
instr 1: giGlobal = 0.500 iLocal = 0.250
new alloc for instr 2:
instr 2: giGlobal = 0.500 iLocal = 0.200

As you see, the local variables iLocal do have different meanings in the context of their instrument, whereas giGlobal is known everywhere and in the same way. It is also worth mentioning that the performance time of the instruments (p3) is zero. This makes sense, as the instruments are called, but only the init-pass is performed.1

Performance Pass

After having assigned initial values to all variables, Csound starts the actual performance. As music is a variation of values in time,2 audio signals are producing values which vary in time. In all digital audio, the time unit is given by the sample rate, and one sample is the smallest possible time atom. For a sample rate of 44100 Hz,3 one sample comes up to the duration of 1/44100 = 0.0000227 seconds.

So, performance for an audio application means basically: calculate all the samples which are finally being written to the output. You can imagine this as the cooperation of a clock and a calculator. For each sample, the clock ticks, and for each tick, the next sample is calculated.

Most audio applications do not perform this calculation sample by sample. It is much more efficient to collect some amount of samples in a block or vector, and calculate them all together. This means in fact, to introduce another internal clock in your application; a clock which ticks less frequently than the sample clock. For instance, if (always assumed your sample rate is 44100 Hz) your block size consists of 10 samples, your internal calculation time clock ticks every 1/4410 (0.000227) seconds. If your block size consists of 441 samples, the clock ticks every 1/100 (0.01) seconds.

The following illustration shows an example for a block size of 10 samples. The samples are shown at the bottom line. Above are the control ticks, one for each ten samples. The top two lines show the times for both clocks in seconds. In the upmost line you see that the first control cycle has been finished at 0.000227 seconds, the second one at 0.000454 seconds, and so on.4

The rate (frequency) of these ticks is called the control rate in Csound. By historical reason,5 it is called kontrol rate instead of control rate, and abbreviated as kr instead of cr. Each of the calculation cycles is called a k-cycle. The block size or vector size is given by the ksmps parameter, which means: how many samples (smps) are collected for one k-cycle.6

Let us see some code examples to illustrate these basic contexts.

Implicit Incrementation

EXAMPLE 03A02_Perf-pass_incr.csd

<CsoundSynthesizer>
<CsInstruments>
sr = 44100
ksmps = 4410

instr 1
kCount init 0; set kcount to 0 first
kCount = kCount + 1; increase at each k-pass
 printk 0, kCount; print the value
endin

</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Your output should contain the lines:

i 1 time 0.10000: 1.00000
i 1 time 0.20000: 2.00000
i 1 time 0.30000: 3.00000
i 1 time 0.40000: 4.00000
i 1 time 0.50000: 5.00000
i 1 time 0.60000: 6.00000
i 1 time 0.70000: 7.00000
i 1 time 0.80000: 8.00000
i 1 time 0.90000: 9.00000
i 1 time 1.00000: 10.00000

A counter (kCount) is set here to zero as initial value. Then, in each control cycle, the counter is increased by one. What we see here, is the typical behaviour of a loop. The loop has not been set explicitely, but works implicitely because of the continuous recalculation of all k-variables. So we can also speak about the k-cycles as an implicit (and time-triggered) k-loop.7 Try changing the ksmps value from 4410 to 8820 and to 2205 and observe the difference.

The next example reads the incrementation of kCount as rising frequency. The first instrument, called Rise, sets the k-rate frequency kFreq to the initial value of 100 Hz, and then adds 10 Hz in every new k-cycle. As ksmps=441, one k-cycle takes 1/100 second to perform. So in 3 seconds, the frequency rises from 100 to 3100 Hz. At the last k-cycle, the final frequency value is printed out.8 The second instrument, Partials, increments the counter by one for each k-cycle, but only sets this as new frequency for every 100 steps. So the frequency stays at 100Hz for one second, then at 200 Hz for one second, and so on. As the resulting frequencies are in the ratio 1 : 2 : 3 …, we hear partials based on a 100 Hz fundamental, from the first partial up to the 31st. The opcode printk2 prints out the frequency value whenever it has changed.

EXAMPLE 03A03_Perf-pass_incr_listen.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 441
0dbfs = 1
nchnls = 2

;build a table containing a sine wave
giSine ftgen 0, 0, 2^10, 10, 1

instr Rise
kFreq init 100
aSine poscil .2, kFreq, giSine
 outs aSine, aSine
;increment frequency by 10 Hz for each k-cycle
kFreq = kFreq + 10
;print out the frequency for the last k-cycle
kLast release
 if kLast == 1 then
 printk 0, kFreq
 endif
endin

instr Partials
;initialize kCount
kCount init 100
;get new frequency if kCount equals 100, 200, ...
 if kCount % 100 == 0 then
kFreq = kCount
 endif
aSine poscil .2, kFreq, giSine
 outs aSine, aSine
;increment kCount
kCount = kCount + 1
;print out kFreq whenever it has changed
 printk2 kFreq
endin
</CsInstruments>
<CsScore>
i "Rise" 0 3
i "Partials" 4 31
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Init versus Equals

A frequently occuring error is that instead of setting the k-variable as kCount init 0, it is set as kCount = 0. The meaning of both statements has one significant difference. kCount init 0 sets the value for kCount to zero only in the init pass, without affecting it during the performance pass. kCount = 1 sets the value for kCount to zero again and again, in each performance cycle. So the increment always starts from the same point, and nothing really happens:

EXAMPLE 03A04_Perf-pass_no_incr.csd

<CsoundSynthesizer>
<CsInstruments>
sr = 44100
ksmps = 4410

instr 1
kcount = 0; sets kcount to 0 at each k-cycle
kcount = kcount + 1; does not really increase ...
 printk 0, kcount; print the value
endin

</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Outputs:

 i 1 time 0.10000: 1.00000
 i 1 time 0.20000: 1.00000
 i 1 time 0.30000: 1.00000
 i 1 time 0.40000: 1.00000
 i 1 time 0.50000: 1.00000
 i 1 time 0.60000: 1.00000
 i 1 time 0.70000: 1.00000
 i 1 time 0.80000: 1.00000
 i 1 time 0.90000: 1.00000
 i 1 time 1.00000: 1.00000

A Look at the Audio Vector

One k-cycle consists of ksmps audio samples. The single samples are processed in a block, called audio vector. If ksmps=32, for each audio signal 32 samples are processed in every k-cycle.

There are different opcodes to print out k-variables.9 There is no opcode in Csound to print out the audio vector directly, but we can use the vaget opcode to see what is happening inside one control cycle with the audio samples.

EXAMPLE 03A05_Audio_vector.csd

<CsoundSynthesizer>
<CsInstruments>
sr = 44100
ksmps = 5
0dbfs = 1

instr 1
aSine poscil 1, 2205
kVec1 vaget 0, aSine
kVec2 vaget 1, aSine
kVec3 vaget 2, aSine
kVec4 vaget 3, aSine
kVec5 vaget 4, aSine
printks "kVec1 = %f, kVec2 = %f, kVec3 = %f, kVec4 = %f, kVec5 = %f\n",
 0, kVec1, kVec2, kVec3, kVec4, kVec5
endin
</CsInstruments>
<CsScore>
i 1 0 [1/2205]
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The output shows these lines:

kVec1 = 0.000000, kVec2 = 0.309017, kVec3 = 0.587785, kVec4 =
 0.809017, kVec5 = 0.951057
kVec1 = 1.000000, kVec2 = 0.951057, kVec3 = 0.809017, kVec4 =
 0.587785, kVec5 = 0.309017
kVec1 = -0.000000, kVec2 = -0.309017, kVec3 = -0.587785, kVec4 =
 -0.809017, kVec5 = -0.951057
kVec1 = -1.000000, kVec2 = -0.951057, kVec3 = -0.809017, kVec4 =
 -0.587785, kVec5 = -0.309017

In this example, the number of audio samples in one k-cycle is set to five by the statement ksmps=5. The first argument to vaget specifies which sample of the block you get. For instance,

kVec1 vaget 0, aSine

gets the first value of the audio vector and writes it into the variable kVec1. For a frequency of 2205 Hz at a sample rate of 44100 Hz, you need 20 samples to write one complete cycle of the sine. So we call the instrument for 1/2205 seconds, and we get 4 k-cycles. The printout shows exactly one period of the sine wave.

At the end of this chapter we will show another and more advances method to access the audio vector and modify its samples.

A Summarizing Example

After having put so much attention to the different single aspects of initialization, performance and audio vectors, the next example tries to summarize and illustrate all the aspects in their practical mixture.

EXAMPLE 03A06_Init_perf_audio.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 441
nchnls = 2
0dbfs = 1
instr 1
iAmp = p4 ;amplitude taken from the 4th parameter of the score line
iFreq = p5 ;frequency taken from the 5th parameter
; --- move from 0 to 1 in the duration of this instrument call (p3)
kPan line 0, p3, 1
aNote poscil iAmp, iFreq ;create an audio signal
aL, aR pan2 aNote, kPan ;let the signal move from left to right
 outs aL, aR ;write it to the output
endin
</CsInstruments>
<CsScore>
i 1 0 3 0.2 443
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

As ksmps=441, each control cycle is 0.01 seconds long (441/44100). So this happens when the instrument call is performed:

Applications and Concepts

We will look now at some applications and consequences of what has been showed. We will see how we can use a k-variable at i-time. Then we will at k-signals in an instrument which is called several times. We will explain the concept of re-initialization and have a look at instruments: in which order they are processed, how named instruments work, and how we can use fractional instrument numbers.

Accessing the Initialization Value of a k-Variable

It has been said that the init pass sets initial values to all variables. It must be emphasized that this indeed concerns all variables, not only the i-variables. It is only the matter that i-variables are not affected by anything which happens later, in the performance. But also k- and a-variables get their initial values.

As we saw, the init opcode is used to set initial values for k- or a-variables explicitely. On the other hand, you can get the initial value of a k-variable which has not been set explicitely, by the i() facility. This is a simple example:

EXAMPLE 03A07_Init-values_of_k-variables.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
instr 1
gkLine line 0, p3, 1
endin
instr 2
iInstr2LineValue = i(gkLine)
print iInstr2LineValue
endin
instr 3
iInstr3LineValue = i(gkLine)
print iInstr3LineValue
endin
</CsInstruments>
<CsScore>
i 1 0 5
i 2 2 0
i 3 4 0
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Outputs:

new alloc for instr 1:
B 0.000 .. 2.000 T 2.000 TT 2.000 M: 0.0
new alloc for instr 2:
instr 2: iInstr2LineValue = 0.400
B 2.000 .. 4.000 T 4.000 TT 4.000 M: 0.0
new alloc for instr 3:
instr 3: iInstr3LineValue = 0.800
B 4.000 .. 5.000 T 5.000 TT 5.000 M: 0.0

Instrument 1 produces a rising k-signal, starting at zero and ending at one, over a time of five seconds. The values of this line rise are written to the global variable gkLine. After two seconds, instrument 2 is called, and examines the value of gkLine at its init-pass via i(gkLine). The value at this time (0.4), is printed out at init-time as iInstr2LineValue. The same happens for instrument 3, which prints out iInstr3LineValue = 0.800, as it has been started at 4 seconds.

The i() feature is particularily useful if you need to examine the value of any control signal from a widget or from midi, at the time when an instrument starts.

For getting the init value of an element in a k-time array, the syntax i(kArray,iIndex) must be used; for instance i(kArr,0) will get the first element of array kArr at init-time. More about this in the section Init Values of k-Arrays in the Arrays chapter of this book.

k-Values and Initialization in Multiple Triggered Instruments

What happens on a k-variable if an instrument is called multiple times? What is the initialization value of this variable on the first call, and on the subsequent calls?

If this variable is not set explicitely, the init value in the first call of an instrument is zero, as usual. But, for the next calls, the k-variable is initialized to the value which was left when the previous instance of the same instrument turned off.

The following example shows this behaviour. Instrument Call simply calls the instrument Called once a second, and sends the number of the call to it. Instrument Called generates the variable kRndVal by a random generator, and reports both: - the value of kRndVal at initialization, and - the value of kRndVal at performance time, i.e. the first control cycle. (After the first k-cycle, the instrument is turned off immediately.)

EXAMPLE 03A08_k-inits_in_multiple_calls_1.csd

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
ksmps = 32

 instr Call
kNumCall init 1
kTrig metro 1
if kTrig == 1 then
 event "i", "Called", 0, 1, kNumCall
 kNumCall += 1
endif
 endin

 instr Called
iNumCall = p4
kRndVal random 0, 10
prints "Initialization value of kRnd in call %d = %.3f\n",
 iNumCall, i(kRndVal)
printks " New random value of kRnd generated in call %d = %.3f\n",
 0, iNumCall, kRndVal
turnoff
 endin

</CsInstruments>
<CsScore>
i "Call" 0 3
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The output should show this:

Initialization value of kRnd in call 1 = 0.000
 New random value of kRnd generated in call 1 = 8.829
Initialization value of kRnd in call 2 = 8.829
 New random value of kRnd generated in call 2 = 2.913
Initialization value of kRnd in call 3 = 2.913
 New random value of kRnd generated in call 3 = 9.257

The printout shows what was stated before: If there is no previous value of a k-variable, this variable is initialized to zero. If there is a previous value, it serves as initialization value.

But is this init-value of a k-variable of any relevance? Actually, we choose a k-value because we want to use it at performance-time, not at init-time. — Well, the problem is that Csound will perform the init-pass for all k- (and a-) variables, unless you prevent it from doing this explicitely. And if you, for example, generate an array index in the previous instance of the same instrument, which is out of range at initialization, Csound will report an error, or even crash:

EXAMPLE 03A09_k-inits_in_multiple_calls_2.csd

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
ksmps = 32

gkArray[] fillarray 1, 2, 3, 5, 8

instr Call
kNumCall init 1
kTrig metro 1
if kTrig == 1 then
 event "i", "Called", 0, 1, kNumCall
 kNumCall += 1
endif
endin

instr Called
 ;get the number of the instrument instance
iNumCall = p4
 ;set the start index for the while-loop
kIndex = 0
 ;get the init value of kIndex
prints "Initialization value of kIndx in call %d = %d\n", iNumCall, i(kIndex)
 ;perform the while-loop until kIndex equals five
while kIndex < lenarray(gkArray) do
 printf "Index %d of gkArray has value %d\n",
 kIndex+1, kIndex, gkArray[kIndex]
 kIndex += 1
od
 ;last value of kIndex is 5 because of increment
printks " Last value of kIndex in call %d = %d\n", 0, iNumCall, kIndex
 ;turn this instance off after first k-cycle
turnoff
endin

</CsInstruments>
<CsScore>
i "Call" 0 1 ;change performance time to 2 to get an error!
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

When you change the performance time to 2 instead of 1, you will get an error, because the array will be asked for index=5. (But, as the length of this array is 5, the last index is 4.) This will be the output in this case:

Initialization value of kIndx in call 1 = 0
Index 0 of gkArray has value 1
Index 1 of gkArray has value 2
Index 2 of gkArray has value 3
Index 3 of gkArray has value 5
Index 4 of gkArray has value 8
 Last value of kIndex in call 1 = 5
Initialization value of kIndx in call 2 = 5
PERF ERROR in instr 2: Array index 5 out of range (0,4) for dimension 1
 note aborted

The problem is that the expression gkArray[kIndex] is performed at init-time. And, that the expression kIndex=0 has no effect at all to the value of kIndex at init-time. If we want to be sure that kIndex is zero also at init-time, we must write this explicitely by

kIndex init 0

Note that this is exactly the same for User-Defined Opcodes! If you call a UDO twice, it will have the current value of a k-Variable of the first call as init-value of the second call, unless you initialize the k-variable explicitely by an init statement.

The final example shows both possibilities, using explicit initialization or not, and the resulting effect.

EXAMPLE 03A10_k-inits_in_multiple_calls_3.csd

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
ksmps = 32

instr without_init
prints "instr without_init, call %d:\n", p4
kVal = 1
prints " Value of kVal at initialization = %d\n", i(kVal)
printks " Value of kVal at first k-cycle = %d\n", 0, kVal
kVal = 2
turnoff
endin

instr with_init
prints "instr with_init, call %d:\n", p4
kVal init 1
kVal = 1
prints " Value of kVal at initialization = %d\n", i(kVal)
printks " Value of kVal at first k-cycle = %d\n", 0, kVal
kVal = 2
turnoff
endin

</CsInstruments>
<CsScore>
i "without_init" 0 .1 1
i "without_init" + .1 2
i "with_init" 1 .1 1
i "with_init" + .1 2
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

This is the output:

instr without_init, call 1:
 Value of kVal at initialization = 0
 Value of kVal at first k-cycle = 1
instr without_init, call 2:
 Value of kVal at initialization = 2
 Value of kVal at first k-cycle = 1
instr with_init, call 1:
 Value of kVal at initialization = 1
 Value of kVal at first k-cycle = 1
instr with_init, call 2:
 Value of kVal at initialization = 1
 Value of kVal at first k-cycle = 1

Note that this characteristics of using leftovers from previous instances which may lead to undesired effects, does also occur for audio variables. Similar to k-variables, an audio vector is initalized for the first instance to zero, or to the value which is explcitely set by an init statement. In case a previous instance can be re-used, its last state will be the init state of the new instance.

The next example shows an undesired side effect in instrument 1. In the third call (start=2), the previous values for the a1 audio vector will be used, because this variable is not set explicitely. This means, though, that 32 amplitudes are repeated in a frequency of sr/ksmps, in this case 44100/32 = 1378.125 Hz. The same happens at start=4 with audio variable a2. Instrument 2 initializes a1 and a2 in the cases they need to be, so that the inadvertend tone disappears.

EXAMPLE 03A11_a_inits_in_multiple_calls.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32 ;try 64 or other values
nchnls = 2
0dbfs = 1

instr 1 ;without explicit init
 i1 = p4
 if i1 == 0 then
 a1 poscil 0.5, 500
 endif
 if i1 == 1 then
 a2 poscil 0.5, 600
 endif
 outs a1, a2
endin

instr 2 ;with explicit init
 i1 = p4
 if i1 == 0 then
 a1 poscil 0.5, 500
 a2 init 0
 endif
 if i1 == 1 then
 a2 poscil 0.5, 600
 a1 init 0
 endif
 outs a1, a2
endin

</CsInstruments>
<CsScore>
i 1 0 .5 0
i . 1 . 0
i . 2 . 1
i . 3 . 1
i . 4 . 0
i . 5 . 0
i . 6 . 1
i . 7 . 1
b 9
i 2 0 .5 0
i . 1 . 0
i . 2 . 1
i . 3 . 1
i . 4 . 0
i . 5 . 0
i . 6 . 1
i . 7 . 1
</CsScore>
</CsoundSynthesizer>
;example by oeyvind brandtsegg and joachim heintz

Reinitialization

As we saw above, an i-value is not affected by the performance loop. So you cannot expect this to work as an incrementation:

EXAMPLE 03A12_Init_no_incr.csd

<CsoundSynthesizer>
<CsInstruments>
sr = 44100
ksmps = 4410

instr 1
iCount init 0 ;set iCount to 0 first
iCount = iCount + 1 ;increase
 print iCount ;print the value
endin

</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The output is nothing but:

instr 1: iCount = 1.000

But you can advise Csound to repeat the initialization of an i-variable. This is done with the reinit opcode. You must mark a section by a label (any name followed by a colon). Then the reinit statement will cause the i-variable to refresh. Use rireturn to end the reinit section.

EXAMPLE 03A13_Re-init.csd

<CsoundSynthesizer>
<CsInstruments>
sr = 44100
ksmps = 4410

instr 1
iCount init 0 ; set icount to 0 first
 reinit new ; reinit the section each k-pass
new:
iCount = iCount + 1 ; increase
 print iCount ; print the value
 rireturn
endin

</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Outputs:

instr 1: iCount = 1.000
instr 1: iCount = 2.000
instr 1: iCount = 3.000
instr 1: iCount = 4.000
instr 1: iCount = 5.000
instr 1: iCount = 6.000
instr 1: iCount = 7.000
instr 1: iCount = 8.000
instr 1: iCount = 9.000
instr 1: iCount = 10.000
instr 1: iCount = 11.000

What happens here more in detail, is the following. In the actual init-pass, iCount is set to zero via iCount init 0. Still in this init-pass, it is incremented by one (iCount = iCount+1) and the value is printed out as iCount = 1.000. Now starts the first performance pass. The statement reinit new advices Csound to initialise again the section labeled as new. So the statement iCount = iCount + 1 is executed again. As the current value of iCount at this time is 1, the result is 2. So the printout at this first performance pass is iCount = 2.000. The same happens in the next nine performance cycles, so the final count is 11.

Order of Calculation

In this context, it can be very important to observe the order in which the instruments of a Csound orchestra are evaluated. This order is determined by the instrument numbers. So, if you want to use during the same performance pass a value in instrument 10 which is generated by another instrument, you must not give this instrument the number 11 or higher. In the following example, first instrument 10 uses a value of instrument 1, then a value of instrument 100.

EXAMPLE 03A14_Order_of_calc.csd

<CsoundSynthesizer>
<CsInstruments>
sr = 44100
ksmps = 4410

instr 1
gkcount init 0 ;set gkcount to 0 first
gkcount = gkcount + 1 ;increase
endin

instr 10
 printk 0, gkcount ;print the value
endin

instr 100
gkcount init 0 ;set gkcount to 0 first
gkcount = gkcount + 1 ;increase
endin

</CsInstruments>
<CsScore>
;first i1 and i10
i 1 0 1
i 10 0 1
;then i100 and i10
i 100 1 1
i 10 1 1
</CsScore>
</CsoundSynthesizer>
;Example by Joachim Heintz

The output shows the difference:

new alloc for instr 1:
new alloc for instr 10:
 i 10 time 0.10000: 1.00000
 i 10 time 0.20000: 2.00000
 i 10 time 0.30000: 3.00000
 i 10 time 0.40000: 4.00000
 i 10 time 0.50000: 5.00000
 i 10 time 0.60000: 6.00000
 i 10 time 0.70000: 7.00000
 i 10 time 0.80000: 8.00000
 i 10 time 0.90000: 9.00000
 i 10 time 1.00000: 10.00000
B 0.000 .. 1.000 T 1.000 TT 1.000 M: 0.0
new alloc for instr 100:
 i 10 time 1.10000: 0.00000
 i 10 time 1.20000: 1.00000
 i 10 time 1.30000: 2.00000
 i 10 time 1.40000: 3.00000
 i 10 time 1.50000: 4.00000
 i 10 time 1.60000: 5.00000
 i 10 time 1.70000: 6.00000
 i 10 time 1.80000: 7.00000
 i 10 time 1.90000: 8.00000
 i 10 time 2.00000: 9.00000
B 1.000 .. 2.000 T 2.000 TT 2.000 M: 0.0

Instrument 10 can use the values which instrument 1 has produced in the same control cycle, but it can only refer to values of instrument 100 which are produced in the previous control cycle. By this reason, the printout shows values which are one less in the latter case.

Named Instruments

It has been said in chapter 02B (Quick Start) that instead of a number you can also use a name for an instrument. This is mostly preferable, because you can give meaningful names, leading to a better readable code. But what about the order of calculation in named instruments?

The answer is simple: Csound calculates them in the same order as they are written in the orchestra. So if your instrument collection is like this …

EXAMPLE 03A15_Order_of_calc_named.csd

<CsoundSynthesizer>
<CsOptions>
-nd
</CsOptions>
<CsInstruments>

instr Grain_machine
prints " Grain_machine\n"
endin

instr Fantastic_FM
prints " Fantastic_FM\n"
endin

instr Random_Filter
prints " Random_Filter\n"
endin

instr Final_Reverb
prints " Final_Reverb\n"
endin

</CsInstruments>
<CsScore>
i "Final_Reverb" 0 1
i "Random_Filter" 0 1
i "Grain_machine" 0 1
i "Fantastic_FM" 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

… you can count on this output:

new alloc for instr Grain_machine:
 Grain_machine
new alloc for instr Fantastic_FM:
 Fantastic_FM
new alloc for instr Random_Filter:
 Random_Filter
new alloc for instr Final_Reverb:
 Final_Reverb

Note that the score has not the same order. But internally, Csound transforms all names to numbers, in the order they are written from top to bottom. The numbers are reported on the top of Csound’s output:10

instr Grain_machine uses instrument number 1
instr Fantastic_FM uses instrument number 2
instr Random_Filter uses instrument number 3
instr Final_Reverb uses instrument number 4

Instruments with Fractional Numbers

Sometimes we want to call severall instances of an instrument, but we want to treat each instance different. For this, Csound provides the possibility of fractional note numbers. In the following example, instr 1 shows a basic example, turning on and off certain instances in the score. (Turning off is done here by negative note numbers.) Instr Play is a bit more complicated in using the instance number as index to a global array. Instr Trigger calls this instrument several times with fractional numbers. It also shows how we can use fractional numbers for named instruments: We first get the number which Csound appointed to this instrument (using the nstrnum opcode), and then add the fractional part (0, 0.1, 0.2 etc) to it.

EXAMPLE 03A16_FractionalInstrNums.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m128
</CsOptions>
<CsInstruments>
sr = 44100
nchnls = 2
0dbfs = 1
ksmps = 32
seed 0

giArr[] fillarray 60, 68, 67, 66, 65, 64, 63

instr 1
 iMidiNote = p4
 iFreq mtof iMidiNote
 aPluck pluck .1, iFreq, iFreq, 0, 1
 aOut linenr aPluck, 0, 1, .01
 out aOut, aOut
endin

instr Trigger
 index = 0
 while index < lenarray(giArr) do
 iInstrNum = nstrnum("Play")+index/10
 schedule(iInstrNum,index+random:i(0,.5),5)
 index += 1
 od
endin

instr Play
 iIndx = frac(p1)*10 //index is fractional part of instr number
 iFreq = mtof:i(giArr[round(iIndx)])
 aPluck pluck .1, iFreq, iFreq, 0, 1
 aOut linenr aPluck, 0, 1, .01
 out aOut, aOut
endin

</CsInstruments>
<CsScore>
//traditional score
t 0 90
i 1.0 0 -1 60
i 1.1 1 -1 65
i 1.2 2 -1 55
i 1.3 3 -1 70
i 1.4 4 -1 50
i 1.5 5 -1 75

i -1.4 7 1 0
i -1.1 8 1 0
i -1.5 9 1 0
i -1.0 10 1 0
i -1.3 11 1 0
i -1.2 12 1 0

//event generating instrument
i "Trigger" 15 10
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Tips for Pratical Use

The last part of this chapter focusses on some situations which are known as stumbling blocks by many users. We will start with a discussion about i-time and k-rate opcodes, and when to use either of them. In between we will look at some possible issues with the k-rate ticks as internal time units. We will have another look at the audio vector, before we try to throw some light in the complicated matter of hidden initializaion. Finally, we will give some general suggestions when to choose i-rate or k-rate opcodes.

About i-time and k-rate Opcodes

It is often confusing for the beginner that there are some opcodes which only work at i-time or i-rate, and others which only work at k-rate or k-time. For instance, if the user wants to print the value of any variable, (s)he thinks: OK - print it out. But Csound replies: Please, tell me first if you want to print an i- or a k-variable.11

The print opcode just prints variables which are updated at each initialization pass (i-time or i-rate). If you want to print a variable which is updated at each control cycle (k-rate or k-time), you need its counterpart printk. (As the performance pass is usually updated some thousands times per second, you have an additional parameter in printk, telling Csound how often you want to print out the k-values.)

So, some opcodes are just for i-rate variables, like filelen or ftgen. Others are just for k-rate variables like metro or max_k. Many opcodes have variants for either i-rate-variables or k-rate-variables, like printf_i and printf, sprintf and sprintfk, strindex and strindexk.

Most of the Csound opcodes are able to work either at i-time or at k-time or at audio-rate, but you have to think carefully what you need, as the behaviour will be very different if you choose the i-, k- or a-variante of an opcode. For example, the random opcode can work at all three rates:

ires random imin, imax : works at "i-time"
kres random kmin, kmax : works at "k-rate"
ares random kmin, kmax : works at "audio-rate"

If you use the i-rate random generator, you will get one value for each note. For instance, if you want to have a different pitch for each note you are generating, you will use this one.

If you use the k-rate random generator, you will get one new value on every control cycle. If your sample rate is 44100 and your ksmps=10, you will get 4410 new values per second! If you take this as pitch value for a note, you will hear nothing but a noisy jumping. If you want to have a moving pitch, you can use the randomi variant of the k-rate random generator, which can reduce the number of new values per second, and interpolate between them.

If you use the a-rate random generator, you will get as many new values per second as your sample rate is. If you use it in the range of your 0 dB amplitude, you produce white noise.

EXAMPLE 03A17_Random_at_ika.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
0dbfs = 1
nchnls = 2

 seed 0 ;each time different seed
giSine ftgen 0, 0, 2^10, 10, 1 ;sine table

instr 1 ;i-rate random
iPch random 300, 600
aAmp linseg .5, p3, 0
aSine poscil aAmp, iPch, giSine
 outs aSine, aSine
endin

instr 2 ;k-rate random: noisy
kPch random 300, 600
aAmp linseg .5, p3, 0
aSine poscil aAmp, kPch, giSine
 outs aSine, aSine
endin

instr 3 ;k-rate random with interpolation: sliding pitch
kPch randomi 300, 600, 3
aAmp linseg .5, p3, 0
aSine poscil aAmp, kPch, giSine
 outs aSine, aSine
endin

instr 4 ;a-rate random: white noise
aNoise random -.1, .1
 outs aNoise, aNoise
endin

</CsInstruments>
<CsScore>
i 1 0 .5
i 1 .25 .5
i 1 .5 .5
i 1 .75 .5
i 2 2 1
i 3 4 2
i 3 5 2
i 3 6 2
i 4 9 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Possible Problems with k-Rate Tick Size

It has been said that usually the k-rate clock ticks much slower than the sample (a-rate) clock. For a common size of ksmps=32, one k-value remains the same for 32 samples. This can lead to problems, for instance if you use k-rate envelopes. Let us assume that you want to produce a very short fade-in of 3 milliseconds, and you do it with the following line of code:

kFadeIn linseg 0, .003, 1

Your envelope will look like this:

Such a staircase-envelope is what you hear in the next example as zipper noise. The transeg opcode produces a non-linear envelope with a sharp peak:

The rise and the decay are each 1/10 seconds long. If this envelope is produced at k-rate with a blocksize of 128 (instr 1), the noise is clearly audible. Try changing ksmps to 64, 32 or 16 and compare the amount of zipper noise. — Instrument 2 uses an envelope at audio-rate instead. Regardless the blocksize, each sample is calculated seperately, so the envelope will always be smooth. — Instrument 3 shows a remedy for situations in which a k-rate envelope cannot be avoided: the a() will convert the k-signal to audio-rate by interpolation thus smoothing the envelope.

EXAMPLE 03A18_Zipper.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 44100
;--- increase or decrease to hear the difference more or less evident
ksmps = 128
nchnls = 2
0dbfs = 1

instr 1 ;envelope at k-time
aSine poscil .5, 800
kEnv transeg 0, .1, 5, 1, .1, -5, 0
aOut = aSine * kEnv
 outs aOut, aOut
endin

instr 2 ;envelope at a-time
aSine poscil .5, 800
aEnv transeg 0, .1, 5, 1, .1, -5, 0
aOut = aSine * aEnv
 outs aOut, aOut
endin

instr 3 ;envelope at k-time with a-time interpolation
aSine poscil .5, 800
kEnv transeg 0, .1, 5, 1, .1, -5, 0
aOut = aSine * a(kEnv)
 outs aOut, aOut
endin

</CsInstruments>
<CsScore>
r 3 ;repeat the following line 3 times
i 1 0 1
s ;end of section
r 3
i 2 0 1
s
r 3
i 3 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Time Impossible

There are two internal clocks in Csound. The sample rate (sr) determines the audio-rate, whereas the control rate (kr) determines the rate, in which a new control cycle can be started and a new block of samples can be performed. In general, Csound can not start any event in between two control cycles, nor end.

The next example chooses an extreme small control rate (only 10 k-cycles per second) to illustrate this.

EXAMPLE 03A19_Time_Impossible.csd

<CsoundSynthesizer>
<CsOptions>
-o test.wav -d
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 4410
nchnls = 1
0dbfs = 1

 instr 1
aPink poscil .5, 430
out aPink
 endin
</CsInstruments>
<CsScore>
i 1 0.05 0.1
i 1 0.4 0.15
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The first call advices instrument 1 to start performance at time 0.05. But this is impossible as it lies between two control cycles. The second call starts at a possible time, but the duration of 0.15 again does not coincident with the control rate. So the result starts the first call at time 0.1 and extends the second call to 0.2 seconds:

With Csound6, the possibilities of these in between are enlarged via the –sample-accurate option. The next image shows how a 0.01 second envelope which is generated by the code

a1 init 1
a2 linen a1, p3/3, p3, p3/3
 out a2

(and a call of 0.01 seconds at sr=44100) shows up in the following cases:

	ksmps=128

	ksmps=32

	ksmps=1

	ksmps=128 and –sample-accurate enabled

This is the effect:

	At ksmps=128, the last section of the envelope is missing. The reason is that, at sr=44100 Hz, 0.01 seconds contain 441 samples. 441 samples divided by the block size (ksmps) of 128 samples yield to 3.4453125 blocks. This is rounded to 3. So only 3 * 128 = 384 Samples are performed. As you see, the envelope itself is calculated correctly in its shape. It would end exactly at 0.01 seconds .. but it does not, because the ksmps block ends too early. So this envelope might introduce a click at the end of this note.

	At ksmps=32, the number of samples (441) divided by ksmps yield to a value of 13.78125. This is rounded to 14, so the rendered audio is slightly longer than 0.01 seconds (448 samples).

	At ksmps=1, the envelope is as expected.

	At ksmps=128 and --sample-accurate enabled, the envelope is correct, too. Note that the section is now 4*128=512 samples long, but the envelope is more accurate than at ksmps=32.

So, in case you experience clicks at very short envelopes although you use a-rate envelopes, it might be necessary to set either ksmps=1, or to enable the --sample-accurate option.

Yet another Look at the Audio Vector

In Csound 6 it is actually possible to access each sample of the audio vector directly, without setting ksmps=1. This feature, however, requires some knowledge about arrays and loops, so beginners should skip this paragraph.

The direct access uses the a...[] syntax which is common in most programming languages for arrays or lists. As an audio vector is of ksmps length, we must iterate in each k-cycle over it. By this, we can both, get and modify the values of the single samples directly. Moreover, we can use control structures which are usually k-rate only also at a-rate, for instance any condition depending on the value of a single sample.

The next example demonstrates three different usages of the sample-by-sample processing. In the SimpleTest instrument, every single sample is multiplied by a value (1, 3 and -1). Then the result is added to the previous sample value. This leads to amplification for iFac=3 and to silence for iFac=-1 because in this case every sample cancels itself. In the PrintSampleIf instrument, each sample which is between 0.99 and 1.00 is printed to the console. Also in the PlaySampleIf instrument an if-condition is applied on each sample, but here not for printing rather than playing out only the samples whichs values are between 0 and 1/10000. They are then multiplied by 10000 so that not only rhythm is irregular but also volume.

EXAMPLE 03A20_Sample_by_sample_processing.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m128
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr SimpleTest

 iFac = p4 ;multiplier for each audio sample

 aSinus poscil 0.1, 500

 kIndx = 0
 while kIndx < ksmps do
 aSinus[kIndx] = aSinus[kIndx] * iFac + aSinus[kIndx]
 kIndx += 1
 od

 out aSinus, aSinus

endin

instr PrintSampleIf

 aRnd rnd31 1, 0, 1

 kBlkCnt init 0
 kSmpCnt init 0

 kIndx = 0
 while kIndx < ksmps do
 if aRnd[kIndx] > 0.99 then
 printf "Block = %2d, Sample = %4d, Value = %f\n",
 kSmpCnt, kBlkCnt, kSmpCnt, aRnd[kIndx]
 endif
 kIndx += 1
 kSmpCnt += 1
 od

 kBlkCnt += 1

endin

instr PlaySampleIf

 aRnd rnd31 1, 0, 1
 aOut init 0

 kBlkCnt init 0
 kSmpCnt init 0

 kIndx = 0
 while kIndx < ksmps do
 if aRnd[kIndx] > 0 && aRnd[kIndx] < 1/10000 then
 aOut[kIndx] = aRnd[kIndx] * 10000
 else
 aOut[kIndx] = 0
 endif
 kIndx += 1
 od

 out aOut, aOut

endin

</CsInstruments>
<CsScore>
i "SimpleTest" 0 1 1
i "SimpleTest" 2 1 3
i "SimpleTest" 4 1 -1
i "PrintSampleIf" 6 .033
i "PlaySampleIf" 8 10
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The output should contain these lines, generated by the PrintSampleIf instrument, showing that in block 40 there were two subsequent samples which fell under the condition:

Block = 2, Sample = 86, Value = 0.998916
Block = 7, Sample = 244, Value = 0.998233
Block = 19, Sample = 638, Value = 0.995197
Block = 27, Sample = 883, Value = 0.990801
Block = 34, Sample = 1106, Value = 0.997471
Block = 40, Sample = 1308, Value = 1.000000
Block = 40, Sample = 1309, Value = 0.998184
Block = 43, Sample = 1382, Value = 0.994353

At the end of chapter 03G an example is shown for a more practical use of sample-by-sample processing in Csound: to implement a digital filter as user defined opcode.

Hidden Initialization of k- and S-Variables

Any k-variable can be explicitly initialized by the init opcode, as has been shown above. But internally any variable, it be control rate (k), audio rate (a) or string (S), has an initial value. As this initialization can be hidden from the user, it can lead to unexpexted behaviour.

Explicit and implicit initialization

The first case is easy to understand, although some results may be unexpected. Any k-variable which is not explicitly initialized is set to zero as initial value.

EXAMPLE 03A21_Init_explcit_implicit.csd

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1

 ;explicit initialization
 k_Exp init 10
 S_Exp init "goodbye"

 ;implicit initialization
 k_Imp linseg 10, 1, 0
 S_Imp strcpyk "world"

 ;print out at init-time
 prints "k_Exp -> %d\n", k_Exp
 printf_i "S_Exp -> %s\n", 1, S_Exp
 prints "k_Imp -> %d\n", k_Imp
 printf_i "S_Imp -> %s\n", 1, S_Imp

endin

</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

This is the console output:

k_Exp -> 10
S_Exp -> goodbye
k_Imp -> 0
S_Imp -> world

The implicit output may be of some surprise. The variable k_Imp is not initilalized to 10, although 10 will be the first value during performance. And S_Imp carries the world already at initialization although the opcode name strcpyk may suggest something else. But as the manual page states: strcpyk does the assignment both at initialization and performance time.

Order of initialization statements

What happens if there are two init statements, following each other? Usually the second one overwrites the first. But if a k-value is explicitely set via the init opcode, the implicit initialization will not take place.

EXAMPLE 03A22_Init_overwrite.csd

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1

 ;k-variables
 k_var init 20
 k_var linseg 10, 1, 0

 ;string variables
 S_var init "goodbye"
 S_var strcpyk "world"

 ;print out at init-time
 prints "k_var -> %d\n", k_var
 printf_i "S_var -> %s\n", 1, S_var

endin

</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The output is:

k_var -> 20
S_var -> world

Both pairs of lines in the code look similar, but do something quite different. For k_var the line k_var linseg 10, 1, 0 will not initialize k_var to zero, as this happens only if no init value is assigned. The line S_var strcpyk "world" instead does an explicit initialization, and this initialization will overwrite the preceding one. If the lines were swapped, the result would be goodbye rather than world.

Hidden initialization in k-rate if-clause

If-clauses can be either i-rate or k-rate. A k-rate if-clause initializes nevertheless. Reading the next example may suggest that the variable String is only initalized to "yes", because the if-condition will never become true. But regardless it is true or false, any k-rate if-clause initializes its expressions, in this case the String variable.

EXAMPLE 03A23_Init_hidden_in_if.csd

<CsoundSynthesizer>
<CsOptions>
-m128
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1

 ;a string to be copied at init- and performance-time
 String strcpyk "yes!\n"

 ;print it at init-time
 printf_i "INIT 1: %s", 1, String

 ;a copy assignment that will never become true during performance
 kBla = 0
 if kBla == 1 then
 String strcpyk "no!\n"
 endif

 ;nevertheless the string variable is initialized by it
 printf_i "INIT 2: %s", 1, String

 ;during performance only "yes!" remains
 printf "PERF %d: %s", timeinstk(), timeinstk(), String

 ;turn off after three k-cycles
 if timeinstk() == 3 then
 turnoff
 endif

endin

</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Returns:

INIT 1: yes!
INIT 2: no!
PERF 1: yes!
PERF 2: yes!
PERF 3: yes!

If you want to skip the initialization at this point, you can use an igoto statement:

 if kBla == 1 then
 igoto skip
 String strcpyk "no!\n"
 skip:
 endif

Hidden initialization via UDOs

A user may expect that a UDO will behave identical to a csound native opcode, but in terms of implicit initialization it is not the case. In the following example, we may expect that instrument 2 has the same output as instrument 1.

EXAMPLE 03A24_Init_hidden_in_udo.csd

<CsoundSynthesizer>
<CsOptions>
-m128
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 opcode RndInt, k, kk
kMin, kMax xin
kRnd random kMin, kMax+.999999
kRnd = int(kRnd)
xout kRnd
 endop

instr 1 ;opcode

 kBla init 10
 kBla random 1, 2
 prints "instr 1: kBla initialized to %d\n", i(kBla)
 turnoff

endin

instr 2 ;udo has different effect at i-time

 kBla init 10
 kBla RndInt 1, 2
 prints "instr 2: kBla initialized to %d\n", i(kBla)
 turnoff

endin

instr 3 ;but the functional syntax makes it different

 kBla init 10
 kBla = RndInt(1, 2)
 prints "instr 3: kBla initialized to %d\n", i(kBla)
 turnoff

endin

</CsInstruments>
<CsScore>
i 1 0 .1
i 2 + .
i 3 + .
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

But the output is:

instr 1: kBla initialized to 10
instr 2: kBla initialized to 0
instr 3: kBla initialized to 10

The reason that instrument 2 does implicit initialization of kBla is written in the manual page for xin / xout: These opcodes actually run only at i-time. In this case, kBla is initialized to zero, because the kRnd variable inside the UDO is implicitly zero at init-time.

Instrument 3, on the other hand, uses the = operator. It works as other native opcodes: if a k-variable has an explicit init value, it does not initialize again.

The examples about hidden (implicit) initialization may look somehow sophisticated and far from normal usage. But this is not the case. As users we may think: "I perform a line from 10 to 0 in 1 second, and i write this in the variable kLine. So i(kLine) is 10." It is not, and if you send this value at init-time to another instrument, your program will give wrong output.

When to Use i- or k- Rate

When you code on your Csound instrument, you may sometimes wonder whether you shall use an i-rate or a k-rate opcode. From what is said, the general answer is clear: Use i-rate if something has to be done only once, or in a somehow punctual manner. Use k-rate if something has to be done continuously, or if you must regard what happens during the performance.

	 You would not get any other result if you set p3 to 1 or any other value, as nothing is done here except initialization.↩︎

	 For the physical result which comes out of the loudspeakers or headphones, the variation is the variation of air pressure.↩︎

	 44100 samples per second↩︎

	These are by the way the times which Csound reports if you ask for the control cycles. The first control cycle in this example (sr=44100, ksmps=10) would be reported as 0.00027 seconds, not as 0.00000 seconds.↩︎

	As Richard Boulanger explains, in early Csound a line starting with c was a comment line. So it was not possible to abbreviate control variables as cAnything (http://csound.1045644.n5.nabble.com/OT-why-is-control-rate-called-kontrol-rate-td5720858.html#a5720866).↩︎

	As the k-rate is directly depending on sample rate (sr) and ksmps (kr = sr/ksmps), it is probably the best style to specify sr and ksmps in the header, but not kr.↩︎

	This must not be confused with a 'real' k-loop where inside one single k-cycle a loop is performed. See chapter 03C (section Loops) for examples.↩︎

	The value is 3110 instead of 3100 because it has already been incremented by 10.↩︎

	See the manual page for printk, printk2, printks, printf to know more about the differences.↩︎

	If you want to know the number in an instrument, use the nstrnum opcode.↩︎

	See the following section 03B about the variable types for more on this subject.↩︎

03 B. LOCAL AND GLOBAL VARIABLES

Variable Types

In Csound, there are several types of variables. It is important to understand the differences between these types. There are

	initialization variables, which are updated at each initialization pass, i.e. at the beginning of each note or score event. They start with the character i. To this group count also the score parameter fields, which always starts with a p, followed by any number: p1 refers to the first parameter field in the score, p2 to the second one, and so on.

	control variables, which are updated at each control cycle during the performance of an instrument. They start with the character k.

	audio variables, which are also updated at each control cycle, but instead of a single number (like control variables) they consist of a vector (a collection of numbers), having in this way one number for each sample. They start with the character a.

	string variables, which are updated either at i-time or at k-time (depending on the opcode which produces a string). They start with the character S.

Except these four standard types, there are two other variable types which are used for spectral processing:

	f-variables are used for the streaming phase vocoder opcodes (all starting with the characters pvs), which are very important for doing realtime FFT (Fast Fourier Transform) in Csound. They are updated at k-time, but their values depend also on the FFT parameters like frame size and overlap. Examples for using f-sigs can be found in chapter 05 I.

	w-variables are used in some older spectral processing opcodes.

The following example exemplifies all the variable types (except the w-type):

EXAMPLE 03B01_Variable_types.csd

<CsoundSynthesizer>
<CsOptions>
--env:SSDIR+=../SourceMaterials -o dac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
0dbfs = 1
nchnls = 2

 seed 0; random seed each time different

 instr 1; i-time variables
iVar1 = p2; second parameter in the score
iVar2 random 0, 10; random value between 0 and 10
iVar = iVar1 + iVar2; do any math at i-rate
 print iVar1, iVar2, iVar
 endin

 instr 2; k-time variables
kVar1 line 0, p3, 10; moves from 0 to 10 in p3
kVar2 random 0, 10; new random value each control-cycle
kVar = kVar1 + kVar2; do any math at k-rate
; --- print each 0.1 seconds
printks "kVar1 = %.3f, kVar2 = %.3f, kVar = %.3f%n", 0.1, kVar1, kVar2, kVar
 endin

 instr 3; a-variables
aVar1 poscil .2, 400; first audio signal: sine
aVar2 rand 1; second audio signal: noise
aVar3 butbp aVar2, 1200, 12; third audio signal: noise filtered
aVar = aVar1 + aVar3; audio variables can also be added
 outs aVar, aVar; write to sound card
 endin

 instr 4; S-variables
iMyVar random 0, 10; one random value per note
kMyVar random 0, 10; one random value per each control-cycle
 ;S-variable updated just at init-time
SMyVar1 sprintf "This string is updated just at init-time: kMyVar = %d\n",
 iMyVar
 printf_i "%s", 1, SMyVar1
 ;S-variable updates at each control-cycle
printks "This string is updated at k-time: kMyVar = %.3f\n", .1, kMyVar
 endin

 instr 5; f-variables
aSig rand .2; audio signal (noise)
; f-signal by FFT-analyzing the audio-signal
fSig1 pvsanal aSig, 1024, 256, 1024, 1
; second f-signal (spectral bandpass filter)
fSig2 pvsbandp fSig1, 350, 400, 400, 450
aOut pvsynth fSig2; change back to audio signal
 outs aOut*20, aOut*20
 endin

</CsInstruments>
<CsScore>
; p1 p2 p3
i 1 0 0.1
i 1 0.1 0.1
i 2 1 1
i 3 2 1
i 4 3 1
i 5 4 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

You can think of variables as named connectors between opcodes. You can connect the output from an opcode to the input of another. The type of connector (audio, control, etc.) is determined by the first letter of its name.

For a more detailed discussion, see the article An overview Of Csound Variable Types by Andrés Cabrera in the Csound Journal, and the page about Types, Constants and Variables in the Canonical Csound Manual.

Local Scope

The scope of these variables is usually the instrument in which they are defined. They are local variables. In the following example, the variables in instrument 1 and instrument 2 have the same names, but different values.

EXAMPLE 03B02_Local_scope.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 4410; very high because of printing
nchnls = 2
0dbfs = 1

 instr 1
;i-variable
iMyVar init 0
iMyVar = iMyVar + 1
 print iMyVar
;k-variable
kMyVar init 0
kMyVar = kMyVar + 1
 printk 0, kMyVar
;a-variable
aMyVar oscils .2, 400, 0
 outs aMyVar, aMyVar
;S-variable updated just at init-time
SMyVar1 sprintf "This string is updated just at init-time: kMyVar = %d\n",
 i(kMyVar)
 printf "%s", kMyVar, SMyVar1
;S-variable updated at each control-cycle
SMyVar2 sprintfk "This string is updated at k-time: kMyVar = %d\n", kMyVar
 printf "%s", kMyVar, SMyVar2
 endin

 instr 2
;i-variable
iMyVar init 100
iMyVar = iMyVar + 1
 print iMyVar
;k-variable
kMyVar init 100
kMyVar = kMyVar + 1
 printk 0, kMyVar
;a-variable
aMyVar oscils .3, 600, 0
 outs aMyVar, aMyVar
;S-variable updated just at init-time
SMyVar1 sprintf "This string is updated just at init-time: kMyVar = %d\n",
 i(kMyVar)
 printf "%s", kMyVar, SMyVar1
;S-variable updated at each control-cycle
SMyVar2 sprintfk "This string is updated at k-time: kMyVar = %d\n", kMyVar
 printf "%s", kMyVar, SMyVar2
 endin

</CsInstruments>
<CsScore>
i 1 0 .3
i 2 1 .3
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

This is the output (first the output at init-time by the print opcode, then at each k-cycle the output of printk and the two printf opcodes):

new alloc for instr 1:
instr 1: iMyVar = 1.000
 i 1 time 0.10000: 1.00000
This string is updated just at init-time: kMyVar = 0
This string is updated at k-time: kMyVar = 1
 i 1 time 0.20000: 2.00000
This string is updated just at init-time: kMyVar = 0
This string is updated at k-time: kMyVar = 2
 i 1 time 0.30000: 3.00000
This string is updated just at init-time: kMyVar = 0
This string is updated at k-time: kMyVar = 3
 B 0.000 .. 1.000 T 1.000 TT 1.000 M: 0.20000 0.20000
new alloc for instr 2:
instr 2: iMyVar = 101.000
 i 2 time 1.10000: 101.00000
This string is updated just at init-time: kMyVar = 100
This string is updated at k-time: kMyVar = 101
 i 2 time 1.20000: 102.00000
This string is updated just at init-time: kMyVar = 100
This string is updated at k-time: kMyVar = 102
 i 2 time 1.30000: 103.00000
This string is updated just at init-time: kMyVar = 100
This string is updated at k-time: kMyVar = 103
B 1.000 .. 1.300 T 1.300 TT 1.300 M: 0.29998 0.29998

Global Scope

If you need variables which are recognized beyond the scope of an instrument, you must define them as global. This is done by prefixing the character g before the types i, k, a or S. See the following example:

EXAMPLE 03B03_Global_scope.csd

<CsoundSynthesizer>
<CsInstruments>
sr = 44100
ksmps = 4410; very high because of printing
nchnls = 2
0dbfs = 1

 ;global scalar variables should be inititalized in the header
giMyVar init 0
gkMyVar init 0

 instr 1
 ;global i-variable
giMyVar = giMyVar + 1
 print giMyVar
 ;global k-variable
gkMyVar = gkMyVar + 1
 printk 0, gkMyVar
 ;global S-variable updated just at init-time
gSMyVar1 sprintf "This string is updated just at init-time: gkMyVar = %d\n",
 i(gkMyVar)
 printf "%s", gkMyVar, gSMyVar1
 ;global S-variable updated at each control-cycle
gSMyVar2 sprintfk "This string is updated at k-time: gkMyVar = %d\n", gkMyVar
 printf "%s", gkMyVar, gSMyVar2
 endin

 instr 2
 ;global i-variable, gets value from instr 1
giMyVar = giMyVar + 1
 print giMyVar
 ;global k-variable, gets value from instr 1
gkMyVar = gkMyVar + 1
 printk 0, gkMyVar
 ;global S-variable updated just at init-time, gets value from instr 1
 printf "Instr 1 tells: '%s'\n", gkMyVar, gSMyVar1
 ;global S-variable updated at each control-cycle, gets value from instr 1
 printf "Instr 1 tells: '%s'\n\n", gkMyVar, gSMyVar2
 endin

</CsInstruments>
<CsScore>
i 1 0 .3
i 2 0 .3
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The output shows the global scope, as instrument 2 uses the values which have been changed by instrument 1 in the same control cycle:

new alloc for instr 1:
instr 1: giMyVar = 1.000
new alloc for instr 2:
instr 2: giMyVar = 2.000
 i 1 time 0.10000: 1.00000
This string is updated just at init-time: gkMyVar = 0
This string is updated at k-time: gkMyVar = 1
 i 2 time 0.10000: 2.00000
Instr 1 tells: 'This string is updated just at init-time: gkMyVar = 0'
Instr 1 tells: 'This string is updated at k-time: gkMyVar = 1'
 i 1 time 0.20000: 3.00000
This string is updated just at init-time: gkMyVar = 0
This string is updated at k-time: gkMyVar = 3
 i 2 time 0.20000: 4.00000
Instr 1 tells: 'This string is updated just at init-time: gkMyVar = 0'
Instr 1 tells: 'This string is updated at k-time: gkMyVar = 3'
 i 1 time 0.30000: 5.00000
This string is updated just at init-time: gkMyVar = 0
This string is updated at k-time: gkMyVar = 5
 i 2 time 0.30000: 6.00000
Instr 1 tells: 'This string is updated just at init-time: gkMyVar = 0'
Instr 1 tells: 'This string is updated at k-time: gkMyVar = 5'

How To Work With Global Audio Variables

Some special considerations must be taken if you work with global audio variables. Actually, Csound behaves basically the same whether you work with a local or a global audio variable. But usually you work with global audio variables if you want to add several audio signals to a global signal, and that makes a difference.

The next few examples are going into a bit more detail. If you just want to see the result (= global audio usually must be cleared), you can skip the next examples and just go to the last one of this section.

It should be understood first that a global audio variable is treated the same by Csound if it is applied like a local audio signal:

EXAMPLE 03B04_Global_audio_intro.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1; produces a 400 Hz sine
gaSig oscils .1, 400, 0
 endin

 instr 2; outputs gaSig
 outs gaSig, gaSig
 endin

</CsInstruments>
<CsScore>
i 1 0 3
i 2 0 3
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Of course there is no need to use a global variable in this case. If you do it, you risk your audio will be overwritten by an instrument with a higher number using the same variable name. In the following example, you will just hear a 600 Hz sine tone, because the 400 Hz sine of instrument 1 is overwritten by the 600 Hz sine of instrument 2:

EXAMPLE 03B05_Global_audio_overwritten.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1; produces a 400 Hz sine
gaSig oscils .1, 400, 0
 endin

 instr 2; overwrites gaSig with 600 Hz sine
gaSig oscils .1, 600, 0
 endin

 instr 3; outputs gaSig
 outs gaSig, gaSig
 endin

</CsInstruments>
<CsScore>
i 1 0 3
i 2 0 3
i 3 0 3
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

In general, you will use a global audio variable like a bus to which several local audio signal can be added. It’s this addition of a global audio signal to its previous state which can cause some trouble. Let’s first see a simple example of a control signal to understand what is happening:

EXAMPLE 03B06_Global_audio_added.csd

<CsoundSynthesizer>
<CsInstruments>
sr = 44100
ksmps = 4410; very high because of printing
nchnls = 2
0dbfs = 1

 instr 1
kSum init 0; sum is zero at init pass
kAdd = 1; control signal to add
kSum = kSum + kAdd; new sum in each k-cycle
 printk 0, kSum; print the sum
 endin

</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

In this case, the "sum bus" kSum increases at each control cycle by 1, because it adds the kAdd signal (which is always 1) in each k-pass to its previous state. It is no different if this is done by a local k-signal, like here, or by a global k-signal, like in the next example:

EXAMPLE 03B07_Global_control_added.csd

<CsoundSynthesizer>
<CsInstruments>
sr = 44100
ksmps = 4410; very high because of printing
nchnls = 2
0dbfs = 1

gkSum init 0; sum is zero at init

 instr 1
gkAdd = 1; control signal to add
 endin

 instr 2
gkSum = gkSum + gkAdd; new sum in each k-cycle
 printk 0, gkSum; print the sum
 endin

</CsInstruments>
<CsScore>
i 1 0 1
i 2 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

What happens when working with audio signals instead of control signals in this way, repeatedly adding a signal to its previous state? Audio signals in Csound are a collection of numbers (a vector). The size of this vector is given by the ksmps constant. If your sample rate is 44100, and ksmps=100, you will calculate 441 times in one second a vector which consists of 100 numbers, indicating the amplitude of each sample.

So, if you add an audio signal to its previous state, different things can happen, depending on the vector’s present and previous states. If both previous and present states (with ksmps=9) are [0 0.1 0.2 0.1 0 -0.1 -0.2 -0.1 0] you will get a signal which is twice as strong: [0 0.2 0.4 0.2 0 -0.2 -0.4 -0.2 0]. But if the present state is opposite [0 -0.1 -0.2 -0.1 0 0.1 0.2 0.1 0], you will only get zeros when you add them. This is shown in the next example with a local audio variable, and then in the following example with a global audio variable.

EXAMPLE 03B08_Local_audio_add.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 4410; very high because of printing
 ;(change to 441 to see the difference)
nchnls = 2
0dbfs = 1

 instr 1
 ;initialize a general audio variable
aSum init 0
 ;produce a sine signal (change frequency to 401 to see the difference)
aAdd oscils .1, 400, 0
 ;add it to the general audio (= the previous vector)
aSum = aSum + aAdd
kmax max_k aSum, 1, 1; calculate maximum
 printk 0, kmax; print it out
 outs aSum, aSum
 endin

</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

prints:

 i 1 time 0.10000: 0.10000
 i 1 time 0.20000: 0.20000
 i 1 time 0.30000: 0.30000
 i 1 time 0.40000: 0.40000
 i 1 time 0.50000: 0.50000
 i 1 time 0.60000: 0.60000
 i 1 time 0.70000: 0.70000
 i 1 time 0.80000: 0.79999
 i 1 time 0.90000: 0.89999
 i 1 time 1.00000: 0.99999

EXAMPLE 03B09_Global_audio_add.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 4410; very high because of printing
 ;(change to 441 to see the difference)
nchnls = 2
0dbfs = 1

 ;initialize a general audio variable
gaSum init 0

 instr 1
 ;produce a sine signal (change frequency to 401 to see the difference)
aAdd oscils .1, 400, 0
 ;add it to the general audio (= the previous vector)
gaSum = gaSum + aAdd
 endin

 instr 2
kmax max_k gaSum, 1, 1; calculate maximum
 printk 0, kmax; print it out
 outs gaSum, gaSum
 endin

</CsInstruments>
<CsScore>
i 1 0 1
i 2 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

In both cases, you get a signal which increases each 1/10 second, because you have 10 control cycles per second (ksmps=4410), and the frequency of 400 Hz can be evenly divided by this. If you change the ksmps value to 441, you will get a signal which increases much faster and is out of range after 1/10 second. If you change the frequency to 401 Hz, you will get a signal which increases first, and then decreases, because each audio vector has 40.1 cycles of the sine wave. So the phases are shifting; first getting stronger and then weaker. If you change the frequency to 10 Hz, and then to 15 Hz (at ksmps=44100), you cannot hear anything, but if you render to file, you can see the whole process of either enforcing or erasing quite clear:

[image: Self-reinforcing global audio signal on account of its state in one control cycle being the same as in the previous one]Self-reinforcing global audio signal on account of its state in one control cycle being the same as in the previous one

[image: Partly self-erasing global audio signal because of phase inversions in two subsequent control cycles]Partly self-erasing global audio signal because of phase inversions in two subsequent control cycles

So the result of all is: If you work with global audio variables in a way that you add several local audio signals to a global audio variable (which works like a bus), you must clear this global bus at each control cycle. As in Csound all the instruments are calculated in ascending order, it should be done either at the beginning of the first, or at the end of the last instrument. Perhaps it is the best idea to declare all global audio variables in the orchestra header first, and then clear them in an "always on" instrument with the highest number of all the instruments used. This is an example of a typical situation:

EXAMPLE 03B10_Global_with_clear.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 ;initialize the global audio variables
gaBusL init 0
gaBusR init 0
 ;make the seed for random values each time different
 seed 0

 instr 1; produces short signals
 loop:
iDur random .3, 1.5
 timout 0, iDur, makenote
 reinit loop
 makenote:
iFreq random 300, 1000
iVol random -12, -3; dB
iPan random 0, 1; random panning for each signal
aSin oscil3 ampdb(iVol), iFreq, 1
aEnv transeg 1, iDur, -10, 0; env in a-rate is cleaner
aAdd = aSin * aEnv
aL, aR pan2 aAdd, iPan
gaBusL = gaBusL + aL; add to the global audio signals
gaBusR = gaBusR + aR
 endin

 instr 2; produces short filtered noise signals (4 partials)
 loop:
iDur random .1, .7
 timout 0, iDur, makenote
 reinit loop
 makenote:
iFreq random 100, 500
iVol random -24, -12; dB
iPan random 0, 1
aNois rand ampdb(iVol)
aFilt reson aNois, iFreq, iFreq/10
aRes balance aFilt, aNois
aEnv transeg 1, iDur, -10, 0
aAdd = aRes * aEnv
aL, aR pan2 aAdd, iPan
gaBusL = gaBusL + aL; add to the global audio signals
gaBusR = gaBusR + aR
 endin

 instr 3; reverb of gaBus and output
aL, aR freeverb gaBusL, gaBusR, .8, .5
 outs aL, aR
 endin

 instr 100; clear global audios at the end
 clear gaBusL, gaBusR
 endin

</CsInstruments>
<CsScore>
f 1 0 1024 10 1 .5 .3 .1
i 1 0 20
i 2 0 20
i 3 0 20
i 100 0 20
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The chn Opcodes for Global Variables

Instead of using the traditional g-variables for any values or signals which are to transfer between several instruments, many users prefer to use the chn opcodes. An i-, k-, a- or S-value or signal can be set by chnset and received by chnget. One advantage is to have strings as names, so that you can choose intuitive names.

For audio variables, instead of performing an addition, you can use the chnmix opcode. For clearing an audio variable, the chnclear opcode can be used.

EXAMPLE 03B11_Chn_demo.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1; send i-values
 chnset 1, "sio"
 chnset -1, "non"
 endin

 instr 2; send k-values
kfreq randomi 100, 300, 1
 chnset kfreq, "cntrfreq"
kbw = kfreq/10
 chnset kbw, "bandw"
 endin

 instr 3; send a-values
anois rand .1
 chnset anois, "noise"
 loop:
idur random .3, 1.5
 timout 0, idur, do
 reinit loop
 do:
ifreq random 400, 1200
iamp random .1, .3
asig oscils iamp, ifreq, 0
aenv transeg 1, idur, -10, 0
asine = asig * aenv
 chnset asine, "sine"
 endin

 instr 11; receive some chn values and send again
ival1 chnget "sio"
ival2 chnget "non"
 print ival1, ival2
kcntfreq chnget "cntrfreq"
kbandw chnget "bandw"
anoise chnget "noise"
afilt reson anoise, kcntfreq, kbandw
afilt balance afilt, anoise
 chnset afilt, "filtered"
 endin

 instr 12; mix the two audio signals
amix1 chnget "sine"
amix2 chnget "filtered"
 chnmix amix1, "mix"
 chnmix amix2, "mix"
 endin

 instr 20; receive and reverb
amix chnget "mix"
aL, aR freeverb amix, amix, .8, .5
 outs aL, aR
 endin

 instr 100; clear
 chnclear "mix"
 endin

</CsInstruments>
<CsScore>
i 1 0 20
i 2 0 20
i 3 0 20
i 11 0 20
i 12 0 20
i 20 0 20
i 100 0 20
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

03 C. CONTROL STRUCTURES

In a way, control structures are the core of a programming language. The fundamental element in each language is the conditional if branch. Actually all other control structures like for-, until- or while-loops can be traced back to if-statements.

So, Csound provides mainly the if-statement; either in the usual if-then-else form, or in the older way of an if-goto statement. These will be covered first. Though all necessary loops can be built just by if-statements, Csound’s while, until and loop facility offer a more comfortable way of performing loops. They will be introduced later, in the Loop and the While / Until section of this chapter. Finally, time loops are shown, which are particulary important in audio programming languages.

If i-Time then not k-Time!

The fundamental difference in Csound between i-time and k-time which has been explained in chapter 03A, must be regarded very carefully when working with control structures. If a conditional branch at i-time is performed, the condition will be tested just once for each note, at the initialization pass. If a conditional branch at k-time is performed, the condition will be tested again and again in each control-cycle.

For instance, if we test a soundfile whether it is mono or stereo, this is done at init-time. If we test an amplitude value to be below a certain threshold, it is done at performance time (k-time). If we receive user-input by a scroll number, this is also a k-value, so we need a k-condition.

Thus, if and while as most used control structures have an i and a k descendant. In the next few sections, a general introduction into the different control tools is given, followed by examples both at i-time and at k-time for each tool.

If - then - [elseif - then -] else

The use of the if-then-else statement is very similar to other programming languages. Note that in Csound, then must be written in the same line as if and the expression to be tested, and that you must close the if-block with an endif statement on a new line:

if <condition> then
 ...
else
 ...
endif

It is also possible to have no else statement:

if <condition> then
 ...
endif

Or you can have one or more elseif-then statements in between:

if <condition1> then
 ...
elseif <condition2> then
 ...
else
 ...
endif

If statements can also be nested. Each level must be closed with an endif. This is an example with three levels:

if <condition1> then; first condition opened
 if <condition2> then; second condition openend
 if <condition3> then; third condition openend
 ...
 else
 ...
 endif; third condition closed
 elseif <condition2a> then
 ...
 endif; second condition closed
else
 ...
endif; first condition closed

i-Rate Examples

A typical problem in Csound: You have either mono or stereo files, and want to read both with a stereo output. For the real stereo ones that means: use diskin (soundin / diskin2) with two output arguments. For the mono ones it means: use it with one output argument, and throw it to both output channels:1

EXAMPLE 03C01_IfThen_i.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1
Sfile = "ClassGuit.wav"
ifilchnls filenchnls Sfile
 if ifilchnls == 1 then ;mono
aL soundin Sfile
aR = aL
 else ;stereo
aL, aR soundin Sfile
 endif
 outs aL, aR
 endin

</CsInstruments>
<CsScore>
i 1 0 5
</CsScore>
</CsoundSynthesizer>
;Example by Joachim Heintz

k-Rate Examples

The following example establishes a moving gate between 0 and 1. If the gate is above 0.5, the gate opens and you hear a tone. If the gate is equal or below 0.5, the gate closes, and you hear nothing.

EXAMPLE 03C02_IfThen_k.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 seed 0; random values each time different
giTone ftgen 0, 0, 2^10, 10, 1, .5, .3, .1

 instr 1

; move between 0 and 1 (3 new values per second)
kGate randomi 0, 1, 3, 3
; move between 300 and 800 hz (1 new value per sec)
kFreq randomi 300, 800, 1, 3
; move between -12 and 0 dB (5 new values per sec)
kdB randomi -12, 0, 5, 3
aSig oscil3 1, kFreq, giTone
kVol init 0
 if kGate > 0.5 then; if kGate is larger than 0.5
kVol = ampdb(kdB); open gate
 else
kVol = 0; otherwise close gate
 endif
kVol port kVol, .02; smooth volume curve to avoid clicks
aOut = aSig * kVol
 outs aOut, aOut
 endin

</CsInstruments>
<CsScore>
i 1 0 30
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Short Form: (a v b ? x : y)

If you need an if-statement to give a value to an (i- or k-) variable, you can also use a traditional short form in parentheses: (a v b ? x : y).2 It asks whether the condition a or b is true. If a, the value is set to x; if b, to y. For instance, the last example could be written in this way:

EXAMPLE 03C03_IfThen_short_form.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 seed 0
giTone ftgen 0, 0, 2^10, 10, 1, .5, .3, .1

 instr 1
kGate randomi 0, 1, 3; moves between 0 and 1 (3 new values per second)
kFreq randomi 300, 800, 1; moves between 300 and 800 hz
 ;(1 new value per sec)
kdB randomi -12, 0, 5; moves between -12 and 0 dB
 ;(5 new values per sec)
aSig oscil3 1, kFreq, giTone
kVol init 0
kVol = (kGate > 0.5 ? ampdb(kdB) : 0); short form of condition
kVol port kVol, .02; smooth volume curve to avoid clicks
aOut = aSig * kVol
 outs aOut, aOut
 endin

</CsInstruments>
<CsScore>
i 1 0 20
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

If - goto

An older way of performing a conditional branch - but still useful in certain cases - is an if statement which is not followed by a then, but by a label name. The else construction follows (or doesn’t follow) in the next line. Like the if-then-else statement, the if-goto works either at i-time or at k-time. You should declare the type by either using igoto or kgoto. Usually you need an additional igoto/kgoto statement for omitting the else block if the first condition is true. This is the general syntax:

i-time

if <condition> igoto this; same as if-then
 igoto that; same as else
this: ;the label "this" ...
...
igoto continue ;skip the "that" block
that: ; ... and the label "that" must be found
...
continue: ;go on after the conditional branch
...

k-time

if <condition> kgoto this; same as if-then
 kgoto that; same as else
this: ;the label "this" ...
...
kgoto continue ;skip the "that" block
that: ; ... and the label "that" must be found
...
continue: ;go on after the conditional branch
...

In case raw goto is used, it is a combination of igoto and kgoto, so the condition is tested on both, initialization and performance pass.

i-Rate Examples

This is the same example as above in the if-then-else syntax for a branch depending on a mono or stereo file. If you just want to know whether a file is mono or stereo, you can use the pure if-igoto statement:

EXAMPLE 03C04_IfGoto_i.csd

<CsoundSynthesizer>
<CsOptions>
--env:SSDIR+=../SourceMaterials -odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1
Sfile = "ClassGuit.wav"
ifilchnls filenchnls Sfile
if ifilchnls == 1 igoto mono; condition if true
 igoto stereo; else condition
mono:
 prints "The file is mono!%n"
 igoto continue
stereo:
 prints "The file is stereo!%n"
continue:
 endin

</CsInstruments>
<CsScore>
i 1 0 0
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

But if you want to play the file, you must also use a k-rate if-kgoto, because, not only do you have an event at i-time (initializing the soundin opcode) but also at k-time (producing an audio signal). So goto must be used here, to combine igoto and kgoto.

EXAMPLE 03C05_IfGoto_ik.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1
Sfile = "ClassGuit.wav"
ifilchnls filenchnls Sfile
 if ifilchnls == 1 goto mono
 goto stereo
mono:
aL soundin Sfile
aR = aL
 goto continue
stereo:
aL, aR soundin Sfile
continue:
 outs aL, aR
 endin

</CsInstruments>
<CsScore>
i 1 0 5
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

k-Rate Examples

This is the same example as above (03C02) in the if-then-else syntax for a moving gate between 0 and 1:

EXAMPLE 03C06_IfGoto_k.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 seed 0
giTone ftgen 0, 0, 2^10, 10, 1, .5, .3, .1

 instr 1
kGate randomi 0, 1, 3; moves between 0 and 1 (3 new values per second)
kFreq randomi 300, 800, 1; moves between 300 and 800 hz
 ;(1 new value per sec)
kdB randomi -12, 0, 5; moves between -12 and 0 dB
 ;(5 new values per sec)
aSig oscil3 1, kFreq, giTone
kVol init 0
 if kGate > 0.5 kgoto open; if condition is true
 kgoto close; "else" condition
open:
kVol = ampdb(kdB)
kgoto continue
close:
kVol = 0
continue:
kVol port kVol, .02; smooth volume curve to avoid clicks
aOut = aSig * kVol
 outs aOut, aOut
 endin

</CsInstruments>
<CsScore>
i 1 0 30
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Loops

Loops can be built either at i-time or at k-time just with the if facility. The following example shows an i-rate and a k-rate loop created using the if-i/kgoto facility:

EXAMPLE 03C07_Loops_with_if.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>

 instr 1 ;i-time loop: counts from 1 until 10 has been reached
icount = 1
count:
 print icount
icount = icount + 1
 if icount < 11 igoto count
 prints "i-END!%n"
 endin

 instr 2 ;k-rate loop: counts in the 100th k-cycle from 1 to 11
kcount init 0
ktimek timeinstk ;counts k-cycle from the start of this instrument
 if ktimek == 100 kgoto loop
 kgoto noloop
loop:
 printks "k-cycle %d reached!%n", 0, ktimek
kcount = kcount + 1
 printk2 kcount
 if kcount < 11 kgoto loop
 printks "k-END!%n", 0
noloop:
 endin

</CsInstruments>
<CsScore>
i 1 0 0
i 2 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

But Csound offers a slightly simpler syntax for this kind of i-rate or k-rate loops. There are four variants of the loop opcode. All four refer to a label as the starting point of the loop, an index variable as a counter, an increment or decrement, and finally a reference value (maximum or minimum) as comparision:

	loop_lt counts upwards and looks if the index variable is lower than the reference value;

	loop_le also counts upwards and looks if the index is lower than or equal to the reference value;

	loop_gt counts downwards and looks if the index is greater than the reference value;

	loop_ge also counts downwards and looks if the index is greater than or equal to the reference value.

As always, all four opcodes can be applied either at i-time or at k-time. Here are some examples, first for i-time loops, and then for k-time loops.

i-Rate Examples

The following .csd provides a simple example for all four loop opcodes:

EXAMPLE 03C08_Loop_opcodes_i.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>

 instr 1 ;loop_lt: counts from 1 upwards and checks if < 10
icount = 1
loop:
 print icount
 loop_lt icount, 1, 10, loop
 prints "Instr 1 terminated!%n"
 endin

 instr 2 ;loop_le: counts from 1 upwards and checks if <= 10
icount = 1
loop:
 print icount
 loop_le icount, 1, 10, loop
 prints "Instr 2 terminated!%n"
 endin

 instr 3 ;loop_gt: counts from 10 downwards and checks if > 0
icount = 10
loop:
 print icount
 loop_gt icount, 1, 0, loop
 prints "Instr 3 terminated!%n"
 endin

 instr 4 ;loop_ge: counts from 10 downwards and checks if >= 0
icount = 10
loop:
 print icount
 loop_ge icount, 1, 0, loop
 prints "Instr 4 terminated!%n"
 endin

</CsInstruments>
<CsScore>
i 1 0 0
i 2 0 0
i 3 0 0
i 4 0 0
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The next example produces a random string of 10 characters and prints it out:

EXAMPLE 03C09_Random_string.csd

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>

 instr 1
icount = 0
Sname = ""; starts with an empty string
loop:
ichar random 65, 90.999
Schar sprintf "%c", int(ichar); new character
Sname strcat Sname, Schar; append to Sname
 loop_lt icount, 1, 10, loop; loop construction
 printf_i "My name is '%s'!\n", 1, Sname; print result
 endin

</CsInstruments>
<CsScore>
; call instr 1 ten times
r 10
i 1 0 0
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

You can also use an i-rate loop to fill a function table (= buffer) with any kind of values. This table can then be read, or manipulated and then be read again. In the next example, a function table with 20 positions (indices) is filled with random integers between 0 and 10 by instrument 1. Nearly the same loop construction is used afterwards to read these values by instrument 2.

EXAMPLE 03C10_Random_ftable_fill.csd

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>

giTable ftgen 0, 0, -20, -2, 0; empty function table with 20 points
 seed 0; each time different seed

 instr 1 ; writes in the table
icount = 0
loop:
ival random 0, 10.999 ;random value
; --- write in giTable at first, second, third ... position
 tableiw int(ival), icount, giTable
 loop_lt icount, 1, 20, loop; loop construction
 endin

 instr 2; reads from the table
icount = 0
loop:
; --- read from giTable at first, second, third ... position
ival tablei icount, giTable
 print ival; prints the content
 loop_lt icount, 1, 20, loop; loop construction
 endin

</CsInstruments>
<CsScore>
i 1 0 0
i 2 0 0
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

k-Rate Examples

The next example performs a loop at k-time. Once per second, every value of an existing function table is changed by a random deviation of 10%. Though there are some vectorial opcodes for this task (and in Csound 6 probably array), it can also be done by a k-rate loop like the one shown here:

EXAMPLE 03C11_Table_random_dev.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 441
nchnls = 2
0dbfs = 1

giSine ftgen 0, 0, 256, 10, 1; sine wave
 seed 0; each time different seed

 instr 1
ktiminstk timeinstk ;time in control-cycles
kcount init 1
 if ktiminstk == kcount * kr then; once per second table values manipulation:
kndx = 0
loop:
krand random -.1, .1;random factor for deviations
kval table kndx, giSine; read old value
knewval = kval + (kval * krand); calculate new value
 tablew knewval, kndx, giSine; write new value
 loop_lt kndx, 1, 256, loop; loop construction
kcount = kcount + 1; increase counter
 endif
asig poscil .2, 400, giSine
 outs asig, asig
 endin

</CsInstruments>
<CsScore>
i 1 0 10
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

While / Until

Since the release of Csound 6, it has been possible to write loops in a manner similar to that used by many other programming languages, using the keywords while or until. The general syntax is:

while <condition> do
 ...
od
until <condition> do
 ...
od

The body of the while loop will be performed again and again, as long as <condition> is true. The body of the until loop will be performed, as long as <condition> is false (not true). This is a simple example at i-rate:

EXAMPLE 03C12_while_until_i-rate.csd

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
ksmps = 32

instr 1
iCounter = 0
while iCounter < 5 do
 print iCounter
iCounter += 1
od
prints "\n"
endin

instr 2
iCounter = 0
until iCounter >= 5 do
 print iCounter
iCounter += 1
od
endin

</CsInstruments>
<CsScore>
i 1 0 .1
i 2 .1 .1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Prints:

instr 1: iprint = 0.000
instr 1: iprint = 1.000
instr 1: iprint = 2.000
instr 1: iprint = 3.000
instr 1: iprint = 4.000

instr 2: iprint = 0.000
instr 2: iprint = 1.000
instr 2: iprint = 2.000
instr 2: iprint = 3.000
instr 2: iprint = 4.000

The most important thing in using the while/until loop is to increment the variable you are using in the loop (here: iCounter). This is done by the statement

iCounter += 1

which is equivalent to the "old" way of writing as

iCounter = iCounter + 1

If you miss this increment, Csound will perform an endless loop, and you will have to terminate it by the operating system.

The next example shows a similar process at k-rate. It uses a while loop to print the values of an array, and also set new values. As this procedure is repeated in each control cycle, the instrument is being turned off after the third cycle.

EXAMPLE 03C13_while_until_k-rate.csd

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
ksmps = 32

 ;create and fill an array
gkArray[] fillarray 1, 2, 3, 4, 5

instr 1
 ;count performance cycles and print it
kCycle timeinstk
printks "kCycle = %d\n", 0, kCycle
 ;set index to zero
kIndex = 0
 ;perform the loop
while kIndex < lenarray(gkArray) do
 ;print array value
 printf " gkArray[%d] = %d\n", kIndex+1, kIndex, gkArray[kIndex]
 ;square array value
 gkArray[kIndex] = gkArray[kIndex] * gkArray[kIndex]
 ;increment index
kIndex += 1
od
 ;stop after third control cycle
if kCycle == 3 then
 turnoff
endif
endin

</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Prints:

kCycle = 1
 gkArray[0] = 1
 gkArray[1] = 2
 gkArray[2] = 3
 gkArray[3] = 4
 gkArray[4] = 5
kCycle = 2
 gkArray[0] = 1
 gkArray[1] = 4
 gkArray[2] = 9
 gkArray[3] = 16
 gkArray[4] = 25
kCycle = 3
 gkArray[0] = 1
 gkArray[1] = 16
 gkArray[2] = 81
 gkArray[3] = 256
 gkArray[4] = 625

Time Loops

Until now, we have just discussed loops which are executed "as fast as possible", either at i-time or at k-time. But, in an audio programming language, time loops are of particular interest and importance. A time loop means, repeating any action after a certain amount of time. This amount of time can be equal to or different to the previous time loop. The action can be, for instance: playing a tone, or triggering an instrument, or calculating a new value for the movement of an envelope.

In Csound, the usual way of performing time loops, is the timout facility. The use of timout is a bit intricate, so some examples are given, starting from very simple to more complex ones.

Another way of performing time loops is by using a measurement of time or k-cycles. This method is also discussed and similar examples to those used for the timout opcode are given so that both methods can be compared.

Timout Basics

The timout opcode refers to the fact that in the traditional way of working with Csound, each note (an i score event) has its own time. This is the duration of the note, given in the score by the duration parameter, abbreviated as p3. A timout statement says: "I am now jumping out of this p3 duration and establishing my own time." This time will be repeated as long as the duration of the note allows it.

Let’s see an example. This is a sine tone with a moving frequency, starting at 400 Hz and ending at 600 Hz. The duration of this movement is 3 seconds for the first note, and 5 seconds for the second note:

EXAMPLE 03C14_Timout_pre.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine ftgen 0, 0, 2^10, 10, 1

 instr 1
kFreq expseg 400, p3, 600
aTone poscil .2, kFreq, giSine
 outs aTone, aTone
 endin

</CsInstruments>
<CsScore>
i 1 0 3
i 1 4 5
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Now we perform a time loop with timout which is 1 second long. So, for the first note, it will be repeated three times, and five times for the second note:

EXAMPLE 03C15_Timout_basics.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine ftgen 0, 0, 2^10, 10, 1

 instr 1
loop:
 timout 0, 1, play
 reinit loop
play:
kFreq expseg 400, 1, 600
aTone poscil .2, kFreq, giSine
 outs aTone, aTone
 endin

</CsInstruments>
<CsScore>
i 1 0 3
i 1 4 5
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

This is the general syntax of timout:

first_label:
 timout istart, idur, second_label
 reinit first_label
second_label:
... <any action you want to have here>

The first_label is an arbitrary word (followed by a colon) to mark the beginning of the time loop section. The istart argument for timout tells Csound, when the second_label section is to be executed. Usually istart is zero, telling Csound: execute the second_label section immediately, without any delay. The idur argument for timout defines for how many seconds the second_label section is to be executed before the time loop begins again. Note that the reinit first_label is necessary to start the second loop after idur seconds with a resetting of all the values. (See the explanations about reinitialization in the chapter Initialization and Performance Pass.

As usual when you work with the reinit opcode, you can use a rireturn statement to constrain the reinit-pass. In this way you can have both, the timeloop section and the non-timeloop section in the body of an instrument:

EXAMPLE 03C16_Timeloop_and_not.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine ftgen 0, 0, 2^10, 10, 1

 instr 1
loop:
 timout 0, 1, play
 reinit loop
play:
kFreq1 expseg 400, 1, 600
aTone1 oscil3 .2, kFreq1, giSine
 rireturn ;end of the time loop
kFreq2 expseg 400, p3, 600
aTone2 poscil .2, kFreq2, giSine

 outs aTone1+aTone2, aTone1+aTone2
 endin

</CsInstruments>
<CsScore>
i 1 0 3
i 1 4 5
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Timout Applications

In a time loop, it is very important to change the duration of the loop. This can be done either by referring to the duration of this note (p3) ...

EXAMPLE 03C17_Timout_different_durations.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine ftgen 0, 0, 2^10, 10, 1

 instr 1
loop:
 timout 0, p3/5, play
 reinit loop
play:
kFreq expseg 400, p3/5, 600
aTone poscil .2, kFreq, giSine
 outs aTone, aTone
 endin

</CsInstruments>
<CsScore>
i 1 0 3
i 1 4 5
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

... or by calculating new values for the loop duration on each reinit pass, for instance by random values:

EXAMPLE 03C18_Timout_random_durations.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine ftgen 0, 0, 2^10, 10, 1

 instr 1
loop:
idur random .5, 3 ;new value between 0.5 and 3 seconds each time
 timout 0, idur, play
 reinit loop
play:
kFreq expseg 400, idur, 600
aTone poscil .2, kFreq, giSine
 outs aTone, aTone
 endin

</CsInstruments>
<CsScore>
i 1 0 20
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The applications discussed so far have the disadvantage that all the signals inside the time loop must definitely be finished or interrupted, when the next loop begins. In this way it is not possible to have any overlapping of events. To achieve this, the time loop can be used to simply trigger an event. This can be done with schedule, event_i or scoreline_i. In the following example, the time loop in instrument 1 triggers a new instance of instrument 2 with a duration of 1 to 5 seconds, every 0.5 to 2 seconds. So in most cases, the previous instance of instrument 2 will still be playing when the new instance is triggered. Random calculations are executed in instrument 2 so that each note will have a different pitch,creating a glissando effect:

EXAMPLE 03C19_Timout_trigger_events.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine ftgen 0, 0, 2^10, 10, 1

 instr 1
loop:
idurloop random .5, 2 ;duration of each loop
 timout 0, idurloop, play
 reinit loop
play:
idurins random 1, 5 ;duration of the triggered instrument
 event_i "i", 2, 0, idurins ;triggers instrument 2
 endin

 instr 2
ifreq1 random 600, 1000 ;starting frequency
idiff random 100, 300 ;difference to final frequency
ifreq2 = ifreq1 - idiff ;final frequency
kFreq expseg ifreq1, p3, ifreq2 ;glissando
iMaxdb random -12, 0 ;peak randomly between -12 and 0 dB
kAmp transeg ampdb(iMaxdb), p3, -10, 0 ;envelope
aTone poscil kAmp, kFreq, giSine
 outs aTone, aTone
 endin

</CsInstruments>
<CsScore>
i 1 0 30
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The last application of a time loop with the timout opcode which is shown here, is a randomly moving envelope. If we want to create an envelope in Csound which moves between a lower and an upper limit, and has one new random value in a certain time span (for instance, once a second), the time loop with timout is one way to achieve it. A line movement must be performed in each time loop, from a given starting value to a new evaluated final value. Then, in the next loop, the previous final value must be set as the new starting value, and so on. Here is a possible solution:

EXAMPLE 03C20_Timout_random_envelope.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine ftgen 0, 0, 2^10, 10, 1
 seed 0

 instr 1
iupper = 0; upper and ...
ilower = -24; ... lower limit in dB
ival1 random ilower, iupper; starting value
loop:
idurloop random .5, 2; duration of each loop
 timout 0, idurloop, play
 reinit loop
play:
ival2 random ilower, iupper; final value
kdb linseg ival1, idurloop, ival2
ival1 = ival2; let ival2 be ival1 for next loop
 rireturn ;end reinit section
aTone poscil ampdb(kdb), 400, giSine
 outs aTone, aTone
 endin

</CsInstruments>
<CsScore>
i 1 0 30
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Note that in this case the oscillator has been put after the time loop section (which is terminated by the rireturn statement. Otherwise the oscillator would start afresh with zero phase in each time loop, thus producing clicks.

Time Loops by using the metro Opcode

The metro opcode outputs a 1 at distinct times, otherwise it outputs a 0. The frequency of this "banging" (which is in some way similar to the metro objects in PD or Max) is given by the kfreq input argument. So the output of metro offers a simple and intuitive method for controlling time loops, if you use it to trigger a separate instrument which then carries out another job. Below is a simple example for calling a subinstrument twice per second:

EXAMPLE 03C21_Timeloop_metro.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1; triggering instrument
kTrig metro 2; outputs "1" twice a second
 if kTrig == 1 then
 event "i", 2, 0, 1
 endif
 endin

 instr 2; triggered instrument
aSig poscil .2, 400
aEnv transeg 1, p3, -10, 0
 outs aSig*aEnv, aSig*aEnv
 endin

</CsInstruments>
<CsScore>
i 1 0 10
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The example which is given above (03C19_Timout_trigger_events.csd) as a flexible time loop by timout, can be done with the metro opcode in this way:

EXAMPLE 03C22_Metro_trigger_events.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 seed 0

 instr 1
kfreq init 1; give a start value for the trigger frequency
kTrig metro kfreq
 if kTrig == 1 then ;if trigger impulse:
kdur random 1, 5; random duration for instr 2
 event "i", 2, 0, kdur; call instr 2
kfreq random .5, 2; set new value for trigger frequency
 endif
 endin

 instr 2
ifreq1 random 600, 1000; starting frequency
idiff random 100, 300; difference to final frequency
ifreq2 = ifreq1 - idiff; final frequency
kFreq expseg ifreq1, p3, ifreq2; glissando
iMaxdb random -18, -6; peak randomly between -12 and 0 dB
kAmp transeg ampdb(iMaxdb), p3, -10, 0; envelope
aTone poscil kAmp, kFreq
 outs aTone, aTone
 endin

</CsInstruments>
<CsScore>
i 1 0 30
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Note the differences in working with the metro opcode compared to the timout feature:

	As metro works at k-time, you must use the k-variants of event or scoreline to call the subinstrument. With timout you must use the i-variants: of event_i or scoreline_i, because it uses reinitialization for performing the time loops.

	You must select the one k-cycle where the metro opcode sends a 1. This is done with an if-statement. The rest of the instrument is not affected. If you use timout, you usually must seperate the reinitialized from the not reinitialized section by a rireturn statement.

Time Loops by Using a Clock Variable

Perhaps both, the most simple and the most Csoundish way to perform time loops is to use Csound’s internal clock. As explained in chapter 03A, each control cycle in Csound is equivalent to a certain time. This time is calculated as relation between the number of samples per control cycle ksmps and the sample rate sr: ksmps/sr. If, for instance, we have 32 samples per control cycle at a sample rate of 44100, this would be the time for one control cycle: 32/44100 = 0.0007256235827664399. In other words: Less than one millisecond, so definitely precise enough in the context we are discussing here.

As Csound internally calculates the relation between sample rate and number of samples per control cycle as control rate or kr, rather than ksmps/sr we can also write 1/kr. This is a bit shorter and more intuitive.

The idea for using this internal time as measurement for time loops is this: 1. We set a variable, say kTime, to the desired duration of the time loop. 2. in each control cycle we subtract the internal time from this variable. 3. Once zero has reached, we perform the event we want to perform, and reset the kTime variable to the next desired time.

The next example does exactly the same as example 03C21 with the help of the metro opcode did, but now by using the internal clock.3

EXAMPLE 03C23_Timeloop_Internal_Clock.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m0
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr TimeLoop
 //set desired time for time loop
 kLoopTime = 1/2
 //set kTime to zero at start
 kTime init 0
 //trigger event if zero has reached ...
 if kTime <= 0 then
 event "i", "Play", 0, .3
 //... and reset time
 kTime = kLoopTime
 endif
 //subtract time for each control cycle
 kTime -= 1/kr
endin

instr Play
 aEnv transeg 1, p3, -10, 0
 aSig poscil .2*aEnv, 400
 out aSig, aSig
endin

</CsInstruments>
<CsScore>
i "TimeLoop" 0 10
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

So the trigger events example which has been showed in using timout (03C19) and trigger (03C22) is here again using the internal clock approach.

EXAMPLE 03C24_Internal_clock_trigger_events.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m0
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
seed 0

instr TimeLoop
 kTime init 0
 if kTime <= 0 then
 event "i", "Play", 0, random:k(1,5)
 kTime random .3, 1.5
 endif
 kTime -= 1/kr
endin

instr Play
ifreq1 random 600, 1000; starting frequency
idiff random 100, 300; difference to final frequency
ifreq2 = ifreq1 - idiff; final frequency
kFreq expseg ifreq1, p3, ifreq2; glissando
iMaxdb random -18, -6; peak randomly between -12 and 0 dB
kAmp transeg ampdb(iMaxdb), p3, -10, 0; envelope
aTone poscil kAmp, kFreq
 out aTone, aTone
endin

</CsInstruments>
<CsScore>
i "TimeLoop" 0 30
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Self-Triggering and Recursion

Another surprisingly simple method for a loop in time is self-triggering: When an instrument is called, it calls the next instance, so that an endless chain is created. The following example reproduces the previous one, but without the controlling TimeLoop instrument. Instead, at the end of instr Play, the next instance is called.

EXAMPLE 03C25_self_triggering.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m128
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
seed 0

instr Play
ifreq1 random 600, 1000; starting frequency
idiff random 100, 300; difference to final frequency
ifreq2 = ifreq1 - idiff; final frequency
kFreq expseg ifreq1, p3, ifreq2; glissando
iMaxdb random -18, -6; peak randomly between -12 and 0 dB
kAmp transeg ampdb(iMaxdb), p3, -10, 0; envelope
aTone poscil kAmp, kFreq
 out aTone, aTone
schedule("Play",random:i(.3,1.5),random:i(1,5))
endin

instr Exit
 exitnow()
endin

</CsInstruments>
<CsScore>
i "Play" 0 3
i "Exit" 20 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The problem here is: how to stop? The turnoff2 opcode does not help, because in the moment we turn off the running instance, it has already triggered the next instance.

In our example, this problem has been solved the brutal way: to exit Csound. Much better is to introduce a break condition. This is what is called base case in recursion. We can, for instance, give a counter as p4, say 20. For each instance, the new call is done with p4-1 (19, 18, 17, …). When zero is reached, no self-triggering is done any more.

EXAMPLE 03C26_recursion.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m128
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
seed 0

instr Play
ifreq1 random 600, 1000; starting frequency
idiff random 100, 300; difference to final frequency
ifreq2 = ifreq1 - idiff; final frequency
kFreq expseg ifreq1, p3, ifreq2; glissando
iMaxdb random -18, -6; peak randomly between -12 and 0 dB
kAmp transeg ampdb(iMaxdb), p3, -10, 0; envelope
aTone poscil kAmp, kFreq
 out aTone, aTone
if p4 > 0 then
 schedule("Play",random:i(.3,1.5),random:i(1,5), p4-1)
endif
endin

</CsInstruments>
<CsScore>
i "Play" 0 3 20
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Recursion is in particular important for User Defined Opcodes. Recursive UDOs will be explained in chapter 03 G. They follow the same principles as shown here.

	 The modern way to solve this is to work with an audio array as output of diskin. But nevertheless the example shows a typical usage of the i-rate if branching.↩︎

	 Since the release of the new parser (Csound 5.14), the expression can also be written without parentheses.↩︎

	 To say the truth, metro is more precise. But this can be neglected for live situations for which this approach is mainly meant to be used.↩︎

03 D. FUNCTION TABLES

Note: This chapter was written before arrays had been introduced into Csound. Now the usage of arrays is in some situations preferable to using function tables. Have a look in chapter 03 E to see how you can use arrays.

 ch019.xhtml

03 E. ARRAYS

Arrays can be used in Csound since version 6. This chapter first describes the naming conventions and the different possibilities to create an array. After looking more closely to the different types of arrays, the operations on arrays will be explained. Finally examples for the usuage of arrays in user-defined opcodes (UDOs) are given.

Naming Conventions

An array is stored in a variable. As usual in Csound, the first character of the variable name declares the array as i (numbers, init-time), k (numbers, perf-time), a (audio vectors, perf-time) or S (strings, init- or perf-time). (More on this below, and in chapter 03 A.)

At first occurrence, the array variable must be followed by brackets. The brackets determine the dimensions of the array. So

kArr[] init 10

creates a one-dimensional k-array of length 10, whereas

kArr[][] init 8, 10

creates a two-dimensional k-array with 8 rows and 10 columns.

After the first occurence of the array, referring to it as a whole is done without any brackets. Brackets are only used if an element is indexed:

kArr[] init 10 ;with brackets: first occurrence
kLen = lenarray(kArr) ;without brackets: *kArr* not *kArr[]*
kFirstEl = kArr[0] ;with brackets because of indexing

The same syntax is used for a simple copy via the == operator:

kArr1[] init 10 ;creates kArr1
kArr2[] = kArr1 ;creates kArr2[] as copy of kArr1

Creating an Array

An array can be created by different methods:

	with the init opcode,

	with fillarray,

	with genarray,

	as a copy of an already existing array with the = operator,

	implicit as result of some opcodes, e.g. diskin.

init

The most general method, which works for arrays of any number of dimensions, is to use the init opcode. Each argument for init denotes the size of one dimension.

kArr[] init 10 ;creates a one-dimensional array with length 10
kArr[][] init 8, 10 ;creates a two-dimensional array (8 lines, 10 columns)

fillarray

With the fillarray opcode distinct values are assigned to an array. If the array has not been created before, it will be created as result, in the size of elements which are given to fillarray. This …

iArr[] fillarray 1, 2, 3, 4

… creates an i-array of size=4. Note the difference in using the brackets in case the array has been created before, and is filled afterwards:

iArr[] init 4
iArr fillarray 1, 2, 3, 4

It is also possible to use functional syntax for fillarray:

iArr[] = fillarray(1, 2, 3, 4)

In conjunction with a previously defined two-dimensional array, fillarray can set the elements, for instance:

iArr[][] init 2, 3
iArr fillarray 1, 2, 3, -1, -2, -3

This results in a 2D array (matrix) with the elements 1 2 3 as first row, and -1 -2 -3 as second row.1

genarray

This opcode creates an array which is filled by a series of numbers from a start value to an (included) end value. Here are some examples:

iArr[] genarray 1, 5 ; creates i-array with [1, 2, 3, 4, 5]
kArr[] genarray_i 1, 5 ; creates k-array at init-time with [1, 2, 3, 4, 5]
iArr[] genarray -1, 1, 0.5 ; i-array with [-1, -0.5, 0, 0.5, 1]
iArr[] genarray 1, -1, -0.5 ; [1, 0.5, 0, -0.5, -1]
iArr[] genarray -1, 1, 0.6 ; [-1, -0.4, 0.2, 0.8]

Copy with ==

The = operator copies any existing array to a new variable. The example shows how a global array is copied into a local one depending on a score p-field: If p4 is set to 1, iArr[] is set to the content of gi_Arr_1; if p4 is 2, it gets the content of gi_Arr_2. The content of iArr[] is then sent to instr Play in a while loop.

EXAMPLE 03E01_CopyArray.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m128
</CsOptions>
<CsInstruments>
sr = 44100
nchnls = 2
0dbfs = 1
ksmps = 32

gi_Arr_1[] fillarray 1, 2, 3, 4, 5
gi_Arr_2[] fillarray 5, 4, 3, 2, 1

instr Select
 if p4==1 then
 iArr[] = gi_Arr_1
 else
 iArr[] = gi_Arr_2
 endif
 index = 0
 while index < lenarray(iArr) do
 schedule("Play",index/2,1,iArr[index])
 index += 1
 od
endin

instr Play
 aImp mpulse 1, p3
 iFreq = mtof:i(60 + (p4-1)*2)
 aTone mode aImp,iFreq,100
 out aTone, aTone
endin

</CsInstruments>
<CsScore>
i "Select" 0 4 1
i "Select" + . 2
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Implicit as Opcode Output

Some opcodes generate arrays as output. The size of the array depends on the opcode’s input. The diskin opcode, for instance, returns an array which has the same size as the number of channels in the audio file. So in the following code, the first array aRead_A will have one element (as the audio file is mono), the second array aRead_B will have two elements (as the audio file is stereo), the third array aRead_C will have four elements (as the audio file is quadro).

aRead_A[] diskin "mono.wav"
aRead_B[] diskin "stereo.wav"
aRead_C[] diskin "quadro.wav"

Other opcodes which return arrays as output are vbap, bformdec1, loscilx for audio arrays, and directory for string arrays.

Types of Arrays

i- and k-Rate

Most arrays which are typed by the user to hold data will be either i-rate or k-rate. An i-array can only be modified at init-time, and any operation on it is only performed once, at init-time. A k-array can be modified during the performance, and any (k-) operation on it will be performed in every k-cycle (!).2 Here is a simple example showing the difference:

EXAMPLE 03E02_i_k_arrays.csd

<CsoundSynthesizer>
<CsOptions>
-nm128 ;no sound and reduced messages
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 4410 ;10 k-cycles per second

instr 1
iArr[] array 1, 2, 3
iArr[0] = iArr[0] + 10
prints " iArr[0] = %d\n\n", iArr[0]
endin

instr 2
kArr[] array 1, 2, 3
kArr[0] = kArr[0] + 10
printks " kArr[0] = %d\n", 0, kArr[0]
endin

</CsInstruments>
<CsScore>
i 1 0 1
i 2 1 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The printout is:

iArr[0] = 11

kArr[0] = 11
kArr[0] = 21
kArr[0] = 31
kArr[0] = 41
kArr[0] = 51
kArr[0] = 61
kArr[0] = 71
kArr[0] = 81
kArr[0] = 91
kArr[0] = 101

Although both instruments run for one second, the operation to increment the first array value by ten is executed only once in the i-rate version of the array. But in the k-rate version, the incrementation is repeated in each k-cycle - in this case every 1/10 second, but usually something around every 1/1000 second.

Audio Arrays

An audio array is a collection of audio signals. The size (length) of the audio array denotes the number of audio signals which are hold in it. In the next example, the audio array is created for two audio signals:

aArr[] init 2

The first audio signal in the array aArr[0] carries the output of a sine oscillator with frequency 400 Hz whereas aArr[1] gets 500 Hz:

aArr[0] poscil .2, 400
aArr[1] poscil .2, 500

A percussive envelope aEnv is generated with the transeg opcode. The last line

out aArr*aEnv

multiplies the envelope with each element of the array, and the out opcode outputs the result to both channels of the audio output device.

EXAMPLE 03E03_Audio_array.csd

<CsoundSynthesizer>
<CsOptions>
-odac -d
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr AudioArray
 aArr[] init 2
 aArr[0] poscil .2, 400
 aArr[1] poscil .2, 500
 aEnv transeg 1, p3, -3, 0
 out aArr*aEnv
endin

</CsInstruments>
<CsScore>
i "AudioArray" 0 3
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

As mentioned above, some opcodes create audio arrays implicitely according to the number of input audio signals:

arr[] diskin "7chnls.aiff", 1

This code will create an audio array of size 7 according to the seven channel input file.

Strings

Arrays of strings can be very useful in many situations, for instance while working with file paths.3 The array can be filled by one of the ways described above, for instance:

S_array[] fillarray "one", "two", "three"

In this case, S_array is of length 3. The elements can be accessed by indexing as usual, for instance

puts S_array[1], 1

will return “two”.

The directory opcode looks for all files in a directory and returns an array containing the file names:

EXAMPLE 03E04_Directory.csd

<CsoundSynthesizer>
<CsOptions>
-odac -d
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr Files
 S_array[] directory "."
 iNumFiles lenarray S_array
 prints "Number of files in %s = %d\n", pwd(), iNumFiles
 printarray S_array
endin

</CsInstruments>
<CsScore>
i "Files" 0 0
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Which prints for instance:

Number of files in /home/xy/Desktop = 3
"test.csd", "test.wav", "test2.csd"

Local or Global

Like any other variable in Csound, an array usually has a local scope. This means that it is only valid in the instrument in which it has been defined. If an array is supposed to be valid across instruments, the variable name must be prefixed with the character g, (as is done with other types of global variable in Csound). The next example demonstrates local and global arrays at both i- and k-rate.

EXAMPLE 03E05_Local_vs_global_arrays.csd

<CsoundSynthesizer>
<CsOptions>
-nm128 ;no sound and reduced messages
</CsOptions>
<CsInstruments>
ksmps = 32

instr i_local
iArr[] array 1, 2, 3
 prints " iArr[0] = %d iArr[1] = %d iArr[2] = %d\n",
 iArr[0], iArr[1], iArr[2]
endin

instr i_local_diff ;same name, different content
iArr[] array 4, 5, 6
 prints " iArr[0] = %d iArr[1] = %d iArr[2] = %d\n",
 iArr[0], iArr[1], iArr[2]
endin

instr i_global
giArr[] array 11, 12, 13
endin

instr i_global_read ;understands giArr though not defined here
 prints " giArr[0] = %d giArr[1] = %d giArr[2] = %d\n",
 giArr[0], giArr[1], giArr[2]
endin

instr k_local
kArr[] array -1, -2, -3
 printks " kArr[0] = %d kArr[1] = %d kArr[2] = %d\n",
 0, kArr[0], kArr[1], kArr[2]
 turnoff
endin

instr k_local_diff
kArr[] array -4, -5, -6
 printks " kArr[0] = %d kArr[1] = %d kArr[2] = %d\n",
 0, kArr[0], kArr[1], kArr[2]
 turnoff
endin

instr k_global
gkArr[] array -11, -12, -13
 turnoff
endin

instr k_global_read
 printks " gkArr[0] = %d gkArr[1] = %d gkArr[2] = %d\n",
 0, gkArr[0], gkArr[1], gkArr[2]
 turnoff
endin
</CsInstruments>
<CsScore>
i "i_local" 0 0
i "i_local_diff" 0 0
i "i_global" 0 0
i "i_global_read" 0 0
i "k_local" 0 1
i "k_local_diff" 0 1
i "k_global" 0 1
i "k_global_read" 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Different Rates between Array and Index

Usually the first character of a variable name in Csound shows whether it is i-rate or k-rate or a-rate. But for arrays, we have actually two signifiers: the array variable type, and the index type. If both coincide, it is easy:

	i_array[i_index] reads and writes at i-time

	k_array[k_index] reads and writes at k-time

For audio arrays, we must distinguish between the audio vector itself which is updated sample by sample, and the array as container which can be updated at k-time. (Imagine an audio array whichs index switches each control cycle between 0 and 1; thus switching each k-time between the audio vector of both signals.) So the coincidence between variable and index rate is here:

	a_array[k_index] reads and writes at k-time

But what to do if array type and index type do not coincide? In general, the index type will then determine whether the array is read or written only once (at init-time) or at each k-cycle. This is valid in particular for S arrays (containing strings). Other cases are:

	i_array[k_index] reads at k-time; writing is not possible (yields a runtime error)

	k_array[i_index] reads and writes at k-rate

	a_array[i_index] reads and writes at k-rate

Init Values of k-Arrays

In case we want to retrieve the value of a k-array at init time, a special version of the i() feature must be used. For usual k-variables, a simple i(kVar) works, for instance …

instr 1
 gkLine linseg 1, 1, 2
 schedule 2, .5, 0
endin
schedule(1,0,1)
instr 2
 iLine = i(gkLine)
 print iLine
endin

… will print: iLine = 1.499.

This expression can not be used for arrays:

kArray[] fillarray 1, 2, 3
iFirst = i(kArray[0])
print iFirst

This will return an error. For this purpose, the i() expression gets a second argument which signifies the index:

kArray[] fillarray 1, 2, 3
iFirst = i(kArray, 0)
print iFirst

This will print: iFirst = 1.000.

Operations on Arrays

Analyse

lenarray — Array Length

The opcode lenarray reports the length of an array.

iArr[] fillarray 0, 1, 2, 3, 4
iLen lenarray iArr ; -> 5
aArr[] diskin "my_stereo_file.wav"
iLen lenarray aArr ; -> 2
S_array[] fillarray "foo", "bar"
iLen lenarray S_array ; -> 2

For reporting the length of multidimensional arrays, lenarray has an additional argument denoting the dimension. The default is 1 for the first dimension.

kArr[][] init 9, 5
iLen1 lenarray kArr ; -> 9
iLen2 lenarray kArr, 2 ; -> 5
kArrr[][][] init 7, 9, 5
iLen1 lenarray kArrr, 1 ; -> 7
iLen2 lenarray kArrr, 2 ; -> 9
iLen3 lenarray kArrr, 3 ; -> 5

By using functional syntax, lenarray() will report the array length at init-time. If the array length is being changed during performance, lenarray:k() must be used to report this.

minarray, maxarray — Smallest/Largest Element

The opcodes minarray and maxarray return the smallest or largest element of a numerical array:

iArr[] fillarray 4, -2, 3, 10, 0
print minarray:i(iArr) ; -> -2
print maxarray:i(iArr) ; -> 10

sumarray — Sum of all Elements

This is an example for sumarray:

iArr[] fillarray 4, -2, 3, -10, 0
print sumarray(iArr) ; -> -5

cmp — Compare with another Array or with Scalars

The cmp opcode offers quite extended possibilities to compare an array to numbers or to another array. The following example investigates in line 18 whether the elements of the array [1,2,3,4,5] are larger or equal 3. Line 20 tests whether the elements are larger than 1 and smaller or equal 4. Line 22 performs an element by element comparison with the array [3,5,1,4,2], asking for larger elements in the original array.

EXAMPLE 03E06_cmp.csd

<CsoundSynthesizer>
<CsOptions>
-m0
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giArray[] fillarray 1, 2, 3, 4, 5
giCmpArray[] fillarray 3, 5, 1, 4, 2

instr Compare
 printarray giArray, "%d", "Array:"
 printarray giCmpArray, "%d", "CmpArray:"
 iResult[] cmp giArray, ">=", 3
 printarray iResult, "%d", "Array >= 3?"
 iResult[] cmp 1, "<", giArray, "<=", 4
 printarray iResult, "%d", "1 < Array <= 4?"
 iResult[] cmp giArray, ">", giCmpArray
 printarray iResult, "%d", "Array > CmpArray?"
endin

</CsInstruments>
<CsScore>
i "Compare" 0 1
</CsScore>
</CsoundSynthesizer>
;example by eduardo moguillansky and joachim heintz

The printout is:

Array:
 1 2 3 4 5
CmpArray:
 3 5 1 4 2
Array >= 3?
 0 0 1 1 1
1 < Array <= 4?
 0 1 1 1 0
Array > CmpArray?
 0 0 1 0 1

Content Modifications

scalearray — Scale Values

The scalearray opcode destructively changes the content of an array according to a new minimum and maximum:

iArr[] fillarray 1, 3, 9, 5, 6, -1, 17
scalearray iArr, 1, 3
printarray iArr ; -> 1.2222 1.4444 2.1111 1.6667 1.7778 1.0000 3.0000

Optional a range of the array can be selected for the operation; in this example from index 0 to index 4:

iArr[] fillarray 1, 3, 9, 5, 6, -1, 17
scalearray iArr, 1, 3, 0, 4
printarray iArr ; -> 1.0000 1.5000 3.0000 2.0000 6.0000 -1.0000 17.0000

sorta/sortd — Sort in Ascending/Descending Order

The opcodes sorta and sortd return an array in which the elements of the input array are sorted in ascending or descending order. The input array is left untouched.

iArr[] fillarray 1, 3, 9, 5, 6, -1, 17
iAsc[] sorta iArr
iDesc[] sortd iArr
printarray iAsc, "%d", "Sorted ascending:"
printarray iDesc, "%d", "Sorted descending:"
printarray iArr, "%d", "Original array:"

Prints:

Sorted ascending:
 -1 1 3 5 6 9 17
Sorted descending:
 17 9 6 5 3 1 -1
Original array:
 1 3 9 5 6 -1 17

limit — Limit Values

The limit opcode sets a lower and upper limit to which any value off boundaries is restricted.

iArr[] fillarray 1, 3, 9, 5, 6, -1, 17
iLimit[] limit iArr, 0, 7
printarray(iLimit, "%d") ; -> 1 3 7 5 6 0 7

interleave/deinterleave

As the name suggests, the interleave opcode creates a new array in alternating the values of two input arrays. This operation is meant for vectors (one-dimensional arrays) only.

iArr1[] genarray 1,5
iArr2[] genarray -1,-5,-1
iArr[] interleave iArr1, iArr2
printarray iArr1, "%d", "array 1:"
printarray iArr2, "%d", "array 2:"
printarray iArr, "%d", "interleaved:"

Which prints:

array 1:
 1 2 3 4 5
array 2:
 -1 -2 -3 -4 -5
interleaved:
 1 -1 2 -2 3 -3 4 -4 5 -5

And vice versa, deinterleave returns two arrays from one input array in alternating its values:

iArr[] genarray 1,10
iArr1[], iArr2[] deinterleave iArr
printarray iArr, "%d", "input array:"
printarray iArr1, "%d", "deinterleaved 1:"
printarray iArr2, "%d", "deinterleaved 2:"

Which prints:

input array:
 1 2 3 4 5 6 7 8 9 10
deinterleaved 1:
 1 3 5 7 9
deinterleaved 2:
 2 4 6 8 10

Size Modifications

slicearray — New Array as Slice

The slicearray opcode creates a new array from an existing one. In addition to the input array the first and the last (included) index must be specified:

iArr[] fillarray 1, 3, 9, 5, 6, -1, 17
iSlice[] slicearray iArr, 1, 3
printarray(iSlice, "%d") ; -> 3 9 5
SArr[] fillarray "bla", "blo", "bli"
Slice[] slicearray SArr, 1, 2
printarray(Slice) ; -> "blo", "bli"

An optional argument defines the increment which is one by default:

iArr[] fillarray 1, 3, 9, 5, 6, -1, 17
iSlice1[] slicearray iArr, 0, 5
printarray(iSlice1, "%d") ; -> 1 3 9 5 6 -1
iSlice2[] slicearray iArr, 0, 5, 2
printarray(iSlice2, "%d") ; -> 1 9 6

trim/trim_i — Lengthen or Shorten Array

Arrays have a fixed length, and it may be needed to shorten or lengthen it. trim_i works for any array at i-rate:

iArr[] fillarray 1, 3, 9, 5, 6, -1, 17
trim_i iArr, 3
printarray(iArr, "%d") -> 1 3 9
kArr[] fillarray 1, 3, 9, 5, 6, -1, 17
trim_i kArr, 5
printarray(kArr, 1, "%d") ; -> 1 3 9 5 6
aArr[] diskin "fox.wav"
prints "%d\n", lenarray(aArr) ; -> 1
trim_i aArr, 2
prints "%d\n", lenarray(aArr) ; -> 2
SArr[] fillarray "a", "b", "c", "d"
trim_i SArr, 2
printarray(SArr) ; -> "a", "b"

If a length bigger than the current array size is required, the additional elements are set to zero. This can only be used for the init-time version trim_i:

iArr[] fillarray 1, 3, 9
trim_i iArr, 5
printarray(iArr, "%d") ; -> 1 3 9 0 0

At performance rather than initialization trim can be used. This codes reduces the array size by one for each trigger signal:

instr 1
kArr[] fillarray 1, 3, 9, 5, 6, -1, 17
kTrig metro 1
if kTrig==1 then
 trim kArr, lenarray:k(kArr)-1
 printarray kArr,-1,"%d"
endif
endin
schedule(1,0,5)

Prints:

1 3 9 5 6 -1
1 3 9 5 6
1 3 9 5
1 3 9
1 3

Growing an array during performance is not possible in Csound, because memory will only be allocated at initialization. This is the reason that only trim_i can be used for this purpose.

Format Interchange

copyf2array — Function Table to Array

As function tables have been the classical way of working with vectors in Csound, switching between them and the array facility introduced in Csound 6 is a basic operation. Copying data from a function table to a vector is done by copyf2array. The following example copies a sine function table (8 points) to an array and prints the array content:

iFtSine ftgen 0, 0, 8, 10, 1
iArr[] init 8
copyf2array iArr, iFtSine
printarray iArr
; -> 0.0000 0.7071 1.0000 0.7071 0.0000 -0.7071 -1.0000 -0.7071

copya2ftab — Array to Function Table

The copya2ftab opcode copies an array content to a function table. In the example a function table of size 10 is created, and an array filled with the integers from 1 to 10. The array content is then copied into the function table, and the resulting function table is printed via a while loop.

iTable ftgen 0, 0, 10, 2, 0
iArr[] genarray 1, 10
copya2ftab iArr, iTable
index = 0
while index < ftlen(iTable) do
 prints "%d ", table:i(index, iTable)
 index += 1
od

The printout is:

1 2 3 4 5 6 7 8 9 10

tab2array — Function Table Slice to Array

The tab2array opcode is similar to copyf2array but offers more possibilities. One difference is that the resulting array is generated by the opcode, so no need for the user to create the array in advance. This code copies the content of a 16-point saw function table into an array and prints the array:

iFtSaw ftgen 0, 0, 8, 10, 1, -1/2, 1/3, -1/4, 1/5, -1/6
iArr[] tab2array iFtSaw
printarray(iArr)
; -> 0.0000 0.4125 0.7638 1.0000 0.0000 -1.0000 -0.7638 -0.4125

This will copy the values from index 1 to index 8 (not included):

iFtSine ftgen 0, 0, 8, 10, 1, -1/2, 1/3, -1/4, 1/5, -1/6
iArr[] tab2array iFtSine, 1, 7
printarray(iArr)
; -> 0.4125 0.7638 1.0000 0.0000 -1.0000 -0.7638

And this will copy the whole array but only every second value:

iFtSine ftgen 0, 0, 8, 10, 1, -1/2, 1/3, -1/4, 1/5, -1/6
iArr[] tab2array iFtSine, 0, 0, 2
printarray(iArr)
; -> 0.0000 0.7638 0.0000 -0.7638

pvs2array/pvsfromarray — Arrays to/from FFT Data

The data of an f-signal — containing the result of a Fast Fourier Transform — can be copied into an array with the opcode pvs2array. The counterpart pvsfromarray copies the content of an array to a f-signal.

kFrame pvs2array kArr, fSigIn ;from f-signal fSig to array kArr
fSigOut pvsfromarray kArr [,ihopsize, iwinsize, iwintype]

Some care is needed to use these opcodes correctly:

	The array kArr must be declared in advance to its usage in these opcodes, usually with init.

	The size of this array depends on the FFT size of the f-signal fSigIn. If the FFT size is N, the f-signal will contain N/2+1 amplitude-frequency pairs. For instance, if the FFT size is 1024, the FFT will write out 513 bins, each bin containing one value for amplitude and one value for frequency. So to store all these values, the array must have a size of 1026. In general, the size of kArr equals FFT-size plus two.

	The indices 0, 2, 4, … of kArr will contain the amplitudes; the indices 1, 3, 5, … will contain the frequencies of the bins in a specific frame.

	The number of this frame is reported in the kFrame output of pvs2array. By this parameter you know when pvs2array writes new values to the array kArr.

	On the way back, the FFT size of fSigOut, which is written by pvsfromarray, depends on the size of kArr. If the size of kArr is 1026, the FFT size will be 1024.

	The default value for ihopsize is 4 (= fftsize/4); the default value for inwinsize is the fftsize; and the default value for iwintype is 1, which means a hanning window.

Here is an example that implements a spectral high-pass filter. The f-signal is written to an array and the amplitudes of the first 40 bins are then zeroed.4 This is only done when a new frame writes its values to the array so as not to waste rendering power.

EXAMPLE 03E07_pvs_to_from_array.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

gifil ftgen 0, 0, 0, 1, "fox.wav", 0, 0, 1

instr FFT_HighPass
 ifftsize = 2048 ;fft size set to pvstanal default
 fsrc pvstanal 1, 1, 1, gifil ;create fsig stream from function table
 kArr[] init ifftsize+2 ;create array for bin data
 kflag pvs2array kArr, fsrc ;export data to array

 ;if kflag has reported a new write action ...
 if changed(kflag) == 1 then
 ; ... set amplitude of first 40 bins to zero:
 kndx = 0
 while kndx <= 80 do
 kArr[kndx] = 0
 kndx += 2 ;change only even array index = bin amplitude
 od
 endif

 fres pvsfromarray kArr ;read modified data back to fres
 aout pvsynth fres ;and resynth
 out aout, aout

endin
</CsInstruments>
<CsScore>
i "FFT_HighPass" 0 2.7
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

1D - 2D Interchange

reshapearray — Change Array Dimension

With reshapearray a one-dimensional array can be transformed in a two-dimensional one, and vice versa. In the following example, a 1D array of 12 elements is first printed and then transformed in a 2D array with 3 lines and 4 columns:

iArr[] genarray 1, 12
printarray iArr, "%d", "1D array:"
reshapearray iArr, 3, 4
printarray iArr, "%d", "2D array:"

This is the printout:

1D array:
 1 2 3 4 5 6 7 8 9 10 11 12
2D array:
 0: 1 2 3 4
 1: 5 6 7 8
 2: 9 10 11 12

getrow/getcol — Get Row/Column from a 2D Array

The opcodes getrow and getcol return the content of a 2D array’s row or column as a 1D array:

iArr[][] init 3, 4
iArr fillarray 1,2,3,4,5,6,7,8,9,10,11,12
printarray iArr, "%d", "2D array:"
iRow1[] getrow iArr, 0
printarray iRow1, "%d", "First row:"
iCol1[] getcol iArr, 0
printarray iCol1, "%d", "First columns:"

Prints:

2D array:
 0: 1 2 3 4
 1: 5 6 7 8
 2: 9 10 11 12
First row:
 1 2 3 4
First columns:
 1 5 9

setrow/setcol - Set Row/Column of a 2D Array

The opcodes setrow and setcol assign a 1D array as row or column of a 2D array:

iArr[][] init 3, 4
printarray iArr, "%d", "2D array empty:"
iRow[] fillarray 1, 2, 3, 4
iArr setrow iRow, 0
printarray iArr, "%d", "2D array with first row:"
iCol[] fillarray -1, -2, -3
iArr setcol iCol, 3
printarray iArr, "%d", "2D array with fourth column:"

Prints:

2D array empty:
 0: 0 0 0 0
 1: 0 0 0 0
 2: 0 0 0 0
2D array with first row:
 0: 1 2 3 4
 1: 0 0 0 0
 2: 0 0 0 0
2D array with fourth column:
 0: 1 2 3 -1
 1: 0 0 0 -2
 2: 0 0 0 -3

getrowlin — Get Row from a 2D Array and Interpolate

The getrowlin opcode is similar to getrow but interpolates between adjacent rows of a matrix if a non-integer number is given.

kArr[][] init 3, 4
kArr fillarray 1,2,3,4,5,6,7,8,9,10,11,12
printarray kArr, 1, "%d", "2D array:"
kRow[] getrowlin kArr, 0.5
printarray kRow, 1, "%d", "Row 0.5:"

The 0.5th row means an interpolation between first and second row, so this is the output:

2D array:
 0: 1 2 3 4
 1: 5 6 7 8
 2: 9 10 11 12
Row 0.5:
 3 4 5 6

Functions

Arithmetic Operators

The four basic operators +, -, * and / can directly be applied to an array, either with a scalar or a second array as argument.

All operations can be applied to the input array itself (changing its content destructively), or can create a new array as result. This is a simple example for the scalar addition:

iArr[] fillarray 1, 2, 3
iNew[] = iArr + 10 ; -> 11 12 13 as new array
iArr += 10 ; iArr is now 11 12 13

It also works for a 2D matrix:

iArr[][] init 2, 3
iArr fillarray 1, 2, 3, 4, 5, 6
printarray(iArr, "%d", "original array:")
iArr += 10
printarray(iArr,"%d", "modified array:")

Which prints:

original array:
 0: 1 2 3
 1: 4 5 6
modified array:
 0: 11 12 13
 1: 14 15 16

Both possibilities — creating a new array or modifying the existing one — are also valid if a second array is given as argument:

iArr[] fillarray 1, 2, 3
iArg[] fillarray 10, 20, 30
iNew[] = iArr + iArg ; -> 11 22 33 as new array
iArr += iArg ; iArr is now 11 22 33

Both arrays must have the same size, but it also works for 2D arrays:

iArr[][] init 2, 3
iArr fillarray 1, 2, 3, 4, 5, 6
printarray(iArr, "%d", "original array:")
iArg[][] init 2, 3
iArg fillarray 3, 4, 5, 6, 7, 8
printarray(iArg, "%d", "argument array:")
iArr += iArg
printarray(iArr,"%d", "modified array:")

Which prints:

original array:
 0: 1 2 3
 1: 4 5 6
argument array:
 0: 3 4 5
 1: 6 7 8
modified array:
 0: 4 6 8
 1: 10 12 14

Unary Functions

These unary functions accept arrays as input:

	ceil — next integer above

	floor — next integer below

	round — round to next integer

	int — integer part

	frac — fractional part

	powoftwo — power of two

	abs — absolute value

	log2 — logarithm base two

	log10 — logarithm base ten

	log — natural logarithm, optional any base

	exp — power of ee

	sqrt — square root

	cos — cosine

	sin — sine

	tan — tangent

	cosinv — arccosine

	sininv — arcsine

	taninv — arctangent

	sinh — hyberbolic sine

	cosh — hyberbolic cosine

	tanh — hyperbolic tangent

	cbrt — cubic root

Some simple examples:

iArr[] fillarray 1.1, 2.2, 3.3
iCeil[] ceil iArr ; -> 2 3 4
iInt[] int iArr ; -> 1 2 3
iFrac[] frac iArr ; -> 0.1 0.2 0.3
iPow2[] powoftwo iArr ; -> 2.1435 4.5948 9.8492

maparray

The maparray opcode was used in early array implementation to apply a unary function to every element of a 1D array. In case a function is not in the list above, this old solution may work.

Binary Functions

These binary functions can take arrays as input:

	pow — power of two arguments

	hypot — Euclidean distance a2+b2\sqrt{a^2 + b^2}

	fmod — remainder (modulo) for arrays value by value

	fmin — minimum of two arrays value by value

	fmax — maximum of two arrays value by value

	dor — dot product of two arrays

For instance:

iBase[] fillarray 1.1, 2.2, 3.3
iExp[] fillarray 2, -2, 0
iBasPow2[] pow iBase, 2 ; -> 1.2100 4.8400 10.8900
iBasExp[] pow iBase, iExp ; -> 1.2100 0.2066 1.0000

Print

The printarray opcode is easy to use and offers all possibilities to print out array contents.

Arrays in UDOs

Input and Output Declaration

Writing a User Defined Opcode can extend Csound’s array facilities to any desired own function. The usage of arrays in the opcode definition is straightforward; most important is to remember that type (i, k, a, or S) and dimension of an input array must be declared in two places:

	in the opcode intypes list as i[], i[][] etc;

	in the xin list as variable name, including brackets.

This is a simple UDO definition which returns the first element of a given 1D k-array. Note that in the intype list it is declared as k[], wheras in the input argument list it is declared as kArr[].

opcode FirstEl, k, k[]
 kArr[] xin
 kOut = kArr[0]
 xout kOut
endop

The output declaration is done quite similar: abstract type declaration in the outtypes list, and variable name in the UDO body. Here the usual naming conventions are valid, as explained at the beginning of this chapter (first occurrence with brackets, then without brackets).

This is an example which creates an i-array of N elements, applying recursively a given ratio on each element. The output array is declared as i[] in the outtypes list, and as variable first as iOut[] then only iOut in the body.

opcode GeoSer,i[],iii
 iStart, iRatio, iSize xin
 iOut[] init iSize
 indx = 0
 while indx < iSize do
 iOut[indx] = iStart
 iStart *= iRatio
 indx += 1
 od
 xout iOut

The call

instr 1
 iSeries[] GeoSer 2, 3, 5
 printarray(iSeries,"%d")
endin
schedule(1,0,0)

will print:

2 6 18 54 162

As an expert note it should be mentioned that UDOs refer to arrays by value. This means that an input array is copied into the UDO, and an output array is copied to the instrument. This can slow down the performance for large arrays and k-rate calls.

Overload

Usually we want to use a UDO for different types of arrays. The best method is to overload the function in defining the different types with the same function name. Csound will then select the appropriate version.

The following example extends the FirstEl function from k-arrays also to i- and S-arrays.

EXAMPLE 03E08_array_overload.csd

<CsoundSynthesizer>
<CsOptions>
-m0
</CsOptions>
<CsInstruments>
ksmps = 32

opcode FirstEl, k, k[]
 kArr[] xin
 kOut = kArr[0]
 xout kOut
endop

opcode FirstEl, i, i[]
 iArr[] xin
 iOut = iArr[0]
 xout iOut
endop

opcode FirstEl, S, S[]
 SArr[] xin
 SOut = SArr[0]
 xout SOut
endop

instr Test
 iTest[] fillarray 1, 2, 3
 kTest[] fillarray 4, 5, 6
 STest[] fillarray "x", "y", "z"
 prints "First element of i-array: %d\n", FirstEl(iTest)
 printks "First element of k-array: %d\n", 0, FirstEl(kTest)
 printf "First element of S-array: %s\n", 1, FirstEl(STest)
 turnoff
endin
</CsInstruments>
<CsScore>
i "Test" 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The output is:

First element of i-array: 1
First element of k-array: 4
First element of S-array: x

Example: Array Shuffle

In composition we sometimes use a list of values and want to get many random permutations of this list. Some programming languages call this shuffle. It is not difficult to write it as UDO. First we create the output array, having the same length as the input array. Then we randomly choose one element from the input array. This element is copied into the first position of the output array. Then all elements in the input array right to this element are shiftet one position to the left, thus overriding the previously selected element. For instance, if the input array is

1 2 3 4 5 6 7

and element 4 has been selected randomly, and copied into the output array at first position, the elements 5 6 7 will be shifted one position to the left, so that input array changes to

1 2 3 5 6 7

This procedure is repeated again and again; in the next run only looking amongst six rather than seven elements.

As Csound has no random opcode for integers, this is first defined as helper function: RndInt returns a random integer between iStart and iEnd (included).5

EXAMPLE 03E09_Shuffle.csd

<CsoundSynthesizer>
<CsOptions>
-m0
</CsOptions>
<CsInstruments>
ksmps = 32
seed 0

opcode RndInt, i, ii
 iStart, iEnd xin
 iRnd random iStart, iEnd+.999
 iRndInt = int(iRnd)
 xout iRndInt
endop

opcode ArrShuffle, i[], i[]
 iInArr[] xin
 iLen = lenarray(iInArr)
 iOutArr[] init iLen
 iIndx = 0
 iEnd = iLen-1
 while iIndx < iLen do
 ;get one random element and put it in iOutArr
 iRndIndx RndInt 0, iEnd
 iOutArr[iIndx] = iInArr[iRndIndx]
 ;shift the elements after this one to the left
 while iRndIndx < iEnd do
 iInArr[iRndIndx] = iInArr[iRndIndx+1]
 iRndIndx += 1
 od
 ;reset end and increase counter
 iIndx += 1
 iEnd -= 1
 od
 xout iOutArr
endop

instr Test
 iValues[] fillarray 1, 2, 3, 4, 5, 6, 7
 indx = 0
 while indx < 5 do
 iOut[] ArrShuffle iValues
 printarray(iOut,"%d")
 indx += 1
 od
endin

</CsInstruments>
<CsScore>
i "Test" 0 0
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The output is, for instance:

 7 3 4 5 2 6 1
 1 3 2 7 4 5 6
 3 5 1 4 7 2 6
 6 2 5 1 7 4 3
 4 7 2 5 6 1 3

	Another method to fill a matrix is to use the setrow opcode. This will be covered later in this chapter.↩︎

	More detailed explanation about i- and k-rate can be found in chapter 03 A↩︎

	You cannot currently have a mixture of numbers and strings in an array, but you can convert a string to a number with the strtod opcode.↩︎

	As sample rate is here 44100, and fftsize is 2048, each bin has a frequency range of 44100 / 2048 = 21.533 Hz. Bin 0 looks for frequencies around 0 Hz, bin 1 for frequencies around 21.533 Hz, bin 2 around 43.066 Hz, and so on. So setting the first 40 bin amplitudes to 0 means that no frequencies will be resynthesized which are lower than bin 40 which is centered at 40 * 21.533 = 861.328 Hz.↩︎

	More UDOs can be found at https://github.com/csudo/csudo/, https://github.com/kunstmusik/libsyi and other places.↩︎

 ch020.xhtml

03 F. LIVE EVENTS

Note: This chapter is not about live coding. Live coding should be covered in future in an own chapter. For now, have a look at live.csound.com and Steven Yi’s related csound-live-code repository.

The basic concept of Csound from the early days of the program is still valid and useful because it is a musically familiar one: you create a set of instruments and instruct them to play at various times. These calls of instrument instances, and their execution, are called instrument events.

Whenever any Csound code is executed, it has to be compiled first. Since Csound6, you can change the code of any running Csound instance, and recompile it on the fly. There are basically two opcodes for this live coding: compileorc re-compiles any existing orc file, whereas compilestr compiles any string. At the end of this chapter, we will present some simple examples for both methods, followed by a description how to re-compile code on the fly in CsoundQt.

The scheme of instruments and events can be instigated in a number of ways. In the classical approach you think of an orchestra with a number of musicians playing from a score, but you can also trigger instruments using any kind of live input: from MIDI, from OSC, from the command line, from a GUI (such as Csound’s FLTK widgets or the widgets in CsoundQt, Cabbage and Blue), from the API. Or you can create a kind of master instrument, which is always on, and triggers other instruments using opcodes designed for this task, perhaps under certain conditions: if the live audio input from a singer has been detected to have a base frequency greater than 1043 Hz, then start an instrument which plays a soundfile of broken glass …

Order of Execution Revisited

Whatever you do in Csound with instrument events, you must bear in mind the order of execution that has been explained in the first chapter of this section about the Initialization and Performance Pass: instruments are executed one by one, both in the initialization pass and in each control cycle, and the order is determined by the instrument number.

It is worth to have a closer look to what is happening exactly in time if you trigger an instrument from inside another instrument. The first example shows the result when instrument 2 triggers instrument 1 and instrument 3 at init-time.

EXAMPLE 03F01_OrderOfExc_event_i.csd

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 441

instr 1
kCycle timek
prints "Instrument 1 is here at initialization.\n"
printks "Instrument 1: kCycle = %d\n", 0, kCycle
endin

instr 2
kCycle timek
prints " Instrument 2 is here at initialization.\n"
printks " Instrument 2: kCycle = %d\n", 0, kCycle
event_i "i", 3, 0, .02
event_i "i", 1, 0, .02
endin

instr 3
kCycle timek
prints " Instrument 3 is here at initialization.\n"
printks " Instrument 3: kCycle = %d\n", 0, kCycle
endin

</CsInstruments>
<CsScore>
i 2 0 .02
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

This is the output:

 Instrument 2 is here at initialization.
 Instrument 3 is here at initialization.
Instrument 1 is here at initialization.
Instrument 1: kCycle = 1
 Instrument 2: kCycle = 1
 Instrument 3: kCycle = 1
Instrument 1: kCycle = 2
 Instrument 2: kCycle = 2
 Instrument 3: kCycle = 2

Instrument 2 is the first one to initialize, because it is the only one which is called by the score. Then instrument 3 is initialized, because it is called first by instrument 2. The last one is instrument 1. All this is done before the actual performance begins. In the performance itself, starting from the first control cycle, all instruments are executed by their order.

Let us compare now what is happening when instrument 2 calls instrument 1 and 3 during the performance (= at k-time):

EXAMPLE 03F02_OrderOfExc_event_k.csd

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 441
0dbfs = 1
nchnls = 1

instr 1
kCycle timek
prints "Instrument 1 is here at initialization.\n"
printks "Instrument 1: kCycle = %d\n", 0, kCycle
endin

instr 2
kCycle timek
prints " Instrument 2 is here at initialization.\n"
printks " Instrument 2: kCycle = %d\n", 0, kCycle
 if kCycle == 1 then
event "i", 3, 0, .02
event "i", 1, 0, .02
 endif
printks " Instrument 2: still in kCycle = %d\n", 0, kCycle
endin

instr 3
kCycle timek
prints " Instrument 3 is here at initialization.\n"
printks " Instrument 3: kCycle = %d\n", 0, kCycle
endin

instr 4
kCycle timek
prints " Instrument 4 is here at initialization.\n"
printks " Instrument 4: kCycle = %d\n", 0, kCycle
endin

</CsInstruments>
<CsScore>
i 4 0 .02
i 2 0 .02
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

This is the output:

 Instrument 2 is here at initialization.
 Instrument 4 is here at initialization.
 Instrument 2: kCycle = 1
 Instrument 2: still in kCycle = 1
 Instrument 4: kCycle = 1
 Instrument 3 is here at initialization.
Instrument 1 is here at initialization.
Instrument 1: kCycle = 2
 Instrument 2: kCycle = 2
 Instrument 2: still in kCycle = 2
 Instrument 3: kCycle = 2
 Instrument 4: kCycle = 2

Instrument 2 starts with its init-pass, and then instrument 4 is initialized. As you see, the reverse order of the scorelines has no effect; the instruments which start at the same time are executed in ascending order, depending on their numbers.

In this first cycle, instrument 2 calls instrument 3 and 1. As we see by the output of instrument 4, the whole control cycle is finished first, before instrument 3 and 1 (in this order) are initialized. These both instruments start their performance in cycle number two, where they find themselves in the usual order: instrument 1 before instrument 2, then instrument 3 before instrument 4.

Usually you will not need to know all of this with such precise timing. But in case you experience any problems, a clearer awareness of the process may help.

Instrument Events from the Score

This is the classical way of triggering instrument events: you write a list in the score section of a .csd file. Each line which begins with an i is an instrument event. As this is very simple, and examples can be found easily, let us focus instead on some additional features which can be useful when you work in this way. Documentation for these features can be found in the Score Statements section of the Canonical Csound Reference Manual. Here are some examples:

EXAMPLE 03F03_Score_tricks.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giWav ftgen 0, 0, 2^10, 10, 1, .5, .3, .1

 instr 1
kFadout init 1
krel release ;returns "1" if last k-cycle
 if krel == 1 && p3 < 0 then ;if so, and negative p3:
 xtratim .5 ;give 0.5 extra seconds
kFadout linseg 1, .5, 0 ;and make fade out
 endif
kEnv linseg 0, .01, p4, abs(p3)-.1, p4, .09, 0; normal fade out
aSig poscil kEnv*kFadout, p5, giWav
 outs aSig, aSig
 endin

</CsInstruments>
<CsScore>
t 0 120 ;set tempo to 120 beats per minute
i 1 0 1 .2 400 ;play instr 1 for one second
i 1 2 -10 .5 500 ;play instr 1 indefinetely (negative p3)
i -1 5 0 ;turn it off (negative p1)
; -- turn on instance 1 of instr 1 one sec after the previous start
i 1.1 ^+1 -10 .2 600
i 1.2 ^+2 -10 .2 700 ;another instance of instr 1
i -1.2 ^+2 0 ;turn off 1.2
; -- turn off 1.1 (dot = same as the same p-field above)
i -1.1 ^+1 .
s ;end of a section, so time again starts at zero
i 1 1 1 .2 800
r 5 ;repeats the following line (until the next "s")
i 1 .25 .25 .2 900
s
v 2 ;lets time be double as long
i 1 0 2 .2 1000
i 1 1 1 .2 1100
s
v 0.5 ;lets time be half as long
i 1 0 2 .2 1200
i 1 1 1 .2 1300
s ;time is normal now again
i 1 0 2 .2 1000
i 1 1 1 .2 900
s
; -- make a score loop (4 times) with the variable "LOOP"
{4 LOOP
i 1 [0 + 4 * $LOOP.] 3 .2 [1200 - $LOOP. * 100]
i 1 [1 + 4 * $LOOP.] 2 . [1200 - $LOOP. * 200]
i 1 [2 + 4 * $LOOP.] 1 . [1200 - $LOOP. * 300]
}
e
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Triggering an instrument with an indefinite duration by setting p3 to any negative value, and stopping it by a negative p1 value, can be an important feature for live events. If you turn instruments off in this way you may have to add a fade out segment. One method of doing this is shown in the instrument above with a combination of the release and the xtratim opcodes. Also note that you can start and stop certain instances of an instrument with a floating point number as p1.

Using MIDI Note-On Events

Csound has a particular feature which makes it very simple to trigger instrument events from a MIDI keyboard. Each MIDI Note-On event can trigger an instrument, and the related Note-Off event of the same key stops the related instrument instance. This is explained more in detail in the chapter Triggering Instrument Instances in the MIDI section of this manual. Here, just a small example is shown. Simply connect your MIDI keyboard and it should work.

EXAMPLE 03F04_Midi_triggered_events.csd

<CsoundSynthesizer>
<CsOptions>
-Ma -odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine ftgen 0, 0, 2^10, 10, 1
 massign 0, 1; assigns all midi channels to instr 1

 instr 1
iFreq cpsmidi ;gets frequency of a pressed key
iAmp ampmidi 8 ;gets amplitude and scales 0-8
iRatio random .9, 1.1 ;ratio randomly between 0.9 and 1.1
aTone foscili .1, iFreq, 1, iRatio/5, iAmp+1, giSine ;fm
aEnv linenr aTone, 0, .01, .01 ; avoiding clicks at the note-end
 outs aEnv, aEnv
 endin

</CsInstruments>
<CsScore>
f 0 36000; play for 10 hours
e
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Using Widgets

If you want to trigger an instrument event in realtime with a Graphical User Interface, it is usually a Button widget which will do this job. We will see here a simple example; first implemented using Csound’s FLTK widgets, and then using CsoundQt’s widgets.

FLTK Button

This is a very simple example demonstrating how to trigger an instrument using an FLTK button. A more extended example can be found here.

EXAMPLE 03F05_FLTK_triggered_events.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 ; -- create a FLTK panel --
 FLpanel "Trigger By FLTK Button", 300, 100, 100, 100
 ; -- trigger instr 1 (equivalent to the score line "i 1 0 1")
k1, ih1 FLbutton "Push me!", 0, 0, 1, 150, 40, 10, 25, 0, 1, 0, 1
 ; -- trigger instr 2
k2, ih2 FLbutton "Quit", 0, 0, 1, 80, 40, 200, 25, 0, 2, 0, 1
 FLpanelEnd; end of the FLTK panel section
 FLrun ; run FLTK
 seed 0; random seed different each time

 instr 1
idur random .5, 3; recalculate instrument duration
p3 = idur; reset instrument duration
ioct random 8, 11; random values between 8th and 11th octave
idb random -18, -6; random values between -6 and -18 dB
aSig poscil ampdb(idb), cpsoct(ioct)
aEnv transeg 1, p3, -10, 0
 outs aSig*aEnv, aSig*aEnv
 endin

instr 2
 exitnow
endin

</CsInstruments>
<CsScore>
f 0 36000
e
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Note that in this example the duration of an instrument event is recalculated when the instrument is initialised. This is done using the statement p3 = i…. This can be a useful technique if you want the duration that an instrument plays for to be different each time it is called. In this example duration is the result of a random function. The duration defined by the FLTK button will be overwritten by any other calculation within the instrument itself at i-time.

CsoundQt Button

In CsoundQt, a button can be created easily from the submenu in a widget panel:

In the Properties Dialog of the button widget, make sure you have selected event as Type. Insert a Channel name, and at the bottom type in the event you want to trigger - as you would if writing a line in the score.

In your Csound code, you need nothing more than the instrument you want to trigger:

For more information about CsoundQt, read the CsoundQt chapter in the Frontends section of this manual.

Using A Realtime Score

Command Line with the -L stdin Option

If you use any .csd with the option -L stdin (and the -odac option for realtime output), you can type any score line in realtime (sorry, this does not work for Windows). For instance, save this .csd anywhere and run it from the command line:

EXAMPLE 03F06_Commandline_rt_events.csd

<CsoundSynthesizer>
<CsOptions>
-L stdin -odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 seed 0; random seed different each time

 instr 1
idur random .5, 3; calculate instrument duration
p3 = idur; reset instrument duration
ioct random 8, 11; random values between 8th and 11th octave
idb random -18, -6; random values between -6 and -18 dB
aSig oscils ampdb(idb), cpsoct(ioct), 0
aEnv transeg 1, p3, -10, 0
 outs aSig*aEnv, aSig*aEnv
 endin

</CsInstruments>
<CsScore>
f 0 36000
e
</CsScore>
</CsoundSynthesizer>

If you run it by typing and returning a command line like this …

… you should get a prompt at the end of the Csound messages:

If you now type the line i 1 0 1 and press return, you should hear that instrument 1 has been executed. After three times your messages may look like this:

By Conditions

We have discussed first the classical method of triggering instrument events from the score section of a .csd file, then we went on to look at different methods of triggering real time events using MIDI, by using widgets, and by using score lines inserted live. We will now look at the Csound orchestra itself and to some methods by which an instrument can internally trigger another instrument. The pattern of triggering could be governed by conditionals, or by different kinds of loops. As this “master” instrument can itself be triggered by a realtime event, you have unlimited options available for combining the different methods.

Let’s start with conditionals. If we have a realtime input, we may want to define a threshold, and trigger an event

	if we cross the threshold from below to above;

	if we cross the threshold from above to below.

In Csound, this could be implemented using an orchestra of three instruments. The first instrument is the master instrument. It receives the input signal and investigates whether that signal is crossing the threshold and if it does whether it is crossing from low to high or from high to low. If it crosses the threshold from low to high the second instrument is triggered, if it crosses from high to low the third instrument is triggered.

EXAMPLE 03F07_Event_by_condition.csd

<CsoundSynthesizer>
<CsOptions>
-iadc -odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 seed 0; random seed different each time

 instr 1; master instrument
ichoose = p4; 1 = real time audio, 2 = random amplitude movement
ithresh = -12; threshold in dB
kstat init 1; 1 = under the threshold, 2 = over the threshold
;;CHOOSE INPUT SIGNAL
 if ichoose == 1 then
ain inch 1
 else
kdB randomi -18, -6, 1
ain pinkish ampdb(kdB)
 endif
;;MEASURE AMPLITUDE AND TRIGGER SUBINSTRUMENTS IF THRESHOLD IS CROSSED
afoll follow ain, .1; measure mean amplitude each 1/10 second
kfoll downsamp afoll
 if kstat == 1 && dbamp(kfoll) > ithresh then; transition down->up
 event "i", 2, 0, 1; call instr 2
 printks "Amplitude = %.3f dB%n", 0, dbamp(kfoll)
kstat = 2; change status to "up"
 elseif kstat == 2 && dbamp(kfoll) < ithresh then; transition up->down
 event "i", 3, 0, 1; call instr 3
 printks "Amplitude = %.3f dB%n", 0, dbamp(kfoll)
kstat = 1; change status to "down"
 endif
 endin

 instr 2; triggered if threshold has been crossed from down to up
asig poscil .2, 500
aenv transeg 1, p3, -10, 0
 outs asig*aenv, asig*aenv
 endin

 instr 3; triggered if threshold has been crossed from up to down
asig poscil .2, 400
aenv transeg 1, p3, -10, 0
 outs asig*aenv, asig*aenv
 endin

</CsInstruments>
<CsScore>
i 1 0 1000 2 ;change p4 to "1" for live input
e
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Using i-Rate Loops for Calculating a Pool of Instrument Events

You can perform a number of calculations at init-time which lead to a list of instrument events. In this way you are producing a score, but inside an instrument. The score events are then executed later.

Using this opportunity we can introduce the scoreline / scoreline_i opcode. It is quite similar to the event / event_i opcode but has two major benefits:

	You can write more than one scoreline by using {{ at the beginning and }} at the end.

	You can send a string to the subinstrument (which is not possible with the event opcode).

Let's look at a simple example for executing score events from an instrument using the scoreline opcode:

EXAMPLE 03F08_Generate_event_pool.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 seed 0; random seed different each time

 instr 1 ;master instrument with event pool
 scoreline_i {{i 2 0 2 7.09
 i 2 2 2 8.04
 i 2 4 2 8.03
 i 2 6 1 8.04}}
 endin

 instr 2 ;plays the notes
asig pluck .2, cpspch(p4), cpspch(p4), 0, 1
aenv transeg 1, p3, 0, 0
 outs asig*aenv, asig*aenv
 endin

</CsInstruments>
<CsScore>
i 1 0 7
e
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

With good right, you might say: “OK, that’s nice, but I can also write scorelines in the score itself!” That’s right, but the advantage with the scoreline_i method is that you can render the score events in an instrument, and then send them out to one or more instruments to execute them. This can be done with the sprintf opcode, which produces the string for scoreline in an i-time loop (see the chapter about control structures).

EXAMPLE 03F09_Events_sprintf.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giPch ftgen 0, 0, 4, -2, 7.09, 8.04, 8.03, 8.04
 seed 0; random seed different each time

 instr 1 ; master instrument with event pool
itimes = 7 ;number of events to produce
icnt = 0 ;counter
istart = 0
Slines = ""
loop: ;start of the i-time loop
idur random 1, 2.9999 ;duration of each note:
idur = int(idur) ;either 1 or 2
itabndx random 0, 3.9999 ;index for the giPch table:
itabndx = int(itabndx) ;0-3
ipch table itabndx, giPch ;random pitch value from the table
Sline sprintf "i 2 %d %d %.2f\n", istart, idur, ipch ;new scoreline
Slines strcat Slines, Sline ;append to previous scorelines
istart = istart + idur ;recalculate start for next scoreline
 loop_lt icnt, 1, itimes, loop ;end of the i-time loop
 puts Slines, 1 ;print the scorelines
 scoreline_i Slines ;execute them
iend = istart + idur ;calculate the total duration
p3 = iend ;set p3 to the sum of all durations
 print p3 ;print it
 endin

 instr 2 ;plays the notes
asig pluck .2, cpspch(p4), cpspch(p4), 0, 1
aenv transeg 1, p3, 0, 0
 outs asig*aenv, asig*aenv
 endin

</CsInstruments>
<CsScore>
i 1 0 1 ;p3 is automatically set to the total duration
e
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

In this example, seven events have been rendered in an i-time loop in instrument 1. The result is stored in the string variable Slines. This string is given at i-time to scoreline_i, which executes them then one by one according to their starting times (p2), durations (p3) and other parameters.

Instead of collecting all score lines in a single string, you can also execute them inside the i-time loop. Also in this way all the single score lines are added to Csound’s event pool. The next example shows an alternative version of the previous one by adding the instrument events one by one in the i-time loop, either with event_i (instr 1) or with scoreline_i (instr 2):

EXAMPLE 03F10_Events_collected.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giPch ftgen 0, 0, 4, -2, 7.09, 8.04, 8.03, 8.04
 seed 0; random seed different each time

 instr 1; master instrument with event_i
itimes = 7; number of events to produce
icnt = 0; counter
istart = 0
loop: ;start of the i-time loop
idur random 1, 2.9999; duration of each note:
idur = int(idur); either 1 or 2
itabndx random 0, 3.9999; index for the giPch table:
itabndx = int(itabndx); 0-3
ipch table itabndx, giPch; random pitch value from the table
 event_i "i", 3, istart, idur, ipch; new instrument event
istart = istart + idur; recalculate start for next scoreline
 loop_lt icnt, 1, itimes, loop; end of the i-time loop
iend = istart + idur; calculate the total duration
p3 = iend; set p3 to the sum of all durations
 print p3; print it
 endin

 instr 2; master instrument with scoreline_i
itimes = 7; number of events to produce
icnt = 0; counter
istart = 0
loop: ;start of the i-time loop
idur random 1, 2.9999; duration of each note:
idur = int(idur); either 1 or 2
itabndx random 0, 3.9999; index for the giPch table:
itabndx = int(itabndx); 0-3
ipch table itabndx, giPch; random pitch value from the table
Sline sprintf "i 3 %d %d %.2f", istart, idur, ipch; new scoreline
 scoreline_i Sline; execute it
 puts Sline, 1; print it
istart = istart + idur; recalculate start for next scoreline
 loop_lt icnt, 1, itimes, loop; end of the i-time loop
iend = istart + idur; calculate the total duration
p3 = iend; set p3 to the sum of all durations
 print p3; print it
 endin

 instr 3; plays the notes
asig pluck .2, cpspch(p4), cpspch(p4), 0, 1
aenv transeg 1, p3, 0, 0
 outs asig*aenv, asig*aenv
 endin

</CsInstruments>
<CsScore>
i 1 0 1
i 2 14 1
e
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Using Time Loops

As discussed above in the chapter about control structures, a time loop can be built in Csound with the timout opcode or with the metro opcode. There were also simple examples for triggering instrument events using both methods. Here, a more complex example is given: A master instrument performs a time loop (choose either instr 1 for the timout method or instr 2 for the metro method) and triggers once in a loop a subinstrument. The subinstrument itself (instr 10) performs an i-time loop and triggers several instances of a sub-subinstrument (instr 100). Each instance performs a partial with an independent envelope for a bell-like additive synthesis.

EXAMPLE 03F11_Events_time_loop.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 seed 0

 instr 1; time loop with timout. events are triggered by event_i (i-rate)
loop:
idurloop random 1, 4; duration of each loop
 timout 0, idurloop, play
 reinit loop
play:
idurins random 1, 5; duration of the triggered instrument
 event_i "i", 10, 0, idurins; triggers instrument 10
 endin

 instr 2; time loop with metro. events are triggered by event (k-rate)
kfreq init 1; give a start value for the trigger frequency
kTrig metro kfreq
 if kTrig == 1 then ;if trigger impulse:
kdur random 1, 5; random duration for instr 10
 event "i", 10, 0, kdur; call instr 10
kfreq random .25, 1; set new value for trigger frequency
 endif
 endin

 instr 10; triggers 8-13 partials
inumparts random 8, 14
inumparts = int(inumparts); 8-13 as integer
ibasoct random 5, 10; base pitch in octave values
ibasfreq = cpsoct(ibasoct)
ipan random .2, .8; random panning between left (0) and right (1)
icnt = 0; counter
loop:
 event_i "i", 100, 0, p3, ibasfreq, icnt+1, inumparts, ipan
 loop_lt icnt, 1, inumparts, loop
 endin

 instr 100; plays one partial
ibasfreq = p4; base frequency of sound mixture
ipartnum = p5; which partial is this (1 - N)
inumparts = p6; total number of partials
ipan = p7; panning
ifreqgen = ibasfreq * ipartnum; general frequency of this partial
ifreqdev random -10, 10; frequency deviation between -10% and +10%
; -- real frequency regarding deviation
ifreq = ifreqgen + (ifreqdev*ifreqgen)/100
ixtratim random 0, p3; calculate additional time for this partial
p3 = p3 + ixtratim; new duration of this partial
imaxamp = 1/inumparts; maximum amplitude
idbdev random -6, 0; random deviation in dB for this partial
iamp = imaxamp * ampdb(idbdev-ipartnum); higher partials are softer
ipandev random -.1, .1; panning deviation
ipan = ipan + ipandev
aEnv transeg 0, .005, 0, iamp, p3-.005, -10, 0
aSine poscil aEnv, ifreq
aL, aR pan2 aSine, ipan
 outs aL, aR
 prints "ibasfreq = %d, ipartial = %d, ifreq = %d%n",\
 ibasfreq, ipartnum, ifreq
 endin

</CsInstruments>
<CsScore>
i 1 0 300 ;try this, or the next line (or both)
;i 2 0 300
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Which Opcode Should I Use?

Csound users are often confused about the variety of opcodes available to trigger instrument events. Should I use event, scoreline, schedule or schedkwhen? Should I use event or event_i?

Let us start with the latter, which actually leads to the general question about i-rate and k-rate opcodes.1 In short: Using event_i (the i-rate version) will only trigger an event once, when the instrument in which this opcode works is initiated. Using event (the k-rate version) will trigger an event potentially again and again, as long as the instrument runs, in each control cycle. This is a very simple example:

EXAMPLE 03F12_event_i_vs_event.csd

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
sr=44100
ksmps = 32

;set counters for the instances of Called_i and Called_k
giInstCi init 1
giInstCk init 1

instr Call_i
;call another instrument at i-rate
event_i "i", "Called_i", 0, 1
endin

instr Call_k
;call another instrument at k-rate
event "i", "Called_k", 0, 1
endin

instr Called_i
;report that instrument starts and which instance
prints "Instance #%d of Called_i is starting!\n", giInstCi
;increment number of instance for next instance
giInstCi += 1
endin

instr Called_k
;report that instrument starts and which instance
prints " Instance #%d of Called_k is starting!\n", giInstCk
;increment number of instance for next instance
giInstCk += 1
endin

</CsInstruments>
<CsScore>
;run "Call_i" for one second
i "Call_i" 0 1
;run "Call_k" for 1/100 seconds
i "Call_k" 0 0.01
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Although instrument Call_i runs for one second, the call to instrument Called_i is only performed once, because it is done with event_i: at initialization only. But instrument Call_k calls one instance of Called_k in each control cycle; so for the duration of 0.01 seconds of running instrument Call_k, fourteen instances of instrument Called_k are being started.2 So this is the output:

Instance #1 of Called_i is starting!
Instance #1 of Called_k is starting!
Instance #2 of Called_k is starting!
Instance #3 of Called_k is starting!
Instance #4 of Called_k is starting!
Instance #5 of Called_k is starting!
Instance #6 of Called_k is starting!
Instance #7 of Called_k is starting!
Instance #8 of Called_k is starting!
Instance #9 of Called_k is starting!
Instance #10 of Called_k is starting!
Instance #11 of Called_k is starting!
Instance #12 of Called_k is starting!
Instance #13 of Called_k is starting!
Instance #14 of Called_k is starting!

So the first (and probably most important) decision in asking “which opcode should I use”, is the answer to the question: “Do I need an i-rate or a k-rate opcode?”

i-rate Versions: schedule, event_i, scoreline_i

If you need an i-rate opcode to trigger an instrument event, schedule is the most basic choice. You use it actually exactly the same as writing any score event; just seperating the parameter fields by commas rather by spaces:

schedule iInstrNum (or "InstrName"), iStart, iDur [, ip4] [, ip5] [...]

event_i is very similar:

event_i "i", iInstrNum (or "InstrName"), iStart, iDur [, ip4] [, ip5] [...]

There are two differences between schedule and event_i. The first is that schedule can only trigger instruments, whereas event_i can also trigger f events (= build function tables).

The second difference is that schedule can pass strings to the called instrument, but event_i (and event) can not. So, if you execute this code …

schedule "bla", 0, 1, "blu"

… it is allright; but with the same line for event_i …

event_i "i", "bla", 0, 1, "blu"

… you will get this error message in the console:

error: Unable to find opcode entry for 'event_i' with matching argument types:
Found: (null) event_i SccS

With scoreline_i sending strings is also possible. This opcode takes one or more lines of score statements which follow the same conventions as if written in the score section itself.3 If you enclose the line(s) by {{ and }}, you can include as many strings in it as you wish:

scoreline_i {{
 i "bla" 0 1 "blu" "sound"
 i "bla" 1 1 "brown" "earth"
 }}

k-rate versions: schedulek, event, scoreline, schedkwhen

If you need a k-rate opcode to trigger an instrument event, schedulek is the basic choice as k-variant of schedule:

schedulek kInstrNum (or "InstrName"), kStart, kDur [, kp4] [, kp5] [...]

The advantage of schedulek against event is the possibility to pass strings as p-fields. On the other hand, event can not only generate instrument events, but also other score events. For instrument events, the syntax is:

event "i", kInstrNum (or "InstrName"), kStart, kDur [, kp4] [, kp5] [...]

Usually, you will not want to trigger another instrument each control cycle, but based on certain conditions. A very common case is a “ticking” periodic signal, whichs ticks are being used as trigger impulses. The typical code snippel using a metro and the event opcode would be:

kTrigger metro 1 ;"ticks" once a second
if kTrigger == 1 then ;if it ticks
 schedulek "my_instr", 0, 1 ;call the instrument
endif

In other words: This code would only use one control-cycle per second to call my_instr, and would do nothing in the other control cycles. The schedkwhen opcode simplifies such typical use cases, and adds some other useful arguments. This is the syntax:

schedkwhen kTrigger, kMinTim, kMaxNum, kInsrNum (or "InstrName"),
kStart, kDur [, kp4] [, kp5] [...]

The kMinTim parameter specifies the time which has to be spent between two subsequent calls of the subinstrument. This is often quite useful as you may want to state: “Do not call the next instance of the subinstrument unless 0.1 seconds have been passed.” If you set this parameter to zero, there will be no time limit for calling the subinstrument.

The kMaxNum parameter specifies the maximum number of instances which run simultaneously. Say, kMaxNum = 2 and there are indeed two instances of the subinstrument running, no other instance will be initiated. if you set this parameter to zero, there will be no limit for calling new instances.

So, with schedkwhen, we can write the above code snippet in two lines instead of four:

kTrigger metro 1 ;"ticks" once a second
schedkwhen kTrigger, 0, 0, "my_instr", 0, 1

Only, you cannot pass strings as p-fields via schedkwhen (and event). So, very much similar as described above for i-rate opcodes, scoreline fills this gap (as well as schedulek). Usually we will use it with a condition, as we did for the event opcode:

kTrigger metro 1 ;"ticks" once a second
if kTrigger == 1 then
 ;if it ticks, call two instruments and pass strings as p-fields
 scoreline {{
 i "bla" 0 1 "blu" "sound"
 i "bla" 1 1 "brown" "earth"
 }}
endif

Recompilation

As it has been mentioned at the start of this chapter, since Csound6 you can re-compile any code in an already running Csound instance. Let us first see some simple examples for the general use, and then a more practical approach in CsoundQt.

compileorc / compilestr

The opcode compileorc refers to a definition of instruments which has been saved as an .orc (“orchestra”) file. To see how it works, save this text in a simple text (ASCII) format as “to_recompile.orc”:

instr 1
iAmp = .2
iFreq = 465
aSig oscils iAmp, iFreq, 0
outs aSig, aSig
endin

Then save this csd in the same directory:

EXAMPLE 03F13_compileorc.csd

<CsoundSynthesizer>
<CsOptions>
-o dac -d -L stdin -Ma
</CsOptions>
<CsInstruments>
sr = 44100
nchnls = 2
ksmps = 32
0dbfs = 1

massign 0, 9999

instr 9999
ires compileorc "to_recompile.orc"
print ires ; 0 if compiled successfully
event_i "i", 1, 0, 3 ;send event
endin

</CsInstruments>
<CsScore>
i 9999 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

If you run this csd in the terminal, you should hear a three seconds beep, and the output should be like this:

SECTION 1:
new alloc for instr 9999:
instr 9999: ires = 0.000
new alloc for instr 1:
B 0.000 .. 1.000 T 1.000 TT 1.000 M: 0.20000 0.20000
B 1.000 .. 3.000 T 3.000 TT 3.000 M: 0.20000 0.20000
Score finished in csoundPerform().
inactive allocs returned to freespace
end of score. overall amps: 0.20000 0.20000
 overall samples out of range: 0 0
0 errors in performance

Having understood this, it is easy to do the next step. Remove (or comment out) the score line i 9999 0 1 so that the score is empty. If you start the csd now, Csound will run indefinitely. Now call instr 9999 by typing i 9999 0 1 in the terminal window (if the option -L stdin works for your setup), or by pressing any MIDI key (if you have connected a keyboard). You should hear the same beep as before. But as the recompile.csd keeps running, you can change now the instrument 1 in file to_recompile.orc. Try, for instance, another value for kFreq. Whenever this is done (file is saved) and you call again instr 9999 in recompile.csd, the new version of this instrument is compiled and then called immediately.

The other possibility to recompile code by using an opcode is compilestr. It will compile any instrument definition which is contained in a string. As this will be a string with several lines, you will usually use the {{ delimiter for the start and }} for the end of the string. This is a basic example:

EXAMPLE 03F14_compilestr.csd

<CsoundSynthesizer>
<CsOptions>
-o dac -d
</CsOptions>
<CsInstruments>
sr = 44100
nchnls = 1
ksmps = 32
0dbfs = 1

instr 1

 ;will fail because of wrong code
ires compilestr {{
instr 2
a1 oscilb p4, p5, 0
out a1
endin
}}
print ires ; returns -1 because not successfull

 ;will compile ...
ires compilestr {{
instr 2
a1 oscils p4, p5, 0
out a1
endin
}}
print ires ; ... and returns 0

 ;call the new instrument
 ;(note that the overall performance is extended)
scoreline_i "i 2 0 3 .2 415"

endin

</CsInstruments>
<CsScore>
i1 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Instrument 2 is defined inside instrument 1, and compiled via compilestr. in case you can change this string in real-time (for instance in receiving it via OSC), you can add any new definition of instruments on the fly.

The frontends offer simplified methods for recompilation. In CsoundQt, for instance, you can select any instrument, and choose Edit > Evaluate Selection.

	See chapter 03A about Initialization and Performance Pass for a detailed discussion.↩︎

	As for a sample rate of 44100 Hz (sr=44100) and a control period of 32 samples (ksmps=32), we have 1378 control periods in one second. So 0.01 seconds will perform 14 control cycles.↩︎

	This means that score parameter fields are separated by spaces, not by commas.↩︎

 ch021.xhtml

03 G. USER DEFINED OPCODES

Opcodes are the core units of everything that Csound does. They are like little machines that do a job, and programming is akin to connecting these little machines to perform a larger job. An opcode usually has something which goes into it: the inputs or arguments, and usually it has something which comes out of it: the output which is stored in one or more variables. Opcodes are written in the programming language C (that is where the name Csound comes from). If you want to create a new opcode in Csound, you must write it in C. How to do this is described in the Extending Csound chapter of this manual, and is also described in the relevant chapter of the Canonical Csound Reference Manual.

There is, however, a way of writing your own opcodes in the Csound Language itself. The opcodes which are written in this way, are called User Defined Opcodes or UDOs. A UDO behaves in the same way as a standard opcode: it has input arguments, and usually one or more output variables. It runs at i-time or at k-time. You use them as part of the Csound Language after you have defined and loaded them.

User Defined Opcodes have many valuable properties. They make your instrument code clearer because they allow you to create abstractions of blocks of code. Once a UDO has been defined it can be recalled and repeated many times within an orchestra, each repetition requiring only a single line of code. UDOs allow you to build up your own library of functions you need and return to frequently in your work. In this way, you build your own Csound dialect within the Csound Language. UDOs also represent a convenient format with which to share your work in Csound with other users.

This chapter explains, initially with a very basic example, how you can build your own UDOs, and what options they offer. Following this, the practice of loading UDOs in your .csd file is shown, followed by some tips in regard to some unique capabilities of UDOs. Finally some examples are shown for different User Defined Opcode definitions and applications.

If you want to write a User Defined Opcode in Csound6 which uses arrays, have a look at the end of chapter 03E to see their usage and naming conventions.

Transforming Csound Instrument Code to a User Defined Opcode

Writing a User Defined Opcode is actually very easy and straightforward. It mainly means to extract a portion of usual Csound instrument code, and put it in the frame of a UDO. Let us start with the instrument code:

EXAMPLE 03G01_Pre_UDO.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine ftgen 0, 0, 2^10, 10, 1
 seed 0

 instr 1
aDel init 0; initialize delay signal
iFb = .7; feedback multiplier
aSnd rand .2; white noise
kdB randomi -18, -6, .4; random movement between -18 and -6
aSnd = aSnd * ampdb(kdB); applied as dB to noise
kFiltFq randomi 100, 1000, 1; random movement between 100 and 1000
aFilt reson aSnd, kFiltFq, kFiltFq/5; applied as filter center frequency
aFilt balance aFilt, aSnd; bring aFilt to the volume of aSnd
aDelTm randomi .1, .8, .2; random movement between .1 and .8 as delay time
aDel vdelayx aFilt + iFb*aDel, aDelTm, 1, 128; variable delay
kdbFilt randomi -12, 0, 1; two random movements between -12 and 0 (dB) ...
kdbDel randomi -12, 0, 1; ... for the filtered and the delayed signal
aOut = aFilt*ampdb(kdbFilt) + aDel*ampdb(kdbDel); mix it
outs aOut, aOut
 endin

</CsInstruments>
<CsScore>
i 1 0 60
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

This is a filtered noise, and its delay, which is fed back again into the delay line at a certain ratio iFb. The filter is moving as kFiltFq randomly between 100 and 1000 Hz. The volume of the filtered noise is moving as kdB randomly between -18 dB and -6 dB. The delay time moves between 0.1 and 0.8 seconds, and then both signals are mixed together.

Basic Example

If this signal processing unit is to be transformed into a User Defined Opcode, the first question is about the extend of the code that will be encapsulated: where the UDO code will begin and end? The first solution could be a radical, and possibly bad, approach: to transform the whole instrument into a UDO.

EXAMPLE 03G02_All_to_UDO.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine ftgen 0, 0, 2^10, 10, 1
 seed 0

 opcode FiltFb, 0, 0
aDel init 0; initialize delay signal
iFb = .7; feedback multiplier
aSnd rand .2; white noise
kdB randomi -18, -6, .4; random movement between -18 and -6
aSnd = aSnd * ampdb(kdB); applied as dB to noise
kFiltFq randomi 100, 1000, 1; random movement between 100 and 1000
aFilt reson aSnd, kFiltFq, kFiltFq/5; applied as filter center frequency
aFilt balance aFilt, aSnd; bring aFilt to the volume of aSnd
aDelTm randomi .1, .8, .2; random movement between .1 and .8 as delay time
aDel vdelayx aFilt + iFb*aDel, aDelTm, 1, 128; variable delay
kdbFilt randomi -12, 0, 1; two random movements between -12 and 0 (dB) ...
kdbDel randomi -12, 0, 1; ... for the filtered and the delayed signal
aOut = aFilt*ampdb(kdbFilt) + aDel*ampdb(kdbDel); mix it
out aOut, aOut
 endop

instr 1
 FiltFb
endin

</CsInstruments>
<CsScore>
i 1 0 60
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Before we continue the discussion about the quality of this transformation, we should have a look at the syntax first. The general syntax for a User Defined Opcode is:

opcode name, outtypes, intypes
...
endop

Here, the name of the UDO is FiltFb. You are free to use any name, but it is suggested that you begin the name with a capital letter. By doing this, you avoid duplicating the name of most of the pre-existing opcodes which normally start with a lower case letter. As we have no input arguments and no output arguments for this first version of FiltFb, both outtypes and intypes are set to zero.

Similar to the instr … endin block of a normal instrument definition, for a UDO the opcode … endop keywords begin and end the UDO definition block. In the instrument, the UDO is called like a normal opcode by using its name, and in the same line the input arguments are listed on the right and the output arguments on the left. In the previous a example, FiltFb has no input and output arguments so it is called by just using its name:

instr 1
 FiltFb
endin

Now - why is this UDO more or less useless? It achieves nothing, when compared to the original non UDO version, and in fact looses some of the advantages of the instrument defined version. Firstly, it is not advisable to include this line in the UDO:

out aOut, aOut

This statement writes the audio signal aOut from inside the UDO to the output device. Imagine you want to change the output channels, or you want to add any signal modifier after the opcode. This would be impossible with this statement. So instead of including the out opcode, we give the FiltFb UDO an audio output:

xout aOut

The xout statement of a UDO definition works like the “outlets” in PD or Max, sending the result(s) of an opcode back to the caller instrument.

Now let us consider the UDO’s input arguments, choose which processes should be carried out within the FiltFb unit, and what aspects would offer greater flexibility if controllable from outside the UDO. First, the aSnd parameter should not be restricted to a white noise with amplitude 0.2, but should be an input (like a “signal inlet” in PD/Max). This is implemented using the line:

aSnd xin

Both the output and the input type must be declared in the first line of the UDO definition, whether they are i-, k- or a-variables. So instead of opcode FiltFb, 0, 0 the statement has changed now to opcode FiltFb, a, a, because we have both input and output as a-variable.

The UDO is now much more flexible and logical: it takes any audio input, it performs the filtered delay and feedback processing, and returns the result as another audio signal. In the next example, instrument 1 does exactly the same as before. Instrument 2 has live input instead.

EXAMPLE 03G03_UDO_more_flex.csd

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine ftgen 0, 0, 2^10, 10, 1
 seed 0

 opcode FiltFb, a, a
aSnd xin
aDel init 0; initialize delay signal
iFb = .7; feedback multiplier
kdB randomi -18, -6, .4; random movement between -18 and -6
aSnd = aSnd * ampdb(kdB); applied as dB to noise
kFiltFq randomi 100, 1000, 1; random movement between 100 and 1000
aFilt reson aSnd, kFiltFq, kFiltFq/5; applied as filter center frequency
aFilt balance aFilt, aSnd; bring aFilt to the volume of aSnd
aDelTm randomi .1, .8, .2; random movement between .1 and .8 as delay time
aDel vdelayx aFilt + iFb*aDel, aDelTm, 1, 128; variable delay
kdbFilt randomi -12, 0, 1; two random movements between -12 and 0 (dB) ...
kdbDel randomi -12, 0, 1; ... for the filtered and the delayed signal
aOut = aFilt*ampdb(kdbFilt) + aDel*ampdb(kdbDel); mix it
 xout aOut
 endop

 instr 1; white noise input
aSnd rand .2
aOut FiltFb aSnd
 outs aOut, aOut
 endin

 instr 2; live audio input
aSnd inch 1; input from channel 1
aOut FiltFb aSnd
 outs aOut, aOut
 endin

</CsInstruments>
<CsScore>
i 1 0 60 ;change to i 2 for live audio input
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Is There an Optimal Design for a User Defined Opcode?

Is this now the optimal version of the FiltFb User Defined Opcode? Obviously there are other parts of the opcode definiton which could be controllable from outside: the feedback multiplier iFb, the random movement of the input signal kdB, the random movement of the filter frequency kFiltFq, and the random movements of the output mix kdbSnd and kdbDel. Is it better to put them outside of the opcode definition, or is it better to leave them inside?

There is no general answer. It depends on the degree of abstraction you desire or you prefer to relinquish. If you are working on a piece for which all of the parameters settings are already defined as required in the UDO, then control from the caller instrument may not be necessary. The advantage of minimizing the number of input and output arguments is the simplification in using the UDO. The more flexibility you require from your UDO however, the greater the number of input arguments that will be required. Providing more control is better for a later reusability, but may be unnecessarily complicated.

Perhaps it is the best solution to have one abstract definition which performs one task, and to create a derivative - also as UDO - fine tuned for the particular project you are working on. The final example demonstrates the definition of a general and more abstract UDO FiltFb, and its various applications: instrument 1 defines the specifications in the instrument itself; instrument 2 uses a second UDO Opus123_FiltFb for this purpose; instrument 3 sets the general FiltFb in a new context of two varying delay lines with a buzz sound as input signal.

EXAMPLE 03G04_UDO_calls_UDO.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine ftgen 0, 0, 2^10, 10, 1
 seed 0

 opcode FiltFb, aa, akkkia
; -- DELAY AND FEEDBACK OF A BAND FILTERED INPUT SIGNAL --
;input: aSnd = input sound
; kFb = feedback multiplier (0-1)
; kFiltFq: center frequency for the reson band filter (Hz)
; kQ = band width of reson filter as kFiltFq/kQ
; iMaxDel = maximum delay time in seconds
; aDelTm = delay time
;output: aFilt = filtered and balanced aSnd
; aDel = delay and feedback of aFilt

aSnd, kFb, kFiltFq, kQ, iMaxDel, aDelTm xin
aDel init 0
aFilt reson aSnd, kFiltFq, kFiltFq/kQ
aFilt balance aFilt, aSnd
aDel vdelayx aFilt + kFb*aDel, aDelTm, iMaxDel, 128; variable delay
 xout aFilt, aDel
 endop

 opcode Opus123_FiltFb, a, a
;;the udo FiltFb here in my opus 123 :)
;input = aSnd
;output = filtered and delayed aSnd in different mixtures
aSnd xin
kdB randomi -18, -6, .4; random movement between -18 and -6
aSnd = aSnd * ampdb(kdB); applied as dB to noise
kFiltFq randomi 100, 1000, 1; random movement between 100 and 1000
iQ = 5
iFb = .7; feedback multiplier
aDelTm randomi .1, .8, .2; random movement between .1 and .8 as delay time
aFilt, aDel FiltFb aSnd, iFb, kFiltFq, iQ, 1, aDelTm
kdbFilt randomi -12, 0, 1; two random movements between -12 and 0 (dB) ...
kdbDel randomi -12, 0, 1; ... for the noise and the delay signal
aOut = aFilt*ampdb(kdbFilt) + aDel*ampdb(kdbDel); mix it
 xout aOut
 endop

 instr 1; well known context as instrument
aSnd rand .2
kdB randomi -18, -6, .4; random movement between -18 and -6
aSnd = aSnd * ampdb(kdB); applied as dB to noise
kFiltFq randomi 100, 1000, 1; random movement between 100 and 1000
iQ = 5
iFb = .7; feedback multiplier
aDelTm randomi .1, .8, .2; random movement between .1 and .8 as delay time
aFilt, aDel FiltFb aSnd, iFb, kFiltFq, iQ, 1, aDelTm
kdbFilt randomi -12, 0, 1; two random movements between -12 and 0 (dB) ...
kdbDel randomi -12, 0, 1; ... for the noise and the delay signal
aOut = aFilt*ampdb(kdbFilt) + aDel*ampdb(kdbDel); mix it
aOut linen aOut, .1, p3, 3
 outs aOut, aOut
 endin

 instr 2; well known context UDO which embeds another UDO
aSnd rand .2
aOut Opus123_FiltFb aSnd
aOut linen aOut, .1, p3, 3
 outs aOut, aOut
 endin

 instr 3; other context: two delay lines with buzz
kFreq randomh 200, 400, .08; frequency for buzzer
aSnd buzz .2, kFreq, 100, giSine; buzzer as aSnd
kFiltFq randomi 100, 1000, .2; center frequency
aDelTm1 randomi .1, .8, .2; time for first delay line
aDelTm2 randomi .1, .8, .2; time for second delay line
kFb1 randomi .8, 1, .1; feedback for first delay line
kFb2 randomi .8, 1, .1; feedback for second delay line
a0, aDel1 FiltFb aSnd, kFb1, kFiltFq, 1, 1, aDelTm1; delay signal 1
a0, aDel2 FiltFb aSnd, kFb2, kFiltFq, 1, 1, aDelTm2; delay signal 2
aDel1 linen aDel1, .1, p3, 3
aDel2 linen aDel2, .1, p3, 3
 outs aDel1, aDel2
 endin

</CsInstruments>
<CsScore>
i 1 0 30
i 2 31 30
i 3 62 120
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The good thing about the different possibilities of writing a more specified UDO, or a more generalized: You needn’t decide this at the beginning of your work. Just start with any formulation you find useful in a certain situation. If you continue and see that you should have some more parameters accessible, it should be easy to rewrite the UDO. Just be careful not to confuse the different versions you create. Use names like Faulty1, Faulty2 etc. instead of overwriting Faulty. Making use of extensive commenting when you initially create the UDO will make it easier to adapt the UDO at a later time. What are the inputs (including the measurement units they use such as Hertz or seconds)? What are the outputs? - How you do this, is up to you and depends on your style and your preference.

How to Use the User Defined Opcode Facility in Practice

In this section, we will address the main points of using UDOs: what you must bear in mind when loading them, what special features they offer, what restrictions you must be aware of and how you can build your own language with them.

Loading User Defined Opcodes in the Orchestra Header

As can be seen from the examples above, User Defined Opcodes must be defined in the orchestra header (which is sometimes called instrument 0).

You can load as many User Defined Opcodes into a Csound orchestra as you wish. As long as they do not depend on each other, their order is arbitrarily. If UDO Opus123_FiltFb uses the UDO FiltFb for its definition (see the example above), you must first load FiltFb, and then Opus123_FiltFb. If not, you will get an error like this:

orch compiler:
 opcode Opus123_FiltFb a a
error: no legal opcode, line 25:
aFilt, aDel FiltFb aSnd, iFb, kFiltFq, iQ, 1, aDelTm

Loading by an #include File

Definitions of User Defined Opcodes can also be loaded into a .csd file by an #include statement. What you must do is the following:

	Save your opcode definitions in a plain text file, for instance MyOpcodes.txt.

	If this file is in the same directory as your .csd file, you can just call it by the statement:

#include "MyOpcodes.txt"

	If MyOpcodes.txt is in a different directory, you must call it by the full path name, for instance:

#include "/Users/me/Documents/Csound/UDO/MyOpcodes.txt"

As always, make sure that the #include statement is the last one in the orchestra header, and that the logical order is accepted if one opcode depends on another.

If you work with User Defined Opcodes a lot, and build up a collection of them, the #include feature allows you easily import several or all of them to your .csd file.

The setksmps Feature

The ksmps assignment in the orchestra header cannot be changed during the performance of a .csd file. But in a User Defined Opcode you have the possibility of changing this value by a local assignment. If you use a setksmps statement in your UDO, you can have a locally smaller value for the number of samples per control cycle in the UDO. In the following example, the print statement in the UDO prints ten times compared to one time in the instrument, because ksmps in the UDO is 10 times smaller:

EXAMPLE 03G06_UDO_setksmps.csd

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 44100 ;very high because of printing

 opcode Faster, 0, 0
setksmps 4410 ;local ksmps is 1/10 of global ksmps
printks "UDO print!%n", 0
 endop

 instr 1
printks "Instr print!%n", 0 ;print each control period (once per second)
Faster ;print 10 times per second because of local ksmps
 endin

</CsInstruments>
<CsScore>
i 1 0 2
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Default Arguments

For i-time arguments, you can use a simple feature to set default values:

	o (instead of i) defaults to 0

	p (instead of i) defaults to 1

	j (instead of i) defaults to -1

For k-time arguments, you can use since Csound 5.18 these default values:

	O (instead of k) defaults to 0

	P (instead of k) defaults to 1

	V (instead of k) defaults to 0.5

	J (instead of k) defaults to -1

So you can omit these arguments - in this case the default values will be used. If you give an input argument instead, the default value will be overwritten:

EXAMPLE 03G07_UDO_default_args.csd

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>

 opcode Defaults, iii, opj
ia, ib, ic xin
xout ia, ib, ic
 endop

instr 1
ia, ib, ic Defaults
 print ia, ib, ic
ia, ib, ic Defaults 10
 print ia, ib, ic
ia, ib, ic Defaults 10, 100
 print ia, ib, ic
ia, ib, ic Defaults 10, 100, 1000
 print ia, ib, ic
endin

</CsInstruments>
<CsScore>
i 1 0 0
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Overloading

Extending this example a bit shows an important feature of UDOs. If we have different input and/or output types, we can use the same name for the UDO. Csound will choose the appropriate version depending on the context. This is a well-known practice in many programming languages as overloading a function.

In the simple example below, the i-rate and the k-rate version of the UDO are both called Default. Depending on the variable type and the number of outputs, the correct version is used by Csound.

EXAMPLE 03G08_UDO_overloading.csd

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
ksmps = 32

 opcode Defaults, iii, opj
ia, ib, ic xin
xout ia, ib, ic
 endop

 opcode Defaults, kkkk, OPVJ
k1, k2, k3, k4 xin
xout k1, k2, k3, k4
 endop

instr 1
ia, ib, ic Defaults
 prints "ia = %d, ib = %d, ic = %d\n", ia, ib, ic
ia, ib, ic Defaults 10
 prints "ia = %d, ib = %d, ic = %d\n", ia, ib, ic
ia, ib, ic Defaults 10, 100
 prints "ia = %d, ib = %d, ic = %d\n", ia, ib, ic
ia, ib, ic Defaults 10, 100, 1000
 prints "ia = %d, ib = %d, ic = %d\n", ia, ib, ic
ka1, kb1, kc1, kd1 Defaults
printks "ka = %d, kb = %d, kc = %.1f, kd = %d\n", 0, ka1, kb1, kc1, kd1
ka2, kb2, kc2, kd2 Defaults 2
printks "ka = %d, kb = %d, kc = %.1f, kd = %d\n", 0, ka2, kb2, kc2, kd2
ka3, kb3, kc3, kd3 Defaults 2, 4
printks "ka = %d, kb = %d, kc = %.1f, kd = %d\n", 0, ka3, kb3, kc3, kd3
ka4, kb4, kc4, kd4 Defaults 2, 4, 6
printks "ka = %d, kb = %d, kc = %.1f, kd = %d\n", 0, ka4, kb4, kc4, kd4
ka5, kb5, kc5, kd5 Defaults 2, 4, 6, 8
printks "ka = %d, kb = %d, kc = %.1f, kd = %d\n", 0, ka5, kb5, kc5, kd5
 turnoff
endin

</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Prints:

ia = 0, ib = 1, ic = -1
ia = 10, ib = 1, ic = -1
ia = 10, ib = 100, ic = -1
ia = 10, ib = 100, ic = 1000
ka = 0, kb = 1, kc = 0.5, kd = -1
ka = 2, kb = 1, kc = 0.5, kd = -1
ka = 2, kb = 4, kc = 0.5, kd = -1
ka = 2, kb = 4, kc = 6.0, kd = -1
ka = 2, kb = 4, kc = 6.0, kd = 8

Recursive User Defined Opcodes

Recursion means that a function can call itself. This is a feature which can be useful in many situations. Also User Defined Opcodes can be recursive. You can do many things with a recursive UDO which you cannot do in any other way; at least not in a simliarly simple way. This is an example of generating eight partials by a recursive UDO. See the last example in the next section for a more musical application of a recursive UDO.

EXAMPLE 03G09_Recursive_UDO.csd

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 opcode Recursion, a, iip
;input: frequency, number of partials, first partial (default=1)
ifreq, inparts, istart xin
iamp = 1/inparts/istart ;decreasing amplitudes for higher partials
 if istart < inparts then ;if inparts have not yet reached
acall Recursion ifreq, inparts, istart+1 ;call another instance of this UDO
 endif
aout oscils iamp, ifreq*istart, 0 ;execute this partial
aout = aout + acall ;add the audio signals
 xout aout
 endop

 instr 1
amix Recursion 400, 8 ;8 partials with a base frequency of 400 Hz
aout linen amix, .01, p3, .1
 outs aout, aout
 endin

</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Examples

We will focus here on some examples which will hopefully show the wide range of User Defined Opcodes. Some of them are adaptions of examples from previous chapters about the Csound Syntax.

Play A Mono Or Stereo Soundfile

Csound is often very strict and gives errors where other applications might turn a blind eye. This is also the case if you read a soundfile using Csound’s diskin opcode. If your soundfile is mono, you must use the mono version, which has one audio signal as output. If your soundfile is stereo, you must use the stereo version, which outputs two audio signals. If you want a stereo output, but you happen to have a mono soundfile as input, you will get the error message:

INIT ERROR in ...: number of output args inconsistent with number
of file channels

It may be more useful to have an opcode which works for both, mono and stereo files as input. This is a ideal job for a UDO. Two versions are implemented here by overloading. FilePlay either returns one audio signal (if the file is stereo it uses just the first channel), or it returns two audio signals (if the file is mono it duplicates this to both channels). We can use the default arguments to make this opcode behave exactly as a tolerant diskin …

EXAMPLE 03G10_UDO_FilePlay.csd

<CsoundSynthesizer>
<CsOptions>
-odac --env:SSDIR+=../SourceMaterials
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 opcode FilePlay, a, SKoo
;gives mono output (if file is stereo, just the first channel is used)
Sfil, kspeed, iskip, iloop xin
 if filenchnls(Sfil) == 1 then
aout diskin Sfil, kspeed, iskip, iloop
 else
aout, a0 diskin Sfil, kspeed, iskip, iloop
 endif
 xout aout
 endop

 opcode FilePlay, aa, SKoo
;gives stereo output (if file is mono, the channel is duplicated)
Sfil, kspeed, iskip, iloop xin
ichn filenchnls Sfil
 if filenchnls(Sfil) == 1 then
aL diskin Sfil, kspeed, iskip, iloop
aR = aL
 else
aL, aR diskin Sfil, kspeed, iskip, iloop
 endif
 xout aL, aR
 endop

 instr 1
aMono FilePlay "fox.wav", 1
 outs aMono, aMono
 endin

 instr 2
aL, aR FilePlay "fox.wav", 1
 outs aL, aR
 endin

</CsInstruments>
<CsScore>
i 1 0 4
i 2 4 4
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Change the Content of a Function Table

In example 03C11_Table_random_dev.csd, a function table has been changed at performance time, once a second, by random deviations. This can be easily transformed to a User Defined Opcode. It takes the function table variable, a trigger signal, and the random deviation in percent as input. In each control cycle where the trigger signal is 1, the table values are read. The random deviation is applied, and the changed values are written again into the table.

EXAMPLE 03G11_UDO_rand_dev.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine ftgen 0, 0, 256, 10, 1; sine wave

opcode TabDirtk, 0, ikk
 ;"dirties" a function table by applying random deviations at a k-rate trigger
 ;input: function table, trigger (1 = perform manipulation),
 ;deviation as percentage
 ift, ktrig, kperc xin
 if ktrig == 1 then ;just work if you get a trigger signal
 kndx = 0
 while kndx < ftlen(ift) do
 kval table kndx, ift; read old value
 knewval = kval + rnd31:k(kperc/100,0); calculate new value
 tablew knewval, kndx, giSine; write new value
 kndx += 1
 od
 endif
endop

 instr 1
kTrig metro 1 ;trigger signal once per second
kPerc linseg 0, p3, 100
TabDirtk giSine, kTrig, kPerc
aSig poscil .2, 400, giSine
out aSig, aSig
 endin

</CsInstruments>
<CsScore>
i 1 0 10
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The next example permutes a series of numbers randomly each time it is called. For this purpose, one random element of the input array1 is taken and written to the first position of the output array. Then all elements which are “right of” this one random element are copied one position to the left. As result the previously chosen element is being overwritten, and the number of values to read is shrinked by one. This process is done again and again, until each old element has placed to a (potentially) new position in the resulting output array.

EXAMPLE 03G12_ArrPermRnd.csd

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
ksmps = 32
seed 0

opcode ArrPermRnd, i[], i[]
 iInArr[] xin
 iLen = lenarray(iInArr)
 ;create output array and set index
 iOutArr[] init iLen
 iWriteIndx = 0
 iReadLen = iLen
 ;for all elements:
 while iWriteIndx < iLen do
 ;get one random element and put it in iOutArr
 iRndIndx = int(random:i(0, iReadLen-.0001))
 iOutArr[iWriteIndx] = iInArr[iRndIndx]
 ;shift the elements after this one to the left
 while iRndIndx < iReadLen-1 do
 iInArr[iRndIndx] = iInArr[iRndIndx+1]
 iRndIndx += 1
 od
 ;decrease length to read in and increase write index
 iReadLen -= 1
 iWriteIndx += 1
 od
 xout iOutArr
 endop

;create i-array as 1, 2, 3, ... 12
giArr[] genarray 1, 12

;permutation of giArr ...
instr Permut
 iPermut[] ArrPermRnd giArr
 printarray iPermut, "%d"
endin

;... which has not been touched by these operations
instr Print
 printarray giArr, "%d"
endin

</CsInstruments>
<CsScore>
i "Permut" 0 .01
i "Permut" + .
i "Permut" + .
i "Permut" + .
i "Permut" + .
i "Print" .05 .01
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Prints (for example):

8 2 1 7 4 11 5 12 10 6 9 3
7 5 3 2 11 12 9 8 1 10 6 4
7 9 6 2 5 3 12 8 10 1 11 4
1 12 10 11 9 5 4 8 6 7 2 3
7 12 8 2 10 4 5 1 11 3 6 9
1 2 3 4 5 6 7 8 9 10 11 12

A Recursive User Defined Opcode for Additive Synthesis

In example 03F11 a number of partials were synthesized, each with a random frequency deviation of up to 10% compared to precise harmonic spectrum frequencies and a unique duration for each partial. This can also be written as a recursive UDO. Each UDO generates one partial, and calls the UDO again until the last partial is generated. Now the code can be reduced to two instruments: instrument 1 performs the time loop, calculates the basic values for one note, and triggers the event. Then instrument 11 is called which feeds the UDO with the values and passes the audio signals to the output.

EXAMPLE 03G13_UDO_Recursive_AddSynth.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine ftgen 0, 0, 2^10, 10, 1
 seed 0

 opcode PlayPartials, aa, iiipo
;plays inumparts partials with frequency deviation and own envelopes and
;durations for each partial
;ibasfreq: base frequency of sound mixture
;inumparts: total number of partials
;ipan: panning
;ipartnum: which partial is this (1 - N, default=1)
;ixtratim: extra time in addition to p3 needed for this partial (default=0)

ibasfreq, inumparts, ipan, ipartnum, ixtratim xin
ifreqgen = ibasfreq * ipartnum; general frequency of this partial
ifreqdev random -10, 10; frequency deviation between -10% and +10%
ifreq = ifreqgen + (ifreqdev*ifreqgen)/100; real frequency
ixtratim1 random 0, p3; calculate additional time for this partial
imaxamp = 1/inumparts; maximum amplitude
idbdev random -6, 0; random deviation in dB for this partial
iamp = imaxamp * ampdb(idbdev-ipartnum); higher partials are softer
ipandev random -.1, .1; panning deviation
ipan = ipan + ipandev
aEnv transeg 0, .005, 0, iamp, p3+ixtratim1-.005, -10, 0; envelope
aSine poscil aEnv, ifreq, giSine
aL1, aR1 pan2 aSine, ipan
 if ixtratim1 > ixtratim then
ixtratim = ixtratim1 ;set ixtratim to the ixtratim1 if the latter is larger
 endif
 if ipartnum < inumparts then ;if this is not the last partial
; -- call the next one
aL2, aR2 PlayPartials ibasfreq, inumparts, ipan, ipartnum+1, ixtratim
 else ;if this is the last partial
p3 = p3 + ixtratim; reset p3 to the longest ixtratim value
 endif
 xout aL1+aL2, aR1+aR2
 endop

 instr 1; time loop with metro
kfreq init 1; give a start value for the trigger frequency
kTrig metro kfreq
 if kTrig == 1 then ;if trigger impulse:
kdur random 1, 5; random duration for instr 10
knumparts random 8, 14
knumparts = int(knumparts); 8-13 partials
kbasoct random 5, 10; base pitch in octave values
kbasfreq = cpsoct(kbasoct) ;base frequency
kpan random .2, .8; random panning between left (0) and right (1)
 event "i", 11, 0, kdur, kbasfreq, knumparts, kpan; call instr 11
kfreq random .25, 1; set new value for trigger frequency
 endif
 endin

 instr 11; plays one mixture with 8-13 partials
aL, aR PlayPartials p4, p5, p6
 outs aL, aR
 endin

</CsInstruments>
<CsScore>
i 1 0 300
</CsScore>
</CsoundSynthesizer>
;Example by Joachim Heintz

Filter implementation via Sample-by-Sample Processing

At the end of chapter 03A the ability of sample-by-sample processing has been shown at some basic examples. This feature is really substantial for writing digital filters. This can perfectly be done in the Csound language itself. The next example shows an implementation of the zero delay state variable filter by Steven Yi. In his collection at www.github.com/kunstmusik/libsyi more details and other implementaions can be found. — Note also that this code is another example of overloading a UDO definition. The same opcode name is defined here twice; first with the input types aKK (one audio signal and two k-signals with initialization), then with the input types aaa.

EXAMPLE 03G14_UDO_zdf_svf.csd

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 opcode zdf_svf,aaa,aKK

ain, kcf, kR xin

; pre-warp the cutoff- these are bilinear-transform filters
kwd = 2 * $M_PI * kcf
iT = 1/sr
kwa = (2/iT) * tan(kwd * iT/2)
kG = kwa * iT/2

;; output signals
alp init 0
ahp init 0
abp init 0

;; state for integrators
kz1 init 0
kz2 init 0

;;
kindx = 0
while kindx < ksmps do
 khp = (ain[kindx] - (2*kR+kG) * kz1 - kz2) / (1 + (2*kR*kG) + (kG*kG))
 kbp = kG * khp + kz1
 klp = kG * kbp + kz2

 ; z1 register update
 kz1 = kG * khp + kbp
 kz2 = kG * kbp + klp

 alp[kindx] = klp
 ahp[kindx] = khp
 abp[kindx] = kbp
 kindx += 1
od

xout alp, abp, ahp

 endop

 opcode zdf_svf,aaa,aaa

ain, acf, aR xin

iT = 1/sr

;; output signals
alp init 0
ahp init 0
abp init 0

;; state for integrators
kz1 init 0
kz2 init 0

;;
kindx = 0
while kindx < ksmps do

 ; pre-warp the cutoff- these are bilinear-transform filters
 kwd = 2 * $M_PI * acf[kindx]
 kwa = (2/iT) * tan(kwd * iT/2)
 kG = kwa * iT/2

 kR = aR[kindx]

 khp = (ain[kindx] - (2*kR+kG) * kz1 - kz2) / (1 + (2*kR*kG) + (kG*kG))
 kbp = kG * khp + kz1
 klp = kG * kbp + kz2

 ; z1 register update
 kz1 = kG * khp + kbp
 kz2 = kG * kbp + klp

 alp[kindx] = klp
 ahp[kindx] = khp
 abp[kindx] = kbp
 kindx += 1
od

xout alp, abp, ahp

 endop

giSine ftgen 0, 0, 2^14, 10, 1

instr 1

 aBuzz buzz 1, 100, 50, giSine
 aLp, aBp, aHp zdf_svf aBuzz, 1000, 1

 out aHp, aHp

endin

</CsInstruments>
<CsScore>
i 1 0 10
</CsScore>
</CsoundSynthesizer>
;example by steven yi

	More precisely the random element is taken from a copy of the input array. This copy is always created by the UDO, so the original array is left untouched. This is visible in the last line of the printout.↩︎

 ch022.xhtml

03 H. MACROS

Macros within Csound provide a mechanism whereby a line or a block of code can be referenced using a macro codeword. Whenever the user-defined macro codeword for that block of code is subsequently encountered in a Csound orchestra or score it will be replaced by the code text contained within the macro. This mechanism can be extremely useful in situations where a line or a block of code will be repeated many times - if a change is required in the code that will be repeated, it need only be altered once in the macro definition rather than having to be edited in each of the repetitions.

Csound utilises a subtly different mechanism for orchestra and score macros so each will be considered in turn. There are also additional features offered by the macro system such as the ability to create a macro that accepts arguments - which can be thought of as the main macro containing sub-macros that can be repeated multiple times within the main macro - the inclusion of a block of text contained within a completely separate file and other macro refinements.

It is important to realise that a macro can contain any text, including carriage returns, and that Csound will be ignorant to its use of syntax until the macro is actually used and expanded elsewhere in the orchestra or score. Macro expansion is a feature of the orchestra and score preprocessor and is not part of the compilation itself.

Orchestra Macros

Macros are defined using the syntax:

#define NAME # replacement text #

NAME is the user-defined name that will be used to call the macro at some point later in the orchestra; it must begin with a letter but can then contain any combination of numbers and letters. A limited range of special characters can be employed in the name. Apostrophes, hash symbols and dollar signs should be avoided. replacement text, bounded by hash symbols will be the text that will replace the macro name when later called. Remember that the replacement text can stretch over several lines. A macro can be defined anywhere within the <CsInstruments> … </CsInstruments> sections of a .csd file. A macro can be redefined or overwritten by reusing the same macro name in another macro definition. Subsequent expansions of the macro will then use the new version.

To expand the macro later in the orchestra the macro name needs to be preceded with a $ symbol thus:

 $NAME

The following example illustrates the basic syntax needed to employ macros. The name of a sound file is referenced twice in the score so it is defined as a macro just after the header statements. Instrument 1 derives the duration of the sound file and instructs instrument 2 to play a note for this duration. Instrument 2 plays the sound file. The score as defined in the <CsScore> … </CsScore> section only lasts for 0.01 seconds but the event_i statement in instrument 1 will extend this for the required duration. The sound file is a mono file so you can replace it with any other mono file.

EXAMPLE 03H01_Macros_basic.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 16
nchnls = 1
0dbfs = 1

; define the macro
#define SOUNDFILE # "loop.wav" #

 instr 1
; use an expansion of the macro in deriving the duration of the sound file
idur filelen $SOUNDFILE
 event_i "i",2,0,idur
 endin

 instr 2
; use another expansion of the macro in playing the sound file
a1 diskin2 $SOUNDFILE,1
 out a1
 endin

</CsInstruments>
<CsScore>
i 1 0 0.01
e
</CsScore>
</CsoundSynthesizer>
; example written by Iain McCurdy

In more complex situations where we require slight variations, such as different constant values or different sound files in each reuse of the macro, we can use a macro with arguments. A macro’s arguments are defined as a list of sub-macro names within brackets after the name of the primary macro with each macro argument being separated using an apostrophe as shown below.

#define NAME(Arg1'Arg2'Arg3...) # replacement text #

Arguments can be any text string permitted as Csound code, they should not be likened to opcode arguments where each must conform to a certain type such as i, k, a etc. Macro arguments are subsequently referenced in the macro text using their names preceded by a $ symbol. When the main macro is called later in the orchestra its arguments are then replaced with the values or strings required. The Csound Reference Manual states that up to five arguments are permitted but this still refers to an earlier implementation and in fact many more are actually permitted.

In the following example a 6 partial additive synthesis engine with a percussive character is defined within a macro. Its fundamental frequency and the ratios of its six partials to this fundamental frequency are prescribed as macro arguments. The macro is reused within the orchestra twice to create two different timbres, it could be reused many more times however. The fundamental frequency argument is passed to the macro as p4 from the score.

EXAMPLE 03H02_Macro_6partials.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 16
nchnls = 1
0dbfs = 1

gisine ftgen 0,0,2^10,10,1

; define the macro
#define ADDITIVE_TONE(Frq'Ratio1'Ratio2'Ratio3'Ratio4'Ratio5'Ratio6) #
iamp = 0.1
aenv expseg 1,p3*(1/$Ratio1),0.001,1,0.001
a1 poscil iamp*aenv,$Frq*$Ratio1,gisine
aenv expseg 1,p3*(1/$Ratio2),0.001,1,0.001
a2 poscil iamp*aenv,$Frq*$Ratio2,gisine
aenv expseg 1,p3*(1/$Ratio3),0.001,1,0.001
a3 poscil iamp*aenv,$Frq*$Ratio3,gisine
aenv expseg 1,p3*(1/$Ratio4),0.001,1,0.001
a4 poscil iamp*aenv,$Frq*$Ratio4,gisine
aenv expseg 1,p3*(1/$Ratio5),0.001,1,0.001
a5 poscil iamp*aenv,$Frq*$Ratio5,gisine
aenv expseg 1,p3*(1/$Ratio6),0.001,1,0.001
a6 poscil iamp*aenv,$Frq*$Ratio6,gisine
a7 sum a1,a2,a3,a4,a5,a6
 out a7
#

 instr 1 ; xylophone
; expand the macro with partial ratios that reflect those of a xylophone
; the fundemental frequency macro argument (the first argument -
; - is passed as p4 from the score
$ADDITIVE_TONE(p4'1'3.932'9.538'16.688'24.566'31.147)
 endin

 instr 2 ; vibraphone
$ADDITIVE_TONE(p4'1'3.997'9.469'15.566'20.863'29.440)
 endin

</CsInstruments>
<CsScore>
i 1 0 1 200
i 1 1 2 150
i 1 2 4 100
i 2 3 7 800
i 2 4 4 700
i 2 5 7 600
e
</CsScore>
</CsoundSynthesizer>
; example written by Iain McCurdy

Score Macros

Score macros employ a similar syntax. Macros in the score can be used in situations where a long string of p-fields are likely to be repeated or, as in the next example, to define a palette of score patterns that repeat but with some variation such as transposition. In this example two riffs are defined which each employ two macro arguments: the first to define when the riff will begin and the second to define a transposition factor in semitones. These riffs are played back using a bass guitar-like instrument using the wgpluck2 opcode. Remember that mathematical expressions within the Csound score must be bound within square brackets [].

EXAMPLE 03H03_Score_macro.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 16
nchnls = 1
0dbfs = 1

 instr 1 ; bass guitar
a1 wgpluck2 0.98, 0.4, cpsmidinn(p4), 0.1, 0.6
aenv linseg 1,p3-0.1,1,0.1,0
 out a1*aenv
 endin

</CsInstruments>
<CsScore>
; p4 = pitch as a midi note number
#define RIFF_1(Start'Trans)
#
i 1 [$Start] 1 [36+$Trans]
i 1 [$Start+1] 0.25 [43+$Trans]
i 1 [$Start+1.25] 0.25 [43+$Trans]
i 1 [$Start+1.75] 0.25 [41+$Trans]
i 1 [$Start+2.5] 1 [46+$Trans]
i 1 [$Start+3.25] 1 [48+$Trans]
#
#define RIFF_2(Start'Trans)
#
i 1 [$Start] 1 [34+$Trans]
i 1 [$Start+1.25] 0.25 [41+$Trans]
i 1 [$Start+1.5] 0.25 [43+$Trans]
i 1 [$Start+1.75] 0.25 [46+$Trans]
i 1 [$Start+2.25] 0.25 [43+$Trans]
i 1 [$Start+2.75] 0.25 [41+$Trans]
i 1 [$Start+3] 0.5 [43+$Trans]
i 1 [$Start+3.5] 0.25 [46+$Trans]
#
t 0 90
$RIFF_1(0 ' 0)
$RIFF_1(4 ' 0)
$RIFF_2(8 ' 0)
$RIFF_2(12'-5)
$RIFF_1(16'-5)
$RIFF_2(20'-7)
$RIFF_2(24' 0)
$RIFF_2(28' 5)
e
</CsScore>
</CsoundSynthesizer>
; example written by Iain McCurdy

Score macros can themselves contain macros so that, for example, the above example could be further expanded so that a verse, chorus structure could be employed where verses and choruses, defined using macros, were themselves constructed from a series of riff macros.

UDOs and macros can both be used to reduce code repetition and there are many situations where either could be used with equal justification but each offers its own strengths. UDOs strengths lies in their ability to be used just like an opcode with inputs and outputs, the ease with which they can be shared - between Csound projects and between Csound users - their ability to operate at a different k-rate to the rest of the orchestra and in how they facilitate recursion. The fact that macro arguments are merely blocks of text, however, offers up new possibilities and unlike UDOs, macros can span several instruments. Of course UDOs have no use in the Csound score unlike macros. Macros can also be used to simplify the creation of complex FLTK GUI where panel sections might be repeated with variations of output variable names and location.

Csound’s orchestra and score macro system offers many additional refinements and this chapter serves merely as an introduction to their basic use. To learn more it is recommended to refer to the relevant sections of the Csound Reference Manual.

 ch023.xhtml

03 I. FUNCTIONAL SYNTAX

Functional syntax is very common in many programming languages. It takes the form of fun(), where fun is any function which encloses its arguments in parentheses. Even in “old” Csound, there existed some rudiments of this functional syntax in some mathematical functions, such as sqrt(), log(), int(), frac(). For instance, the following code

iNum = 1.234
print int(iNum)
print frac(iNum)

would print:

instr 1: #i0 = 1.000
instr 1: #i1 = 0.230

Here the integer part and the fractional part of the number 1.234 are passed directly as an argument to the print opcode, without needing to be stored at any point as a variable.

This alternative way of formulating code can now be used with many opcodes in Csound6.1 First we shall look at some examples.

The traditional way of applying a fade and a sliding pitch (glissando) to a tone is something like this:

EXAMPLE 03I01_traditional_syntax.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
nchnls = 1
ksmps = 32
0dbfs = 1

instr 1
kFade linseg 0, p3/2, 0.2, p3/2, 0
kSlide expseg 400, p3/2, 800, p3/2, 600
aTone poscil kFade, kSlide
 out aTone
endin

</CsInstruments>
<CsScore>
i 1 0 5
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

In plain English what is happening is:

	We create a line signal with the opcode linseg. It starts at zero, moves to 0.2 in half of the instrument’s duration (p3/2), and moves back to zero for the second half of the instrument’s duration. We store this signal in the variable kFade.

	We create an exponential signal with the opcode expseg. It starts at 400, moves to 800 in half the instrument’s duration, and moves to 600 for the second half of the instrument’s duration. We store this signal in the variable kSlide.

	We create a sine audio signal with the opcode poscil. We feed in the signal stored in the variable kFade as amplitude, and the signal stored in the variable kSlide as frequency input. We store the audio signal in the variable aTone.

	Finally, we write the audio signal to the output with the opcode out.

Each of these four lines can be considered as a “function call”, as we call the opcodes (functions) linseg, expseg, poscil and out with certain arguments (input parameters). If we now transform this example to functional syntax, we will avoid storing the result of a function call in a variable. Rather we will feed the function and its arguments directly into the appropriate slot, by means of the fun() syntax.

If we write the first line in functional syntax, it will look like this:

linseg(0, p3/2, 0.2, p3/2, 0)

And the second line will look like this:

expseg(400, p3/2, 800, p3/2, 600)

So we can reduce our code from four lines to two lines:

EXAMPLE 03I02_functional_syntax_1.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
nchnls = 1
ksmps = 32
0dbfs = 1

instr 1
 aTone poscil linseg(0,p3/2,.2,p3/2,0), expseg(400,p3/2,800,p3/2,600)
 out aTone
endin

</CsInstruments>
<CsScore>
i 1 0 5
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Or if you prefer the “all-in-one” solution:2

EXAMPLE 03I03_functional_syntax_2.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
nchnls = 1
ksmps = 32
0dbfs = 1

instr 1
out(poscil(linseg(0,p3/2,.2,p3/2,0),expseg(400,p3/2,800,p3/2,600)))
endin

</CsInstruments>
<CsScore>
i 1 0 5
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Declare your color: i, k or a?

Most of the Csound opcodes work not only at one rate. You can, for instance, produce random numbers at i-, k- or a-rate:3

ires random imin, imax
kres random kmin, kmax
ares random kmin, kmax

Let us assume we want to change the highest frequency in our example from 800 to a random value between 700 and 1400 Hz, so that we hear a different movement for each tone. In this case, we can simply write random(700, 1400):

EXAMPLE 03I04_functional_syntax_rate_1.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
nchnls = 1
ksmps = 32
0dbfs = 1

instr 1
 out(poscil(linseg(0,p3/2,.2,p3/2,0),
 expseg(400,p3/2,random(700,1400),p3/2,600)))
endin

</CsInstruments>
<CsScore>
r 5
i 1 0 3
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

But why is the random opcode here performing at i-rate, and not at k- or a-rate? This is, so to say, pure random — it happens because in the Csound soruces the i-rate variant of this opcode is written first.4 If the k-rate variant were first, the above code failed.

So it is both, clearer and actually required, to explicitly declare at which rate a function is to be performed. This code claims that poscil runs at a-rate, linseg and expseg run at k-rate, and random runs at i-rate here:

EXAMPLE 03I05_functional_syntax_rate_2.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
nchnls = 1
ksmps = 32
0dbfs = 1

instr 1
out(poscil:a(linseg:k(0, p3/2, 1, p3/2, 0),
 expseg:k(400, p3/2, random:i(700, 1400), p3/2, 600)))
endin

</CsInstruments>
<CsScore>
r 5
i 1 0 3
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Rate declaration is done with simply specifying :a, :k or :i after the function. It would represent good practice to include it all the time, to be clear about what is happening.

fun() with UDOs

It should be mentioned that you can use the functional style also with self created opcodes (“User Defined Opcodes”):

EXAMPLE 03I06_functional_syntax_udo.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
nchnls = 1
ksmps = 32
0dbfs = 1

opcode FourModes, a, akk[]
 ;kFQ[] contains four frequency-quality pairs
 aIn, kBasFreq, kFQ[] xin
aOut1 mode aIn, kBasFreq*kFQ[0], kFQ[1]
aOut2 mode aIn, kBasFreq*kFQ[2], kFQ[3]
aOut3 mode aIn, kBasFreq*kFQ[4], kFQ[5]
aOut4 mode aIn, kBasFreq*kFQ[6], kFQ[7]
 xout (aOut1+aOut2+aOut3+aOut4) / 4
endop

instr 1
kArr[] fillarray 1, 2000, 2.8, 2000, 5.2, 2000, 8.2, 2000
aImp mpulse .3, 1
 out FourModes(aImp, 200, kArr)
endin

</CsInstruments>
<CsScore>
i 1 0 10
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz, based on an example of iain mccurdy

Besides the ability of functional expressions to abbreviate code, this way of writing Csound code allows to conincide with a convention which is shared by many programming languages. This final example is doing exactly the same as the previous one, but for some programmers in a more clear and common way:

EXAMPLE 03I07_functional_syntax_udo_2.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
nchnls = 2
ksmps = 32
0dbfs = 1

opcode FourModes, a, akk[]
 aIn, kBasFreq, kFQ[] xin
 aOut1 = mode:a(aIn,kBasFreq*kFQ[0],kFQ[1])
 aOut2 = mode:a(aIn,kBasFreq*kFQ[2],kFQ[3])
 aOut3 = mode:a(aIn,kBasFreq*kFQ[4],kFQ[5])
 aOut4 = mode:a(aIn,kBasFreq*kFQ[6],kFQ[7])
 xout (aOut1+aOut2+aOut3+aOut4) / 4
endop

instr 1
 kArr[] = fillarray(1, 2000, 2.8, 2000, 5.2, 2000, 8.2, 2000)
 aImp = mpulse:a(.3, 1)
 aOut = FourModes(aImp, randomh:k(200,195,1), kArr)
 out(aOut, aOut)
endin

</CsInstruments>
<CsScore>
i 1 0 10
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz, based on an example of iain mccurdy

	The main restriction is that it can only be used by opcodes which have only one output (not two or more).↩︎

	Please note that these two examples are not really correct, because the rates of the opcodes are not specified.↩︎

	See chapter 03A Initialization and Performance Pass for a more thorough explanation.↩︎

	See https://github.com/csound/csound/blob/develop/Opcodes/uggab.c, line 2085↩︎

 ch024.xhtml

04 A. ADDITIVE SYNTHESIS

Jean Baptiste Joseph Fourier (1768-1830) claimed in this treatise Théorie analytique de la chaleur (1822) that any periodic function can be described perfectly as a sum of weighted sine waves. The frequencies of these harmonics are integer multiples of the fundamental frequency.

As we can easily produce sine waves of different amplitudes in digital sound synthesis, the Fourier Synthesis or Additive Synthesis may sound the universal key for creating interesting sounds. But first, not all sounds are periodic. Noise as very important part of the sounding world represents the other pole which is essentially non-periodic. And dealing with single sine waves means dealing with a lot of data and reqirements.

Nonetheless, additive synthesis can provide unusual and interesting sounds and the power of modern computers and their ability to manage data in a programming language offers new dimensions of working with this old technique. As with most things in Csound there are several ways to go about implementing additive synthesis. We shall endeavour to introduce some of them and to allude to how they relate to different programming paradigms.

Main Parameters of Additive Synthesis

Before examining various methods of implementing additive synthesis in Csound, we shall first consider what parameters might be required. As additive synthesis involves the addition of multiple sine generators, the parameters we use will operate on one of two different levels:

	For each sine, there will be a frequency and an amplitude with an envelope.

	
	The frequency will usually be a constant value, but it can be varied and in fact natural sounds typically exhibit slight modulations of partial frequencies.

	The amplitude must have at least a simple envelope such as the well-known ADSR but more complex methods of continuously altering the amplitude will result in a livelier sound.

	For the sound as an entirety, the relevant parameters are:

	
	The total number of sinusoids. A sound which consists of just three sinusoids will most likely sound poorer than one which employs 100.

	The frequency ratios of the sine generators. For a classic harmonic spectrum, the multipliers of the sinusoids are 1, 2, 3, … (If your first sine is 100 Hz, the others will be 200, 300, 400, … Hz.) An inharmonic or noisy spectrum will probably have no simple integer ratios. These frequency ratios are chiefly responsible for our perception of timbre.

	The base frequency is the frequency of the first partial. If the partials are exhibiting a harmonic ratio, this frequency (in the example given 100 Hz) is also the overall perceived pitch.

	The amplitude ratios of the sinusoids. This is also very important in determining the resulting timbre of a sound. If the higher partials are relatively strong, the sound will be perceived as being more “brilliant”; if the higher partials are soft, then the sound will be perceived as being dark and soft.

	The duration ratios of the sinusoids. In simple additive synthesis, all single sines have the same duration, but it will be more interesting if they differ - this will usually relate to the durations of the envelopes: if the envelopes of different partials vary, some partials will die away faster than others.

It is not always the aim of additive synthesis to imitate natural sounds, but the task of first analysing and then attempting to imitate a sound can prove to be very useful when studying additive synthesis. This is what a guitar note looks like when spectrally analysed:

[image: Spectral analysis of a guitar tone in time (courtesy of W. Fohl, Hamburg)]Spectral analysis of a guitar tone in time (courtesy of W. Fohl, Hamburg)

Each partial possesses its own frequency movement and duration. We may or may not be able to achieve this successfully using additive synthesis. We will begin with some simple sounds and consider how to go about programming this in Csound. Later we will look at some more complex sounds and the more advanced techniques required to synthesize them.

Different Methods for Additive Synthesis

Simple Additions of Sinusoids Inside an Instrument

If additive synthesis amounts to simply adding together sine generators, it is therefore straightforward to implement this by creating multiple oscillators in a single instrument and adding their outputs together. In the following example, instrument 1 demonstrates the creation of a harmonic spectrum, and instrument 2 an inharmonic one. Both instruments share the same amplitude multipliers: 1, 1/2, 1/3, 1/4, … and receive the base frequency in Csound’s pitch notation (octave.semitone) and the main amplitude in dB.

EXAMPLE 04A01_AddSynth_simple.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1 ;harmonic additive synthesis
;receive general pitch and volume from the score
ibasefrq = cpspch(p4) ;convert pitch values to frequency
ibaseamp = ampdbfs(p5) ;convert dB to amplitude
;create 8 harmonic partials
aOsc1 poscil ibaseamp, ibasefrq
aOsc2 poscil ibaseamp/2, ibasefrq*2
aOsc3 poscil ibaseamp/3, ibasefrq*3
aOsc4 poscil ibaseamp/4, ibasefrq*4
aOsc5 poscil ibaseamp/5, ibasefrq*5
aOsc6 poscil ibaseamp/6, ibasefrq*6
aOsc7 poscil ibaseamp/7, ibasefrq*7
aOsc8 poscil ibaseamp/8, ibasefrq*8
;apply simple envelope
kenv linen 1, p3/4, p3, p3/4
;add partials and write to output
aOut = aOsc1 + aOsc2 + aOsc3 + aOsc4 + aOsc5 + aOsc6 + aOsc7 + aOsc8
 outs aOut*kenv, aOut*kenv
 endin

 instr 2 ;inharmonic additive synthesis
ibasefrq = cpspch(p4)
ibaseamp = ampdbfs(p5)
;create 8 inharmonic partials
aOsc1 poscil ibaseamp, ibasefrq
aOsc2 poscil ibaseamp/2, ibasefrq*1.02
aOsc3 poscil ibaseamp/3, ibasefrq*1.1
aOsc4 poscil ibaseamp/4, ibasefrq*1.23
aOsc5 poscil ibaseamp/5, ibasefrq*1.26
aOsc6 poscil ibaseamp/6, ibasefrq*1.31
aOsc7 poscil ibaseamp/7, ibasefrq*1.39
aOsc8 poscil ibaseamp/8, ibasefrq*1.41
kenv linen 1, p3/4, p3, p3/4
aOut = aOsc1 + aOsc2 + aOsc3 + aOsc4 + aOsc5 + aOsc6 + aOsc7 + aOsc8
 outs aOut*kenv, aOut*kenv
 endin

</CsInstruments>
<CsScore>
; pch amp
i 1 0 5 8.00 -13
i 1 3 5 9.00 -17
i 1 5 8 9.02 -15
i 1 6 9 7.01 -15
i 1 7 10 6.00 -13
s
i 2 0 5 8.00 -13
i 2 3 5 9.00 -17
i 2 5 8 9.02 -15
i 2 6 9 7.01 -15
i 2 7 10 6.00 -13
</CsScore>
</CsoundSynthesizer>
;example by Andrés Cabrera

Simple Additions of Sinusoids via the Score

A typical paradigm in programming: if you are repeating lines of code with just minor variations, consider abstracting it in some way. In the Csound language this could mean moving parameter control to the score. In our case, the lines

aOsc1 poscil ibaseamp, ibasefrq
aOsc2 poscil ibaseamp/2, ibasefrq*2
aOsc3 poscil ibaseamp/3, ibasefrq*3
aOsc4 poscil ibaseamp/4, ibasefrq*4
aOsc5 poscil ibaseamp/5, ibasefrq*5
aOsc6 poscil ibaseamp/6, ibasefrq*6
aOsc7 poscil ibaseamp/7, ibasefrq*7
aOsc8 poscil ibaseamp/8, ibasefrq*8

could be abstracted to the form

aOsc poscil ibaseamp*iampfactor, ibasefrq*ifreqfactor

with the parameters iampfactor (the relative amplitude of a partial) and ifreqfactor (the frequency multiplier) being transferred to the score as p-fields.

The next version of the previous instrument, simplifies the instrument code and defines the variable values as score parameters:

EXAMPLE 04A02_AddSynth_score.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine ftgen 0, 0, 2^10, 10, 1

 instr 1
iBaseFreq = cpspch(p4)
iFreqMult = p5 ;frequency multiplier
iBaseAmp = ampdbfs(p6)
iAmpMult = p7 ;amplitude multiplier
iFreq = iBaseFreq * iFreqMult
iAmp = iBaseAmp * iAmpMult
kEnv linen iAmp, p3/4, p3, p3/4
aOsc poscil kEnv, iFreq, giSine
 outs aOsc, aOsc
 endin

</CsInstruments>
<CsScore>
; freq freqmult amp ampmult
i 1 0 7 8.09 1 -10 1
i . . 6 . 2 . [1/2]
i . . 5 . 3 . [1/3]
i . . 4 . 4 . [1/4]
i . . 3 . 5 . [1/5]
i . . 3 . 6 . [1/6]
i . . 3 . 7 . [1/7]
s
i 1 0 6 8.09 1.5 -10 1
i . . 4 . 3.1 . [1/3]
i . . 3 . 3.4 . [1/6]
i . . 4 . 4.2 . [1/9]
i . . 5 . 6.1 . [1/12]
i . . 6 . 6.3 . [1/15]
</CsScore>
</CsoundSynthesizer>
;example by Andrés Cabrera and Joachim Heintz

You might ask: “Okay, where is the simplification? There are even more lines than before!” This is true, but this still represents better coding practice. The main benefit now is flexibility. Now we are able to realise any number of partials using the same instrument, with any amplitude, frequency and duration ratios. Using the Csound score abbreviations (for instance a dot for repeating the previous value in the same p-field), you can make great use of copy-and-paste, and focus just on what is changing from line to line.

Note that you are now calling one instrument multiple times in the creation of a single additive synthesis note, in fact, each instance of the instrument contributes just one partial to the additive tone. Calling multiple instances of one instrument in this way also represents good practice in Csound coding. We will discuss later how this end can be achieved in a more elegant way.

Creating Function Tables for Additive Synthesis

Before we continue, let us return to the first example and discuss a classic and abbreviated method for playing a number of partials. As we mentioned at the beginning, Fourier stated that any periodic oscillation can be described using a sum of simple sinusoids. If the single sinusoids are static (with no individual envelopes, durations or frequency fluctuations), the resulting waveform will be similarly static.

Above you see four sine waves, each with fixed frequency and amplitude relationships. These are then mixed together with the resulting waveform illustrated at the bottom (Sum). This then begs the question: why not simply calculate this composite waveform first, and then read it with just a single oscillator?

This is what some Csound GEN routines do. They compose the resulting shape of the periodic waveform, and store the values in a function table. GEN10 can be used for creating a waveform consisting of harmonically related partials. Its form begins with the common GEN routine p-fields

<table number>, <creation time>, <size in points>, <GEN number>

following which you just have to define the relative strengths of the harmonics. GEN09 is more complex and allows you to also control the frequency multiplier and the phase (0-360°) of each partial. Thus we are able to reproduce the first example in a shorter (and computationally faster) form:

EXAMPLE 04A03_AddSynth_GEN.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine ftgen 0, 0, 2^10, 10, 1
giHarm ftgen 1, 0, 2^12, 10, 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8
giNois ftgen 2, 0, 2^12, 9, 100,1,0, 102,1/2,0, 110,1/3,0, \
 123,1/4,0, 126,1/5,0, 131,1/6,0, 139,1/7,0, 141,1/8,0

 instr 1
iBasFreq = cpspch(p4)
iTabFreq = p7 ;base frequency of the table
iBasFreq = iBasFreq / iTabFreq
iBaseAmp = ampdb(p5)
iFtNum = p6
aOsc poscil iBaseAmp, iBasFreq, iFtNum
aEnv linen aOsc, p3/4, p3, p3/4
 outs aEnv, aEnv
 endin

</CsInstruments>
<CsScore>
; pch amp table table base (Hz)
i 1 0 5 8.00 -10 1 1
i . 3 5 9.00 -14 . .
i . 5 8 9.02 -12 . .
i . 6 9 7.01 -12 . .
i . 7 10 6.00 -10 . .
s
i 1 0 5 8.00 -10 2 100
i . 3 5 9.00 -14 . .
i . 5 8 9.02 -12 . .
i . 6 9 7.01 -12 . .
i . 7 10 6.00 -10 . .
</CsScore>
</CsoundSynthesizer>
;example by Andrés Cabrera and Joachim Heintz

You maybe noticed that to store a waveform in which the partials are not harmonically related, the table must be constructed in a slightly special way (see table giNois). If the frequency multipliers in our first example started with 1 and 1.02, the resulting period is actually very long. If the oscillator was playing at 100 Hz, the tone it would produce would actually contain partials at 100 Hz and 102 Hz. So you need 100 cycles from the 1.00 multiplier and 102 cycles from the 1.02 multiplier to complete one period of the composite waveform. In other words, we have to create a table which contains respectively 100 and 102 periods, instead of 1 and 1.02. Therefore the table frequencies will not be related to 1 as usual but instead to 100. This is the reason that we have to introduce a new parameter, iTabFreq, for this purpose. (N.B. In this simple example we could actually reduce the ratios to 50 and 51 as 100 and 102 share a common denominator of 2.)

This method of composing waveforms can also be used for generating four standard waveform shapes typically encountered in vintage synthesizers. An impulse wave can be created by adding a number of harmonics of the same strength. A sawtooth wave has the amplitude multipliers 1, 1/2, 1/3, … for the harmonics. A square wave has the same multipliers, but just for the odd harmonics. A triangle can be calculated as 1 divided by the square of the odd partials, with swapping positive and negative values. The next example creates function tables with just the first ten partials for each of these waveforms.

EXAMPLE 04A04_Standard_waveforms.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giImp ftgen 1, 0, 4096, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
giSaw ftgen 2, 0, 4096, 10, 1,-1/2,1/3,-1/4,1/5,-1/6,1/7,-1/8,1/9,-1/10
giSqu ftgen 3, 0, 4096, 10, 1, 0, 1/3, 0, 1/5, 0, 1/7, 0, 1/9, 0
giTri ftgen 4, 0, 4096, 10, 1, 0, -1/9, 0, 1/25, 0, -1/49, 0, 1/81, 0

instr 1
asig poscil .2, 457, p4
 outs asig, asig
endin

</CsInstruments>
<CsScore>
i 1 0 3 1
i 1 4 3 2
i 1 8 3 3
i 1 12 3 4
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Triggering Instrument Events for the Partials

Performing additive synthesis by designing partial strengths into function tables has the disadvantage that once a note has begun there is no way of varying the relative strengths of individual partials. There are various methods to circumvent the inflexibility of table-based additive synthesis such as morphing between several tables (for example by using the ftmorf opcode) or by filtering the result. Next we shall consider another approach: triggering one instance of a sub-instrument1 for each partial, and exploring the possibilities of creating a spectrally dynamic sound using this technique.

Let us return to the second instrument (04A02.csd) which had already made use of some abstractions and triggered one instrument instance for each partial. This was done in the score, but now we will trigger one complete note in one score line, not just one partial. The first step is to assign the desired number of partials via a score parameter. The next example triggers any number of partials using this one value:

EXAMPLE 04A05_Flexible_number_of_partials.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1 ;master instrument
inumparts = p4 ;number of partials
ibasfreq = 200 ;base frequency
ipart = 1 ;count variable for loop
;loop for inumparts over the ipart variable
;and trigger inumpartss instanes of the subinstrument
loop:
ifreq = ibasfreq * ipart
iamp = 1/ipart/inumparts
 event_i "i", 10, 0, p3, ifreq, iamp
 loop_le ipart, 1, inumparts, loop
endin

instr 10 ;subinstrument for playing one partial
ifreq = p4 ;frequency of this partial
iamp = p5 ;amplitude of this partial
aenv transeg 0, .01, 0, iamp, p3-0.1, -10, 0
apart poscil aenv, ifreq
 outs apart, apart
endin

</CsInstruments>
<CsScore>
; number of partials
i 1 0 3 10
i 1 3 3 20
i 1 6 3 2
</CsScore>
</CsoundSynthesizer>
;Example by joachim heintz

This instrument can easily be transformed to be played via a midi keyboard. In the next the midi key velocity will map to the number of synthesized partials played to implement a brightness control.

EXAMPLE 04A06_Play_it_with_Midi.csd

<CsoundSynthesizer>
<CsOptions>
-o dac -Ma
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 massign 0, 1 ;all midi channels to instr 1

instr 1 ;master instrument
ibasfreq cpsmidi ;base frequency
iampmid ampmidi 20 ;receive midi-velocity and scale 0-20
inparts = int(iampmid)+1 ;exclude zero
ipart = 1 ;count variable for loop
;loop for inparts over the ipart variable
;and trigger inparts instances of the sub-instrument
loop:
ifreq = ibasfreq * ipart
iamp = 1/ipart/inparts
 event_i "i", 10, 0, 1, ifreq, iamp
 loop_le ipart, 1, inparts, loop
endin

instr 10 ;subinstrument for playing one partial
ifreq = p4 ;frequency of this partial
iamp = p5 ;amplitude of this partial
aenv transeg 0, .01, 0, iamp, p3-.01, -3, 0
apart poscil aenv, ifreq
 outs apart/3, apart/3
endin

</CsInstruments>
<CsScore>

</CsScore>
</CsoundSynthesizer>
;Example by Joachim Heintz

Although this instrument is rather primitive it is useful to be able to control the timbre in this way using key velocity. Let us continue to explore some other methods of creating parameter variation in additive synthesis.

Applying User-controlled Random Variations

Natural sounds exhibit constant movement and change in the parameters we have so far discussed. Even the best player or singer will not be able to play a note in the exact same way twice and within a tone, the partials will have some unsteadiness: slight waverings in the amplitudes and slight frequency fluctuations. In an audio programming environment like Csound, we can imitate these movements by employing random deviations. The boundaries of random deviations must be adjusted as carefully. Exaggerate them and the result will be unnatural or like a bad player. The rates or speeds of these fluctuations will also need to be chosen carefully and sometimes we need to modulate the rate of modulation in order to achieve naturalness.

Let us start with some random deviations in our subinstrument. The following parameters can be affected:

	The frequency of each partial can be slightly detuned. The range of this possible maximum detuning can be set in cents (100 cent = 1 semitone).

	The amplitude of each partial can be altered relative to its default value. This alteration can be measured in decibels (dB).

	The duration of each partial can be made to be longer or shorter than the default value. Let us define this deviation as a percentage. If the expected duration is five seconds, a maximum deviation of 100% will mean a resultant value of between half the duration (2.5 sec) and double the duration (10 sec).

The following example demonstrates the effect of these variations. As a base - and as a reference to its author - we take as our starting point, the bell-like sound created by Jean-Claude Risset in his Sound Catalogue.2

EXAMPLE 04A07_Risset_variations.csd

<CsoundSynthesizer>
<CsOptions>
-o dac -m0
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
seed 0

;frequency and amplitude multipliers for 11 partials of Risset's bell
giFqs[] fillarray .56, .563, .92, .923, 1.19, 1.7, 2, 2.74, 3, 3.74, 4.07
giAmps[] fillarray 1, 2/3, 1, 1.8, 8/3, 5/3, 1.46, 4/3, 4/3, 1, 4/3
gSComments[] fillarray "unchanged sound", "slight variations in frequency",
 "slight variations in amplitude", "slight variations in duration",
 "slight variations combined", "heavy variations"
giCommentsIndx[] fillarray 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3,
 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5
giCommentsCounter init 0

instr 1 ;master instrument
ibasfreq = 400
ifqdev = p4 ;maximum freq deviation in cents
iampdev = p5 ;maximum amp deviation in dB
idurdev = p6 ;maximum duration deviation in %
indx = 0 ;count variable for loop
iMsgIndx = giCommentsIndx[giCommentsCounter]
puts gSComments[iMsgIndx], 1
giCommentsCounter += 1
while indx < 11 do
 ifqmult = giFqs[indx] ;get frequency multiplier from array
 ifreq = ibasfreq * ifqmult
 iampmult = giAmps[indx] ;get amp multiplier
 iamp = iampmult / 20 ;scale
 event_i "i", 10, 0, p3, ifreq, iamp, ifqdev, iampdev, idurdev
 indx += 1
od
endin

instr 10 ;subinstrument for playing one partial
;receive the parameters from the master instrument
ifreqnorm = p4 ;standard frequency of this partial
iampnorm = p5 ;standard amplitude of this partial
ifqdev = p6 ;maximum freq deviation in cents
iampdev = p7 ;maximum amp deviation in dB
idurdev = p8 ;maximum duration deviation in %
;calculate frequency
icent random -ifqdev, ifqdev ;cent deviation
ifreq = ifreqnorm * cent(icent)
;calculate amplitude
idb random -iampdev, iampdev ;dB deviation
iamp = iampnorm * ampdb(idb)
;calculate duration
idurperc random -idurdev, idurdev ;duration deviation (%)
iptdur = p3 * 2^(idurperc/100)
p3 = iptdur ;set p3 to the calculated value
;play partial
aenv transeg 0, .01, 0, iamp, p3-.01, -10, 0
apart poscil aenv, ifreq
 outs apart, apart
endin

</CsInstruments>
<CsScore>
; frequency amplitude duration
; deviation deviation deviation
; in cent in dB in %
;;unchanged sound (twice)
r 2
i 1 0 5 0 0 0
s
;;slight variations in frequency
r 4
i 1 0 5 25 0 0
;;slight variations in amplitude
r 4
i 1 0 5 0 6 0
;;slight variations in duration
r 4
i 1 0 5 0 0 30
;;slight variations combined
r 6
i 1 0 5 25 6 30
;;heavy variations
r 6
i 1 0 5 50 9 100
</CsScore>
</CsoundSynthesizer>
;Example by joachim heintz

In midi-triggered descendant of this instrument, we could - as one of many possible options - vary the amount of possible random variation according to the key velocity so that a key pressed softly plays the bell-like sound as described by Risset but as a key is struck with increasing force the sound produced will be increasingly altered.

EXAMPLE 04A08_Risset_played_by_Midi.csd

<CsoundSynthesizer>
<CsOptions>
-o dac -m0
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
seed 0

;frequency and amplitude multipliers for 11 partials of Risset's bell
giFqs[] fillarray .56, .563, .92, .923, 1.19, 1.7, 2, 2.74, 3, 3.74, 4.07
giAmps[] fillarray 1, 2/3, 1, 1.8, 8/3, 5/3, 1.46, 4/3, 4/3, 1, 4/3

massign 0, 1 ;all midi channels to instr 1

instr 1 ;master instrument
;;scale desired deviations for maximum velocity
;frequency (cent)
imxfqdv = 100
;amplitude (dB)
imxampdv = 12
;duration (%)
imxdurdv = 100
;;get midi values
ibasfreq cpsmidi ;base frequency
iampmid ampmidi 1 ;receive midi-velocity and scale 0-1
;;calculate maximum deviations depending on midi-velocity
ifqdev = imxfqdv * iampmid
iampdev = imxampdv * iampmid
idurdev = imxdurdv * iampmid
;;trigger subinstruments
indx = 0
while indx < 11 do
 ifqmult = giFqs[indx]
 ifreq = ibasfreq * ifqmult
 iampmult = giAmps[indx]
 iamp = iampmult / 20 ;scale
 event_i "i", 10, 0, 3, ifreq, iamp, ifqdev, iampdev, idurdev
 indx += 1
od
endin

instr 10 ;subinstrument for playing one partial
;receive the parameters from the master instrument
ifreqnorm = p4 ;standard frequency of this partial
iampnorm = p5 ;standard amplitude of this partial
ifqdev = p6 ;maximum freq deviation in cents
iampdev = p7 ;maximum amp deviation in dB
idurdev = p8 ;maximum duration deviation in %
;calculate frequency
icent random -ifqdev, ifqdev ;cent deviation
ifreq = ifreqnorm * cent(icent)
;calculate amplitude
idb random -iampdev, iampdev ;dB deviation
iamp = iampnorm * ampdb(idb)
;calculate duration
idurperc random -idurdev, idurdev ;duration deviation (%)
iptdur = p3 * 2^(idurperc/100)
p3 = iptdur ;set p3 to the calculated value
;play partial
aenv transeg 0, .01, 0, iamp, p3-.01, -10, 0
apart poscil aenv, ifreq
 outs apart, apart
endin

</CsInstruments>
<CsScore>

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Whether you can play examples like this in realtime will depend on the power of your computer. Have a look at chapter 2D (Live Audio) for tips on getting the best possible performance from your Csound orchestra.

Using a Recursive UDO

A recursive User-Defines Opcode, as described in chapter 03 G, is an elegant way to accomplish the task of individually controlled partials in an additive synthesis. One instance of the UDO performs one partial. It calls the next instance recursively until the desired number of partials is there. The audio signals are added in the recursion.

The next example demonstrates this in transforming the Risset bell code (04A07) to this approach. The coding style is more condensed here, so some comments are added after the code.

EXAMPLE 04A09_risset_bell_rec_udo.csd

<CsoundSynthesizer>
<CsOptions>
-o dac -m128
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
seed 0

opcode AddSynth,a,i[]i[]iooo
 /* iFqs[], iAmps[]: arrays with frequency ratios and amplitude multipliers
 iBasFreq: base frequency (hz)
 iPtlIndex: partial index (first partial = index 0)
 iFreqDev, iAmpDev: maximum frequency (cent) and amplitude (db) deviation */
 iFqs[], iAmps[], iBasFreq, iPtlIndx, iFreqDev, iAmpDev xin
 iFreq = iBasFreq * iFqs[iPtlIndx] * cent(rnd31:i(iFreqDev,0))
 iAmp = iAmps[iPtlIndx] * ampdb(rnd31:i(iAmpDev,0))
 aPartial poscil iAmp, iFreq
 if iPtlIndx < lenarray(iFqs)-1 then
 aPartial += AddSynth(iFqs,iAmps,iBasFreq,iPtlIndx+1,iFreqDev,iAmpDev)
 endif
 xout aPartial
endop

;frequency and amplitude multipliers for 11 partials of Risset's bell
giFqs[] fillarray .56, .563, .92, .923, 1.19, 1.7, 2, 2.74, 3, 3.74, 4.07
giAmps[] fillarray 1, 2/3, 1, 1.8, 8/3, 5/3, 1.46, 4/3, 4/3, 1, 4/3

instr Risset_Bell
 ibasfreq = p4
 iamp = ampdb(p5)
 ifqdev = p6 ;maximum freq deviation in cents
 iampdev = p7 ;maximum amp deviation in dB
 aRisset AddSynth giFqs, giAmps, ibasfreq, 0, ifqdev, iampdev
 aRisset *= transeg:a(0, .01, 0, iamp/10, p3-.01, -10, 0)
 out aRisset, aRisset
endin

instr PlayTheBells
 iMidiPitch random 60,70
 schedule("Risset_Bell",0,random:i(2,8),mtof:i(iMidiPitch),
 random:i(-30,-10),30,6)
 if p4 > 0 then
 schedule("PlayTheBells",random:i(1/10,1/4),1,p4-1)
 endif
endin

</CsInstruments>
<CsScore>
; base db frequency amplitude
; freq deviation deviation
; in cent in dB
r 2 ;unchanged sound
i 1 0 5 400 -6 0 0
r 2 ;variations in frequency
i 1 0 5 400 -6 50 0
r 2 ;variations in amplitude
i 1 0 5 400 -6 0 10
s
i "PlayTheBells" 0 1 50 ;perform sequence of 50 bells
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Some comments:

	Line 12-17: The main inputs are array with the frequencies iFqs[], the array with the amplitudes iAmps[], and the base frequency iBasFreq. The partial index iPtlIndx is by default zero, as well as the possible frequency and amplitude deviation of each partial.

	Line 18-19: The appropriate frequency and amplitude multiplier is selected from the array as iFqs[iPtlIndx] and iAmps[iPtlIndx]. The deviations are calculated for each partial by the rnd31 opcode, a bipolar random generator which by default seeds from system clock.

	Line 21-23: The recursion is done if this is not the last partial. For the Risset bell it means: partials 0, 1, 2, … are called until partial index 10. As index 10 is not smaller than the length of the frequency array (= 11) minus 1, it will not perform the recursion any more.

	Line 37: The envelope is applied for the sum of all partials (again in functional style, see chapter 03 I), as we don’t use individual durations here.

	Line 41-47: The PlayTheBells instrument also uses recursion. It starts with p4=50 and calls the next instance of itself with p4=49, which in turn will call the next instance with p4=48, until 0 has been reached. The Risset_Bell instrument is scheduled with random values for duration, pitch and volume.

Csound Opcodes for Additive Synthesis

gbuzz, buzz and GEN11

gbuzz is useful for creating additive tones made of harmonically related cosine waves. Rather than define attributes for every partial individually, gbuzz allows us to define parameters that describe the entire additive tone in a more general way: specifically the number of partials in the tone, the partial number of the lowest partial present and an amplitude coefficient multipler, which shifts the peak of spectral energy in the tone. Although number of harmonics (knh) and lowest hamonic (klh) are k-rate arguments, they are only interpreted as integers by the opcode; therefore changes from integer to integer will result in discontinuities in the output signal. The amplitude coefficient multiplier allows for smooth spectral modulations however. Although we lose some control of individual partials using gbuzz, we gain by being able to nimbly sculpt the spectrum of the tone it produces.

In the following example a 100Hz tone is created, in which the number of partials it contains rises from 1 to 20 across its 8 second duration. A spectrogram/sonogram displays how this manifests spectrally. A linear frequency scale is employed in the spectrogram so that harmonic partials appear equally spaced.

EXAMPLE 04A10_gbuzz.csd

<CsoundSynthesizer>

<CsOptions>
-o dac
</CsOptions>

<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

; a cosine wave
gicos ftgen 0, 0, 2^10, 11, 1

 instr 1
knh line 1, p3, 20 ; number of harmonics
klh = 1 ; lowest harmonic
kmul = 1 ; amplitude coefficient multiplier
asig gbuzz 1, 100, knh, klh, kmul, gicos
 outs asig, asig
 endin

</CsInstruments>

<CsScore>
i 1 0 8
e
</CsScore>

</CsoundSynthesizer>
;example by Iain McCurdy

The total number of partials only reaches 19 because the line function only reaches 20 at the very conclusion of the note.

In the next example the number of partials contained within the tone remains constant but the partial number of the lowest partial rises from 1 to 20.

EXAMPLE 04A11_gbuzz_partials_rise.csd

<CsoundSynthesizer>

<CsOptions>
-o dac
</CsOptions>

<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

; a cosine wave
gicos ftgen 0, 0, 2^10, 11, 1

 instr 1
knh = 20
klh line 1, p3, 20
kmul = 1
asig gbuzz 1, 100, knh, klh, kmul, gicos
 outs asig, asig
 endin

</CsInstruments>

<CsScore>
i 1 0 8
e
</CsScore>

</CsoundSynthesizer>
;example by Iain McCurdy

In the spectrogram it can be seen how, as lowermost partials are removed, additional partials are added at the top of the spectrum. This is because the total number of partials remains constant at 20.

In the final gbuzz example the amplitude coefficient multiplier rises from 0 to 2. It can be heard (and seen in the spectrogram) how, when this value is zero, emphasis is on the lowermost partial and when this value is 2, emphasis is on the uppermost partial.

EXAMPLE 04A12_gbuzz_amp_coeff_rise.csd

<CsoundSynthesizer>

<CsOptions>
-o dac
</CsOptions>

<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

; a cosine wave
gicos ftgen 0, 0, 2^10, 11, 1

 instr 1
knh = 20
klh = 1
kmul line 0, p3, 2
asig gbuzz 1, 100, knh, klh, kmul, gicos
 outs asig, asig
 endin

</CsInstruments>

<CsScore>
i 1 0 8
e
</CsScore>

</CsoundSynthesizer>
;example by Iain McCurdy

buzz is a simplified version of gbuzz with fewer parameters – it does not provide for modulation of the lowest partial number and amplitude coefficient multiplier.

GEN11 creates a function table waveform using the same parameters as gbuzz. If a gbuss tone is required but no performance time modulation of its parameters is needed, GEN11 may provide a more efficient option. GEN11 also opens the possibility of using its waveforms in a variety of other opcodes. gbuzz, buzz and GEN11 may also prove useful as a source for subtractive synthesis.

hsboscil

The opcode hsboscil offers an interesting method of additive synthesis in which all partials are spaced an octave apart. Whilst this may at first seems limiting, it does offer simple means for morphing the precise make up of its spectrum. It can be thought of as producing a sound spectrum that extends infinitely above and below the base frequency. Rather than sounding all of the resultant partials simultaneously, a window (typically a Hanning window) is placed over the spectrum, masking it so that only one or several of these partials sound at any one time. The user can shift the position of this window up or down the spectrum at k-rate and this introduces the possibility of spectral morphing. hsbosil refers to this control as kbrite. The width of the window can be specified (but only at i-time) using its iOctCnt parameter. The entire spectrum can also be shifted up or down, independent of the location of the masking window using the ktone parameter, which can be used to create a Risset glissando-type effect. The sense of the interval of an octave between partials tends to dominate but this can be undermined through the use of frequency shifting or by using a waveform other than a sine wave as the source waveform for each partial.

In the next example, instrument 1 demonstrates the basic sound produced by hsboscil whilst randomly modulating the location of the masking window (kbrite) and the transposition control (ktone). Instrument 2 introduces frequency shifting (through the use of the hilbert opcode) which adds a frequency value to all partials thereby warping the interval between partials. Instrument 3 employs a more complex waveform (pseudo-inharmonic) as the source waveform for the partials.

EXAMPLE 04A13_hsboscil.csd

<CsoundSynthesizer>
<CsOptions>
-o dac -m0
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
0dbfs = 1
nchnls = 2

giSine ftgen 0, 0, 2^10, 10, 1
; hanning window
giWindow ftgen 0, 0, 1024, -19, 1, 0.5, 270, 0.5
; a complex pseudo inharmonic waveform (partials scaled up X 100)
giWave ftgen 0, 0, 262144, 9, 100,1.000,0, 278,0.500,0, 518,0.250,0,
 816,0.125,0, 1166,0.062,0, 1564,0.031,0, 1910,0.016,0

instr 1 ; demonstration of hsboscil
kAmp = 0.3
kTone rspline -1,1,0.05,0.2 ; randomly shift spectrum up and down
kBrite rspline -1,3,0.4,2 ; randomly shift masking window up and down
iBasFreq = 200 ; base frequency
iOctCnt = 3 ; width of masking window
aSig hsboscil kAmp, kTone, kBrite, iBasFreq, giSine, giWindow, iOctCnt
out aSig, aSig
endin

instr 2 ; frequency shifting added
kAmp = 0.3
kTone = 0 ; spectrum remains static this time
kBrite rspline -2,5,0.4,2 ; randomly shift masking window up and down
iBasFreq = 75 ; base frequency
iOctCnt = 6 ; width of masking window
aSig hsboscil kAmp, kTone, kBrite, iBasFreq, giSine, giWindow, iOctCnt
; frequency shift the sound
kfshift = -357 ; amount to shift the frequency
areal,aimag hilbert aSig ; hilbert filtering
asin poscil 1, kfshift, giSine, 0 ; modulating signals
acos poscil 1, kfshift, giSine, 0.25
aSig = (areal*acos) - (aimag*asin) ; frequency shifted signal
out aSig, aSig
endin

instr 3 ; hsboscil using a complex waveform
kAmp = 0.3
kTone rspline -1,1,0.05,0.2 ; randomly shift spectrum up and down
kBrite rspline -3,3,0.1,1 ; randomly shift masking window
iBasFreq = 200
aSig hsboscil kAmp, kTone, kBrite, iBasFreq/100, giWave, giWindow
aSig2 hsboscil kAmp,kTone, kBrite, (iBasFreq*1.001)/100, giWave, giWindow
out aSig+aSig2, aSig+aSig2 ; mix signal with \'detuned\' version
endin

</CsInstruments>
<CsScore>
i 1 0 14
i 2 15 14
i 3 30 14
</CsScore>
</CsoundSynthesizer>
;example by iain mccurdy

Additive synthesis can still be an exciting way of producing sounds. It offers the user a level of control that other methods of synthesis simply cannot match. It also provides an essential workbench for learning about acoustics and spectral theory as related to sound.

	This term is used here in a general manner. There is also a Csound opcode subinstr, which has some more specific meanings.↩︎

	Jean-Claude Risset, Introductory Catalogue of Computer Synthesized Sounds (1969), cited after Dodge/Jerse, Computer Music, New York/London 1985, p.94↩︎

 ch025.xhtml

04 B. SUBTRACTIVE SYNTHESIS

Subtractive synthesis is, at least conceptually, the inverse of additive synthesis in that instead of building complex sound through the addition of simple cellular materials such as sine waves, subtractive synthesis begins with a complex sound source, such as white noise or a recorded sample, or a rich waveform, such as a sawtooth or pulse, and proceeds to refine that sound by removing partials or entire sections of the frequency spectrum through the use of audio filters.

The creation of dynamic spectra (an arduous task in additive synthesis) is relatively simple in subtractive synthesis as all that will be required will be to modulate a few parameters pertaining to any filters being used. Working with the intricate precision that is possible with additive synthesis may not be as easy with subtractive synthesis but sounds can be created much more instinctively than is possible with additive or modulation synthesis.

A Csound Two-Oscillator Synthesizer

The first example represents perhaps the classic idea of subtractive synthesis: a simple two oscillator synth filtered using a single resonant lowpass filter. Many of the ideas used in this example have been inspired by the design of the Minimoog synthesizer (1970) and other similar instruments.

Each oscillator can describe either a sawtooth, PWM waveform (i.e. square - pulse etc.) or white noise and each oscillator can be transposed in octaves or in cents with respect to a fundamental pitch. The two oscillators are mixed and then passed through a 4-pole / 24dB per octave resonant lowpass filter. The opcode moogladder is chosen on account of its authentic vintage character. The cutoff frequency of the filter is modulated using an ADSR-style (attack-decay-sustain-release) envelope facilitating the creation of dynamic, evolving spectra. Finally the sound output of the filter is shaped by an ADSR amplitude envelope. Waveforms such as sawtooths and square waves offer rich sources for subtractive synthesis as they contain a lot of sound energy across a wide range of frequencies - it could be said that white noise offers the richest sound source containing, as it does, energy at every frequency. A sine wave would offer a very poor source for subtractive synthesis as it contains energy at only one frequency. Other Csound opcodes that might provide rich sources are the buzz and gbuzz opcodes and the GEN09, GEN10, GEN11 and GEN19 GEN routines.

As this instrument is suggestive of a performance instrument controlled via MIDI, this has been partially implemented. Through the use of Csound’s MIDI interoperability opcode, mididefault, the instrument can be operated from the score or from a MIDI keyboard. If a MIDI note is received, suitable default p-field values are substituted for the missing p-fields. In the next example MIDI controller 1 will be used to control the global cutoff frequency for the filter.

A schematic for this instrument is shown below:

EXAMPLE 04B01_Subtractive_Midi.csd

<CsoundSynthesizer>
<CsOptions>
-odac -Ma
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 4
nchnls = 2
0dbfs = 1

initc7 1,1,0.8 ;set initial controller position
prealloc 1, 10

 instr 1
iNum notnum ;read in midi note number
iCF ctrl7 1,1,0.1,14 ;read in midi controller 1

; set up default p-field values for midi activated notes
 mididefault iNum, p4 ;pitch (note number)
 mididefault 0.3, p5 ;amplitude 1
 mididefault 2, p6 ;type 1
 mididefault 0.5, p7 ;pulse width 1
 mididefault 0, p8 ;octave disp. 1
 mididefault 0, p9 ;tuning disp. 1
 mididefault 0.3, p10 ;amplitude 2
 mididefault 1, p11 ;type 2
 mididefault 0.5, p12 ;pulse width 2
 mididefault -1, p13 ;octave displacement 2
 mididefault 20, p14 ;tuning disp. 2
 mididefault iCF, p15 ;filter cutoff freq
 mididefault 0.01, p16 ;filter env. attack time
 mididefault 1, p17 ;filter env. decay time
 mididefault 0.01, p18 ;filter env. sustain level
 mididefault 0.1, p19 ;filter release time
 mididefault 0.3, p20 ;filter resonance
 mididefault 0.01, p21 ;amp. env. attack
 mididefault 0.1, p22 ;amp. env. decay.
 mididefault 1, p23 ;amp. env. sustain
 mididefault 0.01, p24 ;amp. env. release

; asign p-fields to variables
iCPS = cpsmidinn(p4) ;convert from note number to cps
kAmp1 = p5
iType1 = p6
kPW1 = p7
kOct1 = octave(p8) ;convert from octave displacement to multiplier
kTune1 = cent(p9) ;convert from cents displacement to multiplier
kAmp2 = p10
iType2 = p11
kPW2 = p12
kOct2 = octave(p13)
kTune2 = cent(p14)
iCF = p15
iFAtt = p16
iFDec = p17
iFSus = p18
iFRel = p19
kRes = p20
iAAtt = p21
iADec = p22
iASus = p23
iARel = p24

;oscillator 1
;if type is sawtooth or square...
if iType1==1||iType1==2 then
 ;...derive vco2 'mode' from waveform type
 iMode1 = (iType1=1?0:2)
 aSig1 vco2 kAmp1,iCPS*kOct1*kTune1,iMode1,kPW1;VCO audio oscillator
else ;otherwise...
 aSig1 noise kAmp1, 0.5 ;...generate white noise
endif

;oscillator 2 (identical in design to oscillator 1)
if iType2==1||iType2==2 then
 iMode2 = (iType2=1?0:2)
 aSig2 vco2 kAmp2,iCPS*kOct2*kTune2,iMode2,kPW2
else
 aSig2 noise kAmp2,0.5
endif

;mix oscillators
aMix sum aSig1,aSig2
;lowpass filter
kFiltEnv expsegr 0.0001,iFAtt,iCPS*iCF,iFDec,iCPS*iCF*iFSus,iFRel,0.0001
aOut moogladder aMix, kFiltEnv, kRes

;amplitude envelope
aAmpEnv expsegr 0.0001,iAAtt,1,iADec,iASus,iARel,0.0001
aOut = aOut*aAmpEnv
 outs aOut,aOut
 endin
</CsInstruments>

<CsScore>
;p4 = oscillator frequency
;oscillator 1
;p5 = amplitude
;p6 = type (1=sawtooth,2=square-PWM,3=noise)
;p7 = PWM (square wave only)
;p8 = octave displacement
;p9 = tuning displacement (cents)
;oscillator 2
;p10 = amplitude
;p11 = type (1=sawtooth,2=square-PWM,3=noise)
;p12 = pwm (square wave only)
;p13 = octave displacement
;p14 = tuning displacement (cents)
;global filter envelope
;p15 = cutoff
;p16 = attack time
;p17 = decay time
;p18 = sustain level (fraction of cutoff)
;p19 = release time
;p20 = resonance
;global amplitude envelope
;p21 = attack time
;p22 = decay time
;p23 = sustain level
;p24 = release time
; p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13
;p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24
i 1 0 1 50 0 2 .5 0 -5 0 2 0.5 0 \
 5 12 .01 2 .01 .1 0 .005 .01 1 .05
i 1 + 1 50 .2 2 .5 0 -5 .2 2 0.5 0 \
 5 1 .01 1 .1 .1 .5 .005 .01 1 .05
i 1 + 1 50 .2 2 .5 0 -8 .2 2 0.5 0 \
 8 3 .01 1 .1 .1 .5 .005 .01 1 .05
i 1 + 1 50 .2 2 .5 0 -8 .2 2 0.5 -1 \
 8 7 .01 1 .1 .1 .5 .005 .01 1 .05
i 1 + 3 50 .2 1 .5 0 -10 .2 1 0.5 -2 \
 10 40 .01 3 .001 .1 .5 .005 .01 1 .05
i 1 + 10 50 1 2 .01 -2 0 .2 3 0.5 0 \
 0 40 5 5 .001 1.5 .1 .005 .01 1 .05

f 0 3600
e
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

Simulation of Timbres from a Noise Source

The next example makes extensive use of bandpass filters arranged in parallel to filter white noise. The bandpass filter bandwidths are narrowed to the point where almost pure tones are audible. The crucial difference is that the noise source always induces instability in the amplitude and frequency of tones produced - it is this quality that makes this sort of subtractive synthesis sound much more organic than a simple additive synthesis equivalent.1 If the bandwidths are widened, then more of the characteristic of the noise source comes through and the tone becomes airier and less distinct; if the bandwidths are narrowed, the resonating tones become clearer and steadier. By varying the bandwidths interesting metamorphoses of the resultant sound are possible.

22 reson filters are used for the bandpass filters on account of their ability to ring and resonate as their bandwidth narrows. Another reason for this choice is the relative CPU economy of the reson filter, a not insignificant concern as so many of them are used. The frequency ratios between the 22 parallel filters are derived from analysis of a hand bell, the data was found in the appendix of the Csound manual here. Obviously with so much repetition of similar code, some sort of abstraction would be a good idea (perhaps through a UDO or by using a macro), but here, and for the sake of clarity, it is left unabstracted.

In addition to the white noise as a source, noise impulses are also used as a sound source (via the mpulse opcode). The instrument will automatically and randomly slowly crossfade between these two sound sources.

A lowpass and highpass filter are inserted in series before the parallel bandpass filters to shape the frequency spectrum of the source sound. Csound’s butterworth filters butlp and buthp are chosen for this task on account of their steep cutoff slopes and minimal ripple at the cutoff frequency.

The outputs of the reson filters are sent alternately to the left and right outputs in order to create a broad stereo effect.

This example makes extensive use of the rspline opcode, a generator of random spline functions, to slowly undulate the many input parameters. The orchestra is self generative in that instrument 1 repeatedly triggers note events in instrument 2 and the extensive use of random functions means that the results will continually evolve as the orchestra is allowed to perform.

A flow diagram for this instrument is shown below:

EXAMPLE 04B02_Subtractive_timbres.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 16
nchnls = 2
0dbfs = 1

 instr 1 ; triggers notes in instrument 2 with randomised p-fields
krate randomi 0.2,0.4,0.1 ;rate of note generation
ktrig metro krate ;triggers used by schedkwhen
koct random 5,12 ;fundemental pitch of synth note
kdur random 15,30 ;duration of note
schedkwhen ktrig,0,0,2,0,kdur,cpsoct(koct) ;trigger a note in instrument 2
 endin

 instr 2 ; subtractive synthesis instrument
aNoise pinkish 1 ;a noise source sound: pink noise
kGap rspline 0.3,0.05,0.2,2 ;time gap between impulses
aPulse mpulse 15, kGap ;a train of impulses
kCFade rspline 0,1,0.1,1 ;crossfade point between noise and impulses
aInput ntrpol aPulse,aNoise,kCFade;implement crossfade

; cutoff frequencies for low and highpass filters
kLPF_CF rspline 13,8,0.1,0.4
kHPF_CF rspline 5,10,0.1,0.4
; filter input sound with low and highpass filters in series -
; - done twice per filter in order to sharpen cutoff slopes
aInput butlp aInput, cpsoct(kLPF_CF)
aInput butlp aInput, cpsoct(kLPF_CF)
aInput buthp aInput, cpsoct(kHPF_CF)
aInput buthp aInput, cpsoct(kHPF_CF)

kcf rspline p4*1.05,p4*0.95,0.01,0.1 ; fundemental
;bandwidth for each filter is created individually as a random spline function
kbw1 rspline 0.00001,10,0.2,1
kbw2 rspline 0.00001,10,0.2,1
kbw3 rspline 0.00001,10,0.2,1
kbw4 rspline 0.00001,10,0.2,1
kbw5 rspline 0.00001,10,0.2,1
kbw6 rspline 0.00001,10,0.2,1
kbw7 rspline 0.00001,10,0.2,1
kbw8 rspline 0.00001,10,0.2,1
kbw9 rspline 0.00001,10,0.2,1
kbw10 rspline 0.00001,10,0.2,1
kbw11 rspline 0.00001,10,0.2,1
kbw12 rspline 0.00001,10,0.2,1
kbw13 rspline 0.00001,10,0.2,1
kbw14 rspline 0.00001,10,0.2,1
kbw15 rspline 0.00001,10,0.2,1
kbw16 rspline 0.00001,10,0.2,1
kbw17 rspline 0.00001,10,0.2,1
kbw18 rspline 0.00001,10,0.2,1
kbw19 rspline 0.00001,10,0.2,1
kbw20 rspline 0.00001,10,0.2,1
kbw21 rspline 0.00001,10,0.2,1
kbw22 rspline 0.00001,10,0.2,1

imode = 0 ; amplitude balancing method used by the reson filters
a1 reson aInput, kcf*1, kbw1, imode
a2 reson aInput, kcf*1.0019054878049, kbw2, imode
a3 reson aInput, kcf*1.7936737804878, kbw3, imode
a4 reson aInput, kcf*1.8009908536585, kbw4, imode
a5 reson aInput, kcf*2.5201981707317, kbw5, imode
a6 reson aInput, kcf*2.5224085365854, kbw6, imode
a7 reson aInput, kcf*2.9907012195122, kbw7, imode
a8 reson aInput, kcf*2.9940548780488, kbw8, imode
a9 reson aInput, kcf*3.7855182926829, kbw9, imode
a10 reson aInput, kcf*3.8061737804878, kbw10,imode
a11 reson aInput, kcf*4.5689024390244, kbw11,imode
a12 reson aInput, kcf*4.5754573170732, kbw12,imode
a13 reson aInput, kcf*5.0296493902439, kbw13,imode
a14 reson aInput, kcf*5.0455030487805, kbw14,imode
a15 reson aInput, kcf*6.0759908536585, kbw15,imode
a16 reson aInput, kcf*5.9094512195122, kbw16,imode
a17 reson aInput, kcf*6.4124237804878, kbw17,imode
a18 reson aInput, kcf*6.4430640243902, kbw18,imode
a19 reson aInput, kcf*7.0826219512195, kbw19,imode
a20 reson aInput, kcf*7.0923780487805, kbw20,imode
a21 reson aInput, kcf*7.3188262195122, kbw21,imode
a22 reson aInput, kcf*7.5551829268293, kbw22,imode

; amplitude control for each filter output
kAmp1 rspline 0, 1, 0.3, 1
kAmp2 rspline 0, 1, 0.3, 1
kAmp3 rspline 0, 1, 0.3, 1
kAmp4 rspline 0, 1, 0.3, 1
kAmp5 rspline 0, 1, 0.3, 1
kAmp6 rspline 0, 1, 0.3, 1
kAmp7 rspline 0, 1, 0.3, 1
kAmp8 rspline 0, 1, 0.3, 1
kAmp9 rspline 0, 1, 0.3, 1
kAmp10 rspline 0, 1, 0.3, 1
kAmp11 rspline 0, 1, 0.3, 1
kAmp12 rspline 0, 1, 0.3, 1
kAmp13 rspline 0, 1, 0.3, 1
kAmp14 rspline 0, 1, 0.3, 1
kAmp15 rspline 0, 1, 0.3, 1
kAmp16 rspline 0, 1, 0.3, 1
kAmp17 rspline 0, 1, 0.3, 1
kAmp18 rspline 0, 1, 0.3, 1
kAmp19 rspline 0, 1, 0.3, 1
kAmp20 rspline 0, 1, 0.3, 1
kAmp21 rspline 0, 1, 0.3, 1
kAmp22 rspline 0, 1, 0.3, 1

; left and right channel mixes are created using alternate filter outputs.
; This shall create a stereo effect.
aMixL sum a1*kAmp1,a3*kAmp3,a5*kAmp5,a7*kAmp7,a9*kAmp9,a11*kAmp11,\
 a13*kAmp13,a15*kAmp15,a17*kAmp17,a19*kAmp19,a21*kAmp21
aMixR sum a2*kAmp2,a4*kAmp4,a6*kAmp6,a8*kAmp8,a10*kAmp10,a12*kAmp12,\
 a14*kAmp14,a16*kAmp16,a18*kAmp18,a20*kAmp20,a22*kAmp22

kEnv linseg 0, p3*0.5, 1,p3*0.5,0,1,0 ; global amplitude envelope
outs (aMixL*kEnv*0.00008), (aMixR*kEnv*0.00008) ; audio sent to outputs
 endin

</CsInstruments>
<CsScore>
i 1 0 3600 ; instrument 1 (note generator) plays for 1 hour
e
</CsScore>
</CsoundSynthesizer>
;example written by Iain McCurdy

Vowel-Sound Emulation Using Bandpass Filtering

The final example in this section uses precisely tuned bandpass filters, to simulate the sound of the human voice expressing vowel sounds. Spectral resonances in this context are often referred to as formants. Five formants are used to simulate the effect of the human mouth and head as a resonating (and therefore filtering) body. The filter data for simulating the vowel sounds A,E,I,O and U as expressed by a bass, tenor, counter-tenor, alto and soprano voice were found in the appendix of the Csound manual here. Bandwidth and intensity (dB) information is also needed to accurately simulate the various vowel sounds.

reson filters are again used but butbp and others could be equally valid choices.

Data is stored in GEN07 linear break point function tables, as this data is read by k-rate line functions we can interpolate and therefore morph between different vowel sounds during a note.

The source sound for the filters comes from either a pink noise generator or a pulse waveform. The pink noise source could be used if the emulation is to be that of just the breath whereas the pulse waveform provides a decent approximation of the human vocal chords buzzing. This instrument can however morph continuously between these two sources.

A flow diagram for this instrument is shown below:

EXAMPLE 04B03_Subtractive_vowels.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 16
nchnls = 2
0dbfs = 1

;FUNCTION TABLES STORING DATA FOR VARIOUS VOICE FORMANTS

;BASS
giBF1 ftgen 0, 0, -5, -2, 600, 400, 250, 400, 350
giBF2 ftgen 0, 0, -5, -2, 1040, 1620, 1750, 750, 600
giBF3 ftgen 0, 0, -5, -2, 2250, 2400, 2600, 2400, 2400
giBF4 ftgen 0, 0, -5, -2, 2450, 2800, 3050, 2600, 2675
giBF5 ftgen 0, 0, -5, -2, 2750, 3100, 3340, 2900, 2950

giBDb1 ftgen 0, 0, -5, -2, 0, 0, 0, 0, 0
giBDb2 ftgen 0, 0, -5, -2, -7, -12, -30, -11, -20
giBDb3 ftgen 0, 0, -5, -2, -9, -9, -16, -21, -32
giBDb4 ftgen 0, 0, -5, -2, -9, -12, -22, -20, -28
giBDb5 ftgen 0, 0, -5, -2, -20, -18, -28, -40, -36

giBBW1 ftgen 0, 0, -5, -2, 60, 40, 60, 40, 40
giBBW2 ftgen 0, 0, -5, -2, 70, 80, 90, 80, 80
giBBW3 ftgen 0, 0, -5, -2, 110, 100, 100, 100, 100
giBBW4 ftgen 0, 0, -5, -2, 120, 120, 120, 120, 120
giBBW5 ftgen 0, 0, -5, -2, 130, 120, 120, 120, 120

;TENOR
giTF1 ftgen 0, 0, -5, -2, 650, 400, 290, 400, 350
giTF2 ftgen 0, 0, -5, -2, 1080, 1700, 1870, 800, 600
giTF3 ftgen 0, 0, -5, -2, 2650, 2600, 2800, 2600, 2700
giTF4 ftgen 0, 0, -5, -2, 2900, 3200, 3250, 2800, 2900
giTF5 ftgen 0, 0, -5, -2, 3250, 3580, 3540, 3000, 3300

giTDb1 ftgen 0, 0, -5, -2, 0, 0, 0, 0, 0
giTDb2 ftgen 0, 0, -5, -2, -6, -14, -15, -10, -20
giTDb3 ftgen 0, 0, -5, -2, -7, -12, -18, -12, -17
giTDb4 ftgen 0, 0, -5, -2, -8, -14, -20, -12, -14
giTDb5 ftgen 0, 0, -5, -2, -22, -20, -30, -26, -26

giTBW1 ftgen 0, 0, -5, -2, 80, 70, 40, 40, 40
giTBW2 ftgen 0, 0, -5, -2, 90, 80, 90, 80, 60
giTBW3 ftgen 0, 0, -5, -2, 120, 100, 100, 100, 100
giTBW4 ftgen 0, 0, -5, -2, 130, 120, 120, 120, 120
giTBW5 ftgen 0, 0, -5, -2, 140, 120, 120, 120, 120

;COUNTER TENOR
giCTF1 ftgen 0, 0, -5, -2, 660, 440, 270, 430, 370
giCTF2 ftgen 0, 0, -5, -2, 1120, 1800, 1850, 820, 630
giCTF3 ftgen 0, 0, -5, -2, 2750, 2700, 2900, 2700, 2750
giCTF4 ftgen 0, 0, -5, -2, 3000, 3000, 3350, 3000, 3000
giCTF5 ftgen 0, 0, -5, -2, 3350, 3300, 3590, 3300, 3400

giTBDb1 ftgen 0, 0, -5, -2, 0, 0, 0, 0, 0
giTBDb2 ftgen 0, 0, -5, -2, -6, -14, -24, -10, -20
giTBDb3 ftgen 0, 0, -5, -2, -23, -18, -24, -26, -23
giTBDb4 ftgen 0, 0, -5, -2, -24, -20, -36, -22, -30
giTBDb5 ftgen 0, 0, -5, -2, -38, -20, -36, -34, -30

giTBW1 ftgen 0, 0, -5, -2, 80, 70, 40, 40, 40
giTBW2 ftgen 0, 0, -5, -2, 90, 80, 90, 80, 60
giTBW3 ftgen 0, 0, -5, -2, 120, 100, 100, 100, 100
giTBW4 ftgen 0, 0, -5, -2, 130, 120, 120, 120, 120
giTBW5 ftgen 0, 0, -5, -2, 140, 120, 120, 120, 120

;ALTO
giAF1 ftgen 0, 0, -5, -2, 800, 400, 350, 450, 325
giAF2 ftgen 0, 0, -5, -2, 1150, 1600, 1700, 800, 700
giAF3 ftgen 0, 0, -5, -2, 2800, 2700, 2700, 2830, 2530
giAF4 ftgen 0, 0, -5, -2, 3500, 3300, 3700, 3500, 2500
giAF5 ftgen 0, 0, -5, -2, 4950, 4950, 4950, 4950, 4950

giADb1 ftgen 0, 0, -5, -2, 0, 0, 0, 0, 0
giADb2 ftgen 0, 0, -5, -2, -4, -24, -20, -9, -12
giADb3 ftgen 0, 0, -5, -2, -20, -30, -30, -16, -30
giADb4 ftgen 0, 0, -5, -2, -36, -35, -36, -28, -40
giADb5 ftgen 0, 0, -5, -2, -60, -60, -60, -55, -64

giABW1 ftgen 0, 0, -5, -2, 50, 60, 50, 70, 50
giABW2 ftgen 0, 0, -5, -2, 60, 80, 100, 80, 60
giABW3 ftgen 0, 0, -5, -2, 170, 120, 120, 100, 170
giABW4 ftgen 0, 0, -5, -2, 180, 150, 150, 130, 180
giABW5 ftgen 0, 0, -5, -2, 200, 200, 200, 135, 200

;SOPRANO
giSF1 ftgen 0, 0, -5, -2, 800, 350, 270, 450, 325
giSF2 ftgen 0, 0, -5, -2, 1150, 2000, 2140, 800, 700
giSF3 ftgen 0, 0, -5, -2, 2900, 2800, 2950, 2830, 2700
giSF4 ftgen 0, 0, -5, -2, 3900, 3600, 3900, 3800, 3800
giSF5 ftgen 0, 0, -5, -2, 4950, 4950, 4950, 4950, 4950

giSDb1 ftgen 0, 0, -5, -2, 0, 0, 0, 0, 0
giSDb2 ftgen 0, 0, -5, -2, -6, -20, -12, -11, -16
giSDb3 ftgen 0, 0, -5, -2, -32, -15, -26, -22, -35
giSDb4 ftgen 0, 0, -5, -2, -20, -40, -26, -22, -40
giSDb5 ftgen 0, 0, -5, -2, -50, -56, -44, -50, -60

giSBW1 ftgen 0, 0, -5, -2, 80, 60, 60, 70, 50
giSBW2 ftgen 0, 0, -5, -2, 90, 90, 90, 80, 60
giSBW3 ftgen 0, 0, -5, -2, 120, 100, 100, 100, 170
giSBW4 ftgen 0, 0, -5, -2, 130, 150, 120, 130, 180
giSBW5 ftgen 0, 0, -5, -2, 140, 200, 120, 135, 200

instr 1
 kFund expon p4,p3,p5 ; fundamental
 kVow line p6,p3,p7 ; vowel select
 kBW line p8,p3,p9 ; bandwidth factor
 iVoice = p10 ; voice select
 kSrc line p11,p3,p12 ; source mix

 aNoise pinkish 3 ; pink noise
 aVCO vco2 1.2,kFund,2,0.02 ; pulse tone
 aInput ntrpol aVCO,aNoise,kSrc ; input mix

 ; read formant cutoff frequenies from tables
 kCF1 tablei kVow*5,giBF1+(iVoice*15)
 kCF2 tablei kVow*5,giBF1+(iVoice*15)+1
 kCF3 tablei kVow*5,giBF1+(iVoice*15)+2
 kCF4 tablei kVow*5,giBF1+(iVoice*15)+3
 kCF5 tablei kVow*5,giBF1+(iVoice*15)+4
 ; read formant intensity values from tables
 kDB1 tablei kVow*5,giBF1+(iVoice*15)+5
 kDB2 tablei kVow*5,giBF1+(iVoice*15)+6
 kDB3 tablei kVow*5,giBF1+(iVoice*15)+7
 kDB4 tablei kVow*5,giBF1+(iVoice*15)+8
 kDB5 tablei kVow*5,giBF1+(iVoice*15)+9
 ; read formant bandwidths from tables
 kBW1 tablei kVow*5,giBF1+(iVoice*15)+10
 kBW2 tablei kVow*5,giBF1+(iVoice*15)+11
 kBW3 tablei kVow*5,giBF1+(iVoice*15)+12
 kBW4 tablei kVow*5,giBF1+(iVoice*15)+13
 kBW5 tablei kVow*5,giBF1+(iVoice*15)+14
 ; create resonant formants byt filtering source sound
 aForm1 reson aInput, kCF1, kBW1*kBW, 1 ; formant 1
 aForm2 reson aInput, kCF2, kBW2*kBW, 1 ; formant 2
 aForm3 reson aInput, kCF3, kBW3*kBW, 1 ; formant 3
 aForm4 reson aInput, kCF4, kBW4*kBW, 1 ; formant 4
 aForm5 reson aInput, kCF5, kBW5*kBW, 1 ; formant 5

 ; formants are mixed and multiplied both by intensity values derived
 ; from tables and by the on-screen gain controls for each formant
 aMix sum aForm1*ampdbfs(kDB1), aForm2*ampdbfs(kDB2),
 aForm3*ampdbfs(kDB3), aForm4*ampdbfs(kDB4), aForm5*ampdbfs(kDB5)
 kEnv linseg 0,3,1,p3-6,1,3,0 ; an amplitude envelope
 outs aMix*kEnv, aMix*kEnv ; send audio to outputs
endin

</CsInstruments>
<CsScore>
; p4 = fundemental begin value (c.p.s.)
; p5 = fundemental end value
; p6 = vowel begin value (0 - 1 : a e i o u)
; p7 = vowel end value
; p8 = bandwidth factor begin (suggested range 0 - 2)
; p9 = bandwidth factor end
; p10 = voice (0=bass; 1=tenor; 2=counter_tenor; 3=alto; 4=soprano)
; p11 = input source begin (0 - 1 : VCO - noise)
; p12 = input source end

; p4 p5 p6 p7 p8 p9 p10 p11 p12
i 1 0 10 50 100 0 1 2 0 0 0 0
i 1 8 . 78 77 1 0 1 0 1 0 0
i 1 16 . 150 118 0 1 1 0 2 1 1
i 1 24 . 200 220 1 0 0.2 0 3 1 0
i 1 32 . 400 800 0 1 0.2 0 4 0 1
e
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

Conclusion

These examples have hopefully demonstrated the strengths of subtractive synthesis in its simplicity, intuitive operation and its ability to create organic sounding timbres. Further research could explore Csound's other filter opcodes including vcomb, wguide1, wguide2, mode and the more esoteric phaser1, phaser2 and resony.

	It has been shown in the chapter about additive synthesis how this quality can be applied to additive synthesis by slight random deviations.↩︎

 ch026.xhtml

04 C. AMPLITUDE AND RING MODULATION

In Amplitude Modulation (AM) the amplitude of a Carrier oscillator is modulated by the output of another oscillator, called Modulator. So the carrier amplitude consists of a constant value, by tradition called DC Offset, and the modulator output which are added to each other.

[image: Basic Model of Amplitude Modulation]Basic Model of Amplitude Modulation

If this modulation is in the sub-audio range (less than 15 Hz), it is perceived as periodic volume modification.1 Volume-modulation above approximately 15 Hz are perceived as timbre changes. So called sidebands appear. This transition is showed in the following example. The modulation frequency starts at 2 Hz and moves over 20 seconds to 100 Hz.

EXAMPLE 04C01_Simple_AM.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1
 aRaise expseg 2, 20, 100
 aModulator poscil 0.3, aRaise
 iDCOffset = 0.3
 aCarrier poscil iDCOffset+aModulator, 440
 out aCarrier, aCarrier
endin

</CsInstruments>
<CsScore>
i 1 0 25
</CsScore>
</CsoundSynthesizer>
; example by Alex Hofmann and joachim heintz

Sidebands

The sidebands appear on both sides of the carrier frequency fcf_c. The frequency of the side bands is the sum and the difference between the carrier frequency and the modulator frequency: fc−fmf_c - f_m and fc+fmf_c + f_m. The amplitude of each sideband is half of the modulator’s amplitude.

So the sounding result of the following example can be calculated as this: fcf_c = 440 Hz, fmf_m = 40 Hz, so the result is a sound with 400, 440, and 480 Hz. The sidebands have an amplitude of 0.2. The amplitude of the carrier frequency starts with 0.2, moves to 0.4, and finally moves to 0. Note that we use an alternative way of applying AM here, shown in the AM2 instrument:

[image: Alternative Model of Amplitude Modulation]Alternative Model of Amplitude Modulation

It is equivalent to the signal flow in the first flow chart (AM1 here). It takes one more line, but now you can substitute any audio signal as carrier, not only an oscillator. So this is the bridge to using AM for the modification of sampled sound as shown in 05F.

EXAMPLE 04C02_Sidebands.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr AM1
 aDC_Offset linseg 0.2, 1, 0.2, 5, 0.4, 3, 0
 aModulator poscil 0.4, 40
 aCarrier poscil aDC_Offset+aModulator, 440
 out aCarrier, aCarrier
endin

instr AM2
 aDC_Offset linseg 0.2, 1, 0.2, 5, 0.4, 3, 0
 aModulator poscil 0.4, 40
 aCarrier poscil 1, 440
 aAM = aCarrier * (aModulator+aDC_Offset)
 out aAM, aAM
endin

</CsInstruments>
<CsScore>
i "AM1" 0 10
i "AM2" 11 10
</CsScore>
</CsoundSynthesizer>
; example by Alex Hofmann and joachim heintz

At the end of this example, when the DC Offset was zero, we reached Ring Modulation (RM). Ring Modulation can thus be considered as special case of Amplitude Modulation, without any DC Offset. This is the very simple model:2

[image: Ring Modulation as Multiplication of two Signals]Ring Modulation as Multiplication of two Signals

If Ring Modulation happens in the sub-audio domain (less than 10 Hz), it will be perceived as tremolo.3 If it happens in the audio-domain, we get a sound with only the sidebands.

AM/RM of Complex Sounds

If either the carrier or the modulator contain more harmonics, the resulting amplitude or ring modulated sound becomes more complex, because of two reasons. First, each partial in the source sound is the origin of two sideband partials in the result. So for three harmonics in the origin we yield six (RM) or nine (AM) partials in the result. And second, the spectrum of the origin is shifted by the AM or RM in a characteristic way. This can be demonstrated at a simple example.

Given a carrier signal which consists of three harmonics: 400, 800 and 1200 Hz. The ratio of these partials is 1 : 2 : 3, so our ear will perceice 400 Hz as base frequency. Ring Modulation with a frequency of 100 Hz will result in the frequencies 300, 500, 700, 900, 1100 and 1300 Hz. We have now a frequency every 200 Hz, and 400 Hz is not any more the base of it. (Instead, it will be heard as partials 3, 5, 7, 9, 11 and 13 of 100 Hz as base frequency.) In case we modulate with a frequency of 50 Hz, we get 350, 450, 750, 850, 1150 and 1250 Hz, so again a shifted spectrum, definitely not with 400 Hz as base frequency.

[image: Frequency Shifting by Ring Modulation]Frequency Shifting by Ring Modulation

The next example plays these variants.

EXAMPLE 04C03_RingMod.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr Carrier
 aPartial_1 poscil .2, 400
 aPartial_2 poscil .2, 800
 aPartial_3 poscil .2, 1200
 gaCarrier sum aPartial_1, aPartial_2, aPartial_3
 ;only output this signal if RM is not playing
 if (active:k("RM") == 0) then
 out gaCarrier, gaCarrier
 endif
endin

instr RM
 iModFreq = p4
 aRM = gaCarrier * poscil:a(1,iModFreq)
 out aRM, aRM
endin

</CsInstruments>
<CsScore>
i "Carrier" 0 14
i "RM" 3 3 100
i "RM" 9 3 50
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

	For classical string instruments there is a bow vibrato which resembles this effect. If the DC Offset is weak in comparison to the modulation output, the comparison in classical music is the tremolo effect. Also pulsation is often used to describe AM with low frequencies.↩︎

	Here expressed as multiplication. The alternative would be to feed the modulator’s output in the amplitude input of the carrier.↩︎

	Note that the frequency of this tremolo in RM will be perceived twice as much as the frequency in AM because every half sine in the modulating signal is perceived as an own period.↩︎

 ch027.xhtml

04 D. FREQUENCY MODULATION

Basic Model

In FM synthesis, the frequency of one oscillator (called the carrier) is modulated by the signal from another oscillator (called the modulator). The output of the modulating oscillator is added to the frequency input of the carrier oscillator.

[image: Basic Model of Frequency Modulation]Basic Model of Frequency Modulation

The amplitude of the modulator determines the amount of modulation, or the frequency deviation from the fundamental carrier frequency. The frequency of the modulator determines how frequent the deviation will occur in one second. The amplitude of the modulator determines the amount of the deviation. An amplitude of 1 will alter the carrier frequency by ±1 Hz, wheras an amplitude of 10 will alter the carrier frequency by ±10 Hz. If the amplitude of the modulating signal is zero, there is no modulation and the output from the carrier oscillator is simply a sine wave with the frequency of the carrier. When modulation occurs, the signal from the modulation oscillator, a sine wave with frequency FM, drives the frequency of the carrier oscillator both above and below the carrier frequency FC. If the modulator is running in the sub-audio frequency range (below 20 Hz), the result of Modulation is vibrato. When the modulator’s frequency rises in the audio range, we hear it as a change in the timbre of the carrier.

EXAMPLE 04D01_Frequency_modulation.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr FM_vibr ;vibrato as the modulator is in the sub-audio range
 kModFreq randomi 5, 10, 1
 kCarAmp linen 0.5, 0.1, p3, 0.5
 aModulator poscil 20, kModFreq
 aCarrier poscil kCarAmp, 400 + aModulator
 out aCarrier, aCarrier
endin

instr FM_timbr ;timbre change as the modulator is in the audio range
 kModAmp linseg 0, p3/2, 212, p3/2, 50
 kModFreq line 25, p3, 300
 kCarAmp linen 0.5, 0.1, p3, 0.5
 aModulator poscil kModAmp, kModFreq
 aCarrier poscil kCarAmp, 400 + aModulator
 out aCarrier, aCarrier
endin

</CsInstruments>
<CsScore>
i "FM_vibr" 0 10
i "FM_timbr" 10 10
</CsScore>
</CsoundSynthesizer>
;example by marijana janevska

Carrier/Modulator Ratio

The position of the frequency components generated by FM depends on the relationship of the carrier frequency to the modulating frequency FC:FM. This is called the ratio. When FC:FM is a simple integer ratio, such as 4:1 (as in the case of two signals at 400 and 100 Hz), FM generates harmonic spectra, that is sidebands that are integer multiples of the carrier and modulator frequencies. When FC:FM is not a simple integer ratio, such as 8:2.1 (as in the case of two signals at 800 and 210 Hz), FM generates inharmonic spectra (noninteger multiples of the carrier and modulator).

EXAMPLE 04D02_Ratio.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr Ratio
 kRatio = p4
 kCarFreq = 400
 kModFreq = kCarFreq/kRatio
 aModulator poscil 500, kModFreq
 aCarrier poscil 0.3, kCarFreq + aModulator
 aOut linen aCarrier, .1, p3, 1
 out aOut, aOut
endin

</CsInstruments>
<CsScore>
i 1 0 5 2
i . + . 2.1
</CsScore>
</CsoundSynthesizer>
;example written by marijana janevska

Index of Modulation

FM of two sinusoids generates a series of sidebands around the carrier frequency FC. Each sideband spreads out at a distance equal to a multiple of the modulating frequency FM.

[image: FM Sidebands]FM Sidebands

The bandwidth of the FM spectrum (the number of sidebands) is controlled by the index of modulation II. The Index is defined mathematically according to the following relation:

I=AM:FMI = A_M:F_M

where AM is the amount of frequency deviation (in Hz) from the carrier frequency. Hence, AM is a way of expressing the depth or amount of modulation. The amplitude of each sideband depends on the index of modulation. When there is no modulation, the index of modulation is zero and all the signal power resides in the carrier frequency. Increasing the value of the index causes the sidebands to acquire more power at the expense of the power of the carrier frequency. The wider the deviation, the more widely distributed is the power among the sidebands and the greater the number of sidebands that have significant amplitudes. The number of significant sideband pairs (those that are more than 1/100 the amplitude of the carrier) is approximately I+1. For certain values of the carrier and modulator frequencies and Index, extreme sidebands reflect out of the upper and lower ends of the spectrum, causing audible side effects. When the lower sidebands extend below 0 Hz, they reflect back into the spectrum in 180 degree phase inverted form. Negative frequency components add richness to the lower frequency parts of the spectrum, but if negative components overlap exactly with positive components, they can cancel each other. In simple FM, both oscillators use sine waves as their source waveform, although any waveform can be used. The FM can produce such rich spectra, that, when one waveform with a large number of spectral components frequency modulates another, the resulting sound can be so dense that it sounds harsh and undefined. Aliasing can occur easily.

EXAMPLE 04D03_Index.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr Rising_index
 kModAmp = 400
 kIndex linseg 3, p3, 8
 kModFreq = kModAmp/kIndex
 aModulator poscil kModAmp, kModFreq
 aCarrier poscil 0.3, 400 + aModulator
 aOut linen aCarrier, .1, p3, 1
 out aOut, aOut
endin

</CsInstruments>
<CsScore>
i "Rising_index" 0 10
</CsScore>
</CsoundSynthesizer>
;example by marijana janevska and joachim heintz

Standard FM with Ratio and Index

In the basic FM model three variables are given: the frequency of the carrier (FC or simply C), the frequency of the modulator (FM or simply M) and the amplitude of the modulator which results in the frequency deviation (so AM or D). By introducing the Ratio (C:M) and the Index (D:M) as musically meaningful values, it makes sense to transform the previous C, M and D input to C, R and I. C yields the base (or perhaps better: middle) frequency of the sound, R yields the overall characteristic of the timbre, I yields the emergence of the side bands. The three musically meaningful input values can easily be transformed into the basic model:

if R = C : M then M = C : R and
if I = D : M then D = I · M.

EXAMPLE 04D04_Standard.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m128
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr Standard

//input
 iC = 400
 iR = p4 ;ratio
 iI = p5 ;index
 prints "Ratio = %.3f, Index = %.3f\n", iR, iI

 //transform
 iM = iC / iR
 iD = iI * iM

 //apply to standard model
 aModulator poscil iD, iM
 aCarrier poscil 0.3, iC + aModulator
 aOut linen aCarrier, .1, p3, 1
 out aOut, aOut

endin

instr PlayMess

 kC randomi 300, 500, 1, 2, 400
 kR randomi 1, 2, 2, 3
 kI randomi 1, 5, randomi:k(3,10,1,3), 3

 //transform
 kM = kC / kR
 kD = kI * kM

 //apply to standard model
 aModulator poscil kD, kM
 aCarrier poscil ampdb(port:k(kI*5-30,.1)), kC + aModulator
 aOut linen aCarrier, .1, p3, p3/10
 out aOut, aOut

endin

</CsInstruments>
<CsScore>
//changing the ratio at constant index=3
i "Standard" 0 3 1 3
i . + . 1.41 .
i . + . 1.75 .
i . + . 2.07 .
s
//changing the index at constant ratio=3.3
i "Standard" 0 3 3.3 0
i . + . . 1
i . + . . 5
i . + . . 10
s
//let some nonsense happen
i "PlayMess" 0 30
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Using the foscil opcode

Basic FM synthesis can be implemented by using the foscil opcode, which effectively connects two oscil opcodes in the familiar Chowning FM setup. In the example below kDenominator is a value that when multiplied by the kCar parameter, gives the Carrier frequency and when multiplied by the kMod parameter, gives the Modulating frequency.

EXAMPLE 04D05_basic_FM_with_foscil.csd

<CsoundSynthesizer>
<CsOptions>
-odac -d
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine ftgen 0, 0, 8192, 10, 1

instr 1; basic FM using the foscil opcode
 kDenominator = 110
 kCar = 3
 kMod = 1
 kIndex randomi 1, 2, 20
 aFM foscil 0.1, kDenominator, kCar, kMod, kIndex, giSine
 outs aFM, aFM
endin

instr 2; basic FM with jumping (noisy) Denominator value
 kDenominator random 100, 120
 kCar = 3
 kMod = 1
 kIndex randomi 1, 2, 20
 aFM foscil 0.1, kDenominator, kCar, kMod, kIndex, giSine
 outs aFM, aFM
endin

instr 3; basic FM with jumping Denominator and moving Modulator
 kDenominator random 100, 120
 kCar = 3
 kMod randomi 0, 5, 100, 3
 kIndex randomi 1, 2, 20
 aFM foscil 0.1, kDenominator, kCar, kMod, kIndex, giSine
outs aFM, aFM
endin

</CsInstruments>
<CsScore>
i 1 0 10
i 2 12 10
i 3 24 10
</CsInstruments>
</CsScore>
</CsoundSynthesizer>
;example by Marijana Janevska

In the example above, in instr 1 the Carrier has a frequency of 330 Hz, the Modulator has a frequency of 110 Hz and the value of the index changes randomly between 1 and 2, 20 times a second. In instr 2, the value of the Denominator is not static. Its value changes randomly between 100 and 120, which makes all the other parameters’ values change (Carrier and Modulator frequencies and Index). In instr 3 we add a changing value to the parameter, that when multiplied with the Denominator value, gives the frequency of the Modulator, which gives even more complex spectra because it affects the value of the Index, too.

More Complex FM Algorithms

Combining more than two oscillators (operators) is called complex FM synthesis. Operators can be connected in different combinations: Multiple modulators FM and Multiple carriers FM.

Multiple Modulators (MM FM)

In multiple modulator frequency modulation, more than one oscillator modulates a single carrier oscillator. The carrier is always the last operator in the row. Changing its pitch shifts the whole sound. All other operators are modulators, changing their pitch and especially amplitude alters the sound-spectrum. Two basic configurations are possible: parallel and serial. In parallel MM FM, two sinewaves simultaneously modulate a single carrier oscillator. The principle here is, that (Modulator1:Carrier) and (Modulator2:Carrier) will be separate modulations and later added together.

[image: Multiple Modulator FM]Multiple Modulator FM

EXAMPLE 04D06_Parallel_MM_FM.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr parallel_MM_FM
 kAmpMod1 randomi 200, 500, 20
 aModulator1 poscil kAmpMod1, 700
 kAmpMod2 randomi 4, 10, 5
 kFreqMod2 randomi 7, 12, 2
 aModulator2 poscil kAmpMod2, kFreqMod2
 kFreqCar randomi 50, 80, 1, 3
 aCarrier poscil 0.2, kFreqCar+aModulator1+aModulator2
 out aCarrier, aCarrier
endin

</CsInstruments>
<CsScore>
i "parallel_MM_FM" 0 20
</CsScore>
</CsoundSynthesizer>
;example by Alex Hofmann and Marijana Janevska

In serial MM FM, the output of the first modulator is added with a fixed value and then fed to the second modulator, which then is applied to the frequency input of the carrier. This is much more complicated to calculate and the timbre becomes harder to predict, because Modulator1:Modulator2 produces a complex spectrum, which then modulates the carrier.

[image: Serial Modulator FM]Serial Modulator FM

EXAMPLE 04D07_Serial_MM_FM.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr serial_MM_FM
 kAmpMod2 randomi 200, 1400, .5
 aModulator2 poscil kAmpMod2, 700
 kAmpMod1 linseg 400, 15, 1800
 aModulator1 poscil kAmpMod1, 290+aModulator2
 aCarrier poscil 0.2, 440+aModulator1
 outs aCarrier, aCarrier
endin

</CsInstruments>
<CsScore>
i "serial_MM_FM" 0 20
</CsScore>
</CsoundSynthesizer>
;example by Alex Hofmann and Marijana Janevska

Multiple Carriers (MC FM)

By multiple carrier frequency modulation, we mean an FM instrument in which one modulator simultaneously modulates two or more carrier oscillators.

[image: Multiple Carrier FM]Multiple Carrier FM

EXAMPLE 04D08_MC_FM.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr FM_two_carriers
 aModulator poscil 100, randomi:k(10,15,1,3)
 aCarrier1 poscil 0.3, 700 + aModulator
 aCarrier2 poscil 0.1, 701 + aModulator
 outs aCarrier1+aCarrier2, aCarrier1+aCarrier2
endin

</CsInstruments>
<CsScore>
i "FM_two_carriers" 0 20
</CsScore>
</CsoundSynthesizer>
;example by Marijana Janevska

The John Chowning FM Model of a Trumpet

Composer and researcher Jown Chowning worked on the first digital implementation of FM in the 1970’s. By using envelopes to control the modulation index and the overall amplitude evolving sounds with enormous spectral variations can be created. Chowning showed these possibilities in his pieces, in which various sound transformations occur. In the piece Sabelithe a drum sound morphes over the time into a trumpet tone. In the example below, the amplitude of the Modulator has a complex envelope in the attack of the sound, which gives the trumpet-like timbre.

EXAMPLE 04D09_Trumpet.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr simple_trumpet
 kCarFreq = 440
 kModFreq = 440
 kIndex = 5
 kIndexM = 0
 kMaxDev = kIndex*kModFreq
 kMinDev = kIndexM * kModFreq
 kVarDev = kMaxDev-kMinDev
 aEnv expseg .001, 0.2, 1, p3-0.3, 1, 0.2, 0.001
 aModAmp = kMinDev+kVarDev*aEnv
 aModulator poscil aModAmp, kModFreq
 aCarrier poscil 0.3*aEnv, kCarFreq+aModulator
 outs aCarrier, aCarrier
endin

</CsInstruments>
<CsScore>
i 1 0 2
</CsScore>
</CsoundSynthesizer>
;example by Alex Hofmann

The following example uses the same instrument, with different settings to generate a bell-like sound:

EXAMPLE 04D10_Bell.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr bell_like
 kCarFreq = 200 ; 200/280 = 5:7 -> inharmonic spectrum
 kModFreq = 280
 kIndex = 12
 kIndexM = 0
 kMaxDev = kIndex*kModFreq
 kMinDev = kIndexM * kModFreq
 kVarDev = kMaxDev-kMinDev
 aEnv expseg .001, 0.001, 1, 0.3, 0.5, 8.5, .001
 aModAmp = kMinDev+kVarDev*aEnv
 aModulator poscil aModAmp, kModFreq
 aCarrier poscil 0.3*aEnv, kCarFreq+aModulator
 outs aCarrier, aCarrier
endin

</CsInstruments>
<CsScore>
i "bell_like" 0 9
</CsScore>
</CsoundSynthesizer>
;example by Alex Hofmann

Phase Modulation - the Yamaha DX7 and Feedback FM

There is a strong relation between frequency modulation and phase modulation, as both techniques influence the oscillator’s pitch, and the resulting timbre modifications are the same.

For a feedback FM system, it can happen that the self-modulation comes to a zero point, which would hang the whole system. To avoid this, the carriers table-lookup phase is modulated, instead of its pitch.

Also the most famous FM-synthesizer Yamaha DX7 is based on the phase-modulation (PM) technique, because this allows feedback. The DX7 provides 7 operators, and offers 32 routing combinations of these (cf http://yala.freeservers.com/t2synths.htm#DX7).

To build a PM-synth in Csound the tablei opcode substitutes the FM oscillator. In order to step through the f-table, a phasor will output the necessary steps.

EXAMPLE 04D11_Phase modulation and Feedback FM.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine ftgen 0, 0, 8192, 10, 1

instr PM
 kCarFreq = 200
 kModFreq = 280
 kModFactor = kCarFreq/kModFreq
 kIndex = 12/6.28 ; 12/2pi to convert from radians to norm. table index
 aEnv expseg .001, 0.001, 1, 0.3, 0.5, 8.5, .001
 aModulator poscil kIndex*aEnv, kModFreq
 aPhase phasor kCarFreq
 aCarrier tablei aPhase+aModulator, giSine, 1, 0, 1
 out aCarrier*aEnv, aCarrier*aEnv
endin

</CsInstruments>
<CsScore>
i "PM" 0 9
</CsScore>
</CsoundSynthesizer>
;example by Alex Hofmann

In the last example we use the possibilities of self-modulation (feedback-modulation) of the oscillator. So here the oscillator is both modulator and carrier. To control the amount of modulation, an envelope scales the feedback.

EXAMPLE 04D12_Feedback modulation.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine ftgen 0, 0, 8192, 10, 1

instr feedback_PM
 kCarFreq = 200
 kFeedbackAmountEnv linseg 0, 2, 0.2, 0.1, 0.3, 0.8, 0.2, 1.5, 0
 aAmpEnv expseg .001, 0.001, 1, 0.3, 0.5, 8.5, .001
 aPhase phasor kCarFreq
 aCarrier init 0 ; init for feedback
 aCarrier tablei aPhase+(aCarrier*kFeedbackAmountEnv), giSine, 1, 0, 1
 outs aCarrier*aAmpEnv, aCarrier*aAmpEnv
endin

</CsInstruments>
<CsScore>
i "feedback_PM" 0 9
</CsScore>
</CsoundSynthesizer>
;example by Alex Hofmann

 ch028.xhtml

04 E. WAVESHAPING

Waveshaping is in some ways a relation of modulation techniques such as frequency or phase modulation. Waveshaping can create quite dramatic sound transformations through the application of a very simple process. In FM (frequency modulation) modulation synthesis occurs between two oscillators, waveshaping is implemented using a single oscillator (usually a simple sine oscillator) and a so-called transfer function. The transfer function transforms and shapes the incoming amplitude values using a simple look-up process: if the incoming value is x, the outgoing value becomes y. This can be written as a table with two columns. Here is a simple example:

	Incoming (x) Value
	Outgoing (y) Value

	-0.5 or lower
	-1

	between -0.5 and 0.5
	remain unchanged

	0.5 or higher
	1

Illustrating this in an x/y coordinate system results in the following graph:

Basic Implementation Model

Although Csound contains several opcodes for waveshaping, implementing waveshaping from first principles as Csound code is fairly straightforward. The x-axis is the amplitude of every single sample, which is in the range of -1 to +1. This number has to be used as index to a table which stores the transfer function. To create a table like the one above, you can use Csound’s sub-routine GEN07. This statement will create a table of 4096 points with the desired shape:

giTrnsFnc ftgen 0, 0, 4096, -7, -0.5, 1024, -0.5, 2048, 0.5, 1024, 0.5

Now two problems must be solved. First, the index of the function table is not -1 to +1. Rather, it is either 0 to 4095 in the raw index mode, or 0 to 1 in the normalized mode. The simplest solution is to use the normalized index and scale the incoming amplitudes, so that an amplitude of -1 becomes an index of 0, and an amplitude of 1 becomes an index of 1:

aIndx = (aAmp + 1) / 2

The other problem stems from the difference in the accuracy of possible values in a sample and in a function table. Every single sample is encoded in a 32-bit floating point number in standard audio applications - or even in a 64-bit float in Csound. A table with 4096 points results in a 12-bit number, so you will have a serious loss of accuracy (= sound quality) if you use the table values directly. Here, the solution is to use an interpolating table reader. The opcode tablei (instead of table) does this job. This opcode then needs an extra point in the table for interpolating, so we give 4097 as the table size instead of 4096.

This is the code for simple waveshaping using our transfer function which has been discussed previously:

EXAMPLE 04E01_Simple_waveshaping.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giTrnsFnc ftgen 0, 0, 4097, -7, -0.5, 1024, -0.5, 2048, 0.5, 1024, 0.5
giSine ftgen 0, 0, 1024, 10, 1

instr 1
aAmp poscil 1, 400, giSine
aIndx = (aAmp + 1) / 2
aWavShp tablei aIndx, giTrnsFnc, 1
 out aWavShp, aWavShp
endin

</CsInstruments>
<CsScore>
i 1 0 10
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Powershape

The powershape opcode performs waveshaping by simply raising all samples to the power of a user given exponent. Its main innovation is that the polarity of samples within the negative domain will be retained. It simply performs the power function on absolute values (negative values made positive) and then reinstates the minus sign if required. It also normalises the input signal between -1 and 1 before shaping and then rescales the output by the inverse of whatever multiple was required to normalise the input. This ensures useful results but does require that the user states the maximum amplitude value expected in the opcode declaration and thereafter abide by that limit. The exponent, which the opcode refers to as shape amount, can be varied at k-rate thereby facilitating the creation of dynamic spectra upon a constant spectrum input.

If we consider the simplest possible input - again a sine wave - a shape amount of 1 will produce no change (raising any value to the power of 1 leaves that value unchanged).

A shaping amount of 2.5 will visibly “squeeze” the waveform as values less than 1 become increasingly biased towards the zero axis.

Much higher values will narrow the positive and negative peaks further. Below is the waveform resulting from a shaping amount of 50.

Shape amounts less than 1 (but greater than zero) will give the opposite effect of drawing values closer to -1 or 1. The waveform resulting from a shaping amount of 0.5 shown below is noticeably more rounded than the sine wave input.

Reducing shape amount even closer to zero will start to show squaring of the waveform. The result of a shape amount of 0.1 is shown below.

The sonograms of the five examples shown above are as shown below:

EXAMPLE 04E02_Powershape.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr Powershape
 iAmp = 0.2
 iFreq = 300
 aIn poscil iAmp, iFreq
 ifullscale = iAmp
 kShapeAmount linseg 1, 1.5, 1, .5, p4, 1.5, p4, .5, p5
 aOut powershape aIn, kShapeAmount, ifullscale
 out aOut, aOut
endin
</CsInstruments>
<CsScore>
i "Powershape" 0 6 2.5 50
i "Powershape" 7 6 0.5 0.1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

As power (shape amount) is increased from 1 through 2.5 to 50, it can be observed how harmonic partials are added. It is worth noting also that when the power exponent is 50 the strength of the fundamental has waned somewhat. What is not clear from the sonogram is that the partials present are only the odd numbered ones. As the power exponent is reduced below 1 through 0.5 and finally 0.1, odd numbered harmonic partials again appear but this time the strength of the fundamental remains constant. It can also be observed that aliasing is becoming a problem as evidenced by the vertical artifacts in the sonograms for 0.5 and in particular 0.1. This is a significant concern when using waveshaping techniques. Raising the sampling rate can provide additional headroom before aliasing manifests but ultimately subtlety in waveshaping’s use is paramount.

Distort

The distort opcode, authored by Csound’s original creator Barry Vercoe, was originally part of the Extended Csound project but was introduced into Canonical Csound in version 5. It waveshapes an input signal according to a transfer function provided by the user using a function table. At first glance this may seem to offer little more than what we have already demonstrated from first principles, but it offers a number of additional features that enhance its usability. The input signal first has soft-knee compression applied before being mapped through the transfer function. Input gain is also provided via the distortion amount input argument and this provides dynamic control of the waveshaping transformation. The result of using compression means that spectrally the results are better behaved than is typical with waveshaping. A common transfer function would be the hyperbolic tangent (tanh) function. Csound possesses an GEN routine GENtanh for the creation of tanh functions:

GENtanh
f # time size "tanh" start end rescale

By adjusting the start and end values we can modify the shape of the tanhtanh transfer function and therefore the aggressiveness of the waveshaping (start and end values should be the same absolute values and negative and positive respectively if we want the function to pass through the origin from the lower left quadrant to the upper right quadrant).

Start and end values of -1 and 1 will produce a gentle “s” curve.

This represents only a very slight deviation from a straight line function from (-1,-1) to (1,1) - which would produce no distortion - therefore the effects of the above used as a transfer function will be extremely subtle.

Start and end points of -5 and 5 will produce a much more dramatic curve and more dramatic waveshaping:

f 1 0 1024 "tanh" -5 5 0

Note that the GEN routine’s argument p7 for rescaling is set to zero ensuring that the function only ever extends from -1 and 1. The values provided for start and end only alter the shape.

In the following test example a sine wave at 200 hz is waveshaped using distort and the tanh function shown above.

EXAMPLE 04E03_Distort_1.csd

<CsoundSynthesizer>
<CsOptions>
-dm0 -odac
</CsOptions>

<CsInstruments>

sr = 44100
ksmps =32
nchnls = 1
0dbfs = 1

giSine ftgen 1,0,1025,10,1 ; sine function
giTanh ftgen 2,0,257,"tanh",-10,10,0 ; tanh function

instr 1
 aSig poscil 1, 200, giSine ; a sine wave
 kAmt line 0, p3, 1 ; rising distortion amount
 aDst distort aSig, kAmt, giTanh ; distort the sine tone
 out aDst*0.1
endin

</CsInstruments>
<CsScore>
i 1 0 4
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

The resulting sonogram looks like this:

As the distort amount is raised from zero to 1 it can be seen from the sonogram how upper partials emerge and gain in strength. Only the odd numbered partials are produced, therefore over the fundemental at 200 hz partials are present at 600, 1000, 1400 hz and so on. If we want to restore the even numbered partials we can simultaneously waveshape a sine at 400 hz, one octave above the fundamental as in the next example:

EXAMPLE 04E04_Distort_2.csd

<CsoundSynthesizer>
<CsOptions>
-dm0 -odac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps =32
nchnls = 1
0dbfs = 1

giSine ftgen 1,0,1025,10,1
giTanh ftgen 2,0,257,"tanh",-10,10,0

instr 1
 kAmt line 0, p3, 1 ; rising distortion amount
 aSig poscil 1, 200, giSine ; a sine
 aSig2 poscil kAmt*0.8,400,giSine ; a sine an octave above
 aDst distort aSig+aSig2, kAmt, giTanh ; distort a mixture of the two sines
 out aDst*0.1
endin

</CsInstruments>

<CsScore>
i 1 0 4
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

The higher of the two sines is faded in using the distortion amount control so that when distortion amount is zero we will be left with only the fundamental. The sonogram looks like this:

What we hear this time is something close to a sawtooth waveform with a rising low-pass filter. The higher of the two input sines at 400 hz will produce overtones at 1200, 2000, 2800 … thereby filling in the missing partials.

 ch029.xhtml

04 F. GRANULAR SYNTHESIS

In his Computer Music Tutorial, Curtis Roads gives an interesting introductory model for granular synthesis. A sine as source waveform is modified by a repeating envelope. Each envelope period creates one grain.

[image: After Curtis Roads, Computer Music Tutorial, Fig. 5.11]After Curtis Roads, Computer Music Tutorial, Fig. 5.11

In our introductory example, we will start with 1 Hz as frequency for the envelope opscillator, then rising to 10 Hz, then to 20, 50 and finally 300 Hz. The grain durations are therefore 1 second, then 1/10 second, then 1/20, 1/50 and 1/300 second. In a second run, we will use the same values, but add a random value to the frequency of the envelope generator, thus avoiding regularities.

EXAMPLE 04F01_GranSynthIntro.csd

<CsoundSynthesizer>
<CsOptions>
-o dac -m128
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giEnv ftgen 0, 0, 8192, 9, 1/2, 1, 0 ;half sine as envelope

instr EnvFreq
 printf " Envelope frequency rising from %d to %d Hz\n", 1, p4, p5
 gkEnvFreq expseg p4, 3, p4, 2, p5
endin

instr GrainGenSync
 puts "\nSYNCHRONOUS GRANULAR SYNTHESIS", 1
 aEnv poscil .2, gkEnvFreq, giEnv
 aOsc poscil aEnv, 400
 aOut linen aOsc, .1, p3, .5
 out aOut, aOut
endin

instr GrainGenAsync
 puts "\nA-SYNCHRONOUS GRANULAR SYNTHESIS", 1
 aEnv poscil .2, gkEnvFreq+randomi:k(0,gkEnvFreq,gkEnvFreq), giEnv
 aOsc poscil aEnv, 400
 aOut linen aOsc, .1, p3, .5
 out aOut, aOut
endin

</CsInstruments>
<CsScore>
i "GrainGenSync" 0 30
i "EnvFreq" 0 5 1 10
i . + . 10 20
i . + . 20 50
i . + . 50 100
i . + . 100 300
b 31
i "GrainGenAsync" 0 30
i "EnvFreq" 0 5 1 10
i . + . 10 20
i . + . 20 50
i . + . 50 100
i . + . 100 300
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

We hear different characteristics, due to the regular or irregular sequence of the grains. To understand what happens, we will go deeper in this matter and advance to a more flexible model for grain generation.

Concept Behind Granular Synthesis

Granular synthesis can in general be described as a technique in which a source sound or waveform is broken into many fragments, often of very short duration, which are then restructured and rearranged according to various patterning and indeterminacy functions.

If we repeat a fragment of sound with regularity, there are two principle attributes that we are most concerned with. Firstly the duration of each sound grain is significant: if the grain duration if very small, typically less than 0.02 seconds, then less of the characteristics of the source sound will be evident. If the grain duration is greater than 0.02 then more of the character of the source sound or waveform will be evident. Secondly the rate at which grains are generated will be significant: if grain generation is below 20 Hertz, i.e. less than 20 grains per second, then the stream of grains will be perceived as a rhythmic pulsation; if rate of grain generation increases beyond 20 Hz then individual grains will be harder to distinguish and instead we will begin to perceive a buzzing tone, the fundamental of which will correspond to the frequency of grain generation. Any pitch contained within the source material is not normally perceived as the fundamental of the tone whenever grain generation is periodic, instead the pitch of the source material or waveform will be perceived as a resonance peak (sometimes referred to as a formant); therefore transposition of the source material will result in the shifting of this resonance peak.

Granular Synthesis Demonstrated Using First Principles

The following example exemplifies the concepts discussed above. None of Csound’s built-in granular synthesis opcodes are used, instead schedkwhen in instrument 1 is used to precisely control the triggering of grains in instrument 2. Three notes in instrument 1 are called from the score one after the other which in turn generate three streams of grains in instrument 2. The first note demonstrates the transition from pulsation to the perception of a tone as the rate of grain generation extends beyond 20 Hz. The second note demonstrates the loss of influence of the source material as the grain duration is reduced below 0.02 seconds. The third note demonstrates how shifting the pitch of the source material for the grains results in the shifting of a resonance peak in the output tone. In each case information regarding rate of grain generation, duration and fundamental (source material pitch) is output to the terminal every 1/2 second so that the user can observe the changing parameters.

It should also be noted how the amplitude of each grain is enveloped in instrument 2. If grains were left unenveloped they would likely produce clicks on account of discontinuities in the waveform produced at the beginning and ending of each grain.

Granular synthesis in which grain generation occurs with perceivable periodicity is referred to as synchronous granular synthesis. Granular synthesis in which this periodicity is not evident is referred to as asynchronous granular synthesis.

EXAMPLE 04F02_GranSynth_basic.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m0
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 1
nchnls = 1
0dbfs = 1

giSine ftgen 0,0,4096,10,1

instr 1
 kRate expon p4,p3,p5 ; rate of grain generation
 kTrig metro kRate ; a trigger to generate grains
 kDur expon p6,p3,p7 ; grain duration
 kForm expon p8,p3,p9 ; formant (spectral centroid)
 ; p1 p2 p3 p4
 schedkwhen kTrig,0,0,2, 0, kDur,kForm ;trigger a note(grain) in instr 2
 ;print data to terminal every 1/2 second
 printks "Rate:%5.2F Dur:%5.2F Formant:%5.2F%n", 0.5, kRate , kDur, kForm
endin

instr 2
 iForm = p4
 aEnv linseg 0,0.005,0.2,p3-0.01,0.2,0.005,0
 aSig poscil aEnv, iForm, giSine
 out aSig
endin

</CsInstruments>
<CsScore>
;p4 = rate begin
;p5 = rate end
;p6 = duration begin
;p7 = duration end
;p8 = formant begin
;p9 = formant end
; p1 p2 p3 p4 p5 p6 p7 p8 p9
i 1 0 30 1 100 0.02 0.02 400 400 ;demo of grain generation rate
i 1 31 10 10 10 0.4 0.01 400 400 ;demo of grain size
i 1 42 20 50 50 0.02 0.02 100 5000 ;demo of changing formant
e
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

Granular Synthesis of Vowels: FOF

The principles outlined in the previous example can be extended to imitate vowel sounds produced by the human voice. This type of granular synthesis is referred to as FOF (fonction d’onde formatique) synthesis and is based on work by Xavier Rodet on his CHANT program at IRCAM. Typically five synchronous granular synthesis streams will be used to create five different resonant peaks in a fundamental tone in order to imitate different vowel sounds expressible by the human voice. The most crucial element in defining a vowel imitation is the degree to which the source material within each of the five grain streams is transposed. Bandwidth (essentially grain duration) and intensity (loudness) of each grain stream are also important indicators in defining the resultant sound.

Csound has a number of opcodes that make working with FOF synthesis easier. We will be using fof.

Information regarding frequency, bandwidth and intensity values that will produce various vowel sounds for different voice types can be found in the appendix of the Csound manual here. These values are stored in function tables in the FOF synthesis example. GEN07, which produces linear break point envelopes, is chosen as we will then be able to morph continuously between vowels.

EXAMPLE 04F03_Fof_vowels.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 16
nchnls = 2
0dbfs = 1

;FUNCTION TABLES STORING DATA FOR VARIOUS VOICE FORMANTS
;BASS
giBF1 ftgen 0, 0, -5, -2, 600, 400, 250, 400, 350
giBF2 ftgen 0, 0, -5, -2, 1040, 1620, 1750, 750, 600
giBF3 ftgen 0, 0, -5, -2, 2250, 2400, 2600, 2400, 2400
giBF4 ftgen 0, 0, -5, -2, 2450, 2800, 3050, 2600, 2675
giBF5 ftgen 0, 0, -5, -2, 2750, 3100, 3340, 2900, 2950

giBDb1 ftgen 0, 0, -5, -2, 0, 0, 0, 0, 0
giBDb2 ftgen 0, 0, -5, -2, -7, -12, -30, -11, -20
giBDb3 ftgen 0, 0, -5, -2, -9, -9, -16, -21, -32
giBDb4 ftgen 0, 0, -5, -2, -9, -12, -22, -20, -28
giBDb5 ftgen 0, 0, -5, -2, -20, -18, -28, -40, -36

giBBW1 ftgen 0, 0, -5, -2, 60, 40, 60, 40, 40
giBBW2 ftgen 0, 0, -5, -2, 70, 80, 90, 80, 80
giBBW3 ftgen 0, 0, -5, -2, 110, 100, 100, 100, 100
giBBW4 ftgen 0, 0, -5, -2, 120, 120, 120, 120, 120
giBBW5 ftgen 0, 0, -5, -2, 130, 120, 120, 120, 120

;TENOR
giTF1 ftgen 0, 0, -5, -2, 650, 400, 290, 400, 350
giTF2 ftgen 0, 0, -5, -2, 1080, 1700, 1870, 800, 600
giTF3 ftgen 0, 0, -5, -2, 2650, 2600, 2800, 2600, 2700
giTF4 ftgen 0, 0, -5, -2, 2900, 3200, 3250, 2800, 2900
giTF5 ftgen 0, 0, -5, -2, 3250, 3580, 3540, 3000, 3300

giTDb1 ftgen 0, 0, -5, -2, 0, 0, 0, 0, 0
giTDb2 ftgen 0, 0, -5, -2, -6, -14, -15, -10, -20
giTDb3 ftgen 0, 0, -5, -2, -7, -12, -18, -12, -17
giTDb4 ftgen 0, 0, -5, -2, -8, -14, -20, -12, -14
giTDb5 ftgen 0, 0, -5, -2, -22, -20, -30, -26, -26

giTBW1 ftgen 0, 0, -5, -2, 80, 70, 40, 40, 40
giTBW2 ftgen 0, 0, -5, -2, 90, 80, 90, 80, 60
giTBW3 ftgen 0, 0, -5, -2, 120, 100, 100, 100, 100
giTBW4 ftgen 0, 0, -5, -2, 130, 120, 120, 120, 120
giTBW5 ftgen 0, 0, -5, -2, 140, 120, 120, 120, 120

;COUNTER TENOR
giCTF1 ftgen 0, 0, -5, -2, 660, 440, 270, 430, 370
giCTF2 ftgen 0, 0, -5, -2, 1120, 1800, 1850, 820, 630
giCTF3 ftgen 0, 0, -5, -2, 2750, 2700, 2900, 2700, 2750
giCTF4 ftgen 0, 0, -5, -2, 3000, 3000, 3350, 3000, 3000
giCTF5 ftgen 0, 0, -5, -2, 3350, 3300, 3590, 3300, 3400

giTBDb1 ftgen 0, 0, -5, -2, 0, 0, 0, 0, 0
giTBDb2 ftgen 0, 0, -5, -2, -6, -14, -24, -10, -20
giTBDb3 ftgen 0, 0, -5, -2, -23, -18, -24, -26, -23
giTBDb4 ftgen 0, 0, -5, -2, -24, -20, -36, -22, -30
giTBDb5 ftgen 0, 0, -5, -2, -38, -20, -36, -34, -30

giTBW1 ftgen 0, 0, -5, -2, 80, 70, 40, 40, 40
giTBW2 ftgen 0, 0, -5, -2, 90, 80, 90, 80, 60
giTBW3 ftgen 0, 0, -5, -2, 120, 100, 100, 100, 100
giTBW4 ftgen 0, 0, -5, -2, 130, 120, 120, 120, 120
giTBW5 ftgen 0, 0, -5, -2, 140, 120, 120, 120, 120

;ALTO
giAF1 ftgen 0, 0, -5, -2, 800, 400, 350, 450, 325
giAF2 ftgen 0, 0, -5, -2, 1150, 1600, 1700, 800, 700
giAF3 ftgen 0, 0, -5, -2, 2800, 2700, 2700, 2830, 2530
giAF4 ftgen 0, 0, -5, -2, 3500, 3300, 3700, 3500, 2500
giAF5 ftgen 0, 0, -5, -2, 4950, 4950, 4950, 4950, 4950

giADb1 ftgen 0, 0, -5, -2, 0, 0, 0, 0, 0
giADb2 ftgen 0, 0, -5, -2, -4, -24, -20, -9, -12
giADb3 ftgen 0, 0, -5, -2, -20, -30, -30, -16, -30
giADb4 ftgen 0, 0, -5, -2, -36, -35, -36, -28, -40
giADb5 ftgen 0, 0, -5, -2, -60, -60, -60, -55, -64

giABW1 ftgen 0, 0, -5, -2, 50, 60, 50, 70, 50
giABW2 ftgen 0, 0, -5, -2, 60, 80, 100, 80, 60
giABW3 ftgen 0, 0, -5, -2, 170, 120, 120, 100, 170
giABW4 ftgen 0, 0, -5, -2, 180, 150, 150, 130, 180
giABW5 ftgen 0, 0, -5, -2, 200, 200, 200, 135, 200

;SOPRANO
giSF1 ftgen 0, 0, -5, -2, 800, 350, 270, 450, 325
giSF2 ftgen 0, 0, -5, -2, 1150, 2000, 2140, 800, 700
giSF3 ftgen 0, 0, -5, -2, 2900, 2800, 2950, 2830, 2700
giSF4 ftgen 0, 0, -5, -2, 3900, 3600, 3900, 3800, 3800
giSF5 ftgen 0, 0, -5, -2, 4950, 4950, 4950, 4950, 4950

giSDb1 ftgen 0, 0, -5, -2, 0, 0, 0, 0, 0
giSDb2 ftgen 0, 0, -5, -2, -6, -20, -12, -11, -16
giSDb3 ftgen 0, 0, -5, -2, -32, -15, -26, -22, -35
giSDb4 ftgen 0, 0, -5, -2, -20, -40, -26, -22, -40
giSDb5 ftgen 0, 0, -5, -2, -50, -56, -44, -50, -60

giSBW1 ftgen 0, 0, -5, -2, 80, 60, 60, 70, 50
giSBW2 ftgen 0, 0, -5, -2, 90, 90, 90, 80, 60
giSBW3 ftgen 0, 0, -5, -2, 120, 100, 100, 100, 170
giSBW4 ftgen 0, 0, -5, -2, 130, 150, 120, 130, 180
giSBW5 ftgen 0, 0, -5, -2, 140, 200, 120, 135, 200

gisine ftgen 0, 0, 4096, 10, 1
giexp ftgen 0, 0, 1024, 19, 0.5, 0.5, 270, 0.5

instr 1
 kFund expon p4,p3,p5 ; fundemental
 kVow line p6,p3,p7 ; vowel select
 kBW line p8,p3,p9 ; bandwidth factor
 iVoice = p10 ; voice select

 ; read formant cutoff frequenies from tables
 kForm1 tablei kVow*5,giBF1+(iVoice*15)
 kForm2 tablei kVow*5,giBF1+(iVoice*15)+1
 kForm3 tablei kVow*5,giBF1+(iVoice*15)+2
 kForm4 tablei kVow*5,giBF1+(iVoice*15)+3
 kForm5 tablei kVow*5,giBF1+(iVoice*15)+4
 ; read formant intensity values from tables
 kDB1 tablei kVow*5,giBF1+(iVoice*15)+5
 kDB2 tablei kVow*5,giBF1+(iVoice*15)+6
 kDB3 tablei kVow*5,giBF1+(iVoice*15)+7
 kDB4 tablei kVow*5,giBF1+(iVoice*15)+8
 kDB5 tablei kVow*5,giBF1+(iVoice*15)+9
 ; read formant bandwidths from tables
 kBW1 tablei kVow*5,giBF1+(iVoice*15)+10
 kBW2 tablei kVow*5,giBF1+(iVoice*15)+11
 kBW3 tablei kVow*5,giBF1+(iVoice*15)+12
 kBW4 tablei kVow*5,giBF1+(iVoice*15)+13
 kBW5 tablei kVow*5,giBF1+(iVoice*15)+14
 ; create resonant formants using fof opcode
 koct = 1
 aForm1 fof ampdb(kDB1),kFund,kForm1,0,kBW1,0.003,0.02,0.007,\
 1000,gisine,giexp,3600
 aForm2 fof ampdb(kDB2),kFund,kForm2,0,kBW2,0.003,0.02,0.007,\
 1000,gisine,giexp,3600
 aForm3 fof ampdb(kDB3),kFund,kForm3,0,kBW3,0.003,0.02,0.007,\
 1000,gisine,giexp,3600
 aForm4 fof ampdb(kDB4),kFund,kForm4,0,kBW4,0.003,0.02,0.007,\
 1000,gisine,giexp,3600
 aForm5 fof ampdb(kDB5),kFund,kForm5,0,kBW5,0.003,0.02,0.007,\
 1000,gisine,giexp,3600

 ; formants are mixed
 aMix sum aForm1,aForm2,aForm3,aForm4,aForm5
 kEnv linseg 0,3,1,p3-6,1,3,0 ; an amplitude envelope
 outs aMix*kEnv*0.3, aMix*kEnv*0.3 ; send audio to outputs
endin

</CsInstruments>
<CsScore>
; p4 = fundamental begin value (c.p.s.)
; p5 = fundamental end value
; p6 = vowel begin value (0 - 1 : a e i o u)
; p7 = vowel end value
; p8 = bandwidth factor begin (suggested range 0 - 2)
; p9 = bandwidth factor end
; p10 = voice (0=bass; 1=tenor; 2=counter_tenor; 3=alto; 4=soprano)

; p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
i 1 0 10 50 100 0 1 2 0 0
i 1 8 . 78 77 1 0 1 0 1
i 1 16 . 150 118 0 1 1 0 2
i 1 24 . 200 220 1 0 0.2 0 3
i 1 32 . 400 800 0 1 0.2 0 4
e
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

Asynchronous Granular Synthesis

The previous two examples have played psychoacoustic phenomena associated with the perception of granular textures that exhibit periodicity and patterns. If we introduce indeterminacy into some of the parameters of granular synthesis we begin to lose the coherence of some of these harmonic structures.

The next example is based on the design of example 04F01.csd. Two streams of grains are generated. The first stream begins as a synchronous stream but as the note progresses the periodicity of grain generation is eroded through the addition of an increasing degree of gaussian noise. It will be heard how the tone metamorphosizes from one characterized by steady purity to one of fuzzy airiness. The second the applies a similar process of increasing indeterminacy to the formant parameter (frequency of material within each grain).

Other parameters of granular synthesis such as the amplitude of each grain, grain duration, spatial location etc. can be similarly modulated with random functions to offset the psychoacoustic effects of synchronicity when using constant values.

EXAMPLE 04F04_Asynchronous_GS.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 1
nchnls = 1
0dbfs = 1

giWave ftgen 0,0,2^10,10,1,1/2,1/4,1/8,1/16,1/32,1/64

instr 1 ;grain generating instrument 1
 kRate = p4
 kTrig metro kRate ; a trigger to generate grains
 kDur = p5
 kForm = p6
 ;note delay time (p2) is defined using a random function -
 ;- beginning with no randomization but then gradually increasing
 kDelayRange transeg 0,1,0,0, p3-1,4,0.03
 kDelay gauss kDelayRange
 ; p1 p2 p3 p4
 ;trigger a note (grain) in instr 3
 schedkwhen kTrig,0,0,3, abs(kDelay), kDur,kForm
endin

instr 2 ;grain generating instrument 2
 kRate = p4
 kTrig metro kRate ; a trigger to generate grains
 kDur = p5
 ;formant frequency (p4) is multiplied by a random function -
 ;- beginning with no randomization but then gradually increasing
 kForm = p6
 kFormOSRange transeg 0,1,0,0, p3-1,2,12 ;range defined in semitones
 kFormOS gauss kFormOSRange
 ; p1 p2 p3 p4
 schedkwhen kTrig,0,0,3, 0, kDur,kForm*semitone(kFormOS)
endin

instr 3 ;grain sounding instrument
 iForm = p4
 aEnv linseg 0,0.005,0.2,p3-0.01,0.2,0.005,0
 aSig poscil aEnv, iForm, giWave
 out aSig
endin

</CsInstruments>
<CsScore>
;p4 = rate
;p5 = duration
;p6 = formant
; p1 p2 p3 p4 p5 p6
i 1 0 12 200 0.02 400
i 2 12.5 12 200 0.02 400
e
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

Synthesis of Dynamic Sound Spectra: grain3

The next example introduces another of Csound’s built-in granular synthesis opcodes to demonstrate the range of dynamic sound spectra that are possible with granular synthesis.

Several parameters are modulated slowly using Csound’s random spline generator rspline. These parameters are formant frequency, grain duration and grain density (rate of grain generation). The waveform used in generating the content for each grain is randomly chosen using a slow sample and hold random function - a new waveform will be selected every 10 seconds. Five waveforms are provided: a sawtooth, a square wave, a triangle wave, a pulse wave and a band limited buzz-like waveform. Some of these waveforms, particularly the sawtooth, square and pulse waveforms, can generate very high overtones, for this reason a high sample rate is recommended to reduce the risk of aliasing (see chapter 01A).

Current values for formant (cps), grain duration, density and waveform are printed to the terminal every second. The key for waveforms is: 1:sawtooth; 2:square; 3:triangle; 4:pulse; 5:buzz.

EXAMPLE 04F05_grain3.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>

sr = 96000
ksmps = 16
nchnls = 1
0dbfs = 1

;waveforms used for granulation
giSaw ftgen 1,0,4096,7,0,4096,1
giSq ftgen 2,0,4096,7,0,2046,0,0,1,2046,1
giTri ftgen 3,0,4096,7,0,2046,1,2046,0
giPls ftgen 4,0,4096,7,1,200,1,0,0,4096-200,0
giBuzz ftgen 5,0,4096,11,20,1,1

;window function - used as an amplitude envelope for each grain
;(hanning window)
giWFn ftgen 7,0,16384,20,2,1

instr 1
 ;random spline generates formant values in oct format
 kOct rspline 4,8,0.1,0.5
 ;oct format values converted to cps format
 kCPS = cpsoct(kOct)
 ;phase location is left at 0 (the beginning of the waveform)
 kPhs = 0
 ;frequency (formant) randomization and phase randomization are not used
 kFmd = 0
 kPmd = 0
 ;grain duration and density (rate of grain generation)
 kGDur rspline 0.01,0.2,0.05,0.2
 kDens rspline 10,200,0.05,0.5
 ;maximum number of grain overlaps allowed. This is used as a CPU brake
 iMaxOvr = 1000
 ;function table for source waveform for content of the grain
 ;a different waveform chosen once every 10 seconds
 kFn randomh 1,5.99,0.1
 ;print info. to the terminal
 printks "CPS:%5.2F%TDur:%5.2F%TDensity:%5.2F%TWaveform:%1.0F%n",
 1, kCPS, kGDur, kDens, kFn
 aSig grain3 kCPS, kPhs, kFmd, kPmd, kGDur, kDens, iMaxOvr, kFn, giWFn, 0, 0
 out aSig*0.06
endin

</CsInstruments>
<CsScore>
i 1 0 300
e
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

The final example introduces grain3’s two built-in randomizing functions for phase and pitch. Phase refers to the location in the source waveform from which a grain will be read, pitch refers to the pitch of the material within grains. In this example a long note is played, initially no randomization is employed but gradually phase randomization is increased and then reduced back to zero. The same process is applied to the pitch randomization amount parameter. This time grain size is relatively large:0.8 seconds and density correspondingly low: 20 Hz.

EXAMPLE 04F06_grain3_random.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 16
nchnls = 1
0dbfs = 1

;waveforms used for granulation
giBuzz ftgen 1,0,4096,11,40,1,0.9

;window function - used as an amplitude envelope for each grain
;(bartlett window)
giWFn ftgen 2,0,16384,20,3,1

instr 1
 kCPS = 100
 kPhs = 0
 kFmd transeg 0,21,0,0, 10,4,15, 10,-4,0
 kPmd transeg 0,1,0,0, 10,4,1, 10,-4,0
 kGDur = 0.8
 kDens = 20
 iMaxOvr = 1000
 kFn = 1
 ;print info. to the terminal
 printks "Random Phase:%5.2F%TPitch Random:%5.2F%n",1,kPmd,kFmd
 aSig grain3 kCPS, kPhs, kFmd, kPmd, kGDur, kDens, iMaxOvr, kFn, giWFn, 0, 0
 out aSig*0.06
endin

</CsInstruments>
<CsScore>
i 1 0 51
e
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

This chapter has introduced some of the concepts behind the synthesis of new sounds based on simple waveforms by using granular synthesis techniques. Only two of Csound’s built-in opcodes for granular synthesis, fof and grain3, have been used; it is beyond the scope of this work to cover all of the many opcodes for granulation that Csound provides. This chapter has focused mainly on synchronous granular synthesis; chapter 05G, which introduces granulation of recorded sound files, makes greater use of asynchronous granular synthesis for time-stretching and pitch shifting. This chapter will also introduce some of Csound’s other opcodes for granular synthesis.

 ch030.xhtml

04 G. PHYSICAL MODELLING

With physical modelling we employ a completely different approach to synthesis than we do with all other standard techniques. Unusually the focus is not primarily to produce a sound, but to model a physical process and if this process exhibits certain features such as periodic oscillation within a frequency range of 20 to 20000 Hz, it will produce sound.

Physical modelling synthesis techniques do not build sound using wave tables, oscillators and audio signal generators, instead they attempt to establish a model, as a system in itself, which can then produce sound because of how the system varies with time. A physical model usually derives from the real physical world, but could be any time-varying system. Physical modelling is an exciting area for the production of new sounds.

Compared with the complexity of a real-world physically dynamic system a physical model will most likely represent a brutal simplification. Nevertheless, using this technique will demand a lot of formulae, because physical models are described in terms of mathematics. Although designing a model may require some considerable work, once established the results commonly exhibit a lively tone with time-varying partials and a “natural” difference between attack and release by their very design - features that other synthesis techniques will demand more from the end user in order to establish.

Csound already contains many ready-made physical models as opcodes but you can still build your own from scratch. This chapter will look at how to implement two classical models from first principles and then introduce a number of Csound’s ready made physical modelling opcodes.

The Mass-Spring Model1

Many oscillating processes in nature can be modelled as connections of masses and springs. Imagine one mass-spring unit which has been set into motion. This system can be described as a sequence of states, where every new state results from the two preceding ones. Assumed the first state a0 is 0 and the second state a1 is 0.5. Without the restricting force of the spring, the mass would continue moving unimpeded following a constant velocity:

As the velocity between the first two states can be described as a1−a0a_1 - a_0, the value of the third state a2a_2 will be:

a2=a1+(a1−a0)=0.5+0.5=1a_2 = a_1 + (a_1 - a_0) = 0.5 + 0.5 = 1

But, the spring pulls the mass back with a force which increases the further the mass moves away from the point of equilibrium. Therefore the masses movement can be described as the product of a constant factor cc and the last position a1a1. This damps the continuous movement of the mass so that for a factor of c=0.4 the next position will be:

a2=(a1+(a1−a0))−c*a1=1−0.2=0.8a_2 = (a_1 + (a_1 - a_0)) - c * a_1 = 1 - 0.2 = 0.8

Csound can easily calculate the values by simply applying the formulae. For the first k-cycle2, they are set via the init opcode. After calculating the new state, a1 becomes a0 and a2 becomes a1 for the next k-cycle. In the next csd the new values will be printed five times per second (the states are named here as k0/k1/k2 instead of a0/a1/a2, because k-rate values are needed for printing instead of audio samples).

EXAMPLE 04G01_Mass_spring_sine.csd

<CsoundSynthesizer>
<CsOptions>
-n ;no sound
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 8820 ;5 steps per second

instr PrintVals
 ;initial values
 kstep init 0
 k0 init 0
 k1 init 0.5
 kc init 0.4
 ;calculation of the next value
 k2 = k1 + (k1 - k0) - kc * k1
 printks "Sample=%d: k0 = %.3f, k1 = %.3f, k2 = %.3f\n", 0, kstep, k0, k1, k2
 ;actualize values for the next step
 kstep = kstep+1
 k0 = k1
 k1 = k2
endin

</CsInstruments>
<CsScore>
i "PrintVals" 0 10
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The output starts with:

State=0: k0 = 0.000, k1 = 0.500, k2 = 0.800
State=1: k0 = 0.500, k1 = 0.800, k2 = 0.780
State=2: k0 = 0.800, k1 = 0.780, k2 = 0.448
State=3: k0 = 0.780, k1 = 0.448, k2 = -0.063
State=4: k0 = 0.448, k1 = -0.063, k2 = -0.549
State=5: k0 = -0.063, k1 = -0.549, k2 = -0.815
State=6: k0 = -0.549, k1 = -0.815, k2 = -0.756
State=7: k0 = -0.815, k1 = -0.756, k2 = -0.393
State=8: k0 = -0.756, k1 = -0.393, k2 = 0.126
State=9: k0 = -0.393, k1 = 0.126, k2 = 0.595
State=10: k0 = 0.126, k1 = 0.595, k2 = 0.826
State=11: k0 = 0.595, k1 = 0.826, k2 = 0.727
State=12: k0 = 0.826, k1 = 0.727, k2 = 0.337

So, a sine wave has been created, without the use of any of Csound’s oscillators…

Here is the audible proof:

EXAMPLE 04G02_MS_sine_audible.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 1
nchnls = 2
0dbfs = 1

instr MassSpring
 ;initial values
 a0 init 0
 a1 init 0.05
 ic = 0.01 ;spring constant
 ;calculation of the next value
 a2 = a1+(a1-a0) - ic*a1
 outs a0, a0
 ;actualize values for the next step
 a0 = a1
 a1 = a2
endin
</CsInstruments>
<CsScore>
i "MassSpring" 0 10
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz, after martin neukom

As the next sample is calculated in the next control cycle, either ksmps has to be set to 1, or a setksmps statement must be set in the instrument, with the same effect. The resulting frequency depends on the spring constant: the higher the constant, the higher the frequency. The resulting amplitude depends on both, the starting value and the spring constant.

This simple model shows the basic principle of a physical modelling synthesis: creating a system which produces sound because it varies in time. Certainly it is not the goal of physical modelling synthesis to reinvent the wheel of a sine wave. But modulating the parameters of a model may lead to interesting results. The next example varies the spring constant, which is now no longer a constant:

EXAMPLE 04G03_MS_variable_constant.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr MassSpring
 ;set ksmps=1 in this instrument
 setksmps 1
 ;initial values
 a0 init 0
 a1 init 0.05
 kc randomi .001, .05, 8, 3
 ;calculation of the next value
 a2 = a1+(a1-a0) - kc*a1
 outs a0, a0
 ;actualize values for the next step
 a0 = a1
 a1 = a2
endin
</CsInstruments>
<CsScore>
i "MassSpring" 0 10
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Working with physical modelling demands thought in more physical or mathematical terms: examples of this might be if you were to change the formula when a certain value of cc had been reached, or combine more than one spring.

Implementing Simple Physical Systems

This text shows how to get oscillators and filters from simple physical models by recording the position of a point (mass) of a physical system. The behavior of a particle (mass on a spring, mass of a pendulum, etc.) is described by its position, velocity and acceleration. The mathematical equations, which describe the movement of such a point, are differential equations. In what follows, we describe how to derive time discrete system equations (also called difference equations) from physical models (described by differential equations). At every time step we first calculate the acceleration of a mass and then its new velocity and position. This procedure is called Euler’s method and yields good results for low frequencies compared to the sampling rate (better approximations are achieved with the improved Euler’s method or the Runge–Kutta methods).

Integrating the Trajectory of a Point

Velocity vv is the difference of positions xx per time unit TT, acceleration aa the difference of velocities vv per time unit TT:

vt=(xt−xt−1)/T,at=(vt−vt−1)/Tv_t = (x_t - x_{t-1})/T, a_t = (v_t - v_{t-1})/T

Putting T = 1 we get

vt=xt−xt−1,at=vt−vt−1v_t~ = x_t - x_{t-1}, a_t~ = v_t - v_{t-1}

If we know the position and velocity of a point at time t−1t - 1 and are able to calculate its acceleration at time tt we can calculate the velocity vtv_t and the position xtx_t at time tt:

vt=vt−1+atv_t = v_{t-1} + a_t and xt=xt−1+vtx_t = x_{t-1} + v_t

With the following algorithm we calculate a sequence of successive positions x:

1. init x and v
2. calculate a
3. v += a ; v = v + a
4. x += v ; x = x + v

Example 1: The acceleration of gravity is constant (g = –9.81ms-2). For a mass with initial position x = 300m (above ground) and velocity v = 70ms-1 (upwards) we get the following trajectory (path)

g = -9.81; x = 300; v = 70; Table[v += g; x += v, {16}];

Example 2: The acceleration a of a mass on a spring is proportional (with factor –c) to its position (deflection) x.

x = 0; v = 1; c = .3; Table[a = -c*x; v += a; x += v, {22}];

Introducing damping

Since damping is proportional to the velocity we reduce velocity at every time step by a certain amount d:

v *= (1 - d)

Example 3: Spring with damping (see lin_reson.csd below):

d = 0.2; c = .3; x = 0; v = 1;
Table[a = -c*x; v += a; v *= (1 - d); x += v, {22}];

The factor c can be calculated from the frequency f:

c=2−4−d2cos(2πf/sr)c = 2 - \sqrt{4 - d^2} cos(2\pi f/sr)

Introducing excitation

In the examples 2 and 3 the systems oscillate because of their initial velocity v = 1. The resultant oscillation is the impulse response of the systems. We can excite the systems continuously by adding a value exc to the velocity at every time step.

v += exc;

Example 4: Damped spring with random excitation (resonator with noise as input)

d = .01; s = 0; v = 0;
Table[a = -.3*s; v += a; v += RandomReal[{-1, 1}];
v *= (1 - d); s += v, {61}];

EXAMPLE 04G04_lin_reson.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

opcode lin_reson, a, akk
setksmps 1
avel init 0 ;velocity
ax init 0 ;deflection x
ain,kf,kdamp xin
kc = 2-sqrt(4-kdamp\^2)*cos(kf*2*$M_PI/sr)
aacel = -kc*ax
avel = avel+aacel+ain
avel = avel*(1-kdamp)
ax = ax+avel
 xout ax
endop

instr 1
aexc rand p4
aout lin_reson aexc,p5,p6
 out aout
endin

</CsInstruments>
<CsScore>
; p4 p5 p6
; excitaion freq damping
i1 0 5 .0001 440 .0001
</CsScore>
</CsoundSynthesizer>
;example by martin neukom

Introducing nonlinear acceleration

Example 5: The acceleration of a pendulum depends on its deflection (angle x).

a = c*sin(x)

This figure shows the function –.3sin(x)

The following trajectory shows that the frequency decreases with encreasing amplitude and that the pendulum can turn around.

d = .003; s = 0; v = 0;
Table[a = f[s]; v += a; v += RandomReal[{-.09, .1}]; v *= (1 - d);
s += v, {400}];

We can implement systems with accelerations that are arbitrary functions of position x.

Example 6: a = f(x) = – c1x + c2sin(c3x)

d = .03; x = 0; v = 0; Table[a = f[x]; v += a;
v += RandomReal[{-.1, .1}]; v *= (1 - d); x += v, {400}];

EXAMPLE 04G05_nonlin_reson.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

; simple damped nonlinear resonator
opcode nonlin_reson, a, akki
setksmps 1
avel init 0 ;velocity
adef init 0 ;deflection
ain,kc,kdamp,ifn xin
aacel tablei adef, ifn, 1, .5 ;acceleration = -c1*f1(def)
aacel = -kc*aacel
avel = avel+aacel+ain ;vel += acel + excitation
avel = avel*(1-kdamp)
adef = adef+avel
 xout adef
endop

instr 1
kenv oscil p4,.5,1
aexc rand kenv
aout nonlin_reson aexc,p5,p6,p7
 out aout
endin

</CsInstruments>
<CsScore>
f1 0 1024 10 1
f2 0 1024 7 -1 510 .15 4 -.15 510 1
f3 0 1024 7 -1 350 .1 100 -.3 100 .2 100 -.1 354 1
; p4 p5 p6 p7
; excitation c1 damping ifn
i1 0 20 .0001 .01 .00001 3
;i1 0 20 .0001 .01 .00001 2
</CsScore>
</CsoundSynthesizer>
;example by martin neukom

The Van der Pol Oscillator

While attempting to explain the nonlinear dynamics of vacuum tube circuits, the Dutch electrical engineer Balthasar van der Pol derived the differential equation

d2x/dt2=−ω2x+μ(1−x2)dx/dtd^2 x / d t^2 = -\omega^2 x + \mu(1 - x^2) dx/dt (where d2x/dt2=d^2 x /d t^2 = accelleration and dx/dtdx/dt = velocity)

The equation describes a linear oscillator d2x/dt2 = –ω2x with an additional nonlinear term μ(1 – x2)dx/dt. When |x| > 1, the nonlinear term results in damping, but when |x| < 1, negative damping results, which means that energy is introduced into the system.

Such oscillators compensating for energy loss by an inner energy source are called self-sustained oscillators.

v = 0; x = .001; ω = 0.1; μ = 0.25;
snd = Table[v += (-ω^2*x + μ*(1 - x^2)*v); x += v, {200}];

The constant ω is the angular frequency of the linear oscillator (μ = 0). For a simulation with sampling rate sr we calculate the frequency f in Hz as

f=ω·sr/2πf = \omega · sr/2\pi

Since the simulation is only an approximation of the oscillation this formula gives good results only for low frequencies. The exact frequency of the simulation is

f=arccos(1−ω2/2)·sr/2πf = arccos(1 - \omega^2/2) · sr/2\pi

We get ω2\omega^2 from frequency ff as

2−2cos(f·2π/sr)2 - 2cos(f · 2\pi/sr)

With increasing μ the oscillations nonlinearity becomes stronger and more overtones arise (and at the same time the frequency becomes lower). The following figure shows the spectrum of the oscillation for various values of μ.

Certain oscillators can be synchronized either by an external force or by mutual influence. Examples of synchronization by an external force are the control of cardiac activity by a pace maker and the adjusting of a clock by radio signals. An example for the mutual synchronization of oscillating systems is the coordinated clapping of an audience. These systems have in common that they are not linear and that they oscillate without external excitation (self-sustained oscillators).

The UDO v_d_p represents a Van der Pol oscillator with a natural frequency kfr and a nonlinearity factor kmu. It can be excited by a sine wave of frequency kfex and amplitude kaex. The range of frequency within which the oscillator is synchronized to the exciting frequency increases as kmu and kaex increase.

EXAMPLE 04G06_van_der_pol.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

;Van der Pol Oscillator ;outputs a nonliniear oscillation
;inputs: a_excitation, k_frequency in Hz (of the linear part),
;nonlinearity (0 < mu < ca. 0.7)
opcode v_d_p, a, akk
 setksmps 1
 av init 0
 ax init 0
 ain,kfr,kmu xin
 kc = 2-2*cos(kfr*2*$M_PI/sr)
 aa = -kc*ax + kmu*(1-ax*ax)*av
 av = av + aa
 ax = ax + av + ain
 xout ax
endop

instr 1
 kaex = .001
 kfex = 830
 kamp = .15
 kf = 455
 kmu linseg 0,p3,.7
 a1 poscil kaex,kfex
 aout v_d_p a1,kf,kmu
 out kamp*aout,a1*100
endin

</CsInstruments>
<CsScore>
i1 0 20
</CsScore>
</CsoundSynthesizer>
;example by martin neukom, adapted by joachim heintz

The variation of the phase difference between excitation and oscillation, as well as the transitions between synchronous, beating and asynchronous behaviors, can be visualized by showing the sum of the excitation and the oscillation signals in a phase diagram. The following figures show to the upper left the waveform of the Van der Pol oscillator, to the lower left that of the excitation (normalized) and to the right the phase diagram of their sum. For these figures, the same values were always used for kfr, kmu and kaex. Comparing the first two figures, one sees that the oscillator adopts the exciting frequency kfex within a large frequency range. When the frequency is low (figure a), the phases of the two waves are nearly the same. Hence there is a large deflection along the x-axis in the phase diagram showing the sum of the waveforms. When the frequency is high, the phases are nearly inverted (figure b) and the phase diagram shows only a small deflection. The figure c shows the transition to asynchronous behavior. If the proportion between the natural frequency of the oscillator kfr and the excitation frequency kfex is approximately simple (kfex/kfr ≅ m/n), then within a certain range the frequency of the Van der Pol oscillator is synchronized so that kfex/kfr = m/n. Here one speaks of higher order synchronization (figure d).

The Karplus-Strong Algorithm: Plucked String

The Karplus-Strong algorithm provides another simple yet interesting example of how physical modelling can be used to synthesized sound. A buffer is filled with random values of either +1 or -1. At the end of the buffer, the mean of the first and the second value to come out of the buffer is calculated. This value is then put back at the beginning of the buffer, and all the values in the buffer are shifted by one position.

This is what happens for a buffer of five values, for the first five steps:

	initial state
	1
	-1
	1
	1
	-1

	step 1
	0
	1
	-1
	1
	1

	step 2
	1
	0
	1
	-1
	1

	step 3
	0
	1
	0
	1
	-1

	step 4
	0
	0
	1
	0
	1

	step 5
	0.5
	0
	0
	1
	0

The next Csound example represents the content of the buffer in a function table, implements and executes the algorithm, and prints the result after each five steps which here is referred to as one cycle:

EXAMPLE 04G07_KarplusStrong.csd

<CsoundSynthesizer>
<CsOptions>
-n
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

 opcode KS, 0, ii
 ;performs the karplus-strong algorithm
iTab, iTbSiz xin
;calculate the mean of the last two values
iUlt tab_i iTbSiz-1, iTab
iPenUlt tab_i iTbSiz-2, iTab
iNewVal = (iUlt + iPenUlt) / 2
;shift values one position to the right
indx = iTbSiz-2
loop:
iVal tab_i indx, iTab
 tabw_i iVal, indx+1, iTab
 loop_ge indx, 1, 0, loop
;fill the new value at the beginning of the table
 tabw_i iNewVal, 0, iTab
 endop

 opcode PrintTab, 0, iiS
 ;prints table content, with a starting string
iTab, iTbSiz, Sin xin
indx = 0
Sout strcpy Sin
loop:
iVal tab_i indx, iTab
Snew sprintf "%8.3f", iVal
Sout strcat Sout, Snew
 loop_lt indx, 1, iTbSiz, loop
 puts Sout, 1
 endop

instr ShowBuffer
;fill the function table
iTab ftgen 0, 0, -5, -2, 1, -1, 1, 1, -1
iTbLen tableng iTab
;loop cycles (five states)
iCycle = 0
cycle:
Scycle sprintf "Cycle %d:", iCycle
 PrintTab iTab, iTbLen, Scycle
;loop states
iState = 0
state:
 KS iTab, iTbLen
 loop_lt iState, 1, iTbLen, state
 loop_lt iCycle, 1, 10, cycle
endin

</CsInstruments>
<CsScore>
i "ShowBuffer" 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

This is the output:

Cycle 0: 1.000 -1.000 1.000 1.000 -1.000
Cycle 1: 0.500 0.000 0.000 1.000 0.000
Cycle 2: 0.500 0.250 0.000 0.500 0.500
Cycle 3: 0.500 0.375 0.125 0.250 0.500
Cycle 4: 0.438 0.438 0.250 0.188 0.375
Cycle 5: 0.359 0.438 0.344 0.219 0.281
Cycle 6: 0.305 0.398 0.391 0.281 0.250
Cycle 7: 0.285 0.352 0.395 0.336 0.266
Cycle 8: 0.293 0.318 0.373 0.365 0.301
Cycle 9: 0.313 0.306 0.346 0.369 0.333

It can be seen clearly that the values get smoothed more and more from cycle to cycle. As the buffer size is very small here, the values tend to come to a constant level; in this case 0.333. But for larger buffer sizes, after some cycles the buffer content has the effect of a period which is repeated with a slight loss of amplitude. This is how it sounds, if the buffer size is 1/100 second (or 441 samples at sr=44100):

EXAMPLE 04G08_Plucked.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 1
nchnls = 2
0dbfs = 1

instr 1
;delay time
iDelTm = 0.01
;fill the delay line with either -1 or 1 randomly
kDur timeinsts
 if kDur < iDelTm then
aFill rand 1, 2, 1, 1 ;values 0-2
aFill = floor(aFill)*2 - 1 ;just -1 or +1
 else
aFill = 0
 endif
;delay and feedback
aUlt init 0 ;last sample in the delay line
aUlt1 init 0 ;delayed by one sample
aMean = (aUlt+aUlt1)/2 ;mean of these two
aUlt delay aFill+aMean, iDelTm
aUlt1 delay1 aUlt
 outs aUlt, aUlt
endin

</CsInstruments>
<CsScore>
i 1 0 60
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz, after martin neukom

This sound resembles a plucked string: at the beginning the sound is noisy but after a short period of time it exhibits periodicity. As can be heard, unless a natural string, the steady state is virtually endless, so for practical use it needs some fade-out. The frequency the listener perceives is related to the length of the delay line. If the delay line is 1/100 of a second, the perceived frequency is 100 Hz. Compared with a sine wave of similar frequency, the inherent periodicity can be seen, and also the rich overtone structure:

Csound Opcodes for Physical Modelling

Csound contains over forty opcodes which provide a wide variety of ready-made physical models and emulations. A small number of them will be introduced here to give a brief overview of the sort of things available.

wgbow - A Waveguide Emulation of a Bowed String by Perry Cook

Perry Cook is a prolific author of physical models and a lot of his work has been converted into Csound opcodes. A number of these models wgbow, wgflute, wgclar wgbowedbar and wgbrass are based on waveguides. A waveguide, in its broadest sense, is some sort of mechanism that limits the extend of oscillations, such as a vibrating string fixed at both ends or a pipe. In these sorts of physical model a delay is used to emulate these limits. One of these, wgbow, implements an emulation of a bowed string. Perhaps the most interesting aspect of many physical models in not specifically whether they emulate the target instrument played in a conventional way accurately but the facilities they provide for extending the physical limits of the instrument and how it is played - there are already vast sample libraries and software samplers for emulating conventional instruments played conventionally. wgbow offers several interesting options for experimentation including the ability to modulate the bow pressure and the bowing position at k-rate. Varying bow pressure will change the tone of the sound produced by changing the harmonic emphasis. As bow pressure reduces, the fundamental of the tone becomes weaker and overtones become more prominent. If the bow pressure is reduced further the ability of the system to produce a resonance at all collapse. This boundary between tone production and the inability to produce a tone can provide some interesting new sound effect. The following example explores this sound area by modulating the bow pressure parameter around this threshold. Some additional features to enhance the example are that 7 different notes are played simultaneously, the bow pressure modulations in the right channel are delayed by a varying amount with respect top the left channel in order to create a stereo effect and a reverb has been added.

EXAMPLE 04G09_wgbow.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
 seed 0

gisine ftgen 0,0,4096,10,1

gaSendL,gaSendR init 0

 instr 1 ; wgbow instrument
kamp = 0.3
kfreq = p4
ipres1 = p5
ipres2 = p6
; kpres (bow pressure) defined using a random spline
kpres rspline p5,p6,0.5,2
krat = 0.127236
kvibf = 4.5
kvibamp = 0
iminfreq = 20
; call the wgbow opcode
aSigL wgbow kamp,kfreq,kpres,krat,kvibf,kvibamp,gisine,iminfreq
; modulating delay time
kdel rspline 0.01,0.1,0.1,0.5
; bow pressure parameter delayed by a varying time in the right channel
kpres vdel_k kpres,kdel,0.2,2
aSigR wgbow kamp,kfreq,kpres,krat,kvibf,kvibamp,gisine,iminfreq
 outs aSigL,aSigR
; send some audio to the reverb
gaSendL = gaSendL + aSigL/3
gaSendR = gaSendR + aSigR/3
 endin

 instr 2 ; reverb
aRvbL,aRvbR reverbsc gaSendL,gaSendR,0.9,7000
 outs aRvbL,aRvbR
 clear gaSendL,gaSendR
 endin

</CsInstruments>
<CsScore>
; instr. 1
; p4 = pitch (hz.)
; p5 = minimum bow pressure
; p6 = maximum bow pressure
; 7 notes played by the wgbow instrument
i 1 0 480 70 0.03 0.1
i 1 0 480 85 0.03 0.1
i 1 0 480 100 0.03 0.09
i 1 0 480 135 0.03 0.09
i 1 0 480 170 0.02 0.09
i 1 0 480 202 0.04 0.1
i 1 0 480 233 0.05 0.11
; reverb instrument
i 2 0 480
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

This time a stack of eight sustaining notes, each separated by an octave, vary their bowing position randomly and independently. You will hear how different bowing positions accentuates and attenuates different partials of the bowing tone. To enhance the sound produced some filtering with tone and pareq is employed and some reverb is added.

EXAMPLE 04G10_wgbow_enhanced.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
 seed 0

gisine ftgen 0,0,4096,10,1

gaSend init 0

 instr 1 ; wgbow instrument
kamp = 0.1
kfreq = p4
kpres = 0.2
krat rspline 0.006,0.988,0.1,0.4
kvibf = 4.5
kvibamp = 0
iminfreq = 20
aSig wgbow kamp,kfreq,kpres,krat,kvibf,kvibamp,gisine,iminfreq
aSig butlp aSig,2000
aSig pareq aSig,80,6,0.707
 outs aSig,aSig
gaSend = gaSend + aSig/3
 endin

 instr 2 ; reverb
aRvbL,aRvbR reverbsc gaSend,gaSend,0.9,7000
 outs aRvbL,aRvbR
 clear gaSend
 endin

</CsInstruments>
<CsScore>
; instr. 1 (wgbow instrument)
; p4 = pitch (hertz)
; wgbow instrument
i 1 0 480 20
i 1 0 480 40
i 1 0 480 80
i 1 0 480 160
i 1 0 480 320
i 1 0 480 640
i 1 0 480 1280
i 1 0 480 2460
; reverb instrument
i 2 0 480
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

All of the wg- family of opcodes are worth exploring and often the approach taken here - exploring each input parameter in isolation whilst the others retain constant values - sets the path to understanding the model better. Tone production with wgbrass is very much dependent upon the relationship between intended pitch and lip tension, random experimentation with this opcode is as likely to result in silence as it is in sound and in this way is perhaps a reflection of the experience of learning a brass instrument when the student spends most time push air silently through the instrument. With patience it is capable of some interesting sounds however. In its case, I would recommend building a realtime GUI and exploring the interaction of its input arguments that way. wgbowedbar, like a number of physical modelling algorithms, is rather unstable. This is not necessary a design flaw in the algorithm but instead perhaps an indication that the algorithm has been left quite open for out experimentation - or abuse. In these situation caution is advised in order to protect ears and loudspeakers. Positive feedback within the model can result in signals of enormous amplitude very quickly. Employment of the clip opcode as a means of some protection is recommended when experimenting in realtime.

barmodel - a Model of a Struck Metal Bar by Stefan Bilbao

barmodel can also imitate wooden bars, tubular bells, chimes and other resonant inharmonic objects. barmodel is a model that can easily be abused to produce ear shreddingly loud sounds therefore precautions are advised when experimenting with it in realtime. We are presented with a wealth of input arguments such as stiffness, strike position and strike velocity, which relate in an easily understandable way to the physical process we are emulating. Some parameters will evidently have more of a dramatic effect on the sound produced than other and again it is recommended to create a realtime GUI for exploration. Nonetheless, a fixed example is provided below that should offer some insight into the kinds of sounds possible.

Probably the most important parameter for us is the stiffness of the bar. This actually provides us with our pitch control and is not in cycle-per-second so some experimentation will be required to find a desired pitch. There is a relationship between stiffness and the parameter used to define the width of the strike - when the stiffness coefficient is higher a wider strike may be required in order for the note to sound. Strike width also impacts upon the tone produced, narrower strikes generating emphasis upon upper partials (provided a tone is still produced) whilst wider strikes tend to emphasize the fundamental).

The parameter for strike position also has some impact upon the spectral balance. This effect may be more subtle and may be dependent upon some other parameter settings, for example, when strike width is particularly wide, its effect may be imperceptible. A general rule of thumb here is that in order to achieve the greatest effect from strike position, strike width should be as low as will still produce a tone. This kind of interdependency between input parameters is the essence of working with a physical model that can be both intriguing and frustrating.

An important parameter that will vary the impression of the bar from metal to wood is

An interesting feature incorporated into the model in the ability to modulate the point along the bar at which vibrations are read. This could also be described as pick-up position. Moving this scanning location results in tonal and amplitude variations. We just have control over the frequency at which the scanning location is modulated.

EXAMPLE 04G11_barmodel.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1
; boundary conditions 1=fixed 2=pivot 3=free
kbcL = 1
kbcR = 1
; stiffness
iK = p4
; high freq. loss (damping)
ib = p5
; scanning frequency
kscan rspline p6,p7,0.2,0.8
; time to reach 30db decay
iT30 = p3
; strike position
ipos random 0,1
; strike velocity
ivel = 1000
; width of strike
iwid = 0.1156
aSig barmodel kbcL,kbcR,iK,ib,kscan,iT30,ipos,ivel,iwid
kPan rspline 0.1,0.9,0.5,2
aL,aR pan2 aSig,kPan
 outs aL,aR
 endin

</CsInstruments>

<CsScore>
;t 0 90 1 30 2 60 5 90 7 30
; p4 = stiffness (pitch)

#define gliss(dur'Kstrt'Kend'b'scan1'scan2)
#
i 1 0 20 $Kstrt $b $scan1 $scan2
i 1 ^+0.05 $dur > $b $scan1 $scan2
i 1 ^+0.05 $dur > $b $scan1 $scan2
i 1 ^+0.05 $dur > $b $scan1 $scan2
i 1 ^+0.05 $dur > $b $scan1 $scan2
i 1 ^+0.05 $dur > $b $scan1 $scan2
i 1 ^+0.05 $dur > $b $scan1 $scan2
i 1 ^+0.05 $dur > $b $scan1 $scan2
i 1 ^+0.05 $dur > $b $scan1 $scan2
i 1 ^+0.05 $dur > $b $scan1 $scan2
i 1 ^+0.05 $dur > $b $scan1 $scan2
i 1 ^+0.05 $dur > $b $scan1 $scan2
i 1 ^+0.05 $dur > $b $scan1 $scan2
i 1 ^+0.05 $dur > $b $scan1 $scan2
i 1 ^+0.05 $dur > $b $scan1 $scan2
i 1 ^+0.05 $dur > $b $scan1 $scan2
i 1 ^+0.05 $dur > $b $scan1 $scan2
i 1 ^+0.05 $dur $Kend $b $scan1 $scan2
#
$gliss(15'40'400'0.0755'0.1'2)
b 5
$gliss(2'80'800'0.755'0'0.1)
b 10
$gliss(3'10'100'0.1'0'0)
b 15
$gliss(40'40'433'0'0.2'5)
e
</CsScore>
</CsoundSynthesizer>
; example written by Iain McCurdy

PhISEM - Physically Inspired Stochastic Event Modeling

The PhiSEM set of models in Csound, again based on the work of Perry Cook, imitate instruments that rely on collisions between smaller sound producing object to produce their sounds. These models include a tambourine, a set of bamboo windchimes and sleighbells. These models algorithmically mimic these multiple collisions internally so that we only need to define elements such as the number of internal elements (timbrels, beans, bells etc.) internal damping and resonances. Once again the most interesting aspect of working with a model is to stretch the physical limits so that we can hear the results from, for example, a maraca with an impossible number of beans, a tambourine with so little internal damping that it never decays. In the following example I explore tambourine, bamboo and sleighbells each in turn, first in a state that mimics the source instrument and then with some more extreme conditions.

EXAMPLE 04G12_PhiSEM.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

 instr 1 ; tambourine
iAmp = p4
iDettack = 0.01
iNum = p5
iDamp = p6
iMaxShake = 0
iFreq = p7
iFreq1 = p8
iFreq2 = p9
aSig tambourine iAmp,iDettack,iNum,iDamp,iMaxShake,iFreq,iFreq1,iFreq2
 out aSig
 endin

 instr 2 ; bamboo
iAmp = p4
iDettack = 0.01
iNum = p5
iDamp = p6
iMaxShake = 0
iFreq = p7
iFreq1 = p8
iFreq2 = p9
aSig bamboo iAmp,iDettack,iNum,iDamp,iMaxShake,iFreq,iFreq1,iFreq2
 out aSig
 endin

 instr 3 ; sleighbells
iAmp = p4
iDettack = 0.01
iNum = p5
iDamp = p6
iMaxShake = 0
iFreq = p7
iFreq1 = p8
iFreq2 = p9
aSig sleighbells iAmp,iDettack,iNum,iDamp,iMaxShake,iFreq,iFreq1,iFreq2
 out aSig
 endin

</CsInstruments>
<CsScore>
; p4 = amp.
; p5 = number of timbrels
; p6 = damping
; p7 = freq (main)
; p8 = freq 1
; p9 = freq 2

; tambourine
i 1 0 1 0.1 32 0.47 2300 5600 8100
i 1 + 1 0.1 32 0.47 2300 5600 8100
i 1 + 2 0.1 32 0.75 2300 5600 8100
i 1 + 2 0.05 2 0.75 2300 5600 8100
i 1 + 1 0.1 16 0.65 2000 4000 8000
i 1 + 1 0.1 16 0.65 1000 2000 3000
i 1 8 2 0.01 1 0.75 1257 2653 6245
i 1 8 2 0.01 1 0.75 673 3256 9102
i 1 8 2 0.01 1 0.75 314 1629 4756

b 10

; bamboo
i 2 0 1 0.4 1.25 0.0 2800 2240 3360
i 2 + 1 0.4 1.25 0.0 2800 2240 3360
i 2 + 2 0.4 1.25 0.05 2800 2240 3360
i 2 + 2 0.2 10 0.05 2800 2240 3360
i 2 + 1 0.3 16 0.01 2000 4000 8000
i 2 + 1 0.3 16 0.01 1000 2000 3000
i 2 8 2 0.1 1 0.05 1257 2653 6245
i 2 8 2 0.1 1 0.05 1073 3256 8102
i 2 8 2 0.1 1 0.05 514 6629 9756

b 20

; sleighbells
i 3 0 1 0.7 1.25 0.17 2500 5300 6500
i 3 + 1 0.7 1.25 0.17 2500 5300 6500
i 3 + 2 0.7 1.25 0.3 2500 5300 6500
i 3 + 2 0.4 10 0.3 2500 5300 6500
i 3 + 1 0.5 16 0.2 2000 4000 8000
i 3 + 1 0.5 16 0.2 1000 2000 3000
i 3 8 2 0.3 1 0.3 1257 2653 6245
i 3 8 2 0.3 1 0.3 1073 3256 8102
i 3 8 2 0.3 1 0.3 514 6629 9756
e
</CsScore>
</CsoundSynthesizer>
; example written by Iain McCurdy

Physical modelling can produce rich, spectrally dynamic sounds with user manipulation usually abstracted to a small number of descriptive parameters. Csound offers a wealth of other opcodes for physical modelling which cannot all be introduced here so the user is encouraged to explore based on the approaches exemplified here. You can find lists in the chapters Models and Emulations, Scanned Synthesis and Waveguide Physical Modeling of the Csound Manual.

	The explanation here follows chapter 8.1.1 of Martin Neukom’s Signale Systeme Klangsynthese (Bern 2003)↩︎

	See chapter 03A for more information about Csound’s performance loops.↩︎

 ch031.xhtml

04 H. SCANNED SYNTHESIS

Scanned Synthesis is a relatively new synthesis technique invented by Max Mathews, Rob Shaw and Bill Verplank at Interval Research in 2000. This algorithm uses a combination of a table-lookup oscillator and Issac Newton’s mechanical model (equation) of a mass and spring system to dynamically change the values stored in an f-table. The sonic result is a timbral spectrum that changes with time.

Csound has a couple opcodes dedicated to scanned synthesis, and these opcodes can be used not only to make sounds, but also to generate dynamic f-tables for use with other Csound opcodes.

A Quick Scanned Synth

The quickest way to start using scanned synthesis is Matt Gilliard’s opcode scantable.

a1 scantable kamp, kfrq, ipos, imass, istiff, idamp, ivel

The arguments kamp and kfrq should be familiar, amplitude and frequency respectively. The other arguments are f-table numbers containing data known in the scanned synthesis world as profiles.

Profiles

Profiles refer to variables in the mass and spring equation. Newton’s model describes a string as a finite series of marbles connected to each other with springs.

In this example we will use 128 marbles in our system. To the Csound user, profiles are a series of f-tables that set up the scantable opcode. To the opcode, these f-tables influence the dynamic behavior of the table read by a table-lookup oscillator.

gipos ftgen 1, 0, 128, 10, 1 ;Position Initial Shape: Sine wave range -1 to 1
gimass ftgen 2, 0, 128, -7, 1, 128, 1 ;Masses: Constant value 1
gistiff ftgen 3, 0, 128, -7, 0, 64, 100, 64, 0 ;Stiffness: triangle
gidamp ftgen 4, 0, 128, -7, 1, 128, 1 ;Damping: Constant value 1
givel ftgen 5, 0, 128, -2, 0 ;Velocity: Initially constant value 0

[image: Initial function table profiles]Initial function table profiles

All these tables need to be the same size; otherwise Csound will return an error.

Run the following .csd. Notice that the sound starts off sounding like our intial shape (a sine wave) but evolves as if there are filters, distortions or LFO’s.

EXAMPLE 04H01_scantable_1.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
nchnls = 2
sr = 44100
ksmps = 32
0dbfs = 1

gipos ftgen 1, 0, 128, 10, 1 ;position of the masses (initially: sine)
gimass ftgen 2, 0, 128, -7, 1, 128, 1 ;masses: constant value 1
gistiff ftgen 3, 0, 128, -7, 0, 64, 100, 64, 0 ;stiffness; triangle 0->100->0
gidamp ftgen 4, 0, 128, -7, 1, 128, 1 ;damping; constant value 1
givel ftgen 5, 0, 128, -2, 0 ;velocity; initially 0

instr 1
 iamp = .2
 ifrq = 440
 aScan scantable iamp, ifrq, gipos, gimass, gistiff, gidamp, givel
 aOut linen aScan, 1, p3, 1
 out aOut, aOut
endin

</CsInstruments>
<CsScore>
i 1 0 19
</CsScore>
</CsoundSynthesizer>
;example by Christopher Saunders and joachim heintz

What happens in the scantable synthesis, is a constant change in the position (table gipos) and the velocity (table +givel*) of the mass particles. Here are three snapshots of these tables in the examples above:

[image: Position and Velocity tables at 0, 8, 16 seconds]Position and Velocity tables at 0, 8, 16 seconds

The audio output of scantable is the result of oscillating through the gipos table. So we will achieve the same audible result with this code:

EXAMPLE 04H02_scantable_2.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
nchnls = 2
sr = 44100
ksmps = 32
0dbfs = 1

gipos ftgen 1, 0, 128, 10, 1 ;position of the masses (initially: sine)
gimass ftgen 2, 0, 128, -7, 1, 128, 1 ;masses: constant value 1
gistiff ftgen 3, 0, 128, -7, 0, 64, 100, 64, 0 ;stiffness; triangle 0->100->0
gidamp ftgen 4, 0, 128, -7, 1, 128, 1 ;damping; constant value 1
givel ftgen 5, 0, 128, -2, 0 ;velocity; initially 0

instr 1
 iamp = .2
 ifrq = 440
 a0 scantable 0, 0, gipos, gimass, gistiff, gidamp, givel
 aScan poscil iamp, ifrq, gipos
 aOut linen aScan, 1, p3, 1
 out aOut, aOut
endin

</CsInstruments>
<CsScore>
i 1 0 19
</CsScore>
</CsoundSynthesizer>
;example by Christopher Saunders and joachim heintz

Dynamic Tables

We can use table which is changed by scantable dynamically for any context. Below is an example of using the values of an f-table generated by scantable to modify the amplitudes of an fsig, a signal type in csound which represents a spectral signal.

EXAMPLE 04H03_Scantable_pvsmaska.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
nchnls = 2
sr = 44100
ksmps = 32
0dbfs = 1

gipos ftgen 0,0,128,10,1,1,1,1,1,1 ;Initial Position Shape: impulse-like
gimass ftgen 0,0,128,-5,0.0001,128,.01 ;Masses: exponential 0.0001 to 0.01
gistiff ftgen 0,0,128,-7,0,64,100,64,0 ;Stiffness; triangle range 0 to 100
gidamp ftgen 0,0,128,-7,1,128,1 ;Damping; constant value 1
givel ftgen 0,0,128,-7,0,128,0 ;Initial Velocity; constant value 0
gisin ftgen 0,0,8192,10,1 ;Sine wave for buzz opcode

instr 1
iamp = .2
kfrq = 110
aBuzz buzz iamp, kfrq, 32, gisin
aBuzz linen aBuzz, .1, p3, 1
 out aBuzz, aBuzz
endin
instr 2
iamp = .4
kfrq = 110
a0 scantable 0, 0, gipos, gimass, gistiff, gidamp, givel
ifftsize = 128
ioverlap = ifftsize / 4
iwinsize = ifftsize
iwinshape = 1; von-Hann window
aBuzz buzz iamp, kfrq, 32, gisin
fBuzz pvsanal aBuzz, ifftsize, ioverlap, iwinsize, iwinshape ;fft
fMask pvsmaska fBuzz, gipos, 1
aOut pvsynth fMask; resynthesize
aOut linen aOut, .1, p3, 1
 out aOut, aOut
endin
</CsInstruments>
<CsScore>
i 1 0 3
i 2 4 20
</CsScore>
</CsoundSynthesizer>
;Example by Christopher Saunders and joachim heintz

In this .csd, the score plays instrument 1, a normal buzz sound, and then the score plays instrument 2 — the same buzz sound re-synthesized with amplitudes of each of the 128 frequency bands, controlled by a dynamic function table which is generated by scantable. Compared to the first example, two tables have been changed. The initial positions are an impulse-like wave form, and the masses are between 1/10000 and 1/10 in exponential rise.

A More Flexible Scanned Synth

Scantable can do a lot for us, it can synthesize an interesting, time-varying timbre using a table lookup oscillator, or animate an f-table for use in other Csound opcodes. However, there are other scanned synthesis opcodes that can take our expressive use of the algorithm even further.

The opcodes scans and scanu by Paris Smaragdis give the Csound user one of the most robust and flexible scanned synthesis environments. These opcodes work in tandem to first set up the dynamic wavetable, and then to scan the dynamic table in ways a table-lookup oscillator cannot.

Scanu takes 18 arguments and sets a table into motion.

 scanu ipos, irate, ifnvel, ifnmass, ifnstif, ifncentr, ifndamp, kmass,
 kstif, kcentr, kdamp, ileft, iright, kpos, kstrngth, ain, idisp, id

For a detailed description of what each argument does, see the Csound Reference Manual; I will discuss the various types of arguments in the opcode.

The first set of arguments - ipos, ifnvel, ifnmass, ifnstiff, ifncenter, and ifndamp - are f-tables describing the profiles, similar to the profile arguments for scantable. Like for scantable, the same size is required for each of these tables.

An exception to this size requirement is the ifnstiff table. This table is the size of the other profiles squared. If the other f-tables are size 128, then ifnstiff should be of size 16384 (or 128*128). To discuss what this table does, I must first introduce the concept of a scanned matrix.

The Scanned Matrix

The scanned matrix is a convention designed to describe the shape of the connections of masses in the mass and spring model.

Going back to our discussion on Newton’s mechanical model, the mass and spring model describes the behavior of a string as a finite number of masses connected by springs. As you can imagine, the masses are connected sequentially, one to another, like beads on a string. Mass #1 is connected to #2, #2 connected to #3 and so on. However, the pioneers of scanned synthesis had the idea to connect the masses in a non-linear way. It’s hard to imagine, because as musicians, we have experience with piano or violin strings (one dimensional strings), but not with multi-dimensional strings. Fortunately, the computer has no problem working with this idea, and the flexibility of Newton’s equation allows us to use the CPU to model mass #1 being connected with springs not only to #2 but also to #3 and any other mass in the model.

The most direct and useful implementation of this concept is to connect mass #1 to mass #2 and mass #128 – forming a string without endpoints, a circular string, like tying our string with beads to make a necklace. The pioneers of scanned synthesis discovered that this circular string model is more useful than a conventional one-dimensional string model with endpoints. In fact, scantable uses a circular string.

The matrix is described in a simple ASCII file, imported into Csound via a GEN23 generated f-table.

f3 0 16384 -23 "string-128"

This text file must be located in the same directory as your .csd or csound will give you this error

ftable 3: error opening ASCII file

You can construct your own matrix using Stephen Yi’s Scanned Matrix editor included in the Blue frontend for Csound.

To swap out matrices, simply type the name of a different matrix file into the double quotes, i.e.:

f3 0 16384 -23 "circularstring_2-128"

Different matrices have unique effects on the behavior of the system. Some matrices can make the synth extremely loud, others extremely quiet. Experiment with using different matrices.

Now would be a good time to point out that Csound has other scanned synthesis opcodes preceded with an x, xscans, xscanu, that use a different matrix format than the one used by scans, scanu, and Stephen Yi’s Scanned Matrix Editor. The Csound Reference Manual has more information on this.

The Hammer

If the initial shape, an f-table specified by the ipos argument determines the shape of the initial contents in our dynamic table. What if we want to “reset” or “pluck” the table, perhaps with a shape of a square wave instead of a sine wave, while the instrument is playing?

With scantable, there is an easy way to to this, send a score event changing the contents of the dynamic f-table. You can do this with the Csound score by adjusting the start time of the f-events in the score.

EXAMPLE 04H04_Hammer.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr=44100
ksmps=32
nchnls=2
0dbfs=1

instr 1
ipos ftgen 1, 0, 128, 10, 1 ; Initial Shape, sine
imass ftgen 2, 0, 128, -7, 1, 128, 1 ;Masses(adj.), constant value 1
istiff ftgen 3, 0, 128, -7, 0, 64, 100, 64, 0 ;Stiffness triangle
idamp ftgen 4, 0, 128, -7, 1, 128, 1; ;Damping; constant value 1
ivel ftgen 5, 0, 128, -7, 0, 128, 0 ;Initial Velocity 0
iamp = 0.2
a1 scantable iamp, 60, ipos, imass, istiff, idamp, ivel
 outs a1, a1
endin
</CsInstruments>
<CsScore>
i 1 0 14
f 1 1 128 10 1 1 1 1 1 1 1 1 1 1 1
f 1 2 128 10 1 1 0 0 0 0 0 0 0 1 1
f 1 3 128 10 1 1 1 1 1
f 1 4 128 10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
f 1 5 128 10 1 1
f 1 6 128 13 1 1 0 0 0 -.1 0 .3 0 -.5 0 .7 0 -.9 0 1 0 -1 0
f 1 7 128 21 6 5.745
</CsScore>
</CsoundSynthesizer>
;example by Christopher Saunders

You’ll get the warning

WARNING: replacing previous ftable 1

which means this method of hammering the string is working. In fact you could use this method to explore and hammer every possible GEN routine in Csound. GEN10 (sines), GEN 21 (noise) and GEN 27 (breakpoint functions) could keep you occupied for a while.

Unipolar waves have a different sound but a loss in volume can occur. There is a way to do this with scanu, but I do not use this feature and just use these values instead.

 ileft = 0. iright = 1. kpos = 0. kstrngth = 0.

More on Profiles

One of the biggest challenges in understanding scanned synthesis is the concept of profiles.

Setting up the opcode scanu requires 3 profiles - Centering, Mass and Damping. The pioneers of scanned synthesis discovered early on that the resultant timbre is far more interesting if marble #1 had a different centering force than mass #64.

The farther our model gets away from a physical real-world string that we know and pluck on our guitars and pianos, the more interesting the sounds for synthesis. Therefore, instead of one mass, and damping, and centering value for all 128 of the marbles each marble can have its own conditions. How the centering, mass, and damping profiles make the system behave is up to the user to discover through experimentation (more on how to experiment safely later in this chapter).

Control Rate Profile Scalars

Profiles are a detailed way to control the behavior of the string, but what if we want to influence the mass or centering or damping of every marble after a note has been activated and while its playing?

Scanu gives us 4 k-rate arguments kmass, kstif, kcentr, kdamp, to scale these forces. One could scale mass to volume, or have an envelope controlling centering.

Caution! These parameters can make the scanned system unstable in ways that could make extremely loud sounds come out of your computer. It is best to experiment with small changes in range and keep your headphones off. A good place to start experimenting is with different values for kcentr while keeping kmass, kstiff, and kdamp constant. You could also scale mass and stiffness to MIDI velocity.

Audio Injection

Instead of using the hammer method to move the marbles around, we could use audio to add motion to the mass and spring model. Scanu lets us do this with a simple audio rate argument. Be careful with the amplitude again.

To bypass audio injection all together, simply assign 0 to an a-rate variable.

 ain = 0

and use this variable as the argument.

Connecting to Scans

The p-field id is an arbitrary integer label that tells the scans opcode which scanu to read. By making the value of id negative, the arbitrary numerical label becomes the number of an f-table that can be used by any other opcode in Csound, like we did with scantable earlier in this chapter.

We could then use poscil to perform a table lookup algorithm to make sound out of scanu (as long as id is negative), but scanu has a companion opcode, scans which has 1 more argument than oscil. This argument is the number of an f-table containing the scan trajectory.

Scan Trajectories

One thing we have taken for granted so far with poscil is that the wave table is read front to back. If you regard poscil as a phasor and table pair, the first index of the table is always read first and the last index is always read last as in the example below:

EXAMPLE 04H05_Scan_trajectories.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr=44100
ksmps=32
nchnls=2
0dbfs=1

instr 1
andx phasor 440
a1 table andx*8192, 1
outs a1*.2, a1*.2
endin
</CsInstruments>
<CsScore>
f1 0 8192 10 1
i 1 0 4
</CsScore>
</CsoundSynthesizer>
;example by Christopher Saunders

But what if we wanted to read the table indices back to front, or even “out of order”? Well we could do something like this:

EXAMPLE 04H06_Scan_trajectories2.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr=44100
ksmps=32
nchnls=2
0dbfs=1

instr 1
andx phasor 440
andx table andx*8192, 2 ; read the table out of order!
aOut table andx*8192, 1
outs aOut*.2, aOut*.2
endin
</CsInstruments>
<CsScore>
f1 0 8192 10 1
f2 0 8192 -5 .001 8192 1;
i 1 0 4
</CsScore>
</CsoundSynthesizer>
;example by Christopher Saunders

We are still dealing with 1-dimensional arrays, or f-tables as we know them. But if we remember back to our conversation about the scanned matrix, matrices are multi-dimensional.

The opcode scans gives us the flexibility of specifying a scan trajectory, analogous to telling the phasor/table combination to read values non-consecutively. We could read these values, not left to right, but in a spiral order, by specifying a table to be the ifntraj argument of scans.

a3 scans iamp, kpch, ifntraj ,id , interp

An f-table for the spiral method can generated by reading the ASCII file spiral-8,16,128,2,1over2 by GEN23

f2 0 128 -23 "spiral-8,16,128,2,1over2"

The following .csd requires that the files circularstring-128 and spiral-8,16, 128,2,1over2 be located in the same directory as the .csd.

EXAMPLE 04H07_Scan_matrices.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
nchnls = 2
sr = 44100
ksmps = 32
0dbfs = 1
instr 1
ipos ftgen 1, 0, 128, 10, 1
irate = .005
ifnvel ftgen 6, 0, 128, -7, 0, 128, 0
ifnmass ftgen 2, 0, 128, -7, 1, 128, 1
ifnstif ftgen 3, 0, 16384,-23,"circularstring-128"
ifncentr ftgen 4, 0, 128, -7, 0, 128, 2
ifndamp ftgen 5, 0, 128, -7, 1, 128, 1
imass = 2
istif = 1.1
icentr = .1
idamp = -0.01
ileft = 0.
iright = .5
ipos = 0.
istrngth = 0.
ain = 0
idisp = 0
id = 8
scanu 1, irate, ifnvel, ifnmass, ifnstif, ifncentr, ifndamp, imass, istif,
 icentr, idamp, ileft, iright, ipos, istrngth, ain, idisp, id
scanu 1,.007,6,2,3,4,5, 2, 1.10 ,.10 ,0 ,.1 ,.5, 0, 0,ain,1,2;
iamp = .2
ifreq = 200
a1 scans iamp, ifreq, 7, id
outs a1, a1
endin
</CsInstruments>
<CsScore>
f7 0 128 -7 0 128 128
i 1 0 5
f7 5 128 -23 "spiral-8,16,128,2,1over2"
i 1 5 5
f7 10 128 -7 127 64 0 64 127
i 1 10 5
</CsScore>
</CsoundSynthesizer>
;example by Christopher Saunders

Notice that the scan trajectory has an FM-like effect on the sound. These are the three different f7 tables which are started in the score:

Table Size and Interpolation

Tables used for scan trajectory must be the same size (have the same number of indices) as the mass, centering and damping tables and must also have the same range as the size of these tables. For example, in our .csd we have been using 128 point tables for initial position, mass centering, damping (our stiffness tables have 128 squared). So our trajectory tables must be of size 128, and contain values from 0 to 127.

One can use larger or smaller tables, but their sizes must agree in this way or Csound will give you an error. Larger tables, of course significantly increase CPU usage and slow down real-time performance.

When using smaller size tables it may be necessary to use interpolation to avoid the artifacts of a small table. scans gives us this option as a fifth optional argument, iorder, detailed in the reference manual and worth experimenting with.

Using the opcodes scanu and scans require that we fill in 22 arguments and create at least 7 f-tables, including at least one external ASCII file (because no one wants to fill in 16,384 arguments to an f-statement). This a very challenging pair of opcodes. The beauty of scanned synthesis is that there is no scanned synthesis “sound”.

Using Balance to Tame Amplitudes

However, like this frontier can be a lawless, dangerous place. When experimenting with scanned synthesis parameters, one can illicit extraordinarily loud sounds out of Csound, often by something as simple as a misplaced decimal point.

Warning: the following .csd is hot, it produces massively loud amplitude values. Be very cautious about rendering this .csd, I highly recommend rendering to a file instead of real-time. Only uncomment line 43 when you know what you do!

EXAMPLE 04H08_Scan_extreme_amplitude.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>

nchnls = 2
sr = 44100
ksmps = 32
0dbfs = 1
;NOTE THIS CSD WILL NOT RUN UNLESS
;IT IS IN THE SAME FOLDER AS THE FILE "STRING-128"
instr 1
ipos ftgen 1, 0, 128 , 10, 1
irate = .007
ifnvel ftgen 6, 0, 128 , -7, 0, 128, 0.1
ifnmass ftgen 2, 0, 128 , -7, 1, 128, 1
ifnstif ftgen 3, 0, 16384, -23, "string-128"
ifncentr ftgen 4, 0, 128 , -7, 1, 128, 2
ifndamp ftgen 5, 0, 128 , -7, 1, 128, 1
kmass = 1
kstif = 0.1
kcentr = .01
kdamp = 1
ileft = 0
iright = 1
kpos = 0
kstrngth = 0.
ain = 0
idisp = 1
id = 22
scanu ipos, irate, ifnvel, ifnmass, \
ifnstif, ifncentr, ifndamp, kmass, \
kstif, kcentr, kdamp, ileft, iright,\
kpos, kstrngth, ain, idisp, id
kamp = 0dbfs*.2
kfreq = 200
ifn ftgen 7, 0, 128, -5, .001, 128, 128.
a1 scans kamp, kfreq, ifn, id
a1 dcblock2 a1
iatt = .005
idec = 1
islev = 1
irel = 2
aenv adsr iatt, idec, islev, irel
;outs a1*aenv,a1*aenv; Uncomment for speaker destruction;
endin
</CsInstruments>
<CsScore>
f8 0 8192 10 1;
i 1 0 5
</CsScore>
</CsoundSynthesizer>
;example by Christopher Saunders

The extreme volume of this .csd comes from a value given to scanu

kdamp = .1

0.1 is not exactly a safe value for this argument, in fact, any value above 0 for this argument can cause chaos.

It would take a skilled mathematician to map out safe possible ranges for all the arguments of scanu. I figured out these values through a mix of trial and error and studying other .csd.

We can use the opcode balance to listen to sine wave (a signal with consistent, safe amplitude) and squash down our extremely loud scanned synth output (which is loud only because of our intentional carelessness.)

EXAMPLE 04H09_Scan_balanced_amplitudes.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>

nchnls = 2
sr = 44100
ksmps = 256
0dbfs = 1
;NOTE THIS CSD WILL NOT RUN UNLESS
;IT IS IN THE SAME FOLDER AS THE FILE "STRING-128"

instr 1
ipos ftgen 1, 0, 128 , 10, 1
irate = .007
ifnvel ftgen 6, 0, 128 , -7, 0, 128, 0.1
ifnmass ftgen 2, 0, 128 , -7, 1, 128, 1
ifnstif ftgen 3, 0, 16384, -23, "string-128"
ifncentr ftgen 4, 0, 128 , -7, 1, 128, 2
ifndamp ftgen 5, 0, 128 , -7, 1, 128, 1
kmass = 1
kstif = 0.1
kcentr = .01
kdamp = -0.01
ileft = 0
iright = 1
kpos = 0
kstrngth = 0.
ain = 0
idisp = 1
id = 22
scanu ipos, irate, ifnvel, ifnmass, \
ifnstif, ifncentr, ifndamp, kmass, \
kstif, kcentr, kdamp, ileft, iright,\
kpos, kstrngth, ain, idisp, id
kamp = 0dbfs*.2
kfreq = 200
ifn ftgen 7, 0, 128, -5, .001, 128, 128.
a1 scans kamp, kfreq, ifn, id
a1 dcblock2 a1
ifnsine ftgen 8, 0, 8192, 10, 1
a2 poscil kamp, kfreq, ifnsine
a1 balance a1, a2
iatt = .005
idec = 1
islev = 1
irel = 2
aenv adsr iatt, idec, islev, irel
outs a1*aenv,a1*aenv
endin
</CsInstruments>
<CsScore>
f8 0 8192 10 1;
i 1 0 5
</CsScore>
</CsoundSynthesizer>
;example by Christopher Saunders

It must be emphasized that this is merely a safeguard. We still get samples out of range when we run this .csd, but many less than if we had not used balance. It is recommended to use balance if you are doing real-time mapping of k-rate profile scalar arguments for scans; mass stiffness, damping, and centering.

 ch032.xhtml

05 A. ENVELOPES

Envelopes are used to define how a value evolves over time. In early synthesisers, envelopes were used to define the changes in amplitude in a sound across its duration thereby imbuing sounds characteristics such as percussive, or sustaining. Envelopes are also commonly used to modulate filter cutoff frequencies and the frequencies of oscillators but in reality we are only limited by our imaginations in regard to what they can be used for.

Csound offers a wide array of opcodes for generating envelopes including ones which emulate the classic ADSR (attack-decay-sustain-release) envelopes found on hardware and commercial software synthesizers. A selection of these opcodes types shall be introduced here.

line

The simplest opcode for defining an envelope is line. It describes a single envelope segment as a straight line between a start value ia and an end value ib which has a given duration idur.

ares *line* ia, idur, ib
kres *line* ia, idur, ib

In the following example line is used to create a simple envelope which is then used as the amplitude control of a poscil oscillator. This envelope starts with a value of 0.5 then over the course of 2 seconds descends in linear fashion to zero.

EXAMPLE 05A01_line.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1
aEnv line 0.5, 2, 0 ; amplitude envelope
aSig poscil aEnv, 500 ; audio oscillator
 out aSig, aSig ; audio sent to output
 endin

</CsInstruments>
<CsScore>
i 1 0 2 ; instrument 1 plays a note for 2 seconds
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

The envelope in the above example assumes that all notes played by this instrument will be 2 seconds long. In practice it is often beneficial to relate the duration of the envelope to the duration of the note (p3) in some way. In the next example the duration of the envelope is replaced with the value of p3 retrieved from the score, whatever that may be. The envelope will be stretched or contracted accordingly.

EXAMPLE 05A02_line_p3.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1
; A single segment envelope. Time value defined by note duration.
aEnv line 0.5, p3, 0
aSig poscil aEnv, 500
 out aSig, aSig
 endin

</CsInstruments>
<CsScore>
; p1 p2 p3
i 1 0 1
i 1 2 0.2
i 1 3 4
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

It may not be disastrous if a envelope’s duration does not match p3 and indeed there are many occasions when we want an envelope duration to be independent of p3 but we need to remain aware that if p3 is shorter than an envelope’s duration then that envelope will be truncated before it is allowed to complete and if p3 is longer than an envelope’s duration then the envelope will complete before the note ends (the consequences of this latter situation will be looked at in more detail later on in this section).

line (and most of Csound’s envelope generators) can output either k or a-rate variables. k-rate envelopes are computationally cheaper than a-rate envelopes but in envelopes with fast moving segments quantisation can occur if they output a k-rate variable, particularly when the control rate is low, which in the case of amplitude envelopes can lead to clicking artefacts or distortion.

linseg

linseg is an elaboration of line and allows us to add an arbitrary number of segments by adding further pairs of time durations followed envelope values. Provided we always end with a value and not a duration we can make this envelope as long as we like.

 ares *linseg* ia, idur1, ib [, idur2] [, ic] [...]
 kres *linseg* ia, idur1, ib [, idur2] [, ic] [...]

In the next example a more complex amplitude envelope is employed by using the linseg opcode. This envelope is also note duration (p3) dependent but in a more elaborate way. An attack-decay stage is defined using explicitly declared time durations. A release stage is also defined with an explicitly declared duration. The sustain stage is the p3 dependent stage but to ensure that the duration of the entire envelope still adds up to p3, the explicitly defined durations of the attack, decay and release stages are subtracted from the p3 dependent sustain stage duration. For this envelope to function correctly it is important that p3 is not less than the sum of all explicitly defined envelope segment durations. If necessary, additional code could be employed to circumvent this from happening.

EXAMPLE 05A03_linseg.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1
; a more complex amplitude envelope:
; |-attack-|-decay--|---sustain---|-release-|
aEnv linseg 0, 0.01, 1, 0.1, 0.1, p3-0.21, 0.1, 0.1, 0
aSig poscil aEnv, 500
 out aSig, aSig
 endin

</CsInstruments>
<CsScore>
i 1 0 1
i 1 2 5
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

The next example illustrates an approach that can be taken whenever it is required that more than one envelope segment duration be p3 dependent. This time each segment is a fraction of p3. The sum of all segments still adds up to p3 so the envelope will complete across the duration of each note regardless of duration.

EXAMPLE 05A04_linseg_p3_fractions.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1
aEnv linseg 0, p3*0.5, .2, p3*0.5, 0 ; rising then falling envelope
aSig poscil aEnv, 500
 out aSig, aSig
 endin

</CsInstruments>

<CsScore>
; 3 notes of different durations are played
i 1 0 1
i 1 2 0.1
i 1 3 5
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

Different behaviour in linear continuation

The next example highlights an important difference in the behaviours of line and linseg when p3 exceeds the duration of an envelope.

When a note continues beyond the end of the final value of a linseg defined envelope the final value of that envelope is held. A line defined envelope behaves differently in that instead of holding its final value it continues in the trajectory defined by its one and only segment.

This difference is illustrated in the following example. The linseg and line envelopes of instruments 1 and 2 appear to be the same but the difference in their behaviour as described above when they continue beyond the end of their final segment is clear. The linseg envelope stays at zero, whilst the line envelope continues through zero to negative range, thus ending at -0.2.1

EXAMPLE 05A05_line_vs_linseg.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1 ; linseg envelope
aEnv linseg 0.2, 2, 0 ; linseg holds its last value
aSig poscil aEnv, 500
 out aSig, aSig
 endin

 instr 2 ; line envelope
aEnv line 0.2, 2, 0 ; line continues its trajectory
aSig poscil aEnv, 500
 out aSig
 endin

</CsInstruments>
<CsScore>
i 1 0 4 ; linseg envelope
i 2 5 4 ; line envelope
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy and joachim heintz

expon and expseg

expon and expseg are versions of line and linseg that instead produce envelope segments with concave exponential shapes rather than linear shapes. expon and expseg can often be more musically useful for envelopes that define amplitude or frequency as they will reflect the logarithmic nature of how these parameters are perceived.2 On account of the mathematics that are used to define these curves, we cannot define a value of zero at any node in the envelope and an envelope cannot cross the zero axis. If we require a value of zero we can instead provide a value very close to zero. If we still really need zero we can always subtract the offset value from the entire envelope in a subsequent line of code.

The following example illustrates the difference between line and expon when applied as amplitude envelopes.

EXAMPLE 05A06_line_vs_expon.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1 ; line envelope
aEnv line 1, p3, 0
aSig poscil aEnv, 500
 out aSig, aSig
 endin

 instr 2 ; expon envelope
aEnv expon 1, p3, 0.0001
aSig poscil aEnv, 500
 out aSig, aSig
 endin

</CsInstruments>
<CsScore>
i 1 0 2 ; line envelope
i 2 2 1 ; expon envelope
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

The nearer our near-zero values are to zero the quicker the curve will appear to reach zero. In the next example smaller and smaller envelope end values are passed to the expon opcode using p4 values in the score. The percussive ping sounds are perceived to be increasingly short.

EXAMPLE 05A07_expon_pings.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1; expon envelope
iEndVal = p4 ; variable 'iEndVal' retrieved from score
aEnv expon 1, p3, iEndVal
aSig poscil aEnv, 500
 out aSig, aSig
 endin

</CsInstruments>
<CsScore>
;p1 p2 p3 p4
i 1 0 1 0.001
i 1 1 1 0.000001
i 1 2 1 0.000000000000001
e
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

Note that expseg does not behave like linseg in that it will not hold its last final value if p3 exceeds its entire duration, instead it continues its curving trajectory in a manner similar to line (and expon). This could have dangerous results if used as an amplitude envelope.

Envelopes with release segment

When dealing with notes with an indefinite duration at the time of initiation (such as midi activated notes or score activated notes with a negative p3 value), we do not have the option of using p3 in a meaningful way. Instead we can use one of Csound’s envelopes that sense the ending of a note when it arrives and adjust their behaviour according to this. The opcodes in question are linenr, linsegr, expsegr, madsr, mxadsr and envlpxr. These opcodes wait until a held note is turned off before executing their final envelope segment. To facilitate this mechanism they extend the duration of the note so that this final envelope segment can complete.

The following example uses midi input (either hardware or virtual) to activate notes. The use of the linsegr envelope means that after the short attack stage lasting 0.1 seconds, the penultimate value of 1 will be held as long as the note is sustained but as soon as the note is released the note will be extended by 0.5 seconds in order to allow the final envelope segment to decay to zero.

EXAMPLE 05A08_linsegr.csd

<CsoundSynthesizer>
<CsOptions>
-odac -+rtmidi=virtual -M0
; activate real time audio and MIDI (virtual midi device)
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1
icps cpsmidi
; attack-|sustain-|-release
aEnv linsegr 0, 0.01, 0.1, 0.5,0; envelope that senses note releases
aSig poscil aEnv, icps ; audio oscillator
 out aSig, aSig ; audio sent to output
 endin

</CsInstruments>
<CsScore>
e 240 ; csound performance for 4 minutes
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

Envelopes in Function Tables

Sometimes designing our envelope shape in a function table can provide us with shapes that are not possible using Csound’s envelope generating opcodes. In this case the envelope can be read from the function table using an oscillator. If the oscillator is given a frequency of 1/p3 then it will read though the envelope just once across the duration of the note.

The following example generates an amplitude envelope which uses the shape of the first half of a sine wave.

EXAMPLE 05A09_sine_env.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giEnv ftgen 0, 0, 2^12, 9, 0.5, 1, 0 ; envelope shape: a half sine

 instr 1
; read the envelope once during the note's duration:
aEnv poscil .5, 1/p3, giEnv
aSig poscil aEnv, 500 ; audio oscillator
 out aSig, aSig ; audio sent to output
 endin

</CsInstruments>
<CsScore>
; 7 notes, increasingly short
i 1 0 2
i 1 2 1
i 1 3 0.5
i 1 4 0.25
i 1 5 0.125
i 1 6 0.0625
i 1 7 0.03125
e 7.1
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

Comparison of the Standard Envelope Opcodes

The precise shape of the envelope of a sound, whether that envelope refers to its amplitude, its pitch or any other parameter, can be incredibly subtle and our ears, in identifying and characterising sounds, are fantastically adept at sensing those subtleties. Csound’s original envelope generating opcode linseg, whilst capable of emulating the envelope generators of vintage electronic synthesisers, may not produce convincing results in the emulation of acoustic instruments and natural sound. Thus it has, since Csound’s creation, been augmented with a number of other envelope generators whose usage is similar to that of linseg but whose output function is subtly different in shape.

If we consider a basic envelope that ramps up across ¼ of the duration of a note, then sustains for ½ the durations of the and finally ramps down across the remaining ¼ duration of the note, we can implement this envelope using linseg thus:

kEnv linseg 0, p3/4, 0.9, p3/2, 0.9, p3/4, 0

The resulting envelope will look like this:

When employed as an amplitude control, the resulting sound may seem to build rather too quickly, then crescendo in a slightly mechanical fashion and finally arrive at its sustain portion with abrupt stop in the crescendo. Similar critcism could be levelled at the latter part of the envelope going from sustain to ramping down.

The expseg opcode, introduced sometime after linseg, attempted to address the issue of dynamic response when mapping an envelope to amplitude. Two caveats exist in regard to the use of expseg: firstly a single expseg definition cannot cross from the positive domain to the negative domain (and vice versa), and secondly it cannot reach zero. This second caveat means that an amplitude envelope created using expseg cannot express silence unless we remove the offset away form zero that the envelope employs. An envelope with similar input values to the linseg envelope above but created with expseg could use the following code:

 kEnv expseg 0.001, p3/4, 0.901, p3/2, 0.901, p3/4, 0.001
 kEnv = kEnv – 0.001

and would look like this:

In this example the offset above zero has been removed. This time we can see that the sound will build in a rather more natural and expressive way, however the change from crescendo to sustain is even more abrupt this time. Adding some lowpass filtering to the envelope signal can smooth these abrupt changes in direction. This could be done with, for example, the port opcode given a half-point value of 0.05.

kEnv port kEnv, 0.05

The resulting envelope looks like this:

The changes to and from the sustain portion have clearly been improved but close examination of the end of the envelope reveals that the use of port has prevented the envelope from reaching zero. Extending the duration of the note or overlaying a second anti-click envelope should obviate this issue.

xtratim 0.1

will extend the note by 1/10 of a second.

aRamp linseg 1, p3-0.1, 1, 0.1, 0

will provide a quick ramp down at the note conclusion if multiplied to the previously created envelope.

A more recently introduced alternative is the cosseg opcode which applies a cosine transfer function to each segment of the envelope. Using the following code:

kEnv cosseg 0, p3/4, 0.9, p3/2, 0.9, p3/4, 0

the resulting envelope will look like this:

It can be observed that this envelope provides a smooth gradual building up from silence and a gradual arrival at the sustain level. This opcode has no restrictions relating to changing polarity or passing through zero.

Another alternative that offers enhanced user control and that might in many situations provide more natural results is the transeg opcode. transeg allows us to specify the curvature of each segment but it should be noted that the curvature is dependent upon whether the segment is rising or falling. For example a positive curvature will result in a concave segment in a rising segment but a convex segment in a falling segment. The following code:

kEnv transeg 0, p3/4, -4, 0.9, p3/2, 0, 0.9, p3/4, -4, 0

will produce the following envelope:

This looks perhaps rather lopsided but in emulating acoustic instruments can actually produce more natural results. Considering an instrument such as a clarinet, it is in reality very difficult to fade a note in smoothly from silence. It is more likely that a note will start slightly abruptly in spite of the player’s efforts. This aspect is well represented by the attack portion of the envelope above. When the note is stopped, its amplitude will decay quickly and exponentially as reflected in the envelope also. Similar attack and release characteristics can be observed in the slight pitch envelopes expressed by wind instruments.

lpshold, loopseg and looptseg - A Csound TB303

The next example introduces three of Csound’s looping opcodes, lpshold, loopseg and looptseg.

These opcodes generate envelopes which are looped at a rate corresponding to a defined frequency. What they each do could also be accomplished using the envelope from table technique outlined in an earlier example but these opcodes provide the added convenience of encapsulating all the required code in one line without the need for phasors, tables and ftgens. Furthermore all of the input arguments for these opcodes can be modulated at k-rate.

lpshold generates an envelope in which each break point is held constant until a new break point is encountered. The resulting envelope will contain horizontal line segments. In our example this opcode will be used to generate the notes (as MIDI note numbers) for a looping bassline in the fashion of a Roland TB303. Because the duration of the entire envelope is wholly dependent upon the frequency with which the envelope repeats - in fact it is the reciprocal of the frequency – values for the durations of individual envelope segments are not defining times in seconds but instead represent proportions of the entire envelope duration. The values given for all these segments do not need to add up to any specific value as Csound rescales the proportionality according to the sum of all segment durations. You might find it convenient to contrive to have them all add up to 1, or to 100 – either is equally valid. The other looping envelope opcodes discussed here use the same method for defining segment durations.

loopseg allows us to define a looping envelope with linear segments. In this example it is used to define the amplitude envelope for each individual note. Take note that whereas the lpshold envelope used to define the pitches of the melody repeats once per phrase, the amplitude envelope repeats once for each note of the melody, therefore its frequency is 16 times that of the melody envelope (there are 16 notes in our melodic phrase).

looptseg is an elaboration of loopseg in that is allows us to define the shape of each segment individually, whether that be convex, linear or concave. This aspect is defined using the type parameters. A type value of 0 denotes a linear segement, a positive value denotes a convex segment with higher positive values resulting in increasingly convex curves. Negative values denote concave segments with increasing negative values resulting in increasingly concave curves. In this example looptseg is used to define a filter envelope which, like the amplitude envelope, repeats for every note. The addition of the type parameter allows us to modulate the sharpness of the decay of the filter envelope. This is a crucial element of the TB303 design.

Other crucial features of this instrument, such as note on/off and hold for each step, are also implemented using lpshold.

A number of the input parameters of this example are modulated automatically using the randomi opcode in order to keep it interesting. It is suggested that these modulations could be replaced by linkages to other controls such as CsoundQt/Cabbage/Blue widgets, FLTK widgets or MIDI controllers. Suggested ranges for each of these values are given in the .csd.

EXAMPLE 05A10_lpshold_loopseg.csd

<CsoundSynthesizer>
<CsOptions>
-odac ;activates real time sound output
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 4
nchnls = 2
0dbfs = 1

seed 0; seed random number generators from system clock

 instr 1; Bassline instrument
kTempo = 90 ; tempo in beats per minute
kCfBase randomi 1,4, 0.2 ; base filter frequency (oct format)
kCfEnv randomi 0,4,0.2 ; filter envelope depth
kRes randomi 0.5,0.9,0.2 ; filter resonance
kVol = 0.5 ; volume control
kDecay randomi -10,10,0.2 ; decay shape of the filter.
kWaveform = 0 ; oscillator waveform. 0=sawtooth 2=square
kDist randomi 0,1,0.1 ; amount of distortion
kPhFreq = kTempo/240 ; freq. to repeat the entire phrase
kBtFreq = (kTempo)/15 ; frequency of each 1/16th note
; -- Envelopes with held segments --
; The first value of each pair defines the relative duration of that segment,
; the second, the value itself.
; Note numbers (kNum) are defined as MIDI note numbers.
; Note On/Off (kOn) and hold (kHold) are defined as on/off switches, 1 or zero
; note:1 2 3 4 5 6 7 8
; 9 10 11 12 13 14 15 16 0
kNum lpshold kPhFreq, 0, 0,40, 1,42, 1,50, 1,49, 1,60, 1,54, 1,39, 1,40, \
 1,46, 1,36, 1,40, 1,46, 1,50, 1,56, 1,44, 1,47,1
kOn lpshold kPhFreq, 0, 0,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,0, 1,1, \
 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,0, 1,1, 1
kHold lpshold kPhFreq, 0, 0,0, 1,1, 1,1, 1,0, 1,0, 1,0, 1,0, 1,1, \
 1,0, 1,0, 1,1, 1,1, 1,1, 1,1, 1,0, 1,0, 1
kHold vdel_k kHold, 1/kBtFreq, 1; offset hold by 1/2 note duration
kNum portk kNum, (0.01*kHold) ; apply portamento to pitch changes
 ; if note is not held: no portamento
kCps = cpsmidinn(kNum) ; convert note number to cps
kOct = octcps(kCps) ; convert cps to oct format
; amplitude envelope attack sustain decay gap
kAmpEnv loopseg kBtFreq, 0, 0, 0,0.1, 1, 55/kTempo, 1, 0.1,0, 5/kTempo,0,0
kAmpEnv = (kHold=0?kAmpEnv:1) ; if a held note, ignore envelope
kAmpEnv port kAmpEnv,0.001

; filter envelope
kCfOct looptseg kBtFreq,0,0,kCfBase+kCfEnv+kOct,kDecay,1,kCfBase+kOct
; if hold is off, use filter envelope, otherwise use steady state value:
kCfOct = (kHold=0?kCfOct:kCfBase+kOct)
kCfOct limit kCfOct, 4, 14 ; limit the cutoff frequency (oct format)
aSig vco2 0.4, kCps, i(kWaveform)*2, 0.5 ; VCO-style oscillator
aFilt lpf18 aSig, cpsoct(kCfOct), kRes, (kDist^2)*10 ; filter audio
aSig balance aFilt,aSig ; balance levels
kOn port kOn, 0.006 ; smooth on/off switching
; audio sent to output, apply amp. envelope,
; volume control and note On/Off status
aAmpEnv interp kAmpEnv*kOn*kVol
aOut = aSig * aAmpEnv
 out aOut, aOut
 endin

</CsInstruments>
<CsScore>
i 1 0 3600 ; instr 1 plays for 1 hour
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

Hopefully this final example has provided some idea as to the extend of parameters that can be controlled using envelopes and also an allusion to their importance in the generation of musical gesture.

	Negative values for the envelope have the same loudness. Only the phase of the signal is inverted.↩︎

	See chapter 01 C for some background information.↩︎

 ch033.xhtml

05 B. PANNING AND SPATIALIZATION

The location is an important characteristics of real-world sounds. We can sometimes distinguish sounds because we distinguish their different locations. And in music the location can guide our hearing to different meanings.

This is shown at a very simple example. First we hear a percussive sound from both speakers. We will not recognize any pattern. Then we hear one beat from left speaker followed by three beats from right speaker. We will recognize this as 3/4 beats, with the first beat on the left speaker. Finally we hear a random sequence of left and right channel. We will hear this as something like a dialog between two players.

EXAMPLE 05B01_routing.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m128
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
0dbfs = 1
nchnls = 2
seed 1

opcode Resonator, a, akk
 aSig, kFreq, kQ xin
 kRatio[] fillarray 1, 2.89, 4.95, 6.99, 8.01, 9.02
 a1 = mode:a(aSig, kFreq*kRatio[0], kQ)
 a2 = mode:a(aSig, kFreq*kRatio[1], kQ)
 a3 = mode:a(aSig, kFreq*kRatio[2], kQ)
 a4 = mode:a(aSig, kFreq*kRatio[3], kQ)
 a5 = mode:a(aSig, kFreq*kRatio[4], kQ)
 a6 = mode:a(aSig, kFreq*kRatio[5], kQ)
 aSum sum a1, a2, a3, a4, a5, a6
 aOut = balance:a(aSum, aSig)
 xout aOut
endop

instr Equal
 kTrig metro 80/60
 schedkwhen kTrig, 0, 0, "Perc", 0, 1, .4, 1
 schedkwhen kTrig, 0, 0, "Perc", 0, 1, .4, 2
endin

instr Beat
 kRoutArr[] fillarray 1, 2, 2
 kIndex init 0
 if metro:k(80/60) == 1 then
 event "i", "Perc", 0, 1, .6, kRoutArr[kIndex]
 kIndex = (kIndex+1) % 3
 endif
endin

instr Dialog
 if metro:k(80/60) == 1 then
 event "i", "Perc", 0, 1, .6, int(random:k(1,2.999))
 endif
endin

instr Perc
 iAmp = p4
 iChannel = p5
 aBeat pluck iAmp, 100, 100, 0, 3, .5
 aOut Resonator aBeat, 300, 5
 outch iChannel, aOut
endin

</CsInstruments>
<CsScore>
i "Equal" 0 9.5
i "Beat" 11 9.5
i "Dialog" 22 9.5
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz and philipp henkel

The spatialization technique used in this example is called routing. In routing we connect an audio signal directly to one speaker. This is a somehow brutal method which knows only black or white, only right or left. Usually we want to have a more refined way to locate sounds, with different positions between pure left and pure right. This is often compared to a panorama - a sound horizon on which certain sounds have a location between left and right. So we look first into this panning for a stereo setup. Then we will discuss the extension of panning in a multi-channl setup. The last part of this chapter is dedicated to the Ambisonics technique which offers a different way to locate sound sources.

Simple Stereo Panning

First we will look at some methods of panning a sound between two speakers based on first principles.

The simplest method that is typically encountered is to multiply one channel of audio (aSig) by a panning variable (kPan) and to multiply the other side by 0 minus the same variable like this:

aSigL = aSig * (1 – kPan)
aSigR = aSig * kPan
 outs aSigL, aSigR

kPan should be a value within the range zero and one. If kPan is 0 all of the signal will be in the left channel, if it is 1, all of the signal will be in the right channel and if it is 0.5 there will be signal of equal amplitude in both the left and the right channels. This way the signal can be continuously panned between the left and right channels.

The problem with this method is that the overall power drops as the sound is panned to the middle.1

One possible solution to this problem is to take the square root of the panning variable for each channel before multiplying it to the audio signal like this:

aSigL = aSig * sqrt((1 – kPan))
aSigR = aSig * sqrt(kPan)
 outs aSigL, aSigR

By doing this, the straight line function of the input panning variable becomes a convex curve, so that less power is lost as the sound is panned centrally.

Using 90º sections of a sine wave for the mapping produces a more convex curve and a less immediate drop in power as the sound is panned away from the extremities. This can be implemented using the code shown below.

aSigL = aSig * cos(kPan*$M_PI_2)
aSigR = aSig * sin(kPan*$M_PI_2)
 outs aSigL, aSigR

(Note that \$M_PI_2 is one of Csound's built in macros and is equivalent to π/2\pi/2.)

A fourth method, devised by Michael Gogins, places the point of maximum power for each channel slightly before the panning variable reaches its extremity. The result of this is that when the sound is panned dynamically it appears to move beyond the point of the speaker it is addressing. This method is an elaboration of the previous one and makes use of a different 90 degree section of a sine wave. It is implemented using the following code:

aSigL = aSig * cos((kPan + 0.5) * $M_PI_2)
aSigR = aSig * sin((kPan + 0.5) * $M_PI_2)
 outs aSigL, aSigR

The following example demonstrates all these methods one after the other for comparison. Panning movement is controlled by a slow moving LFO. The input sound is filtered pink noise.

EXAMPLE 05B02_Pan_stereo.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1
imethod = p4 ; read panning method variable from score (p4)

;---------------- generate a source sound -------------------
a1 pinkish 0.1 ; pink noise
a1 reson a1, 500, 30, 2 ; bandpass filtered
aPan lfo 0.5, 1, 1 ; panning controlled by an lfo
aPan = aPan + 0.5 ; offset shifted +0.5
;--

 if imethod=1 then
;------------------------ method 1 --------------------------
aPanL = 1 - aPan
aPanR = aPan
;--
 endif

 if imethod=2 then
;------------------------ method 2 --------------------------
aPanL = sqrt(1 - aPan)
aPanR = sqrt(aPan)
;--
 endif

 if imethod=3 then
;------------------------ method 3 --------------------------
aPanL = cos(aPan*$M_PI_2)
aPanR = sin(aPan*$M_PI_2)
;--
 endif

 if imethod=4 then
;------------------------ method 4 --------------------------
aPanL = cos((aPan + 0.5) * $M_PI_2)
aPanR = sin((aPan + 0.5) * $M_PI_2)
;--
 endif

 outs a1*aPanL, a1*aPanR ; audio sent to outputs
 endin

</CsInstruments>

<CsScore>
; 4 notes one after the other to demonstrate 4 different methods of panning
; p1 p2 p3 p4(method)
i 1 0 4.5 1
i 1 5 4.5 2
i 1 10 4.5 3
i 1 15 4.5 4
e
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

The opcode pan2 makes it easier for us to implement various methods of panning. The following example demonstrates the three methods that this opcode offers one after the other. The first is the equal power method, the second square root and the third is simple linear.

EXAMPLE 05B03_pan2.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>

<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1
imethod = p4 ; read panning method variable from score (p4)
;----------------------- generate a source sound ------------------------
aSig pinkish 0.1 ; pink noise
aSig reson aSig, 500, 30, 2 ; bandpass filtered
;--

;---------------------------- pan the signal ----------------------------
aPan lfo 0.5, 1/2, 1 ; panning controlled by an lfo
aPan = aPan + 0.5 ; DC shifted + 0.5
aSigL, aSigR pan2 aSig, aPan, imethod; create stereo panned output
;--

 outs aSigL, aSigR ; audio sent to outputs
 endin

</CsInstruments>

<CsScore>
; 3 notes one after the other to demonstrate 3 methods used by pan2
;p1 p2 p3 p4
i 1 0 4.5 0 ; equal power (harmonic)
i 1 5 4.5 1 ; square root method
i 1 10 4.5 2 ; linear
e
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

3D Binaural Encoding

3D binaural encoding is available through a number of opcodes that make use of spectral data files that provide information about the filtering and inter-aural delay effects of the human head. The oldest one of these is hrtfer. Newer ones are hrtfmove, hrtfmove2 and hrtfstat. The main parameters for control of the opcodes are azimuth (the horizontal direction of the source expressed as an angle formed from the direction in which we are facing) and elevation (the angle by which the sound deviates from this horizontal plane, either above or below). Both these parameters are defined in degrees. Binaural infers that the stereo output of this opcode should be listened to using headphones so that no mixing in the air of the two channels occurs before they reach our ears (although a degree of effect is still audible through speakers).

The following example take a monophonic source sound of noise impulses and processes it using the hrtfmove2 opcode. First of all the sound is rotated around us in the horizontal plane then it is raised above our head then dropped below us and finally returned to be level and directly in front of us. This example uses the files hrtf-44100-left.dat and hrtf-44100-right.dat. In case they are not loaded, they can be downloaded from the Csound sources.

EXAMPLE 05B04_hrtfmove.csd

<CsoundSynthesizer>
<CsOptions>
--env:SADIR+=../SourceMaterials
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine ftgen 0, 0, 2\^12, 10, 1 ; sine wave
giLFOShape ftgen 0, 0, 131072, 19, 0.5,1,180,1 ; U-shape parabola

gS_HRTF_left = "hrtf-44100-left.dat"
gS_HRTF_right = "hrtf-44100-right.dat"

 instr 1
; create an audio signal (noise impulses)
krate oscil 30,0.2,giLFOShape ; rate of impulses
; amplitude envelope: a repeating pulse
kEnv loopseg krate+3,0, 0,1, 0.05,0, 0.95,0,0
aSig pinkish kEnv ; noise pulses

; -- apply binaural 3d processing --
; azimuth (direction in the horizontal plane)
kAz linseg 0, 8, 360
; elevation (held horizontal for 8 seconds then up, then down, then horizontal
kElev linseg 0, 8, 0, 4, 90, 8, -40, 4, 0
; apply hrtfmove2 opcode to audio source - create stereo ouput
aLeft, aRight hrtfmove2 aSig, kAz, kElev, gS_HRTF_left, gS_HRTF_right
 outs aLeft, aRight ; audio to outputs
endin

</CsInstruments>
<CsScore>
i 1 0 24 ; instr 1 plays a note for 24 seconds
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

Going Multichannel

So far we have only considered working in 2-channels (stereo), but Csound is extremely flexible at working in more that 2 channels. By changing nchnls in the orchestra header we can specify any number of channels but we also need to ensure that we choose an audio hardware device using the -odac option that can handle multichannel audio. Audio channels sent from Csound, that do not address hardware channels, will simply not be reproduced. There may be some need to make adjustments to the software settings of your soundcard using its own software or the operating system’s software, but due to the variety of sound hardware options available, it would be impossible to offer further specific advice here.

If you do not use the real-time option -o dac but render a file with -o myfilename.wav, there are no restrictions though. Csound will render any multi-channel file independently from your sound card.

Sending Multichannel Sound to the Loudspeakers

In order to send multichannel audio or render a multichannel file we must use opcodes designed for that task. So far we have often used outs to send stereo sound to a pair of loudspeakers. The opcode out can also be used, and offers any number of output channels up to the maximum of the nchnls setting in the header of your .csd file.

So for nchnls=2 the maximum output is stereo:

out aL, aR

For nchnls=4 the maximum output is quadro:

out a1, a2, a3, a4

And for nchnls=8 the maximum output is octo:

out a1, a2, a3, a4, a5, a6, a7, a8

So out can replace the opcodes outs, outq. outh and outo which were designed for exactly 2, 4, 6 and 8 output channels. out can also be used to work with odd channel numbers like 3, 5 or 7 although many soundcards work much better when a channel number of 2, 4 or 8 is used.

The only limitation of out is that it always counts from channel number 1. Imagine you have a soundcard with 8 analog outputs (counting 1-8) and 8 digital outputs (counting 9-16), and you want to use only the digital outputs. Here and in similar situations the outch opcode is the means of choice. It allows us to direct audio to a specific channel or list of channels and takes the form:

outch kchan1, asig1 [, kchan2] [, asig2] [...]

So we would write here nchnls=16 to open the channels on the sound card, and then

outch 9,a1, 10,a2, 11,a3, 12,a4, 13,a5, 14,a6, 15,a7, 16,a8

to assign the audio signals a1 … a8 to the outputs 9 …16.

Note that for outch channel numbers can be changed at k-rate thereby opening the possibility of changing the speaker configuration dynamically during performance. Channel numbers do not need to be sequential and unrequired channels can be left out completely. This can make life much easier when working with complex systems employing many channels.

Flexibly Moving Between Stereo and Multichannel

It may be useful to be able to move between working in multichannel (beyond stereo) and then moving back to stereo (when, for example, a multichannel setup is not available). It is useful to work with global variables for the output channels which are set to a hardware channel number on top of the Csound program.

In case we work for a 4-channel setup, we will write this IO Setup on top of our program:

nchnls = 4
giOutChn_1 = 1
giOutChn_2 = 2
giOutChn_3 = 3
giOutChn_4 = 4

And in the output section of our program we will use the variable names instead of the numbers, for instance:

outch giOutChn_1,a1, giOutChn_2,a2, giOutChn_3,a3, giOutChn_4,a4

In case we can at any time only work with a stereo soundcard, all we have to do is to change the IO Setup like this:

nchnls = 2
giOutChn_1 = 1
giOutChn_2 = 2
giOutChn_3 = 2
giOutChn_4 = 1

The output section will work as before, so it is a matter of some seconds to connect with another hardware setup.

VBAP

Vector Base Amplitude Panning2 can be described as a method which extends stereo panning to more than two speakers. The number of speakers is, in general, arbitrary. Standard layouts such as quadrophonic, octophonic or 5.1 configuration can be used, but in fact any number of speakers can be positioned even in irregular distances from each other. Speakers arranged at different heights can as well be part of an VBAP loudspeaker array.

VBAP is robust and simple, and has proven its flexibility and reliability. Csound offers different opcodes which have evolved from the original implementation to flexibel setups using audio arrays. The introduction here will explain the usage from the first steps on.

Basic Steps

At first the VBAP system needs to know where the loudspeakers are positioned. This job is done with the opcode vbaplsinit. Let us assume we have seven speakers in the positions and numberings outlined below (M = middle/centre):

The vbaplsinit opcode which is usually placed in the header of a Csound orchestra, defines these positions as follows:

vbaplsinit 2, 7, -40, 40, 70, 140, 180, -110, -70

The first number determines the number of dimensions (here 2). The second number states the overall number of speakers, then followed by the positions in degrees (clockwise).

All that is required now is to provide vbap with a monophonic sound source to be distributed amongst the speakers according to information given about the position. Horizontal position (azimuth) is expressed in degrees clockwise just as the initial locations of the speakers were. The following would be the Csound code to play the sound file ClassGuit.wav once while moving it counterclockwise:

EXAMPLE 05B05_VBAP_circle.csd

<CsoundSynthesizer>
<CsOptions>
-odac
--env:SSDIR+=../SourceMaterials
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
0dbfs = 1
nchnls = 8 ;only channels 1-7 used

vbaplsinit 2, 7, -40, 40, 70, 140, 180, -110, -70

 instr 1
Sfile = "ClassGuit.wav"
p3 filelen Sfile
aSnd[] diskin Sfile
kAzim line 0, p3, -360 ;counterclockwise
aVbap[] vbap aSnd[0], kAzim
 out aVbap ;7 channel output via array
 endin
</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Let us look closer to some parts of this program.

	-odac enables realtime output. Choose -o 05B04_out.wav if you don’t a multichannel audio card, and Csound will render the output to the file 05B04_out.wav.

	–env:SSDIR+=../SourceMaterials This statement will add the folder SourceMaterials which is placed in the top directory to Csound’s search path for this file.

	nchnls = 8 sets the number of channels to 8. nchnls = 7 would be more consistent as we only use 7 channels. I chose 8 channels because some sound cards have problems to open 7 channels.

	p3 filelen Sfile sets the duration of the instrument (p3) to the length of the soundfile Sfile which in turn has been set to the “ClassGuit.wav” sample (you can use any other file here).

	aSnd[] diskin Sfile The opcode diskin reads the sound file Sfile and creates an audio array. The first channel of the file will be found in aSnd[0], the second (if any) in aSnd[1], and so on.

	kAzim line 0,p3,-360 This creates an azimuth signal which starts at center (0°) and moves counterclockwise during the whole duration of the instrument call (p3) to center again (-360° is also in front).

	aVbap[] vbap aSnd[0],kAzim The opcode vbap creates here an audio array which contains as many audio signals as are set with the vbaplsinit statement; in this case seven. These seven signals represent the seven loud speakers. Right hand side, vbap gets two inputs: the first channel of the aSnd array, and the kAzim signal which contains the location of the sound.

	out aVbap Note that aVbap is an audio array here which contains seven audio signals. The whole array it written to channels 1-7 of the output, either in realtime or as audio file.

The Spread Parameter

As VBAP derives from a panning paradigm, it has one problem which becomes more serious as the number of speakers increases. Panning between two speakers in a stereo configuration means that all speakers are active. Panning between two speakers in a quadro configuration means that half of the speakers are active. Panning between two speakers in an octo configuration means that only a quarter of the speakers are active and so on; so that the actual perceived extent of the sound source becomes unintentionally smaller and smaller.

To alleviate this tendency, Ville Pulkki has introduced an additional parameter, called spread, which has a range of zero to hundred percent.3 The “ascetic” form of VBAP we have seen in the previous example, means: no spread (0%). A spread of 100% means that all speakers are active, and the information about where the sound comes from is nearly lost.

The kspread input parameter is the second of three optionel parameters of the vbap opcode:

array[] *vbap* asig, kazim [,kelev] [,kspread] [,ilayout]

So to set kspread, we first have to provide the first one. kelev defines the elevation of the sound - it is always zero for two dimensions, as in the speaker configuration in our example. The next example adds a spread movement to the previous one. The spread starts at zero percent, then increases to hundred percent, and then decreases back down to zero.

EXAMPLE 05B06_VBAP_spread.csd

<CsoundSynthesizer>
<CsOptions>
-odac
--env:SSDIR+=../SourceMaterials
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
0dbfs = 1
nchnls = 8 ;only channels 1-7 used

vbaplsinit 2, 7, -40, 40, 70, 140, 180, -110, -70

 instr 1
Sfile = "ClassGuit.wav"
p3 filelen Sfile
aSnd[] diskin Sfile
kAzim line 0, p3, -360 ;counterclockwise
kSpread linseg 0, p3/2, 100, p3/2, 0
aVbap[] vbap aSnd[0], kAzim, 0, kSpread
 out aVbap
 endin
</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Different VBAP Layouts in one File

The vbap opcode which we already used in these examples does also allow to work with different configurations or speaker layouts. This layout is added as fractional number to the first parameter (idim) of vbaplsinit. Setting 2.03 here would declare VBAP layout 3, and an instance of the vbap opcode would refer to this layout by the last optional parameter ilayout.

By this it is possible to switch between different layouts during performance and to provide more flexibility in the number of output channels used. Here is an example for three different layouts which are called in three different instruments:

EXAMPLE 05B07_VBAP_layouts.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
0dbfs = 1
nchnls = 8

vbaplsinit 2.01, 7, -40, 40, 70, 140, 180, -110, -70
vbaplsinit 2.02, 4, -40, 40, 120, -120
vbaplsinit 2.03, 3, -70, 180, 70

 instr 1
aNoise pinkish 0.5
aVbap[] vbap aNoise, line:k(0,p3,-360), 0, 0, 1
 out aVbap ;layout 1: 7 channel output
 endin

 instr 2
aNoise pinkish 0.5
aVbap[] vbap aNoise, line:k(0,p3,-360), 0, 0, 2
 out aVbap ;layout 2: 4 channel output
 endin

 instr 3
aNoise pinkish 0.5
aVbap[] vbap aNoise, line:k(0,p3,-360), 0, 0, 3
 out aVbap ;layout 3: 3 channel output
 endin

</CsInstruments>
<CsScore>
i 1 0 6
i 2 6 6
i 3 12 6
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

In addition to the vbap opcode, vbapg has been written. The idea is to have an opcode which returns the gains (amplitudes) of the speakers instead of the audio signal:

k1[, k2...] vbapg kazim [,kelev] [, kspread] [, ilayout]

Ambisonics I: bformenc1 and bformdec1

Ambisonics is another technique to distribute a virtual sound source in space. The main difference to VBAP is that Ambisonics is shaping a sound field rather than working with different intensitties to locate sounds.

There are excellent sources for the discussion of Ambisonics online which explain its background and parameters.4 These topice are also covered later in this chapter when Ambisoncs UDOs are introduced. We will focus here first on the basic practicalities of using the Ambisonics opcodes bformenc1 and bformdec1 in Csound.

Two steps are required for distributing a sound via Ambisonics. At first the sound source and its localisation are encoded. The result of this step is a so-called B-format. In the second step this B-format is decoded to match a certain loudspeaker setup.

It is possible to save the B-format as its own audio file, to preserve the spatial information or you can immediately do the decoding after the encoding thereby dealing directly only with audio signals instead of Ambisonic files. The next example takes the latter approach by implementing a transformation of the VBAP circle example to Ambisonics.

EXAMPLE 05B08_Ambi_circle.csd

<CsoundSynthesizer>
<CsOptions>
-odac
--env:SSDIR+=../SourceMaterials
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
0dbfs = 1
nchnls = 8

 instr 1
Sfile = "ClassGuit.wav"
p3 filelen Sfile
aSnd[] diskin Sfile
kAzim line 0, p3, 360 ;counterclockwise (!)
iSetup = 4 ;octogon
aw, ax, ay, az bformenc1 aSnd[0], kAzim, 0
a1, a2, a3, a4, a5, a6, a7, a8 bformdec1 iSetup, aw, ax, ay, az
 out a1, a2, a3, a4, a5, a6, a7, a8
 endin
</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The first thing to note is that for a counterclockwise circle, the azimuth now has the line 0 -> 360, instead of 0 -> -360 as was used in the VBAP example. This is because Ambisonics usually reads the angle in a mathematical way: a positive angle is counterclockwise. Next, the encoding process is carried out in the line:

aw, ax, ay, az bformenc1 aSnd, kAzim, 0

Input arguments are the monophonic sound source aSnd[0], the xy-angle kAzim, and the elevation angle which is set to zero. Output signals are the spatial information in x-, y- and z- direction (ax, ay, az), and also an omnidirectional signal called aw.

Decoding is performed by the line:

a1, a2, a3, a4, a5, a6, a7, a8 bformdec1 iSetup, aw, ax, ay, az

The inputs for the decoder are the same aw, ax, ay, az, which were the results of the encoding process, and an additional iSetup parameter. Currently the Csound decoder only works with some standard setups for the speaker: iSetup = 4 refers to an octogon.5 So the final eight audio signals a1, …, a8 are being produced using this decoder, and are then sent to the speakers.

Different Orders

What we have seen in this example is called first order ambisonics. This means that the encoding process leads to the four basic dimensions w, x, y, z as described above. In second order ambisonics, there are additional directions called r, s, t, u, v. And in third order ambisonics again the additional k, l, m, n, o, p, q directions are applied. The final example in this section shows the three orders, each of them in one instrument. If you have eight speakers in octophonic setup, you can compare the results.

EXAMPLE 05B09_Ambi_orders.csd

<CsoundSynthesizer>
<CsOptions>
-odac
--env:SSDIR+=../SourceMaterials
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
0dbfs = 1
nchnls = 8

 instr 1 ;first order
aSnd[] diskin "ClassGuit.wav"
kAzim line 0, p3, 360
iSetup = 4 ;octogon
aw, ax, ay, az bformenc1 aSnd[0], kAzim, 0
a1, a2, a3, a4, a5, a6, a7, a8 bformdec1 iSetup, aw, ax, ay, az
 out a1, a2, a3, a4, a5, a6, a7, a8
 endin

 instr 2 ;second order
aSnd[] diskin "ClassGuit.wav"
kAzim line 0, p3, 360
iSetup = 4 ;octogon
aw, ax, ay, az, ar, as, at, au, av bformenc1 aSnd, kAzim, 0
a1, a2, a3, a4, a5, a6, a7, a8 bformdec1 iSetup,
 aw, ax, ay, az, ar, as, at, au, av
 out a1, a2, a3, a4, a5, a6, a7, a8
 endin

 instr 3 ;third order
aSnd[] diskin "ClassGuit.wav"
kAzim line 0, p3, 360
iSetup = 4 ;octogon
aw,ax,ay,az,ar,as,at,au,av,ak,al,am,an,ao,ap,aq bformenc1 aSnd, kAzim, 0
a1, a2, a3, a4, a5, a6, a7, a8 bformdec1 iSetup,
 aw, ax, ay, az, ar, as, at, au, av, ak, al, am, an, ao, ap, aq
 out a1, a2, a3, a4, a5, a6, a7, a8
 endin
</CsInstruments>
<CsScore>
i 1 0 6
i 2 7 6
i 3 14 6
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

In theory, first-order ambisonics need at least 4 speakers to be projected correctly. Second-order ambisonics needs at least 6 speakers (9, if 3 dimensions are employed). Third-order ambisonics need at least 8 speakers (or 16 for 3d). So, although higher order should in general lead to a better result in space, you cannot expect it to work unless you have a sufficient number of speakers. Nevertheless practice over theory may prove to be a better judge in many cases.

Ambisonics II: UDOs

In the following section we introduce User Defined Opcodes (UDOs) for Ambisonics. The channels of the B-format are stored in a zak space. Call zakinit only once and put it outside of any instrument definition in the orchestra file after the header. zacl clears the zak space and is called after decoding. The B format of order n can be decoded in any order.

The text files ambisonics_udos.txt, ambisonics2D_udos.txt, AEP_udos.txt and utilities.txt must be located in the same folder as the csd files or included with full path.6

Introduction

We will explain here the principles of ambisonics step by step and write a UDO for every step. Since the two-dimensional analogy to Ambisonics is easier to understand and to implement with a simple equipment, we shall fully explain it first.

Ambisonics is a technique of three-dimensional sound projection. The information about the recorded or synthesized sound field is encoded and stored in several channels, taking no account of the arrangement of the loudspeakers for reproduction. The encoding of a signal’s spatial information can be more or less precise, depending on the so-called order of the algorithm used. Order zero corresponds to the monophonic signal and requires only one channel for storage and reproduction. In first-order Ambisonics, three further channels are used to encode the portions of the sound field in the three orthogonal directions x, y and z. These four channels constitute the so-called first-order B-format. When Ambisonics is used for artificial spatialisation of recorded or synthesized sound, the encoding can be of an arbitrarily high order. The higher orders cannot be interpreted as easily as orders zero and one.

In a two-dimensional analogy to Ambisonics (called Ambisonics2D in what follows), only sound waves in the horizontal plane are encoded.

The loudspeaker feeds are obtained by decoding the B-format signal. The resulting panning is amplitude panning, and only the direction to the sound source is taken into account.

The illustration below shows the principle of Ambisonics. First a sound is generated and its position determined. The amplitude and spectrum are adjusted to simulate distance, the latter using a low-pass filter. Then the Ambisonic encoding is computed using the sound’s coordinates. Encoding mmth order B-format requires n=(m+1)2n = (m+1)^2 channels (n=2m+1n = 2m + 1 channels in Ambisonics2D). By decoding the B-format, one can obtain the signals for any number (>= nn) of loudspeakers in any arrangement. Best results are achieved with symmetrical speaker arrangements.

If the B-format does not need to be recorded the speaker signals can be calculated at low cost and arbitrary order using so-called ambisonics equivalent panning (AEP).

Ambisonics2D

We will first explain the encoding process in Ambisonics2D. The position of a sound source in the horizontal plane is given by two coordinates. In Cartesian coordinates (x, y) the listener is at the origin of the coordinate system (0, 0), and the x-coordinate points to the front, the y-coordinate to the left. The position of the sound source can also be given in polar coordinates by the angle ψ between the line of vision of the listener (front) and the direction to the sound source, and by their distance r. Cartesian coordinates can be converted to polar coordinates by the formulae:

r=x2+y2r = \sqrt{x^2 + y^2} and ψ=arctan(x,y)\psi = arctan(x, y),

polar to Cartesian coordinates by

x=r·cos(ψ)x = r·cos(\psi) and y=r·sin(ψ)y = r·sin(\psi).

The 0th order B-Format of a signal S of a sound source on the unit circle is just the mono signal: W0 = W = S. The first order B-Format contains two additional channels: W1,1 = X = S·cos(ψ) = S·x and W1,2 = Y = S·sin(ψ) = S·y, i.e. the product of the Signal S with the sine and the cosine of the direction ψ of the sound source. The B-Format higher order contains two additional channels per order m: Wm,1 = S·cos(mψ) and Wm,2 = S·sin(mψ).

W0=SW_0 = S W1,1=X=S·cos(ψ)=S·xW_{1,1} = X = S·cos(ψ) = S·x and W1,2=Y=S·sin(ψ)=S·yW_{1,2} = Y = S·sin(ψ) = S·y W2,1=S·cos(2ψ)W_{2,1} = S·cos(2ψ) and W2,2=S·sin(2ψ)W_{2,2} = S·sin(2ψ) Wm,1=S·cos(mψ)W_{m,1} = S·cos(mψ) and Wm,2=S·sin(mψ)W_{m,2} = S·sin(mψ)

From the n = 2m + 1 B-Format channels the loudspeaker signals pi of n loudspeakers which are set up symmetrically on a circle (with angle ϕi) are:

pi=1n·(W0+2W1,1cos(ϕi)+2W1,2sin(ϕi)+2W2,1cos(2ϕi)+2W2,2sin(2ϕi)+...)p_i = \frac{1}{n} · (W_0 + 2W_{1,1}cos(ϕ_i) + 2W_{1,2}sin(ϕ_i) + 2W_{2,1}cos(2ϕ_i) + 2W_{2,2}sin(2ϕ_i)\ +\ ...) =2n·(12W0+W1,1cos(ϕi)+W1,2sin(ϕi)+W2,1cos(2ϕi)+W2,2sin(2ϕi)+...)\ \ = \frac{2}{n} · (\frac{1}{2} W_0 + W_{1,1}cos(ϕ_i) + W_{1,2}sin(ϕ_i) + W_{2,1}cos(2ϕ_i) + W_{2,2}sin(2ϕ_i)\ +\ ...)

(If more than n speakers are used, we can use the same formula.)

In the following Csound example udo_ambisonics2D_1.csd the UDO ambi2D_encode_1a produces the 3 channels W, X and Y (a0, a11, a12) from an input sound and the angle ψ (azimuth kaz), the UDO ambi2D_decode_1_8 decodes them to 8 speaker signals a1, a2, …, a8. The inputs of the decoder are the 3 channels a0, a11, a12 and the 8 angles of the speakers.

EXAMPLE 05B10_udo_ambisonics2D_1.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 8
0dbfs = 1

; ambisonics2D first order without distance encoding
; decoding for 8 speakers symmetrically positioned on a circle

; produces the 3 channels 1st order; input: asound, kazimuth
opcode ambi2D_encode_1a, aaa, ak
asnd,kaz xin
kaz = $M_PI*kaz/180
a0 = asnd
a11 = cos(kaz)*asnd
a12 = sin(kaz)*asnd
 xout a0,a11,a12
endop

; decodes 1st order to a setup of 8 speakers at angles i1, i2, ...
opcode ambi2D_decode_1_8, aaaaaaaa, aaaiiiiiiii
a0,a11,a12,i1,i2,i3,i4,i5,i6,i7,i8 xin
i1 = $M_PI*i1/180
i2 = $M_PI*i2/180
i3 = $M_PI*i3/180
i4 = $M_PI*i4/180
i5 = $M_PI*i5/180
i6 = $M_PI*i6/180
i7 = $M_PI*i7/180
i8 = $M_PI*i8/180
a1 = (.5*a0 + cos(i1)*a11 + sin(i1)*a12)*2/3
a2 = (.5*a0 + cos(i2)*a11 + sin(i2)*a12)*2/3
a3 = (.5*a0 + cos(i3)*a11 + sin(i3)*a12)*2/3
a4 = (.5*a0 + cos(i4)*a11 + sin(i4)*a12)*2/3
a5 = (.5*a0 + cos(i5)*a11 + sin(i5)*a12)*2/3
a6 = (.5*a0 + cos(i6)*a11 + sin(i6)*a12)*2/3
a7 = (.5*a0 + cos(i7)*a11 + sin(i7)*a12)*2/3
a8 = (.5*a0 + cos(i8)*a11 + sin(i8)*a12)*2/3
 xout a1,a2,a3,a4,a5,a6,a7,a8
endop

instr 1
asnd rand .05
kaz line 0,p3,3*360 ;turns around 3 times in p3 seconds
a0,a11,a12 ambi2D_encode_1a asnd,kaz
a1,a2,a3,a4,a5,a6,a7,a8 \
 ambi2D_decode_1_8 a0,a11,a12,
 0,45,90,135,180,225,270,315
 outc a1,a2,a3,a4,a5,a6,a7,a8
endin

</CsInstruments>
<CsScore>
i1 0 40
</CsScore>
</CsoundSynthesizer>
;example by martin neukom

The B-format for all signals in all instruments can be summed before decoding. Thus in the next example we create a zak space with 21 channels (zakinit 21, 1) for the 2D B-format up to 10th order where the encoded signals are accumulated. The UDO ambi2D_encode_3 shows how to produce the 7 B-format channels a0, a11, a12, …, a32 for third order. The opcode ambi2D_encode_n produces the 2(n+1) channels a0, a11, a12, …, a32 for any order n (needs zakinit 2(n+1), 1). The UDO ambi2D_decode_basic is an overloaded function i.e. it decodes to n speaker signals depending on the number of in- and outputs given (in this example only for 1 or 2 speakers). Any number of instruments can be played arbitrarily often. Instrument 10 decodes for the first 4 speakers of an 18 speaker setup.

EXAMPLE 05B11_udo_ambisonics2D_2.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 4
0dbfs = 1

; ambisonics2D encoding fifth order
; decoding for 8 speakers symmetrically positioned on a circle
; all instruments write the B-format into a buffer (zak space)
; instr 10 decodes

; zak space with the 21 channels of the B-format up to 10th order
zakinit 21, 1

;explicit encoding third order
opcode ambi2D_encode_3, 0, ak
asnd,kaz xin

kaz = $M_PI*kaz/180

 zawm asnd,0
 zawm cos(kaz)*asnd,1 ;a11
 zawm sin(kaz)*asnd,2 ;a12
 zawm cos(2*kaz)*asnd,3 ;a21
 zawm sin(2*kaz)*asnd,4 ;a22
 zawm cos(3*kaz)*asnd,5 ;a31
 zawm sin(3*kaz)*asnd,6 ;a32

endop

; encoding arbitrary order n(zakinit 2*n+1, 1)
opcode ambi2D_encode_n, 0, aik
asnd,iorder,kaz xin
kaz = $M_PI*kaz/180
kk = iorder
c1:
 zawm cos(kk*kaz)*asnd,2*kk-1
 zawm sin(kk*kaz)*asnd,2*kk
kk = kk-1

if kk > 0 goto c1
 zawm asnd,0
endop

; basic decoding for arbitrary order n for 1 speaker
opcode ambi2D_decode_basic, a, ii
iorder,iaz xin
iaz = $M_PI*iaz/180
igain = 2/(2*iorder+1)
kk = iorder
a1 = .5*zar(0)
c1:
a1 += cos(kk*iaz)*zar(2*kk-1)
a1 += sin(kk*iaz)*zar(2*kk)
kk = kk-1
if kk > 0 goto c1
 xout igain*a1
endop

; decoding for 2 speakers
opcode ambi2D_decode_basic, aa, iii
iorder,iaz1,iaz2 xin
iaz1 = $M_PI*iaz1/180
iaz2 = $M_PI*iaz2/180
igain = 2/(2*iorder+1)
kk = iorder
a1 = .5*zar(0)
c1:
a1 += cos(kk*iaz1)*zar(2*kk-1)
a1 += sin(kk*iaz1)*zar(2*kk)
kk = kk-1
if kk > 0 goto c1

kk = iorder
a2 = .5*zar(0)
c2:
a2 += cos(kk*iaz2)*zar(2*kk-1)
a2 += sin(kk*iaz2)*zar(2*kk)
kk = kk-1
if kk > 0 goto c2
 xout igain*a1,igain*a2
endop

instr 1
asnd rand p4
ares reson asnd,p5,p6,1
kaz line 0,p3,p7*360 ;turns around p7 times in p3 seconds
 ambi2D_encode_n asnd,10,kaz
endin

instr 2
asnd oscil p4,p5,1
kaz line 0,p3,p7*360 ;turns around p7 times in p3 seconds
 ambi2D_encode_n asnd,10,kaz
endin

instr 10 ;decode all instruments (the first 4 speakers of a 18 speaker setup)
a1,a2 ambi2D_decode_basic 10,0,20
a3,a4 ambi2D_decode_basic 10,40,60
 outc a1,a2,a3,a4
 zacl 0,20 ; clear the za variables
endin

</CsInstruments>
<CsScore>
f1 0 32768 10 1
; amp cf bw turns
i1 0 3 .7 1500 12 1
i1 2 18 .1 2234 34 -8
; amp fr 0 turns
i2 0 3 .1 440 0 2
i10 0 3
</CsScore>
</CsoundSynthesizer>
;example by martin neukom

In-phase Decoding

The left figure below shows a symmetrical arrangement of 7 loudspeakers. If the virtual sound source is precisely in the direction of a loudspeaker, only this loudspeaker gets a signal (center figure). If the virtual sound source is between two loudspeakers, these loudspeakers receive the strongest signals; all other loudspeakers have weaker signals, some with negative amplitude, that is, reversed phase (right figure).

To avoid having loudspeaker sounds that are far away from the virtual sound source and to ensure that negative amplitudes (inverted phase) do not arise, the B-format channels can be weighted before being decoded. The weighting factors depend on the highest order used (M) and the order of the particular channel being decoded (m).

gm=(M!)2((M+m)!·(M−m)!)g_m = \frac{(M!)^2}{((M + m)!·(M - m)!)}

The decoded signal can be normalised with the factor gnorm(M)=2·(2M)!4M·(M!)2g_{norm}(M) = \frac{2 · (2M)!}{4^M · (M!)^2} :

The illustration below shows a third-order B-format signal decoded to 13 loudspeakers first uncorrected (so-called basic decoding, left), then corrected by weighting (so-called in-phase decoding, right).

The following example shows in-phase decoding. The weights and norms up to 12th order are saved in the arrays iWeight2D[][] and iNorm2D[] respectively. Instrument 11 decodes third order for 4 speakers in a square.

EXAMPLE 05B12_udo_ambisonics2D_3.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 4
0dbfs = 1

opcode ambi2D_encode_n, 0, aik
asnd,iorder,kaz xin
kaz = $M_PI*kaz/180
kk = iorder
c1:
 zawm cos(kk*kaz)*asnd,2*kk-1
 zawm sin(kk*kaz)*asnd,2*kk
kk = kk-1

if kk > 0 goto c1
 zawm asnd,0

endop

;in-phase-decoding
opcode ambi2D_dec_inph, a, ii
; weights and norms up to 12th order
iNorm2D[] array 1,0.75,0.625,0.546875,0.492188,0.451172,0.418945,
 0.392761,0.370941,0.352394,0.336376,0.322360
iWeight2D[][] init 12,12
iWeight2D array 0.5,0,0,0,0,0,0,0,0,0,0,0,
 0.666667,0.166667,0,0,0,0,0,0,0,0,0,0,
 0.75,0.3,0.05,0,0,0,0,0,0,0,0,0,
 0.8,0.4,0.114286,0.0142857,0,0,0,0,0,0,0,0,
 0.833333,0.47619,0.178571,0.0396825,0.00396825,0,0,0,0,0,0,0,
 0.857143,0.535714,0.238095,0.0714286,0.012987,0.00108225,0,0,0,0,0,0,
 0.875,0.583333,0.291667,0.1060601,0.0265152,0.00407925,0.000291375,
 0,0,0,0,0, 0.888889,0.622222,0.339394,0.141414,0.043512,
 0.009324,0.0012432, 0.0000777,0,0,0,0,
 0.9,0.654545,0.381818,0.176224,0.0629371,0.0167832,0.00314685,
 0.000370218,0.0000205677,0,0,0,
 0.909091,0.681818,0.41958,0.20979,0.0839161,0.0262238,0.0061703,
 0.00102838,0.000108251,0.00000541254,0,0,
 0.916667,0.705128,0.453297,0.241758,0.105769,0.0373303,0.0103695,
 0.00218306,0.000327459,0.0000311866,0.00000141757,0,
 0.923077,0.725275,0.483516,0.271978,0.12799,0.0497738,0.015718,
 0.00392951,0.000748478,0.000102065,0.00000887523,0.000000369801

iorder,iaz1 xin
iaz1 = $M_PI*iaz1/180
kk = iorder
a1 = .5*zar(0)
c1:
a1 += cos(kk*iaz1)*iWeight2D[iorder-1][kk-1]*zar(2*kk-1)
a1 += sin(kk*iaz1)*iWeight2D[iorder-1][kk-1]*zar(2*kk)
kk = kk-1
if kk > 0 goto c1
 xout iNorm2D[iorder-1]*a1
endop

zakinit 7, 1

instr 1
asnd rand p4
ares reson asnd,p5,p6,1
kaz line 0,p3,p7*360 ;turns around p7 times in p3 seconds
 ambi2D_encode_n asnd,3,kaz
endin

instr 11

a1 ambi2D_dec_inph 3,0
a2 ambi2D_dec_inph 3,90
a3 ambi2D_dec_inph 3,180
a4 ambi2D_dec_inph 3,270
 outc a1,a2,a3,a4
 zacl 0,6 ; clear the za variables
endin

</CsInstruments>
<CsScore>
; amp cf bw turns
i1 0 3 .1 1500 12 1
i11 0 3
</CsScore>
</CsoundSynthesizer>
;example by martin neukom

Distance

In order to simulate distances and movements of sound sources, the signals have to be treated before being encoded. The main perceptual cues for the distance of a sound source are reduction of the amplitude, filtering due to the absorbtion of the air and the relation between direct and indirect sound. We will implement the first two of these cues. The amplitude arriving at a listener is inversely proportional to the distance of the sound source. If the distance is larger than the unit circle (not necessarily the radius of the speaker setup, which does not need to be known when encoding sounds) we can simply divide the sound by the distance. With this calculation inside the unit circle the amplitude is amplified and becomes infinite when the distance becomes zero. Another problem arises when a virtual sound source passes the origin. The amplitude of the speaker signal in the direction of the movement suddenly becomes maximal and the signal of the opposite speaker suddenly becomes zero. A simple solution for these problems is to limit the gain of the channel W inside the unit circle to 1 (f1 in the figure below) and to fade out all other channels (f2). By fading out all channels except channel W the information about the direction of the sound source is lost and all speaker signals are the same and the sum of the speaker signals reaches its maximum when the distance is 0.

Now, we are looking for gain functions that are smoother at d = 1. The functions should be differentiable and the slope of f1 at distance d = 0 should be 0. For distances greater than 1 the functions should be approximately 1/d. In addition the function f1 should continuously grow with decreasing distance and reach its maximum at d = 0. The maximal gain must be 1. The function atan(d·π/2)/(d·π/2) fulfills these constraints. We create a function f2 for the fading out of the other channels by multiplying f1 by the factor (1 - e-d).

In the next example the UDO ambi2D_enc_dist_n encodes a sound at any order with distance correction. The inputs of the UDO are asnd, iorder, kazimuth and kdistance. If the distance becomes negative the azimuth angle is turned to its opposite (kaz += π) and the distance taken positive.

EXAMPLE 05B13_udo_ambisonics2D_4.csd

<CsoundSynthesizer>
<CsOptions>
--env:SSDIR+=../SourceMaterials -odac -m0
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 8
0dbfs = 1

#include "../SourceMaterials/ambisonics2D_udos.txt"

; distance encoding
; with any distance (includes zero and negative distance)

opcode ambi2D_enc_dist_n, 0, aikk
asnd,iorder,kaz,kdist xin
kaz = $M_PI*kaz/180
kaz = (kdist < 0 ? kaz + $M_PI : kaz)
kdist = abs(kdist)+0.0001
kgainW = taninv(kdist*1.5707963) / (kdist*1.5708) ;pi/2
kgainHO = (1 - exp(-kdist))*kgainW
kk = iorder
asndW = kgainW*asnd
asndHO = kgainHO*asndW
c1:
 zawm cos(kk*kaz)*asndHO,2*kk-1
 zawm sin(kk*kaz)*asndHO,2*kk
kk = kk-1

if kk > 0 goto c1
 zawm asndW,0

endop

zakinit 17, 1

instr 1
asnd rand p4
;asnd soundin "/Users/user/csound/ambisonic/violine.aiff"
kaz line 0,p3,p5*360 ;turns around p5 times in p3 seconds
kdist line p6,p3,p7
 ambi2D_enc_dist_n asnd,8,kaz,kdist
endin

instr 10
a1,a2,a3,a4,
a5,a6,a7,a8 ambi2D_decode 8,0,45,90,135,180,225,270,315
 outc a1,a2,a3,a4,a5,a6,a7,a8
 zacl 0,16
endin

</CsInstruments>
<CsScore>
f1 0 32768 10 1
; amp turns dist1 dist2
i1 0 4 1 0 2 -2
;i1 0 4 1 1 1 1
i10 0 4
</CsScore>
</CsoundSynthesizer>
;example by martin neukom

In order to simulate the absorption of the air we introduce a very simple lowpass filter with a distance depending cutoff frequency. We produce a Doppler-shift with a distance dependent delay of the sound. Now, we have to determine our unit since the delay of the sound wave is calculated as distance divided by sound velocity. In our example udo_ambisonics2D_5.csd we set the unit to 1 meter. These procedures are performed before the encoding. In instrument 1 the movement of the sound source is defined in Cartesian coordinates. The UDO xy_to_ad transforms them into polar coordinates. The B-format channels can be written to a sound file with the opcode fout. The UDO write_ambi2D_2 writes the channels up to second order into a sound file.

EXAMPLE 05B14_udo_ambisonics2D_5.csd

<CsoundSynthesizer>
<CsOptions>
--env:SSDIR+=../SourceMaterials -odac -m0
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 8
0dbfs = 1

#include "../SourceMaterials/ambisonics2D_udos.txt"
#include "../SourceMaterials/ambisonics_utilities.txt" ;Absorb and Doppler

/* these opcodes are included in "ambisonics2D_udos.txt"
opcode xy_to_ad, kk, kk
kx,ky xin
kdist = sqrt(kx*kx+ky*ky)
kaz taninv2 ky,kx
 xout 180*kaz/$M_PI, kdist
endop

opcode Absorb, a, ak
asnd,kdist xin
aabs tone 5*asnd,20000*exp(-.1*kdist)
 xout aabs
endop

opcode Doppler, a, ak
asnd,kdist xin
abuf delayr .5
adop deltapi interp(kdist)*0.0029137529 + .01 ; 1/343.2
 delayw asnd
 xout adop
endop
*/
opcode write_ambi2D_2, 0, S
Sname xin
fout Sname,12,zar(0),zar(1),zar(2),zar(3),zar(4)
endop

zakinit 17, 1 ; zak space with the 17 channels of the B-format

instr 1
asnd buzz p4,p5,50,1
;asnd soundin "/Users/user/csound/ambisonic/violine.aiff"
kx line p7,p3,p8
ky line p9,p3,p10
kaz,kdist xy_to_ad kx,ky
aabs absorb asnd,kdist
adop Doppler .2*aabs,kdist
 ambi2D_enc_dist adop,5,kaz,kdist
endin

instr 10 ;decode all instruments
a1,a2,a3,a4,
a5,a6,a7,a8 ambi2D_dec_inph 5,0,45,90,135,180,225,270,315
 outc a1,a2,a3,a4,a5,a6,a7,a8
; fout "B_format2D.wav",12,zar(0),zar(1),zar(2),zar(3),zar(4),
; zar(5),zar(6),zar(7),zar(8),zar(9),zar(10)
 write_ambi2D_2 "ambi_ex5.wav"
 zacl 0,16 ; clear the za variables
endin

</CsInstruments>
<CsScore>
f1 0 32768 10 1
; amp f 0 x1 x2 y1 y2
i1 0 5 .8 200 0 40 -20 1 .1
i10 0 5
</CsScore>
</CsoundSynthesizer>
;example by martin neukom

Adding third dimension

The position of a point in space can be given by its Cartesian coordinates x, y and z or by its spherical coordinates the radial distance r from the origin of the coordinate system, the elevation δ (which lies between –π and π) and the azimuth angle θ.

The formulae for transforming coordinates are as follows:

The channels of the Ambisonic B-format are computed as the product of the sounds themselves and the so-called spherical harmonics representing the direction to the virtual sound sources. The spherical harmonics can be normalised in various ways. We shall use the so-called semi-normalised spherical harmonics. The following table shows the encoding functions up to the third order as function of azimuth and elevation Ymn(θ,δ) and as function of x, y and z Ymn(x,y,z) for sound sources on the unit sphere. The decoding formulae for symmetrical speaker setups are the same.

In the first three of the following examples we will not produce sound but display in number boxes (for example using CsoundQt widgets) the amplitude of 3 speakers at positions (1, 0, 0), (0, 1, 0) and (0, 0, 1) in Cartesian coordinates. The position of the sound source can be changed with the two scroll numbers. The example udo_ambisonics_1.csd shows encoding up to second order. The decoding is done in two steps. First we decode the B-format for one speaker. In the second step, we create a overloaded opcode for n speakers. The number of output signals determines which version of the opcode is used. The UDOs ambi_encode and ambi_decode up to 8th order are saved in the text file ambisonics_udos.txt.

EXAMPLE 05B15_udo_ambisonics_1.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

zakinit 9, 1 ; zak space with the 9 channel B-format second order

opcode ambi_encode, 0, aikk
asnd,iorder,kaz,kel xin
kaz = $M_PI*kaz/180
kel = $M_PI*kel/180
kcos_el = cos(kel)
ksin_el = sin(kel)
kcos_az = cos(kaz)
ksin_az = sin(kaz)

 zawm asnd,0 ; W
 zawm kcos_el*ksin_az*asnd,1 ; Y = Y(1,-1)
 zawm ksin_el*asnd,2 ; Z = Y(1,0)
 zawm kcos_el*kcos_az*asnd,3 ; X = Y(1,1)

 if iorder < 2 goto end

i2 = sqrt(3)/2
kcos_el_p2 = kcos_el*kcos_el
ksin_el_p2 = ksin_el*ksin_el
kcos_2az = cos(2*kaz)
ksin_2az = sin(2*kaz)
kcos_2el = cos(2*kel)
ksin_2el = sin(2*kel)

 zawm i2*kcos_el_p2*ksin_2az*asnd,4 ; V = Y(2,-2)
 zawm i2*ksin_2el*ksin_az*asnd,5 ; S = Y(2,-1)
 zawm .5*(3*ksin_el_p2 - 1)*asnd,6 ; R = Y(2,0)
 zawm i2*ksin_2el*kcos_az*asnd,7 ; S = Y(2,1)
 zawm i2*kcos_el_p2*kcos_2az*asnd,8 ; U = Y(2,2)
end:

endop

; decoding of order iorder for 1 speaker at position iaz,iel,idist
opcode ambi_decode1, a, iii
iorder,iaz,iel xin
iaz = $M_PI*iaz/180
iel = $M_PI*iel/180
a0=zar(0)
 if iorder > 0 goto c0
aout = a0
 goto end
c0:
a1=zar(1)
a2=zar(2)
a3=zar(3)
icos_el = cos(iel)
isin_el = sin(iel)
icos_az = cos(iaz)
isin_az = sin(iaz)
i1 = icos_el*isin_az ; Y = Y(1,-1)
i2 = isin_el ; Z = Y(1,0)
i3 = icos_el*icos_az ; X = Y(1,1)
 if iorder > 1 goto c1
aout = (1/2)*(a0 + i1*a1 + i2*a2 + i3*a3)
 goto end
c1:
a4=zar(4)
a5=zar(5)
a6=zar(6)
a7=zar(7)
a8=zar(8)

ic2 = sqrt(3)/2

icos_el_p2 = icos_el*icos_el
isin_el_p2 = isin_el*isin_el
icos_2az = cos(2*iaz)
isin_2az = sin(2*iaz)
icos_2el = cos(2*iel)
isin_2el = sin(2*iel)

i4 = ic2*icos_el_p2*isin_2az ; V = Y(2,-2)
i5 = ic2*isin_2el*isin_az ; S = Y(2,-1)
i6 = .5*(3*isin_el_p2 - 1) ; R = Y(2,0)
i7 = ic2*isin_2el*icos_az ; S = Y(2,1)
i8 = ic2*icos_el_p2*icos_2az ; U = Y(2,2)

aout = (1/9)*(a0 + 3*i1*a1 + 3*i2*a2 + 3*i3*a3 + 5*i4*a4 + \
 5*i5*a5 + 5*i6*a6 + 5*i7*a7 + 5*i8*a8)

end:
 xout aout
endop

; overloaded opcode for decoding of order iorder
; speaker positions in function table ifn
opcode ambi_decode, a,ii
iorder,ifn xin
 xout ambi_decode1(iorder,table(1,ifn),table(2,ifn))
endop
opcode ambi_decode, aa,ii
iorder,ifn xin
 xout ambi_decode1(iorder,table(1,ifn),table(2,ifn)),
 ambi_decode1(iorder,table(3,ifn),table(4,ifn))
endop
opcode ambi_decode, aaa,ii
iorder,ifn xin
xout ambi_decode1(iorder,table(1,ifn),table(2,ifn)),
 ambi_decode1(iorder,table(3,ifn),table(4,ifn)),
 ambi_decode1(iorder,table(5,ifn),table(6,ifn))
endop

instr 1
asnd init 1
;kdist init 1
kaz invalue "az"
kel invalue "el"

 ambi_encode asnd,2,kaz,kel

ao1,ao2,ao3 ambi_decode 2,17
 outvalue "sp1", downsamp(ao1)
 outvalue "sp2", downsamp(ao2)
 outvalue "sp3", downsamp(ao3)
 zacl 0,8
endin

</CsInstruments>
<CsScore>
;f1 0 1024 10 1
f17 0 64 -2 0 0 0 90 0 0 90 0 0 0 0 0 0
i1 0 100
</CsScore>
</CsoundSynthesizer>
;example by martin neukom

The next example shows in-phase decoding. The weights up to 8th order are stored in the array iWeight3D[][].

EXAMPLE 05B16_udo_ambisonics_2.csd

<CsoundSynthesizer>
<CsOptions>
--env:SSDIR+=../SourceMaterials -odac -m0
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

zakinit 81, 1 ; zak space for up to 81 channels of the 8th order B-format

; the opcodes used below are safed in "ambisonics_udos.txt"
#include "../SourceMaterials/ambisonics_udos.txt"

; in-phase decoding up to third order for one speaker
opcode ambi_dec1_inph3, a, iii
; weights up to 8th order
iWeight3D[][] init 8,8
iWeight3D array 0.333333,0,0,0,0,0,0,0,
 0.5,0.1,0,0,0,0,0,0,
 0.6,0.2,0.0285714,0,0,0,0,0,
 0.666667,0.285714,0.0714286,0.0079365,0,0,0,0,
 0.714286,0.357143,0.119048,0.0238095,0.0021645,0,0,0,
 0.75,0.416667,0.166667,0.0454545,0.00757576,0.00058275,0,0,
 0.777778,0.466667,0.212121,0.0707071,0.016317,0.002331,0.0001554,0,
 0.8,0.509091,0.254545,0.0979021,0.027972,0.0055944,0.0006993,0.00004114

iorder,iaz,iel xin
iaz = $M_PI*iaz/180
iel = $M_PI*iel/180
a0=zar(0)
 if iorder > 0 goto c0
aout = a0
 goto end
c0:
a1=iWeight3D[iorder-1][0]*zar(1)
a2=iWeight3D[iorder-1][0]*zar(2)
a3=iWeight3D[iorder-1][0]*zar(3)
icos_el = cos(iel)
isin_el = sin(iel)
icos_az = cos(iaz)
isin_az = sin(iaz)
i1 = icos_el*isin_az ; Y = Y(1,-1)
i2 = isin_el ; Z = Y(1,0)
i3 = icos_el*icos_az ; X = Y(1,1)
 if iorder > 1 goto c1
aout = (3/4)*(a0 + i1*a1 + i2*a2 + i3*a3)
 goto end
c1:
a4=iWeight3D[iorder-1][1]*zar(4)
a5=iWeight3D[iorder-1][1]*zar(5)
a6=iWeight3D[iorder-1][1]*zar(6)
a7=iWeight3D[iorder-1][1]*zar(7)
a8=iWeight3D[iorder-1][1]*zar(8)

ic2 = sqrt(3)/2

icos_el_p2 = icos_el*icos_el
isin_el_p2 = isin_el*isin_el
icos_2az = cos(2*iaz)
isin_2az = sin(2*iaz)
icos_2el = cos(2*iel)
isin_2el = sin(2*iel)

i4 = ic2*icos_el_p2*isin_2az ; V = Y(2,-2)
i5 = ic2*isin_2el*isin_az ; S = Y(2,-1)
i6 = .5*(3*isin_el_p2 - 1) ; R = Y(2,0)
i7 = ic2*isin_2el*icos_az ; S = Y(2,1)
i8 = ic2*icos_el_p2*icos_2az ; U = Y(2,2)
aout = (1/3)*(a0 + 3*i1*a1 + 3*i2*a2 + 3*i3*a3 + 5*i4*a4 + 5*i5*a5 + \
 5*i6*a6 + 5*i7*a7 + 5*i8*a8)

end:
 xout aout
endop

; overloaded opcode for decoding for 1 or 2 speakers
; speaker positions in function table ifn
opcode ambi_dec2_inph, a,ii
iorder,ifn xin
 xout ambi_dec1_inph(iorder,table(1,ifn),table(2,ifn))
endop
opcode ambi_dec2_inph, aa,ii
iorder,ifn xin
 xout ambi_dec1_inph(iorder,table(1,ifn),table(2,ifn)),
 ambi_dec1_inph(iorder,table(3,ifn),table(4,ifn))
endop
opcode ambi_dec2_inph, aaa,ii
iorder,ifn xin
 xout ambi_dec1_inph(iorder,table(1,ifn),table(2,ifn)),
 ambi_dec1_inph(iorder,table(3,ifn),table(4,ifn)),
 ambi_dec1_inph(iorder,table(5,ifn),table(6,ifn))
endop

instr 1
asnd init 1
kdist init 1
kaz invalue "az"
kel invalue "el"

 ambi_encode asnd,8,kaz,kel
ao1,ao2,ao3 ambi_dec_inph 8,17
 outvalue "sp1", downsamp(ao1)
 outvalue "sp2", downsamp(ao2)
 outvalue "sp3", downsamp(ao3)
 zacl 0,80
endin

</CsInstruments>
<CsScore>
f1 0 1024 10 1
f17 0 64 -2 0 0 0 90 0 0 90 0 0 0 0 0 0 0 0 0 0
i1 0 100
</CsScore>
</CsoundSynthesizer>
;example by martin neukom

The weighting factors for in-phase decoding of Ambisonics (3D) are:

The following example shows distance encoding.

EXAMPLE 05B17_udo_ambisonics_3.csd

<CsoundSynthesizer>
<CsOptions>
--env:SSDIR+=../SourceMaterials -odac -m0
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

zakinit 81, 1 ; zak space with the 11 channels of the B-format

#include "../SourceMaterials/ambisonics_udos.txt"

opcode ambi3D_enc_dist1, 0, aikkk
asnd,iorder,kaz,kel,kdist xin
kaz = $M_PI*kaz/180
kel = $M_PI*kel/180
kaz = (kdist < 0 ? kaz + $M_PI : kaz)
kel = (kdist < 0 ? -kel : kel)
kdist = abs(kdist)+0.00001
kgainW = taninv(kdist*1.5708) / (kdist*1.5708)
kgainHO = (1 - exp(-kdist)) ;*kgainW
 outvalue "kgainHO", kgainHO
 outvalue "kgainW", kgainW
kcos_el = cos(kel)
ksin_el = sin(kel)
kcos_az = cos(kaz)
ksin_az = sin(kaz)
asnd = kgainW*asnd
 zawm asnd,0 ; W
asnd = kgainHO*asnd
 zawm kcos_el*ksin_az*asnd,1 ; Y = Y(1,-1)
 zawm ksin_el*asnd,2 ; Z = Y(1,0)
 zawm kcos_el*kcos_az*asnd,3 ; X = Y(1,1)
 if iorder < 2 goto end
/*
...
*/
end:

endop

instr 1
asnd init 1
kaz invalue "az"
kel invalue "el"
kdist invalue "dist"
 ambi_enc_dist asnd,5,kaz,kel,kdist
ao1,ao2,ao3,ao4 ambi_decode 5,17
 outvalue "sp1", downsamp(ao1)
 outvalue "sp2", downsamp(ao2)
 outvalue "sp3", downsamp(ao3)
 outvalue "sp4", downsamp(ao4)
 outc 0*ao1,0*ao2;,2*ao3,2*ao4
 zacl 0,80
endin
</CsInstruments>
<CsScore>
f17 0 64 -2 0 0 0 90 0 180 0 0 90 0 0 0 0
i1 0 100
</CsScore>
</CsoundSynthesizer>
;example by martin neukom

In example udo_ambisonics_4.csd a buzzer with the three-dimensional trajectory shown below is encoded in third order and decoded for a speaker setup in a cube (f17).

EXAMPLE 05B18_udo_ambisonics_4.csd

<CsoundSynthesizer>
<CsOptions>
--env:SSDIR+=../SourceMaterials -odac -m0
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 8
0dbfs = 1

zakinit 16, 1

#include "../SourceMaterials/ambisonics_udos.txt"
#include "../SourceMaterials/ambisonics_utilities.txt"

instr 1
asnd buzz p4,p5,p6,1
kt line 0,p3,p3
kaz,kel,kdist xyz_to_aed 10*sin(kt),10*sin(.78*kt),10*sin(.43*kt)
adop Doppler asnd,kdist
 ambi_enc_dist adop,3,kaz,kel,kdist
a1,a2,a3,a4,a5,a6,a7,a8 ambi_decode 3,17
;k0 ambi_write_B "B_form.wav",8,14
 outc a1,a2,a3,a4,a5,a6,a7,a8
 zacl 0,15
endin

</CsInstruments>
<CsScore>
f1 0 32768 10 1
f17 0 64 -2 0 -45 35.2644 45 35.2644 135 35.2644 225 35.2644 \
 -45 -35.2644 .7854 -35.2644 135 -35.2644 225 -35.2644
i1 0 40 .5 300 40
</CsScore>
</CsoundSynthesizer>
;example by martin neukom

Ambisonics Equivalent Panning (AEP)

If we combine encoding and in-phase decoding, we obtain the following panning function (a gain function for a speaker depending on its distance to a virtual sound source):

P(γ,m)=(12+12cosγ)mP(γ, m) = (\frac{1}{2} + \frac{1}{2} \cos γ)^m

where γ denotes the angle between a sound source and a speaker and m denotes the order. If the speakers are positioned on a unit sphere the cosine of the angle γ is calculated as the scalar product of the vector to the sound source (x, y, z) and the vector to the speaker (xs, ys, zs).

In contrast to Ambisonics the order indicated in the function does not have to be an integer. This means that the order can be continuously varied during decoding. The function can be used in both Ambisonics and Ambisonics2D.

This system of panning is called Ambisonics Equivalent Panning. It has the disadvantage of not producing a B-format representation, but its implementation is straightforward and the computation time is short and independent of the Ambisonics order simulated. Hence it is particularly useful for real-time applications, for panning in connection with sequencer programs and for experimentation with high and non-integral Ambisonic orders.

The opcode AEP1 in the next example shows the calculation of ambisonics equivalent panning for one speaker. The opcode AEP then uses AEP1 to produce the signals for several speakers. In the text file AEP_udos.txt AEP ist implemented for up to 16 speakers. The position of the speakers must be written in a function table. As the first parameter in the function table the maximal speaker distance must be given.

EXAMPLE 05B19_udo_AEP.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 4
0dbfs = 1

;#include "ambisonics_udos.txt"

; opcode AEP1 is the same as in udo_AEP_xyz.csd

opcode AEP1, a, akiiiikkkkkk
 ; soundin, order, ixs, iys, izs, idsmax, kx, ky, kz
ain,korder,ixs,iys,izs,idsmax,kx,ky,kz,kdist,kfade,kgain xin
idists = sqrt(ixs*ixs+iys*iys+izs*izs)
kpan = kgain*((1-kfade+kfade*(kx*ixs+ky*iys+kz*izs)/(kdist*idists))^korder)
 xout ain*kpan*idists/idsmax
endop

; opcode AEP calculates ambisonics equivalent panning for n speaker
; the number n of output channels defines the number of speakers
; inputs: sound ain, order korder (any real number >= 1)
; ifn = number of the function containing the speaker positions
; position and distance of the sound source kaz,kel,kdist in degrees

opcode AEP, aaaa, akikkk
ain,korder,ifn,kaz,kel,kdist xin
kaz = $M_PI*kaz/180
kel = $M_PI*kel/180
kx = kdist*cos(kel)*cos(kaz)
ky = kdist*cos(kel)*sin(kaz)
kz = kdist*sin(kel)
ispeaker[] array 0,
table(3,ifn)*cos(($M_PI/180)*table(2,ifn))*cos(($M_PI/180)*table(1,ifn)),
table(3,ifn)*cos(($M_PI/180)*table(2,ifn))*sin(($M_PI/180)*table(1,ifn)),
table(3,ifn)*sin(($M_PI/180)*table(2,ifn)),
table(6,ifn)*cos(($M_PI/180)*table(5,ifn))*cos(($M_PI/180)*table(4,ifn)),
table(6,ifn)*cos(($M_PI/180)*table(5,ifn))*sin(($M_PI/180)*table(4,ifn)),
table(6,ifn)*sin(($M_PI/180)*table(5,ifn)),
table(9,ifn)*cos(($M_PI/180)*table(8,ifn))*cos(($M_PI/180)*table(7,ifn)),
table(9,ifn)*cos(($M_PI/180)*table(8,ifn))*sin(($M_PI/180)*table(7,ifn)),
table(9,ifn)*sin(($M_PI/180)*table(8,ifn)),
table(12,ifn)*cos(($M_PI/180)*table(11,ifn))*\
 cos(($M_PI/180)*table(10,ifn)),
table(12,ifn)*cos(($M_PI/180)*table(11,ifn))*\
 sin(($M_PI/180)*table(10,ifn)),
table(12,ifn)*sin(($M_PI/180)*table(11,ifn))

idsmax table 0,ifn
kdist = kdist+0.000001
kfade = .5*(1 - exp(-abs(kdist)))
kgain = taninv(kdist*1.5708)/(kdist*1.5708)

a1 AEP1 ain,korder,ispeaker[1],ispeaker[2],ispeaker[3],
 idsmax,kx,ky,kz,kdist,kfade,kgain
a2 AEP1 ain,korder,ispeaker[4],ispeaker[5],ispeaker[6],
 idsmax,kx,ky,kz,kdist,kfade,kgain
a3 AEP1 ain,korder,ispeaker[7],ispeaker[8],ispeaker[9],
 idsmax,kx,ky,kz,kdist,kfade,kgain
a4 AEP1 ain,korder,ispeaker[10],ispeaker[11],ispeaker[12],
 idsmax,kx,ky,kz,kdist,kfade,kgain
 xout a1,a2,a3,a4
endop

instr 1
ain rand 1
;ain soundin "/Users/user/csound/ambisonic/violine.aiff"
kt line 0,p3,360
korder init 24
;kdist Dist kx, ky, kz
a1,a2,a3,a4 AEP ain,korder,17,kt,0,1
 outc a1,a2,a3,a4
endin

</CsInstruments>
<CsScore>

;fuction for speaker positions
; GEN -2, parameters: max_speaker_distance, xs1,ys1,zs1,xs2,ys2,zs2,...
;octahedron
;f17 0 32 -2 1 1 0 0 -1 0 0 0 1 0 0 -1 0 0 0 1 0 0 -1
;cube
;f17 0 32 -2 1,732 1 1 1 1 1 -1 1 -1 1 -1 1 1
;octagon
;f17 0 32 -2 1 0.924 -0.383 0 0.924 0.383 0 0.383 0.924 0 -0.383 0.924 0
;-0.924 0.383 0 -0.924 -0.383 0 -0.383 -0.924 0 0.383 -0.924 0
;f17 0 32 -2 1 0 0 1 45 0 1 90 0 1 135 0 1 180 0 1 225 0 1 270 0 1 315 0 1
;f17 0 32 -2 1 0 -90 1 0 -70 1 0 -50 1 0 -30 1 0 -10 1 0 10 1 0 30 1 0 50 1
f17 0 32 -2 1 -45 0 1 45 0 1 135 0 1 225 0 1
i1 0 2

</CsScore>
</CsoundSynthesizer>
;example by martin neukom

Summary of the Ambisonics UDOs

zakinit isizea, isizek
 (isizea = (order + 1)\^2 in ambisonics (3D);
 isizea = 2·order + 1 in ambi2D; isizek = 1)

ambisonics_udos.txt (order <= 8)

ambi_encode asnd, iorder, kazimuth, kelevation
 (azimuth, elevation in degrees)
ambi_enc_dist asnd, iorder, kazimuth, kelevation, kdistance
a1 [, a2] ... [, a8] ambi_decode iorder, ifn
a1 [, a2] ... [, a8] ambi_dec_inph iorder, ifn
f ifn 0 n -2 p1 az1 el1 az2 el2 ...
 (n is a power of 2 greater than 3·number_of_spekers + 1)
 (p1 is not used)
ambi_write_B "name", iorder, ifile_format
 (ifile_format see fout in the csound help)
ambi_read_B "name", iorder (only <= 5)
kaz, kel, kdist xyz_to_aed kx, ky, kz

ambisonics2D_udos.txt

ambi2D_encode asnd, iorder, kazimuth (any order) (azimuth in degrees)
ambi2D_enc_dist asnd, iorder, kazimuth, kdistance
a1 [, a2] ... [, a8] ambi2D_decode iorder, iaz1 [, iaz2] ... [, iaz8]
a1 [, a2] ... [, a8] ambi2D_dec_inph iorder, iaz1 [, iaz2] ... [, iaz8]
 (order <= 12)
ambi2D_write_B "name", iorder, ifile_format
ambi2D_read_B "name", iorder (order <= 19)
kaz, kdist xy_to_ad kx, ky

AEP_udos.txt (any order integer or fractional)

a1 [, a2] ... [, a16] AEP_xyz asnd, korder, ifn, kx, ky, kz, kdistance
f ifn 0 64 -2 max_speaker_distance x1 y1 z1 x2 y2 z2 ...
a1 [, a2] ... [, a8] AEP asnd, korder, ifn, kazimuth, kelevation,
 kdistance (azimuth, elevation in degrees)
f ifn 0 64 -2 max_speaker_distance az1 el1 dist1 az2 el2 dist2 ...
 (azimuth, elevation in degrees)

ambi_utilities.txt

kdist dist kx, ky
kdist dist kx, ky, kz
ares Doppler asnd, kdistance
ares absorb asnd, kdistance
kx, ky, kz aed_to_xyz kazimuth, kelevation, kdistance
ix, iy, iz aed_to_xyz iazimuth, ielevation, idistance
a1 [, a2] ... [, a16] dist_corr a1 [, a2] ... [, a16], ifn
f ifn 0 32 -2 max_speaker_distance dist1, dist2, ... (distances in m)
irad radiani idegree
krad radian kdegree
arad radian adegree
idegree degreei irad
kdegree degree krad
adegree degree arad

	The reason has been touched in chapter 01C: The sound intensity is not proportional to the amplitude but to the squared amplitude.↩︎

	First described by Ville Pulkki in 1997: Ville Pulkki, Virtual source positioning using vector base amplitude panning, in: Journal of the Audio Engeneering Society, 45(6), 456-466↩︎

	Ville Pulkki, Uniform spreading of amplitude panned virtual sources, in: Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, Mohonk Montain House, New Paltz↩︎

	For instance www.ambisonic.net or www.icst.net/research/projects/ambisonics-theory↩︎

	 See www.csound.com/docs/manual/bformdec1.html for more details.↩︎

	 These files can be downloaded together with the entire examples (some of them for CsoundQt) from <(https://www.zhdk.ch/index.php?id=icst_ambisonicsudo>↩︎

 ch034.xhtml

05 C. FILTERS

Audio filters can range from devices that subtly shape the tonal characteristics of a sound to ones that dramatically remove whole portions of a sound spectrum to create new sounds. Csound includes several versions of each of the commonest types of filters and some more esoteric ones also. The full list of Csound’s standard filters can be found here. A list of the more specialised filters can be found here.

Lowpass Filters

The first type of filter encountered is normally the lowpass filter. As its name suggests it allows lower frequencies to pass through unimpeded and therefore filters higher frequencies. The crossover frequency is normally referred to as the cutoff frequency. Filters of this type do not really cut frequencies off at the cutoff point like a brick wall but instead attenuate increasingly according to a cutoff slope. Different filters offer cutoff slopes of different steepness. Another aspect of a lowpass filter that we may be concerned with is a ripple that might emerge at the cutoff point. If this is exaggerated intentionally it is referred to as resonance or Q.

In the following example, three lowpass filters filters are demonstrated: tone, butlp and moogladder. tone offers a quite gentle cutoff slope and therefore is better suited to subtle spectral enhancement tasks. butlp is based on the Butterworth filter design and produces a much sharper cutoff slope at the expense of a slightly greater CPU overhead. moogladder is an interpretation of an analogue filter found in a moog synthesizer – it includes a resonance control.

In the example a sawtooth waveform is played in turn through each filter. Each time the cutoff frequency is modulated using an envelope, starting high and descending low so that more and more of the spectral content of the sound is removed as the note progresses. A sawtooth waveform has been chosen as it contains strong higher frequencies and therefore demonstrates the filters characteristics well; a sine wave would be a poor choice of source sound on account of its lack of spectral richness.

EXAMPLE 05C01_tone_butlp_moogladder.csd

<CsoundSynthesizer>
<CsOptions>
-odac ; activates real time sound output
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

 instr 1
 prints "tone%n" ; indicate filter type in console
aSig vco2 0.5, 150 ; input signal is a sawtooth waveform
kcf expon 10000,p3,20 ; descending cutoff frequency
aSig tone aSig, kcf ; filter audio signal
 out aSig ; filtered audio sent to output
 endin

 instr 2
 prints "butlp%n" ; indicate filter type in console
aSig vco2 0.5, 150 ; input signal is a sawtooth waveform
kcf expon 10000,p3,20 ; descending cutoff frequency
aSig butlp aSig, kcf ; filter audio signal
 out aSig ; filtered audio sent to output
 endin

 instr 3
 prints "moogladder%n" ; indicate filter type in console
aSig vco2 0.5, 150 ; input signal is a sawtooth waveform
kcf expon 10000,p3,20 ; descending cutoff frequency
aSig moogladder aSig, kcf, 0.9 ; filter audio signal
 out aSig ; filtered audio sent to output
 endin

</CsInstruments>
<CsScore>
; 3 notes to demonstrate each filter in turn
i 1 0 3; tone
i 2 4 3; butlp
i 3 8 3; moogladder
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

Highpass Filters

A highpass filter is the converse of a lowpass filter; frequencies higher than the cutoff point are allowed to pass whilst those lower are attenuated. atone and buthp are the analogues of tone and butlp. Resonant highpass filters are harder to find but Csound has one in bqrez. bqrez is actually a multi-mode filter and could also be used as a resonant lowpass filter amongst other things. We can choose which mode we want by setting one of its input arguments appropriately. Resonant highpass is mode 1. In this example a sawtooth waveform is again played through each of the filters in turn but this time the cutoff frequency moves from low to high. Spectral content is increasingly removed but from the opposite spectral direction.

EXAMPLE 05C02_atone_buthp_bqrez.csd

<CsoundSynthesizer>
<CsOptions>
-odac ; activates real time sound output
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

 instr 1
 prints "atone%n" ; indicate filter type in console
aSig vco2 0.2, 150 ; input signal is a sawtooth waveform
kcf expon 20, p3, 20000 ; define envelope for cutoff frequency
aSig atone aSig, kcf ; filter audio signal
 out aSig ; filtered audio sent to output
 endin

 instr 2
 prints "buthp%n" ; indicate filter type in console
aSig vco2 0.2, 150 ; input signal is a sawtooth waveform
kcf expon 20, p3, 20000 ; define envelope for cutoff frequency
aSig buthp aSig, kcf ; filter audio signal
 out aSig ; filtered audio sent to output
 endin

 instr 3
 prints "bqrez(mode:1)%n" ; indicate filter type in console
aSig vco2 0.03, 150 ; input signal is a sawtooth waveform
kcf expon 20, p3, 20000 ; define envelope for cutoff frequency
aSig bqrez aSig, kcf, 30, 1 ; filter audio signal
 out aSig ; filtered audio sent to output
 endin

</CsInstruments>
<CsScore>
; 3 notes to demonstrate each filter in turn
i 1 0 3 ; atone
i 2 5 3 ; buthp
i 3 10 3 ; bqrez(mode 1)
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

Bandpass Filters

A bandpass filter allows just a narrow band of sound to pass through unimpeded and as such is a little bit like a combination of a lowpass and highpass filter connected in series. We normally expect at least one additional parameter of control: control over the width of the band of frequencies allowed to pass through, or bandwidth.

In the next example cutoff frequency and bandwidth are demonstrated independently for two different bandpass filters offered by Csound. First of all a sawtooth waveform is passed through a reson filter and a butbp filter in turn while the cutoff frequency rises (bandwidth remains static). Then pink noise is passed through reson and butbp in turn again but this time the cutoff frequency remains static at 5000Hz while the bandwidth expands from 8 to 5000Hz. In the latter two notes it will be heard how the resultant sound moves from almost a pure sine tone to unpitched noise. butbp is obviously the Butterworth based bandpass filter. reson can produce dramatic variations in amplitude depending on the bandwidth value and therefore some balancing of amplitude in the output signal may be necessary if out of range samples and distortion are to be avoided. Fortunately the opcode itself includes two modes of amplitude balancing built in but by default neither of these methods are active and in this case the use of the balance opcode may be required. Mode 1 seems to work well with spectrally sparse sounds like harmonic tones while mode 2 works well with spectrally dense sounds such as white or pink noise.

EXAMPLE 05C03_reson_butbp.csd

<CsoundSynthesizer>
<CsOptions>
-odac ; activates real time sound output
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

 instr 1
 prints "reson%n" ; indicate filter type in console
aSig vco2 0.5, 150 ; input signal: sawtooth waveform
kcf expon 20,p3,10000 ; rising cutoff frequency
aSig reson aSig,kcf,kcf*0.1,1 ; filter audio signal
 out aSig ; send filtered audio to output
 endin

 instr 2
 prints "butbp%n" ; indicate filter type in console
aSig vco2 0.5, 150 ; input signal: sawtooth waveform
kcf expon 20,p3,10000 ; rising cutoff frequency
aSig butbp aSig, kcf, kcf*0.1 ; filter audio signal
 out aSig ; send filtered audio to output
 endin

 instr 3
 prints "reson%n" ; indicate filter type in console
aSig pinkish 0.5 ; input signal: pink noise
kbw expon 10000,p3,8 ; contracting bandwidth
aSig reson aSig, 5000, kbw, 2 ; filter audio signal
 out aSig ; send filtered audio to output
 endin

 instr 4
 prints "butbp%n" ; indicate filter type in console
aSig pinkish 0.5 ; input signal: pink noise
kbw expon 10000,p3,8 ; contracting bandwidth
aSig butbp aSig, 5000, kbw ; filter audio signal
 out aSig ; send filtered audio to output
 endin

</CsInstruments>
<CsScore>
i 1 0 3 ; reson - cutoff frequency rising
i 2 4 3 ; butbp - cutoff frequency rising
i 3 8 6 ; reson - bandwidth increasing
i 4 15 6 ; butbp - bandwidth increasing
e
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

Comb Filtering

A comb filter is a special type of filter that creates a harmonically related stack of resonance peaks on an input sound file. A comb filter is really just a very short delay effect with feedback. Typically the delay times involved would be less than 0.05 seconds. Many of the comb filters documented in the Csound Manual term this delay time, loop time. The fundamental of the harmonic stack of resonances produced will be 1/loop time. Loop time and the frequencies of the resonance peaks will be inversely proportional – as loop time gets smaller, the frequencies rise. For a loop time of 0.02 seconds, the fundamental resonance peak will be 50Hz, the next peak 100Hz, the next 150Hz and so on. Feedback is normally implemented as reverb time – the time taken for amplitude to drop to 1/1000 of its original level or by 60dB. This use of reverb time as opposed to feedback alludes to the use of comb filters in the design of reverb algorithms. Negative reverb times will result in only the odd numbered partials of the harmonic stack being present.

The following example demonstrates a comb filter using the vcomb opcode. This opcode allows for performance time modulation of the loop time parameter. For the first 5 seconds of the demonstration the reverb time increases from 0.1 seconds to 2 while the loop time remains constant at 0.005 seconds. Then the loop time decreases to 0.0005 seconds over 6 seconds (the resonant peaks rise in frequency), finally over the course of 10 seconds the loop time rises to 0.1 seconds (the resonant peaks fall in frequency). A repeating noise impulse is used as a source sound to best demonstrate the qualities of a comb filter.

EXAMPLE 05C04_comb.csd

<CsoundSynthesizer>
<CsOptions>
-odac ;activates real time sound output
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

 instr 1
; -- generate an input audio signal (noise impulses) --
; repeating amplitude envelope:
kEnv loopseg 1,0, 0,1,0.005,1,0.0001,0,0.9949,0
aSig pinkish kEnv*0.6 ; pink noise pulses

; apply comb filter to input signal
krvt linseg 0.1, 5, 2 ; reverb time
alpt expseg 0.005,5,0.005,6,0.0005,10,0.1,1,0.1 ; loop time
aRes vcomb aSig, krvt, alpt, 0.1 ; comb filter
 out aRes ; audio to output
 endin

</CsInstruments>
<CsScore>
i 1 0 25
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

Other Filters Worth Investigating

In addition to a wealth of low and highpass filters, Csound offers several more unique filters. Multimode such as bqrez provide several different filter types within a single opcode. Filter type is normally chosen using an i-rate input argument that functions like a switch. Another multimode filter, clfilt, offers additional filter controls such as filter design and number of poles to create unusual sound filters. unfortunately some parts of this opcode are not implemented yet.

eqfil is essentially a parametric equaliser but multiple iterations could be used as modules in a graphic equaliser bank. In addition to the capabilities of eqfil, pareq adds the possibility of creating low and high shelving filtering which might prove useful in mastering or in spectral adjustment of more developed sounds.

rbjeq offers a quite comprehensive multimode filter including highpass, lowpass, bandpass, bandreject, peaking, low-shelving and high-shelving, all in a single opcode.

statevar offers the outputs from four filter types - highpass, lowpass, bandpass and bandreject - simultaneously so that the user can morph between them smoothly. svfilter does a similar thing but with just highpass, lowpass and bandpass filter types.

phaser1 and phaser2 offer algorithms containing chains of first order and second order allpass filters respectively. These algorithms could conceivably be built from individual allpass filters, but these ready-made versions provide convenience and added efficiency.

hilbert is a specialist IIR filter that implements the Hilbert transformer.

For those wishing to devise their own filter using coefficients Csound offers filter2 and zfilter2.

Filter Comparision

The following example shows a nice comparision between a number of common used filters.

EXAMPLE 05C05_filter_compar.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m128
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 64
nchnls = 2
0dbfs = 1

gaOut init 0
giSpb init 0.45

; Filter types
#define MOOG_LADDER #1#
#define MOOG_VCF #2#
#define LPF18 #3#
#define BQREZ #4#
#define CLFILT #5#
#define BUTTERLP #6#
#define LOWRES #7#
#define REZZY #8#
#define SVFILTER #9#
#define VLOWRES #10#
#define STATEVAR #11#
#define MVCLPF1 #12#
#define MVCLPF2 #13#
#define MVCLPF3 #14#

opcode Echo, 0, S
Smsg xin
 printf_i "\n%s\n\n", 1, Smsg
endop

opcode EchoFilterName, 0, i
iType xin

if iType == $MOOG_LADDER then
 Echo "moogladder"
elseif iType == $MOOG_VCF then
 Echo "moogvcf"
elseif iType == $LPF18 then
 Echo "lpf18"
elseif iType == $BQREZ then
 Echo "bqrez"
elseif iType == $CLFILT then
 Echo "clfilt"
elseif iType == $BUTTERLP then
 Echo "butterlp"
elseif iType == $LOWRES then
 Echo "lowres"
elseif iType == $REZZY then
 Echo "rezzy"
elseif iType == $SVFILTER then
 Echo "svfilter"
elseif iType == $VLOWRES then
 Echo "vlowres"
elseif iType == $STATEVAR then
 Echo "statevar"
elseif iType == $MVCLPF1 then
 Echo "mvclpf1"
elseif iType == $MVCLPF2 then
 Echo "mvclpf2"
elseif iType == $MVCLPF3 then
 Echo "mvclpf3"
else
endif
endop

opcode MultiFilter, a, akki
ain, kcfq, kres, iType xin

kType init iType
if kType == $MOOG_LADDER then
 aout moogladder ain, kcfq, kres
elseif kType == $MOOG_VCF then
 aout moogvcf ain, kcfq, kres
elseif kType == $LPF18 then
 aout lpf18 ain, kcfq, kres, 0.5
elseif kType == $BQREZ then
 aout bqrez ain, kcfq, 99 * kres + 1
elseif kType == $CLFILT then
 aout clfilt ain, kcfq, 0, 2
elseif kType == $BUTTERLP then
 aout butterlp ain, kcfq
elseif kType == $LOWRES then
 aout lowres ain, kcfq, kres
elseif kType == $REZZY then
 aout rezzy ain, kcfq, kres
elseif kType == $SVFILTER then
 aout, ahigh, aband svfilter ain, kcfq, (499 / 10) * kres + 1 ; rescale
elseif kType == $VLOWRES then
 aout vlowres ain, kcfq, kres, 2, 0
elseif kType == $STATEVAR then
 ahp, aout, abp, abr statevar ain, kcfq, kres
elseif kType == $MVCLPF1 then
 aout mvclpf1 ain, kcfq, kres
elseif kType == $MVCLPF2 then
 aout mvclpf2 ain, kcfq, kres
elseif kType == $MVCLPF3 then
 aout mvclpf3 ain, kcfq, kres
else
 aout = 0
endif
 xout aout
endop

opcode Wave, a, k
kcps xin

asqr vco2 1, kcps * 0.495, 10 ; square
asaw vco2 1, kcps * 1.005, 0 ; wave
 xout 0.5 * (asqr + asaw)
endop

opcode Filter, a, aiii
ain, iFilterType, iCoeff, iCps xin

iDivision = 1 / (iCoeff * giSpb)
kLfo loopseg iDivision, 0, 0, 0, 0.5, 1, 0.5, 0
iBase = iCps
iMod = iBase * 9

kcfq = iBase + iMod * kLfo
kres init 0.6

aout MultiFilter ain, kcfq, kres, iFilterType
aout balance aout, ain

 xout aout
endop

opcode Reverb, aa, aaii
adryL, adryR, ifeedback, imix xin
awetL, awetR reverbsc adryL, adryR, ifeedback, 10000

aoutL = (1 - imix) * adryL + imix * awetL
aoutR = (1 - imix) * adryR + imix * awetR

 xout aoutL, aoutR
endop

instr Bass
 iCoeff = p4
 iCps = p5
 iFilterType = p6

 aWave Wave iCps
 aOut Filter aWave, iFilterType, iCoeff, iCps
 aOut linen aOut, .01, p3, .1

 gaOut = gaOut + aOut
endin

opcode Note, 0, iiii
 idt = 2 * giSpb
 iNum, iCoeff, iPch, iFilterType xin
 event_i "i", "Bass", idt * iNum, idt, iCoeff, cpspch(iPch), iFilterType
endop

instr Notes
 iFilterType = p4
 EchoFilterName iFilterType

 Note 0, 2, 6.04, iFilterType
 Note 1, 1/3, 7.04, iFilterType
 Note 2, 2, 6.04, iFilterType
 Note 3, 1/1.5, 7.07, iFilterType

 Note 4, 2, 5.09, iFilterType
 Note 5, 1, 6.09, iFilterType
 Note 6, 1/1.5, 5.09, iFilterType
 Note 7, 1/3, 6.11, iFilterType

 Note 8, 1, 6.04, iFilterType
 Note 9, 1/3, 7.04, iFilterType
 Note 10, 2, 6.04, iFilterType
 Note 11, 1/1.5, 7.07, iFilterType

 Note 12, 2, 6.09, iFilterType
 Note 13, 1, 7.09, iFilterType
 Note 14, 1/1.5, 6.11, iFilterType
 Note 15, 1/3, 6.07, iFilterType

 Note 16, 2, 6.04, iFilterType
 Note 17, 1/3, 7.04, iFilterType
 Note 18, 2, 6.04, iFilterType
 Note 19, 1/1.5, 7.07, iFilterType

 turnoff
endin

opcode TrigNotes, 0, ii
iNum, iFilterType xin
idt = 20
 event_i "i", "Notes", idt * iNum, 0, iFilterType
endop

instr PlayAll
iMixLevel = p4
event_i "i", "Main", 0, (14 * 20), iMixLevel

TrigNotes 0, $MOOG_LADDER
TrigNotes 1, $MOOG_VCF
TrigNotes 2, $LPF18
TrigNotes 3, $BQREZ
TrigNotes 4, $CLFILT
TrigNotes 5, $BUTTERLP
TrigNotes 6, $LOWRES
TrigNotes 7, $REZZY
TrigNotes 8, $SVFILTER
TrigNotes 9, $VLOWRES
TrigNotes 10, $STATEVAR
TrigNotes 11, $MVCLPF1
TrigNotes 12, $MVCLPF2
TrigNotes 13, $MVCLPF3

turnoff
endin

opcode DumpNotes, 0, iiSi
iNum, iFilterType, SFile, iMixLevel xin
idt = 20
Sstr sprintf {{i "%s" %f %f "%s" %f}}, "Dump", idt*iNum, idt, SFile, iMixLevel
 scoreline_i Sstr
 event_i "i", "Notes", idt * iNum, 0, iFilterType
endop

instr DumpAll
iMixLevel = p4

DumpNotes 0, $MOOG_LADDER, "moogladder-dubstep.wav", iMixLevel
DumpNotes 1, $MOOG_VCF, "moogvcf-dubstep.wav", iMixLevel
DumpNotes 2, $LPF18 , "lpf18-dubstep.wav", iMixLevel
DumpNotes 3, $BQREZ, "bqrez-dubstep.wav", iMixLevel
DumpNotes 4, $CLFILT, "clfilt-dubstep.wav", iMixLevel
DumpNotes 5, $BUTTERLP, "butterlp-dubstep.wav", iMixLevel
DumpNotes 6, $LOWRES, "lowres-dubstep.wav", iMixLevel
DumpNotes 7, $REZZY, "rezzy-dubstep.wav", iMixLevel
DumpNotes 8, $SVFILTER, "svfilter-dubstep.wav", iMixLevel
DumpNotes 9, $VLOWRES , "vlowres-dubstep.wav", iMixLevel
DumpNotes 10, $STATEVAR, "statevar-dubstep.wav", iMixLevel
DumpNotes 11, $MVCLPF1 , "mvclpf1-dubstep.wav", iMixLevel
DumpNotes 12, $MVCLPF2 , "mvclpf2-dubstep.wav", iMixLevel
DumpNotes 13, $MVCLPF3 , "mvclpf3-dubstep.wav", iMixLevel

turnoff
endin

instr Dump
SFile = p4
iMixLevel = p5

iVolume = 0.2
iReverbFeedback = 0.85

aoutL, aoutR Reverb gaOut, gaOut, iReverbFeedback, iMixLevel
fout SFile, 14, (iVolume * aoutL), (iVolume * aoutR)
endin

instr Main
iVolume = 0.2
iReverbFeedback = 0.3
iMixLevel = p4

aoutL, aoutR Reverb gaOut, gaOut, iReverbFeedback, iMixLevel
outs (iVolume * aoutL), (iVolume * aoutR)

gaOut = 0
endin

</CsInstruments>
<CsScore>
; the fourth parameter is a reverb mix level
i "PlayAll" 0 1 0.35
; uncomment to save output to wav files
;i "DumpAll" 0 1 0.35
</CsScore>
</CsoundSynthesizer>
;example by Anton Kholomiov
;based on the Jacob Joaquin wobble bass sound

 ch035.xhtml

05 D. DELAY AND FEEDBACK

A delay in DSP is a special kind of buffer, sometimes called a circular buffer. The length of this buffer is finite and must be declared upon initialization as it is stored in RAM. One way to think of the circular buffer is that as new items are added at the beginning of the buffer the oldest items at the end of the buffer are being “shoved” out.

Besides their typical application for creating echo effects, delays can also be used to implement chorus, flanging, pitch shifting and filtering effects.

Csound offers many opcodes for implementing delays. Some of these offer varying degrees of quality - often balanced against varying degrees of efficiency whilst some are for quite specialized purposes.

Basic Delay Line Read-Write Unit

To begin with, this section is going to focus upon a pair of opcodes, delayr and delayw. Whilst not the most efficient to use in terms of the number of lines of code required, the use of delayr and delayw helps to clearly illustrate how a delay buffer works. Besides this, delayr and delayw actually offer a lot more flexibility and versatility than many of the other delay opcodes.

When using delayr and delayw the establishement of a delay buffer is broken down into two steps: reading from the end of the buffer using delayr (and by doing this defining the length or duration of the buffer) and then writing into the beginning of the buffer using delayw.

The code employed might look like this:

aSigOut delayr 1
 delayw aSigIn

where aSigIn is the input signal written into the beginning of the buffer and aSigOut is the output signal read from the end of the buffer. The fact that we declare reading from the buffer before writing to it is sometimes initially confusing but, as alluded to before, one reason this is done is to declare the length of the buffer. The buffer length in this case is 1 second and this will be the apparent time delay between the input audio signal and audio read from the end of the buffer.

The following example implements the delay described above in a .csd file. An input sound of sparse sine tone pulses is created. This is written into the delay buffer from which a new audio signal is created by read from the end of this buffer. The input signal (sometimes referred to as the dry signal) and the delay output signal (sometimes referred to as the wet signal) are mixed and set to the output. The delayed signal is attenuated with respect to the input signal.

EXAMPLE 05D01_delay.csd

<CsoundSynthesizer>
<CsOptions>
-odac ; activates real time sound output
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1
; -- create an input signal: short 'blip' sounds --
kEnv loopseg 0.5, 0, 0, 0,0.0005, 1 , 0.1, 0, 1.9, 0, 0
kCps randomh 400, 600, 0.5
aEnv interp kEnv
aSig poscil aEnv, kCps

; -- create a delay buffer --
aBufOut delayr 0.3
 delayw aSig

; -- send audio to output (input and output to the buffer are mixed)
aOut = aSig + (aBufOut*0.4)
 out aOut/2, aOut/2
 endin

</CsInstruments>
<CsScore>
i 1 0 25
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

Delay with Feedback

If we mix some of the delayed signal into the input signal that is written into the buffer then we will delay some of the delayed signal thus creating more than a single echo from each input sound. Typically the sound that is fed back into the delay input is attenuated, so that sound cycles through the buffer indefinitely but instead will eventually die away. We can attenuate the feedback signal by multiplying it by a value in the range zero to 1. The rapidity with which echoes will die away is defined by how close to zero this value is. The following example implements a simple delay with feedback.

EXAMPLE 05D02_delay_feedback.csd

<CsoundSynthesizer>
<CsOptions>
-odac ;activates real time sound output
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1
; -- create an input signal: short 'blip' sounds --
kEnv loopseg 0.5,0,0,0,0.0005,1,0.1,0,1.9,0,0 ; repeating envelope
kCps randomh 400, 600, 0.5 ; 'held' random values
aEnv interp kEnv ; a-rate envelope
aSig poscil aEnv, kCps ; generate audio

; -- create a delay buffer --
iFdback = 0.7 ; feedback ratio
aBufOut delayr 0.3 ; read audio from end of buffer
; write audio into buffer (mix in feedback signal)
 delayw aSig+(aBufOut*iFdback)

; send audio to output (mix the input signal with the delayed signal)
aOut = aSig + (aBufOut*0.4)
 out aOut/2, aOut/2
 endin

</CsInstruments>
<CsScore>
i 1 0 25
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

An alternative for implementing a simple delay-feedback line in Csound would be to use the delay opcode. This is the same example done in this way:

EXAMPLE 05D03_delay_feedback_2.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1
kEnv loopseg 0.5,0,0,0,0.0005,1,0.1,0,1.9,0,0
kCps randomh 400, 600, 0.5
aSig poscil a(kEnv), kCps

iFdback = 0.7 ; feedback ratio
aDelay init 0 ; initialize delayed signal
aDelay delay aSig+(aDelay*iFdback), .3 ;delay 0.3 seconds

aOut = aSig + (aDelay*0.4)
 out aOut/2, aOut/2
 endin

</CsInstruments>
<CsScore>
i 1 0 25
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy and joachim heintz

Tap Delay Line

Constructing a delay effect in this way is rather limited as the delay time is static. If we want to change the delay time we need to reinitialise the code that implements the delay buffer. A more flexible approach is to read audio from within the buffer using one of Csounds opcodes for tapping a delay buffer, deltap, deltapi, deltap3 or deltapx. The opcodes are listed in order of increasing quality which also reflects an increase in computational expense. In the next example a delay tap is inserted within the delay buffer (between the delayr and the delayw opcodes). As our delay time is modulating quite quickly we will use deltapi which uses linear interpolation as it rebuilds the audio signal whenever the delay time is moving. Note that this time we are not using the audio output from the delayr opcode as we are using the audio output from deltapi instead. The delay time used by deltapi is created by randomi which creates a random function of straight line segments. A-rate is used for the delay time to improve the accuracy of its values, use of k-rate would result in a noticeably poorer sound quality. You will notice that as well as modulating the time gap between echoes, this example also modulates the pitch of the echoes – if the delay tap is static within the buffer there would be no change in pitch, if it is moving towards the beginning of the buffer then pitch will rise and if it is moving towards the end of the buffer then pitch will drop. This side effect has led to digital delay buffers being used in the design of many pitch shifting effects.

The user must take care that the delay time demanded from the delay tap does not exceed the length of the buffer as defined in the delayr line. If it does it will attempt to read data beyond the end of the RAM buffer – the results of this are unpredictable. The user must also take care that the delay time does not go below zero, in fact the minumum delay time that will be permissible will be the duration of one k cycle (ksmps/sr).

EXAMPLE 05D04_deltapi.csd

<CsoundSynthesizer>
<CsOptions>
-odac ; activates real time sound output
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1
; -- create an input signal: short 'blip' sounds --
kEnv loopseg 0.5,0,0,0,0.0005,1,0.1,0,1.9,0,0
aEnv interp kEnv
aSig poscil aEnv, 500

aDelayTime randomi 0.05, 0.2, 1 ; modulating delay time
; -- create a delay buffer --
aBufOut delayr 0.2 ; read audio from end of buffer
aTap deltapi aDelayTime ; 'tap' the delay buffer
 delayw aSig + (aTap*0.9) ; write audio into buffer

; send audio to the output (mix the input signal with the delayed signal)
aOut linen aSig + (aTap*0.4), .1, p3, 1
 out aOut/2, aOut/2
 endin

</CsInstruments>
<CsScore>
i 1 0 30
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

We are not limited to inserting only a single delay tap within the buffer. If we add further taps we create what is known as a multi-tap delay. The following example implements a multi-tap delay with three delay taps. Note that only the final delay (the one closest to the end of the buffer) is fed back into the input in order to create feedback but all three taps are mixed and sent to the output. There is no reason not to experiment with arrangements other than this, but this one is most typical.

EXAMPLE 05D05_multi-tap_delay.csd

<CsoundSynthesizer>
<CsOptions>
-odac ; activates real time sound output
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1
; -- create an input signal: short 'blip' sounds --
kEnv loopseg 0.5,0,0,0,0.0005,1,0.1,0,1.9,0,0; repeating envelope
kCps randomh 400, 1000, 0.5 ; 'held' random values
aEnv interp kEnv ; a-rate envelope
aSig poscil aEnv, kCps ; generate audio

; -- create a delay buffer --
aBufOut delayr 0.5 ; read audio end buffer
aTap1 deltap 0.1373 ; delay tap 1
aTap2 deltap 0.2197 ; delay tap 2
aTap3 deltap 0.4139 ; delay tap 3
 delayw aSig + (aTap3*0.4) ; write audio into buffer

; send audio to the output (mix the input signal with the delayed signals)
aOut linen aSig + ((aTap1+aTap2+aTap3)*0.4), .1, p3, 1
 out aOut/2, aOut/2
 endin

</CsInstruments>
<CsScore>
i 1 0 25
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

Flanger

As mentioned at the top of this section many familiar effects are actually created from using delay buffers in various ways. We will briefly look at one of these effects: the flanger. Flanging derives from a phenomenon which occurs when the delay time becomes so short that we begin to no longer perceive individual echoes. Instead a stack of harmonically related resonances are perceived whichs frequencies are in simple ratio with 1/delay_time. This effect is known as a comb filter and is explained in the previous chapter. When the delay time is slowly modulated and the resonances shifting up and down in sympathy the effect becomes known as a flanger. In this example the delay time of the flanger is modulated using an LFO that employs an U-shaped parabola as its waveform as this seems to provide the smoothest comb filter modulations.

EXAMPLE 05D06_flanger.csd

<CsoundSynthesizer>
<CsOptions>
-odac ; activates real time sound output
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giLFOShape ftgen 0, 0, 2^12, 19, 0.5, 1, 180, 1 ; u-shaped parabola

 instr 1
aSig pinkish 0.1 ; pink noise

aMod poscil 0.005, 0.05, giLFOShape ; delay time LFO
iOffset = ksmps/sr ; minimum delay time
kFdback linseg 0.8,(p3/2)-0.5,0.95,1,-0.95 ; feedback

; -- create a delay buffer --
aBufOut delayr 0.5 ; read audio from end buffer
aTap deltap3 aMod + iOffset ; tap audio from within buffer
 delayw aSig + (aTap*kFdback) ; write audio into buffer

; send audio to the output (mix the input signal with the delayed signal)
aOut linen (aSig + aTap)/2, .1, p3, 1
 out aOut, aOut
 endin

</CsInstruments>
<CsScore>
i 1 0 25
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

As alternative to using the deltap group of opcodes, Csound provides opcodes which start with vdel (for variable delay line). They establish one single delay line per opcode. This may be easier to write for one or few taps, whereas for a large number of taps the method which has been described in the previous examples is preferable.

Basically all these opcode have three main arguments: 1. The audio input signal. 2. The delay time as audio signal. 3. The maximum possible delay time.

Some caution must be given to the unit in argument 2 and 3: vdelay and vdelay3 use milliseconds here, whereas vdelayx uses seconds (as nearly every other opcode in Csound).

This is an identical version of the previous flanger example which uses vdelayx instead of deltap3. The vdelayx opcode has an additional parameter which allows the user to set the number of samples to be used for interpolation between 4 and 1024. The higher the number, the better the quality, requiring yet more rendering power.

EXAMPLE 05D07_flanger_2.csd

<CsoundSynthesizer>
<CsOptions>
-odac ; activates real time sound output
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giLFOShape ftgen 0, 0, 2^12, 19, 0.5, 1, 180, 1

 instr 1
aSig pinkish 0.1

aMod poscil 0.005, 0.05, giLFOShape
iOffset = ksmps/sr
kFdback linseg 0.8,(p3/2)-0.5,0.95,1,-0.95

aDelay init 0
aDelay vdelayx aSig+aDelay*kFdback, aMod+iOffset, 0.5, 128

aOut linen (aSig+aDelay)/2, .1, p3, 1
 out aOut, aOut
 endin

</CsInstruments>
<CsScore>
i 1 0 25
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy and joachim heintz

Custom Delay Line

As an advanced insight into sample-by-sample processing in Csound, we end here with an intruiging example by Steven Yi (showed on the Csound mailing list 2019/12/11). It demonstrates how a delay line can be created as Csound array which is written and read as circular buffer. Here are some comments:

	Line 15: The array is created with the size delay-time times sample-rate, in our case 0.25 * 44100 = 11025. So 11025 samples can be stored in this array.

	Line 16-17: The read pointer kread_ptr is set to the second element (index=1), the write pointer kwrite_ptr is set to the first element (index=0) at beginning.

	Line 19-20: The audio signal as input for the delay line — it can be anything.

	Line 22-23, 30-31: The while loop iterates through each sample of the audio vector: from kindx=0 to kindx=31 if ksmps is 32.

	Line 24: Each element of the audio vector is copied into the appropriate position of the array. At the beginning, the first element of the audio vector is copied to position 0, the second element to position 1, and so on.

	Line 25: The element in the array to which the read index "kread_ptr* points is copied to the appropriate element of the delayed audio signal. As kread_ptr starts with 1 (not 0), at first it can only copy zeros.

	Line 27-28: Both pointers are incremented by one and then the modulo is taken. This ensures that the array is not read or written beyond its boundaries, but used as a circular buffer.

<CsoundSynthesizer>
<CsOptions>
-odac ; activates real time sound output
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr CustomDelayLine

 ;; 0.25 second delay
 idel_size = 0.25 * sr
 kdelay_line[] init idel_size
 kread_ptr init 1
 kwrite_ptr init 0

 asig = vco2(0.3, 220 * (1 + int(lfo:k(3, 2, 2))) * expon(1, p3, 4), 10)
 asig = zdf_ladder(asig, 2000, 4)

 kindx = 0
 while (kindx < ksmps) do
 kdelay_line[kwrite_ptr] = asig[kindx]
 adel[kindx] = kdelay_line[kread_ptr]

 kwrite_ptr = (kwrite_ptr + 1) % idel_size
 kread_ptr = (kread_ptr + 1) % idel_size

 kindx += 1
 od

 out(linen:a(asig,0,p3,1),linen:a(adel,0,p3,1))

endin

</CsInstruments>
<CsScore>
i "CustomDelayLine" 0 10
</CsScore>
</CsoundSynthesizer>
;example by Steven Yi

 ch036.xhtml

05 E. REVERBERATION

Reverb is the effect a room or space has on a sound where the sound we perceive is a mixture of the direct sound and the dense overlapping echoes of that sound reflecting off walls and objects within the space.

Csound’s earliest reverb opcodes are reverb and nreverb. By today’s standards they sound rather crude and as a consequence modern Csound users tend to prefer the more recent opcodes freeverb and reverbsc.

The typical way to use a reverb is to run as a effect throughout the entire Csound performance and to send it audio from other instruments to which it adds reverb. This is more efficient than initiating a new reverb effect for every note that is played. This arrangement is a reflection of how a reverb effect would be used with a mixing desk in a conventional studio. There are several methods of sending audio from sound producing instruments to the reverb instrument, three of which will be introduced in the coming examples

The first method uses Csound’s global variables, so that an audio variable created in one instrument can be read in another instrument. There are several points to highlight here. First the global audio variable that is used to send audio to the reverb instrument is initialized to zero (silence) in the header area of the orchestra.

This is done so that if no sound generating instruments are playing at the beginning of the performance this variable still exists and has a value. An error would result otherwise and Csound would not run. When audio is written into this variable in the sound generating instrument it is added to the current value of the global variable.

This is done in order to permit polyphony and so that the state of this variable created by other sound producing instruments is not overwritten. Finally it is important that the global variable is cleared (assigned a value of zero) when it is finished with at the end of the reverb instrument. If this were not done then the variable would quickly explode (get astronomically high) as all previous instruments are merely adding values to it rather that redeclaring it. Clearing could be done simply by setting to zero but the clear opcode might prove useful in the future as it provides us with the opportunity to clear many variables simultaneously.

This example uses the freeverb opcode and is based on a plugin of the same name. Freeverb has a smooth reverberant tail and is perhaps similar in sound to a plate reverb. It provides us with two main parameters of control: room size which is essentially a control of the amount of internal feedback and therefore reverb time, and high frequency damping which controls the amount of attenuation of high frequencies. Both these parameters should be set within the range 0 to 1. For room size a value of zero results in a very short reverb and a value of 1 results in a very long reverb. For high frequency damping a value of zero provides minimum damping of higher frequencies giving the impression of a space with hard walls, a value of 1 provides maximum high frequency damping thereby giving the impression of a space with soft surfaces such as thick carpets and heavy curtains.

EXAMPLE 05E01_freeverb.csd

<CsoundSynthesizer>
<CsOptions>
-odac ; activates real time sound output
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

gaRvbSend init 0 ; global audio variable initialized to zero

 instr 1 ; sound generating instrument (sparse noise bursts)
kEnv loopseg 0.5,0,0,1,0.003,1,0.0001,0,0.9969,0,0; amp. env.
aSig pinkish kEnv ; noise pulses
 outs aSig, aSig ; audio to outs
iRvbSendAmt = 0.8 ; reverb send amount (0 - 1)
;add some of the audio from this instrument to the global reverb send variable
gaRvbSend = gaRvbSend + (aSig * iRvbSendAmt)
 endin

 instr 5 ; reverb - always on
kroomsize init 0.85 ; room size (range 0 to 1)
kHFDamp init 0.5 ; high freq. damping (range 0 to 1)
; create reverberated version of input signal (note stereo input and output)
aRvbL,aRvbR freeverb gaRvbSend, gaRvbSend,kroomsize,kHFDamp
 outs aRvbL, aRvbR ; send audio to outputs
 clear gaRvbSend ; clear global audio variable
 endin

</CsInstruments>
<CsScore>
i 1 0 300 ; noise pulses (input sound)
i 5 0 300 ; start reverb
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

The second method uses Csound’s zak patching system to send audio from one instrument to another. The zak system is a little like a patch bay you might find in a recording studio. Zak channels can be a, k or i-rate. These channels will be addressed using numbers so it will be important to keep track of what each numbered channel is used for. Our example will be very simple in that we will only be using one zak audio channel. Before using any of the zak opcodes for reading and writing data we must initialize zak storage space. This is done in the orchestra header area using the zakinit opcode. This opcode initializes both a and k rate channels; we must intialize at least one of each even if we don’t require both.

zakinit 1, 1

The audio from the sound generating instrument is mixed into a zak audio channel the zawm opcode like this:

zawm aSig * iRvbSendAmt, 1

This channel is read from in the reverb instrument using the zar opcode like this:

aInSig zar 1

Because audio is begin mixed into our zak channel but it is never redefined (only mixed into) it needs to be cleared after we have finished with it. This is accomplished at the bottom of the reverb instrument using the zacl opcode like this:

zacl 0, 1

This example uses the reverbsc opcode. It too has a stereo input and output. The arguments that define its character are feedback level and cutoff frequency. Feedback level should be in the range zero to 1 and controls reverb time. Cutoff frequency should be within the range of human hearing (20Hz -20kHz) and less than the Nyqvist frequency (sr/2) - it controls the cutoff frequencies of low pass filters within the algorithm.

EXAMPLE 05E02_reverbsc.csd

<CsoundSynthesizer>
<CsOptions>
-odac ; activates real time sound output
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

; initialize zak space - one a-rate and one k-rate variable.
; We will only be using the a-rate variable.
 zakinit 1, 1

 instr 1 ; sound generating instrument - sparse noise bursts
kEnv loopseg 0.5,0, 0,1,0.003,1,0.0001,0,0.9969,0,0; amp. env.
aSig pinkish kEnv ; pink noise pulses
 outs aSig, aSig ; send audio to outputs
iRvbSendAmt = 0.8 ; reverb send amount (0 - 1)
; write to zak audio channel 1 with mixing
 zawm aSig*iRvbSendAmt, 1
 endin

 instr 5 ; reverb - always on
aInSig zar 1 ; read first zak audio channel
kFblvl init 0.88 ; feedback level - i.e. reverb time
kFco init 8000 ; cutoff freq. of a filter within the reverb
; create reverberated version of input signal (note stereo input and output)
aRvbL,aRvbR reverbsc aInSig, aInSig, kFblvl, kFco
 outs aRvbL, aRvbR ; send audio to outputs
 zacl 0, 1 ; clear zak audio channels
 endin

</CsInstruments>
<CsScore>
i 1 0 10 ; noise pulses (input sound)
i 5 0 12 ; start reverb
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

reverbsc contains a mechanism to modulate delay times internally which has the effect of harmonically blurring sounds the longer they are reverberated. This contrasts with freeverb’s rather static reverberant tail. On the other hand reverbsc’s tail is not as smooth as that of freeverb, inidividual echoes are sometimes discernible so it may not be as well suited to the reverberation of percussive sounds. Also be aware that as well as reducing the reverb time, the feedback level parameter reduces the overall amplitude of the effect to the point where a setting of 1 will result in silence from the opcode.

As third method, a more recent option for sending sound from instrument to instrument in Csound is to use the chn… opcodes. These opcodes can also be used to allow Csound to interface with external programs using the software bus and the Csound API.

EXAMPLE 05E03_reverb_with_chn.csd

<CsoundSynthesizer>
<CsOptions>
-odac ; activates real time sound output
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1 ; sound generating instrument - sparse noise bursts
kEnv loopseg 0.5,0, 0,1,0.003,1,0.0001,0,0.9969,0,0 ; amp. envelope
aSig pinkish kEnv ; noise pulses
 outs aSig, aSig ; audio to outs
iRvbSendAmt = 0.4 ; reverb send amount (0 - 1)
;write audio into the named software channel:
 chnmix aSig*iRvbSendAmt, "ReverbSend"
 endin

 instr 5 ; reverb (always on)
aInSig chnget "ReverbSend" ; read audio from the named channel
kTime init 4 ; reverb time
kHDif init 0.5 ; 'high frequency diffusion' (0 - 1)
aRvb nreverb aInSig, kTime, kHDif ; create reverb signal
outs aRvb, aRvb ; send audio to outputs
 chnclear "ReverbSend" ; clear the named channel
endin

</CsInstruments>
<CsScore>
i 1 0 10 ; noise pulses (input sound)
i 5 0 12 ; start reverb
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

The Schroeder Reverb Design

Many reverb algorithms including Csound’s freeverb, reverb and nreverb are based on what is known as the Schroeder reverb design. This was a design proposed in the early 1960s by the physicist Manfred Schroeder. In the Schroeder reverb a signal is passed into four parallel comb filters the outputs of which are summed and then passed through two allpass filters as shown in the diagram below. Essentially the comb filters provide the body of the reverb effect and the allpass filters smear their resultant sound to reduce ringing artefacts the comb filters might produce. More modern designs might extent the number of filters used in an attempt to create smoother results. The freeverb opcode employs eight parallel comb filters followed by four series allpass filters on each channel. The two main indicators of poor implementations of the Schoeder reverb are individual echoes being excessively apparent and ringing artefacts. The results produced by the freeverb opcode are very smooth but a criticism might be that it is lacking in character and is more suggestive of a plate reverb than of a real room.

The next example implements the basic Schroeder reverb with four parallel comb filters followed by three series allpass filters. This also proves a useful exercise in routing audio signals within Csound. Perhaps the most crucial element of the Schroeder reverb is the choice of loop times for the comb and allpass filters – careful choices here should obviate the undesirable artefacts mentioned in the previous paragraph. If loop times are too long individual echoes will become apparent, if they are too short the characteristic ringing of comb filters will become apparent. If loop times between filters differ too much the outputs from the various filters will not fuse. It is also important that the loop times are prime numbers so that echoes between different filters do not reinforce each other. It may also be necessary to adjust loop times when implementing very short reverbs or very long reverbs. The duration of the reverb is effectively determined by the reverb times for the comb filters. There is certainly scope for experimentation with the design of this example and exploration of settings other than the ones suggested here.

This example consists of five instruments. The fifth instrument implements the reverb algorithm described above. The first four instruments act as a kind of generative drum machine to provide source material for the reverb. Generally sharp percussive sounds provide the sternest test of a reverb effect. Instrument 1 triggers the various synthesized drum sounds (bass drum, snare and closed hi-hat) produced by instruments 2 to 4.

EXAMPLE 05E04_schroeder_reverb.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m128
; activate real time sound output and suppress note printing
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 1
nchnls = 2
0dbfs = 1

giSine ftgen 0, 0, 2^12, 10, 1 ; a sine wave
gaRvbSend init 0 ; global audio variable initialized
giRvbSendAmt init 0.4 ; reverb send amount (range 0 - 1)

 instr 1 ; trigger drum hits
ktrigger metro 5 ; rate of drum strikes
kdrum random 2, 4.999 ; randomly choose which drum to hit
 schedkwhen ktrigger, 0, 0, kdrum, 0, 0.1 ; strike a drum
 endin

 instr 2 ; sound 1 - bass drum
iamp random 0, 0.5 ; amplitude randomly chosen
p3 = 0.2 ; define duration for this sound
aenv line 1,p3,0.001 ; amplitude envelope (percussive)
icps exprand 30 ; cycles-per-second offset
kcps expon icps+120,p3,20 ; pitch glissando
aSig oscil aenv*0.5*iamp,kcps,giSine ; oscillator
 outs aSig, aSig ; send audio to outputs
gaRvbSend = gaRvbSend + (aSig * giRvbSendAmt) ; add to send
 endin

 instr 3 ; sound 3 - snare
iAmp random 0, 0.5 ; amplitude randomly chosen
p3 = 0.3 ; define duration
aEnv expon 1, p3, 0.001 ; amp. envelope (percussive)
aNse noise 1, 0 ; create noise component
iCps exprand 20 ; cps offset
kCps expon 250 + iCps, p3, 200+iCps; create tone component gliss
aJit randomi 0.2, 1.8, 10000 ; jitter on freq.
aTne oscil aEnv, kCps*aJit, giSine ; create tone component
aSig sum aNse*0.1, aTne ; mix noise and tone components
aRes comb aSig, 0.02, 0.0035 ; comb creates a 'ring'
aSig = aRes * aEnv * iAmp ; apply env. and amp. factor
 outs aSig, aSig ; send audio to outputs
gaRvbSend = gaRvbSend + (aSig * giRvbSendAmt); add to send
 endin

 instr 4 ; sound 4 - closed hi-hat
iAmp random 0, 1.5 ; amplitude randomly chosen
p3 = 0.1 ; define duration for this sound
aEnv expon 1,p3,0.001 ; amplitude envelope (percussive)
aSig noise aEnv, 0 ; create sound for closed hi-hat
aSig buthp aSig*0.5*iAmp, 12000 ; highpass filter sound
aSig buthp aSig, 12000 ; -and again to sharpen cutoff
 outs aSig, aSig ; send audio to outputs
gaRvbSend = gaRvbSend + (aSig * giRvbSendAmt) ; add to send
 endin

 instr 5 ; schroeder reverb - always on
; read in variables from the score
kRvt = p4
kMix = p5

; print some information about current settings gleaned from the score
 prints "Type:"
 prints p6
 prints "\\nReverb Time:%2.1f\\nDry/Wet Mix:%2.1f\\n\\n",p4,p5

; four parallel comb filters
a1 comb gaRvbSend, kRvt, 0.0297; comb filter 1
a2 comb gaRvbSend, kRvt, 0.0371; comb filter 2
a3 comb gaRvbSend, kRvt, 0.0411; comb filter 3
a4 comb gaRvbSend, kRvt, 0.0437; comb filter 4
asum sum a1,a2,a3,a4 ; sum (mix) the outputs of all comb filters

; two allpass filters in series
a5 alpass asum, 0.1, 0.005 ; send mix through first allpass filter
aOut alpass a5, 0.1, 0.02291 ; send 1st allpass through 2nd allpass

amix ntrpol gaRvbSend, aOut, kMix ; create a dry/wet mix
 outs amix, amix ; send audio to outputs
 clear gaRvbSend ; clear global audio variable
 endin

</CsInstruments>
<CsScore>
; room reverb
i 1 0 10 ; start drum machine trigger instr
i 5 0 11 1 0.5 "Room Reverb" ; start reverb

; tight ambience
i 1 11 10 ; start drum machine trigger instr
i 5 11 11 0.3 0.9 "Tight Ambience" ; start reverb

; long reverb (low in the mix)
i 1 22 10 ; start drum machine
i 5 22 15 5 0.1 "Long Reverb (Low In the Mix)" ; start reverb

; very long reverb (high in the mix)
i 1 37 10 ; start drum machine
i 5 37 25 8 0.9 "Very Long Reverb (High in the Mix)" ; start reverb
e
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

This chapter has introduced some of the more recent Csound opcodes for delay-line based reverb algorithms which in most situations can be used to provide high quality and efficient reverberation. Convolution offers a whole new approach for the creation of realistic reverbs that imitate actual spaces - this technique is demonstrated in the Convolution chapter.

 ch037.xhtml

05 F. AM / RM / WAVESHAPING

An introduction as well as some background theory of amplitude modulation, ring modulation and waveshaping is given in chapters 04 C and 04 E. As all of these techniques merely modulate the amplitude of a signal in a variety of ways, they can also be used for the modification of non-synthesized sound. In this chapter we will explore amplitude modulation, ring modulation and waveshaping as applied to non-synthesized sound.1

AMPLITUDE AND RING MODULATION

As shown in chapter 04 C, ring modulation in digital domain can be implemented as multiplication of a carrier audio signal with a modulator signal. If adapted to the modification of samples or live input, the carrier signal now changes to a playback unit or a microphone. The modulator usually remains a sine oscillator.

The spectrum of the carrier sound is shifted by plus and minus the modulator frequency. As this is happening for each part of the spectrum, the source sound often seems to loose its center. A piano sound easily becomes bell-like, and a voice can become gnomic.

In the following example, first three static modulating frequencies are applied. As the voice itself has a somehow floating pitch, we already hear an always moving artificial speactrum component. This effect is emphasized in the second instrument which applies a random glissando for the modulating frequency. If the random movements are slow (first with 1 Hz, then 10 Hz), the pitch movements are still recognizable. If they are fast (100 Hz in the last call), the sound becomes noisy.

EXAMPLE 05F01_RM_modification.csd

<CsoundSynthesizer>
<CsOptions>
-o dac --env:SSDIR+=../SourceMaterials
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr RM_static
aMod poscil 1, p4
aCar diskin "fox.wav"
aRM = aMod * aCar
 out aRM, aRM
endin

instr RM_moving
aMod poscil 1, randomi:k(400,1000,p4,3)
aCar diskin "fox.wav"
aRM = aMod * aCar
 out aRM, aRM
endin

</CsInstruments>
<CsScore>
i "RM_static" 0 3 400
i . + . 800
i . + . 1600
i "RM_moving" 10 3 1
i . + . 10
i . + . 100
</CsScore>
</CsoundSynthesizer>
;written by Alex Hofmann and joachim heintz

In instrument RM_static, the fourth parameter of the score line (p4) directly yields the frequency of the modulator. In instrument RM_moving, this frequency is a random movement between 400 and 1000 Hz, and p4 here yields the rate in which new random values are generated.

For amplitude modulation, a constant part - the DC offset - is added to the modulating signal. The result is a mixture of unchanged and ring modulated sound, in different weights. The most simple way to implement this is to add a part of the source signal to the ring modulated signal.

WAVESHAPING

In chapter 04E waveshaping has been described as a method of applying a transfer function to an incoming signal. It has been discussed that the table which stores the transfer function must be read with an interpolating table reader to avoid degradation of the signal. On the other hand, degradation can be a nice thing for sound modification. So let us start with this branch here.

Bit Depth Reduction

If the transfer function itself is linear, but the table of the function is small, and no interpolation is applied to the amplitude as index to the table, in effect the bit depth is reduced. For a function table of size 4, a line becomes a staircase:

Bit Depth = high

Bit Depth = 2

This is the sounding result:

EXAMPLE 05F02_Wvshp_bit_crunch.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giTrnsFnc ftgen 0, 0, 4, -7, -1, 3, 1

instr 1
aAmp soundin "fox.wav"
aIndx = (aAmp + 1) / 2
aWavShp table aIndx, giTrnsFnc, 1
 out aWavShp, aWavShp
endin

</CsInstruments>
<CsScore>
i 1 0 2.767
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Transformation and Distortion

In general, the transformation of sound in applying waveshaping depends on the transfer function. The following example applies at first a table which does not change the sound at all, because the function just says y = x. The second one leads already to a heavy distortion, because the samples between an amplitude of -0.1 and +0.1 are erased. Tables 3 to 7 apply some chebychev functions which are well known from waveshaping synthesis. Finally, tables 8 and 9 approve that even a meaningful sentence and a nice music can regarded as noise …

EXAMPLE 05F03_Wvshp_different_transfer_funs.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giNat ftgen 1, 0, 2049, -7, -1, 2048, 1
giDist ftgen 2, 0, 2049, -7, -1, 1024, -.1, 0, .1, 1024, 1
giCheb1 ftgen 3, 0, 513, 3, -1, 1, 0, 1
giCheb2 ftgen 4, 0, 513, 3, -1, 1, -1, 0, 2
giCheb3 ftgen 5, 0, 513, 3, -1, 1, 0, 3, 0, 4
giCheb4 ftgen 6, 0, 513, 3, -1, 1, 1, 0, 8, 0, 4
giCheb5 ftgen 7, 0, 513, 3, -1, 1, 3, 20, -30, -60, 32, 48
giFox ftgen 8, 0, -121569, 1, "fox.wav", 0, 0, 1
giGuit ftgen 9, 0, -235612, 1, "ClassGuit.wav", 0, 0, 1

instr 1
iTrnsFnc = p4
kEnv linseg 0, .01, 1, p3-.2, 1, .01, 0
aL, aR soundin "ClassGuit.wav"
aIndxL = (aL + 1) / 2
aWavShpL tablei aIndxL, iTrnsFnc, 1
aIndxR = (aR + 1) / 2
aWavShpR tablei aIndxR, iTrnsFnc, 1
 outs aWavShpL*kEnv, aWavShpR*kEnv
endin

</CsInstruments>
<CsScore>
i 1 0 7 1 ;natural though waveshaping
i 1 + . 2 ;rather heavy distortion
i 1 + . 3 ;chebychev for 1st partial
i 1 + . 4 ;chebychev for 2nd partial
i 1 + . 5 ;chebychev for 3rd partial
i 1 + . 6 ;chebychev for 4th partial
i 1 + . 7 ;after dodge/jerse p.136
i 1 + . 8 ;fox
i 1 + . 9 ;guitar
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Instead of using the “self-built” method which has been described here, you can use the Csound opcode distort. It performs the actual waveshaping process and gives a nice control about the amount of distortion in the kdist parameter. Here is a simple example, using rather different tables:

EXAMPLE 05F04_distort.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

gi1 ftgen 1,0,257,9,.5,1,270 ;sinoid (also the next)
gi2 ftgen 2,0,257,9,.5,1,270,1.5,.33,90,2.5,.2,270,3.5,.143,90
gi3 ftgen 3,0,129,7,-1,128,1 ;actually natural
gi4 ftgen 4,0,129,10,1 ;sine
gi5 ftgen 5,0,129,10,1,0,1,0,1,0,1,0,1 ;odd partials
gi6 ftgen 6,0,129,21,1 ;white noise
gi7 ftgen 7,0,129,9,.5,1,0 ;half sine
gi8 ftgen 8,0,129,7,1,64,1,0,-1,64,-1 ;square wave

instr 1
ifn = p4
ivol = p5
kdist line 0, p3, 1 ;increase the distortion over p3
aL, aR soundin "ClassGuit.wav"
aout1 distort aL, kdist, ifn
aout2 distort aR, kdist, ifn
 outs aout1*ivol, aout2*ivol
endin
</CsInstruments>
<CsScore>
i 1 0 7 1 1
i . + . 2 .3
i . + . 3 1
i . + . 4 .5
i . + . 5 .15
i . + . 6 .04
i . + . 7 .02
i . + . 8 .02
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

	This is the same for Granular Synthesis which can either be “pure” synthesis or applied on sampled sound.↩︎

 ch038.xhtml

05 G. GRANULAR SYNTHESIS

This chapter will focus upon granular synthesis used as a DSP technique upon recorded sound files and will introduce techniques including time stretching, time compressing and pitch shifting. The emphasis will be upon asynchronous granulation. For an introduction to synchronous granular synthesis using simple waveforms please refer to chapter 04 F.

We will start with a self-made granulator which we build step by step. It may help to understand the main parameters, and to see upon which decisions the different opcode designs are built. In the second part of this chapter we will introduce some of the many Csound opcodes for granular synthesis, in typical use cases.

A Self-Made Granulator

It is perfectly possible to build one’s own granular machine in Csound code, without using one of the many opcodes for granular synthesis. This machine will certainly run slower than a native opcode. But for understanding what is happening, and being able to implement own ideas, this is a very instructive approach.

Granular synthesis can be described as a sequence of small sound snippets. So we can think of two units: One unit is managing the sequence, the other unit is performing one grain. Let us call the first unit Granulator, and the second unit Grain. The Granulator will manage the sequence of grains in calling the Grain unit again and again, with different parameters:

In Csound, we implement this architecture as two instruments. We will start with the instrument which performs one grain.

The Grain Unit

Parameters for One Grain

The Grain instrument needs the following information in order to play back a single grain:

	Sound. In the most simple version this is a sound file on the hard disk. More flexible and fast is a sample which has been stored in a buffer (function table). We can also record this buffer in real time and through this perform live granular synthesis.

	Point in Sound to start playback. In the most simple version, this is the same as the skiptime for playing back sound from hard disk via diskin. Usually we will choose seconds as unit for this parameter.

	Duration. The duration for one grain is usually in the range 20-50 ms, but can be smaller or bigger for special effects. In Csound this parameter is passed to the instrument as p3 in its call, measured in seconds.

	Speed of Playback. This parameter is used by diskin and similar opcodes: 1 means the normal speed, 2 means double speed, 1/2 means half speed. This would result in no pitch change (1), octave higher (2) and octave lower(1/2). Negative numbers mean reverse playback.

	Volume. We will measure it in dB, where 0 dB means to play back the sound as it is recorded.

	Envelope. Each grain needs an envelope which starts and ends at zero, to ensure that there will be no clicks. These are some frequently used envelopes:1

	Spatial Position. Each grain will be send to a certain point in space. For stereo, it will be a panning position between 0 (left) and 1 (right).

Simple Grain Implementation

We start with the most simple implementation. We play back the sound with diskin and apply a triangular envelope with the linen opcode. We pass the grain duration as p3, the playback start as p4 and the playback speed as p5. We choose a constant grain duration of 50 ms, but in the first five examples different starting points, then in the other five examples from one starting point different playback speeds.

EXAMPLE 05G01_simple_grain.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr Grain
 //input parameters
 Sound = "fox.wav"
 iStart = p4 ;position in sec to read the sound
 iSpeed = p5
 iVolume = -3 ;dB
 iPan = .5 ;0=left, 1=right
 //perform
 aSound = diskin:a(Sound,iSpeed,iStart,1)
 aOut = linen:a(aSound,p3/2,p3,p3/2)
 aL, aR pan2 aOut*ampdb(iVolume), iPan
 out(aL,aR)
endin

</CsInstruments>
<CsScore>
; start speed
i "Grain" 0 .05 .05 1
i . 1 . .2 .
i . 2 . .42 .
i . 3 . .78 .
i . 4 . 1.2 .
i . 6 . .2 1
i . 7 . . 2
i . 8 . . 0.5
i . 9 . . 10
i . 10 . .25 -1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

It is a tiring job to write a score line for each grain … — no one will do this. But with but a small change we can read through the whole sound file by calling our Grain instrument only once! The technique we use in the next example is to start a new instance of the Grain instrument by the running instance, as long as the end of the sound file has not yet been reached. (This technique has been described in paragraph Self-Triggering and Recursion of chapter 03 C.)

EXAMPLE 05G02_simple_grain_continuous.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr Grain
 //input parameters
 Sound = "fox.wav"
 iStart = p4 ;position in sec to read the sound
 iSpeed = 1
 iVolume = -3 ;dB
 iPan = .5 ;0=left, 1=right
 //perform
 aSound = diskin:a(Sound,iSpeed,iStart,1)
 aOut = linen:a(aSound,p3/2,p3,p3/2)
 aL, aR pan2 aOut*ampdb(iVolume), iPan
 out(aL,aR)
 //call next grain until sound file has reached its end
 if iStart < filelen(Sound) then
 schedule("Grain",p3,p3,iStart+p3)
 endif
endin
schedule("Grain",0,50/1000,0)

</CsInstruments>
<CsScore>
e 5 ;stops performance after 5 seconds
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Improvements

The Grain instrument works but it has some weaknesses:

	Rather than being played back from disk, the sound should be put in a buffer (function table) and played back from there. This is faster and gives more flexibility, for instance in filling the buffer with real-time recording.

	The envelope should also be read from a function table. Again, this is faster and offers more flexibility. In case we want to change the envelope, we simply use another function table, without changing any code of the instrument.

Table reading can be done by different methods in Csound. Have a look at chapter 03 D for details. We will use reading the tables with the poscil3 oscillator here. This should give a very good result in sound quality.

In the next example we reproduce the first example above to check the new code to the Grain instrument.

EXAMPLE 05G03_simple_grain_optimized.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

//load sample to table and create triangular shape
giSample ftgen 0, 0, 0, -1, "fox.wav", 0, 0, 1
giEnv ftgen 0, 0, 8192, 20, 3, 1
giSampleLen = ftlen(giSample)/sr

instr Grain
 //input parameters
 iStart = p4 ;position in sec to read the sound
 iSpeed = p5
 iVolume = -3 ;dB
 iPan = .5 ;0=left, 1=right
 //perform
 aEnv = poscil3:a(ampdb(iVolume),1/p3,giEnv)
 aSound = poscil3:a(aEnv,iSpeed/giSampleLen,giSample,iStart/giSampleLen)
 aL, aR pan2 aSound, iPan
 out(aL,aR)
endin

</CsInstruments>
<CsScore>
; start speed
i "Grain" 0 .05 .05 1
i . 1 . .2 .
i . 2 . .42 .
i . 3 . .78 .
i . 4 . 1.2 .
i . 6 . .2 1
i . 7 . . 2
i . 8 . . 0.5
i . 9 . . 10
i . 10 . .25 -1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Some comments to this code:

	Line 12-13: The sample fox.wav is loaded into function table giSample via GEN routine 01. Note that we are using here -1 instead of 1 because we don’t want to normalize the sound.2

The triangular shape is loaded via GEN 20 which offers a good selection of different envelope shapes.

	Line 14: giSampleLen = ftlen(giSample)/sr. This calculates the length of the sample in seconds, as length of the function table divided by the sample rate. It makes sense to store this in a global variable because we are using it in the Grain instrument again and again.

	Line 23:aEnv = poscil3:a(ampdb(iVolume),1/p3,giEnv). The envelope (as audio signal) is reading the table giEnv in which a triangular shape is stored. We set the amplitude of the oscillator to ampdb(iVolume), so to the amplitude equivalent of the iVolume decibel value. The frequency of the oscillator is 1/p3 because we want to read the envelope exactly once during the performance time of this instrument instance.

	Line 24: aSound = poscil3:a(aEnv,iSpeed/giSampleLen, \\ giSample,iStart/giSampleLen). Again this is a poscil3 oscillator reading a table. The table is here giSample; the amplitude of the oscillator is the aEnv signal we produced. The frequency of reading the table in normal speed is 1/giSampleLen; if we include the speed changes, it is iSpeed/giSampleLen. The starting point to read the table is given to the oscillator as phase value (0=start to 1=end of the table). So we must divide iStart by giSampleLen to get this value.

The Granulator Unit

The main job for the Granulator is to call the Grain unit again and again over time. The grain density and the grain distribution direct this process. The other parameters are basically the same as in the Grain unit.

As granular synthesis is a mass structure, one of its main features is to deal with variations. Each parameter usually deviates in a given range. We will at first build the Granulator in the most simple way, without these deviations, and then proceed to more interesting, variative structures.

Parameters for the Granulator

The first seven parameters are similar to the parameters for the Grain unit. Grain density and grain distribution are added at the end of the list.

	Sound. The sound must be loaded in a function table. We pass the variable name or number of this table to the Grain instrument.

	Pointer in Sound. Usually we will have a moving pointer position here. We will use a simple line in the next example, moving from start to end of the sound in a certain duration. Later we will implement a moving pointer driven by speed.

	Duration. We will use milliseconds as unit here and then change it to seconds when we call the Grain instrument.

	Pitch Shift (Transposition). This is the speed of reading the sound in the Grain units, resulting in a pitch shift or transposition. We will use Cent as unit here, and change the value internally to the corresponding speed: cent=0 -> speed=1, cent=1200 -> speed=2, cent=-1200 -> speed=0.5.

	Volume. We will measure it in dB as for the Grain unit. But the resulting volume will also depend on the grain density, as overlapping grains will add their amplitudes.

	Envelope. The grain envelope must be stored in a function table. We will pass the name or number of the table to the Grain instrument.

	Spatial Position. For now, we will use a fixed pan position between 0 (left) and 1 (right), as we did for the Grain instrument.

	Density. This is the number of grains per second, so the unit is Hz.

	Distribution. This is a continuum between sychronous granular synthesis, in which all grains are equally distributed, and asynchronous, in which the distribution is irregular or scattered.3 We will use 0 for synchronous and 1 for asynchronous granular synthesis.

Simple Granulator Implementation

For triggering the single grains, we use the metro opcode. We call a grain on each trigger tick of the metro. This is a basic example; the code will be condensed later, but is kept here more explicit to show the functionality.

EXAMPLE 05G04_simple_granulator.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m128
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

//load sample to table and create half sine envelope
giSample ftgen 0, 0, 0, -1, "fox.wav", 0, 0, 1
giHalfSine ftgen 0, 0, 1024, 9, .5, 1, 0

instr Granulator
 //input parameters as described in text
 iSndTab = giSample ;table with sample
 iSampleLen = ftlen(iSndTab)/sr
 kPointer = linseg:k(0,iSampleLen,iSampleLen)
 iGrainDur = 30 ;milliseconds
 iTranspos = -100 ;cent
 iVolume = -6 ;dB
 iEnv = giHalfSine ;table with envelope
 iPan = .5 ;panning 0-1
 iDensity = 50 ;Hz (grains per second)
 iDistribution = .5 ;0-1
 //perform: call grains over time
 kTrig = metro(iDensity)
 if kTrig==1 then
 kOffset = random:k(0,iDistribution/iDensity)
 schedulek("Grain", kOffset, iGrainDur/1000, iSndTab, iSampleLen,
 kPointer, cent(iTranspos), iVolume, iEnv, iPan)
 endif
endin

instr Grain
 //input parameters
 iSndTab = p4
 iSampleLen = p5
 iStart = p6
 iSpeed = p7
 iVolume = p8 ;dB
 iEnvTab = p9
 iPan = p10
 //perform
 aEnv = poscil3:a(ampdb(iVolume),1/p3,iEnvTab)
 aSound = poscil3:a(aEnv,iSpeed/iSampleLen,iSndTab,iStart/iSampleLen)
 aL, aR pan2 aSound, iPan
 out(aL,aR)
endin

</CsInstruments>
<CsScore>
i "Granulator" 0 3
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Some comments:

	Line 13: We use a half sine here, generated by GEN09. Other envelopes are available via GEN20. As we used a high-quality interpolating oscillator in the Grain instrument for reading the envelope, the table size is kept rather small.

	Line 18: The length of the sample is calculated here not as a global variable, but once in this instrument. This would allow to pass the iSndTab as p-field without changing the code.

	Line 30: The irregularity is applied as random offset to the regular position of the grain. The range of the offset is from zero to iDistribution/iDensity. For iDensity=50Hz and iDistribution=1, for instance, the maximum offset would be 1/50 seconds.

	Line 31-32: The schedulek opcode is used here. It has been introduced in Csound 6.14; for older versions of Csound, event can be used as well: event("i","Grain",kOffset, ...) would be the code then. Note that we divide the iGrainDur by 1000, because it was given in milliseconds. For the transformation of the cent input to a multiplier, we simply use the cent opcode.

It is suggested to change some values in this example, and to listen to the result; for instance:

	Change kPointer = linseg:k(0,iSampleLen,iSampleLen) (line 19) to kPointer = linseg:k(0,iSampleLen*2,iSampleLen) or to kPointer = linseg:k(0,iSampleLen*5,iSampleLen) (increase p3 in the score then, too). This change will increase the time in which the pointer moves from start to end of the sound file. This is called time stretching, and is one of the main features of granular synthesis. If a smaller duration for the pointer is used (e.g. iSampleLen/2 or iSampleLen/5) we apply time compression.

	Change iGrainDur (line 20) from 30 ms to a bigger or smaller value. For very small values (below 10 ms) artifacts arise.

	Set iDensity (line 29) to 10 Hz or less and change the iDistribution (line 26). A distribution of 0 should give a perfectly regular sequence of grains, whereas 1 should result in irregularity.

Improvements and Random Deviations

The preferred method for the moving pointer in the Granulator instrument is a phasor. It is the best approach for real-time use. It can run for an unlimited time and can easily move backwards. As input for the phasor, technically its frequency, we will put the speed in the usual way: 1 means normal speed, 0 is freeze, -1 is backwards reading in normal speed. As optional parameter we can set a start position of the pointer.

All we have to do for implementing this in Csound is to take the sound file length in account for both, the pointer position and the start position:

iFileLen = 2 ;sec
iStart = 1 ;sec
kSpeed = 1
kPhasor = phasor:a(kSpeed/iFileLen,iStart/iFileLen)
kPointer = kPhasor*iFileLen

In this example, the phasor will start with an initial phase of iStart/iFileLen = 0.5. The kPhasor signal which is always 0-1, will move in the frequency kSpeed/iFileLen, here 1/2. The kPhasor will then be multiplied by two, so will become 0-2 for kPointer.

It is very useful to add random deviations to some of the parameters for granular synthesis. This opens the space for many different structures and possibilities. We will apply here random deviations to these parameters of the Granulator:

	Pointer. The pointer will “tremble” or “jump” depending on the range of the random deviation. The range is given in seconds. It is implemented in line 36 of the next example as

kPointer = kPhasor*iSampleLen + rnd31:k(iPointerRndDev,0)

The opcode rnd31 is a bipolar random generator which will output values between -iPointerRndDev and +iPointerRndDev. This is then added to the normal pointer position. - Duration. We will define here a maximum deviation in percent, related to the medium grain duration. 100% would mean that a grain duration can deviate between half and twice the medium duration. A medium duration of 20 ms would yield a random range of 10-40 ms in this case. - Transposition. We can add to the main transposition a bipolar random range. If, for example, the main transposition is 500 cent and the maximum random transposition is 300 cent, each grain will choose a value between 200 and 800 cent. - Volume. A maximum decibel deviation (also bipolar) can be added to the main volume. - Spatial Position. In addition to the main spatial position (in the stereo field 0-1), we can add a bipolar maximum deviation. If the main position is 0.5 and the maximum deviation is 0.2, each grain will have a panning position between 0.3 and 0.7.

The next example demonstrates the five possibilities one by one, each parameter in three steps: at first with no random deviations, then with slight deviations, then with big ones.

EXAMAMPLE 05G05_random_deviations.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m128
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSample ftgen 0, 0, 0, -1, "fox.wav", 0, 0, 1
giHalfSine ftgen 0, 0, 1024, 9, .5, 1, 0

instr Granulator
 //standard input parameter
 iSndTab = giSample
 iSampleLen = ftlen(iSndTab)/sr
 iStart = 0 ;sec
 kPointerSpeed = 2/3
 iGrainDur = 30 ;milliseconds
 iTranspos = -100 ;cent
 iVolume = -6 ;dB
 iEnv = giHalfSine ;table with envelope
 iPan = .5 ;panning 0-1
 iDensity = 50 ;Hz (grains per second)
 iDistribution = .5 ;0-1
 //random deviations (for demonstration set to p-fields)
 iPointerRndDev = p4 ;sec
 iGrainDurRndDev = p5 ;percent
 iTransposRndDev = p6 ;cent
 iVolumeRndDev = p7 ;dB
 iPanRndDev = p8 ;as in iPan
 //perform
 kPhasor = phasor:k(kPointerSpeed/iSampleLen,iStart/iSampleLen)
 kTrig = metro(iDensity)
 if kTrig==1 then
 kPointer = kPhasor*iSampleLen + rnd31:k(iPointerRndDev,0)
 kOffset = random:k(0,iDistribution/iDensity)
 kGrainDurDiff = rnd31:k(iGrainDurRndDev,0) ;percent
 kGrainDur = iGrainDur*2^(kGrainDurDiff/100) ;ms
 kTranspos = cent(iTranspos+rnd31:k(iTransposRndDev,0))
 kVol = iVolume+rnd31:k(iVolumeRndDev,0)
 kPan = iPan+rnd31:k(iPanRndDev,0)
 schedulek("Grain",kOffset,kGrainDur/1000,iSndTab,
 iSampleLen,kPointer,kTranspos,kVol,iEnv,kPan)
 endif
endin

instr Grain
 //input parameters
 iSndTab = p4
 iSampleLen = p5
 iStart = p6
 iSpeed = p7
 iVolume = p8 ;dB
 iEnvTab = p9
 iPan = p10
 //perform
 aEnv = poscil3:a(ampdb(iVolume),1/p3,iEnvTab)
 aSound = poscil3:a(aEnv,iSpeed/iSampleLen,iSndTab,iStart/iSampleLen)
 aL, aR pan2 aSound, iPan
 out(aL,aR)
endin

</CsInstruments>
<CsScore>
t 0 40
; Random Deviations: Pointer GrainDur Transp Vol Pan
;RANDOM POINTER DEVIATIONS
i "Granulator" 0 2.7 0 0 0 0 0 ;normal pointer
i . 3 . 0.1 0 0 0 0 ;slight trembling
i . 6 . 1 0 0 0 0 ;chaotic jumps
;RANDOM GRAIN DURATION DEVIATIONS
i . 10 . 0 0 0 0 0 ;no deviation
i . 13 . 0 100 0 0 0 ;100%
i . 16 . 0 200 0 0 0 ;200%
;RANDOM TRANSPOSITION DEVIATIONS
i . 20 . 0 0 0 0 0 ;no deviation
i . 23 . 0 0 300 0 0 ;±300 cent maximum
i . 26 . 0 0 1200 0 0 ;±1200 cent maximum
;RANDOM VOLUME DEVIATIONS
i . 30 . 0 0 0 0 0 ;no deviation
i . 33 . 0 0 0 6 0 ;±6 dB maximum
i . 36 . 0 0 0 12 0 ;±12 dB maximum
;RANDOM PAN DEVIATIONS
i . 40 . 0 0 0 0 0 ;no deviation
i . 43 . 0 0 0 0 .1 ;±0.1 maximum
i . 46 . 0 0 0 0 .5 ;±0.5 maximum
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

It sounds like for normal use, the pointer, transposition and pan deviation are most interesting to apply.

Final Example

After first prsenting the more instructional examples, this final one shows some of the potential applications for granular sounds. It uses the same parts of The quick brown fox as in the first example of this chapter, each which different sounds and combination of the parameters.

EXAMPLE 05G06_the_fox_universe.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m128
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
seed 0

opcode Chan,S,Si
 Sname, id xin
 Sout sprintf "%s_%d", Sname, id
 xout Sout
endop

giSample ftgen 0, 0, 0, -1, "fox.wav", 0, 0, 1
giSinc ftgen 0, 0, 1024, 20, 9, 1
gi_ID init 1

instr Quick
 id = gi_ID
 gi_ID += 1
 iStart = .2
 chnset(1/100, Chan("PointerSpeed",id))
 chnset(linseg:k(10,p3,1), Chan("GrainDur",id))
 chnset(randomi:k(15,20,1/3,3), Chan("Density",id))
 chnset(linseg:k(7000,p3/2,6000), Chan("Transpos",id))
 chnset(600,Chan("TransposRndDev",id))
 chnset(linseg:k(-10,p3-3,-10,3,-30), Chan("Volume",id))
 chnset(randomi:k(.2,.8,1,3), Chan("Pan",id))
 chnset(.2,Chan("PanRndDev",id))
 schedule("Granulator",0,p3,id,iStart)
 schedule("Output",0,p3,id,0)
endin

instr Brown
 id = gi_ID
 gi_ID += 1
 iStart = .42
 chnset(1/100, Chan("PointerSpeed",id))
 chnset(50, Chan("GrainDur",id))
 chnset(50, Chan("Density",id))
 chnset(100,Chan("TransposRndDev",id))
 chnset(linseg:k(-50,3,-10,12,-10,3,-50), Chan("Volume",id))
 chnset(.5, Chan("Pan",id))
 schedule("Granulator",0,p3,id,iStart)
 schedule("Output",0,p3+3,id,.3)
endin

instr F
 id = gi_ID
 gi_ID += 1
 iStart = .68
 chnset(50, Chan("GrainDur",id))
 chnset(40, Chan("Density",id))
 chnset(100,Chan("TransposRndDev",id))
 chnset(linseg:k(-30,3,-10,p3-6,-10,3,-30)+randomi:k(-10,10,1/3),
 Chan("Volume",id))
 chnset(.5, Chan("Pan",id))
 chnset(.5, Chan("PanRndDev",id))
 schedule("Granulator",0,p3,id,iStart)
 schedule("Output",0,p3+3,id,.9)
endin

instr Ox
 id = gi_ID
 gi_ID += 1
 iStart = .72
 chnset(1/100,Chan("PointerSpeed",id))
 chnset(50, Chan("GrainDur",id))
 chnset(40, Chan("Density",id))
 chnset(-2000,Chan("Transpos",id))
 chnset(linseg:k(-20,3,-10,p3-6,-10,3,-30)+randomi:k(-10,0,1/3),
 Chan("Volume",id))
 chnset(randomi:k(.2,.8,1/5,2,.8), Chan("Pan",id))
 schedule("Granulator",0,p3,id,iStart)
 schedule("Output",0,p3+3,id,.9)
endin

instr Jum
 id = gi_ID
 gi_ID += 1
 iStart = 1.3
 chnset(0.01,Chan("PointerRndDev",id))
 chnset(50, Chan("GrainDur",id))
 chnset(40, Chan("Density",id))
 chnset(transeg:k(p4,p3/3,0,p4,p3/2,5,3*p4),Chan("Transpos",id))
 chnset(linseg:k(0,1,-10,p3-7,-10,6,-50)+randomi:k(-10,0,1,3),
 Chan("Volume",id))
 chnset(p5, Chan("Pan",id))
 schedule("Granulator",0,p3,id,iStart)
 schedule("Output",0,p3+3,id,.7)
 if p4 < 300 then
 schedule("Jum",0,p3,p4+500,p5+.3)
 endif
endin

instr Whole
 id = gi_ID
 gi_ID += 1
 iStart = 0
 chnset(1/2,Chan("PointerSpeed",id))
 chnset(5, Chan("GrainDur",id))
 chnset(20, Chan("Density",id))
 chnset(.5, Chan("Pan",id))
 chnset(.3, Chan("PanRndDev",id))
 schedule("Granulator",0,p3,id,iStart)
 schedule("Output",0,p3+1,id,0)
endin

instr Granulator
 //get ID for resolving string channels
 id = p4
 //standard input parameter
 iSndTab = giSample
 iSampleLen = ftlen(iSndTab)/sr
 iStart = p5
 kPointerSpeed = chnget:k(Chan("PointerSpeed",id))
 kGrainDur = chnget:k(Chan("GrainDur",id))
 kTranspos = chnget:k(Chan("Transpos",id))
 kVolume = chnget:k(Chan("Volume",id))
 iEnv = giSinc
 kPan = chnget:k(Chan("Pan",id))
 kDensity = chnget:k(Chan("Density",id))
 iDistribution = 1
 //random deviations
 kPointerRndDev = chnget:k(Chan("PointerRndDev",id))
 kTransposRndDev = chnget:k(Chan("TransposRndDev",id))
 kPanRndDev = chnget:k(Chan("PanRndDev",id))
 //perform
 kPhasor = phasor:k(kPointerSpeed/iSampleLen,iStart/iSampleLen)
 kTrig = metro(kDensity)
 if kTrig==1 then
 kPointer = kPhasor*iSampleLen + rnd31:k(kPointerRndDev,0)
 kOffset = random:k(0,iDistribution/kDensity)
 kTranspos = cent(kTranspos+rnd31:k(kTransposRndDev,0))
 kPan = kPan+rnd31:k(kPanRndDev,0)
 schedulek("Grain",kOffset,kGrainDur/1000,iSndTab,iSampleLen,
 kPointer,kTranspos,kVolume,iEnv,kPan,id)
 endif
endin

instr Grain
 //input parameters
 iSndTab = p4
 iSampleLen = p5
 iStart = p6
 iSpeed = p7
 iVolume = p8
 iEnvTab = p9
 iPan = p10
 id = p11
 //perform
 aEnv = poscil3:a(ampdb(iVolume),1/p3,iEnvTab)
 aSound = poscil3:a(aEnv,iSpeed/iSampleLen,iSndTab,iStart/iSampleLen)
 aL, aR pan2 aSound, iPan
 //write audio to channels for id
 chnmix(aL,Chan("L",id))
 chnmix(aR,Chan("R",id))
endin

instr Output
 id = p4
 iRvrbTim = p5
 aL_dry = chnget:a(Chan("L",id))
 aR_dry = chnget:a(Chan("R",id))
 aL_wet, aR_wet reverbsc aL_dry, aR_dry, iRvrbTim,sr/2
 out(aL_dry+aL_wet,aR_dry+aR_wet)
 chnclear(Chan("L",id),Chan("R",id))
endin

</CsInstruments>
<CsScore>
i "Quick" 0 20
i "Brown" 10 20
i "F" 20 50
i "Ox" 30 40
i "Jum" 72 30 -800 .2
i "Quick" 105 10
i "Whole" 118 5.4
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Some comments:

	Line 12-16: The User-Defined Opcode (UDO) Chan puts a string and an ID together to a combined string: Chan("PointerSpeed",1) returns "PointerSpeed_1". This is nothing but a more readable version of sprintf("%s_%d", "PointerSpeed", 1).

	Line 20-24: The whole architecture of this example is based on software channels. The instr Quick schedules one instance of instr Granulator. While this instance is still running, the instr Brown schedules another instance of instr Granulator. Both, Quick and Brown want to send their specific values to their instance of instr Granulator. This is done by an ID which is added to the channel name. For the pointer speed, instr Quick uses the channel “PointerSpeed_1” whereas instr Brown uses the channel “PointerSpeed_2”. So each of the instruments Quick, Brown etc. have to get a unique ID. This is done with the global variable gi_ID. When instr Quick starts, it sets its own variable id to the value of gi_ID (which is 1 in this moment), and then sets gi_ID to 2. So when instr Brown starts, it sets its own id as 2 and sets gi_ID to 3 for future use by instrument F.

	Line 34: Each of the instruments which provide the different parameters, like instr Quick here, call an instance of instr Granulator and pass the ID to it, as well as the pointer start in the sample: schedule("Granulator",0,p3,id,iStart). The id is passed here as fourth parameter, so instr Granulator will read id = p4 in line 112 to receive th ID, and iStart = p5 in line 116, to receive the pointer start.

	Line 35: As we want to add some reverb, but with different reverb time for each structure, we start one instance of instr Output here. Again it will pass the own ID to the instance of instr Output, and also the reverb time. In line 162-163 we see how these values are received: id = p4 and iRvrbTim = p5

	Line 157-158: Instr Grain does not output the audio signal directly, but sends it via chnmix to the instance of instr Output with the same ID. See line 164-165 for the complementary code in instr Output. Note that we must use chnmix not chnset here because we muss add all audio in the overlapping grains (try to substitute chnmix by chnset to hear the difference). The zeroing of each audio channel at the end of the chain by chnclear is also important (cmment out line 168 to hear the difference).

Live Input

Instead of using prerecorded samples, granular synthesis can also be applied to live input. Basically what we have to do is to add an instrument which writes the live input continuously to a table. When we ensure that writing and reading the table is done in a circular way, the table can be very short.

The time interval between writing and reading can be very short. If we do not transpose, or only downwards, we can read immediately. Only if we tranpose upwards, we must wait. Imagine a grain duration of 50 ms, a delay between writing and reading of 20 ms, and a pitch shift of one octave upwards. The reading pointer will move twice as fast as the writing pointer, so after 40 ms of the grain, it will get ahead of the writing pointer.

So, in the following example, we will set the desired delay time to a small value. It has to be adjusted by the user depending on maximal tranposition and grain size.

EXAMPLE 05G07_live_granular.csd

<CsoundSynthesizer>
<CsOptions>
-odac -iadc -m128
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giTable ftgen 0, 0, sr, 2, 0 ;for one second of recording
giHalfSine ftgen 0, 0, 1024, 9, .5, 1, 0
giDelay = 1 ;ms

instr Record
 aIn = inch(1)
 gaWritePointer = phasor(1)
 tablew(aIn,gaWritePointer,giTable,1)
endin
schedule("Record",0,-1)

instr Granulator
 kGrainDur = 30 ;milliseconds
 kTranspos = -300 ;cent
 kDensity = 50 ;Hz (grains per second)
 kDistribution = .5 ;0-1
 kTrig = metro(kDensity)
 if kTrig==1 then
 kPointer = k(gaWritePointer)-giDelay/1000
 kOffset = random:k(0,kDistribution/kDensity)
 schedulek("Grain",kOffset,kGrainDur/1000,kPointer,cent(kTranspos))
 endif
endin
schedule("Granulator",giDelay/1000,-1)

instr Grain
 iStart = p4
 iSpeed = p5
 aOut = poscil3:a(poscil3:a(.3,1/p3,giHalfSine),iSpeed,giTable,iStart)
 out(aOut,aOut)
endin

</CsInstruments>
<CsScore>
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

We only use some of the many parameters here; others can be added easily. As we chose one second for the table, we can simplify some calculations. Most important is to know for instr Granulator the current position of the write pointer, and to start playback giDelay milliseconds (here 1 ms) after it. For this, we write the current write pointer position to a global variable gaWritePointer in instr Record and get the start for one grain by

kPointer = k(gaWritePointer)-giDelay/1000

After having built this self-made granulator step by step, we will look now into some Csound opcodes for sample-based granular synthesis.

Csound Opcodes for Granular Synthesis

Csound offers a wide range of opcodes for sound granulation. Each has its own strengths and weaknesses and suitability for a particular task. Some are easier to use than others, some, such as granule and partikkel, are extremely complex and are, at least in terms of the number of input arguments they demand, amongst Csound’s most complex opcodes.

sndwarp - Time Stretching and Pitch Shifting

sndwarp may not be Csound’s newest or most advanced opcode for sound granulation but it is quite easy to use and is certainly up to the task of time stretching and pitch shifting. sndwarp has two modes by which we can modulate time stretching characteristics, one in which we define a stretch factor, a value of 2 defining a stretch to twice the normal length, and the other in which we directly control a pointer into the file. The following example uses sndwarp’s first mode to produce a sequence of time stretches and pitch shifts. An overview of each procedure will be printed to the terminal as it occurs. sndwarp does not allow for k-rate modulation of grain size or density so for this level we need to look elsewhere.

You will need to make sure that a sound file is available to sndwarp via a GEN01 function table. You can replace the one used in this example with one of your own by replacing the reference to ClassicalGuitar.wav. This sound file is stereo therefore instrument 1 uses the stereo version sndwarpst. A mismatch between the number of channels in the sound file and the version of sndwarp used will result in playback at an unexpected pitch.

sndwarp describes grain size as window size and it is defined in samples so therefore a window size of 44100 means that grains will last for 1s each (when sample rate is set at 44100). Window size randomization (irandw) adds a random number within that range to the duration of each grain. As these two parameters are closely related it is sometime useful to set irandw to be a fraction of window size. If irandw is set to zero we will get artefacts associated with synchronous granular synthesis.

sndwarp (along with many of Csound’s other granular synthesis opcodes) requires us to supply it with a window function in the form of a function table according to which it will apply an amplitude envelope to each grain. By using different function tables we can alternatively create softer grains with gradual attacks and decays (as in this example), with more of a percussive character (short attack, long decay) or gate-like (short attack, long sustain, short decay).

EXAMPLE 05G08_sndwarp.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m128
--env:SSDIR+=../SourceMaterials
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 16
nchnls = 2
0dbfs = 1

; waveform used for granulation
giSound ftgen 1, 0, 0, 1, "ClassGuit.wav", 0, 0, 0

; window function - used as an amplitude envelope for each grain
; (first half of a sine wave)
giWFn ftgen 2, 0, 16384, 9, 0.5, 1, 0

 instr 1
kamp = 0.1
ktimewarp expon p4,p3,p5 ; amount of time stretch, 1=none 2=double
kresample line p6,p3,p7 ; pitch change 1=none 2=+1oct
ifn1 = giSound ; sound file to be granulated
ifn2 = giWFn ; window shaped used to envelope every grain
ibeg = 0
iwsize = 3000 ; grain size (in sample)
irandw = 3000 ; randomization of grain size range
ioverlap = 50 ; density
itimemode = 0 ; 0=stretch factor 1=pointer
 prints p8 ; print a description
aSigL,aSigR sndwarpst kamp,ktimewarp,kresample,ifn1,ibeg, \
 iwsize,irandw,ioverlap,ifn2,itimemode
 outs aSigL,aSigR
 endin

</CsInstruments>

<CsScore>
;p3 = stretch factor begin / pointer location begin
;p4 = stretch factor end / pointer location end
;p5 = resample begin (transposition)
;p6 = resample end (transposition)
;p7 = procedure description
;p8 = description string
; p1 p2 p3 p4 p5 p6 p7 p8
i 1 0 10 1 1 1 1 "No time stretch. No pitch shift."
i 1 10.5 10 2 2 1 1 "%nTime stretch x 2."
i 1 21 20 1 20 1 1 \
 "%nGradually increasing time stretch factor from x 1 to x 20."
i 1 41.5 10 1 1 2 2 "%nPitch shift x 2 (up 1 octave)."
i 1 52 10 1 1 0.5 0.5 "%nPitch shift x 0.5 (down 1 octave)."
i 1 62.5 10 1 1 4 0.25 \
 "%nPitch shift glides smoothly from 4 (up 2 octaves)\
 to 0.25 (down 2 octaves)."
i 1 73 15 4 4 1 1 \
"%nA chord containing three transpositions:\
 unison, +5th, +10th. (x4 time stretch.)"
i 1 73 15 4 4 [3/2] [3/2] ""
i 1 73 15 4 4 3 3 ""
e
</CsScore>
</CsoundSynthesizer>
;example written by Iain McCurdy

The next example uses sndwarp’s other timestretch mode with which we explicitly define a pointer position from where in the source file grains shall begin. This method allows us much greater freedom with how a sound will be time warped; we can even freeze movement and go backwards in time - something that is not possible with timestretching mode.

This example is self generative in that instrument 2, the instrument that actually creates the granular synthesis textures, is repeatedly triggered by instrument 1. Instrument 2 is triggered once every 12.5s and these notes then last for 40s each so will overlap. Instrument 1 is played from the score for 1 hour so this entire process will last that length of time. Many of the parameters of granulation are chosen randomly when a note begins so that each note will have unique characteristics. The timestretch is created by a line function: the start and end points of which are defined randomly when the note begins. Grain/window size and window size randomization are defined randomly when a note begins - notes with smaller window sizes will have a fuzzy airy quality wheres notes with a larger window size will produce a clearer tone. Each note will be randomly transposed (within a range of +/- 2 octaves) but that transposition will be quantized to a rounded number of semitones - this is done as a response to the equally tempered nature of source sound material used.

Each entire note is enveloped by an amplitude envelope and a resonant lowpass filter in each case encasing each note under a smooth arc. Finally a small amount of reverb is added to smooth the overall texture slightly

EXAMPLE 05G09_selfmade_grain.csd

<CsoundSynthesizer>
<CsOptions>
-odac --env:SSDIR+=../SourceMaterials
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

; the name of the sound file used is defined as a string variable -
; - as it will be used twice in the code.
; This simplifies adapting the orchestra to use a different sound file
gSfile = "ClassGuit.wav"

; waveform used for granulation
giSound ftgen 1,0,0,1,gSfile,0,0,0

; window function - used as an amplitude envelope for each grain
giWFn ftgen 2,0,16384,9,0.5,1,0

seed 0 ; seed the random generators from the system clock
gaSendL init 0 ; initialize global audio variables
gaSendR init 0

 instr 1 ; triggers instrument 2
ktrigger metro 1/12.5 ;metronome of triggers. One every 12.5s
schedkwhen ktrigger,0,0,2,0,40 ;trigger instr. 2 for 40s
 endin

 instr 2 ; generates granular synthesis textures
;define the input variables
ifn1 = giSound
ilen = nsamp(ifn1)/sr
iPtrStart random 1,ilen-1
iPtrTrav random -1,1
ktimewarp line iPtrStart,p3,iPtrStart+iPtrTrav
kamp linseg 0,p3/2,0.2,p3/2,0
iresample random -24,24.99
iresample = semitone(int(iresample))
ifn2 = giWFn
ibeg = 0
iwsize random 400,10000
irandw = iwsize/3
ioverlap = 50
itimemode = 1
; create a stereo granular synthesis texture using sndwarp
aSigL,aSigR sndwarpst kamp,ktimewarp,iresample,ifn1,ibeg,\
 iwsize,irandw,ioverlap,ifn2,itimemode
; envelope the signal with a lowpass filter
kcf expseg 50,p3/2,12000,p3/2,50
aSigL moogvcf2 aSigL, kcf, 0.5
aSigR moogvcf2 aSigR, kcf, 0.5
; add a little of our audio signals to the global send variables -
; - these will be sent to the reverb instrument (2)
gaSendL = gaSendL+(aSigL*0.4)
gaSendR = gaSendR+(aSigR*0.4)
 outs aSigL,aSigR
 endin

 instr 3 ; reverb (always on)
aRvbL,aRvbR reverbsc gaSendL,gaSendR,0.85,8000
 outs aRvbL,aRvbR
;clear variables to prevent out of control accumulation
 clear gaSendL,gaSendR
 endin

</CsInstruments>
<CsScore>
; p1 p2 p3
i 1 0 3600 ; triggers instr 2
i 3 0 3600 ; reverb instrument
</CsScore>
</CsoundSynthesizer>
;example written by Iain McCurdy

granule - Clouds of Sound

The granule opcode is one of Csound’s most complex opcodes requiring up to 22 input arguments in order to function. Only a few of these arguments are available during performance (k-rate) so it is less well suited for real-time modulation, for real-time a more nimble implementation such as syncgrain, fog, or grain3 would be recommended. For more complex realtime granular techniques, the partikkel opcode can be used. The granule opcode as used here, proves itself ideally suited at the production of massive clouds of granulated sound in which individual grains are often completely indistinguishable. There are still two important k-rate variables that have a powerful effect on the texture created when they are modulated during a note, they are: grain gap - effectively density - and grain size which will affect the clarity of the texture - textures with smaller grains will sound fuzzier and airier, textures with larger grains will sound clearer. In the following example transeg envelopes move the grain gap and grain size parameters through a variety of different states across the duration of each note.

With granule we define a number of grain streams for the opcode using its ivoice input argument. This will also have an effect on the density of the texture produced. Like sndwarp’s first timestretching mode, granule also has a stretch ratio parameter. Confusingly it works the other way around though, a value of 0.5 will slow movement through the file by 1/2, 2 will double is and so on. Increasing grain gap will also slow progress through the sound file. granule also provides up to four pitch shift voices so that we can create chord-like structures without having to use more than one iteration of the opcode. We define the number of pitch shifting voices we would like to use using the ipshift parameter. If this is given a value of zero, all pitch shifting intervals will be ignored and grain-by-grain transpositions will be chosen randomly within the range +/-1 octave. granule contains built-in randomizing for several of it parameters in order to easier facilitate asynchronous granular synthesis. In the case of grain gap and grain size randomization these are defined as percentages by which to randomize the fixed values.

Unlike Csound’s other granular synthesis opcodes, granule does not use a function table to define the amplitude envelope for each grain, instead attack and decay times are defined as percentages of the total grain duration using input arguments. The sum of these two values should total less than 100.

Five notes are played by this example. While each note explores grain gap and grain size in the same way each time, different permutations for the four pitch transpositions are explored in each note. Information about what these transpositions are is printed to the terminal as each note begins.

EXAMPLE 05G10_granule.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m128
--env:SSDIR+=../SourceMaterials
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

;waveforms used for granulation
giSoundL ftgen 1,0,1048576,1,"ClassGuit.wav",0,0,1
giSoundR ftgen 2,0,1048576,1,"ClassGuit.wav",0,0,2

seed 0; seed the random generators from the system clock
gaSendL init 0
gaSendR init 0

 instr 1 ; generates granular synthesis textures
 prints p9
;define the input variables
kamp linseg 0,1,0.1,p3-1.2,0.1,0.2,0
ivoice = 64
iratio = 0.5
imode = 1
ithd = 0
ipshift = p8
igskip = 0.1
igskip_os = 0.5
ilength = nsamp(giSoundL)/sr
kgap transeg 0,20,14,4, 5,8,8, 8,-10,0, 15,0,0.1
igap_os = 50
kgsize transeg 0.04,20,0,0.04, 5,-4,0.01, 8,0,0.01, 15,5,0.4
igsize_os = 50
iatt = 30
idec = 30
iseedL = 0
iseedR = 0.21768
ipitch1 = p4
ipitch2 = p5
ipitch3 = p6
ipitch4 = p7
;create the granular synthesis textures; one for each channel
aSigL granule kamp,ivoice,iratio,imode,ithd,giSoundL,ipshift,igskip,\
 igskip_os,ilength,kgap,igap_os,kgsize,igsize_os,iatt,idec,iseedL,\
 ipitch1,ipitch2,ipitch3,ipitch4
aSigR granule kamp,ivoice,iratio,imode,ithd,giSoundR,ipshift,igskip,\
 igskip_os,ilength,kgap,igap_os,kgsize,igsize_os,iatt,idec,iseedR,\
 ipitch1,ipitch2,ipitch3,ipitch4
;send a little to the reverb effect
gaSendL = gaSendL+(aSigL*0.3)
gaSendR = gaSendR+(aSigR*0.3)
 outs aSigL,aSigR
 endin

 instr 2 ; global reverb instrument (always on)
; use reverbsc opcode for creating reverb signal
aRvbL,aRvbR reverbsc gaSendL,gaSendR,0.85,8000
 outs aRvbL,aRvbR
;clear variables to prevent out of control accumulation
 clear gaSendL,gaSendR
 endin

</CsInstruments>
<CsScore>
; p4 = pitch 1
; p5 = pitch 2
; p6 = pitch 3
; p7 = pitch 4
; p8 = number of pitch shift voices (0=random pitch)
; p1 p2 p3 p4 p5 p6 p7 p8 p9
i 1 0 48 1 1 1 1 4 "pitches: all unison"
i 1 + . 1 0.5 0.25 2 4 \
 "%npitches: 1(unison) 0.5(down 1 octave) 0.25(down 2 octaves) 2(up 1 octave)"
i 1 + . 1 2 4 8 4 "%npitches: 1 2 4 8"
i 1 + . 1 [3/4] [5/6] [4/3] 4 "%npitches: 1 3/4 5/6 4/3"
i 1 + . 1 1 1 1 0 "%npitches: all random"

i 2 0 [48*5+2]; reverb instrument
</CsScore>
</CsoundSynthesizer>
;example written by Iain McCurdy

Grain delay effect with fof2

Granular techniques can be used to implement a flexible delay effect, where we can do transposition, time modification and disintegration of the sound into small particles, all within the delay effect itself. To implement this effect, we record live audio into a buffer (Csound table), and let the granular synthesizer/generator read sound for the grains from this buffer. We need a granular synthesizer that allows manual control over the read start point for each grain, since the relationship between the write position and the read position in the buffer determines the delay time. We’ve used the fof2 opcode for this purpose here.

EXAMPLE 05G11_grain_delay.csd

<CsoundSynthesizer>
<CsOptions>
--env:SSDIR+=../SourceMaterials
-odac -m128
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 128
nchnls = 2
0dbfs = 1

; empty table, live audio input buffer used for granulation
giTablen = 131072
giLive ftgen 0,0,giTablen,2,0

; sigmoid rise/decay shape for fof2, half cycle from bottom to top
giSigRise ftgen 0,0,8192,19,0.5,1,270,1

; test sound
giSample ftgen 0,0,0,1,"fox.wav", 0,0,0

instr 1
; test sound, replace with live input
 a1 loscil 1, 1, giSample, 1
 outch 1, a1
 chnmix a1, "liveAudio"
endin

instr 2
; write live input to buffer (table)
 a1 chnget "liveAudio"
 gkstart tablewa giLive, a1, 0
 if gkstart < giTablen goto end
 gkstart = 0
 end:
 a0 = 0
 chnset a0, "liveAudio"
endin

instr 3
; delay parameters
 kDelTim = 0.5 ; delay time in seconds (max 2.8 seconds)
 kFeed = 0.8
; delay time random dev
 kTmod = 0.2
 kTmod rnd31 kTmod, 1
 kDelTim = kDelTim+kTmod
; delay pitch random dev
 kFmod linseg 0, 1, 0, 1, 0.1, 2, 0, 1, 0
 kFmod rnd31 kFmod, 1
 ; grain delay processing
 kamp = ampdbfs(-8)
 kfund = 25 ; grain rate
 kform = (1+kFmod)*(sr/giTablen) ; grain pitch transposition
 koct = 0
 kband = 0
 kdur = 2.5 / kfund ; duration relative to grain rate
 kris = 0.5*kdur
 kdec = 0.5*kdur
 kphs = (gkstart/giTablen)-(kDelTim/(giTablen/sr)) ;grain phase
 kgliss = 0
 a1 fof2 1, kfund, kform, koct, kband, kris, kdur, kdec, 100, \
 giLive, giSigRise, 86400, kphs, kgliss
 outch 2, a1*kamp
 chnset a1*kFeed, "liveAudio"
endin

</CsInstruments>
<CsScore>
i 1 0 20
i 2 0 20
i 3 0 20
</CsScore>
</CsoundSynthesizer>
;example by Oeyvind Brandtsegg

In the last example we will use the grain opcode. This opcode is part of a little group of opcodes which also includes grain2 and grain3. grain is the oldest opcode, Grain2 is a more easy-to-use opcode, while Grain3 offers more control.

EXAMPLE 05G12_grain.csd

<CsoundSynthesizer>
<CsOptions>
 -o dac --env:SSDIR+=../SourceMaterials
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 128
nchnls = 2
0dbfs = 1

; First we hear each grain, but later on it sounds more like a drum roll.
gareverbL init 0
gareverbR init 0
giFt1 ftgen 0, 0, 1025, 20, 2, 1 ; GEN20, Hanning window for grain envelope
giFt2 ftgen 0, 0, 0, 1, "fox.wav", 0, 0, 0

instr 1 ; Granular synthesis of soundfile
ipitch = sr/ftlen(giFt2) ; Original frequency of the input sound
kdens1 expon 3, p3, 500
kdens2 expon 4, p3, 400
kdens3 expon 5, p3, 300
kamp line 1, p3, 0.05
a1 grain 1, ipitch, kdens1, 0, 0, 1, giFt2, giFt1, 1
a2 grain 1, ipitch, kdens2, 0, 0, 1, giFt2, giFt1, 1
a3 grain 1, ipitch, kdens3, 0, 0, 1, giFt2, giFt1, 1
aleft = kamp*(a1+a2)
aright = kamp*(a2+a3)
 outs aleft, aright ; Output granulation
gareverbL = gareverbL + a1+a2 ; send granulation to Instr 2 (Reverb)
gareverbR = gareverbR + a2+a3
endin

instr 2 ; Reverb
kkamp line 0, p3, 0.08
aL reverb gareverbL, 10*kkamp ; reverberate what is in gareverbL
aR reverb gareverbR, 10*kkamp ; and garaverbR
 outs kkamp*aL, kkamp*aR ; and output the result
gareverbL = 0 ; empty the receivers for the next loop
gareverbR = 0
endin
</CsInstruments>
<CsScore>
i1 0 20 ; Granulation
i2 0 21 ; Reverb
</CsScore>
</CsoundSynthesizer>
;example by Bjørn Houdorf

Several opcodes for granular synthesis have been considered in this chapter but this is in no way meant to suggest that these are the best, in fact it is strongly recommended to explore all of Csound’s other opcodes as they each have their own unique character. The syncgrain family of opcodes (including also syncloop and diskgrain) are deceptively simple as their k-rate controls encourages further abstractions of grain manipulation, fog is designed for FOF synthesis type synchronous granulation but with sound files and partikkel offers a comprehensive control of grain characteristics on a grain-by-grain basis inspired by Curtis Roads’ encyclopedic book on granular synthesis Microsound.

	The function tables have been created with this code:

i0 ftgen 1, 0, 8192, 20, 3, 1

i0 ftgen 2, 0, 8192, 9, 1/2, 1, 0

i0 ftgen 3, 0, 8192, 20, 2, 1

i0 ftgen 4, 0, 8192, 20, 6, 1

i0 ftgen 5, 0, 8192, 20, 9, 1

i0 ftgen 6, 0, 8192, 20, 9, 1, 5 ↩︎

	 This decision is completely up to the user.↩︎

	As maximum irregularity we will consider a random position between the regular position of a grain and the regular position of the next neighbouring grain. (Half of this irregularity will be a random position between own regular and half of the distance to the neighbouring regular position.)↩︎

 ch039.xhtml

05 H. CONVOLUTION

Convolution is a mathematical procedure whereby one function is modified by another. Applied to audio, one of these functions might be a sound file or a stream of live audio whilst the other will be, what is referred to as, an impulse response file; this could actually just be another shorter sound file. The longer sound file or live audio stream will be modified by the impulse response so that the sound file will be imbued with certain qualities of the impulse response. It is important to be aware that convolution is a far from trivial process and that realtime performance may be a frequent consideration. Effectively every sample in the sound file to be processed will be multiplied in turn by every sample contained within the impulse response file. Therefore, for a 1 second impulse response at a sampling frequency of 44100 hertz, each and every sample of the input sound file or sound stream will undergo 44100 multiplication operations. Expanding upon this even further, for 1 second’s worth of a convolution procedure this will result in 44100 x 44100 (or 1,944,810,000) multiplications. This should provide some insight into the processing demands of a convolution procedure and also draw attention to the efficiency cost of using longer impulse response files.

The most common application of convolution in audio processing is reverberation but convolution is equally adept at, for example, imitating the filtering and time smearing characteristics of vintage microphones, valve amplifiers and speakers. It is also used sometimes to create more unusual special effects. The strength of convolution based reverbs is that they implement acoustic imitations of actual spaces based upon recordings of those spaces. All the quirks and nuances of the original space will be retained. Reverberation algorithms based upon networks of comb and allpass filters create only idealised reverb responses imitating spaces that don’t actually exist. The impulse response is a little like a fingerprint of the space. It is perhaps easier to manipulate characteristics such as reverb time and high frequency diffusion (i.e. lowpass filtering) of the reverb effect when using a Schroeder derived algorithm using comb and allpass filters but most of these modification are still possible, if not immediately apparent, when implementing reverb using convolution. The quality of a convolution reverb is largely dependent upon the quality of the impulse response used. An impulse response recording is typically achieved by recording the reverberant tail that follows a burst of white noise. People often employ techniques such as bursting balloons to achieve something approaching a short burst of noise. Crucially the impulse sound should not excessively favour any particular frequency or exhibit any sort of resonance. More modern techniques employ a sine wave sweep through all the audible frequencies when recording an impulse response. Recorded results using this technique will normally require further processing in order to provide a usable impulse response file and this approach will normally be beyond the means of a beginner.

Many commercial, often expensive, implementations of convolution exist both in the form of software and hardware but fortunately Csound provides easy access to convolution for free. Csound currently lists six different opcodes for convolution, convolve (convle), cross2, dconv, ftconv, ftmorf and pconvolve. convolve and dconv are earlier implementations and are less suited to realtime operation, cross2 relates to FFT-based cross synthesis and ftmorf is used to morph between similar sized function table and is less related to what has been discussed so far, therefore in this chapter we shall focus upon just two opcodes, pconvolve and ftconv.

pconvolve

pconvolve is perhaps the easiest of Csound’s convolution opcodes to use and the most useful in a realtime application. It uses the uniformly partitioned (hence the p) overlap-save algorithm which permits convolution with very little delay (latency) in the output signal. The impulse response file that it uses is referenced directly, i.e. it does not have to be previously loaded into a function table, and multichannel files are permitted. The impulse response file can be any standard sound file acceptable to Csound and does not need to be pre-analysed as is required by convolve.

Convolution procedures through their very nature introduce a delay in the output signal but pconvolve minimises this using the algorithm mentioned above. It will still introduce some delay but we can control this using the opcode’s ipartitionsize input argument. What value we give this will require some consideration and perhaps some experimentation as choosing a high partition size will result in excessively long delays (only an issue in realtime work) whereas very low partition sizes demand more from the CPU and too low a size may result in buffer under-runs and interrupted realtime audio. Bear in mind still that realtime CPU performance will depend heavily on the length of the impulse response file. The partition size argument is actually an optional argument and if omitted it will default to whatever the software buffer size is as defined by the -b command line flag. If we specify the partition size explicitly however, we can use this information to delay the input audio (after it has been used by pconvolve) so that it can be realigned in time with the latency affected audio output from pconvolve - this will be essential in creating a wet/dry mix in a reverb unit. Partition size is defined in sample frames therefore if we specify a partition size of 512, the delay resulting from the convolution procedure will be 512/sr, so about 12ms at a sample rate of 44100 Hz.

In the following example a monophonic drum loop sample undergoes processing through a convolution reverb implemented using pconvolve which in turn uses two different impulse files. The first file is a more conventional reverb impulse file taken in a stairwell whereas the second is a recording of the resonance created by striking a terracota bowl sharply. You can, of course, replace them with ones of your own but remain mindful of mono/stereo/multichannel integrity.

EXAMPLE 05H01_pconvolve.csd

<CsoundSynthesizer>

<CsOptions>
--env:SSDIR+=../SourceMaterials -odac
</CsOptions>

<CsInstruments>

sr = 44100
ksmps = 512
nchnls = 2
0dbfs = 1

gasig init 0

 instr 1 ; sound file player
gasig diskin2 p4,1,0,1
 endin

 instr 2 ; convolution reverb
; Define partion size.
; Larger values require less CPU but result in more latency.
; Smaller values produce lower latency but may cause
; realtime performance issues
ipartitionsize = 256
aconv pconvolve gasig, p4,ipartitionsize
; create a delayed version of the input signal that will sync
; with convolution output
adel delay gasig, ipartitionsize/sr
; create a dry/wet mix
aMix ntrpol adel, aconv*0.1, p5
 outs aMix ,aMix
gasig = 0
 endin

</CsInstruments>

<CsScore>
; instr 1. sound file player
; p4=input soundfile
; instr 2. convolution reverb
; p4=impulse response file
; p5=dry/wet mix (0 - 1)

i 1 0 8.6 "loop.wav"
i 2 0 10 "Stairwell.wav" 0.3

i 1 10 8.6 "loop.wav"
i 2 10 10 "dish.wav" 0.8
e
</CsScore>

</CsoundSynthesizer>
;example by Iain McCurdy

ftconv

ftconv (abbreviated from function table convolution) is perhaps slightly more complicated to use than pconvolve but offers additional options. The fact that ftconv utilises an impulse response that we must first store in a function table rather than directly referencing a sound file stored on disk means that we have the option of performing transformations upon the audio stored in the function table before it is employed by ftconv for convolution. This example begins just as the previous example: a mono drum loop sample is convolved first with a typical reverb impulse response and then with an impulse response derived from a terracotta bowl. After twenty seconds the contents of the function tables containing the two impulse responses are reversed by calling a UDO (instrument 3) and the convolution procedure is repeated, this time with a backwards reverb effect. When the reversed version is performed the dry signal is delayed further before being sent to the speakers so that it appears that the reverb impulse sound occurs at the culmination of the reverb build-up. This additional delay is switched on or off via p6 from the score. As with pconvolve, ftconv performs the convolution process in overlapping partitions to minimise latency. Again we can minimise the size of these partitions and therefore the latency but at the cost of CPU efficiency. ftconv’s documentation refers to this partition size as iplen (partition length). ftconv offers further facilities to work with multichannel files beyond stereo. When doing this it is suggested that you use GEN52 which is designed for this purpose. GEN01 seems to work fine, at least up to stereo, provided that you do not defer the table size definition (size=0). With ftconv we can specify the actual length of the impulse response - it will probably be shorter than the power-of-2 sized function table used to store it - and this action will improve realtime efficiency. This optional argument is defined in sample frames and defaults to the size of the impulse response function table.

EXAMPLE 05H02_ftconv.csd

<CsoundSynthesizer>
<CsOptions>
--env:SSDIR+=../SourceMaterials -odac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 128
nchnls = 2
0dbfs = 1

; impulse responses stored as mono GEN01 function tables
giStairwell ftgen 1,0,131072,1,"Stairwell.wav",0,0,0
giDish ftgen 2,0,131072,1,"dish.wav",0,0,0

gasig init 0

; reverse function table UDO
 opcode tab_reverse,0,i
ifn xin
iTabLen = ftlen(ifn)
iTableBuffer ftgentmp 0,0,-iTabLen,-2, 0
icount = 0
loop:
ival table iTabLen-icount-1, ifn
 tableiw ival,icount,iTableBuffer
 loop_lt icount,1,iTabLen,loop
icount = 0
loop2:
ival table icount,iTableBuffer
 tableiw ival,icount,ifn
 loop_lt icount,1,iTabLen,loop2
 endop

 instr 3 ; reverse the contents of a function table
 tab_reverse p4
 endin

 instr 1 ; sound file player
gasig diskin p4,1,0,1
 endin

 instr 2 ; convolution reverb
; buffer length
iplen = 1024
; derive the length of the impulse response
iirlen = nsamp(p4)
aconv ftconv gasig, p4, iplen,0, iirlen
; delay compensation. Add extra delay if reverse reverb is used.
adel delay gasig,(iplen/sr) + ((iirlen/sr)*p6)
; create a dry/wet mix
aMix ntrpol adel,aconv*0.1,p5
 outs aMix, aMix
gasig = 0
 endin

</CsInstruments>
<CsScore>
; instr 1. sound file player
; p4=input soundfile
; instr 2. convolution reverb
; p4=impulse response file
; p5=dry/wet mix (0 - 1)
; p6=reverse reverb switch (0=off,1=on)
; instr 3. reverse table contents
; p4=function table number

; 'stairwell' impulse response
i 1 0 8.5 "loop.wav"
i 2 0 10 1 0.3 0

; 'dish' impulse response
i 1 10 8.5 "loop.wav"
i 2 10 10 2 0.8 0

; reverse the impulse responses
i 3 20 0 1
i 3 20 0 2

; 'stairwell' impulse response (reversed)
i 1 21 8.5 "loop.wav"
i 2 21 10 1 0.5 1

; 'dish' impulse response (reversed)
i 1 31 8.5 "loop.wav"
i 2 31 10 2 0.5 1
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

Suggested avenues for further exploration with ftconv could be applying envelopes to, filtering and time stretching and compressing the function table stored impulse files before use in convolution.

The impulse responses used here are admittedly of rather low quality and whilst it is always recommended to maintain as high standards of sound quality as possible the user should not feel restricted from exploring the sound transformation possibilities possible form whatever source material they may have lying around. Many commercial convolution algorithms demand a proprietary impulse response format inevitably limiting the user to using the impulse responses provided by the software manufacturers but with Csound we have the freedom to use any sound we like.

liveconv

The liveconv opcode is an interesting extension of the ftconv opcode. Its main purpose is to make dynamical reloading of the table with the impulse response not only possible, but give an option to avoid artefacts in this reloading. This is possible as reloading can be done partition by partition.

The following example mimics the live input by short snippets of the fox.wav sound file. Once the new sound starts to fill the table (each time instr Record_IR is called), it sends the number 1 via software channel conv_update to the kupdate parameter of the liveconv opcode in instr Convolver. This will start the process of applying the new impulse response.

EXAMPLE 05H03_liveconv.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m128
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

;create IR table
giIR_record ftgen 0, 0, 131072, 2, 0

instr Input

 ain diskin "beats.wav", 1, 0, 1
 chnset ain, "input"
 if timeinsts() < 2 then
 outch 2, ain/2
 endif
endin

instr Record_IR

 ;set p3 to table duration
 p3 = ftlen(giIR_record)/sr
 iskip = p4
 irlen = p5

 ;mimic live input for impulse response
 asnd diskin "fox.wav", 1, iskip
 amp linseg 0, 0.01, 1, irlen, 1, 0.01, 0
 asnd *= amp

 ;fill IR table
 andx_IR line 0, p3, ftlen(giIR_record)
 tablew asnd, andx_IR, giIR_record

 ;send 1 at first k-cycle, otherwise 0
 ktrig init 1
 chnset ktrig, "conv_update"
 ktrig = 0

 ;output the IR for reference
 outch 1, asnd

endin

instr Convolver

 ;receive information about updating the table
 kupdate chnget "conv_update"

 ;different dB values for the different IR
 kdB[] fillarray -34, -35, -40, -28, -40, -40, -40
 kindx init -1
 if kupdate==1 then
 kindx += 1
 endif

 ;apply live convolution
 ain chnget "input"
 aconv liveconv ain, giIR_record, 2048, kupdate, 0
 outch 2, aconv*ampdb(kdB[kindx])

endin

</CsInstruments>
<CsScore>
;play input sound alone first
i "Input" 0 15.65

;record impulse response multiple times
; skip IR_dur
i "Record_IR" 2 1 0.17 0.093
i . 4 . 0.50 0.13
i . 6 . 0.76 0.19
i . 8 . 0.97 0.12
i . 10 . 1.72 0.12
i . 12 . 2.06 0.12
i . 14 . 2.37 0.27

;convolve continuously
i "Convolver" 2 13.65
</CsScore>
</CsoundSynthesizer>
;example by Oeyving Brandtsegg and Sigurd Saue

Some comments to the code of this example:

	Line 13: A function table is created in which the impulse responses can be recorded in real-time. A power of two size (here 217 = 131072) is preferred as the partition size will then be an integer multiple of the table size.

	Line 15-24: This instrument mimics the audio source on which the convolution will be applied. Here it is beats.wav, a short sound file which is looped.

	Line 27: Whenever instr Record_IR is called, it will record an impulse response to table giIR_record. The impulse response can be very small, but the whole table must be recorded anyway. So the duration of the instrument (p3) must be set to the time it takes for this recording. This is the length of the table divided by the sample rate: ftlen(giIR_record)/sr, here 131072 / 44100 = 2.972 seconds.

	Line 32-24: The second live input which is used for the impulse response, is mimicked here by the file fox.wav which is played back with different skip times in the different calls of the instrument. The envelope amp applies a short fade in and fade out to the short portion of the sample which we want to use. (asnd *= amp is a short form for asnd = asnd*amp.)

	Line 56-60: Depending on the intensity and the spectral content of the impulse response, the convolution will have rather different volume. The code in these lines is to balance it. The kdB[] array has seven different dB values for the seven calls of instr Record_IR. Each new update message (when kupdate gets 1) will increase the kindx pointer in the array so that these seven dB values are being applied in line 54 as ampdb(kdB[kindx]) to the convolution aconv.

 ch040.xhtml

05 I. FOURIER ANALYSIS / SPECTRAL PROCESSING

An audio signal can be described as continuous changes of amplitudes in time.1 This is what we call time-domain. With a Fourier Transform (FT), we can transfer this time-domain signal to the frequency domain. This can, for instance, be used to analyze and visualize the spectrum of the signal. Fourier transform and subsequent manipulations in the frequency domain open a wide area of far-reaching sound transformations, like time stretching, pitch shifting, cross synthesis and any kind of spectral modification.

General Aspects

Fourier Transform is a complex method. We will describe here in short what is most important to know about it for the user.

FT, STFT, DFT and FFT

As described in chapter 04 A, the mathematician J.B. Fourier (1768-1830) developed a method to approximate periodic functions by weighted sums of the trigonometric functions sine and cosine. As many sounds, for instance a violin or a flute tone, can be described as periodic functions,2 we should be able to analyse their spectral components by means of the Fourier Transform.

As continuous changes are inherent to sounds, the FT used in musical applications follows a principle which is well known from film or video. The continuous flow of time is divided into a number of fixed frames. If this number is big enough (at least 20 frames per second), the continuous flow can reasonably be divided to this sequence of FT snapshots. This is called the Short Time Fourier Transform (STFT).

Some care has to be taken to minimise the side effects of cutting the time into snippets. Firstly an envelope for the analysis frame is applied. As one analysis frame is often called window, the envelope shapes are called window function, window shape or window type. Most common are the Hamming and the von Hann (or Hanning) window functions:

[image: Hamming and Hanning window (1024 samples)]Hamming and Hanning window (1024 samples)

Secondly the analysis windows are not put side by side but as overlapping each other. The minimal overlap would be to start the next window at the middle of the previous one. More common is to have four overlaps which would result in this image:3

[image: Four overlapping Hanning windows (each of size=1024 samples)]Four overlapping Hanning windows (each of size=1024 samples)

We already measured the size of the analysis window in these figures in samples rather than in milliseconds. As we are dealing with digital audio, the Fourier Transform has become a Digital Fourier Transform (DFT). It offers some simplifications compared to the analogue FT as the number of amplitudes in one frame is finite. And moreover, there is a considerable gain of speed in the calculation if the window size is a power of two. This version of the DFT is called Fast Fourier Transform (FFT) and is implemented in all audio programming languages.

Window Size, Bins and Time-Frequency-Tradeoff

Given that one FFT analysis window size should last about 10-50 ms and that a power-of-two number of samples must be matched, for sr=44100 the sizes 512, 1024 or 2048 samples would be most suitable for one FFT window, thus resulting in a window length of about 11, 23 and 46 milliseconds respectively. Whether a smaller or lager window size is better, depends on different decisions.

First thing to know about this is that the frequency resolution in a FFT analysis window directly relates to its size. This is based on two aspects: the fundamental frequency and the number of potenial harmonics which are analysed and weighted via the Fourier Transform.

The fundamental frequency of one given FFT window is the inverse of its size in seconds related to the sample rate. For sr=44100 Hz, the fundamental frequencies are:

	86.13 Hz for a window size of 512 samples

	43.07 Hz for a window size of 1024 samples

	21.53 Hz for a window size of 2048 sample.

It is obvious that a larger window is better for frequency analysis at least for low frequencies. This is even more the case as the estimated harmonics which are scanned by the Fourier Transform are integer multiples of the fundamental frequency.4 These estimated harmonics or partials are usually called bins in FT terminology. So, again for sr=44100 Hz, the bins are:

	bin 1 = 86.13 Hz, bin 2 = 172.26 Hz, bin 3 = 258.40 Hz for size=512

	bin 1 = 43.07 Hz, bin 2 = 86.13 Hz, bin 3 = 129.20 Hz for size=1024

	bin 1 = 21.53 Hz, bin 2 = 43.07 Hz, bin 3 = 64.60 Hz for size=2048

This means that a larger window is not only better to analyse low frequencies, it also has a better frequency resolution in general. In fact, the window of size 2048 samples has 1024 analysis bins from the fundamental frequency 21.53 Hz to the Nyquist frequency 22050 Hz, each of them covering a frequency range of 21.53 Hz, whilst the window of size 512 samples has 256 analysis bins from the fundamental frequency 86.13 Hz to the Nyquist frequency 22050 Hz, each of them covering a frequency range of 86.13 Hz.5

[image: Bins up to 1000 Hz for different window sizes]Bins up to 1000 Hz for different window sizes

Why then not always use the larger window? — Because a larger window needs more time, or in other words: the time resolution is worse for a window size of 2048, is fair for a window size of 1024 and is better for a window size of 512.

This dilemma is known as time-frequency tradeoff. We must decide for each FFT situation whether the frequency resolution or the time resolution is more important. If, for instance, we have long piano chords with low frequencies, we may use the bigger window size. If we analyse spoken words of a female voice, we may use the smaller window size. Or to put it very pragmatic: We will use the medium FFT size (1024 samples) first, and in case we experience unsatisfying results (bad frequency response or smearing time resolution) we will change the window size.

FFT in Csound

The raw output of a Fourier Transform is a number of amplitude-phase pairs per analysis window frame. Most Csound opcodes use another format which transforms the phase values to frequencies. This format is related to the phase vocoder implementation, so the Csound opcodes of this class are called phase vocoder opcodes and start with pv or pvs.

The pv opcodes belong to the early implementation of FFT in Csound. This group comprises the opcodes pvadd, pvbufread, pvcross, pvinterp, pvoc, pvread and vpvoc. Note that these pv opcodes are not designed to work in real-time.

The opcodes which are designed for real-time spectral processing are called phase vocoder streaming opcodes. They all start with pvs; a rather complete list can be found on the Spectral Processing site in the Csound Manual. They are fast and easy to use. Because of their power and diversity they are one of the biggest strengths in using Csound.

We will focus on these pvs opcodes here, which for most use cases offer all what is desirable to work in the spectral domain. There is, however, a group of opcodes which allow to go back to the raw FFT output (without the phase vocoder format). They are listed as array-based spectral opcodes in the Csound Manual.

From Time Domain to Frequency Domain: pvsanal

For dealing with signals in the frequency domain, the pvs opcodes implement a new signal type, the frequency- or f-signal. If we start with an audio signal in time-domain as aSig, it will become fSig as result of the Fourier Transform.

There are several opcodes to perform this transform. The most simple one is pvsanal. It performs on-the-fly transformation of an input audio signal aSig to a frequency signal fSig. In addition to the audio signal input it requires some basic FFT settings:

	ifftsize is the size of the FFT. As explained above, 512, 1024 or 2048 samples are reasonable values here.

	ioverlap is the number of samples after which the next (overlapping) FFT frame starts (often refered to as hop size). Usually it is 1/4 of the FFT size, so for instance 256 samples for a FFT size of 1024.

	iwinsize is the size of the analysis window. Usually this is set to the same size as ifftsize.6

	iwintype is the shape of the analysis window. 0 will use a Hamming window, 1 will use a von-Hann (or Hanning) window.

The first example covers two typical situations:

	The audio signal derives from playing back a soundfile from the hard disk (instr 1).

	The audio signal is the live input (instr 2).

(Caution - this example can quickly start feeding back. Best results are with headphones.)

EXAMPLE 05I01_pvsanal.csd

<CsoundSynthesizer>
<CsOptions>
-i adc -o dac
--env:SSDIR+=../resources/SourceMaterials
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

;general values for fourier transform
gifftsiz = 1024
gioverlap = 256
giwintyp = 1 ;von hann window

instr 1 ;soundfile to fsig
asig soundin "fox.wav"
fsig pvsanal asig, gifftsiz, gioverlap, gifftsiz*2, giwintyp
aback pvsynth fsig
 outs aback, aback
endin

instr 2 ;live input to fsig
 prints "LIVE INPUT NOW!%n"
ain inch 1 ;live input from channel 1
fsig pvsanal ain, gifftsiz, gioverlap, gifftsiz, giwintyp
alisten pvsynth fsig
 outs alisten, alisten
endin

</CsInstruments>
<CsScore>
i 1 0 3
i 2 3 10
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

You should hear first the fox.wav sample, and then the slightly delayed live input signal. The delay (or latency) that you will observe will depend first of all on the general settings for realtime input (ksmps, -b and -B: see chapter 02 D), but it will also be added to by the FFT process. The window size here is 1024 samples, so the additional delay is 1024/44100 = 0.023 seconds. If you change the window size gifftsiz to 2048 or to 512 samples, you should notice a larger or shorter delay. For realtime applications, the decision about the FFT size is not only a question of better time resolution versus better frequency resolution, but it will also be a question concerning tolerable latency.

What happens in the example above? Firstly, the audio signal (asig or ain) is being analyzed and transformed to an f-signal. This is done via the opcode pvsanal. Then nothing more happens than the f-signal being transformed from the frequency domain signal back into the time domain (an audio signal). This is called inverse Fourier transformation (IFT or IFFT) and is carried out by the opcode pvsynth. In this case, it is just a test: to see if everything works, to hear the results of different window sizes and to check the latency, but potentially you can insert any other pvs opcode(s) in between this analysis and resynthesis:

Alternatives and Time Stretching: pvstanal / pvsbufread

Working with pvsanal to create an f-signal is easy and straightforward. But if we are using an already existing sound file, we are missing one of the interesting possibilities in working with FFT: time stretching. This we can obtain most simple when we use pvstanal instead. The t in pvstanal stands for table. This opcode performs FFT on a sound which has been loaded in a table.7 These are the main parameters:

	ktimescal is the time scaling ratio. 1 means normal speed, 0.5 means half speed, 2 means double speed.

	kpitch is the pitch scaling ratio. We will keep this here at 1 which means that the pitch is not altered.

	ktab is the function table which is being read.

pvstanal offers some more and quite interesting parameters but we will use it here only a simple way to demonstrate time stretching.

EXAMPLE 05I02_pvstanal.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

gifil ftgen 0, 0, 0, 1, "fox.wav", 0, 0, 1

instr 1
iTimeScal = p4
fsig pvstanal iTimeScal, 1, 1, gifil
aout pvsynth fsig
 outs aout, aout
endin

</CsInstruments>
<CsScore>
i 1 0 2.7 1 ;normal speed
i 1 3 1.3 2 ;double speed
i 1 6 4.5 0.5 ; half speed
i 1 12 17 0.1 ; 1/10 speed
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

We hear that for extreme time stretching artifacts arise. This is expected and a result of the FFT resynthesis. Later in this chapter we will discuss how to avoid these artifacts.

The other possibility to work with a table (buffer) and get the f-signal by reading it is to use pvsbufread. This opcode does not read from an audio buffer but needs a buffer which is filled with FFT data already. This job is done by the related opcode pvsbuffer. In the next example, we wrap this procedure in the User Defined Opcode FileToPvsBuf. This UDO is called at the first control cycle of instrument simple_time_stretch, when timeinstk() (which counts the control cycles in an instrument) outputs 1. After this job is done, the pvs-buffer is ready and stored in the global variable gibuffer.

Time stretching is then done in the first instrument in a similar way we performed above with pvstanal; only that we do not control directly the speed of reading but the real time position (in seconds) in the buffer. In the example, we start in the middle of the sound file and read the words “over the lazy dog” with a time stretch factor of about 10.

The second instrument can still use the buffer. Here a time stretch line is superimposed by a trembling random movement. It changes 10 times a second and interpolates to a point which is between - 0.2 seconds and + 0.2 seconds from the current position of the slow moving time pointer created by the expression linseg:k(0,p3,gilen).

So although a bit harder to use, pvsbufread offers some nice possibilities. And it is reported to have a very good performance, for instance when playing back a lot of files triggered by a MIDI keyboard.

EXAMPLE 05I03_pvsbufread.csd

<CsoundSynthesizer>
<CsOptions>
-o dac --env:SSDIR+=../SourceMaterials
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

opcode FileToPvsBuf, iik, kSooop
 ;writes an audio file to a fft-buffer if trigger is 1
 kTrig, Sfile, iFFTsize, iOverlap, iWinsize, iWinshape xin
 ;default values
 iFFTsize = (iFFTsize == 0) ? 1024 : iFFTsize
 iOverlap = (iOverlap == 0) ? 256 : iOverlap
 iWinsize = (iWinsize == 0) ? iFFTsize : iWinsize
 ;fill buffer
 if kTrig == 1 then
 ilen filelen Sfile
 kNumCycles = ilen * kr
 kcycle init 0
 while kcycle < kNumCycles do
 ain soundin Sfile
 fftin pvsanal ain, iFFTsize, iOverlap, iWinsize, iWinshape
 ibuf, ktim pvsbuffer fftin, ilen + (iFFTsize / sr)
 kcycle += 1
 od
 endif
 xout ibuf, ilen, ktim
endop

instr simple_time_stretch
 gibuffer, gilen, k0 FileToPvsBuf timeinstk(), "fox.wav"
 ktmpnt linseg 1.6, p3, gilen
 fread pvsbufread ktmpnt, gibuffer
 aout pvsynth fread
 out aout, aout
endin

instr tremor_time_stretch
 ktmpnt = linseg:k(0,p3,gilen) + randi:k(1/5,10)
 fread pvsbufread ktmpnt, gibuffer
 aout pvsynth fread
 out aout, aout
endin

</CsInstruments>
<CsScore>
i 1 0 10
i 2 11 20
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The mincer opcode also provides a high-quality time- and pitch-shifting algorithm. Other than pvstanal and pvsbufread it already transforms the f-signal back to time domain, thus outputting an audio signal.

Pitch shifting

Simple pitch shifting can be carried out by the opcode pvscale. All the frequency data in the f-signal are scaled by a certain value. Multiplying by 2 results in transposing by an octave upwards; multiplying by 0.5 in transposing by an octave downwards. For accepting cent values instead of ratios as input, the cent opcode can be used.

EXAMPLE 05I04_pvscale.csd

<CsoundSynthesizer>
<CsOptions>
-odac --env:SSDIR+=../SourceMaterials
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

gifftsize = 1024
gioverlap = gifftsize / 4
giwinsize = gifftsize
giwinshape = 1; von-Hann window

instr 1 ;scaling by a factor
ain soundin "fox.wav"
fftin pvsanal ain, gifftsize, gioverlap, giwinsize, giwinshape
fftscal pvscale fftin, p4
aout pvsynth fftscal
 out aout
endin

instr 2 ;scaling by a cent value
ain soundin "fox.wav"
fftin pvsanal ain, gifftsize, gioverlap, giwinsize, giwinshape
fftscal pvscale fftin, cent(p4)
aout pvsynth fftscal
 out aout/3
endin

</CsInstruments>
<CsScore>
i 1 0 3 1; original pitch
i 1 3 3 .5; octave lower
i 1 6 3 2 ;octave higher
i 2 9 3 0
i 2 9 3 400 ;major third
i 2 9 3 700 ;fifth
e
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Pitch shifting via FFT resynthesis is very simple in general, but rather more complicated in detail. With speech for instance, there is a problem because of the formants. If we simply scale the frequencies, the formants are shifted, too, and the sound gets the typical helium voice effect. There are some parameters in the pvscale opcode, and some other pvs-opcodes which can help to avoid this, but the quality of the results will always depend to an extend upon the nature of the input sound.

As mentioned above, simple pitch shifting can also be performed via pvstanal or mincer.

Spectral Shifting

Rather than multiplying the bin frequencies by a scaling factor, which results in pitch shifting, it is also possible to add a certain amount to the single bin frequencies. This results in an effect which is called frequency shifting. It resembles the shifted spectra in ring modulation which has been described at the end of chapter 04C.

The frequency-domain spectral shifting which is performed by the pvshift opcode has some important differences compared to the time-domain ring modulation: - Frequencies are only added or subtracted, not both. - A lowest frequency can be given. Below this frequency the spectral content will be left untouched; only above addition/subtraction will be processed. - Some options are implemented which try to preserve formants. This is of particular interest when working with human voice.

The following example performs some different shifts on a single viola tone.

EXAMPLE 05I05_pvshift.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr Shift
 aSig diskin "BratscheMono.wav"
 fSig pvsanal aSig, 1024, 256, 1024, 1
 fShift pvshift fSig, p4, p5
 aShift pvsynth fShift
 out aShift, aShift
endin

</CsInstruments>
<CsScore>
i "Shift" 0 9 0 0 ;no shift (base freq is 218)
i . + . 50 0 ;shift all by 50 Hz
i . + . 150 0 ;shift all by 150 Hz
i . + . 500 0 ;shift all by 500 Hz
i . + . 150 230 ;only above 230 Hz by 150 Hz
i . + . . 460 ;only above 460 Hz
i . + . . 920 ;only above 920 Hz
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Cross Synthesis

Working in the frequency domain makes it possible to combine or cross the spectra of two sounds. As the Fourier transform of an analysis frame results in a frequency and an amplitude value for each frequency bin, there are many different ways of performing cross synthesis. The most common methods are:

	Combine the amplitudes of sound A with the frequencies of sound B. This is the classical phase vocoder approach. If the frequencies are not completely from sound B, but represent an interpolation between A and B, the cross synthesis is more flexible and adjustable. This is what pvsvoc does.

	Combine the frequencies of sound A with the amplitudes of sound B. Give user flexibility by scaling the amplitudes between A and B: pvscross.

	Get the frequencies from sound A. Multiply the amplitudes of A and B. This can be described as spectral filtering. pvsfilter gives a flexible portion of this filtering effect.

This is an example of phase vocoding. It is nice to have speech as sound A, and a rich sound, like classical music, as sound B. Here the fox sample is being played at half speed and sings through the music of sound B:

EXAMPLE 05I06_phase_vocoder.csd

<CsoundSynthesizer>
<CsOptions>
-odac --env:SSDIR+=../SourceMaterials
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

;store the samples in function tables (buffers)
gifilA ftgen 0, 0, 0, 1, "fox.wav", 0, 0, 1
gifilB ftgen 0, 0, 0, 1, "ClassGuit.wav", 0, 0, 1

;general values for the pvstanal opcode
giamp = 1 ;amplitude scaling
gipitch = 1 ;pitch scaling
gidet = 0 ;onset detection
giwrap = 1 ;loop reading
giskip = 0 ;start at the beginning
gifftsiz = 1024 ;fft size
giovlp = gifftsiz/8 ;overlap size
githresh = 0 ;threshold

instr 1
;read "fox.wav" in half speed and cross with classical guitar sample
fsigA pvstanal .5, giamp, gipitch, gifilA, gidet, giwrap, giskip,\
 gifftsiz, giovlp, githresh
fsigB pvstanal 1, giamp, gipitch, gifilB, gidet, giwrap, giskip,\
 gifftsiz, giovlp, githresh
fvoc pvsvoc fsigA, fsigB, 1, 1
aout pvsynth fvoc
aenv linen aout, .1, p3, .5
 out aenv
endin

</CsInstruments>
<CsScore>
i 1 0 11
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The next example introduces pvscross:

EXAMPLE 05I07_pvscross.csd

<CsoundSynthesizer>
<CsOptions>
-odac --env:SSDIR+=../SourceMaterials
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

;store the samples in function tables (buffers)
gifilA ftgen 0, 0, 0, 1, "BratscheMono.wav", 0, 0, 1
gifilB ftgen 0, 0, 0, 1, "fox.wav", 0, 0, 1

;general values for the pvstanal opcode
giamp = 1 ;amplitude scaling
gipitch = 1 ;pitch scaling
gidet = 0 ;onset detection
giwrap = 1 ;loop reading
giskip = 0 ;start at the beginning
gifftsiz = 1024 ;fft size
giovlp = gifftsiz/8 ;overlap size
githresh = 0 ;threshold

instr 1
;cross viola with "fox.wav" in half speed
fsigA pvstanal 1, giamp, gipitch, gifilA, gidet, giwrap, giskip,\
 gifftsiz, giovlp, githresh
fsigB pvstanal .5, giamp, gipitch, gifilB, gidet, giwrap, giskip,\
 gifftsiz, giovlp, githresh
fcross pvscross fsigA, fsigB, 0, 1
aout pvsynth fcross
aenv linen aout, .1, p3, .5
 out aenv
endin

</CsInstruments>
<CsScore>
i 1 0 11
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The last example shows spectral filtering via pvsfilter. The well-known fox (sound A) is now filtered by the viola (sound B). Its resulting intensity is dependent upon the amplitudes of sound B, and if the amplitudes are strong enough, you will hear a resonating effect:

EXAMPLE 05I08_pvsfilter.csd

<CsoundSynthesizer>
<CsOptions>
-odac --env:SSDIR+=../SourceMaterials
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

;store the samples in function tables (buffers)
gifilA ftgen 0, 0, 0, 1, "fox.wav", 0, 0, 1
gifilB ftgen 0, 0, 0, 1, "BratscheMono.wav", 0, 0, 1

;general values for the pvstanal opcode
giamp = 1 ;amplitude scaling
gipitch = 1 ;pitch scaling
gidet = 0 ;onset detection
giwrap = 1 ;loop reading
giskip = 0 ;start at the beginning
gifftsiz = 1024 ;fft size
giovlp = gifftsiz/4 ;overlap size
githresh = 0 ;threshold

instr 1
;filters "fox.wav" (half speed) by the spectrum of the viola (double speed)
fsigA pvstanal .5, giamp, gipitch, gifilA, gidet, giwrap, giskip,\
 gifftsiz, giovlp, githresh
fsigB pvstanal 2, 5, gipitch, gifilB, gidet, giwrap, giskip,\
 gifftsiz, giovlp, githresh
ffilt pvsfilter fsigA, fsigB, 1
aout pvsynth ffilt
aenv linen aout, .1, p3, .5
 out aenv
endin

</CsInstruments>
<CsScore>
i 1 0 11
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Sound Quality in FFT Signals

Artifacts can easily occur in several situations of applying FFT. In example 05I02 we have seen how it is a side effect in extreme time stretching of spoken word. The opcodes pvsmooth and pvsblur can be a remedy against it, or at least a relief. The adjustment of the parameters are crucial here: - For pvsmooth, the kacf and the kfcf parameter apply a low pass filter on the amplitudes and the frequencies of the f-signal. The range is 0-1 each, where 0 is the lowest and 1 the highest cutoff frequency. Lower values will smooth more, so the effect will be stronger. - For pvsblur, the kblurtime depicts the time in seconds during which the single FFT windows will be averaged.

This is a trial to reduce the amount of artefacts. Note that pvstanal actually has the best method to reduce artifacts in spoken word, as it can leave onsets unstretched (kdetect which is on by default).

EXAMPLE 05I09_pvsmooth_pvsblur.csd

<CsoundSynthesizer>
<CsOptions>
-m 128
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

gifil ftgen 0, 0, 0, 1, "fox.wav", 0, 0, 1

instr Raw
 fStretch pvstanal 1/10, 1, 1, gifil, 0 ;kdetect is turned off
 aStretch pvsynth fStretch
 out aStretch, aStretch
endin

instr Smooth
 iAmpCutoff = p4 ;0-1
 iFreqCutoff = p5 ;0-1
 fStretch pvstanal 1/10, 1, 1, gifil, 0
 fSmooth pvsmooth fStretch, iAmpCutoff, iFreqCutoff
 aSmooth pvsynth fSmooth
 out aSmooth, aSmooth
endin

instr Blur
 iBlurtime = p4 ;sec
 fStretch pvstanal 1/10, 1, 1, gifil, 0
 fBlur pvsblur fStretch, iBlurtime, 1
 aSmooth pvsynth fBlur
 out aSmooth, aSmooth
endin

instr Smooth_var
 fStretch pvstanal 1/10, 1, 1, gifil, 0
 kAmpCut randomi .001, .1, 10, 3
 kFreqCut randomi .05, .5, 50, 3
 fSmooth pvsmooth fStretch, kAmpCut, kFreqCut
 aSmooth pvsynth fSmooth
 out aSmooth, aSmooth
endin

instr Blur_var
 kBlurtime randomi .005, .5, 200, 3
 fStretch pvstanal 1/10, 1, 1, gifil, 0
 fBlur pvsblur fStretch, kBlurtime, 1
 aSmooth pvsynth fBlur
 out aSmooth, aSmooth
endin

instr SmoothBlur
 iacf = p4
 ifcf = p5
 iblurtime = p6
 fanal pvstanal 1/10, 1, 1, gifil, 0
 fsmot pvsmooth fanal, iacf, ifcf
 fblur pvsblur fsmot, iblurtime, 1
 a_smt pvsynth fblur
 aOut linenr a_smt, 0, iblurtime*2, .01
 out aOut, aOut
endin

</CsInstruments>
<CsScore>
i "Raw" 0 16
i "Smooth" 17 16 .01 .1
i "Blur" 34 16 .2
i "Smooth_var" 51 16
i "Blur_var" 68 16
i "SmoothBlur" 85 16 1 1 0
i . 102 . .1 1 .25
i . 119 . .01 .1 .5
i . 136 . .001 .01 .75
i . 153 . .0001 .001 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz and farhad ilaghi hosseini

Retrieving Single Bins from FFT

It is not only possible to work with the full data set of the Fourier Transform, but to select single bins (amplitude-frequency pairs) from it. This can be useful for specialized resynthesis or for using the analysis data in any way.

pvsbin

The most fundamental extraction of single bins can be done with the pvsbin opcode. It takes the f-signal and the bin number as input, and returns the amplitude and the frequency of the bin. These values can be used to drive an oscillator which resynthesizes this bin.

The next example shows three different applications. At first, instr SingleBin is called four times, performing bin 10, 20, 30 and 40. Then instr FourBins calls the four instances of SingleBin at the same time, so we hear the four bins together. Finally, instr SlidingBins uses the fact that the bin number can be given to pvsbin as k-rate variable. The line kBin randomi 1,50,200,3 produces changing bins with a rate of 200 Hz, between bin 1 and 50.

Note that we are always smoothing the bin amplitudes kAmp by applying port(kAmp,.01). Raw kAmp instead will get clicks, whereas port(kAmp,.1) would remove the small attacks.

EXAMPLE 05I10_pvsbin.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m128
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr SingleBin
 iBin = p4 //bin number
 aSig diskin "fox.wav"
 fSig pvsanal aSig, 1024, 256, 1024, 1
 kAmp, kFreq pvsbin fSig, iBin
 aBin poscil port(kAmp,.01), kFreq
 aBin *= iBin/10
 out aBin, aBin
endin

instr FourBins
 iCount = 1
 while iCount < 5 do
 schedule("SingleBin",0,3,iCount*10)
 iCount += 1
 od
endin

instr SlidingBins
 kBin randomi 1,50,200,3
 aSig diskin "fox.wav"
 fSig pvsanal aSig, 1024, 256, 1024, 1
 kAmp, kFreq pvsbin fSig, int(kBin)
 aBin poscil port(kAmp,.01), kFreq
 aBin *= kBin/10
 out aBin, aBin
endin

</CsInstruments>
<CsScore>
i "SingleBin" 0 3 10
i . + . 20
i . + . 30
i . + . 40
i "FourBins" 13 3
i "SlidingBins" 17 3
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

pvstrace

Another approach to retrieve a selection of bins is done by the opcode pvstrace. Here, only the N loudest bins are written in the f signal which this opcode outputs.

This is a simple example first which lets pvstrace play in sequence the 1, 2, 4, 8 and 16 loudest bins.

EXAMPLE 05I11_pvstrace_simple

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr Simple
 aSig diskin "fox.wav"
 fSig pvsanal aSig, 1024, 256, 1024, 1
 fTrace pvstrace fSig, p4
 aTrace pvsynth fTrace
 out aTrace, aTrace
endin

</CsInstruments>
<CsScore>
i "Simple" 0 3 1
i . + . 2
i . + . 4
i . + . 8
i . + . 16
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

An optional second output of pvstrace returns an array with the kn bin numbers which are most prominent. As a demonstration, this example passes only the loudest bin to pvsbin and resynthesizes it with an oscillator unit.

EXAMPLE 05I12_pvstrace_array.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr LoudestBin
 aSig diskin "fox.wav"
 fSig pvsanal aSig, 1024, 256, 1024, 1
 fTrace, kBins[] pvstrace fSig, 1, 1
 kAmp, kFreq pvsbin fSig, kBins[0]
 aLoudestBin poscil port(kAmp,.01), kFreq
 out aLoudestBin, aLoudestBin
endin

</CsInstruments>
<CsScore>
i "LoudestBin" 0 3
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

	 Silence in the digital domain is not only when the ampltitudes are always zero. Silence is any constant amplitude, it be 0 or 1 or -0.2.↩︎

	 To put this simply: If we zoom into recordings of any pitched sound, we will see periodic repetitions. If a flute is playing a 440 Hz (A4) tone, we will see every 2.27 milliseconds (1/440 second) the same shape.↩︎

	 It can be a good choice to have 8 overlaps if CPU speed allows it.↩︎

	 Remember that FT is based on the assumption that the signal to be analysed is a periodic function.↩︎

	 For both, the bin 0 is to be added which analyses the energy at 0 Hz. So in general the number of bins is half of the window size plus one:

257 bins for size 512, 513 bins for size 1924, 1025 bins for size 2048.↩︎

	 It can be an integral multiple of ifftsize, so a window twice as large as the FFT size would be possible and may improve the quality of the anaylysis. But it also induces more latency which usually is not desirable.↩︎

	The table can also be recorded in live performance.↩︎

 ch041.xhtml

05 K. ATS RESYNTHESIS

The ATS Technique

General overview

The ATS technique (Analysis-Transformation-Synthesis) was developed by Juan Pampin. A comprehensive explanation of this technique can be found in his ATS Theory1 but, essentially, it may be said that it represents two aspects of the analyzed signal: the deterministic part and the stochastic or residual part. This model was initially conceived by Julius Orion Smith and Xavier Serra,2 but ATS refines certain aspects of it, such as the weighting of the spectral components on the basis of their Signal-to-Mask-Ratio (SMR).3

The deterministic part consists in sinusoidal trajectories with varying amplitude, frequency and phase. It is achieved by means of the depuration of the spectral data obtained using STFT (Short-Time Fourier Transform) analysis.

The stochastic part is also termed residual, because it is achieved by subtracting the deterministic signal from the original signal. For such purposes, the deterministic part is synthesized preserving the phase alignment of its components in the second step of the analysis. The residual part is represented with noise variable energy values along the 25 critical bands.4

The ATS technique has the following advantages:

	The splitting between deterministic and stochastic parts allows an independent treatment of two different qualitative aspects of an audio signal.

	The representation of the deterministic part by means of sinusoidal trajectories improves the information and presents it on a way that is much closer to the way that musicians think of sound. Therefore, it allows many classical spectral transformations (such as the suppression of partials or their frequency warping) in a more flexible and conceptually clearer way.

	The representation of the residual part by means of noise values among the 25 critical bands simplifies the information and its further reconstruction. Namely, it is possible to overcome the common artifacts that arise in synthesis using oscillator banks or IDFT, when the time of a noisy signal analyzed using a FFT is warped.

The ATS File Format

Instead of storing the crude data of the FFT analysis, the ATS files store a representation of a digital sound signal in terms of sinusoidal trajectories (called partials) with instantaneous frequency, amplitude, and phase changing along temporal frames. Each frame has a set of partials, each having (at least) amplitude and frequency values (phase information might be discarded from the analysis). Each frame might also contain noise information, modeled as time-varying energy in the 25 critical bands of the analysis residual. All the data is stored as 64 bits floats in the host’s byte order.

The ATS files start with a header at which their description is stored (such as frame rate, duration, number of sinusoidal trajectories, etc.). The header of the ATS files contains the following information:

	ats-magic-number (just the arbitrary number 123. for consistency checking)

	sampling-rate (samples/sec)

	frame-size (samples)

	window-size (samples)

	partials (number of partials)

	frames (number of frames)

	ampmax (max. amplitude)

	frqmax (max. frequency)

	dur (duration in sec.)

	type (frame type, see below)

The ATS frame type may be, at present, one of the four following:

Type 1: only sinusoidal trajectories with amplitude and frequency data. Type 2: only sinusoidal trajectories with amplitude, frequency and phase data. Type 3: sinusoidal trajectories with amplitude, and frequency data as well as residual data. Type 4: sinusoidal trajectories with amplitude, frequency and phase data as well as residual data.

So, after the header, an ATS file with frame type 4, np number of partials and nf frames will have:

Frame 1:
 Amp.of partial 1, Freq. of partial 1, Phase of partial 1
 ..
 ..
 Amp.of partial np, Freq. of partial np, Phase of partial np

 Residual energy value for critical band 1
 ..
 ..
 Residual energy value for critical band 25

..

Frame nf:
 Amp.of partial 1, Freq. of partial 1, Phase of partial 1
 ..
 ..
 Amp.of partial np, Freq. of partial np, Phase of partial np

 Residual energy value for critical band 1
 ..
 ..
 Residual energy value for critical band 25

As an example, an ATS file of frame type 4, with 100 frames and 10 partials will need:

	A header with 10 double floats values.

	100 * 10 * 3 double floats for storing the Amplitude, Frequency and Phase values of 10 partials along 100 frames.

	25 * 100 double floats for storing the noise information of the 25 critical bands along 100 frames.

 Header: 10 * 8 = 80 bytes
 Deterministic data: 3000 * 8 = 24000 bytes
 Residual data: 2500 * 8 = 20000 bytes

 Total: 80 + 24000 + 20000 = 44080 bytes

The following Csound code shows how to retrieve the data of the header of an ATS file.

EXAMPLE 05K01_ats_header.csd

<CsoundSynthesizer>
<CsOptions>
-n -m0
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

;Some macros
#define ATS_SR # 0 # ;sample rate (Hz)
#define ATS_FS # 1 # ;frame size (samples)
#define ATS_WS # 2 # ;window Size (samples)
#define ATS_NP # 3 # ;number of Partials
#define ATS_NF # 4 # ;number of Frames
#define ATS_AM # 5 # ;maximum Amplitude
#define ATS_FM # 6 # ;maximum Frequency (Hz)
#define ATS_DU # 7 # ;duration (seconds)
#define ATS_TY # 8 # ;ATS file Type

instr 1
iats_file=p4
;instr1 just reads the file header and loads its data into several variables
;and prints the result in the Csound prompt.
i_sampling_rate ATSinfo iats_file, $ATS_SR
i_frame_size ATSinfo iats_file, $ATS_FS
i_window_size ATSinfo iats_file, $ATS_WS
i_number_of_partials ATSinfo iats_file, $ATS_NP
i_number_of_frames ATSinfo iats_file, $ATS_NF
i_max_amp ATSinfo iats_file, $ATS_AM
i_max_freq ATSinfo iats_file, $ATS_FM
i_duration ATSinfo iats_file, $ATS_DU
i_ats_file_type ATSinfo iats_file, $ATS_TY

print i_sampling_rate
print i_frame_size
print i_window_size
print i_number_of_partials
print i_number_of_frames
print i_max_amp
print i_max_freq
print i_duration
print i_ats_file_type

endin

</CsInstruments>
<CsScore>
;change to put any ATS file you like
#define ats_file #"basoon-C4.ats"#
; st dur atsfile
i1 0 0 $ats_file
e
</CsScore>
</CsoundSynthesizer>
;Example by Oscar Pablo Di Liscia

Performing ATS Analysis with the ATSA Command-line Utility of Csound

All the Csound Opcodes devoted to ATS Synthesis need to read an ATS Analysis file. ATS was initially developed for the CLM environment (Common Lisp Music), but at present there exist several GNU applications that can perform ATS analysis, among them the Csound Package command-line utility ATSA which is based on the ATSA program (Di Liscia, Pampin, Moss) and was ported to Csound by Istvan Varga. The ATSA program (Di Liscia, Pampin, Moss) may be obtained at https://github.com/jamezilla/ats/tree/master/ats

Graphical Resources for Displaying ATS Analysis Files

If a plot of the ATS files is required, the ATSH software (Di Liscia, Pampin, Moss) may be used. ATSH is a C program that uses the GTK graphic environment. The source code and compilation directives can be obtained at https://github.com/jamezilla/ats/tree/master/ats

Another very good GUI program that can be used for such purposes is Qatsh, a Qt 4 port by Jean-Philippe Meuret. This one can be obtained at http://sourceforge.net/apps/trac/speed-dreams/browser/subprojects/soundeditor/trunk?rev=5250

Parameters Explanation and Proper Analysis Settings

The analysis parameters are somewhat numerous, and must be carefully tuned in order to obtain good results. A detailed explanation of the meaning of these parameters can be found at http://musica.unq.edu.ar/personales/odiliscia/software/ATSH-doc.htm%20

In order to get a good analysis, the sound to be analysed should meet the following requirements:

	The ATS analysis was meant to analyse isolated, individual sounds. This means that the analysis of sequences and/or superpositions of sounds, though possible, is not likely to render optimal results.

	Must have been recorded with a good signal-to-noise ratio, and should not contain unwanted noises.

	Must have been recorded without reverberation and/or echoes.

A good ATS analysis should meet the following requirements:

	Must have a good temporal resolution of the frequency, amplitude, phase and noise (if any) data. The tradeoff between temporal and frequency resolution is a very well known issue in FFT based spectral analysis.

	The Deterministic and Stochastic (also termed *residual) data must be reasonably separated in their respective ways of representation. This means that, if a sound has both, deterministic and stochastic data, the former must be represented by sinusoidal trajectories, whilst the latter must be represented by energy values among the 25 critical bands. This allows a more effective treatment of both types of data in the synthesis and transformation processes.

	If the analysed sound is pitched, the sinusoidal trajectories (Deterministic) should be as stable as possible and ordered according the original sound harmonics. This means that the first trajectory should represent the first (fundamental) harmonic, the second trajectory should represent the second harmonic, and so on. This allow to perform easily further transformation processes during resynthesis (such as, for example, selecting the odd harmonics to give them a different treatment than the others).

Whilst the first requirement is unavoidable, in order to get a useful analysis, the second and third ones are sometimes almost impossible to meet in full and their accomplishment depends often on the user objectives.

Synthesizing ATS Analysis Files

Synthesis Techniques Applied to ATS.

The synthesis techniques that are usually applied in order to get a synthesized sound that resembles the original sound as much as possible are detailed explained in Pampin 20115 and di Liscia 20136. However, it is worth pointing out that once the proper data is stored in an analysis file, the user is free to read and apply to this data any reasonable transformation/synthesis technique/s, thereby facilitating the creation of new and interesting sounds that need not be similar nor resemble the original sound.

Csound Opcodes for Reading ATS Data Files

The opcodes ATSread, ATSreadnz, ATSbufread, ATSinterpread and ATSpartialtap were essentially developed to read ATS data from ATS files.

ATSread

This opcode reads the deterministic ATS data from an ATS file. It outputs frequency/amplitude pairs of a sinusoidal trajectory corresponding to a specific partial number, according to a time pointer that must be delivered. As the unit works at k-rate, the frequency and amplitude data must be interpolated in order to avoid unwanted clicks in the resynthesis.

The following example reads and synthesizes the 10 partials of an ATS analysis corresponding to a steady 440 cps flute sound. Since the instrument is designed to synthesize only one partial of the ATS file, the mixing of several of them must be obtained performing several notes in the score (the use of Csound's macros is strongly recommended in this case). Though not the most practical way of synthesizing ATS data, this method facilitates individual control of the frequency and amplitude values of each one of the partials, which is not possible any other way. In the example that follows, even numbered partials are attenuated in amplitude, resulting in a sound that resembles a clarinet. Amplitude and frequency envelopes could also be used in order to affect a time changing weighting of the partials. Finally, the amplitude and frequency values could be used to drive other synthesis units, such as filters or FM synthesis networks of oscillators.

EXAMPLE 05K02_atsread.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

instr 1
iamp = p4 ;amplitude scaler
ifreq = p5 ;frequency scaler
ipar = p6 ;partial required
itab = p7 ;audio table
iatsfile = p8 ;ats file

idur ATSinfo iatsfile, 7 ;get duration

ktime line 0, p3, idur ;time pointer

kfreq, kamp ATSread ktime, iatsfile, ipar ;get frequency and amplitude values
aamp interp kamp ;interpolate amplitude values
afreq interp kfreq ;interpolate frequency values
aout oscil3 aamp*iamp, afreq*ifreq, itab ;synthesize with amp and freq scaling

 out aout
endin

</CsInstruments>
<CsScore>
; sine wave table
f 1 0 16384 10 1
#define atsfile #"flute-A5.ats"#

; start dur amp freq par tab atsfile
i1 0 3 1 1 1 1 $atsfile
i1 0 . .1 . 2 . $atsfile
i1 0 . 1 . 3 . $atsfile
i1 0 . .1 . 4 . $atsfile
i1 0 . 1 . 5 . $atsfile
i1 0 . .1 . 6 . $atsfile
i1 0 . 1 . 7 . $atsfile
i1 0 . .1 . 8 . $atsfile
i1 0 . 1 . 9 . $atsfile
i1 0 . .1 . 10 . $atsfile
e
</CsScore>
</CsoundSynthesizer>
;example by Oscar Pablo Di Liscia

We can use arrays to simplify the code in this example, and to choose different numbers of partials:

EXAMPLE 05K03_atsread2.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

gS_ATS_file = "flute-A5.ats" ;ats file
giSine ftgen 0, 0, 16384, 10, 1 ; sine wave table

instr Master ;call instr "Play" for each partial
iNumParts = p4 ;how many partials to synthesize
idur ATSinfo gS_ATS_file, 7 ;get ats file duration

iAmps[] array 1, .1 ;array for even and odd partials
iParts[] genarray 1,iNumParts ;creates array [1, 2, ..., iNumParts]

indx = 0 ;initialize index
 ;loop for number of elements in iParts array
until indx == iNumParts do
 ;call an instance of instr "Play" for each partial
 event_i "i", "Play", 0, p3, iAmps[indx%2], iParts[indx], idur
indx += 1 ;increment index
od ;end of do ... od block

 turnoff ;turn this instrument off as job has been done
endin

instr Play
iamp = p4 ;amplitude scaler
ipar = p5 ;partial required
idur = p6 ;ats file duration

ktime line 0, p3, idur ;time pointer

kfreq, kamp ATSread ktime, gS_ATS_file, ipar
aamp interp kamp ;interpolate amplitude values
afreq interp kfreq ;interpolate frequency values
aout oscil3 aamp*iamp, afreq, giSine ;synthesize with amp scaling

 out aout
endin
</CsInstruments>
<CsScore>
; strt dur number of partials
i "Master" 0 3 1
i . + . 3
i . + . 10
</CsScore>
</CsoundSynthesizer>
;example by Oscar Pablo Di Liscia and Joachim Heintz

ATSreadnz

This opcode is similar to ATSread in the sense that it reads the noise data of an ATS file, delivering k-rate energy values for the requested critical band. In order to this Opcode to work, the input ATS file must be either type 3 or 4 (types 1 and 2 do not contain noise data). ATSreadnz is simpler than ATSread, because whilst the number of partials of an ATS file is variable, the noise data (if any) is stored always as 25 values per analysis frame each value corresponding to the energy of the noise in each one of the critical bands. The three required arguments are: a time pointer, an ATS file name and the number of critical band required (which, of course, must have a value between 1 and 25).

The following example is similar to the previous. The instrument is designed to synthesize only one noise band of the ATS file, the mixing of several of them must be obtained performing several notes in the score. In this example the synthesis of the noise band is done using Gaussian noise filtered with a resonator (i.e., band-pass) filter. This is not the method used by the ATS synthesis Opcodes that will be further shown, but its use in this example is meant to lay stress again on the fact that the use of the ATS analysis data may be completely independent of its generation. In this case, also, a macro that performs the synthesis of the 25 critical bands was programmed. The ATS file used correspond to a female speech sound that lasts for 3.633 seconds, and in the examples is stretched to 10.899 seconds, that is three times its original duration. This shows one of the advantages of the Deterministic plus Stochastic data representation of ATS: the stochastic (“noisy”) part of a signal may be stretched in the resynthesis without the artifacts that arise commonly when the same data is represented by cosine components (as in the FFT based resynthesis). Note that, because the Stochastic noise values correspond to energy (i.e., intensity), in order to get the proper amplitude values, the square root of them must be computed.

EXAMPLE 05K04_atsreadnz.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

instr 1
itabc = p7 ;table with the 25 critical band frequency edges
iscal = 1 ;reson filter scaling factor
iamp = p4 ;amplitude scaler
iband = p5 ;energy band required
if1 table iband-1, itabc ;lower edge
if2 table iband, itabc ;upper edge
idif = if2-if1
icf = if1 + idif*.5 ;center frequency value
ibw = icf*p6 ;bandwidth
iatsfile = p8 ;ats file name

idur ATSinfo iatsfile, 7 ;get duration

ktime line 0, p3, idur ;time pointer

ken ATSreadnz ktime, iatsfile, iband ;get frequency and amplitude values
anoise gauss 1
aout reson anoise*sqrt(ken), icf, ibw, iscal ;synthesize with scaling

 out aout*iamp
endin

</CsInstruments>
<CsScore>
; sine wave table
f1 0 16384 10 1
;the 25 critical bands edge's frequencies
f2 0 32 -2 0 100 200 300 400 510 630 770 920 1080 1270 1480 1720 2000 2320 \
 2700 3150 3700 4400 5300 6400 7700 9500 12000 15500 20000

;an ats file name
#define atsfile #"female-speech.ats"#

;a macro that synthesize the noise data along all the 25 critical bands
#define all_bands(start'dur'amp'bw'file)
#
i1 $start $dur $amp 1 $bw 2 $file
i1 . . . 2 . . $file
i1 . . . 3 . . .
i1 . . . 4 . . .
i1 . . . 5 . . .
i1 . . . 6 . . .
i1 . . . 7 . . .
i1 . . . 8 . . .
i1 . . . 9 . . .
i1 . . . 10 . . .
i1 . . . 11 . . .
i1 . . . 12 . . .
i1 . . . 13 . . .
i1 . . . 14 . . .
i1 . . . 15 . . .
i1 . . . 16 . . .
i1 . . . 17 . . .
i1 . . . 18 . . .
i1 . . . 19 . . .
i1 . . . 20 . . .
i1 . . . 21 . . .
i1 . . . 22 . . .
i1 . . . 23 . . .
i1 . . . 24 . . .
i1 . . . 25 . . .
#

;ditto...original sound duration is 3.633 secs.
;stretched 300%
$all_bands(0'10.899'1'.05'$atsfile)

e
</CsScore>
</CsoundSynthesizer>
;example by Oscar Pablo Di Liscia

ATSbufread, ATSinterpread, ATSpartialtap.

The ATSbufread opcode reads an ATS file and stores its frequency and amplitude data into an internal table. The first and third input arguments are the same as in the ATSread and the ATSreadnz Opcodes: a time pointer and an ATS file name. The second input argument is a frequency scaler. The fourth argument is the number of partials to be stored. Finally, this Opcode may take two optional arguments: the first partial and the increment of partials to be read, which default to 0 and 1 respectively.

Although this opcode does not have any output, the ATS frequency and amplitude data is available to be used by other opcode. In this case, two examples are provided, the first one uses the ATSinterpread opcode and the second one uses the ATSpartialtap opcode.

The ATSinterpread opcode reads an ATS table generated by the ATSbufread opcode and outputs amplitude values interpolating them between the two amplitude values of the two frequency trajectories that are closer to a given frequency value. The only argument that this opcode takes is the desired frequency value.

The following example synthesizes five sounds. All the data is taken from the ATS file test.ats. The first and final sounds match the two frequencies closer to the first and the second partials of the analysis file and have their amplitude values closer to the ones in the original ATS file. The other three sounds (second, third and fourth), have frequencies that are in-between the ones of the first and second partials of the ATS file, and their amplitudes are scaled by an interpolation between the amplitudes of the first and second partials. The more the frequency requested approaches the one of a partial, the more the amplitude envelope rendered by ATSinterpread is similar to the one of this partial. So, the example shows a gradual morphing beween the amplitude envelope of the first partial to the amplitude envelope of the second according to their frequency values.

EXAMPLE 05K05_atsinterpread.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

instr 1

iamp = p4 ;amplitude scaler
ifreq = p5 ;frequency scaler
iatsfile = p7 ;atsfile
itab = p6 ;audio table
ifreqscal = 1 ;frequency scaler
ipars ATSinfo iatsfile, 3 ;how many partials
idur ATSinfo iatsfile, 7 ;get duration
ktime line 0, p3, idur ;time pointer

 ATSbufread ktime, ifreqscal, iatsfile, ipars ;reads an ATS buffer
kamp ATSinterpread ifreq ;get the amp values according to freq
aamp interp kamp ;interpolate amp values
aout oscil3 aamp, ifreq, itab ;synthesize

 out aout*iamp
endin

</CsInstruments>
<CsScore>
; sine wave table
f 1 0 16384 10 1
#define atsfile #"test.ats"#

; start dur amp freq atab atsfile
i1 0 3 1 440 1 $atsfile ;first partial
i1 + 3 1 550 1 $atsfile ;closer to first partial
i1 + 3 1 660 1 $atsfile ;half way between both
i1 + 3 1 770 1 $atsfile ;closer to second partial
i1 + 3 1 880 1 $atsfile ;second partial
e
</CsScore>
</CsoundSynthesizer>
;example by Oscar Pablo Di Liscia

The ATSpartialtap Opcode reads an ATS table generated by the ATSbufread Opcode and outputs the frequency and amplitude k-rate values of a specific partial number. The example presented here uses four of these opcodes that read from a single ATS buffer obtained using ATSbufread in order to drive the frequency and amplitude of four oscillators. This allows the mixing of different combinations of partials, as shown by the three notes triggered by the designed instrument.

EXAMPLE 05K06_atspartialtap.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

instr 1
iamp = p4/4 ;amplitude scaler
ifreq = p5 ;frequency scaler
itab = p6 ;audio table
ip1 = p7 ;first partial to be synthesized
ip2 = p8 ;second partial to be synthesized
ip3 = p9 ;third partial to be synthesized
ip4 = p10 ;fourth partial to be synthesized
iatsfile = p11 ;atsfile

ipars ATSinfo iatsfile, 3 ;get how many partials
idur ATSinfo iatsfile, 7 ;get duration

ktime line 0, p3, idur ;time pointer

 ATSbufread ktime, ifreq, iatsfile, ipars ;reads an ATS buffer

kf1,ka1 ATSpartialtap ip1 ;get the amp values according each partial number
af1 interp kf1
aa1 interp ka1
kf2,ka2 ATSpartialtap ip2 ;ditto
af2 interp kf2
aa2 interp ka2
kf3,ka3 ATSpartialtap ip3 ;ditto
af3 interp kf3
aa3 interp ka3
kf4,ka4 ATSpartialtap ip4 ;ditto
af4 interp kf4
aa4 interp ka4

a1 oscil3 aa1, af1*ifreq, itab ;synthesize each partial
a2 oscil3 aa2, af2*ifreq, itab ;ditto
a3 oscil3 aa3, af3*ifreq, itab ;ditto
a4 oscil3 aa4, af4*ifreq, itab ;ditto

 out (a1+a2+a3+a4)*iamp
endin

</CsInstruments>
<CsScore>
; sine wave table
f 1 0 16384 10 1
#define atsfile #"oboe-A5.ats"#

; start dur amp freq atab part#1 part#2 part#3 part#4 atsfile
i1 0 3 10 1 1 1 5 11 13 $atsfile
i1 + 3 7 1 1 1 6 14 17 $atsfile
i1 + 3 400 1 1 15 16 17 18 $atsfile

e
</CsScore>
</CsoundSynthesizer>
;example by Oscar Pablo Di Liscia

Synthesizing ATS data: ATSadd, ATSaddnz, ATSsinnoi. ATScross.

The four opcodes that will be presented in this section synthesize ATS analysis data internally and allow for some modifications of these data as well. A significant difference to the preceding opcodes is that the synthesis method cannot be chosen by the user. The synthesis methods used by all of these opcodes are fully explained in Juan Pampin 2011 and Oscar Pablo Di Liscia 2013 (see footnotes 1 and 6).

The ATSadd opcode synthesizes deterministic data from an ATS file using an array of table lookup oscillators whose amplitude and frequency values are obtained by linear interpolation of the ones in the ATS file according to the time of the analysis requested by a time pointer . The frequency of all the partials may be modified at k-rate, allowing shifting and/or frequency modulation. An ATS file, a time pointer and a function table are required. The table is supposed to contain either a cosine or a sine function, but nothing prevents the user from experimenting with other functions. Some care must be taken in the last case, so as not to produce foldover (frequency aliasing). The user may also request a number of partials smaller than the number of partials of the ATS file (by means of the inpars variable in the example below). There are also two optional arguments: a partial offset (i.e., the first partial that will be taken into account for the synthesis, by means of the ipofst variable in the example below) and a step to select the partials (by means of the inpincr variable in the example below). Default values for these arguments are 0 and 1 respectively. Finally, the user may define a final optional argument that references a function table that will be used to rescale the amplitude values during the resynthesis. The amplitude values of all the partials along all the frames are rescaled to the table length and used as indexes to lookup a scaling amplitude value in the table. For example, in a table of size 1024, the scaling amplitude of all the 0.5 amplitude values (-6 dBFS) that are found in the ATS file is in the position 512 (1024/2). Very complex filtering effects can be obtained by carefully setting these gating tables according to the amplitude values of a particular ATS analysis.

EXAMPLE 05K07_atsadd.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

;Some macros
#define ATS_NP # 3 # ;number of Partials
#define ATS_DU # 7 # ;duration

instr 1

/*read some ATS data from the file header*/
iatsfile = p11
i_number_of_partials ATSinfo iatsfile, $ATS_NP
i_duration ATSinfo iatsfile, $ATS_DU

iamp = p4 ;amplitude scaler
ifreqdev = 2^(p5/12) ;frequency deviation (p5=semitones up or down)
itable = p6 ;audio table

/*here we deal with number of partials, offset and increment issues*/
inpars = (p7 < 1 ? i_number_of_partials : p7) ;inpars can not be <=0
ipofst = (p8 < 0 ? 0 : p8) ;partial offset can not be < 0
ipincr = (p9 < 1 ? 1 : p9) ;partial increment can not be <= 0
imax = ipofst + inpars*ipincr ;max. partials allowed

if imax <= i_number_of_partials igoto OK
;if we are here, something is wrong!
;set npars to zero, so as the output will be zero and the user knows
print imax, i_number_of_partials
inpars = 0
ipofst = 0
ipincr = 1
OK: ;data is OK
/**/
igatefn = p10 ;amplitude scaling table

ktime linseg 0, p3, i_duration
asig ATSadd ktime, ifreqdev, iatsfile, itable, inpars, ipofst, ipincr, igatefn

 out asig*iamp
endin

</CsInstruments>
<CsScore>

;change to put any ATS file you like
#define ats_file #"basoon-C4.ats"#

;audio table (sine)
f1 0 16384 10 1
;some tables to test amplitude gating
;f2 reduce progressively partials with amplitudes from 0.5 to 1
;and eliminate partials with amplitudes below 0.5 (-6dBFs)
f2 0 1024 7 0 512 0 512 1
;f3 boost partials with amplitudes from 0 to 0.125 (-12dBFs)
;and attenuate partials with amplitudes from 0.125 to 1 (-12dBFs to 0dBFs)
f3 0 1024 -5 8 128 8 896 .001

; start dur amp freq atable npars offset pincr gatefn atsfile
i1 0 2.82 1 0 1 0 0 1 0 $ats_file
i1 + . 1 0 1 0 0 1 2 $ats_file
i1 + . .8 0 1 0 0 1 3 $ats_file

e
</CsScore>
</CsoundSynthesizer>
;example by Oscar Pablo Di Liscia

The ATSaddnz opcode synthesizes residual (“noise”) data from an ATS file using the method explained above. This opcode works in a similar fashion to ATSadd except that frequency warping of the noise bands is not permitted and the maximum number of noise bands will always be 25 (the 25 critical bands, see Zwicker/Fastl, footnote 3). The optional arguments offset and increment work in a similar fashion to that in ATSadd. The ATSaddnz opcode allows the synthesis of several combinations of noise bands, but individual amplitude scaling of them is not possible.

EXAMPLE 05K08_atsaddnz.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

;Some macros
#define NB # 25 # ;number noise bands
#define ATS_DU # 7 # ;duration

instr 1
/*read some ATS data from the file header*/
iatsfile = p8
i_duration ATSinfo iatsfile, $ATS_DU

iamp = p4 ;amplitude scaler

/*here we deal with number of partials, offset and increment issues*/
inb = (p5 < 1 ? $NB : p5) ;inb can not be <=0
ibofst = (p6 < 0 ? 0 : p6) ;band offset cannot be < 0
ibincr = (p7 < 1 ? 1 : p7) ;band increment cannot be <= 0
imax = ibofst + inb*ibincr ;max. bands allowed

if imax <= $NB igoto OK
;if we are here, something is wrong!
;set nb to zero, so as the output will be zero and the user knows
print imax, $NB
inb = 0
ibofst = 0
ibincr = 1
OK: ;data is OK
/**/
ktime linseg 0, p3, i_duration
asig ATSaddnz ktime, iatsfile, inb, ibofst, ibincr

 out asig*iamp
endin

</CsInstruments>
<CsScore>

;change to put any ATS file you like
#define ats_file #"female-speech.ats"#

; start dur amp nbands bands_offset bands_incr atsfile
i1 0 7.32 1 25 0 1 $ats_file ;all bands
i1 + . . 15 10 1 $ats_file ;from 10 to 25 step 1
i1 + . . 8 1 3 $ats_file ;from 1 to 24 step 3
i1 + . . 5 15 1 $ats_file ;from 15 to 20 step 1

e
</CsScore>
</CsoundSynthesizer>
;example by Oscar Pablo Di Liscia

The ATSsinnoi opcode synthesizes both deterministic and residual (“noise”) data from an ATS file. This opcode may be regarded as a combination of the two previous opcodes but with the allowance of individual amplitude scaling of the mixes of deterministic and residual parts. All the arguments of ATSsinnoi are the same as those for the two previous opcodes, except for the two k-rate variables ksinlev and knoislev that allow individual, and possibly time-changing, scaling of the deterministic and residual parts of the synthesis.

EXAMPLE 05K09_atssinnoi.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

;Some macros
#define ATS_NP # 3 # ;number of Partials
#define ATS_DU # 7 # ;duration

instr 1
iatsfile = p11
/*read some ATS data from the file header*/
i_number_of_partials ATSinfo iatsfile, $ATS_NP
i_duration ATSinfo iatsfile, $ATS_DU
print i_number_of_partials

iamp = p4 ;amplitude scaler
ifreqdev = 2^(p5/12) ;frequency deviation (p5=semitones up or down)
isinlev = p6 ;deterministic part gain
inoislev = p7 ;residual part gain

/*here we deal with number of partials, offset and increment issues*/
inpars = (p8 < 1 ? i_number_of_partials : p8) ;inpars can not be <=0
ipofst = (p9 < 0 ? 0 : p9) ;partial offset can not be < 0
ipincr = (p10 < 1 ? 1 : p10) ;partial increment can not be <= 0
imax = ipofst + inpars*ipincr ;max. partials allowed

if imax <= i_number_of_partials igoto OK
;if we are here, something is wrong!
;set npars to zero, so as the output will be zero and the user knows
prints "wrong number of partials requested", imax, i_number_of_partials
inpars = 0
ipofst = 0
ipincr = 1
OK: ;data is OK
/**/

ktime linseg 0, p3, i_duration
asig ATSsinnoi ktime, isinlev, inoislev, ifreqdev, iatsfile,
 inpars, ipofst, ipincr

 out asig*iamp
endin

</CsInstruments>
<CsScore>
;change to put any ATS file you like
#define ats_file #"female-speech.ats"#

; start dur amp freqdev sinlev noislev npars offset pincr atsfile
i1 0 3.66 .79 0 1 0 0 0 1 $ats_file
;deterministic only
i1 + 3.66 .79 0 0 1 0 0 1 $ats_file
;residual only
i1 + 3.66 .79 0 1 1 0 0 1 $ats_file
;deterministic and residual
; start dur amp freqdev sinlev noislev npars offset pincr atsfile
i1 + 3.66 2.5 0 1 0 80 60 1 $ats_file
;from partial 60 to partial 140, deterministic only
i1 + 3.66 2.5 0 0 1 80 60 1 $ats_file
;from partial 60 to partial 140, residual only
i1 + 3.66 2.5 0 1 1 80 60 1 $ats_file
;from partial 60 to partial 140, deterministic and residual
e
</CsScore>
</CsoundSynthesizer>
;example by Oscar Pablo Di Liscia

ATScross is an opcode that performs some kind of “interpolation” of the amplitude data between two ATS analyses. One of these two ATS analyses must be obtained using the ATSbufread opcode (see above) and the other is to be loaded by an ATScross instance. Only the deterministic data of both analyses is used. The ATS file, time pointer, frequency scaling, number of partials, partial offset and partial increment arguments work the same way as usages in previously described opcodes. Using the arguments kmylev and kbuflev the user may define how much of the amplitude values of the file read by ATSbufread is to be used to scale the amplitude values corresponding to the frequency values of the analysis read by ATScross. So, a value of 0 for kbuflev and 1 for kmylev will retain the original ATS analysis read by ATScross unchanged whilst the converse (kbuflev =1 and kmylev=0) will retain the frequency values of the ATScross analysis but scaled by the amplitude values of the ATSbufread analysis. As the time pointers of both units need not be the same, and frequency warping and number of partials may also be changed, very complex cross synthesis and sound hybridation can be obtained using this opcode.

EXAMPLE 05K10_atscross.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

;ATS files
#define ats1 #"flute-A5.ats"#
#define ats2 #"oboe-A5.ats"#

instr 1
iamp = p4 ;general amplitude scaler

ilev1 = p5 ;level of iats1 partials
ifd1 = 2^(p6/12) ;frequency deviation for iats1 partials

ilev2 = p7 ;level of ats2 partials
ifd2 = 2^(p8/12) ;frequency deviation for iats2 partials

itau = p9 ;audio table

/*get ats file data*/
inp1 ATSinfo $ats1, 3
inp2 ATSinfo $ats2, 3
idur1 ATSinfo $ats1, 7
idur2 ATSinfo $ats2, 7

ktime line 0, p3, idur1
ktime2 line 0, p3, idur2

 ATSbufread ktime, ifd1, $ats1, inp1
aout ATScross ktime2, ifd2, $ats2, itau, ilev2, ilev1, inp2

 out aout*iamp

endin

</CsInstruments>
<CsScore>

; sine wave for the audio table
f1 0 16384 10 1

; start dur amp lev1 f1 lev2 f2 table
i1 0 2.3 .75 0 0 1 0 1 ;original oboe
i1 + . . 0.25 . .75 . . ;oboe 75%, flute 25%
i1 + . . 0.5 . 0.5 . . ;oboe 50%, flute 50%
i1 + . . .75 . .25 . . ;oboe 25%, flute 75%
i1 + . . 1 . 0 . . ;oboe partials with flute's amplitudes

e
</CsScore>
</CsoundSynthesizer>
;example by Oscar Pablo Di Liscia

	Juan Pampin, 2011, ATS_theory↩︎

	Xavier Serra and Julius O. Smith III, 1990, A Sound Analysis/Synthesis System Based on a Deterministic plus Stochastic Decomposition, Computer Music Journal, Vol.14, 4, MIT Press, USA↩︎

	Eberhard Zwicker and Hugo Fastl, 1990, Psychoacoustics, Facts and Models. Springer, Berlin, Heidelberg↩︎

	Cf. Zwicker/Fastl (above footnote)↩︎

	Juan Pampin, 2011, ATS_theory (see footnote 1)↩︎

	Oscar Pablo Di Liscia, 2013, A Pure Data toolkit for real-time synthesis of ATS spectral data http://lac.linuxaudio.org/2013/papers/26.pdf↩︎

 ch042.xhtml

06 A. RECORD AND PLAY SOUNDFILES

Playing Soundfiles from Disk - diskin

The simplest way of playing a sound file from Csound is to use the diskin opcode. This opcode reads audio directly from the hard drive location where it is stored, i.e. it does not pre-load the sound file at initialisation time. This method of sound file playback is therefore good for playing back very long, or parts of very long, sound files. It is perhaps less well suited to playing back sound files where dense polyphony, multiple iterations and rapid random access to the file is required. In these situations reading from a function table (buffer) is preferable.1

Sound File Name, Absolute or Relative Path

The first input argument for diskin denotes the file which is to me read. It is called ifilcod which stems from old Csound times where a sound file should be named “soundin.1” and could then be read by the opcode soundin as 1 for ifilcod. For now we usually give a string here as input, so Sfilcod would be a better name for the variable. The string can be either a name like “loop.wav”, or it can contain the full path to the sound file like “/home/me/Desktop/loop.wav”. Usually we will prefer to give a name instead of full path – not only because it is shorter, but also because it makes our csd more portable. Csound will recognize a sound file by its name in these cases:

	The csd file and the sound file are in the same directory (folder). This is the most simple way and gives full flexibility to run the same csd from any other computer, just by copying the whole folder.

	The folder which contains the sound file is known to Csound. This can be done with the option –env:SSDIR+=/path/to/sound/folder. Csound will then add this folder to the Sound Sample Directory (SSDIR) in which it will look for sound samples.

A path to look for sound files can not only be given as absolute path but also as relative path. Let us assume we have this structure for the csd file and the sound file:

|-home
 |-me
 superloop.csd
 |-Desktop
 loop.wav

The superloop.csd Csound file is not in the same directory as the loop.wav sound file. But relative to the csd file, the sound is in Desktop, and Desktop is indeed in the same folder as the superloop.csd file. So we could write this:

aSound diskin "Desktop/loop.wav"

Or we could use this in the CsOptions tag:

--env:SSDIR+=Desktop

And then again just give the raw name to diskin:

aSound diskin "loop.wav"

This is another example for a possible file structure:

|-home
 |-me
 |-samples
 loop.wav
 |-Desktop
 superloop.csd

Now the loop.wav is relative to the csd file not in a subfolder, but on the higher level folder called me, and then in the folder samples. So we have to specify the relative path like this: “Go up, then look into the folder samples.” Going up is specified as two dots, so this would be relative path for diskin:

aSound diskin "../samples/loop.wav"

Again, we could alternatively use –env:SSDIR+=../samples in the CsOptions and then simple refer to “loop.wav”.

Diskins Output Arguments: Single or Array

In the Csound Manual we see two different options for outputs, left hand side of the diskin opcode:

ar1 [, ar2 [, ar3 [, ... arN]]] diskin ...
ar1[] diskin ...

The first line is the traditional way. We will output here as many audio signals as the sound file has channels. Many Csound user will have read this message:

INIT ERROR in instr 1 line 17: diskin2:
number of output args inconsistent with number of file channels

This inconsistency of the number of output arguments and the number of file channels happens, if we use the stereo file “magic.wav” but write:

aSample diskin "magic.wav"

Or vice versa, we use the mono file “nice.wav” but write:

aLeft, aRight diskin "nice.wav"

Since Csound6, however, we have the second option mentioned on Csound’s manual page for diskin:

ar1[] diskin ...

If the output variable name is followed by square brackets, diskin will write its output in an audio array.2 The size (length) of this array mirrors the number of channels in the audio file: 1 for a mono file, 2 for a stereo file, 4 for a quadro file, etc.

This is a very convenient method to avoid the mismatch error between output arguments and file channels. In the example below we will use this method. We write the audio in an array and will only use the first element for the output. So this will work with any number of channels for the input file.

Speed, Skiptime and Loop

After the mandatory file name or path string, we can pass some optional input arguments:

	kpitch specifies the speed of reading the sound file. The default is 1 here, which means normal speed. 2 would result in double speed (octave higher and half time to read through the sound file), 0.5 would result in half speed (octave lower and twice as much time needed for reading). Negative values read backwards. As this is a k-rate parameter, it offers a lot of possibilities for modification already.

	iskiptim specifies the point in the sound file where reading starts. The default is 0 (= from the beginning); 2 would mean to skip the first two seconds of the sound file.

	iwraparound answers the question what diskin will do when reading reaches the end of the file. The default is here 0 which means that reading stops. If we put 1 here, diskin will loop the sound file.

EXAMPLE 06A01_Play_soundfile.csd

<CsoundSynthesizer>
<CsOptions>
-odac --env:SSDIR+=../SourceMaterials
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

;file should be found in the 'SourceMaterials' folder
gS_file = "fox.wav"

instr Defaults
 kSpeed = p4 ; playback speed
 iSkip = p5 ; inskip into file (in seconds)
 iLoop = p6 ; looping switch (0=off 1=on)
 aRead[] diskin gS_file, kSpeed, iSkip, iLoop
 out aRead[0], aRead[0] ;output first channel twice
endin

instr Scratch
 kSpeed randomi -1, 1.5, 5, 3
 aRead[] diskin gS_file, kSpeed, 1, 1
 out aRead[0], aRead[0]
endin
</CsInstruments>
<CsScore>
; dur speed skip loop
i 1 0 4 1 0 0 ;default values
i . 4 3 1 1.7 0 ;skiptime
i . 7 6 0.5 0 0 ;speed
i . 13 6 1 0 1 ;loop
i 2 20 20
</CsScore>
</CsoundSynthesizer>
;example written by Iain McCurdy and joachim heintz

Writing Audio to Disk

The traditional method of rendering Csound’s audio to disk is to specify a sound file as the audio destination in the Csound command or under <CsOptions>. In fact before real-time performance became a possibility this was the only way in which Csound was used. With this method, all audio that is piped to the output using out and will be written to this file. The number of channels that the file will contain will be determined by the number of channels specified in the orchestra header using nchnls. The disadvantage of this method is that we cannot simultaneously listen to the audio in real-time.

EXAMPLE 06A02_Write_soundfile.csd

<CsoundSynthesizer>
<CsOptions>
; audio output destination is given as a sound file (wav format specified)
; this method is for deferred time performance,
; simultaneous real-time audio will not be possible
-oWriteToDisk1.wav -W
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

 instr 1 ; a simple tone generator
aEnv expon 0.2, p3, 0.001 ; a percussive envelope
aSig poscil aEnv, cpsmidinn(p4) ; audio oscillator
 out aSig ; send audio to output
 endin
</CsInstruments>

<CsScore>
; two chords
i 1 0 5 60
i 1 0.1 5 65
i 1 0.2 5 67
i 1 0.3 5 71

i 1 3 5 65
i 1 3.1 5 67
i 1 3.2 5 73
i 1 3.3 5 78
</CsScore>
</CsoundSynthesizer>
; example written by Iain McCurdy

Both Audio to Disk and RTAudio Output - fout with monitor

Recording audio output to disk whilst simultaneously monitoring in real-time is best achieved through combining the opcodes monitor and fout. monitor can be used to create an audio signal that consists of a mix of all audio output from all instruments. This audio signal can then be rendered to a sound file on disk using fout. monitor can read multi-channel outputs but its number of outputs should correspond to the number of channels defined in the header using nchnls. In this example it is read just in mono. fout can write audio in a number of formats and bit depths and it can also write multi-channel sound files.

EXAMPLE 06A03_Write_RT.csd

<CsoundSynthesizer>
<CsOptions>
-odac ; activate real-time audio output
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

gaSig init 0; set initial value for global audio variable (silence)

 instr 1 ; a simple tone generator
aEnv expon 0.2, p3, 0.001 ; percussive amplitude envelope
aSig poscil aEnv, cpsmidinn(p4) ; audio oscillator
 out aSig
 endin

 instr 2 ; write to a file (always on in order to record everything)
aSig monitor ; read audio from output bus
 fout "WriteToDisk2.wav",4,aSig ; write audio to file (16bit mono)
 endin

</CsInstruments>
<CsScore>
; activate recording instrument to encapsulate the entire performance
i 2 0 8.3

; two chords
i 1 0 5 60
i 1 0.1 5 65
i 1 0.2 5 67
i 1 0.3 5 71

i 1 3 5 65
i 1 3.1 5 67
i 1 3.2 5 73
i 1 3.3 5 78
</CsScore>
</CsoundSynthesizer>
;example written by Iain McCurdy

	 As this is a matter of speed, it depends both, on the complexity of the csound file(s) you are running, and the speed of the hard disk. A Solid State Disk is much faster than a traditional HDD, so a Csound file with a lot of diskin processes may run fine on a SSD which did not run on a HDD.↩︎

	 Chapter 03 E gives more explanations about arrays in Csound.↩︎

 ch043.xhtml

06 B. RECORD AND PLAY BUFFERS

Playing Audio from RAM - flooper2

Csound offers many opcodes for playing back sound files that have first been loaded into a function table (and therefore are loaded into RAM). Some of these offer higher quality at the expense of computation speed; some are simpler and less fully featured.

One of the newer and easier to use opcodes for this task is flooper2. As its name might suggest it is intended for the playback of files with looping. flooper2 can also apply a cross-fade between the end and the beginning of the loop in order to smooth the transition where looping takes place.

In the following example a sound file that has been loaded into a GEN01 function table is played back using flooper2. The opcode also includes a parameter for modulating playback speed/pitch. There is also the option of modulating the loop points at k-rate. In this example the entire file is simply played and looped. As always, you can replace the sound file with one of your own. Note that GEN01 accepts mono or stereo files; the number of output arguments for flooper2 must correspond with the mono or stereo table.

EXAMPLE 06B01_flooper2.csd

<CsoundSynthesizer>
<CsOptions>
-odac ; activate real-time audio
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

; STORE AUDIO IN RAM USING GEN01 FUNCTION TABLE
giSoundFile ftgen 0, 0, 0, 1, "loop.wav", 0, 0, 0

 instr 1 ; play audio from function table using flooper2 opcode
kAmp = 1 ; amplitude
kPitch = p4 ; pitch/speed
kLoopStart = 0 ; point where looping begins (in seconds)
kLoopEnd = nsamp(giSoundFile)/sr; loop end (end of file)
kCrossFade = 0 ; cross-fade time
; read audio from the function table using the flooper2 opcode
aSig flooper2 kAmp,kPitch,kLoopStart,kLoopEnd,kCrossFade,giSoundFile
 out aSig, aSig ; send audio to output
 endin

</CsInstruments>
<CsScore>
; p4 = pitch
; (sound file duration is 4.224)
i 1 0 [4.224*2] 1
i 1 + [4.224*2] 0.5
i 1 + [4.224*1] 2
e
</CsScore>
</CsoundSynthesizer>
; example written by Iain McCurdy

Csound’s Built-in Record-Play Buffer - sndloop

Csound has an opcode called sndloop which provides a simple method of recording some audio into a buffer and then playing it back immediately. The duration of audio storage required is defined when the opcode is initialized. In the following example two seconds is provided. Once activated, as soon as two seconds of live audio has been recorded by sndloop, it immediately begins playing it back in a loop. sndloop allows us to modulate the speed/pitch of the played back audio as well as providing the option of defining a crossfade time between the end and the beginning of the loop. In the example pressing “r” on the computer keyboard activates record followed by looped playback, pressing “s” stops record or playback, pressing “+” increases the speed and therefore the pitch of playback and pressing “-” decreases the speed/pitch of playback. If playback speed is reduced below zero it enters the negative domain, in which case playback will be reversed.

You will need to have a microphone connected to your computer in order to use this example.

EXAMPLE 06B02_sndloop.csd

<CsoundSynthesize>
<CsOptions>
; real-time audio in and out are both activated
-iadc -odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

 instr 1
; PRINT INSTRUCTIONS
 prints "Press 'r' to record, 's' to stop playback, "
 prints "'+' to increase pitch, '-' to decrease pitch.\\n"
; SENSE KEYBOARD ACTIVITY
kKey sensekey; sense activity on the computer keyboard
aIn inch 1 ; read audio from first input channel
kPitch init 1 ; initialize pitch parameter
iDur init 2 ; inititialize duration of loop parameter
iFade init 0.05 ; initialize crossfade time parameter
 if kKey = 114 then ; if 'r' has been pressed...
kTrig = 1 ; set trigger to begin record-playback
 elseif kKey = 115 then ; if 's' has been pressed...
kTrig = 0 ; set trigger to turn off record-playback
 elseif kKey = 43 then ; if '+' has been pressed...
kPitch = kPitch + 0.02 ; increment pitch parameter
 elseif kKey = 45 then ; if '-' has been pressed
kPitch = kPitch - 0.02 ; decrement pitch parameter
 endif ; end of conditional branches
; CREATE SNDLOOP INSTANCE
aOut, kRec sndloop aIn, kPitch, kTrig, iDur, iFade ; (kRec output is not used)
 out aOut, aOut ; send audio to output
 endin

</CsInstruments>
<CsScore>
i 1 0 3600 ; instr 1 plays for 1 hour
</CsScore>
</CsoundSynthesizer>
;example written by Iain McCurdy

Recording to and Playback from a Function Table

Writing to and reading from buffers can also be achieved through the use of Csound’s opcodes for table reading and writing operations. Although the procedure is a little more complicated than that required for sndloop it is ultimately more flexible. In the next example separate instruments are used for recording to the table and for playing back from the table. Another instrument which runs constantly scans for activity on the computer keyboard and activates the record or playback instruments accordingly. For writing to the table we will use the tablew opcode and for reading from the table we will use the table opcode (if we were to modulate the playback speed it would be better to use one of Csound’s interpolating variations of table such as tablei or table3. Csound writes individual values to table locations, the exact table locations being defined by an index. For writing continuous audio to a table this index will need to be continuously moving to the next location for every sample. This moving index (or pointer) can be created with an a-rate line or a phasor. The next example uses line. When using Csound’s table operation opcodes we first need to create that table, either in the orchestra header or in the score. The duration of the audio buffer in seconds is multiplied by the sample rate to calculate the proper table size.

EXAMPLE 06B03_RecPlayToTable.csd

<CsoundSynthesizer>
<CsOptions>
; real-time audio in and out are both activated
-iadc -odac -m128
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giTabLenSec = 3 ;table duration in seconds
giBuffer ftgen 0, 0, giTabLenSec*sr, 2, 0; table for audio data storage
maxalloc 2,1 ; allow only one instance of the recording instrument at a time!

 instr 1 ; Sense keyboard activity. Trigger record or playback accordingly.
 prints "Press 'r' to record, 'p' for playback.\n"
kKey sensekey ; sense activity on the computer keyboard
 if kKey==114 then ; if ASCCI value of 114 ('r') is output
event "i", 2, 0, giTabLenSec ; activate recording instrument (2)
 endif
 if kKey==112 then ; if ASCCI value of 112 ('p) is output
event "i", 3, 0, giTabLenSec ; activate playback instrument
 endif
 endin

 instr 2 ; record to buffer
; -- print progress information to terminal --
 prints "recording"
 printks ".", 0.25 ; print '.' every quarter of a second
krelease release ; sense when note is in final k-rate pass...
 if krelease==1 then ; then ..
 printks "\ndone\n", 0 ; ... print a message
 endif
; -- write audio to table --
ain inch 1 ; read audio from live input channel 1
andx line 0,p3,ftlen(giBuffer); create an index for writing to table
 tablew ain,andx,giBuffer ; write audio to function table
endin

 instr 3 ; playback from buffer
; -- print progress information to terminal --
 prints "playback"
 printks ".", 0.25 ; print '.' every quarter of a second
krelease release ; sense when note is in final k-rate pass
 if krelease=1 then ; then ...
 printks "\ndone\n", 0 ; ... print a message
 endif; end of conditional branch
; -- read audio from table --
aNdx line 0, p3, ftlen(giBuffer) ;create an index for reading from table
aRead table aNdx, giBuffer ; read audio to audio storage table
 out aRead, aRead ; send audio to output
 endin

</CsInstruments>
<CsScore>
i 1 0 3600 ; Sense keyboard activity. Start recording - playback.
</CsScore>
</CsoundSynthesizer>
;example written by Iain McCurdy

Encapsulating Record and Play Buffer Functionality to a UDO

Recording and playing back of buffers can also be encapsulated into a User Defined Opcode (UDO).1 We will show here a version which in a way re-invents the wheel as it creates an own sample-by-sample increment for reading and writing the buffer rather than using a pointer. This is mostly meant as example how open this field is for different user implementations, and how easy it is to create own applications based on the fundamental functionalities of table reading and writing.

One way to write compact Csound code is to follow the principle one job per line (of code). For defining one job of a good size, we will mostly need a UDO which combines some low-level tasks and also allows us to apply a memorizable name for this job. So often the principle one job per line results in one UDO per line.

The jobs in the previous example can be described as follows:

	Create a buffer of a certain length.

	Watch keyboard input.

	Record input channel 1 to table if ‘r’ key is pressed.

	Play back table if ‘p’ key is pressed and output.

Let us go step by step through this list, before we finally write this instrument in four lines of code. Step 1 we already did in the previous example; we only wrap the GEN routine in a UDO which gets the time as input and returns the buffer variable as output. Anything else is hidden.

opcode createBuffer, i, i
 ilen xin
 ift ftgen 0, 0, ilen*sr, 2, 0
 xout ift
endop

Step 2 is the only one which is a normal Csound code line, consisting of the sensekey opcode. Due to the implementation of sensekey, there should only be one sensekey in a Csound orchestra.

kKey, kDown sensekey

Step 3 consists of two parts. We will write one UDO for both. The first UDO writes to a buffer if it gets a signal to do so. We choose here a very low-level way of writing an audio signal to a buffer. Instead of creating an index, we just increment the single index numbers. To continue the process at the end of the buffer, we apply the modulo operation to the incremented numbers.2

opcode recordBuffer, 0, aik
 ain, ift, krec xin
 setksmps 1 ;k=a here in this UDO
 kndx init 0 ;initialize index
 if krec == 1 then
 tablew ain, a(kndx), ift
 kndx = (kndx+1) % ftlen(ift)
 endif
endop

The second UDO ouputs 1 as long as a key is pressed. Its input consists of the ASCII key which is selected, and of the output of the sensekey opcode.

opcode keyPressed, k, kki
 kKey, kDown, iAscii xin
 kPrev init 0 ;previous key value
 kOut = (kKey == iAscii || (kKey == -1 && kPrev == iAscii) ? 1 : 0)
 kPrev = (kKey > 0 ? kKey : kPrev)
 kPrev = (kPrev == kKey && kDown == 0 ? 0 : kPrev)
 xout kOut
endop

The reading procedure in step 4 is in fact the same as was used for writing. We only have to replace the opcode for writing tablew with the opcode for reading table.

opcode playBuffer, a, ik
 ift, kplay xin
 setksmps 1 ;k=a here in this UDO
 kndx init 0 ;initialize index
 if kplay == 1 then
 aRead table a(kndx), ift
 kndx = (kndx+1) % ftlen(ift)
 endif
 xout aRead
endop

Note that you must disable the key repeats on your computer keyboard for the following example (in CsoundQt, disable “Allow key repeats” in Configuration -> General). Press the r key as long as you want to record, and the p key for playing back. Both, record and playback, is done circular.

EXAMPLE 06B04_BufRecPlay_UDO.csd

<CsoundSynthesizer>
<CsOptions>
-i adc -o dac -m128
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

/****** UDO definitions ******/
opcode createBuffer, i, i
 ilen xin
 ift ftgen 0, 0, ilen*sr, 2, 0
 xout ift
endop
opcode recordBuffer, 0, aik
 ain, ift, krec xin
 setksmps 1 ;k=a here in this UDO
 kndx init 0 ;initialize index
 if krec == 1 then
 tablew ain, a(kndx), ift
 kndx = (kndx+1) % ftlen(ift)
 endif
endop
opcode keyPressed, k, kki
 kKey, kDown, iAscii xin
 kPrev init 0 ;previous key value
 kOut = (kKey == iAscii || (kKey == -1 && kPrev == iAscii) ? 1 : 0)
 kPrev = (kKey > 0 ? kKey : kPrev)
 kPrev = (kPrev == kKey && kDown == 0 ? 0 : kPrev)
 xout kOut
endop
opcode playBuffer, a, ik
 ift, kplay xin
 setksmps 1 ;k=a here in this UDO
 kndx init 0 ;initialize index
 if kplay == 1 then
 aRead table a(kndx), ift
 kndx = (kndx+1) % ftlen(ift)
 endif
endop

instr RecPlay
 iBuffer = createBuffer(3) ;buffer for 3 seconds of recording
 kKey, kDown sensekey
 recordBuffer(inch(1), iBuffer, keyPressed(kKey,kDown,114))
 out playBuffer(iBuffer, keyPressed(kKey,kDown,112))
endin

</CsInstruments>
<CsScore>
i 1 0 1000
</CsScore>
</CsoundSynthesizer>
;example written by joachim heintz

We use mostly the functional style of writing Csound code here. Instead of

iBuffer = createBuffer(3)

we could also write:

iBuffer createBuffer 3

To plug the audio signal from channel 1 directly into the recordBuffer UDO, we plug the inch(1) directly into the first input. Similar the output of the keyPressed UDO as third input. For more information about functional style coding, see chapter 03 I.

Further Opcodes for Investigation

Csound contains a wide range of opcodes that offer a variety of ready-made methods of playing back audio held in a function table. The oldest group of these opcodes are loscil and loscil3. Despite their age they offer some unique features such as the ability implement both sustain and release stage looping (in a variety of looping modes), their ability to read from stereo as well as mono function tables and their ability to read looping and base frequency data from the sound file stored in the function table. loscil and loscil3 were originally intended as the kernel mechanism for building a sampler.

For reading multichannel files of more than two channels, the more recent loscilx exists as an excellent option. It can also be used for mono or stereo, and it can — similar to diskin — write its output in an audio array.

loscil and loscil3 will only allow looping points to be defined at i-time. lposcil, lposcil3, lposcila, lposcilsa and lposcilsa2 will allow looping points to be changed a k-rate, while the note is playing.

It is worth not forgetting Csound’s more exotic methods of playback of sample stored in function tables. mincer and temposcal use streaming vocoder techniques to faciliate independent pitch and time-stretch control during playback (this area is covered more fully in chapter 05 I. sndwarp and sndwarpst similiarly faciliate independent pitch and playback speed control but through the technique of granular synthesis this area is covered in detail in chapter 05 G.

	See Chapter 03 G for more information about writing UDOs in Csound.↩︎

	The symbol for the modulo operation is %. The result is the remainder in a division: 1 % 3 = 1, 4 % 3 = 1, 7 % 3 = 1 etc.↩︎

 ch044.xhtml

07 A. RECEIVING EVENTS BY MIDIIN

Csound provides a variety of opcodes, such as cpsmidi, ampmidi and ctrl7, which facilitate the reading of incoming midi data into Csound with minimal fuss. These opcodes allow us to read in midi information without us having to worry about parsing status bytes and so on. Occasionally though when more complex midi interaction is required, it might be advantageous for us to scan all raw midi information that is coming into Csound. The midiin opcode allows us to do this.

In the next example a simple midi monitor is constructed. Incoming midi events are printed to the terminal with some formatting to make them readable. We can disable Csound’s default instrument triggering mechanism (which in this example we don’t want to use) by writing the line:

massign 0,0

just after the header statement (sometimes referred to as instrument 0).

For this example to work you will need to ensure that you have activated live midi input within Csound by using the -M flag. You will also need to make sure that you have a midi keyboard or controller connected. You may also want to include the -m128 flag which will disable some of Csound’s additional messaging output and therefore allow our midi printout to be presented more clearly.

The status byte tells us what sort of midi information has been received. For example, a value of 144 tells us that a midi note event has been received, a value of 176 tells us that a midi controller event has been received, a value of 224 tells us that pitch bend has been received and so on.

The meaning of the two data bytes depends on what sort of status byte has been received. For example if a midi note event has been received then data byte 1 gives us the note velocity and data byte 2 gives us the note number. If a midi controller event has been received then data byte 1 gives us the controller number and data byte 2 gives us the controller value.

EXAMPLE 07A01_midiin_print.csd

<CsoundSynthesizer>
<CsOptions>
-Ma -m128
; activates all midi devices, suppress note printings
</CsOptions>
<CsInstruments>
; no audio so 'sr' or 'nchnls' aren't relevant
ksmps = 32

; using massign with these arguments disables default instrument triggering
massign 0,0

 instr 1
kstatus, kchan, kdata1, kdata2 midiin ;read in midi
ktrigger changed kstatus, kchan, kdata1, kdata2 ;trigger if midi data change
 if ktrigger=1 && kstatus!=0 then ;if status byte is non-zero...
; -- print midi data to the terminal with formatting --
 printks "status:%d%tchannel:%d%tdata1:%d%tdata2:%d%n",
 0,kstatus,kchan,kdata1,kdata2
 endif
 endin

</CsInstruments>
<CsScore>
i 1 0 3600 ; instr 1 plays for 1 hour
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

The principle advantage of using the midiin opcode is that, unlike opcodes such as cpsmidi, ampmidi and ctrl7 which only receive specific midi data types on a specific channel, midiin “listens” to all incoming data including system exclusive messages. In situations where elaborate Csound instrument triggering mappings that are beyond the capabilities of the default triggering mechanism are required, then the use of midiin might be beneficial.

 ch045.xhtml

07 B. TRIGGERING INSTRUMENT INSTANCES

Csound’s Default System of Instrument Triggering Via Midi

Csound has a default system for instrument triggering via midi. Provided a midi keyboard has been connected and the appropriate command line flags for midi input have been set (see configuring midi for further information), then midi notes received on midi channel 1 will trigger instrument 1, notes on channel 2 will trigger instrument 2 and so on. Instruments will turn on and off in sympathy with notes being pressed and released on the midi keyboard and Csound will correctly unravel polyphonic layering and turn on and off only the correct layer of the same instrument begin played. Midi activated notes can be thought of as “held” notes, similar to notes activated in the score with a negative duration (p3). Midi activated notes will sustain indefinitely as long as the performance time will allow until a corresponding note off has been received - this is unless this infinite p3 duration is overwritten within the instrument itself by p3 begin explicitly defined.

The following example confirms this default mapping of midi channels to instruments. You will need a midi keyboard that allows you to change the midi channel on which it is transmmitting. Besides a written confirmation to the console of which instrument is begin triggered, there is an audible confirmation in that instrument 1 plays single pulses, instrument 2 plays sets of two pulses and instrument 3 plays sets of three pulses. The example does not go beyond three instruments. If notes are received on midi channel 4 and above, because corresonding instruments do not exist, notes on any of these channels will be directed to instrument 1.

EXAMPLE 07B01_MidiInstrTrigger.csd

<CsoundSynthesizer>
<CsOptions>
-Ma -odac -m128
;activates all midi devices, real time sound output, suppress note printings
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

gisine ftgen 0,0,2^12,10,1

 instr 1 ; 1 impulse (midi channel 1)
prints "instrument/midi channel: %d%n",p1 ;print instrument number to terminal
reset: ;label 'reset'
 timout 0, 1, impulse ;jump to 'impulse' for 1 second
 reinit reset ;reninitialise pass from 'reset'
impulse: ;label 'impulse'
aenv expon 1, 0.3, 0.0001 ;a short percussive envelope
aSig poscil aenv, 500, gisine ;audio oscillator
 out aSig ;audio to output
 endin

 instr 2 ; 2 impulses (midi channel 2)
prints "instrument/midi channel: %d%n",p1
reset:
 timout 0, 1, impulse
 reinit reset
impulse:
aenv expon 1, 0.3, 0.0001
aSig poscil aenv, 500, gisine
a2 delay aSig, 0.15 ; short delay adds another impulse
 out aSig+a2 ; mix two impulses at output
 endin

 instr 3 ; 3 impulses (midi channel 3)
prints "instrument/midi channel: %d%n",p1
reset:
 timout 0, 1, impulse
 reinit reset
impulse:
aenv expon 1, 0.3, 0.0001
aSig poscil aenv, 500, gisine
a2 delay aSig, 0.15 ; delay adds a 2nd impulse
a3 delay a2, 0.15 ; delay adds a 3rd impulse
 out aSig+a2+a3 ; mix the three impulses at output
 endin

</CsInstruments>
<CsScore>
f 0 300
</CsScore>
<CsoundSynthesizer>
;example by Iain McCurdy

Using massign to Map MIDI Channels to Instruments

We can use the massign opcode, which is used just after the header statement, to explicitly map midi channels to specific instruments and thereby overrule Csound’s default mappings. massign takes two input arguments, the first defines the midi channel to be redirected and the second defines which instrument it should be directed to. The following example is identical to the previous one except that the massign statements near the top of the orchestra jumbles up the default mappings. Midi notes on channel 1 will be mapped to instrument 3, notes on channel 2 to instrument 1 and notes on channel 3 to instrument 2. Undefined channel mappings will be mapped according to the default arrangement and once again midi notes on channels for which an instrument does not exist will be mapped to instrument 1.

EXAMPLE 07B02_massign.csd

<CsoundSynthesizer>
<CsOptions>
-Ma -odac -m128
; activate all midi devices, real time sound output, suppress note printing
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

gisine ftgen 0,0,2^12,10,1

massign 1,3 ; channel 1 notes directed to instr 3
massign 2,1 ; channel 2 notes directed to instr 1
massign 3,2 ; channel 3 notes directed to instr 2

 instr 1 ; 1 impulse (midi channel 1)
iChn midichn ; discern what midi channel
prints "channel:%d%tinstrument: %d%n",iChn,p1 ; print instr and midi channel
reset: ; label 'reset'
 timout 0, 1, impulse ; jump to 'impulse' for 1 second
 reinit reset ; reinitialize pass from 'reset'
impulse: ; label 'impulse'
aenv expon 1, 0.3, 0.0001 ; a short percussive envelope
aSig poscil aenv, 500, gisine ; audio oscillator
 out aSig ; send audio to output
 endin

 instr 2 ; 2 impulses (midi channel 2)
iChn midichn
prints "channel:%d%tinstrument: %d%n",iChn,p1
reset:
 timout 0, 1, impulse
 reinit reset
impulse:
aenv expon 1, 0.3, 0.0001
aSig poscil aenv, 500, gisine
a2 delay aSig, 0.15 ; delay generates a 2nd impulse
 out aSig+a2 ; mix two impulses at the output
 endin

 instr 3 ; 3 impulses (midi channel 3)
iChn midichn
prints "channel:%d%tinstrument: %d%n",iChn,p1
reset:
 timout 0, 1, impulse
 reinit reset
impulse:
aenv expon 1, 0.3, 0.0001
aSig poscil aenv, 500, gisine
a2 delay aSig, 0.15 ; delay generates a 2nd impulse
a3 delay a2, 0.15 ; delay generates a 3rd impulse
 out aSig+a2+a3 ; mix three impulses at output
 endin

</CsInstruments>

<CsScore>
f 0 300
</CsScore>
<CsoundSynthesizer>
;example by Iain McCurdy

massign also has a couple of additional functions that may come in useful. A channel number of zero is interpreted as meaning any. The following instruction will map notes on any and all channels to instrument 1.

massign 0,1

An instrument number of zero is interpreted as meaning none so the following instruction will instruct Csound to ignore triggering for notes received on all channels.

massign 0,0

The above feature is useful when we want to scan midi data from an already active instrument using the midiin opcode, as we did in EXAMPLE 0701.csd.

Using Multiple Triggering

Csound’s event/ event_i opcode (see the Triggering Instrument Events chapter) makes it possible to trigger any other instrument from a midi-triggered one. As you can assign a fractional number to an instrument, you can distinguish the single instances from each other. Below is an example of using fractional instrument numbers.

EXAMPLE 07B03_MidiTriggerChain.csd

<CsoundSynthesizer>
<CsOptions>
-Ma
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

 massign 0, 1 ;assign all incoming midi to instr 1
instr 1 ;global midi instrument, calling instr 2.cc.nnn
 ;(c=channel, n=note number)
inote notnum ;get midi note number
ichn midichn ;get midi channel
instrnum = 2 + ichn/100 + inote/100000 ;make fractional instr number
 ; -- call with indefinite duration
 event_i "i", instrnum, 0, -1, ichn, inote
kend release ;get a "1" if instrument is turned off
 if kend == 1 then
 event "i", -instrnum, 0, 1 ;then turn this instance off
 endif
 endin

 instr 2
ichn = int(frac(p1)*100)
inote = round(frac(frac(p1)*100)*1000)
 prints "instr %f: ichn = %f, inote = %f%n", p1, ichn, inote
 printks "instr %f playing!%n", 1, p1
 endin

</CsInstruments>
<CsScore>
</CsScore>
</CsoundSynthesizer>
;Example by Joachim Heintz, using code of Victor Lazzarini

This example merely demonstrates a technique for passing information about MIDI channel and note number from the directly triggered instrument to a sub-instrument. A practical application for this would be for creating keygroups - triggering different instruments by playing in different regions of the keyboard. In this case you could change just the line:

instrnum = 2 + ichn/100 + inote/100000

to this:

if inote < 48 then
 instrnum = 2
elseif inote < 72 then
 instrnum = 3
else
 instrnum = 4
endif
instrnum = instrnum + ichn/100 + inote/100000

In this case for any key below C3 instrument 2 will be called, for any key between C3 and B4 instrument 3, and for any higher key instrument 4.

Using this multiple triggering you are also able to trigger more than one instrument at the same time (which is not possible using the massign opcode). Here is an example using a User Defined Opcode (see the UDO chapter of this manual):

EXAMPLE 07B04_MidiMultiTrigg.csd

<CsoundSynthesizer>
<CsOptions>
-Ma
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

 massign 0, 1 ;assign all incoming midi to instr 1
giInstrs ftgen 0, 0, -5, -2, 2, 3, 4, 10, 100 ;instruments to be triggered

 opcode MidiTrig, 0, io
;triggers the first inum instruments in the function table ifn by a midi event
; with fractional numbers containing channel and note number information

; -- if inum=0 or not given, all instrument numbers in ifn are triggered
ifn, inum xin
inum = (inum == 0 ? ftlen(ifn) : inum)
inote notnum
ichn midichn
iturnon = 0
turnon:
iinstrnum tab_i iturnon, ifn
if iinstrnum > 0 then
ifracnum = iinstrnum + ichn/100 + inote/100000
 event_i "i", ifracnum, 0, -1
endif
 loop_lt iturnon, 1, inum, turnon
kend release
if kend == 1 then
kturnoff = 0
turnoff:
kinstrnum tab kturnoff, ifn
 if kinstrnum > 0 then
kfracnum = kinstrnum + ichn/100 + inote/100000
 event "i", -kfracnum, 0, 1
 loop_lt kturnoff, 1, inum, turnoff
 endif
endif
 endop

 instr 1 ;global midi instrument
; -- trigger the first two instruments in the giInstrs table
 MidiTrig giInstrs, 2
 endin

 instr 2
ichn = int(frac(p1)*100)
inote = round(frac(frac(p1)*100)*1000)
 prints "instr %f: ichn = %f, inote = %f%n", p1, ichn, inote
 printks "instr %f playing!%n", 1, p1
 endin

 instr 3
ichn = int(frac(p1)*100)
inote = round(frac(frac(p1)*100)*1000)
 prints "instr %f: ichn = %f, inote = %f%n", p1, ichn, inote
 printks "instr %f playing!%n", 1, p1
 endin

</CsInstruments>
<CsScore>
</CsScore>
</CsoundSynthesizer>
;Example by Joachim Heintz, using code of Victor Lazzarini

 ch046.xhtml

07 C. WORKING WITH CONTROLLERS

Scanning MIDI Continuous Controllers

The most useful opcode for reading in midi continuous controllers is ctrl7. ctrl7’s input arguments allow us to specify midi channel and controller number of the controller to be scanned in addition to giving us the option of rescaling the received midi values between a new minimum and maximum value as defined by the 3rd and 4th input arguments. Further possibilities for modifying the data output are provided by the 5th (optional) argument which is used to point to a function table that reshapes the controller’s output response to something possibly other than linear. This can be useful when working with parameters which are normally expressed on a logarithmic scale such as frequency.

The following example scans midi controller 1 on channel 1 and prints values received to the console. The minimum and maximum values are given as 0 and 127 therefore they are not rescaled at all. Controller 1 is also the modulation wheel on a midi keyboard.

EXAMPLE 07C01_ctrl7_print.csd

<CsoundSynthesizer>
<CsOptions>
-Ma -odac
; activate all MIDI devices
</CsOptions>
<CsInstruments>
; 'sr' and 'nchnls' are irrelevant so are omitted
ksmps = 32

 instr 1
kCtrl ctrl7 1,1,0,127 ; read in controller 1 on channel 1
kTrigger changed kCtrl ; if 'kCtrl' changes generate a trigger ('bang')
 if kTrigger=1 then
; Print kCtrl to console with formatting, but only when its value changes.
printks "Controller Value: %d%n", 0, kCtrl
 endif
 endin

</CsInstruments>
<CsScore>
i 1 0 3600
</CsScore>
<CsoundSynthesizer>
;example by Iain McCurdy

There are also 14 bit and 21 bit versions of ctrl7 (ctrl14 and ctrl21) which improve upon the 7 bit resolution of ctrl7 but hardware that outputs 14 or 21 bit controller information is rare so these opcodes are seldom used.

Scanning Pitch Bend and Aftertouch

We can scan pitch bend and aftertouch in a similar way by using the opcodes pchbend and aftouch. Once again we can specify minimum and maximum values with which to rescale the output. In the case of pchbend we specify the value it outputs when the pitch bend wheel is at rest followed by a value which defines the entire range from when it is pulled to its minimum to when it is pushed to its maximum. In this example, playing a key on the keyboard will play a note, the pitch of which can be bent up or down two semitones by using the pitch bend wheel. Aftertouch can be used to modify the amplitude of the note while it is playing. Pitch bend and aftertouch data is also printed at the terminal whenever they change. One thing to bear in mind is that for pchbend to function the Csound instrument that contains it needs to have been activated by a MIDI event, i.e. you will need to play a midi note on your keyboard and then move the pitch bend wheel.

EXAMPLE 07C02_pchbend_aftouch.csd

<CsoundSynthesizer>
<CsOptions>
-odac -Ma
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine ftgen 0,0,2^10,10,1 ; a sine wave

 instr 1
; -- pitch bend --
kPchBnd pchbend 0,4 ;read in pitch bend (range -2 to 2)
kTrig1 changed kPchBnd ;if 'kPchBnd' changes generate a trigger
 if kTrig1=1 then
printks "Pitch Bend:%f%n",0,kPchBnd ;print kPchBnd to console when it changes
 endif

; -- aftertouch --
kAfttch aftouch 0,0.9 ;read in aftertouch (range 0 to 0.9)
kTrig2 changed kAfttch ;if 'kAfttch' changes generate a trigger
 if kTrig2=1 then
printks "Aftertouch:%d%n",0,kAfttch ;print kAfttch to console when it changes
 endif

; -- create a sound --
iNum notnum ;read in MIDI note number
; MIDI note number + pitch bend are converted to cycles per seconds
aSig poscil 0.1,cpsmidinn(iNum+kPchBnd),giSine
 out aSig ;audio to output
 endin

</CsInstruments>
<CsScore>
</CsScore>
<CsoundSynthesizer>
;example by Iain McCurdy

Initialising MIDI Controllers

It may be useful to be able to define the initial value of a midi controller, that is, the value any ctrl7s will adopt until their corresponding hardware controls have been moved. Midi hardware controls only send messages when they change so until this happens their values in Csound defaults to their minimum settings unless additional initialisation has been carried out. As an example, if we imagine we have a Csound instrument in which the output volume is controlled by a midi controller it might prove to be slightly frustrating that each time the orchestra is launched, this instrument will remain silent until the volume control is moved. This frustration might become greater when many midi controllers are begin utilised. It would be more useful to be able to define the starting value for each of these controllers. The initc7 opcode allows us to do this. If initc7 is placed within the instrument itself it will be reinitialised each time the instrument is called, if it is placed in instrument 0 (just after the header statements) then it will only be initialised when the orchestra is first launched. The latter case is probably most useful.

In the following example a simple synthesizer is created. Midi controller 1 controls the output volume of this instrument but the initc7 statement near the top of the orchestra ensures that this control does not default to its minimum setting. The arguments that initc7 takes are for midi channel, controller number and initial value. Initial value is defined within the range 0-1, therefore a value of 1 will set this controller to its maximum value (midi value 127), and a value of 0.5 will set it to its halfway value (midi value 64), and so on.

Additionally this example uses the cpsmidi opcode to scan midi pitch (basically converting midi note numbers to cycles-per-second) and the ampmidi opcode to scan and rescale key velocity.

EXAMPLE 07C03_cpsmidi_ampmidi.csd

<CsoundSynthesizer>
<CsOptions>
-Ma -odac
; activate all midi inputs and real-time audio output
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine ftgen 0,0,2^12,10,1 ; a sine wave
initc7 1,1,1 ; initialize CC 1 on chan. 1 to its max level

 instr 1
iCps cpsmidi ; read in midi pitch in cycles-per-second
iAmp ampmidi 1 ; read in key velocity. Rescale to be from 0 to 1
kVol ctrl7 1,1,0,1 ; read in CC 1, chan 1. Rescale to be from 0 to 1
aSig poscil iAmp*kVol, iCps, giSine ; an audio oscillator
 out aSig ; send audio to output
 endin

</CsInstruments>
<CsScore>
</CsScore>
<CsoundSynthesizer>
;example by Iain McCurdy

You will maybe hear that this instrument produces clicks as notes begin and end. To find out how to prevent this see the section on envelopes with release sensing in chapter 05 A.

Smoothing 7-bit Quantisation in MIDI Controllers

A problem we encounter with 7 bit midi controllers is the poor resolution that they offer us. 7 bit means that we have 2 to the power of 7 possible values; therefore 128 possible values, which is rather inadequate for defining, for example, the frequency of an oscillator over a number of octaves, the cutoff frequency of a filter or a quickly moving volume control. We soon become aware of the parameter that is being changed moving in steps - so not really a continuous controller. We may also experience clicking artefacts, sometimes called zipper noise, as the value changes. The extent of this will depend upon the parameter being controlled. There are some things we can do to address this problem. We can filter the controller signal within Csound so that the sudden changes that occur between steps along the controller’s travel are smoothed using additional interpolating values - we must be careful not to smooth excessively otherwise the response of the controller will become sluggish. Any k-rate compatible lowpass filter can be used for this task but the portk opcode is particularly useful as it allows us to define the amount of smoothing as a time taken to glide to half the required value rather than having to specify a cutoff frequency. Additionally this half time value can be varied at k-rate which provides an advantage availed of in the following example.

This example takes the simple synthesizer of the previous example as its starting point. The volume control, which is controlled by midi controller 1 on channel 1, is passed through a portk filter. The half time for portk ramps quickly up to its required value of 0.01 through the use of a linseg statement in the previous line. This ensures that when a new note begins the volume control immediately jumps to its required value rather than gliding up from zero as would otherwise be affected by the portk filter. Try this example with the portk half time defined as a constant to hear the difference. To further smooth the volume control, it is converted to an a-rate variable through the use of the interp opcode which, as well as performing this conversion, interpolates values in the gaps between k-cycles.

EXAMPLE 07C0_smoothing.csd

<CsoundSynthesizer>
<CsOptions>
-Ma -odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine ftgen 0,0,2^12,10,1
 initc7 1,1,1 ;initialize CC 1 to its max. level

 instr 1
iCps cpsmidi ;read in midi pitch in cycles-per-second
iAmp ampmidi 1 ;read in note velocity - re-range 0 to 1
kVol ctrl7 1,1,0,1 ;read in CC 1, chan. 1. Re-range from 0 to 1
kPortTime linseg 0,0.001,0.01 ;create a value that quickly ramps up to .01
kVol portk kVol,kPortTime ;create a filtered version of kVol
aVol interp kVol ;create an a-rate version of kVol
aSig poscil iAmp*aVol,iCps,giSine
 out aSig
 endin

</CsInstruments>
<CsScore>
</CsScore>
<CsoundSynthesizer>
;example by Iain McCurdy

All of the techniques introduced in this section are combined in the final example which includes a 2-semitone pitch bend and tone control which is controlled by aftertouch. For tone generation this example uses the gbuzz opcode.

EXAMPLE 07C05_MidiControlComplex.csd

<CsoundSynthesizer>
<CsOptions>
-Ma -odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giCos ftgen 0,0,2^12,11,1 ; a cosine wave
 initc7 1,1,1 ; initialize controller to its maximum level

 instr 1
iNum notnum ; read in midi note number
iAmp ampmidi 0.1 ; read in note velocity - range 0 to 0.2
kVol ctrl7 1,1,0,1 ; read in CC 1, chn 1. Re-range from 0 to 1
kPortTime linseg 0,0.001,0.01 ; create a value that quickly ramps up to 0.01
kVol portk kVol, kPortTime ; create filtered version of kVol
aVol interp kVol ; create an a-rate version of kVol.
iRange = 2 ; pitch bend range in semitones
iMin = 0 ; equilibrium position
kPchBnd pchbend iMin, 2*iRange ; pitch bend in semitones (range -2 to 2)
kPchBnd portk kPchBnd,kPortTime; create a filtered version of kPchBnd
aEnv linsegr 0,0.005,1,0.1,0 ; amplitude envelope with release stage
kMul aftouch 0.4,0.85 ; read in aftertouch
kMul portk kMul,kPortTime ; create a filtered version of kMul
; create an audio signal using the 'gbuzz' additive synthesis opcode
aSig gbuzz iAmp*aVol*aEnv,cpsmidinn(iNum+kPchBnd),70,0,kMul,giCos
 out aSig ; audio to output
 endin

</CsInstruments>

<CsScore>
</CsScore>
<CsoundSynthesizer>
;example by Iain McCurdy

RECORDING CONTROLLER DATA

Data performed on a controller or controllers can be recorded into GEN tables or arrays so that a real-time interaction with a Csound instrument can be replayed at a later time. This can be preferable to recording the audio output, as this will allow the controller data to be modified. The simplest approach is to simply store each controller value every k-cycle into sequential locations in a function table but this is rather wasteful as controllers will frequently remain unchanged from k-cycle to k-cycle.

A more efficient approach is to store values only when they change and to time stamp those events to that they can be replayed later on in the right order and at the right speed. In this case data will be written to a function table in pairs: time-stamp followed by a value for each new event (event refers to when a controller changes). This method does not store durations of each event, merely when they happen, therefore it will not record how long the final event lasts until recording stopped. This may or may not be critical depending on how the recorded controller data is used later on but in order to get around this, the following example stores the duration of the complete recording at index location 0 so that we can derive the duration of the last event. Additionally the first event stored at index location 1 is simply a value: the initial value of the controller (the time stamp for this would always be zero anyway). Thereafter events are stored as time-stamped pairs of data: index 2=time stamp, index 3=associated value and so on.

To use the following example, activate Record, move the slider around and then deactivate Record. This gesture can now be replayed using the Play button. As well as moving the GUI slider, a tone is produced, the pitch of which is controlled by the slider.

Recorded data in the GEN table can also be backed up onto the hard drive using ftsave and recalled in a later session using ftload. Note that ftsave also has the capability of storing multiple function tables in a single file.

EXAMPLE 07C06_RecordingController.csd

<CsoundSynthesizer>
<CsOptions>
-odac -dm0
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 8
nchnls = 1
0dbfs = 1

FLpanel "Record Gesture",500,90,0,0
gkRecord,gihRecord FLbutton "Rec/Stop",1,0,22,100,25, 5, 5,-1
gkPlay,gihPlay FLbutton "Play", 1,0,22,100,25,110, 5,-1
gksave,ihsave FLbutton "Save to HD", 1,0,21,100,25,290,5,0,4,0,0
gkload,ihload FLbutton "Load from HD", 1,0,21,100,25,395,5,0,5,0,0
gkval, gihval FLslider "Control", 0,1, 0,23, -1,490,25, 5,35
FLpanel_end
FLrun

gidata ftgen 1,0,1048576,-2,0 ; Table for controller data.

opcode RecordController,0,Ki
 kval,ifn xin
 i_ ftgen 1,0,ftlen(ifn),-2,0 ; erase table
 tableiw i(kval),1,ifn ; write initial value at index 1.
 ;(Index 0 will be used be storing the complete gesture duration.)
 kndx init 2 ; Initialise index
 kTime timeinsts ; time since this instrument started in seconds
; Write a data event only when the input value changes
if changed(kval)==1 && kndx<=(ftlen(ifn)-2) && kTime>0 then
; Write timestamp to table location defined by current index.
 tablew kTime, kndx, ifn
; Write slider value to table location defined by current index.
 tablew kval, kndx + 1, ifn
; Increment index 2 steps (one for time, one for value).
 kndx = kndx + 2
 endif
; sense note release
 krel release
; if we are in the final k-cycle before the note ends
 if(krel==1) then
; write total gesture duration into the table at index 0
 tablew kTime,0,ifn
 endif
endop

opcode PlaybackController,k,i
 ifn xin
 ; read first value
; initial controller value read from index 1
 ival table 1,ifn
; initial value for k-rate output
 kval init ival
; Initialise index to first non-zero timestamp
 kndx init 2
; time in seconds since this note started
 kTime timeinsts
; first non-zero timestamp
 iTimeStamp tablei 2,ifn
; initialise k-variable for first non-zero timestamp
 kTimeStamp init iTimeStamp
; if we have reached the timestamp value...
 if kTime>=kTimeStamp && kTimeStamp>0 then
; ...Read value from table defined by current index.
 kval table kndx+1,ifn
 kTimeStamp table kndx+2,ifn ; Read next timestamp
; Increment index. (Always 2 steps: timestamp and value.)
 kndx limit kndx+2, 0, ftlen(ifn)-2
 endif
 xout kval
endop

; cleaner way to start instruments than using FLbutton built-in mechanism
instr 1
; trigger when button value goes from off to on
 kOnTrig trigger gkRecord,0.5,0
; start instrument with a held note when trigger received
 schedkwhen kOnTrig,0,0,2,0,-1
; trigger when button value goes from off to on
 kOnTrig trigger gkPlay,0.5,0
; start instrument with a held note when trigger received
 schedkwhen kOnTrig,0,0,3,0,-1
endin

instr 2 ; Record gesture
 if gkRecord==0 then ; If record button is deactivated...
 turnoff ; ...turn this instrument off.
 endif
; call UDO
 RecordController gkval,gidata
; Generate a sound.
 kporttime linseg 0,0.001,0.02
 kval portk gkval,kporttime
 asig poscil 0.2,cpsoct((kval*2)+7)
 out asig

endin

instr 3 ; Playback recorded gesture
 if gkPlay==0 then ; if play button is deactivated...
 turnoff ; ...turn this instrument off.
 endif
 kval PlaybackController gidata
; send initial value to controller
 FLsetVal_i i(kval),gihval
; Send values to slider when needed.
 FLsetVal changed(kval),kval,gihval
 ; Generate a sound.
 kporttime linseg 0,0.001,0.02
 kval portk gkval,kporttime
 asig poscil 0.2,cpsoct((kval*2)+7)
 out asig
 ; stop note when end of table reached
 kTime timeinsts ; time in seconds since this note began
; read complete gesture duration from index zero
 iRecTime tablei 0,gidata
; if we have reach complete duration of gesture...
 if kTime>=iRecTime then
; deactivate play button (which will in turn, turn off this note.)
 FLsetVal 1,0,gihPlay
 endif
endin

instr 4 ; save table
 ftsave "ControllerData.txt", 0, gidata
endin

instr 5 ; load table
 ftload "ControllerData.txt", 0, gidata
endin

</CsInstruments>
<CsScore>
i 1 0 3600
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

 ch047.xhtml

07 D. READING MIDI FILES

Instead of using either the standard Csound score or live midi events as input for an orchestra Csound can read a midi file and use the data contained within it as if it were a live midi input.

The command line flag to instigate reading from a midi file is -F followed by the name of the file or the complete path to the file if it is not in the same directory as the .csd file. Midi channels will be mapped to instrument according to the rules and options discussed in Triggering Instrument Instances and all controllers can be interpretted as desired using the techniques discussed in Working with Controllers.

The following example plays back a midi file using Csound’s fluidsynth family of opcodes to facilitate playing soundfonts (sample libraries). For more information on these opcodes please consult the Csound Reference Manual. In order to run the example you will need to download a midi file and two (ideally contrasting) soundfonts. Adjust the references to these files in the example accordingly. Free midi files and soundfonts are readily available on the internet. I am suggesting that you use contrasting soundfonts, such as a marimba and a trumpet, so that you can easily hear the parsing of midi channels in the midi file to different Csound instruments. In the example channels 1,3,5,7,9,11,13 and 15 play back using soundfont 1 and channels 2,4,6,8,10,12,14 and 16 play back using soundfont 2. When using fluidsynth in Csound we normally use an always on instrument to gather all the audio from the various soundfonts (in this example instrument 99) which also conveniently keeps performance going while our midi file plays back.

EXAMPLE 07D01_ReadMidiFile.csd

<CsoundSynthesizer>
<CsOptions>
;'-F' flag reads in a midi file
-F AnyMIDIfile.mid
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giEngine fluidEngine; start fluidsynth engine
; load a soundfont
iSfNum1 fluidLoad "ASoundfont.sf2", giEngine, 1
; load a different soundfont
iSfNum2 fluidLoad "ADifferentSoundfont.sf2", giEngine, 1
; direct each midi channels to a particular soundfonts
 fluidProgramSelect giEngine, 1, iSfNum1, 0, 0
 fluidProgramSelect giEngine, 3, iSfNum1, 0, 0
 fluidProgramSelect giEngine, 5, iSfNum1, 0, 0
 fluidProgramSelect giEngine, 7, iSfNum1, 0, 0
 fluidProgramSelect giEngine, 9, iSfNum1, 0, 0
 fluidProgramSelect giEngine, 11, iSfNum1, 0, 0
 fluidProgramSelect giEngine, 13, iSfNum1, 0, 0
 fluidProgramSelect giEngine, 15, iSfNum1, 0, 0
 fluidProgramSelect giEngine, 2, iSfNum2, 0, 0
 fluidProgramSelect giEngine, 4, iSfNum2, 0, 0
 fluidProgramSelect giEngine, 6, iSfNum2, 0, 0
 fluidProgramSelect giEngine, 8, iSfNum2, 0, 0
 fluidProgramSelect giEngine, 10, iSfNum2, 0, 0
 fluidProgramSelect giEngine, 12, iSfNum2, 0, 0
 fluidProgramSelect giEngine, 14, iSfNum2, 0, 0
 fluidProgramSelect giEngine, 16, iSfNum2, 0, 0

instr 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 ;fluid synths for channels 1-16
iKey notnum ; read in midi note number
iVel ampmidi 127 ; read in key velocity
; create a note played by the soundfont for this instrument
 fluidNote giEngine, p1, iKey, iVel
endin

 instr 99 ; gathering of fluidsynth audio and audio output
aSigL, aSigR fluidOut giEngine ; read all audio from soundfont
 outs aSigL, aSigR ; send audio to outputs
 endin
</CsInstruments>
<CsScore>
i 99 0 3600 ; audio output instrument also keeps performance going
</CsScore>
<CsoundSynthesizer>
;Example by Iain McCurdy

Midi file input can be combined with other Csound inputs from the score or from live midi and also bear in mind that a midi file doesn’t need to contain midi note events, it could instead contain, for example, a sequence of controller data used to automate parameters of effects during a live performance.

Rather than to directly play back a midi file using Csound instruments it might be useful to import midi note events as a standard Csound score. This way events could be edited within the Csound editor or several scores could be combined. The following example takes a midi file as input and outputs standard Csound .sco files of the events contained therein. For convenience each midi channel is output to a separate .sco file, therefore up to 16 .sco files will be created. Multiple .sco files can be later recombined by using #include statements or simply by using copy and paste.

The only tricky aspect of this example is that note-ons followed by note-offs need to be sensed and calculated as p3 duration values. This is implemented by sensing the note-off by using the release opcode and at that moment triggering a note in another instrument with the required score data. It is this second instrument that is responsible for writing this data to a score file. Midi channels are rendered as p1 values, midi note numbers as p4 and velocity values as p5.

EXAMPLE 07D02_MidiToScore.csd

<CsoundSynthesizer>
<CsOptions>
; enter name of input midi file
-F InputMidiFile.mid
</CsOptions>
<CsInstruments>

;ksmps needs to be small to ensure accurate rendering of timings
ksmps = 8

massign 0,1

 instr 1
iChan midichn
iCps cpsmidi ; read pitch in frequency from midi notes
iVel veloc 0, 127 ; read in velocity from midi notes
kDur timeinsts ; running total of duration of this note
kRelease release ; sense when note is ending
 if kRelease=1 then ; if note is about to end
; p1 p2 p3 p4 p5 p6
event "i", 2, 0, kDur, iChan, iCps, iVel ; send full note data to instr 2
 endif
 endin

 instr 2
iDur = p3
iChan = p4
iCps = p5
iVel = p6
iStartTime times ; read current time since the start of performance
; form file name for this channel (1-16) as a string variable
SFileName sprintf "Channel%d.sco",iChan
; write a line to the score for this channel's .sco file
 fprints SFileName, "i%d\\t%f\\t%f\\t%f\\t%d\\n",\
 iChan,iStartTime-iDur,iDur,iCps,iVel
 endin

</CsInstruments>
<CsScore>
f 0 480 ; ensure this duration is as long or longer that duration of midi file
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

The example above ignores continuous controller data, pitch bend and aftertouch. The second example on the page in the Csound Manual for the opcode fprintks renders all midi data to a score file.

 ch048.xhtml

07 E. MIDI OUTPUT

Csound’s ability to output midi data in real-time can open up many possibilities. We can relay the Csound score to a hardware synthesizer so that it plays the notes in our score, instead of a Csound instrument. We can algorithmically generate streams of notes within the orchestra and have these played by the external device. We could even route midi data internally to another piece of software. Csound could be used as a device to transform incoming midi data, transforming, transposing or arpeggiating incoming notes before they are output again. Midi output could also be used to preset faders on a motorized fader box to desired initial locations.

Initiating Realtime MIDI Output

The command line flag for realtime midi output is -Q. Just as when setting up an audio input or output device or a midi input device we must define the desired device number after the flag. When in doubt what midi output devices we have on our system we can always specify an out of range device number (e.g. -Q999) in which case Csound will not run but will instead give an error and provide us with a list of available devices and their corresponding numbers. We can then insert an appropriate device number.

midiout - Outputting Raw MIDI Data

The analog of the opcode for the input of raw midi data, midiin, is midiout. It will output a midi message with its given input arguments once every k period - this could very quickly lead to clogging of incoming midi data in the device to which midi is begin sent unless measures are taken to restrain its output. In the following example this is dealt with by turning off the instrument as soon as the midiout line has been executed just once by using the turnoff opcode. Alternative approaches would be to set the status byte to zero after the first k pass or to embed the midiout within a conditional (if - then)1 so that its rate of execution can be controlled in some way.

Another thing we need to be aware of is that midi notes do not contain any information about note duration; instead the device playing the note waits until it receives a corresponding note-off instruction on the same midi channel and with the same note number before stopping the note. We must be mindful of this when working with midiout. The status byte for a midi note-off is 128 but it is more common for note-offs to be expressed as a note-on (status byte 144) with zero velocity. In the following example two notes (and corresponding note offs) are send to the midi output - the first note-off makes use of the zero velocity convention whereas the second makes use of the note-off status byte. Hardware and software synths should respond similarly to both. One advantage of the note-off message using status byte 128 is that we can also send a note-off velocity, i.e. how forcefully we release the key. Only more expensive midi keyboards actually sense and send note-off velocity and it is even rarer for hardware to respond to received note-off velocities in a meaningful way. Using Csound as a sound engine we could respond to this data in a creative way however.

In order for the following example to work you must connect a midi sound module or keyboard receiving on channel 1 to the midi output of your computer. You will also need to set the appropriate device number after the -Q flag.

No use is made of audio so sample rate (sr), and number of channels (nchnls) are left undefined - nonetheless they will assume default values.

EXAMPLE 07E01_midiout.csd

<CsoundSynthesizer>
<CsOptions>
; amend device number accordingly
-Q999
</CsOptions>
<CsInstruments>
ksmps = 32 ;no audio so sr and nchnls irrelevant

 instr 1
; arguments for midiout are read from p-fields
istatus init p4
ichan init p5
idata1 init p6
idata2 init p7
 midiout istatus, ichan, idata1, idata2; send raw midi data
 turnoff ; turn instrument off to prevent reiterations of midiout
 endin

</CsInstruments>
<CsScore>
;p1 p2 p3 p4 p5 p6 p7
i 1 0 0.01 144 1 60 100 ; note on
i 1 2 0.01 144 1 60 0 ; note off (using velocity zero)

i 1 3 0.01 144 1 60 100 ; note on
i 1 5 0.01 128 1 60 100 ; note off (using 'note off' status byte)
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

The use of separate score events for note-ons and note-offs is rather cumbersome. It would be more sensible to use the Csound note duration (p3) to define when the midi note-off is sent. The next example does this by utilising a release flag generated by the release opcode whenever a note ends and sending the note-off then.

EXAMPLE 07E02_score_to_midiout.csd

<CsoundSynthesizer>
<CsOptions>
; amend device number accordingly
-Q999
</CsOptions>
<CsInstruments>
ksmps = 32 ;no audio so sr and nchnls omitted

 instr 1
;arguments for midiout are read from p-fields
istatus init p4
ichan init p5
idata1 init p6
idata2 init p7
kskip init 0
 if kskip=0 then
 midiout istatus, ichan, idata1, idata2; send raw midi data (note on)
kskip = 1; ensure that the note on will only be executed once
 endif
krelease release; normally output is zero, on final k pass output is 1
 if krelease=1 then; i.e. if we are on the final k pass...
 midiout istatus, ichan, idata1, 0; send raw midi data (note off)
 endif
 endin

</CsInstruments>
<CsScore>
;p1 p2 p3 p4 p5 p6 p7
i 1 0 4 144 1 60 100
i 1 1 3 144 1 64 100
i 1 2 2 144 1 67 100
f 0 5; extending performance time prevents note-offs from being lost
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

Obviously midiout is not limited to only sending only midi note information but instead this information could include continuous controller information, pitch bend, system exclusive data and so on. The next example, as well as playing a note, sends controller 1 (modulation) data which rises from zero to maximum (127) across the duration of the note. To ensure that unnessessary midi data is not sent out, the output of the line function is first converted into integers, and midiout for the continuous controller data is only executed whenever this integer value changes. The function that creates this stream of data goes slightly above this maximum value (it finishes at a value of 127.1) to ensure that a rounded value of 127 is actually achieved.

In practice it may be necessary to start sending the continuous controller data slightly before the note-on to allow the hardware time to respond.

EXAMPLE 07E03_midiout_cc.csd

<CsoundSynthesizer>
<CsOptions>
; amend device number accordingly
-Q999
</CsOptions>
<CsInstruments>
ksmps = 32 ; no audio so sr and nchnls irrelevant

 instr 1
; play a midi note
; read in values from p-fields
ichan init p4
inote init p5
iveloc init p6
kskip init 0 ; 'skip' flag ensures that note-on is executed just once
 if kskip=0 then
 midiout 144, ichan, inote, iveloc; send raw midi data (note on)
kskip = 1 ; flip flag to prevent repeating the above line
 endif
krelease release ; normally zero, on final k pass this will output 1
 if krelease=1 then ; if we are on the final k pass...
 midiout 144, ichan, inote, 0 ; send a note off
 endif

; send continuous controller data
iCCnum = p7
kCCval line 0, p3, 127.1 ; continuous controller data function
kCCval = int(kCCval) ; convert data function to integers
ktrig changed kCCval ; generate a trigger each time kCCval changes
 if ktrig=1 then ; if kCCval has changed...
 midiout 176, ichan, iCCnum, kCCval ; ...send a controller message
 endif
 endin

</CsInstruments>
<CsScore>
;p1 p2 p3 p4 p5 p6 p7
i 1 0 5 1 60 100 1
f 0 7 ; extending performance time prevents note-offs from being lost
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

midion - Outputting MIDI Notes Made Easier

midiout is the most powerful opcode for midi output but if we are only interested in sending out midi notes from an instrument then the midion opcode simplifies the procedure as the following example demonstrates by playing a simple major arpeggio.

EXAMPLE 07E04_midion.csd

<CsoundSynthesizer>
<CsOptions>
; amend device number accordingly
-Q999
</CsOptions>
<CsInstruments>

ksmps = 32 ;no audio so sr and nchnls irrelevant

 instr 1
; read values in from p-fields
kchn = p4
knum = p5
kvel = p6
 midion kchn, knum, kvel ; send a midi note
 endin

</CsInstruments>
<CsScore>
;p1 p2 p3 p4 p5 p6
i 1 0 2.5 1 60 100
i 1 0.5 2 1 64 100
i 1 1 1.5 1 67 100
i 1 1.5 1 1 72 100
f 0 30 ; extending performance time prevents note-offs from being missed
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

Changing any of midion’s k-rate input arguments in realtime will force it to stop the current midi note and send out a new one with the new parameters.

midion2 allows us to control when new notes are sent (and the current note is stopped) through the use of a trigger input. The next example uses midion2 to algorithmically generate a melodic line. New note generation is controlled by a metro, the rate of which undulates slowly through the use of a randomi function.

EXAMPLE 07E05_midion2.csd

<CsoundSynthesizer>
<CsOptions>
; amend device number accordingly
-Q999
</CsOptions>
<CsInstruments>

ksmps = 32 ; no audio so sr and nchnls irrelevant

 instr 1
; read values in from p-fields
kchn = p4
knum random 48,72.99 ; note numbers chosen randomly across a 2 octaves
kvel random 40, 115 ; velocities are chosen randomly
krate randomi 1,2,1 ; rate at which new notes will be output
ktrig metro krate^2 ; 'new note' trigger
 midion2 kchn, int(knum), int(kvel), ktrig ; send midi note if ktrig=1
 endin

</CsInstruments>
<CsScore>
i 1 0 20 1
f 0 21 ; extending performance time prevents the final note-off being lost
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

midion and midion2 generate monophonic melody lines with no gaps between notes.

moscil works in a slightly different way and allows us to explicitly define note durations as well as the pauses between notes thereby permitting the generation of more staccato melodic lines. Like midion and midion2, moscil will not generate overlapping notes (unless two or more instances of it are concurrent). The next example algorithmically generates a melodic line using moscil.

EXAMPLE 07E06_moscil.csd

<CsoundSynthesizer>
<CsOptions>
; amend device number accordingly
-Q999
</CsOptions>
<CsInstruments>
; Example by Iain McCurdy

ksmps = 32 ;no audio so sr and nchnls omitted

seed 0; random number generators seeded by system clock

 instr 1
; read value in from p-field
kchn = p4
knum random 48,72.99 ; note numbers chosen randomly across a 2 octaves
kvel random 40, 115 ; velocities are chosen randomly
kdur random 0.2, 1 ; note durations chosen randomly from 0.2 to 1
kpause random 0, 0.4 ; pauses betw. notes chosen randomly from 0 to 0.4
 moscil kchn, knum, kvel, kdur, kpause ; send a stream of midi notes
 endin

</CsInstruments>
<CsScore>
;p1 p2 p3 p4
i 1 0 20 1
f 0 21 ; extending performance time prevents final note-off from being lost
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

MIDI File Output

As well as (or instead of) outputting midi in realtime, Csound can render data from all of its midi output opcodes to a midi file. To do this we use the –midioutfile= flag followed by the desired name for our file. For example:

<CsOptions>
-Q2 --midioutfile=midiout.mid
</CsOptions>

will simultaneously stream realtime midi to midi output device number 2 and render to a file named midiout.mid which will be saved in our home directory.

	See chapter 03 C for details.↩︎

 ch049.xhtml

08 A. OPEN SOUND CONTROL

Open Sound Control (OSC) offers a flexible and dynamic alternative to MIDI. It uses modern network communications, usually based on the user datagram transport layer protocol (UDP), and allows not only the communication between synthesizers but also between applications and remote computers.

Data Types and Csound Signifiers

The basic unit of OSC data is a message. This is being sent to an address which follows the UNIX path convention, starting with a slash and creating branches at every following slash. The names inside this structure are free, but the convention is that it should fit to the content, for instance /filter/rudi/cutoff or /Processing/sketch/RGB. So, in contrast to MIDI, the address space is not predefined and can be changed dynamically.

The OSC message must specify the type(s) of its argument(s). This is a list of all types which are available in Csound, and the signifier which Csound uses for this type:

	Data Type
	Csound Signifier

	audio
	a

	character
	c

	double
	d

	float
	f

	long integer 64-bit
	h

	integer 32-bit
	i

	string
	s

	array (scalar)
	A

	table
	G

Once data types are declared, messages can be sent and received. In OSC terminology, anything that sends a message is a client, and anything that receives a message is a server. Csound can be both. Usually it will communicate with another application either as client or as server. It can, for instance, receive data from Processing, or it can send data to Inscore.

Sending and Receiving Different Data Types

For this introduction we will keep both functions in Csound, One instrument will send an OSC message, another instrument will receive this message. We will start with sending and receiving nothing but one integer, to study the basic functionality.

Send/Receive an integer

EXAMPLE 08A01_OSC_send_recv_int.csd

<CsoundSynthesizer>
<CsOptions>
-m 128
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giPortHandle OSCinit 47120

instr Send
 kSendTrigger = 1
 kSendValue = 17
 OSCsend kSendTrigger, "", 47120, "/exmp_1/int", "i", kSendValue
endin

instr Receive
 kReceiveValue init 0
 kGotIt OSClisten giPortHandle, "/exmp_1/int", "i", kReceiveValue
 if kGotIt == 1 then
 printf "Message Received for '%s' at time %f: kReceiveValue = %d\n",
 1, "/exmp_1/int", times:k(), kReceiveValue
 endif
endin

</CsInstruments>
<CsScore>
i "Receive" 0 3 ;start listening process first
i "Send" 1 1 ;then after one second send message
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

To understand the main functionalities to use OSC in Csound, we will look more closely to what happens in the code.

OSCinit

giPortHandle OSCinit 47120

The OSCinit statement is necessary for the OSClisten opcode. It takes a port number as input argument and returns a handle, called giHandle in this case. This statement should usually be done in the global space.

OSCsend

kSendTrigger = 1
kSendValue = 17
OSCsend kSendTrigger, "", 47120, "/exmp_1/int", "i", kSendValue

The OSCsend opcode will send a message whenever the kSendTrigger will change its value. As this variable is set here to a fixed number, only one message will be sent. The second input for OSCsend is the host to which the message is being sent. An empty string means “localhost” or “127.0.0.1”. Third argument is the port number, here 47120, followed by the destination address string, here “/exmp_1/int”. As we are sending an integer here, the type specifier is “i” as fifth argument, followed by the value itself.

OSClisten

kReceiveValue init 0
kGotIt OSClisten giPortHandle, "/exmp_1/int", "i", kReceiveValue

On the receiver side, we find the giPortHandle which was returned by OSCinit, and the address string again, as well as the expected type, here “i” for integer. Note that the value which is received is on the input side of the opcode. So kReceiveValue must be initialized before, which is done in line 21. Whenever OSClisten receives a message, the kGotIt output variable will become 1 (otherwise it is zero).

if kGotIt == 1 then
 printf "Message Received for '/exmp_1/int' at time %f: \
 kReceiveValue = %d\n", 1, times:k(), kReceiveValue
endif

Here we catch this point, and get a printout with the time at which the message has been received. As our listening instrument starts first, and the sending instrument after one second, we will see a message like this one in the console:

Message Received for '/exmp_1/int' at time 1.002086: kReceiveValue = 17

Note that the time at which the message is received is necessarily slightly later than the time at which it is being sent. The time difference is usually around some milliseconds; it depends on the UDP transmission.

Send/Receive more than one data type in a message

The string which specifies the data types which are being sent, can consist of more than one character. It was “i” in the previous example, as we sent an integer. When we want to send a float and a string, it will become “fs”. This is the case in the next example; anything else is very similar to what was shown before.

EXAMPLE 08A02_OSC_more_data.csd

<CsoundSynthesizer>
<CsOptions>
-m 128
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giPortHandle OSCinit 47120

instr Send
 kSendTrigger = 1
 kFloat = 1.23456789
 Sstring = "bla bla"
 OSCsend kSendTrigger, "", 47120, "/exmp_2/more", "fs", kFloat, Sstring
endin

instr Receive
 kReceiveFloat init 0
 SReceiveString init ""
 kGotIt OSClisten giPortHandle, "/exmp_2/more", "fs",
 kReceiveFloat, SReceiveString
 if kGotIt == 1 then
 printf "kReceiveFloat = %f\nSReceiveString = '%s'\n",
 1, kReceiveFloat, SReceiveString
 endif
endin

</CsInstruments>
<CsScore>
i "Receive" 0 3 ;start listening process first
i "Send" 1 1 ;then after one second send message
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The printout is here:

kReceiveFloat = 1.234568
SReceiveString = 'bla bla'

Send/Receive arrays

Instead of single data, OSC can also send and receive collections of data. The next example shows how an array is being sent once a second, and is being transformed for each metro tick.

EXAMPLE 08A03_Send_receive_array.csd

<CsoundSynthesizer>
<CsOptions>
-m 128
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giPortHandle OSCinit 47120

instr Send
 kSendTrigger init 0
 kArray[] fillarray 1, 2, 3, 4, 5, 6, 7
 if metro(1)==1 then
 kSendTrigger += 1
 kArray *= 2
 endif
 OSCsend kSendTrigger, "", 47120, "/exmp_3/array", "A", kArray
endin

instr Receive
 kReceiveArray[] init 7
 kGotIt OSClisten giPortHandle, "/exmp_3/array", "A", kReceiveArray
 if kGotIt == 1 then
 printarray kReceiveArray
 endif
endin

</CsInstruments>
<CsScore>
i "Receive" 0 3
i "Send" 0 3
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Each time the metro ticks, the array values are multiplied by two. So the printout is:

2.0000 4.0000 6.0000 8.0000 10.0000 12.0000 14.0000
4.0000 8.0000 12.0000 16.0000 20.0000 24.0000 28.0000
8.0000 16.0000 24.0000 32.0000 40.0000 48.0000 56.0000

Send/Receive function tables

The next example shows a similar approach for function tables. Three different tables are being sent once a second, and received in the second instrument. Imagine two Csound instances running on two different computers for a more realistic situation.

EXAMPLE 08A04_Send_receive_table.csd

<CsoundSynthesizer>
<CsOptions>
-m 128
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giPortHandle OSCinit 47120

giTable_1 ftgen 0, 0, 1024, 10, 1
giTable_2 ftgen 0, 0, 1024, 10, 1, 1, 1, 1, 1
giTable_3 ftgen 0, 0, 1024, 10, 1, .5, 3, .1

instr Send
 kSendTrigger init 1
 kTable init giTable_1
 kTime init 0
 OSCsend kSendTrigger, "", 47120, "/exmp_4/table", "G", kTable
 if timeinsts() >= kTime+1 then
 kSendTrigger += 1
 kTable += 1
 kTime = timeinsts()
 endif
endin

instr Receive
 iReceiveTable ftgen 0, 0, 1024, 2, 0
 kGotIt OSClisten giPortHandle, "/exmp_4/table", "G", iReceiveTable
 aOut poscil .2, 400, iReceiveTable
 out aOut, aOut
endin

</CsInstruments>
<CsScore>
i "Receive" 0 3
i "Send" 0 3
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Send/Receive audio

It is also possible to send and receive an audio signal via OSC. in this case, a OSC message must be sent on each k-cycle. Remember though that OSC is not optimized for this task. Most probably you will hear some dropouts in the next example. (Larger ksmps values should give better result.)

EXAMPLE 08A05_send_receive_audio.csd

<CsoundSynthesizer>
<CsOptions>
-m 128
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 128
nchnls = 2
0dbfs = 1

giPortHandle OSCinit 47120

instr Send
 kSendTrigger init 1
 aSend poscil .2, 400
 OSCsend kSendTrigger, "", 47120, "/exmp_5/audio", "a", aSend
 kSendTrigger += 1
endin

instr Receive
 aReceive init 0
 kGotIt OSClisten giPortHandle, "/exmp_5/audio", "a", aReceive
 out aReceive, aReceive
endin

</CsInstruments>
<CsScore>
i "Receive" 1 3
i "Send" 0 5
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Other OSC Opcodes

The examples in this chapter were simple demonstrations of how different data types can be sent and received via OSC. The real usage requires a different application as partner for Csound, instead of the soliloquy we performed here. It should be added that there are some OSC opcodes which extend the basic functionality of OSCsend and OSClisten:

- OSCcount returns the count of OSC messages currently unread.

- OSCraw listens for all messages at a given port.

- OSCbundle sends OSC messages in a bundle rather than single messages.

- There is a variant of OSCsend called OSCsend_lo which uses the liblo library.

 ch050.xhtml

08 B. CSOUND AND ARDUINO

It is the intention of this chapter to suggest a number of ways in which Csound can be paired with an Arduino prototyping circuit board. It is not the intention of this chapter to go into any detail about how to use an Arduino, there is already a wealth of information available elsewhere online about this. It is common to use an Arduino and Csound with another program functioning as an interpreter, so therefore some time is spent discussing these other programs.

An Arduino is a simple microcontroller circuit board that has become enormously popular as a component in multidisciplinary and interactive projects for musicians and artists since its introduction in 2005. An Arduino board can be programmed to do many things and to send and receive data to and from a wide variety of other components and devices. As such it is impossible to specifically define its function here. An Arduino is normally programmed using its own development environment (IDE). A program is written on a computer which is then uploaded to the Arduino; the Arduino then runs this program, independent of the computer if necessary. Arduino’s IDE is based on that used by Processing and Wiring. Arduino programs are often referred to as sketches. There now exists a plethora of Arduino variants and even a number of derivatives and clones but all function in more or less the same way.

Interaction between an Arduino and Csound is essentially a question of communication and as such a number of possible solutions exist. This chapter will suggest several possibilities and it will then be up to the user to choose the one most suitable for their requirements. Most Arduino boards communicate using serial communication (normally via a USB cable). A number of Arduino programs, called Firmata, exist that are intended to simplify and standardise communication between Arduinos and software. Through the use of a Firmata the complexity of Arduino’s serial communication is shielded from the user and a number of simpler objects, ugens or opcodes (depending on what the secondary software is) can instead be used to establish communication. Unfortunately Csound is rather poorly served with facilities to communicate using the Firmata (although this will hopefully improve in the future) so it might prove easiest to use another program (such as Pd or Processing) as an intermediary between the Arduino and Csound.

Arduino - Pd - Csound

First we will consider communication between an Arduino (running a Standard Firmata) and Pd. Later we can consider the options for further communication from Pd to Csound.

Assuming that the Arduino IDE (integrated development environment) has been installed and that the Arduino has been connected, we should then open and upload a Firmata sketch. One can normally be found by going to File -> Examples -> Firmata -> … There will be a variety of flavours from which to choose but StandardFirmata should be a good place to start. Choose the appropriate Arduino board type under Tools -> Board -> … and then choose the relevant serial port under Tools -> Serial Port -> … Choosing the appropriate serial port may require some trial and error but if you have chosen the wrong one this will become apparent when you attempt to upload the sketch. Once you have established the correct serial port to use, it is worth taking a note of which number on the list (counting from zero) this corresponds to as this number will be used by Pd to communicate with the Arduino. Finally upload the sketch by clicking on the right-pointing arrow button.

Assuming that Pd is already installed, it will also be necessary to install an add-on library for Pd called Pduino. Follow its included instructions about where to place this library on your platform and then reopen Pd. You will now have access to a set of Pd objects for communicating with your Arduino. The Pduino download will also have included a number of examples Pd. arduino-test.pd will probably be the best patch to start. First set the appropriate serial port number to establish communication and then set Arduino pins as input, output etc. as you desire. It is beyond the scope of this chapter to go into further detail regarding setting up an Arduino with sensors and auxiliary components, suffice to say that communication to an Arduino is normally tested by blinking digital pin 13 and communication from an Arduino is normally tested by connecting a 10 kilo-ohm (10k) potentiometer to analog pin zero. For the sake of argument, we shall assume in this tutorial that we are setting the Arduino as a hardware controller and have a potentiometer connected to pin 0.

This picture below demonstrates a simple Pd patch that uses Pduino’s objects to receive communication from Arduino’s analog and digital inputs. (Note that digital pins 0 and 1 are normally reserved for serial communication if the USB serial communication is unavailable.) In this example serial port 5 has been chosen. Once the analogIns enable box for pin 0 is checked, moving the potentiometer will change the values in the left-most number box (and move the slider connected to it). Arduino’s analog inputs generate integers with 10-bit resolution (0 - 1023) but these values will often be rescaled as floats within the range 0 - 1 in the host program for convenience.

Having established communication between the Arduino and Pd we can now consider the options available to us for communicating between Pd and Csound. The most obvious (but not necessarily the best or most flexible) method is to use Pd’s csound6~ object). The above example could be modified to employ csound6~ as shown below.

The outputs from the first two Arduino analog controls are passed into Csound using its API. Note that we should use the unpegged (not quantised in time) values directly from the route object. The Csound file control.csd is called upon by Pd and it should reside in the same directory as the Pd patch. Establishing communication to and from Pd could employ code such as that shown below. Data from controller one (Arduino analog 0) is used to modulate the amplitude of an oscillator and data from controller two (Arduino analog 1) varies its pitch across a four octave range.

EXAMPLE 08B01Pd_to_Csound.csd

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
sr = 44100
nchnls = 2
0dbfs = 1
ksmps = 32

 instr 1
; read in controller data from Pd via the API using 'invalue'
kctrl1 invalue "ctrl1"
kctrl2 invalue "ctrl2"
; re-range controller values from 0 - 1 to 7 - 11
koct = (kctrl2*4)+7
; create an oscillator
a1 vco2 kctrl1,cpsoct(koct),4,0.1
 outs a1,a1
 endin
</CsInstruments>
<CsScore>
i 1 0 10000
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

Communication from Pd into Csound is established using the invalue opcodes and audio is passed back to Pd from Csound using outs. Note that Csound does not address the computer’s audio hardware itself but merely passes audio signals back to Pd. Greater detail about using Csound within Pd can be found in the chapter Csound in Pd.

A disadvantage of using the method is that in order to modify the Csound patch it will require being edited in an external editor, re-saved, and then the Pd patch will need to be reloaded to reflect these changes. This workflow might be considered rather inefficient.

Another method of data communication between PD and Csound could be to use MIDI. In this case some sort of MIDI connection node or virtual patchbay will need to be employed. On Mac this could be the IAC driver, on Windows this could be MIDI Yoke and on Linux this could be Jack. This method will have the disadvantage that the Arduino’s signal might have to be quantised in order to match the 7-bit MIDI controller format but the advantage is that Csound’s audio engine will be used (not Pd’s; in fact audio can be disabled in Pd) so that making modifications to the Csound file and hearing the changes should require fewer steps.

A final method for communication between Pd and Csound is to use OSC. This method would have the advantage that analog 10 bit signal would not have to be quantised. Again workflow should be good with this method as Pd’s interaction will effectively be transparent to the user and once started it can reside in the background during working. Communication using OSC is also used between Processing and Csound so is described in greater detail below.

Arduino - Processing - Csound

It is easy to communicate with an Arduino using a Processing sketch and any data within Processing can be passed to Csound using OSC.

The following method makes use of the Arduino and P5 (glove) libraries for processing. Again these need to be copied into the appropriate directory for your chosen platform in order for Processing to be able to use them. Once again there is no requirement to actually know very much about Processing beyond installing it and running a patch (sketch). The following sketch will read all Arduino inputs and output them as OSC.

Start the Processing sketch by simply clicking the triangle button at the top-left of the GUI. Processing is now reading serial data from the Arduino and transmitting this as OSC data within the computer.

The OSC data sent by Processing can be read by Csound using its own OSC opcodes. The following example simply reads in data transmitted by Arduino’s analog pin 0 and prints changed values to the terminal. To read in data from all analog and digital inputs you can use Iain McCurdy’s Arduino_Processing_OSC_Csound.csd.

EXAMPLE 08B02_Processing_to_Csound.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 8
nchnls = 1
0dbfs = 1

; handle used to reference osc stream
gihandle OSCinit 12001

 instr 1
; initialise variable used for analog values
gkana0 init 0
; read in OSC channel '/analog/0'
gktrigana0 OSClisten gihandle, "/analog/0", "i", gkana0
; print changed values to terminal
 printk2 gkana0
 endin

</CsInstruments>
<CsScore>
i 1 0 3600
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

Also worth in investigating is Jacob Joaquin’s Csoundo - a Csound library for Processing. This library will allow closer interaction between Processing and Csound in the manner of the csound6~ object in Pd. This project has more recently been developed by Rory Walsh.

Arduino as a MIDI Device

Some users might find it most useful to simply set the Arduino up as a MIDI device and to use that protocol for communication. In order to do this all that is required is to connect MIDI pin 4 to the Arduino’s 5v via a 200k resistor, to connect MIDI pin 5 to the Arduino’s TX (serial transmit) pin/pin 1 and to connect MIDI pin 2 to ground, as shown below. In order to program the Arduino it will be necessary to install Arduino’s MIDI library.

Programming an Arduino to generate a MIDI controller signal from analog pin 0 could be done using the following code:

// example written by Iain McCurdy
// import midi library
#include <MIDI.h>

const int analogInPin = A0; // choose analog input pin
int sensorValue = 0; // sensor value variable
int oldSensorValue = 0; // sensor value from previous pass
int midiChannel = 1; // set MIDI channel

void setup()
{
 MIDI.begin(1);
}

void loop()
{
 sensorValue = analogRead(analogInPin);

 // only send out a MIDI message if controller has changed
 if (sensorValue!=oldSensorValue)
 {
 // controller 1, rescale value from 0-1023 (Arduino) to 0-127 (MIDI)
 MIDI.sendControlChange(1,sensorValue/8,midiChannel);
 oldSensorValue = sensorValue; // set old sensor value to current
 }
 }

 delay(10);
}

Data from the Arduino can now be read using Csound’s ctrl7 opcodes for reading MIDI controller data.

The Serial Opcodes

Serial data can also be read directly from the Arduino by Csound by using Matt Ingalls’ opcodes for serial communication: serialBegin and serialRead.

An example Arduino sketch for serial communication could be as simple as this:

// Example written by Matt Ingalls
// ARDUINO CODE:

void setup() {
 // enable serial communication
 Serial.begin(9600);

 // declare pin 9 to be an output:
 pinMode(9, OUTPUT);
}

void loop()
{
 // only do something if we received something
 // (this should be at csound's k-rate)
 if (Serial.available())
 {

 // set the brightness of LED (connected to pin 9) to our input value
 int brightness = Serial.read();
 analogWrite(9, brightness);

 // while we are here, get our knob value and send it to csound
 int sensorValue = analogRead(A0);
 Serial.write(sensorValue/4); // scale to 1-byte range (0-255)
 }
}

It will be necessary to provide the correct address of the serial port to which the Arduino is connected (in the given example the Windows platform was being used and the port address was /COM4).

It will be necessary to scale the value to correspond to the range provided by a single byte (0-255) so therefore the Arduino’s 10 bit analog input range (0-1023) will have to be divided by four.

EXAMPLE 08B03_Serial_Read.csd

; Example written by Matt Ingalls
; CSOUND CODE:
; run with a commandline something like:
; csound --opcode-lib=serialOpcodes.dylib serialdemo.csd -odac -iadc

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
;--opcode-lib=serialOpcodes.dylib -odac
<CsInstruments>

ksmps = 500 ; the default krate can be too fast for the arduino to handle
0dbfs = 1

instr 1
 iPort serialBegin "/COM4", 9600
 kVal serialRead iPort
 printk2 kVal
endin

</CsInstruments>
<CsScore>
i 1 0 3600
</CsScore>
</CsoundSynthesizer>

This example will read serial data from the Arduino and print it to the terminal. Reading output streams from several of Arduino’s sensor inputs simultaneously will require more complex parsing of data within Csound as well as more complex packaging of data from the Arduino. This is demonstrated in the following example which also shows how to handle serial transmission of integers larger than 255 (the Arduino analog inputs have 10 bit resolution).

First the Arduino sketch, in this case reading and transmitting two analog and one digital input:

// Example written by Sigurd Saue
// ARDUINO CODE:

// Analog pins
int potPin = 0;
int lightPin = 1;

// Digital pin
int buttonPin = 2;

// Value IDs (must be between 128 and 255)
byte potID = 128;
byte lightID = 129;
byte buttonID = 130;

// Value to toggle between inputs
int select;

/*
** Two functions that handles serial send of numbers of varying length
*/

// Recursive function that sends the bytes in the right order
void serial_send_recursive(int number, int bytePart)
{
 if (number < 128) { // End of recursion
 Serial.write(bytePart); // Send the number of bytes first
 }
 else {
 serial_send_recursive((number >> 7), (bytePart + 1));
 }
 Serial.write(number % 128); // Sends one byte
}

void serial_send(byte id, int number)
{
 Serial.write(id);
 serial_send_recursive(number, 1);
}

void setup() {
 // enable serial communication
 Serial.begin(9600);
 pinMode(buttonPin, INPUT);
}

void loop()
{
 // Only do something if we received something (at csound's k-rate)
 if (Serial.available())
 {
 // Read the value (to empty the buffer)
 int csound_val = Serial.read();

 // Read one value at the time (determined by the select variable)
 switch (select) {
 case 0: {
 int potVal = analogRead(potPin);
 serial_send(potID, potVal);
 }
 break;
 case 1: {
 int lightVal = analogRead(lightPin);
 serial_send(lightID, lightVal);
 }
 break;
 case 2: {
 int buttonVal = digitalRead(buttonPin);
 serial_send(buttonID, buttonVal);
 }
 break;
 }

 // Update the select (0, 1 and 2)
 select = (select+1)%3;
 }
}

The solution is similar to MIDI messages. You have to define an ID (a unique number >= 128) for every sensor. The ID behaves as a status byte that clearly marks the beginning of a message received by Csound. The remaining bytes of the message will all have a most significant bit equal to zero (value < 128). The sensor values are transmitted as ID, length (number of data bytes), and the data itself. The recursive function serial_send_recursive counts the number of data bytes necessary and sends the bytes in the correct order. Only one sensor value is transmitted for each run through the Arduino loop.

The Csound code receives the values with the ID first. Of course you have to make sure that the IDs in the Csound code matches the ones in the Arduino sketch. Here’s an example of a Csound orchestra that handles the messages sent from the Arduino sketch:

EXAMPLE 08B04_Serial_Read_multiple.csd

<CsoundSynthesizer>
<CsOptions>
-d -odac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 500 ; the default krate can be too fast for the arduino to handle
nchnls = 2
0dbfs = 1

giSaw ftgen 0, 0, 4096, 10, 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8

instr 1

; Initialize the three variables to read
kPot init 0
kLight init 0
kButton init 0

iPort serialBegin "/COM5", 9600 ;connect to the arduino with baudrate = 9600
 serialWrite iPort, 1 ;Triggering the Arduino (k-rate)

kValue = 0
kType serialRead iPort ; Read type of data (pot, light, button)

if (kType >= 128) then

 kIndex = 0
 kSize serialRead iPort

 loopStart:
 kValue = kValue << 7
 kByte serialRead iPort
 kValue = kValue + kByte
 loop_lt kIndex, 1, kSize, loopStart
endif

if (kValue < 0) kgoto continue

if (kType == 128) then ; This is the potmeter
 kPot = kValue
elseif (kType == 129) then ; This is the light
 kLight = kValue
elseif (kType == 130) then ; This is the button (on/off)
 kButton = kValue
endif

continue:

; Here you can do something with the variables kPot, kLight and kButton
; printks "Pot %f\n", 1, kPot
; printks "Light %f\n", 1, kLight
; printks "Button %d\n", 1, kButton

; Example: A simple oscillater controlled by the three parameters
kAmp port kPot/1024, 0.1
kFreq port (kLight > 100 ? kLight : 100), 0.1
aOut oscil kAmp, kFreq, giSaw

if (kButton == 0) then
 out aOut
endif

endin

</CsInstruments>
<CsScore>
i 1 0 60 ; Duration one minute
e
</CsScore>
</CsoundSynthesizer>
;example written by Sigurd Saue

Remember to provide the correct address of the serial port to which the Arduino is connected (the example uses /COM5).

HID

Another option for communication has been made available by a new Arduino board called Leonardo. It pairs with a computer as if it were an HID (Human Interface Device) such as a mouse, keyboard or a gamepad. Sensor data can therefore be used to imitate the actions of a mouse connected to the computer or keystrokes on a keyboard. Csound is already equipped with opcodes to make use of this data. Gamepad-like data is perhaps the most useful option though and there exist opcodes (at least in the Linux version) for reading gamepad data. It is also possible to read in data from a gamepad using pygame and Csound’s python opcodes.

 ch051.xhtml

09 A. CSOUND IN PD

Installing

You can embed Csound in PD via the external object csound6~ which has been written by Victor Lazzarini. This external is either part of the Csound distribution or can be built from the sources at https://github.com/csound/csound_pd . In the examples folder of this repository you can also find all the .csd and .pd files of this chapter.

On Ubuntu Linux, you can install the csound6~ via the Synaptic Package Manager. Just look for csound6~ or pd-csound, check install, and your system will install the library at the appropriate location. If you build Csound from sources, go to the csound_pd repository and follow the build instructions. Once it is compiled, the object will appear as csound6~.pd_linux and should be copied (together with csound6~-help.pd) to /usr/lib/pd/extra, so that PD can find it. If not, add it to PD’s search path (File->Path…).

On Mac OSX, you find the csound6~ external, help file and examples in the release directory of the csound_pd repository. (Prior to 6.11, the csound6~ was in /Library/Frameworks/CsoundLib64.framework/Versions/6.0/Resources/PD after installing Csound.)

Put these files in a folder which is in PD’s search path. For PD-extended, it is by default ~/Library/Pd. But you can put it anywhere. Just make sure that the location is specified in PD’s Preferences-> Path… menu.

On Windows, you find the csound6~ external, help file and examples in the release directory of the csound_pd repository, too.

Control Data

You can send control data from PD to your Csound instrument via the keyword control in a message box. In your Csound code, you must receive the data via invalue or chnget. This is a simple example:

EXAMPLE 09A01_pdcs_control_in.csd

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
sr = 44100
nchnls = 2
0dbfs = 1
ksmps = 8

instr 1
kFreq invalue "freq"
kAmp invalue "amp"
aSin poscil kAmp, kFreq
 out aSin, aSin
endin

</CsInstruments>
<CsScore>
i 1 0 10000
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Save this file under the name control.csd. Save a PD window in the same folder and create the following patch:

Note that for invalue channels, you first must register these channels by a set message. The usage of chnget is easier; a simple example can be found in this example in the csound6~ repository.

As you see, the first two outlets of the csound6~ object are the signal outlets for the audio channels 1 and 2. The third outlet is an outlet for control data (not used here, see below). The rightmost outlet sends a bang when the score has been finished.

Live Input

Audio streams from PD can be received in Csound via the inch opcode. The number of audio inlets created in the csound6~ object will depend on the number of input channels used in the Csound orchestra. The following .csd uses two audio inputs:

EXAMPLE 09A02_pdcs_live_in.csd

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
sr = 44100
0dbfs = 1
ksmps = 8
nchnls = 2

instr 1
aL inch 1
aR inch 2
kcfL randomi 100, 1000, 1; center frequency
kcfR randomi 100, 1000, 1; for band pass filter
aFiltL butterbp aL, kcfL, kcfL/10
aoutL balance aFiltL, aL
aFiltR butterbp aR, kcfR, kcfR/10
aoutR balance aFiltR, aR
 outch 1, aoutL
 outch 2, aoutR
endin

</CsInstruments>
<CsScore>
i 1 0 10000
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The corresponding PD patch is extremely simple:

MIDI

The csound6~ object receives MIDI data via the keyword midi. Csound is able to trigger instrument instances in receiving a note on message, and turning them off in receiving a note off message (or a note-on message with velocity=0). So this is a very simple way to build a synthesizer with arbitrary polyphonic output:

This is the corresponding midi.csd. It must contain the options -+rtmidi=null -M0 in the <CsOptions> tag. It is an FM synth in which the modulation index is defined according to the note velocity. The harder a key is truck, the higher the index of modulation will be; and therefore a greater number of stronger partials will be created. The ratio is calculated randomly between two limits, which can be adjusted.

EXAMPLE 09A03_pdcs_midi.csd

<CsOptions>
-+rtmidi=null -M0
</CsOptions>
<CsoundSynthesizer>
<CsInstruments>
sr = 44100
ksmps = 8
nchnls = 2
0dbfs = 1

giSine ftgen 0, 0, 2^10, 10, 1

instr 1
iFreq cpsmidi ;gets frequency of a pressed key
iAmp ampmidi 8;gets amplitude and scales 0-8
iRatio random .9, 1.1; ratio randomly between 0.9 and 1.1
aTone foscili .1, iFreq, 1, iRatio/5, iAmp+1, giSine; fm
aEnv linenr aTone, 0, .01, .01; avoiding clicks at the end of a note
 outs aEnv, aEnv
endin

</CsInstruments>
<CsScore>
f 0 36000; play for 10 hours
e
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Score Events

Score events can be sent from PD to Csound by a message with the keyword event. You can send any kind of score events, like instrument calls or function table statements. The following example triggers Csound’s instrument 1 whenever you press the message box on the top. Different sounds can be selected by sending f events (building/replacing a function table) to Csound.

EXAMPLE 09A04_pdcs_events.csd

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 8
nchnls = 2
0dbfs = 1
seed 0; each time different seed

instr 1
iDur random 0.5, 3
p3 = iDur
iFreq1 random 400, 1200
iFreq2 random 400, 1200
idB random -18, -6
kFreq linseg iFreq1, iDur, iFreq2
kEnv transeg ampdb(idB), p3, -10, 0
aTone poscil kEnv, kFreq
 outs aTone, aTone
endin

</CsInstruments>
<CsScore>
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Control Output

If you want Csound to pass any control data to PD, you can use the opcode outvalue. You will receive this data at the second outlet from the right of the csound6~ object. The data are sent as a list with two elements. The name of the control channel is the first element, and the value is the second element. You can get the values by a route object or by a send/receive chain. This is a simple example:

EXAMPLE 09A05_pdcs_control_out.csd

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
sr = 44100
nchnls = 2
0dbfs = 1
ksmps = 8

instr 1
ktim times
kphas phasor 1
 outvalue "time", ktim
 outvalue "phas", kphas*127
endin

</CsInstruments>
<CsScore>
i 1 0 30
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Send/Receive Buffers from PD to Csound and back

A PD array can be sent directly to Csound, and a Csound function table to PD. The message tabset array-name ftable-number copies a PD array into a Csound function table. The message tabget array-name ftable-number copies a Csound function table into a PD array. The example below should explain everything. Just choose another soundfile instead of stimme.wav.

EXAMPLE 06A06_pdcs_tabset_tabget.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 8
nchnls = 1
0dbfs = 1

giCopy ftgen 1, 0, -88200, 2, 0 ;"empty" table
giFox ftgen 2, 0, 0, 1, "fox.wav", 0, 0, 1

 opcode BufPlay1, a, ipop
ifn, ispeed, iskip, ivol xin
icps = ispeed / (ftlen(ifn) / sr)
iphs = iskip / (ftlen(ifn) / sr)
asig poscil3 ivol, icps, ifn, iphs
 xout asig
 endop

 instr 1
itable = p4
aout BufPlay1 itable
 out aout
 endin

</CsInstruments>
<CsScore>
f 0 99999
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Settings

Make sure that the Csound vector size given by the ksmps value, is not larger than the internal PD vector size. It should be a power of 2. I would recommend starting with ksmps=8. If there are performance problems, try to increase this value to 16, 32, or 64, i.e. ascending powers of 2.

The csound6~ object runs by default if you turn on audio in PD. You can stop it by sending a run 0 message, and start it again with a run 1 message.

You can recompile the csd file of a csound6~ object by sending a reset message.

By default, you see all the messages of Csound in the PD window. If you do not want to see them, send a message 0 message. message 1 re-enables message printing.

If you want to open a new .csd file in the csound6~ object, send the message open, followed by the path of the .csd file you want to load.

A rewind message rewinds the score without recompilation. The message offset, followed by a number, offsets the score playback by that number of seconds.

 ch052.xhtml

09 B. CSOUND IN MAXMSP

Csound can be embedded in a Max patch using the csound~ object. This allows you to synthesize and process audio, MIDI, or control data with Csound.

Note: Most of the descriptions below have been written years ago by Davis Pyon. They may be outdated and will need to be updated.

Installing

The csound~ requires an installation of Csound. The external can be downloaded on Csound’s download page (under Other).

Creating a csound~ Patch

	Create the following patch:

	Save as helloworld.maxpat and close it.

	Create a text file called helloworld.csd within the same folder as your patch.

	Add the following to the text file:

EXAMPLE 09B01_maxcs_helloworld.csd

<CsoundSynthesizer>
<CsInstruments>
;Example by Davis Pyon
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1
aNoise noise .1, 0
 outch 1, aNoise, 2, aNoise
endin

</CsInstruments>
<CsScore>
f0 86400
i1 0 86400
e
</CsScore>
</CsoundSynthesizer>

	Open the patch, press the bang button, then press the speaker icon.

At this point, you should hear some noise. Congratulations! You created your first csound~ patch.

You may be wondering why we had to save, close, and reopen the patch. This is needed in order for csound~ to find the csd file. In effect, saving and opening the patch allows csound~ to “know” where the patch is. Using this information, csound~ can then find csd files specified using a relative pathname (e.g. helloworld.csd). Keep in mind that this is only necessary for newly created patches that have not been saved yet. By the way, had we specified an absolute pathname (e.g. C:/Mystuff/helloworld.csd), the process of saving and reopening would have been unnecessary.

The @scale 0 argument tells csound~ not to scale audio data between Max and Csound. By default, csound~ will scale audio to match 0dB levels. Max uses a 0dB level equal to one, while Csound uses a 0dB level equal to 32768. Using @scale 0 and adding the statement 0dbfs = 1 within the csd file allows you to work with a 0dB level equal to one everywhere. This is highly recommended.

Audio I/O

All csound~ inlets accept an audio signal and some outlets send an audio signal. The number of audio outlets is determined by the arguments to the csound~ object. Here are four ways to specify the number of inlets and outlets:

	[csound~ @io 3]

	[csound~ @i 4 @o 7]

	[csound~ 3]

	[csound~ 4 7]

@io 3 creates 3 audio inlets and 3 audio outlets. @i 4 @o 7 creates 4 audio inlets and 7 audio outlets. The third and fourth lines accomplish the same thing as the first two. If you don’t specify the number of audio inlets or outlets, then csound~ will have two audio inlets and two audio oulets. By the way, audio outlets always appear to the left of non-audio outlets. Let’s create a patch called audio_io.maxpat that demonstrates audio i/o:

Here is the corresponding text file (let’s call it audio_io.csd):

EXAMPLE 09B02_maxcs_audio_io.csd

<CsoundSynthesizer>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 3
0dbfs = 1

instr 1
aTri1 inch 1
aTri2 inch 2
aTri3 inch 3
aMix = (aTri1 + aTri2 + aTri3) * .2
 outch 1, aMix, 2, aMix
endin

</CsInstruments>
<CsScore>
f0 86400
i1 0 86400
e
</CsScore>
</CsoundSynthesizer>
;example by Davis Pyon

In audio_io.maxpat, we are mixing three triangle waves into a stereo pair of outlets. In audio_io.csd, we us inch and outch to receive and send audio from and to csound~. inch and outch both use a numbering system that starts with one (the left-most inlet or outlet).

Notice the statement nchnls = 3 in the orchestra header. This tells the Csound compiler to create three audio input channels and three audio output channels. Naturally, this means that our csound~ object should have no more than three audio inlets or outlets.

Control Messages

Control messages allow you to send numbers to Csound. It is the primary way to control Csound parameters at i-rate or k-rate. To control a-rate (audio) parameters, you must use and audio inlet. Here are two examples:

	control frequency 2000

	c resonance .8

Notice that you can use either control or c to indicate a control message. The second argument specifies the name of the channel you want to control and the third argument specifies the value.

The following patch and Csound file demonstrates control messages:

EXAMPLE 09B03_maxcs_control_in.csd

<CsoundSynthesizer>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine ftgen 1, 0, 16384, 10, 1 ; Generate a sine wave table.

instr 1
kPitch chnget "pitch"
kMod invalue "mod"
aFM foscil .2, cpsmidinn(kPitch), 2, kMod, 1.5, giSine
 outch 1, aFM, 2, aFM
endin
</CsInstruments>
<CsScore>
f0 86400
i1 0 86400
e
</CsScore>
</CsoundSynthesizer>
;example by Davis Pyon

In the patch, notice that we use two different methods to construct control messages. The pak method is a little faster than the message box method, but do whatever looks best to you. You may be wondering how we can send messages to an audio inlet (remember, all inlets are audio inlets). Don’t worry about it. In fact, we can send a message to any inlet and it will work.

In the Csound file, notice that we use two different opcodes to receive the values sent in the control messages: chnget and invalue. chnget is more versatile (it works at i-rate and k-rate, and it accepts strings) and is a tiny bit faster than invalue. On the other hand, the limited nature of invalue (only works at k-rate, never requires any declarations in the header section of the orchestra) may be easier for newcomers to Csound.

MIDI

csound~ accepts raw MIDI numbers in its first inlet. This allows you to create Csound instrument instances with MIDI notes and also control parameters using MIDI Control Change. csound~ accepts all types of MIDI messages, except for: sysex, time code, and sync. Let’s look at a patch and text file that uses MIDI:

EXAMPLE 09B04_maxcs_midi.csd

<CsoundSynthesizer>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

massign 0, 0 ; Disable default MIDI assignments.
massign 1, 1 ; Assign MIDI channel 1 to instr 1.

giSine ftgen 1, 0, 16384, 10, 1 ; Generate a sine wave table.

instr 1
iPitch cpsmidi
kMod midic7 1, 0, 10
aFM foscil .2, iPitch, 2, kMod, 1.5, giSine
 outch 1, aFM, 2, aFM
endin
</CsInstruments>
<CsScore>
</CsScore>
</CsoundSynthesizer>
;example by Davis Pyon

In the patch, notice how we’re using midiformat to format note and control change lists into raw MIDI bytes. The 1 argument for midiformat specifies that all MIDI messages will be on channel one.

In the Csound file, notice the massign statements in the header of the orchestra. massign 0, 0 tells Csound to clear all mappings between MIDI channels and Csound instrument numbers. This is highly recommended because forgetting to add this statement may cause confusion somewhere down the road. The next statement massign 1,1 tells Csound to map MIDI channel one to instrument one.

To get the MIDI pitch, we use the opcode cpsmidi. To get the FM modulation factor, we use midic7 in order to read the last known value of MIDI CC number one (mapped to the range [0,10]).1

Notice that in the score section of the Csound file, we no longer have the statement i1 0 86400 as we had in earlier examples. The score section is left empty here, so that instrument 1 is compiled but not activated. Activation is done via MIDI here.

Events

To send Csound events (i.e. score statements), use the event or e message. You can send any type of event that Csound understands. The following patch and text file demonstrates how to send events:

EXAMPLE 09B05_maxcs_events.csd

<CsoundSynthesizer>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1
 iDur = p3
 iCps = cpsmidinn(p4)
 iMeth = 1
 print iDur, iCps, iMeth
aPluck pluck .2, iCps, iCps, 0, iMeth
 outch 1, aPluck, 2, aPluck
endin
</CsInstruments>
<CsScore>
</CsScore>
</CsoundSynthesizer>
;example by Davis Pyon

In the patch, notice how the arguments to the pack object are declared. The i1 statement tells Csound that we want to create an instance of instrument one. There is no space between i and 1 because pack considers i as a special symbol signifying an integer. The next number specifies the start time. Here, we use 0 because we want the event to start right now. The duration 3. is specified as a floating point number so that we can have non-integer durations. Finally, the number 64 determines the MIDI pitch. You might be wondering why the pack object output is being sent to a message box. This is good practice as it will reveal any mistakes you made in constructing an event message.

In the Csound file, we access the event parameters using p-statements. We never access p1 (instrument number) or p2 (start time) because they are not important within the context of our instrument. Although p3 (duration) is not used for anything here, it is often used to create audio envelopes. Finally, p4 (MIDI pitch) is converted to cycles-per-second. The print statement is there so that we can verify the parameter values.

	Csound’s MIDI options and opcodes are described in detail in section 7 of this manual.↩︎

 ch053.xhtml

09 C. CSOUND AS A VST PLUGIN

Csound can be built into a VST or AU plugin through the use of the Csound host API. Refer to the section on using the Csound API for more details.

The best choice currently is to use Cabbage to create Csound based plugins. See the Cabbage chapter in part 10 of this manual.

 ch054.xhtml

10 A. CSOUNDQT

CsoundQt (named QuteCsound until automn 2011) is a free, cross-platform graphical frontend to Csound. It has been written by Andrés Cabrera and is maintained since 2016 by Tarmo Johannes. It features syntax highlighting, code completion and a graphical widget editor for realtime control of Csound. It comes with many useful code examples, from basic tutorials to complex synthesizers and pieces written in Csound. It also features an integrated Csound language help display.

Installing

CsoundQt is a frontend for Csound, so Csound needs to be installed first. Make sure you have installed Csound before you install CsoundQt; otherwise it will not work at all.

CsoundQt is included in the Csound installers for Mac OSX and Windows. It is recommended to use the CsoundQt version which is shipped with the installer for compatibility between CsoundQt and Csound. The Windows installer will probably install CsoundQt automatically. For OSX, first install the Csound package, then open the CsoundQt disk image and copy the CsoundQt Application into the Applications folder.

For Linux there is a Debian/Ubuntu package. Unfortunately it is built without RtMidi support, so you will not be able to connect CsoundQt’s widgets directly with your midi controllers. The alternative is to build CsoundQt with QtCreator which is not too hard and gives you all options, including the PythonQt connection. You will find instructions how to build in the CsoundQt Wiki.

General Usage and Configuration

CsoundQt can be used as a code editor tailored for Csound, as it facilitates running and rendering Csound files without the need of typing on the command line using the Run and Render buttons.

In the widget editor panel, you can create a variety of widgets to control Csound. To link the value from a widget, you first need to set its channel, and then use the Csound opcodes invalue or chnget. To send values to widgets, e.g. for data display, you need to use the outvalue or chnset opcode.

CsoundQt also implements the use of HTML and JavaScript code embedded in the optional <html> element of the CSD file. If this element is detected, CsoundQt will parse it out as a Web page, compile it, and display it in the HTML5 Gui window. HTML code in this window can control Csound via a selected part of the Csound API that is exposed in JavaScript. This can be used to define custom user interfaces, display video and 3D graphics, generate Csound scores, and much more. See chapter Csound and Html for more information.

CsoundQt also offers convenient facilities for score editing in a spreadsheet like environment which can be transformed using Python scripting (see also the chapter about Python in CsoundQt).

You will find more detailed information at CsoundQt’s home page.

Configuring CsoundQt

CsoundQt gives easy access to the most important Csound options and to many specific CsoundQt settings via its Configuration Panel. In particular the Run tab offers many choices which have to be understood and set carefully.

To open the configuration panel simply push the Configure button. The configuration panel comprises seven tabs. The available configurable parameters in each tab are described below for each tab.

The single options, their meaning and tips of how to set them are listed at the Configuring CsoundQt page of CsoundQt’s website.

 ch055.xhtml

10 B. CABBAGE

Cabbage is a software for prototyping and developing audio instruments with the Csound audio synthesis language. Instrument development and prototyping is carried out with the main Cabbage IDE. Users write and compile Csound code in a code editor. If one wishes, they can also create a graphical frontend, although this is not essential. Any Csound file can be run with Cabbage, regardless of whether or not it has a graphical interface. Cabbage is designed for realtime processing in mind. While it is possible to use Cabbage to run Csound in the more traditional score-driven way, but your success may vary.

Cabbage is a ‘host’ application. It treats each and every Csound instruments as a unique native plugin, which gets added to a digital audio graph (DAG) once it is compiled. The graph can be opened and edited at any point during a performance. If one wishes to use one of their Csound instruments in another audio plugin host, such as Reaper, Live, Bitwig, Ardour, QTractor, etc, they can export the instrument through the ‘Export instrument’ option.

Download and Install

Cabbage is hosted on GitHub, and pre-compiled binaries for Windows and OSX can be found on the release section of Cabbage’s home page. If you run Linux you will need to build Cabbage yourself, but instructions are included with the source code. The main platform installers for Cabbage inclue an option of installing the latest version of Csound. If you already have a version of Csound installed, you can skip this step. Note that you will need to have Csound installed one way or another in order to run Cabbage.

Using Cabbage

Instrument development and prototyping is carried out with the main Cabbage IDE. Users write and compile their Csound code in a code editor. Each Csound file opened with have a corresponding editor. If one wishes one can also create a graphical frontend, although this is no longer a requirement for Cabbage. Any Csound file can be run with Cabbage, regardless of whether or not it has a graphical interface. Each Csound files that is compiled by Cabbage will be added to an underlying digital audio graph. Through this graph users can manage and configure instrument to create patches of complex processing chains.

Opening files

User can open any .csd files by clicking on the Open File menu command, or toolbar button. Users can also browse the Examples menu from the main File menu. Cabbage ships with over 100 high-end instruments that can be modified, hacked, and adapted in any way you wish. Note that if you wish to modify the examples, use the Save-as option first. Although this is only required on Windows, it’s a good habit to form. You don’t want to constantly overwrite the examples with your own code. Cabbage can load and perform non-Cabbage score-driven .csd files. However, it also uses its own audio IO, so it will overwrite any -odac options set in the CsOptions section of a .csd file.

Creating a new file

News files can be created by clicking the New file button in the toolbar, or by clicking File->New Csound file from the main menu. When a new file is requested, Cabbage will give you the choice of 3 basic templates, as shown below.

The choices are:

	A new synth. When this option is selected Cabbage will generate a simple synthesiser with an ADSR envelope and MIDI keyboard widget. In the world of VST, these instruments are referred to a VSTi’s.

	A new effect. When this option is selected Cabbage will create a simple audio effect. It will generate a simple Csound instrument that provides access to an incoming audio stream. It also generates code that will control the gain of the output.

	A new Csound file. This will generate a basic Csound file without any graphical frontend.

Note that these templates are provided for quickly creating new instruments. One can modify any of the template code to convert it from a synth to an effect or vice versa.

Building/exporting instruments

To run an instrument users can use the controls at the top of the file’s editor. Alternatively one can go to the ‘Tools’ menu and hit ‘Build Instrument’. If you wish to export a plugin go to ‘Export’ and choose the type of plugin you wish to export. To use the plugin in a host, you will need to let the host know where your plugin file is located. On Windows and Linux, the corresponding .csd should be located in the same directory as the plugin dll. The situation is different on MacOS as the .csd file is automatically packaged into the plugin bundle.

Closing a file will not stop it from performing. To stop a file from performing you must hit the Stop button.

Creating GUI interfaces for instruments

To create a GUI for your instrument you must enter edit mode for that instrument. You can do this by hitting the Edit mode button at the top of the file’s editor, or by hitting Ctrl+e when the editor for that instrument have focus. Once in edit mode, each widget will have a thin white border around it. you can move widgets around whilst in edit. You can also right-click and insert new widgets, as well as modify their appearance using the GUI properties editor on the right-hand side of the screen.

You will notice that when you select a widget whilst in edit mode, Cabbage will highlight the corresponding line of text in your source code. When updating GUI properties, hit ‘Enter’ when you are editing single line text or numeric properties, ‘Tab’ when you are editing multi-line text properties, and ‘Escape’ when you are editing colours.

Editing the audio graph

Each and every instrument that you compile in Cabbage will be added to an underlying audio graph. This is true for both Cabbage files, and traditional Csound files. To edit the graph one can launch the Cabbage patcher from the view menu.

Instruments can also be added directly through the graph by right-clicking and adding them from the context menu. The context menu will show all the examples files, along with a selection of files from a user-defined folder. See the section below on Settings to learn how to set this folder.

Instruments can also be deleted by right-clicking the instrument node. Users can delete/modify connections by clicking on the connections themselves. They can also connect node by clicking and dragging from an output to an input.

Once an instrument node has been added, Cabbage will automatically open the corresponding code. Each time you update the corresponding source code, the node will also be updated.

As mentioned above, closing a file will not stop it from performing. It is possible to have many instruments running even though their code is not showing. To stop an instrument you must hit the Stop button at the top of its editor, or delete the plugin from the graph.

Navigating large source files

It can become quite tricky to navigate very long text files. For this reason Cabbage provides a means of quickly jumping to instrument definitions. It is also possible to create a special ;- Region: tag. Any text that appears after this tag will be appended to the drop-down combo box in the Cabbage tool bar.

Using the code repository

Cabbage provides a quick way of saving and recalling blocks of code. To save code to the repository simple select the code you want, right-click and hit Add to code repository. To insert code later from the repository, right-click the place you wish to insert the code and hit Add from code repository.

Code can be modified, edited or deleted at a later stage in the Settings dialogue.

Settings

The settings dialogue can be opened by going to the Edit->Setting menu command, or pressing the Settings cog in the main toolbar.

Audio and MIDI settings

These settings are used to choose your audio/MIDI input/output devices. You can also select the sampling rate and audio buffer sizes. Small buffer sizes will reduce latency but might cause some clicks in the audio. Note te buffer sizes selected here are only relevant when using the Cabbage IDE. Plugins will have their buffer sizes set by the host. The last known audio and MIDI settings will automatically be saved and recalled for the next session.

Editor

The following settings provide control for various aspects of Cabbage and how it runs its instruments.

	Auto-load: Enabling this will cause Cabbage to automatically load the last files that were open.

	Plugin Window: Enable this checkbox to ensure that the plugin window is always on top and does not disappear behind the main editor when it loses focus.

	Graph Window: Same as above only for the Cabbage patcher window.

	Auto-complete: provides a rough auto-complete of variable names Editor lines to scroll with MouseWheel: Sets the number of lines to jump on each movement of the mouse wheel.

Directories

These directory fields are given default directories that rarely, if ever, need to be changed.

	Csound manual directory: Sets the path to index.html in the Csound help manual. The default directories will be the standard location of the Csound help manual after installing Csound.

	Cabbage manual directory: Sets the path to index.html in the Cabbage help manual.

	Cabbage examples directory: Set the path to the Cabbage examples folder. This should never need to be modified.

	User files directory: Sets the path to a folder containing user files that can be inserted by right-clicking in the patcher. Only files stored in this, and the examples path will be accessible in the Cabbage patcher context menu.

Colours

	Interface: Allows user to set custom colours for various elements of the main graphical interface

	Editor: Allows users to modify the syntax highlighting in the Csound editor

	Console: Allows users to changes various colours in the Csound output console.

Code Repository

This tab shows the various blocks of code that have been saved to the repository. You can edit or delete any of the code blocks. Hit Save/Update to update any changes.

First Synth

As mentioned in the previous section, each Cabbage instrument is defined in a simple text file with a .csd extension. The syntax used to create GUI widgets is quite straightforward and should be provided within special xml-style tags <Cabbage> and </Cabbage> which can appear either above or below Csound’s own <CsoundSynthesizer> tags. Each line of Cabbage specific code relates to one GUI widget only. The attributes of each widget are set using different identifiers such as colour(), channel(), size() etc. Where identifiers are not used, Cabbage will use the default values. Long lines can be broken up with a \ placed at the end of a line.

Each and every Cabbage widget has 4 common parameters: position on screen(x, y) and size(width, height). Apart from position and size all other parameters are optional and if left out default values will be assigned. To set widget parameters you will need to use an appropriate identifier after the widget name. More information on the various widgets and identifiers available in Cabbage can be found in the Widget reference section of these docs.

Getting started

Now that the basics of the Csound language have been outlined, let’s create a simple instrument. The opcodes used in this simple walk through are vco2, madsr, moogladder and outs.

The vco2 opcode models a voltage controlled oscillator. It provides users with an effective way of generating band-limited waveforms and can be the building blocks of many a synthesiser. Its syntax, taken from the Csound reference manual, is given below. It is important to become au fait with the way opcodes are presented in the Csound reference manual. It, along with the the Cabbage widget reference are two documents that you will end up referencing time and time again as you start developing Cabbage instruments.

ares vco2 kamp, kcps [, imode] [, kpw] [, kphs] [, inyx]

vco2 outputs an a-rate signal and accepts several different input argument. The types of input parameters are given by the first letter in their names. We see above that the kamp argument needs to be k-rate. Square brackets around an input argument means that argument is optional and can be left out. Although not seen above, whenever an input argument start with x, it can be an i, k or a-rate variable.

kamp determines the amplitude of the signal, while kcps set the frequency of the signal. The default type of waveform created by a vco2 is a sawtooth waveform. The simplest instrument that can be written to use a vco2 is given below. The out opcode is used to output an a-rate signal as audio.

instr 1
 aOut vco2 1, 440
 out aOut
endin

In the traditional Csound context, we would start this instrument using a score statement. We’ll learn about score statements later, but because we are building a synthesiser that will be played with a MIDI keyboard, our score section will not be very complex. In fact, it will only contain one line of code. f0 z is a special score statement that instructs Csound to listen for events for an extremely long time. Below is the entire source code, including a simple Cabbage section for the instrument presented above.

<Cabbage>
form caption("Untitled") size(400, 300), \
 colour(58, 110, 182), \
 pluginID("def1")
keyboard bounds(8, 158, 381, 95)
</Cabbage>
<CsoundSynthesizer>
<CsOptions>
-+rtmidi=NULL -M0 -m0d --midi-key-cps=4 --midi-velocity-amp=5
</CsOptions>
<CsInstruments>
; Initialize the global variables.
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

;instrument will be triggered by keyboard widget
instr 1
 iFreq = p4
 iAmp = p5
 aOut vco2 iAmp, iFreq
 outs aOut, aOut
endin

</CsInstruments>
<CsScore>
;causes Csound to run for about 7000 years...
f0 z
</CsScore>
</CsoundSynthesizer>

You’ll notice that the pitch and frequency for the vco2 opcode has been replaced with two i-rate variables, iFreq and iAmp, who in turn get their value from p5, and p4. p5 and p4 are p-variables. Their values will be assigned based on incoming MIDI data. If you look at the code in the section you’ll see the text ‘–midi-key-cps=4 –midi-velocity-amp=5’. This instructs Csound to pass the current note’s velocity to p5, and the current note’s frequency, in cycle per second(Hz.) to p4. p4 and p5 were chosen arbitrarily. p7, p8, p-whatever could have been used, so long as we accessed those same p variables in our instrument.

 ch056.xhtml

10 C. BLUE

General Overview

Blue is a graphical computer music environment for composition, a versatile front-end to Csound. It is written in Java, platform-independent, and uses Csound as its audio engine. It provides higher level abstractions such as a graphical timeline for composition, GUI-based instruments, score generating SoundObjects like PianoRolls, python scripting, Cmask, Jmask and more. It is available at: http://blue.kunstmusik.com

Organization of Tabs and Windows

Blue organizes all tasks that may arise while working with Csound within a single environment. Each task, be it score generation, instrument design, or composition is done in its own window. All the different windows are organized in tabs so that you can flip through easily and access them quickly.

In several places you will find lists and trees: All of your instruments used in a composition are numbered, named and listed in the Orchestra-window.

You will find the same for UDOs (User Defined Opcodes). From this list you may export or import Instruments and UDOs from a library to the piece and vice versa. You may also bind several UDOs to a particular Instrument and export this instrument along with the UDOs it needs.

Editor

Blue holds several windows where you can enter code in an editor-like window. The editor-like windows are found for example in the Orchestra-window, the window to enter global score or the Tables-window to collect all the functions. There you may type in, import or paste text-based information. It gets displayed with syntax highlighting of Csound code.

[image: The Orchestra-window]The Orchestra-window

The Score Timeline as a Graphical Representation of the Composition

The Score timeline allows for visual organization of all the used SoundObjects in a composition.

In the score window, which is the main graphical window that represents the composition, you may arrange the composition by arranging the various SoundObjects in the timeline. A SoundObject is an object that holds or even generates a certain amount of score-events. SoundObjects are the building blocks within Blue’s score timeline. SoundObjects can be lists of notes, algorithmic generators, python script code, Csound instrument definitions, PianoRolls, Pattern Editors, Tracker interfaces, and more. These SoundObjects may be text based or GUI-based as well, depending on their facilities and purposes.

[image: Timeline holding several Sound Objects, one selected and opened in the SoundObject editor window]Timeline holding several Sound Objects, one selected and opened in the SoundObject editor window

SoundObjects

To enable every kind of music production style and thus every kind of electronic music, blue holds a set of different SoundObjects. SoundObjects in blue can represent many things, whether it is a single sound, a melody, a rhythm, a phrase, a section involving phrases and multiple lines, a gesture, or anything else that is a perceived sound idea.

Just as there are many ways to think about music, each with their own model for describing sound and vocabulary for explaining music, there are a number of different SoundObjects in blue. Each SoundObject in blue is useful for different purposes, with some being more appropriate for expressing certain musical ideas than others. For example, using a scripting object like the PythonObject or RhinoObject would serve a user who is trying to express a musical idea that may require an algorithmic basis, while the PianoRoll would be useful for those interested in notating melodic and harmonic ideas. The variety of different SoundObjects allows for users to choose what tool will be the most appropriate to express their musical ideas.

Since there are many ways to express musical ideas, to fully allow the range of expression that Csound offers, Blue’s SoundObjects are capable of generating different things that Csound will use. Although most often they are used for generating Csound SCO text, SoundObjects may also generate ftables, instruments, user-defined opcodes, and everything else that would be needed to express a musical idea in Csound.

Modifying a SoundObject

First, you may set the start time and duration of every SoundObject by hand by typing in precise numbers or drag it more intuitively back and fourth on the timeline. This modifies the position in time of a SoundObject, while stretching it modifies the outer boundaries of it and may even change the density of events it generates inside.

If you want to enter information into a SoundObject, you can open and edit it in a SoundObject editor-window. But there is also a way to modify the “output” of a SoundObject, without having to change its content. The way to do this is using NoteProcessors.

By using NoteProcessors, several operations may be applied onto the parameters of a SoundObject. NoteProcessors allow for modifying the SoundObjects score results, i.e. adding 2 to all p4 values, multiplying all p5 values by 6, etc. These NoteProcessors can be chained together to manipulate and modify objects to achieve things like transposition, serial processing of scores, and more.

Finally the SoundObjects may be grouped together and organized in larger-scale hierarchy by combining them to PolyObjects. Polyobject are objects, which hold other SoundObjects, and have timelines in themselves. Working within them on their timelines and outside of them on the parent timeline helps organize and understand the concepts of objective time and relative time between different objects.

Instruments with a graphical interface

Instruments and effects with a graphical interface may help to increase musical workflow. Among the instruments with a graphical user interface there are BlueSynthBuilder (BSB)-Instruments, BlueEffects and the Blue Mixer.

BlueSynthBuilder (BSB)-Instruments

The BlueSynthBuilder (BSB)-Instruments and the BlueEffects work like conventional Csound instruments, but there is an additional opportunity to add and design a GUI that may contain sliders, knobs, textfields, pull-down menus and more. You may convert any conventional Csound Instrument automatically to a BSB-Instrument and then add and design a GUI.

[image: The interface of a BSB-Instrument]The interface of a BSB-Instrument

Blue Mixer

Blue’s graphical mixer system allows signals generated by instruments to be mixed together and further processed by Blue Effects. The GUI follows a paradigm commonly found in music sequencers and digital audio workstations.

The mixer UI is divided into channels, sub-channels, and the master channel. Each channel has a fader for applying level adjustments to the channel’s signal, as well as bins pre- and post-fader for adding effects. Effects can be created on the mixer, or added from the Effects Library.

Users can modify the values of widgets by manipulating them in real-time, but they can also draw automation curves to compose value changes over time.

[image: The BlueMixer]The BlueMixer

Automation

For BSB-Instruments, blueMixer and blueEffects it is possible to use Lines and Graphs within the score timeline to enter and edit parameters via a line. In Blue, most widgets in BlueSynthBuilder and Effects can have automation enabled. Faders in the Mixer can also be automated.

Editing automation is done in the Score timeline. This is done by first selecting a parameter for automation from the SoundLayer’s “A” button’s popup menu, then selecting the Single Line mode in the Score for editing individual line values.

Using Multi-Line mode in the score allows the user to select blocks of SoundObjects and automations and move them as a whole to other parts of the Score.

Thus the parameters of these instruments with a GUI may be automatized and controlled via an editable graph in the Score-window.

Libraries

blue features also libraries for instruments, SoundObjects, UDOs, Effects (for the blueMixer) and the CodeRepository for code snippets. All these libraries are organized as lists or trees. Items of the library may be imported to the current composition or exported from it to be used later in other pieces.

The SoundObject library allows for instantiating multiple copies of a SoundObject, which allows for editing the original object and updating all copies. If NoteProcessors are applied to the instances in the composition representing the general structure of the composition you may edit the content of a SoundObject in the library while the structure of the composition remains unchanged. That way you may work on a SoundObject while all the occurrences in the composition of that very SoundObject are updated automatically according the changes done in the library.

The Orchestra manager organizes instruments and functions as an instrument librarian. There is also an Effects Library and a Library for the UDOs.

Other Features

	blueLive - work with SoundObjects in realtime to experiment with musical ideas or performance.

	SoundObject freezing - frees up CPU cycles by pre-rendering SoundObjects

	Microtonal supportusing scales defined in the Scala scale format, including a microtonal PianoRoll, Tracker, NoteProcessors, and more.

 ch057.xhtml

10 D. WINXOUND

WinXound is a free and open-source Front-End GUI Editor for CSound 6, CSoundAV, CSoundAC, with Python and Lua support, developed by Stefano Bonetti. It runs on Microsoft Windows, Apple Mac OsX and Linux. WinXound is optimized to work with the CSound 6 compiler.

See WinXound’s Website for more information.

 ch058.xhtml

10 E. CSOUND VIA TERMINAL

Whilst many of us now interact with Csound through one of its many front-ends which provide us with an experience more akin the that of mainstream software, new-comers to Csound should bear in mind that there was a time when the only way running Csound was from the command line using the Csound command. In fact we must still run Csound in this way but front-ends do this for us usually via some toolbar button or widget. Many people still prefer to interact with Csound from a terminal window and feel this provides a more “naked” and honest interfacing with the program. Very often these people come from the group of users who have been using Csound for many years, form the time before front-ends. It is still important for all users to be aware of how to run Csound from the terminal as it provides a useful backup if problems develop with a preferred front-end.

The Csound Command

The Csound command follows the format:

csound [performance_flags] [input_orc/sco/csd]

Executing csound with no additional arguments will run the program but after a variety of configuration information is printed to the terminal we will be informed that we provided “insufficient arguments” for Csound to do anything useful. This action can still be valid for first testing if Csound is installed and configured for terminal use, for checking what version is installed and for finding out what performance flags are available without having to refer to the manual.

Performance flags are controls that can be used to define how Csound will run. All of these flags have defaults but we can make explicitly use flags and change these defaults to do useful things like controlling the amount of information that Csound displays for us while running, activating a MIDI device for input, or altering buffer sizes for fine tuning realtime audio performance. Even if you are using a front-end, command line flags can be manipulated in a familiar format usually in settings or preferences menu. Adding flags here will have the same effect as adding them as part of the Csound command. To learn more about Csound's command line flags it is best to start on the page in the reference manual where they are listed and described by category.

Command line flags can also be defined within the <CsOptions> … </CsOptions> part of a .csd file and also in a file called .csoundrc which can be located in the Csound home program directory and/or in the current working directory. Having all these different options for where esentially the same information is stored might seem excessive but it is really just to allow flexibiliy in how users can make changes to how Csound runs, depending on the situation and in the most efficient way possible. This does however bring up one one issue in that if a particular command line flag has been set in two different places, how does Csound know which one to choose? There is an order of precedence that allows us to find out.

Beginning from its own defaults the first place Csound looks for additional flag options is in the .csoundrc file in Csound’s home directory, the next is in a .csoundrc file in the current working directory (if it exists), the next is in the <CsOptions> of the .csd and finally the Csound command itself. Flags that are read later in this list will overwrite earlier ones. Where flags have been set within a front-end’s options, these will normally overwrite any previous instructions for that flag as they form part of the Csound command. Often a front-end will incorporate a check-box for disabling its own inclusion of flag (without actually having to delete them from the dialogue window).

After the command line flags (if any) have been declared in the Csound command, we provide the name(s) of out input file(s) - originally this would have been the orchestra (.orc) and score (.sco) file but this arrangement has now all but been replaced by the more recently introduced .csd (unified orchestra and score) file. The facility to use a separate orchestra and score file remains however.

For example:

Csound -d -W -osoundoutput.wav inputfile.csd

will run Csound and render the input .csd inputfile.csd as a wav file (-W flag) to the file soundoutput.wav (-o flag). Additionally displays will be suppressed as dictated by the -d flag. The input .csd file will need to be in the current working directory as no full path has been provided. the output file will be written to the current working directory of SFDIR if specified.

 ch059.xhtml

10 F. WEB BASED CSOUND

Using Csound via UDP with the –port Option

The –port=N option allows users to send orchestras to be compiled on-the-fly by Csound via UDP connection. This way, Csound can be started with no instruments, and will listen to messages sent to it. Many programs are capable of sending UDP messages, and scripting languages, such as Python, can also be used for this purpose. The simplest way of trying out this option is via the netcat program, which can be used in the terminal via the nc command.

Let’s explore this as an example of the –port option. First, Csound is started with the following command:

$ csound -odac --port=1234

Alternatively, if using a frontend such as CsoundQT, it is possible run an empty CSD, with the –port in its CsOptions field:

<CsoundSynthesizer>
<CsOptions>
--port=1234
</CsOptions>
<CsInstruments>
</CsInstruments>
<CsScore>
</CsScore>
</CsoundSynthesizer>

This will start Csound in a daemon mode, waiting for any UDP messages in port 1234. Now with netcat, orchestra code can be sent to Csound. A basic option is to use it interactively in the terminal, with a heredocument command (<<) to indicate the end of the orchestra we are sending:

$ nc -u 127.0.0.1 1234 << EOF
> instr 1
> a1 oscili p4*0dbfs,p5
> out a1
> endin
> schedule 1,0,1,0.5,440
> EOF

Csound will respond with a 440Hz sinewave. The ctl-c key combination can be used to close nc and go back to the shell prompt. Alternatively, we could write our orchestra code to a file and then send it to Csound via

the following command (orch is the name of our file):

$ nc -u 127.0.0.1 1234 < orch

Csound performance can be stopped in the usual way via ctl-c in the terminal, or through the dedicated transport controls in a frontend. We can also close the server it via a special UDP message:

ERROR WITH MACRO close

However, this will not close Csound, but just stop the UDP server.

libcsound.js - Csound as a Javascript Library

The javascript build of Csound allows any standards compliant web browser to run an instance of Csound in a web page without the need for plugins or add ons. This is made possible by using Emscripten, a program that can convert software written in C (such as Csound) into Javascript, allowing it to be run natively within any web browser that supports modern web standards.

Caveats

The javascript build of Csound is currently in early stages of development and therefore there are a number of caveats and limitations with its current implementation which should be noted.

	Emscripten generates a highly optimisable subset of Javascript called asm.js. This allows Javascript engines which have been optimised for this subset to achieve substantial performance increases over other Javascript engines. At this time the only Javascript engine that supports asm.js optimisations is the Spider Monkey engine which is part of Firefox. Therefore the Emscripten build of Csound will perform best on the current version of Firefox.

	At this time, due to the design of the Web Audio API, the Csound javascript library can only execute within the main thread of a web page. This means that it must pause execution of any performance when any other process that uses the main thread (such as the UI) needs to execute. This can cause dropouts and/or glitching of the audio during a performance.

	As this project is in its infancy, there are a minimal number of routines implemented so far in order to instantiate, compile and perform a .csd file. Additional routines will be added over time as the project matures.

Getting libcsound.js

The javascript build of Csound now comes as part of the regular distribution of the Csound source code. It can be found in the emscripten folder which also contains a markdown file that gives the instructions on how to compile the javascript library.

Using libcsound.js

In order to demonstrate how to use the Csound javascript library, what follows is a tutorial which shows the steps necessary to create a simple website that can open .csd files, compile them, and play them back from the browser.

Create a simple website

First create a new folder for the website and copy the libcsound.js and libcsound.js.mem files from the emscripten/dist directory into the new websites directory. Next, create an index.html file at the top level of the new websites directory that contains the following minimal html code:

<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
</head>
<body>
</body>
</html>

Instantiate Csound

We need to write some Javascript to create an instance of CsoundObj, so within the body tags ad new script tags and insert the following code:

<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
</head>
<body>
<script src="libcsound.js"></script>
<script>
Module['noExitRuntime'] = true;
Module['_main'] = function() {

 var csoundObj = new CsoundObj();

};
</script>
</body>
</html>

The Module functions within this code are related to how emscripten built javascript libraries execute when a webpage is loaded. The noExitRuntime variable sets whether the emscripten runtime environment is exited once the main function has finished executing. The _main variable is actually a function that is executed as soon as the webpage has finished loading. Csound itself is instantiated using a constructor for the CsoundObj object. This object provides all the methods for directly interacting with the current running instance of csound.

The Javascript console of the web browser should now show some messages that give the version number of Csound, the build date and the version of libsndfile being used by Csound.

Upload .csd file to Javascript File System

In order to run a .csd file from the Csound javascript library, we first need to upload the file from the local file system to the javascript virtual file system. In the emscripten/examples directory there is the FileManager.js file that provides an object which greatly simplifies the process of uploading files to the virtual file system. Copy FileManager.js to the root directory of the web page.

<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
</head>
<body>
<script src="libcsound.js"></script>
<script src="FileManager.js"></script>
<script>
Module['noExitRuntime'] = true;
Module['_main'] = function() {

 var csoundObj = new CsoundObj();

 var fileManger = new FileManager(['csd'], console.log);

 fileManger.fileUploadFromServer("test.csd", function() {

 csoundObj.compileCSD("test.csd");
 });
};
</script>
</body>
</html>

As can be seen in the code above, the file manager is instantiated with two arguments. The first argument is an array of strings which tells the file manager instance which file extensions that are permitted to be uploaded. The second argument is the function with which the file manger will print error messages, in this case it will print to the javascript console. The file managers upload method also takes two arguments. The first argument is the files path relative to the website root directory and the second is the function to execute when the file has been successfully uploaded. In this case when the file has been uploaded csound will compile the .csd file.

If the web page is reloaded now, the file test.csd will be uploaded to the javascript file system and csound will compile it making it ready for performance.

Running Csound

Once the .csd file has been compiled csound can execute a performance. In the following code we will create an html button and add some code to the button so that when pressed it will run a performance of csound.

<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
</head>
<body>
<script src="libcsound.js"></script>
<script src="FileManager.js"></script>
<script>
Module['noExitRuntime'] = true;
Module['_main'] = function() {

 var csoundObj = new CsoundObj();

 var fileManger = new FileManager(['csd'], console.log);

 fileManger.fileUploadFromServer("test.csd", function() {

 csoundObj.compileCSD("test.csd");
 });

 var startButton = document.createElement("BUTTON");
 startButton.innerHTML = "Start Csound";
 startButton.onclick = function() {

 csoundObj.start();
 };

 document.body.appendChild(startButton);
};
</script>
</body>
</html>

Here we can see that the button startButton is instantiated using the document.createElement method. The buttons label is set using the innerHTML method, and we can set the buttons action by defining a function and assigning it to the buttons onclick method. The function simply calls the start method from CsoundObj. The button is then added to the DOM using document.body.appendChild.

If the page is reloaded there should now be a button present that is labelled with the text Start Csound. When the button is pressed csound should perform the .csd file which was uploaded to the javascript file system.

CsoundObj.js Reference

CsoundObj.compileCSD(fileName)

This method takes as its argument the address of a CSD file fileName and compiles it for performance. The CSD file must be present in Emscripten's javascript virtual filesystem.

CsoundObj.disableAudioInput()

This method disables audio input to the web browser. Audio input will not be available to the running Csound instance

CsoundObj.enableAudioInput()

This method enables audio input to the web browser. When called, it triggers a permissions dialogue in the host web browser requesting permission to allow audio input. If permission is granted, audio input is available for the running Csound instance.

CsoundObj.enableMidiInput()

This method enables Midi input to the web browser. When activated on supported browsers (currently only Chrome supports web midi) it is possible for the running instance of Csound to receive midi messages from a compatible input device.

CsoundObj.evaluateCode()

This method takes a string of Csound orchestra code and evaluates it on the fly. Any instruments contained in the code will be created and added to the running Csound process.

CsoundObj.readScore()

This method takes a string of Csound score code and evaluates it.

CsoundObj.render()

This method renders the currently compiled .csd file as quickly as possible. This method is currently only used to evaluate the performance of libcsound.js and is of no practical use to end users.

CsoundObj.reset()

This method resets the currently running instance of Csound. This method should be called before a new .csd file needs to be read and compiled for performance.

CsoundObj.setControlChannel()

This method sets a named Csound control channel to a specified value.

CsoundObj.setControlChannel()

This method gets the current value of a named Csound control channel.

CsoundObj.start()

This method starts a performance of a compiled .csd file.

 ch060.xhtml

11 A. ANALYSIS

Csound comes bundled with a variety of additional utility applications. These are small programs that perform a single function, very often with a sound file, that might be useful just before or just after working with the main Csound program. Originally these were programs that were run from the command line but many of Csound front-ends now offer direct access to many of these utilities through their own utilities menus. It is useful to still have access to these programs via the command line though, if all else fails.

The standard syntax for using these programs from the command line is to type the name of the utility followed optionally by one or more command line flags which control various performance options of the program — all of these will have useable defaults anyway — and finally the name of the sound file upon which the utility will operate.

utility_name [flag(s)] [file_name(s)]

If we require some help or information about a utility and don’t want to be bothered hunting through the Csound Manual we can just type the the utility’s name with no additional arguments, hit enter and the commmand line response will give us some information about that utility and what command line flags it offers. We can also run the utility through Csound — perhaps useful if there are problems running the utility directly — by calling Csound with the -U flag. The -U flag will instruct Csound to run the utility and to interpret subsequent flags as those of the utility and not its own.

Csound -U utility_name [flag(s)] [file_name(s)]

Analysis Utilities

Although many of Csound’s opcodes already operate upon commonly encountered sound file formats such as wav and aiff, a number of them require sound information in more specialised and pre-analysed formats, and for this Csound provides the sound analysis utilities atsa, cvanal, hetro, lpanal and pvanal.

We will explain in the following paragraphs the background and usage of these five different sound analysis utilities.

atsa

Chapter 05 K gives some background about the Analysis-Transformation-Synthesis (ATS) method of spectral resynthesis. It requires the preceding analysis of a sound file. This is the job of the atsa utility.

The basic usage is simple:

atsa [flags] infilename outfilename

where infilename is the sound file to be analyzed, and outfilename is the .ats file which is written as result of the atsa utility.

It can be said that the default values of the various flags are reasonable for a first usage. For a refinement of the analysis the atsa manual page provides all necessary information.

[image: ATSA Utility in CsoundQt]ATSA Utility in CsoundQt

cvanal

The cvanal utility analyses an impulse response for usage in the old concolve opcode. Nowadays, convolution in Csound is mostly done with other opcodes which are described in the Convolution chapter of this book. More information about the cvanal utility can be found here in the Csound Manual.

hetro

The hetrodyne filter analysis can be understood as one way of applying the Fourier Transform.1 Its attempt is to reconstruct a number of partial tracks in a time-breakpoint manner. The breakpoints are measured in milliseconds. Although this utility is originally designed for the usage in the adsyn opcode, it can be used to get data from any harmonic sound for additive synthesis.

The usage of hetro follows the general utility standard:

hetro [flags] infilename outfilename

But the adjustment of some flags is crucial here depending on the desired usage of the analysis:

	-f begfreq: This is the estimated frequency of the fundamental. The default is 100 Hz, but it should be adjusted as good as possible to the real fundamental frequency of the input sound.

	-h partials: This is the number of partials the utility will analyze and write in the output file. The default number of 10 is quite low and will usually result in a dull sound in the resynthesis.

	-n brkpts: This is the number of breakpoints for the analysis. These breakpoints are initially evenly spread over the duration, and then reduced and adjusted by the algorithm. The default number of 256 is reasonable for most usage, but can be massively reduced for some sounds and usages.

	-m minamp: The hetro utility uses the old Csound amplitude convention where 0 dB is set to 32767. This has to be considered in this option, in which a minimal amplitude is set. Below this amplitude a partial is considered dormant. So the default 64 corresponds to -54 dB; other common values are 128 (-48 dB), 32 (-60 dB) or 0 (no thresholding).

As an example, we start the utility with these parameters:

[image: HETRO Utility in CsoundQt]HETRO Utility in CsoundQt

This is the output of the analysis in the Csound console:

util hetro:
audio sr = 44100, monaural
opening WAV infile resources/SourceMaterials/BratscheMono.wav
analysing 359837 sample frames (8.2 secs)
analyzing harmonic #0
freq estimate 220.0, max found 220.0, rel amp 1039228.8
analyzing harmonic #1
freq estimate 440.0, max found 443.5, rel amp 358754.9
analyzing harmonic #2
freq estimate 660.0, max found 660.0, rel amp 329786.0
analyzing harmonic #3
freq estimate 880.0, max found 880.0, rel amp 253682.2
analyzing harmonic #4
freq estimate 1100.0, max found 1147.5, rel amp 188708.2
analyzing harmonic #5
freq estimate 1320.0, max found 1320.0, rel amp 51153.9
analyzing harmonic #6
freq estimate 1540.0, max found 1564.8, rel amp 52575.5
analyzing harmonic #7
freq estimate 1760.0, max found 1760.0, rel amp 149709.0
analyzing harmonic #8
freq estimate 1980.0, max found 1980.0, rel amp 162766.8
analyzing harmonic #9
freq estimate 2200.0, max found 2200.0, rel amp 71892.1
scale = 0.013184
harmonic #0: amp points 10, frq points 10, peakamp 13701
harmonic #1: amp points 10, frq points 10, peakamp 4730
harmonic #2: amp points 10, frq points 10, peakamp 4348
harmonic #3: amp points 10, frq points 10, peakamp 3344
harmonic #4: amp points 9, frq points 9, peakamp 2488
harmonic #5: amp points 10, frq points 10, peakamp 674
harmonic #6: amp points 9, frq points 9, peakamp 693
harmonic #7: amp points 10, frq points 10, peakamp 1974
harmonic #8: amp points 9, frq points 9, peakamp 2146
harmonic #9: amp points 9, frq points 9, peakamp 948
wrote 848 bytes to resources/SourceMaterials/BratscheMono.het

The file BratscheMono.het starts with HETRO 10 as first line, showing that 10 partial track data will follow. The amplitude data lines begin with -1, the frequency data lines begin with -2. This is start and end of the first two lines, slightly formatted to show the breakpoints:

-1, 0,0, 815,3409, 1631,11614, 2447,12857, ... , 7343,0, 32767
-2, 0,220, 815,217, 1631,218, 2447,219, ... , 7343,217, 32767

After the starting -1 or -2, the time-value pairs are written. Here we have at 0 ms an amplitude of 0 and a frequency of 220. At 815 ms we have amplitude of 3409 and frequency of 217. At 7343 ms, near the end of this file, we have amplitude of 0 and frequency of 217, followed in both cases by 32767 (as additional line ending signifier).

lpanal

Linear Prediction Coding has been developed for the analysis and resynthesis of speech.2 The lpanal utility performs the analysis, which will then be used by the LPC Resynthesis Opcodes. The defaults can be seen in the following screenshot:

[image: LPANAL Utility in CsoundQt]LPANAL Utility in CsoundQt

It should be mentioned that in 2020 Victor Lazzarini wrote a bunch of opcodes which apply real-time (streaming) linear prediction analysis. The complement of the old lpanal utility is the lpcanal opcode.

pvanal

The pvanal utility performs a Short-Time Fourier Transform over a sound file. It will produce a .pvx file which can be used by the old pv-opcodes. Nowadays the pvs-opcodes are mostly in use; see chapter 05 I of this book. Nevertheless, the pvanal utility provides a simple option to perform FFT and write the result in a file.

The main parameter are few; the defaults can be seen here:

[image: PVANAL Utility in CsoundQt]PVANAL Utility in CsoundQt

The binary data of a .pvx file can be converted in a text file via the pvlook utility.

	Cf. Curtis Roads, The Computer Music Tutorial, Cambridge MA: MIT Press 1996, 548-549;

James Beauchamp, Analysis, Synthesis and Perception of Musical Sounds, New York:Springer 2007, 5-12↩︎

	Cf. Curtis Roads, The Computer Music Tutorial, Cambridge MA: MIT Press 1996, 200-210↩︎

 ch061.xhtml

11 B. FILE INFO AND CONVERSION

sndinfo

The utility sndinfo (sound information) provides the user with some information about one or more sound files. sndinfo is invoked and provided with a file name:

sndinfo ../SourceMaterials/fox.wav

If you are unsure of the file address of your sound file you can always just drag and drop it into the terminal window. The output should be something like:

util sndinfo:
../SourceMaterials/fox.wav:
 srate 44100, monaural, 16 bit WAV, 2.757 seconds
 (121569 sample frames)

sndinfo will accept a list of file names and provide information on all of them in one go so it may prove more efficient gleaning the same information from a GUI based sample editor. We also have the advantage of being able to copy and paste from the terminal window into a .csd file.

File Conversion Utilities

het_import / het_export

The utilities het_import and het_export are marked as deprecated because the files generated by hetro are text files nowadays.

pvlook

The pvlook utility shows the output of a STFT analysis files created with pvanal. The invocation is:

pvlook [flags] infilename

As these files contain a big amount of information, the flags contain some options to select a range of bins and frames:

- -bb and -eb set the begin and end of the bin number for the output (defaulting to lowest and highest bin)

- -bf and -ef set the begin and end of the analysis frames to be printed (defaulting to first and last frame).

If we want to look at the fifth bin only in the frames 100-110 or the file *fox.pvx", we run:

pvlook -bb 5 -eb 5 -bf 100 -ef 110 fox.pvx

The output is:

util pvlook:
; File name /home/me/csound-manual-git/examples/fox.pvx
; Channels 1
; Word Format float
; Frame Type Amplitude/Frequency
; Source format 16bit
; Window Type Kaiser(0.000000)
; FFT Size 1024
; Window length 2048
; Overlap 256
; Frame align 4104
; Analysis Rate 172.265625
; First Bin Shown: 5
; Number of Bins Shown: 1
; First Frame Shown: 100
; Number of Data Frames Shown: 11

Bin 5 Freqs.
 131.728 134.213 135.257 133.603 133.640 131.737 135.581 147.809 176.199
 211.347 149.678

Bin 5 Amps.
 0.018 0.020 0.020 0.019 0.018 0.017 0.020 0.016 0.002 0.011 0.010

pvexport / pvimport

Another method of transforming a .pvx analysis file created by

pvanal is done with the pv_export utility. It converts the binary file to a text file. After some general information about the source file in the header, each line contains amp-freq pairs of the bins.

The text file can be re-converted to a binary .pvx file with the pv_import utility.

sdif2ad

The hetro utility will create an sdif file if the extension .sdif is given for the outfile. This file can be converted by the sdif2ad utility to a file which can be used by the adsyn opcode.

src_conv

Sample rate conversion is an everyday’s situation in electronic music production. The src_conv utility is based on Eric de Castro Lopo’s libsamplerate. It offers five quality levels where 1 is the worst and 5 the best. The general syntax is here:

src_conv [flags] infile

The most important flags are: - Q conversion quality (1-5, default=3) - -o name of the output file (default is test.wav) - -r output sample rate - -s or -3 or -f output bit depth (16 (=default) / 24 / 32 bit) - -W for .wav as output format (other options are -A = aiff and -J = ircam)

To convert the sample rate of fox.wav in best quality to 48 kHz and writing a 32 bit output file as best_fox.wav we write:

src_conv -r 48000 -o best_fox.wav -W -Q5 -f fox.wav

 ch062.xhtml

11 C. MISCELLANEOUS

A final group gathers together various unsorted utilities: cs, csb64enc, envext, extractor, makecsd, mixer, scale and mkdb.

Most interesting of these are perhaps extractor which will extract a user defined fragment of a sound file which it will then write to a new file, mixer which mixes together any number of sound files and with gain control over each file and scale which will scale the amplitude of an individual sound file.

 ch063.xhtml

12 A. THE CSOUND API

An application programming interface (API) is an interface provided by a computer system, library or application that allows users to access functions and routines for a particular task. It gives developers a way to harness the functionality of existing software within a host application. The Csound API can be used to control an instance of Csound through a series of different functions thus making it possible to harness all the power of Csound in one’s own applications. In other words, almost anything that can be done within Csound can be done with the API. The API is written in C, but there are interfaces to other languages as well, such as Python, C++ and Java.

Though it is written in C, the Csound API uses an object structure. This is achieved through an opaque pointer representing a Csound instance. This opaque pointer is passed as the first argument when an API function is called from the host program.

To use the Csound C API, you have to include csound.h in your source file and to link your code with libcsound64 (or libcsound if using the 32 bit version of the library). Here is an example of the csound command line application written in C, using the Csound C API:

#include <csound/csound.h>

int main(int argc, char **argv)
{
 CSOUND *csound = csoundCreate(NULL);
 int result = csoundCompile(csound, argc, argv);
 if (result == 0) {
 result = csoundPerform(csound);
 }
 csoundDestroy(csound);
 return (result >= 0 ? 0 : result);
}

First we create an instance of Csound. To do this we call csoundCreate() which returns the opaque pointer that will be passed to most Csound API functions. Then we compile the orc/sco files or the csd file given as input arguments through the argv parameter of the main function. If the compilation is successful (result == 0), we call the csoundPerform() function. csoundPerform() will cause Csound to perform until the end of the score is reached. When this happens csoundPerform() returns a non-zero value and we destroy our instance before ending the program.

On a linux system, using libcsound64 (double version of the csound library), supposing that all include and library paths are set correctly, we would build the above example with the following command (notice the use of the -DUSE_DOUBLE flag to signify that we compile against the 64 bit version of the csound library):

gcc -DUSE_DOUBLE -o csoundCommand csoundCommand.c -lcsound64

The command for building with a 32 bit version of the library would be:

gcc -o csoundCommand csoundCommand.c -lcsound

Within the C or C++ examples of this chapter, we will use the MYFLT type for the audio samples. Doing so, the same source files can be used for both development (32 bit or 64 bit), the compiler knowing how to interpret MYFLT as double if the macro USE_DOUBLE is defined, or as float if the macro is not defined.

The C API has been wrapped in a C++ class for convenience. This gives the Csound basic C++ API. With this API, the above example would become:

#include <csound/csound.hpp>

int main(int argc, char **argv)
{
 Csound *cs = new Csound();
 int result = cs->Compile(argc, argv);
 if (result == 0) {
 result = cs->Perform();
 }
 return (result >= 0 ? 0 : result);
}

Here, we get a pointer to a Csound object instead of the csound opaque pointer. We call methods of this object instead of C functions, and we don’t need to call csoundDestroy() in the end of the program, because the C++ object destruction mechanism takes care of this. On our linux system, the example would be built with the following command:

g++ -DUSE_DOUBLE -o csoundCommandCpp csoundCommand.cpp -lcsound64

Threading

Before we begin to look at how to control Csound in real time we need to look at threads. Threads are used so that a program can split itself into two or more simultaneously running tasks. Multiple threads can be executed in parallel on many computer systems. The advantage of running threads is that you do not have to wait for one part of your software to finish executing before you start another.

In order to control aspects of your instruments in real time your will need to employ the use of threads. If you run the first example found on this page you will see that the host will run for as long as csoundPerform() returns 0. As soon as it returns non-zero it will exit the loop and cause the application to quit. Once called, csoundPerform() will cause the program to hang until it is finished. In order to interact with Csound while it is performing you will need to call csoundPerform() in a separate unique thread.

When implementing threads using the Csound API, we must define a special performance-thread function. We then pass the name of this performance function to csoundCreateThread(), thus registering our performance-thread function with Csound. When defining a Csound performance-thread routine you must declare it to have a return type uintptr_t, hence it will need to return a value when called. The thread function will take only one parameter, a pointer to void. This pointer to void is quite important as it allows us to pass important data from the main thread to the performance thread. As several variables are needed in our thread function the best approach is to create a user defined data structure that will hold all the information your performance thread will need. For example:

typedef struct {
 int result; /* result of csoundCompile() */
 CSOUND *csound; /* instance of csound */
 bool PERF_STATUS; /* performance status */
} userData;

Below is a basic performance-thread routine. *data is cast as a userData data type so that we can access its members.

uintptr_t csThread(void *data)
{
 userData *udata = (userData *)data;
 if (!udata->result) {
 while ((csoundPerformKsmps(udata->csound) == 0) &&
 (udata->PERF_STATUS == 1));
 csoundDestroy(udata->csound);
 }
 udata->PERF_STATUS = 0;
 return 1;
}

In order to start this thread we must call the csoundCreateThread() API function which is declared in csound.h as:

void *csoundCreateThread(uintptr_t (*threadRoutine (void *),
 void *userdata);

If you are building a command line program you will need to use some kind of mechanism to prevent int main() from returning until after the performance has taken place. A simple while loop will suffice.

The first example presented above can now be rewritten to include a unique performance thread:

#include <stdio.h>
#include <csound/csound.h>

uintptr_t csThread(void *clientData);

typedef struct {
 int result;
 CSOUND *csound;
 int PERF_STATUS;
} userData;

int main(int argc, char *argv[])
{
 int finish;
 void *ThreadID;
 userData *ud;
 ud = (userData *)malloc(sizeof(userData));
 MYFLT *pvalue;
 ud->csound = csoundCreate(NULL);
 ud->result = csoundCompile(ud->csound, argc, argv);

 if (!ud->result) {
 ud->PERF_STATUS = 1;
 ThreadID = csoundCreateThread(csThread, (void *)ud);
 }
 else {
 return 1;
 }

 /* keep performing until user types a number and presses enter */
 scanf("%d", &finish);
 ud->PERF_STATUS = 0;
 csoundDestroy(ud->csound);
 free(ud);
 return 0;
}

/* performance thread function */
uintptr_t csThread(void *data)
{
 userData *udata = (userData *)data;
 if (!udata->result) {
 while ((csoundPerformKsmps(udata->csound) == 0) &&
 (udata->PERF_STATUS == 1));
 csoundDestroy(udata->csound);
 }
 udata->PERF_STATUS = 0;
 return 1;
}

The application above might not appear all that interesting. In fact it’s almost the exact same as the first example presented except that users can now stop Csound by hitting ‘enter’. The real worth of threads can only be appreciated when you start to control your instrument in real time.

Channel I/O

The big advantage to using the API is that it allows a host to control your Csound instruments in real time. There are several mechanisms provided by the API that allow us to do this. The simplest mechanism makes use of a ‘software bus’.

The term bus is usually used to describe a means of communication between hardware components. Buses are used in mixing consoles to route signals out of the mixing desk into external devices. Signals get sent through the sends and are taken back into the console through the returns. The same thing happens in a software bus, only instead of sending analog signals to different hardware devices we send data to and from different software.

Using one of the software bus opcodes in Csound we can provide an interface for communication with a host application. An example of one such opcode is chnget. The chnget opcode reads data that is being sent from a host Csound API application on a particular named channel, and assigns it to an output variable. In the following example instrument 1 retrieves any data the host may be sending on a channel named “pitch”:

instr 1
kfreq chnget "pitch"
asig oscil 10000, kfreq, 1
 out asig
endin

One way in which data can be sent from a host application to an instance of Csound is through the use of the csoundGetChannelPtr() API function which is defined in csound.h as:

int csoundGetChannelPtr(CSOUND *, MYFLT **p, const char *name, int type);

CsoundGetChannelPtr() stores a pointer to the specified channel of the bus in p. The channel pointer p is of type MYFLT *. The argument name is the name of the channel and the argument type is a bitwise OR of exactly one of the following values:

control data (one MYFLT value)
CSOUND_CONTROL_CHANNEL

audio data (ksmps MYFLT values)
CSOUND_AUDIO_CHANNEL

string data (MYFLT values with
enough space to store
csoundGetChannelDatasize())
CSOUND_STRING_CHANNEL

#characters, including the NULL character at the end of the string)
#and at least one of these:

when you need Csound to accept incoming values from a host
CSOUND_INPUT_CHANNEL
when you need Csound to send outgoing values to a host
CSOUND_OUTPUT_CHANNEL

If the call to csoundGetChannelPtr() is successful the function will return zero. If not, it will return a negative error code. We can now modify our previous code in order to send data from our application on a named software bus to an instance of Csound using csoundGetChannelPtr().

#include <stdio.h>
#include <csound/csound.h>

/* performance thread function prototype */
uintptr_t csThread(void *clientData);

/* userData structure declaration */
typedef struct {
 int result;
 CSOUND *csound;
 int PERF_STATUS;
} userData;

/*---
 * main function
 ---/
int main(int argc, char *argv[])
{
 int userInput = 200;
 void *ThreadID;
 userData *ud;
 ud = (userData *)malloc(sizeof(userData));
 MYFLT *pvalue;
 ud->csound = csoundCreate(NULL);
 ud->result = csoundCompile(ud->csound, argc, argv);
 if (csoundGetChannelPtr(ud->csound, &pvalue, "pitch",
 CSOUND_INPUT_CHANNEL | CSOUND_CONTROL_CHANNEL) != 0) {
 printf("csoundGetChannelPtr could not get the \"pitch\" channel");
 return 1;
 }
 if (!ud->result) {
 ud->PERF_STATUS = 1;
 ThreadID = csoundCreateThread(csThread, (void*)ud);
 }
 else {
 printf("csoundCompiled returned an error");
 return 1;
 }
 printf("\nEnter a pitch in Hz(0 to Exit) and type return\n");
 while (userInput != 0) {
 *pvalue = (MYFLT)userInput;
 scanf("%d", &userInput);
 }
 ud->PERF_STATUS = 0;
 csoundDestroy(ud->csound);
 free(ud);
 return 0;
}

/*---
 * definition of our performance thread function
 ---/
uintptr_t csThread(void *data)
{
 userData *udata = (userData *)data;
 if (!udata->result) {
 while ((csoundPerformKsmps(udata->csound) == 0) &&
 (udata->PERF_STATUS == 1));
 csoundDestroy(udata->csound);
 }
 udata->PERF_STATUS = 0;
 return 1;
}

There are several ways of sending data to and from Csound through software buses. They are divided in two categories:

Named Channels with no Callback

This category uses csoundGetChannelPtr() to get a pointer to the data of the named channel. There are also six functions to send data to and from a named channel in a thread safe way:

MYFLT csoundGetControlChannel(CSOUND *csound, const char *name, int *err)
void csoundSetControlChannel(CSOUND *csound, const char *name, MYFLT val)
void csoundGetAudioChannel(CSOUND *csound, const char *name, MYFLT *samples)
void csoundSetAudioChannel(CSOUND *csound, const char *name, MYFLT *samples)
void csoundGetStringChannel(CSOUND *csound, const char *name, char *string)
void csoundSetStringChannel(CSOUND *csound, const char *name, char *string)

The opcodes concerned are chani, chano, chnget and chnset. When using numbered channels with chani and chano, the API sees those channels as named channels, the name being derived from the channel number (i.e. 1 gives “1”, 17 gives “17”, etc).

There is also a helper function returning the data size of a named channel:

int csoundGetChannelDatasize(CSOUND *csound, const char *name)

It is particularly useful when dealing with string channels.

Named Channels with Callback

Each time a named channel with callback is used (opcodes invalue, outvalue, chnrecv, and chnsend), the corresponding callback registered by one of those functions will be called:

void csoundSetInputChannelCallback(
 CSOUND *csound, channelCallback_t inputChannelCalback
);
void csoundSetOutputChannelCallback(
 CSOUND *csound, channelCallback_t outputChannelCalback
);

Other Channel Functions

int csoundSetPvsChannel(
 CSOUND *csound, const PVSDATEXT *fin, const char *name
);
int csoundGetPvsChannel(
 CSOUND *csound, PVSDATEXT *fout, const char *name
);

int csoundSetControlChannelHints(
 CSOUND *csound, const char *name, controlChannelHints_t hints
);
int csoundGetControlChannelHints(
 CSOUND *csound, const char *name, controlChannelHints_t *hints
);

int *csoundGetChannelLock(CSOUND *csound, const char *name);
kills off one or more running instances of an instrument
int csoundKillInstance(
 CSOUND *csound, MYFLT instr, char *instrName, int mode, int allow_release
);

int csoundRegisterKeyboardCallback(
 CSOUND *csound,
 int (*func)(void *userData, void *p, unsigned int type),
 void *userData, unsigned int type
);
replace csoundSetCallback() and csoundRemoveCallback()
void csoundRemoveKeyboardCallback(
 CSOUND *csound,
 int (*func)(void *, void *, unsigned int)
);

Score Events

Adding score events to the csound instance is easy to do. It requires that csound has its threading done, see the paragraph above on threading. To enter a score event into csound, one calls the following function:

void myInputMessageFunction(void *data, const char *message)
{
 userData *udata = (userData *)data;
 csoundInputMessage(udata->csound, message);
}

Now we can call that function to insert Score events into a running csound instance. The formatting of the message should be the same as one would normally have in the Score part of the .csd file. The example shows the format for the message. Note that if you’re allowing csound to print its error messages, if you send a malformed message, it will warn you. Good for debugging. There’s an example with the csound source code that allows you to type in a message, and then it will send it.

/* instrNum start duration p4 p5 p6 ... pN */
const char *message = "i1 0 1 0.5 0.3 0.1";
myInputMessageFunction((void*)udata, message);

Callbacks

Csound can call subroutines declared in the host program when some special events occur. This is done through the callback mechanism. One has to declare to Csound the existence of a callback routine using an API setter function. Then when a corresponding event occurs during performance, Csound will call the host callback routine, eventually passing some arguments to it.

The example below shows a very simple command line application allowing the user to rewind the score or to abort the performance. This is achieved by reading characters from the keyboard: ‘r’ for rewind and ‘q’ for quit. During performance, Csound executes a loop. Each pass in the loop yields ksmps audio frames. Using the API csoundSetYieldCallback() function, we can tell to Csound to call our own routine after each pass in its internal loop.

The yieldCallback routine must be non-blocking. That’s why it is a bit tricky to force the C getc function to be non-blocking. To enter a character, you have to type the character and then hit the return key.

#include <csound/csound.h>

int yieldCallback(CSOUND *csound)
{
 int fd, oldstat, dummy;
 char ch;

 fd = fileno(stdin);
 oldstat = fcntl(fd, F_GETFL, dummy);
 fcntl(fd, F_SETFL, oldstat | O_NDELAY);
 ch = getc(stdin);
 fcntl(fd, F_SETFL, oldstat);
 if (ch == -1)
 return 1;
 switch (ch) {
 case 'r':
 csoundRewindScore(csound);
 break;
 case 'q':
 csoundStop(csound);
 break;
 }
 return 1;
}

int main(int argc, char **argv)
{
 CSOUND *csound = csoundCreate(NULL);
 csoundSetYieldCallback(csound, yieldCallback);
 int result = csoundCompile(csound, argc, argv);
 if (result == 0) {
 result = csoundPerform(csound);
 }
 csoundDestroy(csound);
 return (result >= 0 ? 0 : result);
}

The user can also set callback routines for file open events, real-time audio events, real-time MIDI events, message events, keyboards events, graph events, and channel invalue and outvalue events.

CsoundPerformanceThread: A Swiss Knife for the API

Beside the API, Csound provides a helper C++ class to facilitate threading issues: CsoundPerformanceThread. This class performs a score in a separate thread, allowing the host program to do its own processing in its main thread during the score performance. The host program will communicate with the CsoundPerformanceThread class by sending messages to it, calling CsoundPerformanceThread methods. Those messages are queued inside CsoundPerformanceThread and are treated in a first in first out (FIFO) manner.

The example below is equivalent to the example in the callback section. But this time, as the characters are read in a different thread, there is no need to have a non-blocking character reading routine.

#include <csound/csound.hpp>
#include <csound/csPerfThread.hpp>

#include <iostream>
using namespace std;

int main(int argc, char **argv)
{
 Csound *cs = new Csound();
 int result = cs->Compile(argc, argv);
 if (result == 0) {
 CsoundPerformanceThread *pt = new CsoundPerformanceThread(cs);
 pt->Play();
 while (pt->GetStatus() == 0) {
 char c = cin.get();
 switch (c) {
 case 'r':
 cs->RewindScore();
 break;
 case 'q':
 pt->Stop();
 pt->Join();
 break;
 }
 }
 }
 return (result >= 0 ? 0 : result);
}

Because CsoundPerformanceThread is not part of the API, we have to link to libcsnd6 to get it working:

g++ -DUSE_DOUBLE -o perfThread perfThread.cpp -lcsound64 -lcsnd6

When using this class from Python or Java, this is not an issue because the ctcsound.py module and the csnd6.jar package include the API functions and classes, and the CsoundPerformanceThread class as well (see below).

Here is a more complete example which could be the base of a frontal application to run Csound. The host application is modeled through the CsoundSession class which has its own event loop (mainLoop). CsoundSession inherits from the API Csound class and it embeds an object of type CsoundPerformanceThread. Most of the CsoundPerformanceThread class methods are used.

#include <csound/csound.hpp>

#include <csound/csPerfThread.hpp>

#include <iostream>

#include <string>

using namespace std;

class CsoundSession : public Csound {
public:
 CsoundSession(string const &csdFileName = "") : Csound() {
 m_pt = NULL;
 m_csd = "";
 if (!csdFileName.empty()) {
 m_csd = csdFileName;
 startThread();
 }
 };

 void startThread() {
 if (Compile((char *)m_csd.c_str()) == 0) {
 m_pt = new CsoundPerformanceThread(this);
 m_pt - > Play();
 }
 };

 void resetSession(string const &csdFileName) {
 if (!csdFileName.empty())
 m_csd = csdFileName;
 if (!m_csd.empty()) {
 stopPerformance();
 startThread();
 }
 };

 void stopPerformance() {
 if (m_pt) {
 if (m_pt - > GetStatus() == 0)
 m_pt - > Stop();
 m_pt - > Join();
 m_pt = NULL;
 }
 Reset();
 };

 void mainLoop() {
 string s;
 bool loop = true;
 while (loop) {
 cout
 << endl
 << "l)oad csd; " +
 "e(vent; " +
 "r(ewind; " +
 "t(oggle pause; " +
 "s(top; " +
 "p(lay; " +
 "q(uit: ";
 char c = cin.get();
 switch (c) {
 case 'l':
 cout << "Enter the name of csd file:";
 cin >> s;
 resetSession(s);
 break;
 case 'e':
 cout << "Enter a score event:";
 cin.ignore(1000, '\n'); // a bit tricky, but well, this is C++!
 getline(cin, s);
 m_pt - > InputMessage(s.c_str());
 break;
 case 'r':
 RewindScore();
 break;
 case 't':
 if (m_pt)
 m_pt - > TogglePause();
 break;
 case 's':
 stopPerformance();
 break;
 case 'p':
 resetSession("");
 break;
 case 'q':
 if (m_pt) {
 m_pt - > Stop();
 m_pt - > Join();
 }
 loop = false;
 break;
 }
 cout << endl;
 }
 };

private:
 string m_csd;
 CsoundPerformanceThread *m_pt;
};

int main(int argc, char **argv) {
 string csdName = "";
 if (argc > 1)
 csdName = argv[1];
 CsoundSession *session = new CsoundSession(csdName);
 session - > mainLoop();
}

The application is built with the following command:

g++ -o csoundSession csoundSession.cpp -lcsound64 -lcsnd6

There are also methods in CsoundPerformanceThread for sending score events (ScoreEvent), for moving the time pointer (SetScoreOffsetSeconds), for setting a callback function (SetProcessCallback) to be called at the end of each pass in the process loop, and for flushing the message queue (FlushMessageQueue).

As an exercise, the user should complete this example using the methods above and then try to rewrite the example in Python and/or in Java (see below).

Csound API Review

The best source of information is the csound.h header file. Let us review some important API functions in a C++ example:

#include <csound/csound.hpp>
#include <csound/csPerfThread.hpp>

#include <iostream>
#include <string>
#include <vector>
using namespace std;

string orc1 = "instr 1 \n"
 "idur = p3 \n"
 "iamp = p4 \n"
 "ipch = cpspch(p5) \n"
 "kenv linen iamp, 0.05, idur, 0.1 \n"
 "a1 poscil kenv, ipch \n"
 " out a1 \n"
 "endin";

string orc2 = "instr 1 \n"
 "idur = p3 \n"
 "iamp = p4 \n"
 "ipch = cpspch(p5) \n"
 "a1 foscili iamp, ipch, 1, 1.5, 1.25 \n"
 " out a1 \n"
 "endin\n";

string orc3 = "instr 1 \n"
 "idur = p3 \n"
 "iamp = p4 \n"
 "ipch = cpspch(p5-1) \n"
 "kenv linen iamp, 0.05, idur, 0.1 \n"
 "asig rand 0.45 \n"
 "afilt moogvcf2 asig, ipch*4, ipch/(ipch * 1.085) \n"
 "asig balance afilt, asig \n"
 " out kenv*asig \n"
 "endin\n";

string sco1 = "i 1 0 1 0.5 8.00\n"
 "i 1 + 1 0.5 8.04\n"
 "i 1 + 1.5 0.5 8.07\n"
 "i 1 + 0.25 0.5 8.09\n"
 "i 1 + 0.25 0.5 8.11\n"
 "i 1 + 0.5 0.8 9.00\n";

string sco2 = "i 1 0 1 0.5 9.00\n"
 "i 1 + 1 0.5 8.07\n"
 "i 1 + 1 0.5 8.04\n"
 "i 1 + 1 0.5 8.02\n"
 "i 1 + 1 0.5 8.00\n";

string sco3 = "i 1 0 0.5 0.5 8.00\n"
 "i 1 + 0.5 0.5 8.04\n"
 "i 1 + 0.5 0.5 8.00\n"
 "i 1 + 0.5 0.5 8.04\n"
 "i 1 + 0.5 0.5 8.00\n"
 "i 1 + 0.5 0.5 8.04\n"
 "i 1 + 1.0 0.8 8.00\n";

void noMessageCallback(CSOUND *cs, int attr, const char *format,
 va_list valist) {
 // Do nothing so that Csound will not print any message,
 // leaving a clean console for our app
 return;
}

class CsoundSession : public Csound {
public:
 CsoundSession(vector<string> &orc, vector<string> &sco) : Csound() {
 m_orc = orc;
 m_sco = sco;
 m_pt = NULL;
 };

 void mainLoop() {
 SetMessageCallback(noMessageCallback);
 SetOutput((char *)"dac", NULL, NULL);
 GetParams(&m_csParams);
 m_csParams.sample_rate_override = 48000;
 m_csParams.control_rate_override = 480;
 m_csParams.e0dbfs_override = 1.0;
 // Note that setParams is called before first compilation
 SetParams(&m_csParams);
 if (CompileOrc(orc1.c_str()) == 0) {
 Start(this->GetCsound());
 // Just to be sure...
 cout << GetSr() << ", " << GetKr() << ", ";
 cout << GetNchnls() << ", " << Get0dBFS() << endl;
 m_pt = new CsoundPerformanceThread(this);
 m_pt->Play();
 } else {
 return;
 }

 string s;
 TREE *tree;
 bool loop = true;
 while (loop) {
 cout << endl << "1) 2) 3): orchestras, 4) 5) 6): scores; q(uit: ";
 char c = cin.get();
 cin.ignore(1, '\n');
 switch (c) {
 case '1':
 tree = ParseOrc(m_orc[0].c_str());
 CompileTree(tree);
 DeleteTree(tree);
 break;
 case '2':
 CompileOrc(m_orc[1].c_str());
 break;
 case '3':
 EvalCode(m_orc[2].c_str());
 break;
 case '4':
 ReadScore((char *)m_sco[0].c_str());
 break;
 case '5':
 ReadScore((char *)m_sco[1].c_str());
 break;
 case '6':
 ReadScore((char *)m_sco[2].c_str());
 break;
 case 'q':
 if (m_pt) {
 m_pt->Stop();
 m_pt->Join();
 }
 loop = false;
 break;
 }
 }
 };

private:
 CsoundPerformanceThread *m_pt;
 CSOUND_PARAMS m_csParams;
 vector<string> m_orc;
 vector<string> m_sco;
};

int main(int argc, char **argv) {
 vector<string> orc;
 orc.push_back(orc1);
 orc.push_back(orc2);
 orc.push_back(orc3);
 vector<string> sco;
 sco.push_back(sco1);
 sco.push_back(sco2);
 sco.push_back(sco3);
 CsoundSession *session = new CsoundSession(orc, sco);
 session->mainLoop();
}

Deprecated Functions

csoundQueryInterface()
csoundSetInputValueCallback()
csoundSetOutputValueCallback()
csoundSetChannelIOCallback()
csoundPerformKsmpsAbsolute()

are still in the header file but are now deprecated.

Builtin Wrappers

The Csound API has also been wrapped to other languages. Usually Csound is built and distributed including a wrapper for Python and a wrapper for Java.

To use the Python Csound API wrapper, you have to import the ctcsound module. The ctcsound module is normally installed in the site-packages or dist-packages directory of your python distribution as a ctcsound.py file. Our csound command example becomes:

import sys
import ctcsound

cs = ctcsound.Csound()
result = cs.compile_(sys.argv)
if result == 0:
 result = cs.perform()
cs.cleanup()
del cs
sys.exit(result)

We use a Csound object (remember Python has OOp features). Note the use of the sys.argv list to get the program input arguments.

This example would be launched with the following command:

python csoundCommand.py myexample.csd

To use the Java Csound API wrapper, you have to import the csnd6 package. The csnd6 package is located in the csnd6.jar archive which has to be known from your Java path. Our csound command example becomes:

import csnd6.*;

public class CsoundCommand
{
 private Csound csound = null;
 private CsoundArgVList arguments = null;

 public CsoundCommand(String[] args) {
 csound = new Csound();
 arguments = new CsoundArgVList();
 arguments.Append("dummy");
 for (int i = 0; i < args.length; i++) {
 arguments.Append(args[i]);
 }
 int result = csound.Compile(arguments.argc(), arguments.argv());
 if (result == 0) {
 result = csound.Perform();
 }
 System.out.println(result);
 }

 public static void main(String[] args) {
 CsoundCommand csCmd = new CsoundCommand(args);
 }
}

Note the “dummy” string as first argument in the arguments list. C, C++ and Python expect that the first argument in a program argv input array is implicitly the name of the calling program. This is not the case in Java: the first location in the program argv input array contains the first command line argument if any. So we have to had this “dummy” string value in the first location of the arguments array so that the C API function called by our csound.Compile method is happy. This illustrates a fundamental point about the Csound API. Whichever API wrapper is used (C++, Python, Java, etc), it is the C API which is working under the hood. So a thorough knowledge of the Csound C API is highly recommended if you plan to use the Csound API in any of its different flavours.

On our linux system, with csnd.jar located in /usr/local/lib/, our Java Program would be compiled and run with the following commands:

javac -cp /usr/local/lib/csnd6.jar CsoundCommand.java
java -cp /usr/local/lib/csnd6.jar:. CsoundCommand

There is a drawback using the java wrappers: as it is built during the Csound build, the host system on which Csound will be used must have the same version of Java than the one which were on the system used to build Csound. The mechanism presented in the next section can solve this problem.

Foreign Function Interfaces

Modern programming languages often propose a mechanism called Foreign Function Interface (FFI) which allows the user to write an interface to shared libraries written in C.

Python provides the ctypes module which is used by the ctcsound.py module.

Lua proposes the same functionality through the LuaJIT project. Here is a version of the csound command using LuaJIT FFI:

-- This is the wrapper part defining our LuaJIT interface to
-- the Csound API functions that we will use, and a helper function
-- called csoundCompile, which makes a pair of C argc, argv arguments from
-- the script input args and calls the API csoundCompile function
-- This wrapper could be written in a separate file and imported
-- in the main program.

local ffi = require("ffi")
ffi.cdef[[
typedef void CSOUND;
CSOUND *csoundCreate(void *hostData);
int csoundCompile(CSOUND *, int argc, const char *argv[]);
int csoundPerform(CSOUND *);
void csoundDestroy(CSOUND *);
]]

csoundAPI = ffi.load("csound64.so")

string_array_t = ffi.typeof("const char *[?]")

function csoundCompile(csound, args)
 local argv = {"dummy"}
 for i, v in ipairs(args) do
 argv[i+1] = v
 end
 local cargv = string_array_t(#argv + 1, argv)
 cargv[#argv] = nil
 return csoundAPI.csoundCompile(csound, #argv, cargv)
end

-- This is the Csound commandline program using the wrapper interface
csound = csoundAPI.csoundCreate(nil)
result = csoundCompile(csound, {...})
if result == 0 then
 csoundAPI.csoundPerform(csound)
end
csoundAPI.csoundDestroy(csound)

The FFI package of the Google Go programming language is called cgo. Here is a version of the csound command using cgo:

package main

/* This is the wrapper part defining our Go interface to
 the Csound API functions that we will use. It uses the go object
 model building methods that will call the corresponding API functions.
 This wrapper could be written in a separate file and imported
 in the main program.
*/

/*
#cgo CFLAGS: -DUSE_DOUBLE=1
#cgo CFLAGS: -I /usr/local/include
#cgo linux CFLAGS: -DLINUX=1
#cgo LDFLAGS: -lcsound64

#include <csound/csound.h>
*/
import "C"

import (
 "os"
 "unsafe"
)

type CSOUND struct {
 Cs (*C.CSOUND)
}

type MYFLT float64

func CsoundCreate(hostData unsafe.Pointer) CSOUND {
 var cs (*C.CSOUND)
 if hostData != nil {
 cs = C.csoundCreate(hostData)
 } else {
 cs = C.csoundCreate(nil)
 }
 return CSOUND{cs}
}

func (csound CSOUND) Compile(args []string) int {
 argc := C.int(len(args))
 argv := make([]*C.char, argc)
 for i, arg := range args {
 argv[i] = C.CString(arg)
 }
 result := C.csoundCompile(csound.Cs, argc, &argv[0])
 for _, arg := range argv {
 C.free(unsafe.Pointer(arg))
 }
 return int(result)
}

func (csound CSOUND) Perform() int {
 return int(C.csoundPerform(csound.Cs))
}

func (csound *CSOUND) Destroy() {
 C.csoundDestroy(csound.Cs)
 csound.Cs = nil
}

// This is the Csound commandline program using the wrapper interface
func main() {
 csound := CsoundCreate(nil)
 if result := csound.Compile(os.Args); result == 0 {
 csound.Perform()
 }
 csound.Destroy()
}

A complete wrapper to the Csound API written in Go is available at the Go-Csnd projekt on github.

The different examples in this section are written for Linux. For other operating systems, some adaptations are needed: for example, for Windows the library name suffix is .dll instead of .so.

The advantage of FFI over Builtin Wrappers is that as long as the signatures of the functions in the interface are the same than the ones in the API, it will work without caring about the version number of the foreign programming language used to write the host program. Moreover, one needs to include in the interface only the functions used in the host program. However a good understanding of the C language low level features is needed to write the helper functions needed to adapt the foreign language data structures to the C pointer system.

References & Links

Csound API Docs

Csound API Examples

ctcsound Docs

Rory Walsh 2006, Developing standalone applications using the Csound Host API and wxWidgets, Csound Journal Volume 1 Issue 4 - Summer 2006

Rory Walsh 2010, Developing Audio Software with the Csound Host API, The Audio Programming Book, DVD Chapter 35, The MIT Press

François Pinot 2011, Real-time Coding Using the Python API: Score Events, Csound Journal Issue 14 - Winter 2011

François Pinot 2014, “Go Binding for Csound6”, https://github.com/fggp/go-csnd

 ch064.xhtml

12 B. PYTHON AND CSOUND

The connection between Csound and Python has a long history. Already in 2002 Maurizio Umberto Puxeddu contributed the Python Opcodes which allowed the execution of Python code inside Csound. Because of Csound’s confession to keep backwards compatibility, this possibility to run Python inside Csound will stay as long as the Python code can be executed.

With the Csound API however, which has been explained in the previous chapter, a more flexible and versatile communication between Python and Csound can be established. Now it is Csound which runs inside Python. This Csound Python API was first generated by SWIG from the Csound’s C API. This version was called csnd6.py. In 2015, François Pinot wrote a new version of the Csound Python API. It is based on Python’s ctypes from which its name ctcsound (as ctypes csound) originates. This version is better adopted to native Python code and has some useful additional features, as the integration into Jupyter Notebooks and the new implementation of Andrés Cabrera’s iCsound.

We will describe in the first part of this chapter some features of using Csound inside Python via ctcsound. In the second part we will describe some use cases of the old Python Opcodes in Csound. The possibility to use Python in the score section of a .csd file is described in chapter 14 A.

Csound in Python using ctcsound

We will focus here on some examples of using ctcsound in the Jupyter Notebooks. More can be found in ctcsound’s repository.

Installing

Install ctcsound.py

The file ctcsound.py is distributed with the Csound installer. This version must be used, to avoid incompatibilities between the installed Csound version and the ctcsound version. In case it cannot be found, it can be installed from the Csound sources.

To make the ctcsound.py working in Python, it must be copied to a directory which Python uses to load external libraries. This folder is usually called site-packages. In case there are more than one versions of Python on your computer, make sure you copy to the one which you use to launch the Juypter Notebooks. On OSX, for instance, when using Anaconda Python, copy ctcsound.py from /Library/Frameworks/CsoundLib64.framework/Versions/6.0/Resources/Python/Current to anaconda3/lib/python3.X/site-packages.

Once this is done, open a Jupyter Notebook and type

import ctcsound

to see if the installation was successful.

Install csoundmagics

The csoundmagics offer some nice features to work with ctcsound in the Jupyter Notebooks, including syntax highlighting. They also contain the iCsound class. To install the csoundmagics, the files at https://github.com/csound/ctcsound should be downloaded first. They contain the cookbook with a lot of Jupyter Notebook files. The files to be installed can be found in the csoundmagics foldes in the cookbook directory. A description how to install can be found in the fifth example of the cookbook.

Once this is done, open a Jupyter Notebook and type

%load_ext csoundmagics

to see if the installation was successful.

iCsound

The iCsound class is loaded as part of ctcsound with the same command we just used to check the installation:

%load_ext csoundmagics

After this command has loaded all the libraries, we create an instance of iCsound:

cs = ICsound()

Usually we will get the message: Csound engine started at slot#: 1. Now we can write some simple code and send it to this instance of Csound:

orc = """
instr 1
 aOut poscil .2, 400
 out aOut, aOut
endin
"""
cs.sendCode(orc)
cs.sendScore('i 1 0 -1')

Csound runs now and plays a sine tone. To turn off the instrument and delete this instance of iCsound, we use:

cs.sendScore('i -1 0 1')
del cs

Some features

As a short survey of some csoundmagics and iCsound features, we start again with loading the library and creating an instance:

%load_ext csoundmagics
cs = ICsound()

Now we can use the %%csound magics to communicate directly with the running csound instance:

%%csound
iSine1 ftgen 1, 0, 1024, 10, 1
iSine2 ftgen 2, 0, 1024, 10, 0, 1

The plotTable() method displays now both tables by an internal call to the matplotlib:

cs.plotTable(1)
cs.plotTable(2)

If we want to see both tables in the same plot, we use the option reuse=True:

cs.plotTable(1)
cs.plotTable(2,reuse=True)

Now we add both tables and display the result:

both = cs.table(1) + cs.table(2)
cs.fillTable(3,both)
cs.plotTable(3)

Building GUI with PySimpleGUI

It is fairly easy to build an own GUI in this way. We use PySimpleGUI here. After installing, it can be loaded into Python with import PySimpleGUI as sg.

Generally spoken, a GUI can have two functions. It can control Csound, for instance start/stop Csound, browse files or change control values. The second function is to use a GUI to display Csound values. We will give one simple example for each case.

GUI controls Csound

This is a code which creates a GUI which lets the user browse an audio file, start and stop playback in a loop, with a volume slider, and deletes the Csound instance when closing. Comments are below.

import PySimpleGUI as sg
%load_ext csoundmagics
cs = ICsound()

orc = """
instr 1
 Sfile chnget "file"
 kVol chnget "vol"
 aSound[] diskin Sfile, 1, 0, 1
 kFadeOut linenr 1, .01, 1, .01
 out aSound[0]*kFadeOut*ampdb(kVol), aSound[1]*kFadeOut*ampdb(kVol)
endin
"""
cs.sendCode(orc)

layout = [
 [sg.Text('Select File, then Start/Stop')],
 [sg.FileBrowse(key='FILE', enable_events=True),
 sg.Button('Start'),
 sg.Button('Stop')],
 [sg.Slider(key='VOL',
 range=(-20,6),
 default_value=0,
 orientation='h',
 enable_events=True)]]

window = sg.Window('GUI -> Csound', layout)

while True:
 event, values = window.read()
 if event is None:
 cs.sendScore('i -1 0 1')
 del cs
 break
 cs.setStringChannel('file',values['FILE'])
 cs.setControlChannel('vol',values['VOL'])
 if event is 'Start':
 cs.sendScore('i 1 0 -1')
 if event is 'Stop':
 cs.sendScore('i -1 0 1')

window.close()

In the first section, we see the usual way to load the modules, create a Csound instance and send an instrument to it. The layout section defines the widgets which will be present in the GUI. The key parameter is particularly important here, as this is the way a widget can be identified.

The interaction between the GUI and Csound happens in the while loop. Here we send the values of the browse button and the slider to Csound:

cs.setStringChannel('file',values['FILE'])
cs.setControlChannel('vol',values['VOL'])

Also we start and stop the Csound instrument when the Start/Stop buttons are pressed:

if event is 'Start':
 cs.sendScore('i 1 0 -1')
if event is 'Stop':
 cs.sendScore('i -1 0 1')

And finally, if the window is being closed, we turn off the instrument, delete the Csound instance and leave the while-loop:

if event is None:
 cs.sendScore('i -1 0 1')
 del cs
 break

GUI displays Csound values

In the previous example, Csound received values from the GUI via chnget, and the Python code sent these values via setStringChannel and setControlChannel. Considering now the other way round, we find chnset on the Csound side, and channel on the Python side. The following code shows a moving line in Csound which is displayed by a slider and a text box.

import PySimpleGUI as sg
%load_ext csoundmagics
cs = ICsound()
orc = """
seed 0
instr 1
 kLine randomi -1,1,1,3
 chnset kLine, "line"
endin
"""
cs.sendCode(orc)
cs.sendScore('i 1 0 -1')

layout = [[sg.Slider(range=(-1,1),
 orientation='h',
 key='LINE',
 resolution=.01)],
 [sg.Text(size=(6,1),
 key='LINET',
 text_color='black',
 background_color='white',
 justification = 'right',
 font=('Courier',16,'bold'))]
]

window = sg.Window('Csound -> GUI',layout)

while True:
 event, values = window.read(timeout=100)
 if event is None:
 cs.sendScore('i -1 0 1')
 del cs
 break
 window['LINE'].update(cs.channel('line')[0])
 window['LINET'].update('%+.3f' % cs.channel('line')[0])
window.close()

Python in Csound using the Python Opcodes

The second part of this chapter, discussing the old Python opcodes in Csound, is based on Andrés Cabrera’s article Using Python inside Csound, An introduction to the Python opcodes.1 All examples below are to be executed in a Terminal. If using CsoundQt, choose Run in Term instead of Run. It should be noted that all examples here are using Python 2. There is a plugin to port the Python opcodes to Python 3. There is also an example how to embed ctcsound in the Python opcodes.

Starting the Python Interpreter and Running Python Code at i-Time: pyinit and pyruni

To use the Python opcodes inside Csound, you must first start the Python interpreter. This is done using the pyinit opcode. The pyinit opcode must be put in the header before any other Python opcode is used, otherwise, since the interpreter is not running, all Python opcodes will return an error. You can run any Python code by placing it within quotes as argument to the opcode pyruni. This opcode executes the Python code at init time2 and can be put in the header. The example below shows a simple csd file which prints the text “Hello Csound world!” to the terminal.

EXAMPLE 12B01_pyinit.csd

<CsoundSynthesizer>
<CsOptions>
-ndm0
</CsOptions>
<CsInstruments>

;start python interpreter
pyinit

;run python code at init-time
pyruni "print '*********************'"
pyruni "print '*Hello Csound world!*'"
pyruni "print '*********************'"

</CsInstruments>
<CsScore>
e 0
</CsScore>
</CsoundSynthesizer>
;Example by Andrés Cabrera and Joachim Heintz

Python Variables are usually Global

The Python interpreter maintains its state for the length of the Csound run. This means that any variables declared will be available on all calls to the Python interpreter. In other words, they are global. The code below shows variables ‘c’ and ‘d’ being calculated both in the header (c) and in instrument 2 (d), and that they are available in all instruments (here printed out in instrument 1 and 3). A multi-line string can be written in Csound with the {{...}} delimiters. This can be useful for longer Python code snippets.

EXAMPLE 12B02_python_global.csd

 <CsoundSynthesizer>
<CsOptions>
-ndm0
</CsOptions>
<CsInstruments>

pyinit

;Execute a python script in the header
pyruni {{
a = 2
b = 3
c = a + b
}}

instr 1 ;print the value of c
prints "Instrument %d reports:\n", p1
pyruni "print 'a + b = c = %d' % c"
endin

instr 2 ;calculate d
prints "Instrument %d calculates the value of d!\n", p1
pyruni "d = c**2"
endin

instr 3 ;print the value of d
prints "Instrument %d reports:\n", p1
pyruni "print 'c squared = d = %d' % d"
endin

</CsInstruments>
<CsScore>
i 1 1 0
i 2 3 0
i 3 5 0
</CsScore>
</CsoundSynthesizer>
;Example by Andrés Cabrera and Joachim Heintz

Prints:

Instrument 1 reports:
a + b = c = 5
Instrument 2 calculates the value of d!
Instrument 3 reports:
c squared = d = 25

Running Python Code at k-Time

Python scripts can also be executed at k-rate using pyrun. When pyrun is used, the script will be executed on every k-pass for the instrument, which means it will be executed kr times per second. The example below shows a simple example of pyrun. The number of control cycles per second is set here to 100 via the statement kr=100. After setting the value of variable ‘a’ in the header to zero, instrument 1 runs for one second, thus incrementing the value of ‘a’ to 100 by the Python statement ‘a = a + 1’. Instrument 2, starting after the first second, prints the value. Instrument 1 is then called again for another two seconds, so the value of variable ‘a’ is 300 afterwards. Then instrument 3 is called which performs both, incrementing (in the += short form) and printing, for the first two k-cycles.

EXAMPLE 12B03_pyrun.csd

<CsoundSynthesizer>
<CsOptions>
-ndm0
</CsOptions>
<CsInstruments>

kr=100

;start the python interpreter
pyinit
;set variable a to zero at init-time
pyruni "a = 0"

instr 1
;increment variable a by one in each k-cycle
pyrun "a = a + 1"
endin

instr 2
;print out the state of a at this instrument's initialization
pyruni "print 'instr 2: a = %d' % a"
endin

instr 3
;perform two more increments and print out immediately
kCount timeinstk
pyrun "a += 1"
pyrun "print 'instr 3: a = %d' % a"
;;turnoff after k-cycle number two
if kCount == 2 then
turnoff
endif
endin
</CsInstruments>
<CsScore>
i 1 0 1 ;Adds to a for 1 second
i 2 1 0 ;Prints a
i 1 2 2 ;Adds to a for another two seconds
i 3 4 1 ;Prints a again
</CsScore>
</CsoundSynthesizer>
;Example by Andrés Cabrera and Joachim Heintz

Prints:

instr 2: a = 100
instr 3: a = 301
instr 3: a = 302

Running External Python Scripts: pyexec

Csound allows you to run Python script files that exist outside your csd file. This is done using pyexec. The pyexec opcode will run the script indicated, like this:

pyexec "/home/python/myscript.py"

In this case, the script myscript.py will be executed at k-rate. You can give full or relative path names.

There are other versions of the pyexec opcode, which run at initialization only (pyexeci) and others that include an additional trigger argument (pyexect).

Passing values from Python to Csound: pyeval(i)

The opcode pyeval and its relatives allow you to pass to Csound the value of a Python expression. As usual, the expression is given as a string. So we expect this to work:

Not Working Example!

<CsoundSynthesizer>
<CsOptions>
-ndm0
</CsOptions>
<CsInstruments>

pyinit
pyruni "a = 1"
pyruni "b = 2"

instr 1
ival pyevali "a + b"
prints "a + b = %d\n", ival
endin

</CsInstruments>
<CsScore>
i 1 0 0
</CsScore>
</CsoundSynthesizer>

Running this code results in an error with this message:

INIT ERROR in instr 1: pyevali: expression must evaluate in a float

What happens is that Python has delivered an integer to Csound, which expects a floating-point number. Csound always works with numbers which are not integers (to represent a 1, Csound actually uses 1.0). This is equivalent mathematically, but in computer memory these two numbers are stored in a different way. So what you need to do is tell Python to deliver a floating-point number to Csound. This can be done by Python’s float() facility. So this code should work:

EXAMPLE 12B04_pyevali.csd

<CsoundSynthesizer>
<CsOptions>
-ndm0
</CsOptions>
<CsInstruments>

pyinit
pyruni "a = 1"
pyruni "b = 2"

instr 1
ival pyevali "float(a + b)"
prints "a + b = %d\n", ival
endin

</CsInstruments>
<CsScore>
i 1 0 0
</CsScore>
</CsoundSynthesizer>
;Example by Andrés Cabrera and Joachim Heintz

Prints:

a + b = 3

Passing Values from Csound to Python: pyassign(i)

You can pass values from Csound to Python via the pyassign opcodes. This is a very simple example which calculates the cent distance of the proportion 3/2:

EXAMPLE 12B05_pyassigni.csd

<CsoundSynthesizer>
<CsOptions>
-ndm0
</CsOptions>
<CsInstruments>

pyinit

instr 1 ;assign 3/2 to the python variable "x"
pyassigni "x", 3/2
endin

instr 2 ;calculate cent distance of this proportion
pyruni {{
from math import log
cent = log(x,2)*1200
print cent
}}
endin

</CsInstruments>
<CsScore>
i 1 0 0
i 2 0 0
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Unfortunately, you can neither pass strings from Csound to Python via pyassign, nor from Python to Csound via pyeval. So the interchange between both worlds is actually limited to numbers.

Calling Python Functions with Csound Variables

Apart from reading and setting variables directly with an opcode, you can also call Python functions from Csound and have the function return values directly to Csound. This is the purpose of the pycall opcodes. With these opcodes you specify the function to call and the function arguments as arguments to the opcode. You can have the function return values (up to 8 return values are allowed) directly to Csound i- or k-rate variables. You must choose the appropriate opcode depending on the number of return values from the function, and the Csound rate (i- or k-rate) at which you want to run the Python function. Just add a number from 1 to 8 after to pycall, to select the number of outputs for the opcode. If you just want to execute a function without return value simply use pycall. For example, the function average defined above, can be called directly from Csound using:

kave pycall1 "average", ka, kb

The output variable kave, will calculate the average of the variable ka and kb at k-rate.

As you may have noticed, the Python opcodes run at k-rate, but also have i-rate versions if an i is added to the opcode name. This is also true for pycall. You can use pycall1i, pycall2i, etc. if you want the function to be evaluated at instrument initialization, or in the header. The following csd shows a simple usage of the pycall opcodes:

EXAMPLE 12B06_pycall.csd

<CsoundSynthesizer>
<CsOptions>
-dnm0
</CsOptions>
<CsInstruments>

pyinit

pyruni {{
def average(a,b):
 ave = (a + b)/2
 return ave
}} ;Define function "average"

instr 1 ;call it
iave pycall1i "average", p4, p5
prints "a = %i\n", iave
endin

</CsInstruments>
<CsScore>
i 1 0 1 100 200
i 1 1 1 1000 2000
</CsScore>
</CsoundSynthesizer>
;example by andrés cabrera and joachim heintz

This csd will print the following output:

a = 150
a = 1500

Local Instrument Scope

Sometimes you want Python variables to be global, and sometimes you may want Python variables to be local to the instrument instance. This is possible using the local Python opcodes. These opcodes are the same as the ones shown above, but have the prefix pyl instead of py. There are opcodes like pylruni, pylcall1t and pylassigni, which will behave just like their global counterparts, but they will affect local Python variables only. It is important to have in mind that this locality applies to instrument instances, not instrument numbers. The next example shows both, local and global behaviour.

EXAMPLE 12B07_local_vs_global.csd

<CsoundSynthesizer>
<CsOptions>
-dnm0
</CsOptions>
<CsInstruments>
ksmps=32

pyinit

instr 1 ;local python variable 'value'
 pylassigni "value", p4
 if timeinstk() == 1 then
 kvalue pyleval "value"
 printks "Python variable 'value' in instr %d, instance %d, at start = %d\n",
 0, p1, frac(p1)*10, kvalue
 elseif release() == 1 then
 kvalue pyleval "value"
 printks "Python variable 'value' in instr %d, instance %d, at end = %d\n",
 0, p1, frac(p1)*10, kvalue
 endif
endin

instr 2 ;global python variable 'value'
 pyassigni "value", p4
 if timeinstk() == 1 then
 kvalue pyeval "value"
 printks "Python variable 'value' in instr %d, instance %d, at start = %d\n",
 0, p1, frac(p1)*10, kvalue
 elseif release() == 1 then
 kvalue pyeval "value"
 printks "Python variable 'value' in instr %d, instance %d, at end = %d\n",
 0, p1, frac(p1)*10, kvalue
 endif
endin

</CsInstruments>
<CsScore>
; p4
i 1.1 0.0 1 100
i 1.2 0.1 1 200
i 1.3 0.2 1 300
i 1.4 0.3 1 400

i 2.1 2.0 1 100
i 2.2 2.1 1 200
i 2.3 2.2 1 300
i 2.4 2.3 1 400
</CsScore>
</CsoundSynthesizer>
;Example by Andrés Cabrera and Joachim Heintz

Prints:

Python variable 'value' in instr 1, instance 1, at start = 100
Python variable 'value' in instr 1, instance 2, at start = 200
Python variable 'value' in instr 1, instance 3, at start = 300
Python variable 'value' in instr 1, instance 4, at start = 400
Python variable 'value' in instr 1, instance 1, at end = 100
Python variable 'value' in instr 1, instance 2, at end = 200
Python variable 'value' in instr 1, instance 3, at end = 300
Python variable 'value' in instr 1, instance 4, at end = 400
Python variable 'value' in instr 2, instance 1, at start = 100
Python variable 'value' in instr 2, instance 2, at start = 200
Python variable 'value' in instr 2, instance 3, at start = 300
Python variable 'value' in instr 2, instance 4, at start = 400
Python variable 'value' in instr 2, instance 1, at end = 400
Python variable 'value' in instr 2, instance 2, at end = 400
Python variable 'value' in instr 2, instance 3, at end = 400
Python variable 'value' in instr 2, instance 4, at end = 400

Both instruments pass the value of the score parameter field p4 to the python variable value. The only difference is that instrument 1 does this local (with pylassign and pyleval) and instrument 2 does it global (with pyassign and pyeval). Four instances of instrument 1 are called with 0.1 seconds time offset, for the duration of one second. Printout is done in the first and the last k-cycle of the instrument.

At start, all instruments show that they have set the python variable value correctly to the p4 value. This does not change in instrument 1, because the settings als local here. In instrument 2, however, the now global python variable value is being reset by each of the four instances. At start of the first instance (Csound time 2.0), it is 100. At start of instance 2 (time 2.1), it is 200. It is set to 400 at Csound time 2.3. So at time 2.999, when the first instance finishes its performance, the value is not any more 100, but 400. This is reported in the at end printout.

Triggered Versions of Python Opcodes

All of the python opcodes have a “triggered” version, which will only execute when its trigger value is different to 0. The names of these opcodes have a “t” added at the end of them (e.g. pycallt or pylassignt), and all have an additional parameter called ktrig for triggering purposes.

Simple Markov Chains Using the Python Opcodes

Python opcodes can simplify the creation of complex data structures for algorithmic composition. Below you will find a simple example of using the Python opcodes to generate Markov chains for a pentatonic scale. Markov chains require in practice building matrices, which start becoming unwieldy in Csound, especially for more than two dimensions. In Python multi-dimensional matrices can be handled as nested lists very easily. Another advange is that the size of matrices (or lists) need not be known in advance, since it is not necessary in python to declare the sizes of lists.

EXAMPLE 12B08_markov.csd

<CsoundSynthesizer>
<CsOptions>
-odac -dm0
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

pyinit

; Python script to define probabilities for each note as lists within a list
; Definition of the get_new_note function which randomly generates a new
; note based on the probabilities of each note occuring.
; Each note list must total 1, or there will be problems!

pyruni {{
c = [0.1, 0.2, 0.05, 0.4, 0.25]
d = [0.4, 0.1, 0.1, 0.2, 0.2]
e = [0.2, 0.35, 0.05, 0.4, 0]
g = [0.7, 0.1, 0.2, 0, 0]
a = [0.1, 0.2, 0.05, 0.4, 0.25]

markov = [c, d, e, g, a]

from random import random, seed

seed()

def get_new_note(previous_note):
 number = random()
 accum = 0
 i = 0
 while accum < number:
 accum = accum + markov[int(previous_note)] [int(i)]
 i = i + 1
 return i - 1.0
}}

giSine ftgen 0, 0, 2048, 10, 1 ;sine wave
giPenta ftgen 0, 0, -6, -2, 0, 2, 4, 7, 9 ;Pitch classes for pentatonic scale

instr 1 ;Markov chain reader and note spawner
;p4 = frequency of note generation
;p5 = octave
ioct init p5
klastnote init 0 ;Used to remember last note played
ktrig metro p4 ;generate a trigger with frequency p4
knewnote pycall1t ktrig, "get_new_note", klastnote ;get new note from chain
schedkwhen ktrig, 0, 10, 2, 0, 0.2, knewnote, ioct ;launch note on instr 2
klastnote = knewnote ;New note is now the old note
endin

instr 2 ;A simple sine wave instrument
;p4 = note to be played
;p5 = octave
ioct init p5
ipclass table p4, giPenta
ipclass = ioct + (ipclass / 100) ; Pitch class of the note
ifreq = cpspch(ipclass) ;Note frequency in Hertz
aenv linen .2, 0.05, p3, 0.1 ;Amplitude envelope
aout poscil aenv, ifreq , giSine ;Simple oscillator
outs aout, aout
endin

</CsInstruments>
<CsScore>
; frequency of Octave of
; note generation melody
i 1 0 30 3 7
i 1 5 25 6 9
i 1 10 20 7.5 10
i 1 15 15 1 8
</CsScore>
</CsoundSynthesizer>
;Example by Andrés Cabrera

	Csound Journal Issue 6, Spring 2007: http://csoundjournal.com/issue6/pythonOpcodes.html↩︎

	See chapter 03 A for more about init- and k-time in Csound.↩︎

 ch065.xhtml

12 C. LUA AND CSOUND

The Lua programming language originated in Brazil in 1993. It became a flexible and popular scripting language in the 2000s, especially for people working in Game and app design. The key characterics of Lua derive from its simplicity, including a fairly small size and good performance. Compared to Python and simliar languages, Lua is faster.

So running Csound in Lua is a good option if someone is building an app which needs to be both fast and also simple to code. (Compared to the potential complexity of writing an application in C or C++.) Throughout the 2010s, Csounders from all over the world built interesting and rich audio applications with Lua and Csound. For Indi Developers working with the Löve 2D Engine, which is based on Lua, Csound can be a sophisticated option for controlling the sound, as well as creating/controlling the sounds in Csound.

Installing

In order to run Csound Code in Lua, the luaCsnd6 shared object is needed. Currently (Csound 6.14) it is not available in the Windows and Mac installer. In other words, it requires an own build of Csound on these platforms.

On Linux, the luaCsnd.so should be found in /usr/lib, if you install Csound via the package manager. For own builds of Csound, it should be found in /usr/local/lib or in your build directory.

Setting the Lua Path

Once the luaCsnd6.so is there, it needs to be added to the Lua Path. Either put the luaCsnd object in a directory where Lua is searching by default, or add these lines to the configuration file of your shell:

Using Csound build directory:

LUA_CPATH="/home/user/csound/buildluaCsnd6.so"

Or using installed Csound (depending on the installation path):

LUA_CPATH="/usr/local/lib/luaCsnd6.so"
LUA_CPATH="/usr/lib/luaCsnd6.so"

Running Csound in Lua

This is a test code to be executed in your Lua environment. It will show whether Csound can be run via the Lua Csound API.

require "luaCsnd6"

-- Defining our Csound ORC code within a multiline String
orc = [[
sr=44100
ksmps=32
nchnls=2
0dbfs=1
instr 1
aout vco2 0.5, 440
outs aout, aout
endin
]]

-- Defining our Csound SCO code
sco = "i1 0 1"

local c = luaCsnd6.Csound()
c:SetOption("-odac") -- Using SetOption() to configure Csound
 -- Note: use only one commandline flag at a time

c:CompileOrc(orc) -- Compile the Csound Orchestra string
c:ReadScore(sco) -- Compile the Csound SCO String
c:Start() -- When compiling from strings, call Start() prior to Perform()
c:Perform() -- Run Csound to completion
c:Stop()

Future Applications for Lua and Csound 

Concerning the future of Csound and Lua, it might be beneficial in the wake of the AI revolution to look into the possibility of using the Torch Framework in Lua. (Which is comparable to the Tensorflow Framework in Python to create different kinds of Deep Learning Application for Audio, Composition or Sound Synthesis). Although the Torch Framework is not as widely used as Tensorflow in Python, having even a dedicated Audio Library with the magenta projects applications, the DSP capabilities of Lua and Python are quite limited and are lacking the a sophisticated environment that Csound offers.

 ch066.xhtml

12 D. CSOUND IN iOS

The first part of this chapter is a guide which aims to introduce and illustrate some of the power that the Csound language offers to iOS Developers. It assumes that the reader has a rudimentary background in Csound, and some experience and understanding of iOS development with either Swift or Objective-C. The most recent Csound iOS SDK can be downloaded on Csound’s download page. Older versions can be found here. The Csound for iOS Manual (Lazzarini, Yi, Boulanger) that ships with the Csound for iOS API is intended to serve as a lighter reference for developers. This guide is distinct from it in that it is intended to be a more thorough, step-by-step approach to learning the API for the first time.

The second part of this chapter is a detailed discussion of the full integration of Csound into ths iOS Core Audio system.

I. Features of Csound in iOS

Getting Started

There are a number of ways in which one might begin to learn to work with the Csound for iOS API. Here, to aid in exploring it, we first describe how the project of examples that ships with the API is structured. We then talk about how to go about configuring a new iOS Xcode project to work with Csound from scratch.

Csound for iOS Examples

The Csound for iOS Examples project contains a number of simple examples (in both Objective-C and Swift) of how one might use Csound’s synthesis and signal processing capabilities, and the communicative functionality of the API. It is available both in the download bundle or online in the Csound sources.

In the ViewControllers group, a number of subgroups exist to organize the various individual examples into a single application. This is done using the Master-Detail application layout paradigm, wherein a set of options, all of them listed in a master table, correlates to a single detail ViewController. Familiar examples of this design model, employed by Apple and provided with every iOS device, are the Settings app, and the Notes app – each of these contains a master table upon which the detail ViewController’s content is predicated.

In each of these folders, you will find a unique example showcasing how one might use some of the features of the Csound for iOS API to communicate with Csound to produce and process sounds and make and play music. These are designed to introduce you to these features in a practical setting, and etch of these has a unifying theme that informs its content, interactions, and structure.

Adding Csound to Your Project

If you are working in Objective-C, adding Csound for iOS to your project is as simple as dragging the csound-iOS folder into your project. You should select Groups rather than Folder References, and it is recommended that you elect to copy the csound-iOS folder into your project folder (“Copy Items if Needed”).

Once you have successfully added this folder, including the CsoundObj class (the class that manages Csound on iOS) is as simple as adding an import statement to the class. For example:

//
// ViewController.h
//
#import "CsoundObj.h"

Note that this only makes the CsoundObj class available, which provides an interface for Csound. There are other objects containing UI and CoreMotion bindings, as well as MIDI handling. These are discussed later in this document, and other files will need to be imported in order to access them.

For Swift users, the process is slightly different: you will need to first create a bridging header: a .h header file that can import the Objective-C API for access in Swift. The naming convention is [YourProjectName]-Bridging Header.h and this file can be easily created manually in Xcode by choosing File > New > File > Header File (under Source), and using the naming convention described above. After this, you will need to navigate to your project build settings and add the path to this file (relative to your project’s .xcodeproj project file).

Once this is done, navigate to the bridging header in Xcode and add your Objective-C #import statements here. For example:

//
// CsoundiOS_ExampleSwift-Bridging-Header.h
// CsoundiOS_ExampleSwift
//

#ifndef CsoundiOS_ExampleSwift_Bridging_Header_h
#define CsoundiOS_ExampleSwift_Bridging_Header_h

#import "CsoundObj.h"

#endif /* CsoundiOS_ExampleSwift_Bridging_Header_h */

You do not need to add any individual import statements to Swift files, CsoundObj’s functionality should be accessible in your .swift files after this process is complete.

Playing a .csd File

The first thing we will do so that we can play a .csd file is add our .csd file to our project. In this case, we will add a simple .csd (in this case named test.csd) that plays a sine tone with a frequency of 440Hz for ten seconds. Sample Csound code for this is:

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 128
nchnls = 2
0dbfs = 1

instr 1
asig poscil 0.5 , 440
outs asig , asig
endin

</CsInstruments>
<CsScore>
i1 0 10
</CsScore>
</CsoundSynthesizer>

We will add this to our Xcode project by dragging and dropping it into our project’s main folder, making sure to select Copy items if needed and to add it to our main target.

In order to play this .csd file, we must first create an instance of the CsoundObj class. We can do this by creating a property of our class as follows, in our .h file (for example, in ViewController.h):

//
// ViewController.h
// CsoundiOS_ExampleProject
//

#import <UIKit/UIKit.h>
#import "CsoundObj.h"

@interface ViewController : UIViewController

@property CsoundObj *csound;

@end

Once we’ve done this, we can move over to the corresponding .m file (in this case, ViewController.m) and instantiate our Csound object. Here we will do this in our viewDidLoad method, that is called when our ViewController’s view loads.

//
// ViewController.m
// CsoundiOS_ExampleProject
//

@interface ViewController()
@end
@implementation ViewController

- (void)viewDidLoad {
 [super viewDidLoad];
 // Allocate memory for and initialize a CsoundObj
 self.csound = [[CsoundObj alloc] init];
}

Note: in order to play our .csd file, we must first get a path to it that we can give Csound. Because part of this path can vary depending on certain factors (for example, the user’s native language setting), we cannot pass a static or “hard-coded” path. Instead, we will access the file using the NSBundle class (or ‘Bundle’ in Swift).

The .csd file is copied as a resource (you can see this under the Build Phases tab in your target’s settings), and so we will access it and tell Csound to play it as follows:

- (void) viewDidLoad {
 [super viewDidLoad];
 self.csound = [[CsoundObj alloc] init];
 // CsoundObj *csound is declared as a property in .h
 NSString *pathToCsd =
 [[NSBundle mainBundle] pathForResource:@"test" ofType:@"csd"];
 [self.csound play:pathToCsd];
}

Note that in Swift, this is a little easier and we can simply use:

import UIKit
class ViewController: UIViewController {
 var csound = CsoundObj()

 override func viewDidLoad() {
 super.viewDidLoad()
 let pathToCsd = Bundle.main.path(forResource: "test", ofType: "csd")
 self.csound.play(pathToCsd)
 }
}

With this, the test.csd file should load and play, and we should hear a ten-second long sine tone shortly after the application runs (i.e. when the main ViewController’s main view loads).

Recording and Rendering

Recording (Real-Time)

To record the output of Csound in real-time, instead of the play method, use:

// Objective-C
NSURL *docsDirURL = [[[NSFileManager defaultManager]
 URLsForDirectory:NSDocumentDirectory
 inDomains:NSUserDomainMask] lastObject];
NSURL *file = [docsDirURL URLByAppendingPathComponent:@"outputFile.aif"];
NSString *csdPath =
 [[NSBundle mainBundle] pathForResource:@"csdToRecord" ofType:@"csd"];
[self.csound record:csdPath toURL:file];

// Swift
let docsDirURL =
 FileManager.default.urls(for: .documentDirectory, in: .userDomainMask)[0]
let file = docsDirURL.appendingPathComponent("outFile.aif")
let csdPath = Bundle.main.path(forResource: "csdFile", ofType: "csd")
csound.record(csdPath, to: file)

Alternatively, the recordToURL method can be used while Csound is already running to begin recording:

// Objective-C
NSURL *docsDirURL = [[[NSFileManager defaultManager]
 URLsForDirectory:NSDocumentDirectory
 inDomains:NSUserDomainMask] lastObject];
NSURL *file = [docsDirURL URLByAppendingPathComponent:@"outputFile.aif"];
[self.csound recordToURL:file];

// Swift
let docsDirURL =
 FileManager.default.urls(for: .documentDirectory, in: .userDomainMask)[0]
let file = docsDirURL.appendingPathComponent("outFile.aif")
csound.record(to: file)

Note: the stopRecording method is used to stop recording without also stopping Csound’s real-time rendering.

Rendering (Offline)

You can also render a .csd to an audio file offline. To render Csound offline to disk, use the record:toFile: method, which takes a path rather than a URL as its second argument. For example:

// Objective-C
NSString *docsDir = NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES)[0];
NSString *file = [docsDir stringByAppendingPathComponent:@"outFile.aif"];
NSString *csdPath =
 [[NSBundle mainBundle] pathForResource:@"csdFile" ofType:@"csd"];
[self record:csdPath toFile:file];

// Swift
let docsDir = NSSearchPathForDirectoriesInDomains(
 .documentDirectory, .userDomainMask, true
)[0]
let file = docsDir.appending("/outFile.aif")
let csdPath = Bundle.main.path(forResource: "csdFile", ofType: "csd")
csound.record(csdPath, toFile: file)

These demonstrations above save the audio files in the app’s documents directory, which allows write access for file and subdirectory storage on iOS. Note that the -W and -A flags behave as usual on iOS: they will decide whether the file rendered is a WAV or an AIFF file. In the event that neither is provided, the latter will be used as a default.

The CsoundUI Class

The CsoundUI class provides for direct bindings between named Csound channels and commonly used objects from the UIKit iOS framework. While it is not necessary to use a CsoundUI object for this communication between iOS and Csound, it can, in many cases, abstract the process of setting up a UI object binding to a single line of code. To initialize a CsoundUI object, we must give it a reference to our Csound object:

//Objective-C
CsoundUI *csoundUI = [[CsoundUI alloc] initWithCsoundObj: self.csound];

// Swift
var csoundUI = CsoundUI(csoundObj: csound)

Normally, however, these objects are declared as properties rather than locally in methods. As mentioned, CsoundUI uses named channels for communicating to and from Csound. Once set-up, values passed to these named channels are normally accessed through the chnget opcode, for example:

instr 1
kfreq chnget "frequency"
asig oscil 0.5 , kfreq
outs asig , asig
endin

Conversely, in order to pass values from Csound, the chnset opcode is normally used with two arguments. The first is the variable, and it is followed by the channel name:

instr 1
krand randomi 300 , 2000 , 1 , 3
asig poscil 0.5 , krand
outs asig , asig
chnset krand , "randFreq"
endin

UIButton Binding

The UIButton binding is predominantly contained within the CsoundButtonBinding class, which CsoundUI uses to create individual button bindings. To add a button binding, use:

//Objective-C
[self.csoundUI addButton:self.button forChannelName:"channelName"];

// Swift
csoundUI.add(button, forChannelName: "channelName")

Where self.button is the button you would like to bind to, and the string channelName contains the name of the channel referenced by chnget in Csound.

The corresponding value in Csound will be equal to 1 while the button is touched, and reset to 0 when it is released. A simple example of how this might be used in Csound, based on the pvscross example by Joachim Heintz, is shown below:

instr 1
kpermut chnget "crossToggle "
ain1 soundin "fox .wav"
ain2 soundin "wave .wav"

;fft - analysis of file 1
fftin1 pvsanal ain1 , 1024 , 256 , 1024 , 1
;fft - analysis of file 2
fftin2 pvsanal ain2 , 1024 , 256 , 1024 , 1

if kpermut == 1 then
fcross pvscross fftin2 , fftin1 , .5 , .5
else
fcross pvscross fftin1 , fftin2 , .5 , .5
endif

aout pvsynth fcross
out aout
endin

UISwitch Binding

The UISwitch binding provides a connection between the UISwitch object and a named channel in Csound. This binding is managed in the CsoundSwitchBinding class and you can create a UISwitch binding by using:

//Objective-C
[self.csoundUI addSwitch:self.uiSwitch forChannelName:"channelName"];

// Swift
csoundUI.add(switch, forChannelName: "channelName")

As in the case of the UIButton binding, the UISwitch binding provides an on-off state value (1 or 0 respectively) to Csound. Below we use it to turn on or off a simple note generator:

; Triggering instrument
instr 1
kTrigFreq randomi gkTrigFreqMin , gkTrigFreqMax , 5
ktrigger metro kTrigFreq
kdur randomh .1 , 2 , 5
konoff chnget " instrToggle "
if konoff == 1 then
schedkwhen ktrigger , 0 , 0 , 2 , 0 , kdur
endif
endin

; Sound generating instrument
instr 2
iamp random 0.03 ,0.5
ipan random 0 , 1
ipdx random 0 ,13
ipch table ipdx , 2+i(gkscale)
aenv expseg 1 , (p3) , .001
asig oscil iamp * aenv , cpspch(ipch) , 1
outs asig * ipan , asig * (1 - ipan)
endin

UILabel Binding

The UILabel binding allows you to display any value from Csound in a UILabel object. This can often be a helpful way of providing feedback to the user. You can add a label binding with:

//Objective-C
[self.csoundUI addLabel:self.label forChannelName:"channelName"];

// Swift
csoundUI.add(label, forChannelName: "channelName")

However, in this case the channel is an output channel. To demonstrate, let us add an output channel in Csound to display the frequency of the sound generating instrument’s oscillator from the previous example (for UISwitch):

; Triggering instrument
instr 1
kTrigFreq randomi gkTrigFreqMin , gkTrigFreqMax , 5
ktrigger metro kTrigFreq
kdur randomh .1 , 2 , 5
konoff chnget " instrToggle "
if konoff == 1 then
schedkwhen ktrigger , 0 , 0 , 2 , 0 , kdur
endif
endin

; Sound generating instrument
instr 2
iamp random 0.03 ,0.5
ipan random 0 , 1
ipdx random 0 ,13
ipch table ipdx , 2+i(gkscale)
aenv expseg 1 , (p3) , .001
asig oscil iamp * aenv , cpspch(ipch) , 1
chnset cpspch(ipch) , " pitchOut "
outs asig * ipan , asig * (1 - ipan)
endin

Note additionally that the desired precision of the value display can be set beforehand using the labelPrecision property of the CsoundUI object. For example:

self.csoundUI.labelPrecision = 4;

UISlider Binding

The UISlider binding is possibly the most commonly used UI binding - it allows the value of a UISlider object to be passed to Csound whenever it changes. This is set up in the CsoundSliderBinding class and we access it via CsoundUI using:

// Objective-C
[self.csoundUI addSlider:self.slider
forChannelName:"channelName"];

// Swift
csoundUI.add(slider, forChannelName: "channelName")

Note that this restricts you to using the slider’s actual value, rather than a rounded verion of it or some other variation, which would normally be best suited to a manual value binding, which is addressed later in this guide. An example is provided below of two simple such UISlider-bound values in Csound:

sr = 44100
ksmps = 128
nchnls = 2
0dbfs = 1

instr 1
kfreq chnget "frequency" ; input 0 - 1
kfreq expcurve kfreq , 500 ; exponential distribution
kfreq *= 19980 ; scale to range
kfreq += 20 ;add offset
kamp chnget " amplitude "
kamp port kamp , .001 ; smooth values
asig poscil kamp , kfreq
outs asig , asig
endin

Above we get around being restricted to the value of the UISlider by creating an exponential distribution in Csound. Of course we could simply make the minimum and maximum values of the UISlider 20 and 20000 respectively, but that would be a linear distribution by default. In both cases here, the UISlider’s range of floating point values is set to be from 0 to 1.

Momentary Button Binding

The momentary button binding is similar to the normal UIButton binding in that it uses a UIButton, however it differs in how it uses this object. The UIButton binding passes a channel value of 1 for as long as the UIButton is held, whereas the momentary button binding sets the channel value to 1 for one Csound k-period (i.e. one k-rate sample). It does this by setting an intermediate value to 1 when the button is touched, passing this to Csound on the next k-cycle, and immediately resetting it to 0 after passing it. This is all occurring predominantly in the CsoundMomentaryButtonBinding class, which we access using:

// Objective-C
[self.csoundUI
 addMomentaryButton:self.triggerButton
 forChannelName:"channelName"
];

// Swift
csoundUI.addMomentaryButton(triggerButton, forChannelName: "channelName")

Here’s a simple usage example:

; Triggering instrument
instr 1
ktrigger chnget " noteTrigger "
schedkwhen ktrigger , 0 , 0 , 2 , 0 , kdur
endin

; Sound generating instrument
instr 2
iamp random 0.03 ,0.5
ipan random 0 , 1
ipdx random 0 ,13
ipch table ipdx , 2+i(gkscale)
aenv expseg 1 , (p3) , .001
asig oscil iamp * aenv , cpspch(ipch) , 1
chnset cpspch(ipch) , " pitchOut "
outs asig * ipan , asig * (1 - ipan)
endin

This replaces the automatic instrument triggering with a manual trigger. Every time the UIButton is touched, a note (by way of an instance of instr 2) will be triggered. This may seem like a more esoteric binding, but there are a variety of potential uses.

The CsoundMotion Class

The CsoundMotion class and its associated bindings allow information to be passed from a device’s motion sensors, via the CoreMotion framework, to Csound. As with CsoundUI, it is possible to pass this data indirectly by writing code to mediate between CoreMotion and Csound, but CsoundMotion simplifies and greatly abstracts this process. Subsection 4.4 shows an example of how these values are accessed and might be used in Csound. Note that with CsoundMotion, you do not assign channel names: they are pre-assigned by the relevant objects (e.g. “AccelerometerX”).

To declare and initialize a CsoundMotion object, use:

// Objective-C
CsoundMotion *csoundMotion =
 [[CsoundMotion alloc] initWithCsoundObj:self.csound];

// Swift
var csoundMotion = CsoundMotion(csoundObj: csound)

As with CsoundUI, it may often be advantageous to declare the CsoundMotion object as a property rather than locally.

Accelerometer Binding

The acclerometer binding, implemented in the CsoundAccelerometerBinding class and enabled through the CsoundMotion class, allows access to an iOS device’s accelerometer data along its three axes (X, Y, Z). The accelerometer is a device that measures acceleration, aiding in several basic interactions. To enable it, use:

// Objective-C
[csoundMotion enableAccelerometer];

// Swift
csoundMotion.enableAccelerometer()

Gyroscope Binding

The gyroscope binding, implemented in the CsoundGyroscopeBinding class and enabled through the CsoundMotion class, allows access to an iOS device’s gyroscope data along its three axes (X, Y, Z). The accelerometer is a device that allows rotational velocity to be determined, and together with the accelerometer forms a system with six degrees of freedom. To enable it, use:

// Objective-C
[csoundMotion enableGyroscope];

// Swift
csoundMotion.enableGyroscope()

Attitude Binding

Finally, the attitude binding, implemented in CsoundAttitudeBinding and enabled through CsoundMotion, allows access to an iOS device’s attitude data. As the Apple reference notes, attitude refers to the orientation of a body relative to a given frame of reference. CsoundMotion enables this as three Euler angle valies: roll, pitch, and yaw (rotation around X, Y, and Z respectively). To enable the attitude binding, use:

// Objective-C
[csoundMotion enableAttitude];

// Swift
csoundMotion.enableAttitude()

Together, these bindings enable control of Csound parameters with device motion in ways that are very simple and straightforward. In the following subsection, an example demonstrating each of the pre-set channel names as well as how some of this information might be used is provided.

Motion Csound Example

Here is an example of a Csound instrument that accesses all of the data, and demonstrates uses for some of it. This example is taken from the Csound for iOS Examples project.

instr 1
kaccelX chnget " accelerometerX "
kaccelY chnget " accelerometerY "
kaccelZ chnget " accelerometerZ "

kgyroX chnget " gyroX "
kgyroY chnget " gyroY "
kgyroZ chnget " gyroZ "

kattRoll chnget " attitudeRoll "
kattPitch chnget " attitudePitch "
kattYaw chnget " attitudeYaw "

kcutoff = 5000 + (4000 * kattYaw)
kresonance = .3 + (.3 * kattRoll)
kpch = 880 + (kaccelX * 220)
a1 vco2 (kattPitch + .5) * .2 , kpch
a1 moogladder a1 , kcutoff , kresonance
aL , aR reverbsc a1 , a1 , .72 , 5000
outs aL , aR
endin

Each of the channel names is shown here, and each corresponds to what is automatically set in the relevant binding. A little experimenting can be very helpful in determining what to use these values for in your particular application, and of course one is never under any obligation to use all of them. Regardless, they can be helpful and very straightforward ways to add now-familiar interactions.

The CsoundBinding Protocol

The CsoundBinding protocol allows you to read values from and write values to Csound using named channels that can be referenced in your .csd file using opcodes like chnget and chnset, as described in the earlier section on CsoundUI. The protocol definition from CsoundObj is:

@protocol CsoundBinding <NSObject>
- (void)setup:(CsoundObj*)csoundObj;
@optional
- (void)cleanup;
- (void)updateValuesFromCsound;
- (void)updateValuesToCsound;
@end

In order to add a binding object to Csound, use CsoundObj’s addBinding method:

// Objective-C
[self.csound addBinding:self];

// Swift
csound.addBinding(self)

Note that you will need to conform to the CsoundBinding protocol, and implement. at minimum, the required setup method. The CsoundBinding setup method will be called on every object added as a binding, and the remaining methods, marked with the @optional directive will be called on any bindings that implement them.

Channels and Channel Types

Named channels allow us to pass data to and from Csound while it is running. These channels refer to memory locations that we can write to and Csound can read from, and vice-versa. The two most common channel types are: CSOUND_CONTROL_CHANNEL refers to a floating point control channel, normally associated with a k-rate variable in Csound. CSOUND_AUDIO_CHANNEL refers to an array of floating point audio samples of length ksmps.

Each of these can be an input or output channel depending on whether values are being passed to or from Csound.

Given below is an example of using named channels in a simplified Csound instrument. The polymorphic chnget and chnset opcodes are used, and the context here implies that kverb received its value from an input control channel named verbMix, and that asig outputs to an audio channel named samples.

giSqr ftgen 2, 0, 8192, 10, 1,0,.33,0,.2,0,.14,0,.11,0,.09

instr 1
kfreq = p4
kverb chnget " verbMix "
aosc poscil .5 , kfreq , 2
arvb reverb aosc , 1.5
asig = (aosc * (1 - kverb)) + (arvb * kverb)
chnset asig , " samples "
outs asig , asig
endin

The section that follows will describe how to set up and pass values to and from this instrument’s channels in an iOS application.

The Setup Method

The setup method is called before Csound’s first performance pass, and this is typically where channel references are created. For example:

// Objective-C
// verbPtr and samplesPtr are instance variables of type float*

- (void) setup : (CsoundObj *)csoundObj {
 verbPtr = [csoundObj getInputChannelPtr:@"verbMix"
 channelType:CSOUND_CONTROL_CHANNEL];
 samplesPtr = [csoundObj getOutputChannelPtr:@"samples"
 channelType:CSOUND_AUDIO_CHANNEL];
}

// Swift
var verbPtr: UnsafeMutablePointer<Float>?
var samplesPtr: UnsafeMutablePointer<Float>?

func setup(_ csoundObj: CsoundObj) {
 verbPtr = csoundObj.getInputChannelPtr(
 "verbMix", channelType: CSOUND_CONTROL_CHANNEL
)
 samplesPtr = csoundObj.getOutputChannelPtr(
 "samples", channelType: CSOUND_AUDIO_CHANNEL
)
}

The cleanup method from CsoundBinding, also optional, is intended for use in removing bindings once they are no longer active. This can be done using CsoundObj’s removeBinding method:

// Objective-C
// verbPtr and samplesPtr are instance variables of type float*
-(void)cleanup {
 [self.csound removeBinding:self];
}

// Swift
func cleanup() {
 csound.removeBinding(self)
}

Communicating Values To and From Csound

Communicating values to Csound is normally handled in the updateValuesToCsound method. This method is called once per performance pass (i.e. at the k-rate). For example:

// Objective-C
-(void)updateValuesToCsound {
 *verbPtr = self.verbSlider.value;
}

// Swift
func updateValuesToCsound() {
 verbPtr?.pointee = verbSlider.value
}

This updates the value at a memory location that Csound has already associated with a named channel (in the setup method). This process has essentially replicated the functionality of the CsoundUI API’s slider binding. The advantage here is that we could perform any transformation on the slider value, or associate another value (that might not be associated with a UI object) with the channel altogether. To pass values back from Csound, we use the updateValuesFromCsound method.

// Objective-C
-(void)updateValuesFromCsound {
 float *samps = samplesPtr;
}

Note that in Swift, we have do a little extra work in order to get an array of samples that we can easily index into:

// Swift
func updateValuesFromCsound() {
 let samps = samplesPtr?.pointee
 let sampsArray = [Float](UnsafeBufferPointer(start: audioPtr,
 count: Int(csound.getKsmps())))
}

Note also that updateValuesToCsound is called beforeupdateValuesFromCsound` during each performance pass, with the Csound engine performance call in between the two.

The CsoundObjListener Protocol

The CsoundObjListener protocol allows objects in your program to be notified when Csound begins running, and when it completes running. The protocol definition from CsoundObj is:

@protocol CsoundObjListener <NSObject>
@optional
- (void)csoundObjStarted:(CsoundObj *)csoundObj;
- (void)csoundObjCompleted:(CsoundObj *)csoundObj;
@end

Note that there are no methods that an object is required to adopt in order to conform to this protocol. These methods simply allow an object to elect to be notified when Csound either begins, completes running, or both. Note that these methods are not called on the main thread, so any UI work must be explicitly run on the main thread. For example:

// Objective-C
- (void)viewDidLoad {
 [super viewDidLoad];
 [self.csound addListener:self];
}
- (void)csoundObjStarted:(CsoundObj *)csoundObj {
 [self.runningLabel performSelectorOnMainThread:@selector(setText:)
 withObject:@"Csound Running"
 waitUntilDone:NO];
}

// Swift
override func viewDidLoad() {
 super.viewDidLoad()
 csound.add(self)
}
func csoundObjCompleted(_ csoundObj: CsoundObj) {
 DispatchQueue.main.async { [unowned self] in
 self.runningLabel.text = "Csound Stopped"
 }
}

Console Output

Console output from Csound is handled via a callback. You can set the method that handles console info using CsoundObj’s setMessageCallbackSelector method, and passing in an appropriate selector, for instance:

// Objective-C
[self.csound setMessageCallbackSelector:@selector(printMessage:)];

// Swift
csound.setMessageCallbackSelector(#selector(printMessage(_:)))

An object of type NSValue will be passed in. This object is acting as a wrapper for a C struct of type Message. The definition for Message in CsoundObj.h is:

typedef struct {
 CSOUND *cs;
 int attr;
 const char *format;
 va_list valist;
} Message;

The two fields of interest to us for the purposes of console output are format and valist. The former is a format string, and the latter represents a list of arguments to match its format specifiers.

The process demonstrated in the code examples below can be described as:

	Declare an instance of a Message struct.

	Unwrap the NSValue to store its contained Message value at the address of this instance.

	Declare an empty C string, to act as a buffer.

	Use the vsnprintf function to populate the buffer with the formatted output string.

	Wrap this C string in an Objective-C NSString or Swift String.

// Objective-C
- (void)printMessage:(NSValue *)infoObj
 Message info;
 [infoObj getValue:&info];
 char message[1024];
 vsnprintf(message, 1024, info.format, info.valist);
 NSString *messageStr = [NSString stringWithFormat:@"%s", message];
 NSLog(@"%@", messageStr);
}

Note that in Swift, we have to create a CVaListPointer (equivalent to a va_list * in C) for use with the vsnprintf() function:

// Swift
func messageCallback(_ infoObj: NSValue) {
 var info = Message()
 infoObj.getValue(&info)
 let message = UnsafeMutablePointer<Int8>.allocate(capacity: 1024)
 let va_ptr: CVaListPointer = CVaListPointer(
 _fromUnsafeMutablePointer: &(info.valist)
)
 vsnprintf(message, 1024, info.format, va_ptr)
 let messageStr = String(cString: message)
 print(messageStr)
}

In both cases above, we are printing the resulting string objects to Xcode’s console. This can be very useful for finding and addressing issues that have to do with Csound or with a .csd file you might be using.

We could also pass the resulting string object around in our program; for example, we could insert the contents of this string object into a UITextView for a simulated Csound console output.

Csound-iOS and MIDI

The Csound iOS API provides two possible ways of passing MIDI information to Csound. CsoundObj can receive MIDI events from CoreMIDI directly. By default, this functionality is disabled, but setting CsoundObj’s midiInEnabled property to true (or YES on Objective-C) enables it. This must, however be done before Csound is run.

Note that you must also set the appropriate command-line flag in your csd, under CsOptions. For example, -M0. Additionally, the MIDI device must be connected before the application is started.

MidiWidgetsManager

The second way that is provided to communicate MIDI information to Csound is indirect, via the use of UI widgets and CsoundUI. In this case, the MidiWidgetsManager uses a MidiWidgetsWrapper to connect a MIDI CC to a UI object, and then CsoundUI can be used to connect this UI object’s value to a named channel in Csound. For instance:

// Objective-C
MidiWidgetsManager *widgetsManager = [[MidiWidgetsManager alloc] init];
[widgetsManager addSlider:self.cutoffSlider forControllerNumber:5];
[csoundUI addSlider:self.cutoffSlider forChannelName:@"cutoff"];
[widgetsManager openMidiIn];

// Swift
let widgetsManager = MidiWidgetsManager()
widgetsManager.add(cutoffSlider, forControllerNumber: 5)
csoundUI?.add(cutoffSlider, forChannelName: "cutoff")
widgetsManager.openMidiIn()

An advantage of this variant is that MIDI connections to the UI widgets are active even when Csound is not running, so visual feedback can still be provided, for example. At the time of writing, support is only built-in for UISliders.

Other Functionality

This section describes a few methods of CsoundObj that are potentially helpful for more complex applications.

getCsound

(CSOUND *)getCsound;

The getCsound method returns a pointer to a struct of type CSOUND, the underlying Csound instance in the C API that the iOS API wraps. Because the iOS API only wraps the most commonly needed functionality from the Csound C API, this method can be helpful for accessing it directly without needing to modify the Csound iOS API to do so.

Note that this returns an opaque pointer because the declaration of this struct type is not directly accessible. This should, however, still allow you to pass it into Csound C API functions in either Objective-C or Swift if you would like to access them.

getAudioUnit

(AudioUnit *)getAudioUnit;

The getAudioUnit method returns a pointer to a CsoundObj instance’s I/O AudioUnit, which provides audio input and output to Csound from iOS.

This can have several potential purposes. As a simple example, you can use the AudioOutputUnitStop() function with the returned value’s pointee to pause rendering, and AudioOutputUnitStart() to resume.

updateOrchestra

(void)updateOrchestra:(NSString *)orchestraString;

The updateOrchestra method allows you to supply a new Csound orchestra as a string.

Other

Additionally, getKsmps returns the current ksmps value, and getNumChannels returns the number of audio channels in use by the current Csound instance. These both act directly as wrappers to Csound C API functions.

II. How to Fully Integrate Csound into Apple's iOS CoreAudio

In the second part of this chapter we will study some strategies for best integration of Csound with CoreAudio, in order to aid the development of iOS applications. There are some important issues to be considered for a professional audio application, such as the native Inter-App Audio routing, buffer frame etc. We will examine in detail the relevant code (Csound and Objective-C) taken from few audio apps based on Csound. We will learn how to manage the buffer frame and sampling rate; how to draw a Waveform in CoreGraphics from a Csound GEN Routine; how to write a Csound GEN table and much more.

Getting Started

The development of professional audio applications involves to consider some important aspects of iOS in order to maximize the compatibility and versatility of the app.

The approach should focus on these five important points:

	Implement Background Audio

	Switch on/off your Audio Engine

	Implement Core MIDI

	Do not waste System Resources

	Set up the Sampling Rate and Buffer Frame according to applications running in the system.

The code for the User Interface (UI) is written in Objective-C, whilst the Csound API (i.e. Application Programming Interface) is written in C. This duality allows us to understand in detail the interaction between both. As we will see in the next section, the control unit is based on the callback mechanism rather than the pull mechanism.

No Objective-C code was deliberately written in the C audio callback, since it is not recommended as well it is not recommended to allocate/de-allocate memory.

Since often we will refer to the tutorials (XCode projects), it would be useful to have on hand the xCode environment. These files can be downloaded here.

Setup for an Audio App

In the first XCode project (01_csSetup) we configure a Single View Application to work with audio and Csound. The project dependencies are only libcsound.a and libsndfile.a with the header (.h) files and CsoundMIDI.h as well as CsoundMIDI.m.

The code of initializeAudio function will enable the input/output audio:

- (void)initializeAudio {

 /* Audio Session handler */
 AVAudioSession *session = [AVAudioSession sharedInstance];

 NSError *error = nil;
 BOOL success = NO;

 success = [session setCategory:AVAudioSessionCategoryPlayAndRecord
 withOptions:(
 AVAudioSessionCategoryOptionMixWithOthers |
 AVAudioSessionCategoryOptionDefaultToSpeaker)
 error:&error];

 success = [session setActive:YES error:&error];

 /* Sets Interruption Listner */
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(InterruptionListener:)
 name:AVAudioSessionInterruptionNotification
 object:session];

 AudioComponentDescription defaultOutputDescription;
 defaultOutputDescription.componentType = kAudioUnitType_Output;
 defaultOutputDescription.componentSubType = kAudioUnitSubType_RemoteIO;
 defaultOutputDescription.componentManufacturer =
 kAudioUnitManufacturer_Apple;
 defaultOutputDescription.componentFlags = 0;
 defaultOutputDescription.componentFlagsMask = 0;

 // Get the default playback output unit
 AudioComponent HALOutput =
 AudioComponentFindNext(NULL, &defaultOutputDescription);
 NSAssert(HALOutput, @"Can't find default output");

 // Create a new unit based on this that we will use for output
 err = AudioComponentInstanceNew(HALOutput, &csAUHAL);

 // Enable IO for recording
 UInt32 flag = 1;
 err = AudioUnitSetProperty(csAUHAL, kAudioOutputUnitProperty_EnableIO,
 kAudioUnitScope_Input, 1, &flag, sizeof(flag));
 // Enable IO for playback
 err = AudioUnitSetProperty(csAUHAL, kAudioOutputUnitProperty_EnableIO,
 kAudioUnitScope_Output, 0, &flag, sizeof(flag));

 err = AudioUnitInitialize(csAUHAL);

 /* AUDIOBUS and IAA */
 [self initializeAB_IAA];
}

This code is common to many audio applications, easily available online or from the Apple documentation. Basically, we setup the app as PlayAndRecord category, then we create the AudioUnit. The PlayAndRecord category allows receiving audio from the system and simultaneously produce audio.

IMPORTANT:

For proper operation with Audiobus (AB) and Inter-App Audio (IAA), we must instantiate and initialize one Audio Unit (AU) only once for the entire life cycle of the app. To destroy and recreate the AU would involve to require more memory (for each instance). If the app is connected to IAA or AB it will stop responding and we will experience unpredictable behavior, which may lead to an unexpected crash.

Actually there is no way to tell at runtime AB and / or IAA that the AU address has changed. The InitializeAudio function should be called only once, unlike the run/stop functions of Csound.

These aspects will become more clear in the following paragraphs.

Initialize Csound and Communicate with it

The AudioDSP.m class implements the entire audio structure and manages the user interface interaction with Csound. AudioDSP is a subclass of NSObject that is instantiated on the Main.storyboard. A reference to this class on the storyboard greatly facilitates connections between the GUI (IBOutlet and IBAction) and the DSP i.e. Csound.

As we will see in the next section, all links are established graphically with the Interface Builder.

The main CSOUND structure is allocated in the AudioDSP constructor and initializes the audio system. This approach foresees that the _cs (CSOUND*) class variable persists for the entire life cycle of the app. As mentioned, the initializeAudio function should be called only once.

- (instancetype)init {
 self = [super init];
 if (self) {

 // Creates an instance of Csound
 _cs = csoundCreate(NULL);

 // Setup CoreAudio
 [self initializeAudio];
 }
 return self;
}

Since we have the CSOUND structure allocated and the CoreAudio properly configured, we can manage Csound asynchronously.

The main purpose of this simple example is to study how the user interface (UI) interacts with Csound. All connections have been established and managed graphically through the Interface Builder.

The UISwitch object is connected with the toggleOnOff, which has the task to toggle on/off Csound in this way:

- (IBAction)toggleOnOff:(id)component {

 UISwitch *uiswitch = (UISwitch *)component;

 if (uiswitch.on) {

 NSString *tempFile =
 [[NSBundle mainBundle] pathForResource:@"test" ofType:@"csd"];

 [self stopCsound];
 [self startCsound:tempFile];

 } else {
 [self stopCsound];
 }
}

In the example the test.csd is performed which implements a simple sinusoidal oscillator. The frequency of the oscillator is controlled by the UISlider object. This is linked with the sliderAction callback.

As anticipated, the mechanism adopted is driven by events (callback). This means that the function associated with the event is called only when the user performs an action on the UI slider.

In this case the action is of type Value Changed. The Apple documentation concerning the UIControl framework should be consulted, for further clarification in this regard.

- (IBAction)sliderAction:(id)sender {

 UISlider *sld = sender;

 if (!_cs || !running)
 return;

 NSString *channelName = @"freq";
 float *value;
 csoundGetChannelPtr(
 _cs, &value,
 [channelName cStringUsingEncoding:NSASCIIStringEncoding],
 CSOUND_CONTROL_CHANNEL | CSOUND_INPUT_CHANNEL
);

 *value = (float)sld.value;
}

As we can see, we get the pointer through csoundGetChannelPtr, this is relative to incoming control signals. From the point of view of Csound, the signals in the input (CSOUND_INPUT_CHANNEL) are sampled from the software bus via chnget, while in the output (CSOUND_OUTPUT_CHANNEL) chnset is used.

The allocation is done by dereferencing the pointer in this way:

*value = (float) sld.value;

or

value[0] = (float) sld.value;

The channelName string freq is the reference text used by the chnget opcode in the instr 1 of the Csound Orchestra.

kfr chnget "freq"

Since the control architecture is based on the callback mechanism and therefore depends on the user actions, we must send all values when Csound starts. We can use Csound’s delegate:

-(void)csoundObjDidStart {
 [_freq sendActionsForControlEvents:UIControlEventAllEvents];
}

This operation must be repeated for all UI widgets in practice. Immediately after Csound is running we send an UIControlEventAllEvents message to all widgets. So we are sure that Csound receives properly the current state of the UI’s widgets values.

In this case _freq is the reference (IBOutlet) of the UISlider in the Main.storyboard.

Enabling Audiobus and Inter-App Audio

The last line of code in the initializeAudio function calls the initializeAB_IAA for initialize and configure the Inter-App Audio and Audiobus.

The XCode tutorials do not include the Audiobus SDK since it is covered by license, see the website for more information and to consult the official documentation here.

However, the existing code to Audiobus should ensure proper functioning after the inclusion of the library.

In the file AudioDSP.h there are two macros: AB and IAA. These are used to include or exclude the needed code. The first step is to configure the two AudioComponentDescriptions for the types: kAudioUnitType_RemoteInstrument and kAudioUnitType_RemoteEffect.

/* Create Sender and Filter ports */
AudioComponentDescription desc_instr = {
 kAudioUnitType_RemoteInstrument,
 'icso',
 'iyou', 0, 0
};

AudioComponentDescription desc_fx = {
 kAudioUnitType_RemoteEffect,
 'xcso',
 'xyou', 0, 0
};

This point is crucial because you have to enter the same information in the file Info.plist-

In the Info.plist (i.e. Information Property List), the Bundle display name key and Require background modes must absolutely be defined to enable the audio in the background.

The app must continue to play audio even when it is not in the foreground. Here we configure the Audio Components (i.e. AU).

typedef struct AudioComponentDescription {
 OSType componentType;
 OSType componentSubType;
 OSType componentManufacturer;
 UInt32 componentFlags;
 UInt32 componentFlagsMask;
} AudioComponentDescription;

As said, the AudioComponentDescription structure used for the configuration of the AU, must necessarily coincide in the Info.plist,

The structure fields (OSType) are of FourCharCode, so they must consist of four characters.

IMPORTANT: it is recommended to use different names for both componentSubType and componentManufacturer of each AudioComponent. In the example the characters ‘i’ and ‘x’ refer to Instrument and Fx.

Only for the first field (componentType) of the AudioComponentDescription structure we can use the enumerator

enum {
 kAudioUnitType_RemoteEffect = 'aurx',
 kAudioUnitType_RemoteGenerator = 'aurg',
 kAudioUnitType_RemoteInstrument = 'auri',
 kAudioUnitType_RemoteMusicEffect = 'aurm'
};

where auri identifies the Instrument (Instr) and aurx the effect (Fx), at which point the app will appear on the lists of the various IAA Host as Instr and Fx and in Audiobus as Sender or Receiver.

At this point we are able to:

	Perform Audio in the background

	Get IAA and AB support for input/output

	Toggle DSP (Csound) on and off

	Control Csound through the callback mechanism

	Record the output audio

In the following sections we will see how to manage the advanced settings for Csound’s ksmps, according to the system BufferFrame.

Buffer Frame vs ksmps

In IOS, the first audio app which is running (in foreground or in background), imposes its own Sampling Rate and BuffeFrame to the whole iOS (i.e. for all audio apps).

IOS allows power-of-two ​​BufferFrame values in the range 64, 128, 256, 512, 1024, etc …

It is not recommended to use values ​​bigger than 1024 or smaller than 64. A good compromise is 256, as suggests the default value of GarageBand and Other similar applications.

In the Csound language, the vector size (i.e. BufferFrame in the example) is expressed as ksmps. So it is necessary to manage appropriately the values of BufferFrame and ksmps.

There are three main possible solutions:

	Keep the ksmps static with a very low value, such as 32 or 64

	Dynamically manage the ksmps depending on BufferFrame

	BufferFrame and ksmps decorrelation

All three cases have advantages and disadvantages. In the first case the BufferFrame must be always >= ksmps, and in the second case we must implement a spartan workaround tp synchronize ksmps with BufferFrame. The third and more complex case requires a control at run-time on the audio callback and we must manage an accumulation buffer. Thanks to this, the BufferFrame can be bigger than ksmps or vice versa. However there are some limitations. In fact, this approach does not always lead to the benefits hoped for in terms of performance.

Static ksmps

To keep the ksmps static with a very low value, such as 32 or 64, we will set ksmps in the Csound Orchestra to this value. As mentioned, the BufferFrame of iOS is always greater or equal than 64. The operation is assured thanks to the for statement in the Csound_Render:

OSStatus Csound_Render(void *inRefCon,
 AudioUnitRenderActionFlags *ioActionFlags,
 const AudioTimeStamp *inTimeStamp,
 UInt32 dump,
 UInt32 inNumberFrames,
 AudioBufferList *ioData) {
 //…

 /* inNumberFrames => ksmps */
 for(int i = 0; i < (int)slices; ++i){
 ret = csoundPerformKsmps(cs);
 }

 //…
}

This C routine is called from the CoreAudio every inNumberFrames (i.e. BufferFrame). The ioData pointer contains inNumberFrames of audio samples incoming from the input (mic/line). Csound reads this data and returns ksmps processed samples.

When the inNumberFrames and ksmps are identical, we can simply copy out the processed buffer, this is done by calling the csoundPerformKsmps() procedure. Since that ksmps is less or equal to inNumberFrames, we need to call N slices the csoundPerformKsmps(). This is safe, as ksmps will in this situation never be greater than inNumberFrames.

Example:

ksmps = 64
inNumberFrames = 512

slices is calculated as follows:

int slices = inNumberFrames / csoundGetKsmps(cs);
slices is 8

In other words, every Csound_Render call involves eight sub-calls to csoundPerformKsmps(), for every sub-call we fill the ioData with ksmps samples.

Dynamic ksmps, Buffer Frame and Sampling Rate Synchronization

The ksmps value should be chosen according to the Csound Orchestra operating logic. If the Orchestra is particularly heavy in terms of k-rate operations, which however do not require low-latency, we can use higher values as 512 or 1024. This second case is adoptable for many apps developed so far. In fact, except in specific cases, it is always convenient to set the ksmps to the same value as the system’s BufferFrame.

The following steps are required to change sr and ksmps:

	Stop and Clean the Csound Object

	Replace the Orchestra Code in the .csd file with new sr and ksmps

	Initialize and Run the Csound Object with these new values

This is a workaround but it works properly; we just have to set placeholders in the Orchestra header.

<CsInstruments>
sr = 44100
ksmps = 512

;;;;SR;;;; //strings replaced from Objective-C
;;;;KSMPS;;;;

nchnls = 2
0dbfs = 1

…

The two univocal strings are the placeholders for sr and ksmps. They begin with the semicolon character so that Csound recognizes it as a comment. The following function in Objective-C looks for the placeholders in the myOrchestra.csd and replaces them with new sr and ksmps values.

- (void)csoundApplySrAndKsmpsSettings:(Float64)sr withBuffer:(Float64)ksmps
{

 NSString* pathAndName = [[[NSBundle mainBundle] resourcePath]
 stringByAppendingString:@"/myOrchestra.csd"];

 if ([[NSFileManager defaultManager] fileExistsAtPath:pathAndName]) {
 NSString* myString =
 [[NSString alloc] initWithContentsOfFile:pathAndName
 encoding:NSUTF8StringEncoding
 error:NULL];

 myString = [myString
 stringByReplacingOccurrencesOfString:@";;;;SR;;;;"
 withString:[NSString
 stringWithFormat:@"sr = %f", sr]];

 myString = [myString
 stringByReplacingOccurrencesOfString:@";;;;KSMPS;;;;"
 withString:[NSString
 stringWithFormat:@"ksmps = %f",
 ksmps]];

 NSString* pathAndNameRUN =
 [NSString stringWithFormat:@"%@dspRUN.csd", NSTemporaryDirectory()];

 NSError* error = nil;

 // save copy of dspRUN.csd in library directory
 [myString writeToFile:pathAndNameRUN
 atomically:NO
 encoding:NSUTF8StringEncoding
 error:&error];

 // Run Csound
 [self startCsound:pathAndNameRUN];

 } else
 NSLog(@"file %@ Does Not Exists At Path!!!", pathAndName);
}

The NSString pathAndName contains the file path of myOrchestra.csd in the Resources folder. This path is used to copy in myString the entire file (as NSString). Subsequently the stringByReplacingOccurrencesOfString method replaces the placeholders with the valid strings.

Since iOS does not allow to edit files in the application Resources folder (i.e. pathAndName), we need to save the modified version in the new file dspRUN.csd that is saved in the temporary folder (i.e. pathAndNameRUN). This is achieved through the writeToFile method.

As a final step it is necessary to re-initialise Csound by calling the runCsound function which runs Csound and sends the appropriate values of sr and ksmps.

###BufferFrame and ksmps decorrelation

As seen the second case is a good compromise, however it is not suitable in some particular conditions. So far we have only considered the aspect in which the app works on the main audio thread, with a BufferFrame imposed by iOS. But there are special cases in which the app is called to work on a different thread and with a different BufferFrame.

For instance the freeze track feature implemented by major Host IAA apps (such as Cubasis, Auria etc …) bypasses the current setup of iOS and imposes an arbitrary BufferFrame (usually 64).

Since Csound is still configured with the iOS BufferFrame (the main audio thread), but during the freeze track process the Csound_Perform routine is called with a different BufferFrame, Csound cannot work properly.

In order to solve this limitation we need a run-time control on the audio callback and handle the exception.

On the Csound_Render we will evaluate the condition for which slices is < 1:

OSStatus Csound_Perform(void *inRefCon,
 AudioUnitRenderActionFlags *ioActionFlags,
 const AudioTimeStamp *inTimeStamp, UInt32 dump,
 UInt32 inNumberFrames, AudioBufferList *ioData) {

 //…

 /* CSOUND PERFORM */
 if (slices < 1.0) {
 /* inNumberFrames < ksmps */
 Csound_Perform_DOWNSAMP(inRefCon, ioActionFlags, inTimeStamp, dump,
 inNumberFrames, ioData);
 } else {
 /* inNumberFrames => ksmps */
 for (int i = 0; i < (int)slices; ++i) {
 ret = csoundPerformKsmps(cs);
 }
 }

 //…
}

Please note that slices is calculated as follows:

int slices = inNumberFrames / csoundGetKsmps(cs);

Every time the ksmps (for some reason) is greater than BufferFrame,we will perform the Csound_Perform_DOWNSAMP procedure.

// Called when inNumberFrames < ksmps
OSStatus Csound_Perform_DOWNSAMP(
 void *inRefCon,
 AudioUnitRenderActionFlags *ioActionFlags,
 const AudioTimeStamp *inTimeStamp, UInt32 dump,
 UInt32 inNumberFrames,
 AudioBufferList *ioData
) {
 AudioDSP *cdata = (__bridge AudioDSP *)inRefCon;

 int ret = cdata->ret, nchnls = cdata->nchnls;
 CSOUND *cs = cdata->_cs;

 MYFLT *spin = csoundGetSpin(cs);
 MYFLT *spout = csoundGetSpout(cs);
 MYFLT *buffer;

 /* DOWNSAMPLING FACTOR */
 int UNSAMPLING = csoundGetKsmps(cs) / inNumberFrames;

 if (cdata->counter < UNSAMPLING - 1) {
 cdata->counter++;
 } else {
 cdata->counter = 0;

 /* CSOUND PROCESS KSMPS */
 if (!cdata->ret) {
 /* PERFORM CSOUND */
 cdata->ret = csoundPerformKsmps(cs);
 } else {
 cdata->running = false;
 }
 }

 /* INCREMENTS DOWNSAMPLING COUNTER */
 int slice_downsamp = inNumberFrames * cdata->counter;

 /* COPY IN CSOUND SYSTEM SLICE INPUT */
 for (int k = 0; k < nchnls; ++k) {
 buffer = (MYFLT *)ioData->mBuffers[k].mData;
 for (int j = 0; j < inNumberFrames; ++j) {
 spin[(j + slice_downsamp) * nchnls + k] = buffer[j];
 }
 }

 /* COPY OUT CSOUND KSMPS SLICE */
 for (int k = 0; k < nchnls; ++k) {
 buffer = (MYFLT *)ioData->mBuffers[k].mData;
 for (int j = 0; j < inNumberFrames; ++j) {
 buffer[j] = (MYFLT)spout[(j + slice_downsamp) * nchnls + k];
 }
 }

 cdata->ret = ret;
 return noErr;
}

As mentioned we need a buffer for the accumulation. It is, however, not necessary to create a new one since you can directly use Csound’s spin and spout buffer.

First we have to evaluate what is the level of under-sampling, for example:

Csound ksmps = 512
iOS inNumberFrames = 64

/* DOWNSAMPLING FACTOR */
int UNSAMPLING = csoundGetKsmps(cs)/inNumberFrames;

UNSAMPLING is 8

This value represents the required steps to accumulate the input signal in spin for every call of csoundPerformKsmps().

if (cdata->counter < UNSAMPLING-1) {
 cdata->counter++;
}
else {
 cdata->counter = 0;

 /* CSOUND PROCESS KSMPS */
 if(!cdata->ret) {
 cdata->ret = csoundPerformKsmps(cs);
 }
}

The Csound_Perform_DOWNSAMP routine is called by iOS every 64 samples, while we must call csoundPerformKsmps() after 512 samples. This means we need to skip eight times (i.e. UNSAMPLING) until we have collected the input buffer.

From another point of view, before calling csoundPerformKsmps() we must accumulate eight inNumberFrames in spin, and for every call of Csound_Perform_DOWNSAMP we must return inNumberFrames from spout.

In the next example, the iOS audio is in buffer which is a pointer of the ioData structure.

/* INCREMENTS DOWNSAMPLING COUNTER */
int slice_downsamp = inNumberFrames * cdata->counter;

/* COPY IN CSOUND SYSTEM SLICE INPUT */
for (int k = 0; k < nchnls; ++k){
 buffer = (MYFLT *) ioData->mBuffers[k].mData;
 for(int j = 0; j < inNumberFrames; ++j){
 spin[(j+slice_downsamp)*nchnls+k] = buffer[j];
 }
}

/* COPY OUT CSOUND KSMPS SLICE */
for (int k = 0; k < nchnls; ++k) {
 buffer = (MYFLT *) ioData->mBuffers[k].mData;
 for(int j = 0; j < inNumberFrames; ++j) {
 buffer[j] = (MYFLT) spout[(j+slice_downsamp)*nchnls+k];
 }
}

Ignoring the implementation details regarding the de-interlacing of the audio, we can focus on the slice_downsamp which serves as offset-index for the arrays spin and spout.

The implementation of both second and third cases guarantees that the app works properly in every situation.

Plot a Waveform

In this section we will see a more complex example to access memory of Csound and display the contents on a UIView.

The waveDrawView class interacts with the waveLoopPointsView, the loopoints allow us to select a portion of the file via the zoom on the waveform (pinch in / out). These values (loopoints) are managed by Csound which ensures the correct reading of the file and returns the normalized value of the instantaneous phase of reading.

The two classes are instantiated in Main.storyboard. Please note the hierarchy that must be respected for the setup of other projects as well as the three UIView must have the same size (frame) and cannot be dynamically resized.

In the score of the file csound_waveform.csd, two GEN Routines are declared to load WAV files in memory:

f2 0 0 1 "TimeAgo.wav" 0 0 1
f3 0 0 1 "Density_Sample08.wav" 0 0 1

In order to access the audio files in the app Resources folder, we need to setup some environment variables for Csound. This is done in the runCsound function. Here we set the SFDIR (Sound File Directory) and the SADIR (Sound analysis directory):

// Set Environment Sound Files Dir
NSString *resourcesPath = [[NSBundle mainBundle] resourcePath];
NSString *envFlag = @"--env:SFDIR+=";

char *SFDIR = (char *)[[envFlag stringByAppendingString:resourcesPath]
 cStringUsingEncoding:NSASCIIStringEncoding];

envFlag = @"--env:SADIR+=";
char *SADIR = (char *)[[envFlag stringByAppendingString:resourcesPath]
 cStringUsingEncoding:NSASCIIStringEncoding];

char *argv[4] = {
 "csound", SFDIR, SADIR,
 (char *)[csdFilePath cStringUsingEncoding:NSASCIIStringEncoding]};

ret = csoundCompile(_cs, 4, argv);

The interaction between Csound and the UI is two-way, the class method drawWaveForm draws the contents of the genNum.

[waveView drawWaveFromCsoundGen:_cs genNumber:genNum];

After calling this method, we need to enable an NSTimer object in order to read continuosly (pull) the phase value returned by Csound. Please examine the loadSample_1 function code for insights.

The timer is disabled when the DSP is switched off, in the timer-callback we get the pointer, this time from CSOUND_OUTPUT_CHANNEL, finally we use this value to synchronize the graphics cursor on the waveform (scrub) in the GUI.

- (void)updateScrubPositionFromTimer {

 if (!running) return;

 MYFLT* channelPtr_file_position = nil;
 csoundGetChannelPtr(_cs, &channelPtr_file_position,
 [@"file_position_from_csound"
 cStringUsingEncoding:NSASCIIStringEncoding],
 CSOUND_CONTROL_CHANNEL | CSOUND_OUTPUT_CHANNEL);

 if (channelPtr_file_position) {
 [waveView updateScrubPosition:*channelPtr_file_position];
 }
}

In the Orchestra we find the corresponding code for writing in the software bus.

chnset kfilposphas, "file_position_from_csound"

Write into a Csound GEN table

We already have seen how to read from the Csound’s GEN memory. Now we will focus on the write operation with two possible ways.

The goal is to modify a table in realtime while being read (played) by an oscillator LUT (i.e. look-up table). A Pad XY, to the left in the UI, manages the interpolation on the four prototypes and, to the right of the interface, a 16-slider surface controls the harmonic content of a wave.

Concerning the first example (pad morph), the waveform interpolations are implemented in the Orchestra file and performed by Csound. The UI communicates with Csound, by activating an instrument (instr 53) through a score message. Instead, in the second example (16-slider surface) the code is implemented in the AudioDSP.m file and, precisely, in the didValueChanged delegate. The architecture of this second example is based on addArm procedure that write in a temporary array. The resulting waveform is then copied to the GEN-table, via the csoundTableCopyIn API.

In the first example, instr 53 is activated via a score message for every action on the pad, this is performed in ui_wavesMorphPad:

NSString* score = [NSString stringWithFormat:
 @"i53 0 %f %f %f",
 UPDATE_RES,
 pad.xValue,
 pad.yValue];

csoundInputMessage(_cs, [score cStringUsingEncoding:NSASCIIStringEncoding]);

The instr 53 is kept active for UPDATE_RES sec (0.1), the maxalloc opcode limits the number of simultaneous instances (notes). Thus, any score events which fall inside UPDATE_RES time, are ignored.

maxalloc 53, 1 ;iPad UI Waveforms morphing only 1 instance

This results in a sub-sampling of Csound’s instr 53, compared to the UI pad-callback. The waveform display process is done by the Waveview class, it is a simplified version of the WaveDrawView class, introduced in the tutorial (04_plotWaveForm), that does not deserve particular investigation. As mentioned, the waveforms’s interpolations are performed by Csound, followed by the instr 53 code:

tableimix giWaveTMP1, 0, giWaveSize, giSine, \
 0, 1.-p4, giTri, 0, p4
tableimix giWaveTMP2, 0, giWaveSize, giSawSmooth, \
 0, 1.-p4, giSquareSmooth, 0, p4
tableimix giWaveMORPH, 0, giWaveSize, giWaveTMP2, \
 0, 1.-p5, giWaveTMP1, 0, p5

chnset giWaveMORPH , "wave_func_table"

The p4 and p5 p-fields are the XY pad axes used as weights for the three vector-interpolations which are required. The tablemix opcode mixes two tables with different weights into the giWaveTMP1 destination table. In this case we interpolate a Sine Wave (i.e. giSine) with a triangular (i.e. giTri), then in the second line between giSawSmooth and giSquareSmooth, mixing the result in giWaveTMP2. At the end of the process, giWaveMORPH contains the interpolated values of the two giWaveTMP1 and giWaveTMP2 arrays.

The global ftgen-tables, deliberately have been declared with the first argument set to zero. This means that the GEN-table number is assigned dynamically from Csound at compile time. Since we do not know the number assigned, we must return the number of the table through chnset at runtime.

In the AudioDSP.m class is the implementation code of the second example.

The APE_MULTISLIDER class returns, through its own delegate method didValueChanged, an array with the indexed values of the sliders. These are used as amplitude-weights for the generation of the harmonic additive waveform. Let us leave out the code about the wave’s amplitude normalization and we focus on this code:

MYFLT *tableNumFloat;
csoundGetChannelPtr(_cs, &tableNumFloat,
 [@"harm_func_table"
 cStringUsingEncoding:NSASCIIStringEncoding],
 CSOUND_CONTROL_CHANNEL | CSOUND_INPUT_CHANNEL);

/* Contain the table num (i.e. giWaveHARM) */
int tableNum = (int)*tableNumFloat;

/* Contain the table (giWaveHARM) Pointer */
MYFLT *tablePtr;
int tableLength = csoundGetTable(_cs, &tablePtr, tableNum);

/* Is invalid? Return */
if (tableLength <= 0 || tableNum <= 0 || !tablePtr)
 return;

/* Clear temporary array */
memset(srcHarmonic, 0, tableLength * sizeof(MYFLT));

/* Generate an additive sinusoidal waveform with 16 harmonics */
for (int i = 0; i < maxnum; ++i) {
 [self appendHarm:i + 1
 Amp:(powf(value[i], 2.0)) * average
 SIZE:tableLength
 DEST:srcHarmonic];
}

/* Write array in the Csound Gen Memory (i.e. giWaveHARM) */
csoundTableCopyIn(_cs, tableNum, srcHarmonic);

This function also can be sub-sampled by de-commenting the DOWNSAMP_FUNC macro. This code is purely for purpose of example as it can be significantly optimized, in the case of vectors’s operations, the Apple vDSP framework could be an excellent solution.

Optimize performance and add a custom opcode

In this final section we will understand how to use the programming environment to implement an ocpode directly in the AudioDSP class and add it to the list of Csound opcodes without re-compiling Csound. This is fundamental in order to optimize some audio processing, in particular heavy ones regarding CPU cost. In fact, outside of Csound it will be possible to use a series of instruments such as the highly powerful vDSP of Apple, especially for the implementation of FFT routines.

The steps involved are three:

	add custom opcode to the Csound opcode list

	declare opcode structure

	implement functions

The first step must be done in the runCsound process, before calling csoundCompile.

csoundAppendOpcode(
 cs, "MOOGLADDER", sizeof(MOOGLADDER_OPCODE),
 0, 3, "a", "akk", iMOOGLADDER, kMOOGLADDER, aMOOGLADDER
);

This appends an opcode implemented by external software to Csound’s internal opcode list. The opcode list is extended by one slot, and the parameters are copied into the new slot.

Basically, what we have done is declaring three pointers to functions (iMOOGLADDER, kMOOGLADDER and aMOOGLADDER) implemented in the class AudioDSP.

The second step is to declare the data structure used by the opcode in the AudioDSP.h. So the header file csdl.h must be included according to the documentation:

Plugin opcodes can extend the functionality of Csound, providing new functionality that is exposed as opcodes in the Csound language. Plugins need to include this header file only, as it will bring all necessary data structures to interact with Csound. It is not necessary for plugins to link to the libcsound library, as plugin opcodes will always receive a CSOUND* pointer (to the CSOUND_struct) which contains all the API functions inside.This is the basic template for a plugin opcode. See the manual for further details on accepted types and function call rates. The use of the LINKAGE macro is highly recommended, rather than calling the functions directly.

typedef struct {
 OPDS h;
 MYFLT *ar, *asig, *kcutoff, *kresonance;
 //…
} MOOGLADDER_OPCODE;

Finally, the implementation of the three required functions in AudioDSP.m:

int iMOOGLADDER(CSOUND *csound, void *p_) {
 //…
}

int kMOOGLADDER(CSOUND *csound, void *p_)
{
 //…
}

int aMOOGLADDER(CSOUND *csound, void *p_)
{
 //…
}

In the Orchestra code, we can call MOOGLADDER in the same way as the native opcodes compiled:

aOutput MOOGLADDER aInput, kcutoff, kres

The MOOGLADDER is a simplified and optimized implementation of the opcode moogladder by Victor Lazzarini. The iVCS3 app uses this mechanism for the Envelope and Filter implementationthat also allows a fine control of the cutoff.

Conclusion

	The descriptions here describe the essential audio integrations in iOS. Some of the topics will be soon out of date, like the Inter-Audio App (IAA) which is deprecated form Apple since iOS 13, or the Audiobus which is replaced as well from the modern AUv3 technology.

	This approach cover the inalienable features for the audio integration using Csound for professional software audio applications and presents some workarounds to solve some intrinsic idiosyncratic issue related to the Csound world.

	A separate study deserves the integration of Csound for the Av3 architecture, meanwhile in the tutorial repository you can download an Xcode project template using Csound as audio engine for an AUv3 plugins extension. The template is self-explanatory.

	All the tutorials are using the latest Csound 6.14 compiled for Apple Catalyst SDK it means that the app can runs as universal in both iOS and macOS (since Catalina >= 10.15).

Links

Csound for iOS (look for the iOS-zip file)

Online Tutorial

apeSoft

Audiobus

A Tasty

The Open Music App Collaboration Manifesto

 ch067.xhtml

12 E. CSOUND ON ANDROID

There is no essential difference between running Csound on a computer and running it on a smartphone. Csound has been available on the Android platform since 2012 (Csound 5.19), thanks to the work of Victor Lazzarini and Steven Yi. Csound 6 was ported to Android, and enhanced, by Michael Gogins and Steven Yi in the summer of 2013.

The following packages are available for Android:

	The CsoundAndroid library, which is intended to be used by developers for creating apps based on Csound. This is available for download at Csound’s download page.

	The Csound for Android app, which is a self-contained environment for creating, editing, debugging, and performing Csound pieces on Android. The app includes a number of built-in example pieces. This is available from the Google Play store, or for download from the csound-extended repository releases page.

For more information about these packages, download them and consult the documentation contained therein.

This chapter is about the Csound for Android app.

The Csound for Android app

The Csound for Android app permits the user, on any Android device that is powerful enough, including most tablets and the most powerful smartphones, to do most things that can be done with Csound on any other platform such as OS X, Windows, or Linux. This includes creating Csound pieces, editing them in the built-in text editor, debugging them, and performing them, either in real time to audio output or to a soundfile for later playback.

The app has a built-in, pre-configured user interface with nine sliders, five push buttons, one trackpad, and a 3-dimensional accelerometer that are pre-assigned to control channels which can be read using Csound’s chnget opcode.

The app also contains an embedded Web browser, based on WebKit, that implements most features of the HTML5 standard. This embedded browser can run Csound pieces written as .html files. In addition, the app can render HTML and JavaScript code that is contained in an optional <html> element of a regular .csd file.

In both cases, the JavaScript context of the Web page will contain a global Csound object with a JavaScript interface that implements useful functions of the Csound API. This can be used to control Csound from JavaScript, handle events from HTML user interfaces, generate scores, and do many other things. For a more complete introduction to the use of HTML with Csound, see 12 G.

The app has some limitations and missing features compared with the longer-established platforms:

	There is no real-time MIDI input or output.

	Audio input is not always accurately synchronized with audio output.

	Some plugin opcodes are missing, including most opcodes involved with using other plugin formats or inter-process communications.

However, some of the more useful plugins are indeed available on Android:

	The signal flow graph opcodes for routing audio from instruments to effects, etc.

	The FluidSynth opcodes for playing SoundFonts.

	The Open Sound Control (OSC) opcodes.

	The libstdutil library, which enables Csound to be used for various time/frequency analysis and resynthesis tasks, and for other purposes.

Installing the App

There are several ways to install the Csound for Android app. You can download it using your device, or you can download it to a computer and transfer it to your device. These methods are presented below.

Google Play Store

The most straightforward way to install the Csound for Android app is to get it from the Google Play Store.

Install from Another Source

Preparing Your Device

Using the Csound for Android app is similar to using an application on a regular computer. You need to be able to browse the file system.

There are a number of free and paid apps that give users the ability to browse the Linux file system that exists on all Android devices. If you don’t already have such a utility, you should install a file browser that provides access to as much as possible of the file system on your device, including system storage and external store such as an SD card. The free AndroZip app can do this, for instance.

If you render soundfiles, they take up a lot of space. For example, CD-quality stereo soundfiles (44.1 KHz, 16 bit) take up about 1 megabytes per minute of sound. Higher quality or more channels take up even more room. But even without extra storage, a modern smartphone should have gigabytes, thousands of megabytes, of free storage. This is actually enough to make an entire album of pieces.

On most devices, installing extra storage is easy and not very expensive. Obtain the largest possible SD card, if your device supports them. This will vastly expand the amount of available space, up to 32 or 64 gigabytes or even more.

Download to Device

To download the Csound for Android app to your device, go online using Google Search or a Web browser. You can find the application package file, CsoundApplication-release.apk, on the csound-extended releases page (you may first have to allow your Android device to install an app which is not in Google Play).

Click on the filename to download the package. The download will happen in the background. You can then go to the notifications bar of your device and click on the downloaded file. You will be presented with one or more options for how to install it. The installer will ask for certain permissions, which you need to grant.

Transfer from a Computer

It’s also easy to download the CsoundApplication-release.apk file to a personal computer. Once you have downloaded the file from GitHub, connect your device to the computer with a USB cable. The file system of the device should then automatically be mounted on the file system of the computer. Find the CsoundApplication-release.apk in the computer’s download directory, and copy the CsoundApplication-release.apk file. Find your device’s download directory, and paste the CsoundApplication-release.apk file there.

Then you will need to use a file browser that is actually on your device, such as AndroZip. Browse to your Download directory, select the CsoundApplication-release.apk file, and you should be presented with a choice of actions. Select the Install action. The installer will ask for certain permissions, which you should give.

User Interface

Tabs

The Csound for Android app has a tabbed user interface. The tabs include:

EDITOR – Built-in text editor for .csd and .html files.

MESSAGES – Displays runtime messages from Csound in a scrolling display.

HTML – Displays the Web page specified by HTML code in the piece, may include interactive widgets, 3-dimensional graphics, etc., etc.

WIDGETS – Displays built-in widgets bound to control channels with predefined names.

HELP – Displays the online Csound Reference Manual in an embedded Web browser. ABOUT – Displays the Csound home page in an embedded Web browser.

Main Menu

The app also has a top-level menu with the following commands:

NEW… creates a blank template CSD file in the root directory of the user’s storage for the user to edit. The CSD file will be remembered and performed by Csound.

OPEN… – opens an existing CSD file in the root directory of the user’s storage. The user’s storage filesystem can be navigated to find other files.

SAVE – saves the current contents of the editor to its file.

RUN/STOP – if a CSD file has been loaded, pushing the button starts running Csound; if Csound is running, pushing the button stops Csound. If the <CsOptions> element of the CSD file contains -odac, Csound’s audio output will go to the device audio output. If the element contains -osoundfilename, Csound's audio output will go to the file soundfilename, which should be a valid Linux pathname in the user’s storage filesystem.

Save as … – saves the current contents of the editor to a new file.

Examples – shows a number of example pieces that may be loaded.

User guide – a minimal guide to setting up and using the app.

Privacy policy – presents the Csound for Android app’s privacy policy.

The widgets are assigned control channel names slider1 through slider9, butt1 through butt5, trackpad.x, and trackpad.y. In addition, the accelerometer on the Android device is available as accelerometerX, accelerometerY, and accelerometerZ.

The values of these widgets are normalized between 0 and 1, and can be read into Csound during performance using the chnget opcode, like this:

kslider1_value chnget "slider1"

The area below the trackpad prints messages output by Csound as it runs.

Settings Menu

The Settings menu on your device offers the following choices:

Audio driver – selects an Automatic choice of the optimal audio driver for your device (this is the default), the older OpenSL ES driver which supports both audio input and audio output, and the newer AAudio driver that provides lower audio output latency on Oreo or later.

Plugins – an (additional) directory for plugin opcodes. Output – overrides the default soundfile output directory. Samples – overrides the default directory from which load sound samples. Analysis – overrides the default directory from which to load analysis files. Include – overrides the default directory from which to load Csound #include files.

These settings are not required, but they can make using Csound easier and faster to use.

Loading and Performing a Piece

Example Pieces

From the app’s menu, select the Examples command, then select one of the listed examples, for example Xanadu by Joseph Kung. You may then click on the RUN button to perform the example, or the EDITOR tab to view the code for the piece. If you want to experiment with the piece, you can use the Save as… command to save a copy on your device’s file system under a different name. You can then edit the piece and save your changes.

Running an Existing Piece

If you have access to a mixer and monitor speakers, or even a home stereo system, or even a boom box, you can hook up your device’s headphone jack to your sound system with an adapter cable. Most devices have reasonably high quality audio playback capabilities, so this can work quite well.

Just to prove that everything is working, start the Csound for Android app. Go to the app menu, select the Examples item, select the Xanadu example, and it will be loaded into Csound. Then click on the RUN command. Its name should change to STOP, and Csound’s runtime messages should begin to scroll down the MESSAGES tab. At the same time, you should hear the piece play. You can stop the performance at any time by selecting the STOP command, or you can let the performance complete on its own.

That’s all there is to it. You can scroll up and down in the messages pane if you need to find a particular message, such as an error or warning.

If you want to look at the text of the piece, or edit it, select the Edit button. If you have installed Jota, that editor should open with the text of the piece, which you can save, or not. You can edit the piece with the this editor, and any changes you make and save will be performed the next time you start the piece.

Creating a New Piece

This example will take you through the process of creating a new Csound piece, step by step. Obviously, this piece is not going to reveal anything like the full power of Csound. It is only intended to get you to the point of being able to create, edit, and run a Csound piece that will actually make sound on your Android device – from scratch.

Run the Csound for Android app and select the NEW… command. You should be presented with an file dialog asking you for a filename for your piece. Type in toot.csd, and select the SAVE button. The file will be stored in the root directory of your user storage on your device. You can save the file to another place if you like.

The text editor should open with a template CSD file. Your job is to fill out this template to hear something.

Create a blank line between <CsOptions> and </CsOptions>, and type -odac -d -m3. This means send audio to the real-time output (-odac), do not display any function tables (-d), and log some informative messages during Csound’s performance (-m3).

Create a blank line between <CsInstruments> and </CsInstruments> and type the following text:

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1
instr 1
 asignal poscil 0.2, 440
 out asignal
endin

This is just about the simplest possible Csound orchestra. The orchestra header specifies an audio signal sampling rate of 44,100 frames per second, with 32 audio frames per control signal sample, and one channel of audio output. The instrument is just a simple sine oscillator. It plays a tone at concert A.

Create a blank line between <CsScore> and </CsScore> and type:

i1 0 5

This means play instrument 1 starting at time 0 for 5 seconds.

Select the app’s SAVE button.

Select the Csound app’s RUN button. You should hear a loud sine tone for 5 seconds. If you don’t hear anything, perhaps your device doesn’t support audio at 44100 Hertz, so try sr = 48000 instead.

If you want to save your audio output to a soundfile named test.wav, change -odac above to, for example, -o/storage/emulated/0/Music/test.wav. Android is fussy about writing to device storage, so you may need to use exactly the directory printed in the MESSAGES tab when the app starts.

That’s it!

Using the Widgets

This section shows how to use the built-in widgets of the Csound for Android app for controlling Csound in performance. For instructions on how to use the <html> element of the CSD file to create custom user interfaces, see the Csound and HTML chapter of this book.

The Csound for Android app provides access to a set of predefined on-screen widgets, as well as to the accelerometer on the device. All of these controllers are permanently assigned to pre-defined control channels with pre-defined names, and mapped to a pre-defined range of values, from 0 to 1.

You should be able to cut and paste this code into your own pieces without many changes.

The first step is to declare one global variable for each of the control channels, with the same name as the control channel, at the top of the orchestra header, initialized to a value of zero:

gkslider1 init 0
gkslider2 init 0
gkslider3 init 0
gkslider4 init 0
gkslider5 init 0
gkslider6 init 0
gkslider7 init 0
gkslider8 init 0
gkslider9 init 0
gkbutt1 init 0
gkbutt2 init 0
gkbutt3 init 0
gkbutt4 init 0
gkbutt5 init 0
gktrackpadx init 0
gktrackpady init 0
gkaccelerometerx init 0
gkaccelerometery init 0
gkaccelerometerz init 0

Then write an always-on instrument that reads each of these control channels into each of those global variables. At the top of the orchestra header:

alwayson "Controls"

As the next to last instrument in your orchestra:

instr Controls
 gkslider1 chnget "slider1"
 gkslider2 chnget "slider2"
 gkslider3 chnget "slider3"
 gkslider4 chnget "slider4"
 gkslider5 chnget "slider5"
 gkslider6 chnget "slider6"
 gkslider7 chnget "slider7"
 gkslider8 chnget "slider8"
 gkslider9 chnget "slider9"
 gkbutt1 chnget "butt1"
 gkbutt2 chnget "butt2"
 gkbutt3 chnget "butt3"
 gkbutt4 chnget "butt4"
 gkbutt5 chnget "butt5"
 gktrackpadx chnget "trackpad.x"
 gktrackpady chnget "trackpad.y"
 gkaccelerometerx chnget "accelerometerX"
 gkaccelerometery chnget "accelerometerY"
 gkaccelerometerz chnget "accelerometerZ"
endin

So far, everything is common to all pieces. Now, for each specific piece and specific set of instruments, write another always-on instrument that will map the controller values to the names and ranges required for your actual instruments. This code, in addition, can make use of the peculiar button widgets, which only signal changes of state and do not report continuously whether they are on or off. These examples are from Gogins/Drone-IV.csd.

At the top of the orchestra header:

alwayson "VariablesForControls"

As the very last instrument in your orchestra:

a instr VariablesForControls
 if gkslider1 > 0 then
 gkFirstHarmonic = gkslider1 * 2
 gkgrainDensity = gkslider1 * 400
 gkratio2 = gkslider1 ;1/3
 endif
 if gkslider2 > 0 then
 gkDistortFactor = gkslider2 * 2
 gkgrainDuration = 0.005 + gkslider2 / 2
 gkindex1 = gkslider2 * 4
 endif
 if gkslider3 > 0 then
 gkVolume = gkslider3 * 5
 gkgrainAmplitudeRange = gkslider3 * 300
 gkindex2 = gkslider3 ;0.0125
 endif
 if gkslider4 > 0 then
 gkgrainFrequencyRange = gkslider4 / 10
 endif
 if gktrackpady > 0 then
 gkDelayModulation = gktrackpady * 2
 ; gkGain = gktrackpady * 2 - 1
 endif
 if gktrackpadx > 0 then
 gkReverbFeedback = (3/4) + (gktrackpadx / 4)
 ; gkCenterHz = 100 + gktrackpadx * 3000
 endif
 kbutt1 trigger gkbutt1, .5, 0
 if kbutt1 > 0 then
 gkbritels = gkbritels / 1.5
 gkbritehs = gkbritehs / 1.5
 ; gkQ = gkQ / 2
 endif
 kbutt2 trigger gkbutt2, .5, 0
 if kbutt2 > 0 then
 gkbritels = gkbritels * 1.5
 gkbritehs = gkbritehs * 1.5
 ; gkQ = gkQ * 2
 endif
 endin

Now, the controllers are re-mapped to sensible ranges, and have names that make sense for your instruments. They can be used as follows. Note particularly that, just above the instrument definition, in other words actually in the orchestra header, these global variables are initialized with values that will work in performance, in case the user does not set up the widgets in appropriate positions before starting Csound. This is necessary because the widgets in the Csound for Android app, unlike say the widgets in CsoundQt, do not “remember” their positions and values from performance to performance.

gkratio1 init 1
gkratio2 init 1/3
gkindex1 init 1
gkindex2 init 0.0125
instr Phaser
 insno = p1
 istart = p2
 iduration = p3
 ikey = p4
 ivelocity = p5
 iphase = p6
 ipan = p7
 iamp = ampdb(ivelocity) * 8
 iattack = gioverlap
 idecay = gioverlap
 isustain = p3 - gioverlap
 p3 = iattack + isustain + idecay
 kenvelope transeg 0.0, iattack / 2.0, 1.5, iamp / 2.0, iattack / 2.0,
 -1.5, iamp, isustain, 0.0, iamp, idecay / 2.0, 1.5, iamp / 2.0,
 idecay / 2.0, -1.5, 0
 ihertz = cpsmidinn(ikey)
 print insno, istart, iduration, ikey, ihertz, ivelocity, iamp, iphase, ipan
 isine ftgenonce 0,0,65536,10,1
 khertz = ihertz
 ifunction1 = isine
 ifunction2 = isine
 a1,a2 crosspm gkratio1, gkratio2, gkindex1, gkindex2,
 khertz, ifunction1, ifunction2
 aleft, aright pan2 a1+a2, ipan
 adamping linseg 0, 0.03, 1, p3 - 0.1, 1, 0.07, 0
 aleft = adamping * aleft * kenvelope
 aright = adamping * aright * kenvelope
 outleta "outleft", aleft
 outleta "outright", aright
endin

 ch068.xhtml

12 F. CSOUND AND HASKELL

Csound-expression

Csound-expression is a framework for creation of computer music. It is a Haskell library to ease the use of Csound. It generates Csound files out of Haskell code.

With the help of the library Csound instruments can be created on the fly. A few lines in the interpreter is enough to get cool sound. Some of the features of the library are heavily inspired by reactive programming. Instruments can be evoked with event streams. Event streams can be combined in the manner of reactive programming. The GUI-widgets are producing the event streams as control messages. Moreover with Haskell all standard types and functions like lists, maps and trees can be used. By this, code and data can be organized easily.

One of the great features that comes with the library is a big collection of solid patches which are predefined synthesizers with high quality sound. They are provided with the library csound-catalog.

Csound-expression is an open source library. It’s available on Hackage (the main base of Haskell projects).

Key principles

Here is an overview of the features and principles:

	Keep it simple and compact.

	Support for interactive music coding. We can create our sounds in the REPL. So we can chat with our audio engine and can quickly test ideas. It greatly speeds up development comparing to traditional compile-listen style.

	With the library we can create our own libraries. We can create a palette of instruments and use it as a library. It means we can just import the instruments and there is no need for copy and paste and worry for collision of names while pasting. In fact there is a library on hackage that is called csound-catalog. It defines great high quality instruments from the Csound Catalog and other sources.

	Try to hide low level Csound’s wiring as much as we can (no IDs for ftables, instruments, global variables). Haskell is a modern language with a rich set of abstractions. The author tried to keep the Csound primitives as close to the haskell as possible. For example, invocation of the instrument is just an application of the function.

	No distinction between audio and control rates on the type level. Derive all rates from the context. If the user plugs signal to an opcode that expects an audio rate signal the argument is converted to the right rate. Though user can force signal to be of desired type.

	Less typing, more music. Use short names for all types. Make a library so that all expressions can be built without type annotations. Make it simple for the compiler to derive all types. Don’t use complex type classes or brainy language concepts.

	Ensure that output signal is limited by amplitude. Csound can produce signals with HUGE amplitudes. Little typo can damage your ears and your speakers. In generated code all signals are clipped by 0dbfs value. 0dbfs is set to 1. Just as in Pure Data. So 1 is absolute maximum value for amplitude.

	Remove score/instrument barrier. Let instrument play a score within a note and trigger other instruments. Triggering the instrument is just an application of the function. It produces the signal as output which can be used in another instrument and so on.

	Set Csound flags with meaningful (well-typed) values. Derive as much as you can from the context. This principle let us start for very simple expressions. We can create our audio signal, apply the function dac to it and we are ready to hear the result in the speakers. No need for XML copy and paste form. It’s as easy as typing the line

> dac (osc 440)

in the interpreter.

	The standard functions for musical needs. We often need standard waveforms and filters and adsr’s. Some functions are not so easy to use in the Csound. So there are a lot of predefined functions that capture lots of musical ideas. the library strives to defines audio DSP primitives in the most basic easiest form.

	There are audio waves: osc, saw, tri, sqr, pw, ramp, and their unipolar friends (usefull for LFOs).

	There are filters: lp, hp, bp, br, mlp (moog low pass), filt (for packing several filters in chain), formant filters with ppredefined vowels.

	There are handy envelopes: fades, fadeOut, fadeIn, linseg (with held last value).

	There noisy functions: white, pink.

	There are step sequencers: sqrSeq, sawSeq, adsrSeq, and many more. Step sequencer can produce the sequence of unipolar shapes for a given wave-form. The scale factors are defined as the list of values.

	Composable GUIs. Interactive instruments should be easy to make. The GUI widget is a container for signal. It carries an output alongside with visual representation. There are standard ways of composition for the visuals (like horizontal or vertical grouping). It gives us the easy way to combine GUIs. That’s how we can create a filtered saw-tooth that is controlled with sliders:

> dac $ vlift2 (\cps q -> mlp (100 + 5000 * cps) q (saw 110)) (uslider 0.5) (uslider 0.5)

The function uslider produces slider which outputs a unipolar signal (ranges from 0 to 1). The single argument is an initial value. The function vlift2 groups visuals vertically and applies a function of two arguments to the outputs of the sliders. This way we get a new widget that produces the filtered sawtooth wave and contains two sliders. It can become a part of another expression. No need for separate declarations.

	Event streams inspired with FRP (functional reactive programming). Event stream can produce values over time. It can be a metronome click or a push of the button, switch of the toggle button and so on. We have rich set of functions to combine events. We can map over events and filter the stream of events, we can merge two streams, accumulate the result.

That's how we can count the number of clicks:

let clicks = lift1 (\evt -> appendE (0 :: D) (+) $ fmap (const 1) evt) $ button "Click me!"

	There is a library that greatly simplifies the creation of the music that is based on samples. It’s called csound-sampler. With it we can easily create patterns out of wav-files, we can reverse files or play random segments of files.

How to try out the library

To try out the library you need:

	ghc - Haskell compiler

	cabal – Haskell tool to install open source libraries

	Csound - to run the audio

As you install all those tools you can type in the terminal:

cabal install csound-catalog --lib

It will install csound-expression and batteries. If you want just the main library use csound-expression instead of csound-catalog.

If your cabal version is lower than 3.0 version you can skip the flag --lib. The version of cabal can be checked with:

cabal --version

After that library is installed and is ready to be used. You can try in the haskell interpreter to import the library and hear the greeting test sound:

> ghci
> import Csound.Base
> dac (testDrone3 220)

It works and you can hear the sound if you have installed evrything and the system audio is properly configured to work with default Csound settings.

Next step to go would be to read through the tutorial. The library covers almost all features of Csound so it is as huge as Csound but most concepts are easy to grasp and it is driven by compositions of small parts.

Links

The library tutorial: https://github.com/spell-music/csound-expression/blob/master/tutorial/Index.md

The library homepage on hackage (it’s haskell stock of open source projects): http://hackage.haskell.org/package/csound-expression

The library homepage on github: http://github.com/anton-k/csound-expression/blob/master/tutorial/Index.md

The csound-sampler library: http://github.com/anton-k/csound-sampler

The csound-catalog library homepage on hackage: http://hackage.haskell.org/package/csound-catalog

Music made with Haskell and Csound: http://soundcloud.com/anton-kho

 ch069.xhtml

12 G. CSOUND IN HTML AND JAVASCRIPT

Introduction

Currently it is possible to use Csound together with HTML and JavaScript in at least the following environments:

	CsoundQt, described in 10 A.

	The Csound for Android app, described in 12 E.

	The csound.node extension for NW.js.

	Csound built for WebAssembly, which has two slightly different forms:

	The canonical build, described in 10 F.

	The csound-extended build.

For instructions on installing any of these environments, please consult the documentation provided in the links mentioned above.

All of these environments provide a JavaScript interface to Csound, which appears as a global Csound object in the JavaScript context of a Web page. Please note, there may be minor differences in the JavaScript interface to Csound between these environments.

With HTML and JavaScript it is possible to define user interfaces, to control Csound, and to generate Csound scores and even orchestras.

In all of these environments, a piece may be written in the form of a Web page (an .html file), with access to a global instance of Csound that exists in the JavaScript context of that Web page. In such pieces, it is common to embed the entire .orc or .csd file for Csound into the .html code as a JavaScript multiline string literal or an invisible TextArea widget.

In CsoundQt and Csound for Android, the HTML code may be embedded in an optional <html> element of the Csound Structured Data (.csd) file. This element essentially defines a Web page that contains Csound, but the host application is responsible for editing the Csound orchestra and running it.

This chapter is organized as follows:

	Introduction (this section)

	Tutorial User’s Guide

	Conclusion

HTML must be understood here to represent not only Hyper Text Markup Language, but also all of the other Web standards that currently are supported by Web browsers, Web servers, and the Internet, including cascading style sheets (CSS), HTML5 features such as drawing on a graphics canvas visible in the page, producing animated 3-dimensional graphics with WebGL including shaders and GPU acceleration, Web Audio, various forms of local data storage, Web Sockets, and so on and so on. This whole conglomeration of standards is currently defined and maintained under the non-governmental leadership of the World Wide Web Consortium (W3C) which in turn is primarily driven by commercial interests belonging to the Web Hypertext Application Technology Working Group (WHATWG). Most modern Web browsers implement almost all of the W3C standards up to and including HTML5 at an impressive level of performance and consistency. To see what features are available in your own Web browser, go to this test page. All of this stuff is now usable in Csound pieces.

An Example of Use

For an example of a few of the things are possible with HTML in Csound, take a look at the following piece, Scrims, which runs in contemporary Web browsers using a WebAssembly build of Csound and JavaScript code. In fact, it’s running right here on this page!

Scrims is a demanding piece, and may not run without dropouts unless you have a rather fast computer. However, it demonstrates a number of ways to use HTML and JavaScript with Csound:

	Use of the Three.js library to generate a 3-dimensional animated image of the popcorn fractal.

	Use of an external JavaScript library, silencio, to sample the moving image and to generate Csound notes from it, that are sent to Csound in real time with the Csound API csound.readScore function.

	Use of a complex Csound orchestra that is embedded in a hidden TextArea on the page.

	Use of the dat.gui library to easily create sliders and buttons for controlling the piece in real time.

	Use of the jQuery library to simplify handling events from sliders, buttons, and other HTML elements.

	Use of a TextArea widget as a scrolling display for Csound’s runtime messages.

To see this code in action, you can right-click on the piece and select the Inspect command. Then you can browse the source code, set breakpoints, print values of variables, and so on.

It is true that LaTeX can do a better job of typesetting than HTML and CSS. It is true that game engines can do a better job for interactive, 3-dimensional computer animation with scene graphs than WebGL. It is true that compiled C or C++ code runs faster than JavaScript. It is true that Haskell is a more fully-featured functional programming language than JavaScript. It is true that MySQL is a more powerful database than HTML5 storage.

But the fact is, there is no single program except for a Web browser that manages to be quite as functional in all of these categories in a way that beginning to intermediate programmers can use, and for which the only required runtime is the Web browser itself.

For this reason alone, HTML makes a very good front end for Csound. Furthermore, the Web standards are maintained in a stable form by a large community of competent developers representing diverse interests. So I believe HTML as a front end for Csound should be quite stable and remain backwardly compatible, just as Csound itself remains backwardly compatible with old pieces.

How it Works

The Web browser embedded into CsoundQt is the Qt WebEngine. The Web browser embedded into Csound for Android is the WebView available in the Android SDK.

For a .html piece, the front end renders the HTML as a Web page and displays it in an embedded Web browser. The front end injects an instance of Csound into the JavaScript context of the Web.

For a .csd piece, the front end parses the <html> element out of the .csd file. The front end then loads this Web page into its embedded browser, and injects the same instance of Csound that is running the .csd into the JavaScript context of the Web page.

It is important to understand that any valid HTML code can be used in Csound's <html> element. It is just a Web page like any other Web page.

In general, the different Web standards are either defined as JavaScript classes and libraries, or glued together using JavaScript. In other words, HTML without JavaScript is dead, but HTML with JavaScript handlers for HTML events and attached to the document elements in the HTML code, comes alive. Indeed, JavaScript can itself define HTML documents by programmatically creating Document Object Model objects.

JavaScript is the engine and the major programming language of the World Wide Web in general, and of code that runs in Web browsers in particular. JavaScript is a standardized language, and it is a functional programming language similar to Scheme. JavaScript also allows classes to be defined by prototypes.

The JavaScript execution context of a Csound Web page contains Csound itself as a csound JavaScript object that has at least the following methods:

;; [returns a number]
getVersion()
;; [returns the numeric result of the evaluation]
compileOrc(orchestra_code)
evalCode(orchestra_code)
readScore(score_lines)
setControlChannel(channel_name,number)
;; [returns a number representing the channel value]
getControlChannel(channel_name)
message(text)
;; [returns a number]
getSr()
;; [returns a number]
getKsmps()
;; [returns a number]
getNchnls()
[returns 1 if Csound is playing, 0 if not]
isPlaying()

The front end contains a mechanism for forwarding JavaScript calls in the Web page’s JavaScript context to native functions that are defined in the front end, which passes them on to Csound. This involves a small amount of C++ glue code that the user does not need to know about. In CsoundQt, the glue code uses some JavaScript proxy generator that is injected into the JavaScript context of the Web page, but again, the user does not need to know anything about this.

In the future, more functions from the Csound API will be added to this JavaScript interface, including, at least in some front ends, the ability for Csound to appear as a Node in a Web Audio graph (this already is possible in the Emscripten built of Csound).

Tutorial User Guide

Here we will use CsoundQt to run Csound with HTML.

Let’s get started and do a few things in the simplest possible way, in a series of toots. All of these pieces are completely contained in unfolding boxes here, from which they can be copied and then pasted into the CsoundQt editor, and some pieces are included as HTML examples in CsoundQt.

	Display "Hello, World, this is Csound!" in HTML.

	Create a button that will generate a series of notes based on the logistic equation.

	Create a slider to set the value of the parameter that controls the degree of chaos produced by iterating the logistic equation, and two other sliders to control the frequency ratio and modulation index of the FM instrument that plays the notes from the logistic equation.

	Style the HTML elements using a style sheet.

HelloWorld.csd

This is about the shortest CSD that shows some HTML output.

EXAMPLE 12G01_Hello_HTML_World.csd

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
</CsInstruments>
<html>
Hello, World, this is Csound!
</html>
<CsScore>
e 1
</CsScore>
</CsoundSynthesizer>
;example by Michael Gogins

Minimal_HTML_Example.csd

This is a simple example that shows how to control Csound using an HTML slider.

EXAMPLE 12G02_Minimal_HTML.csd

<CsoundSynthesizer>
<CsOptions>
-odac -d
</CsOptions>
<html>
 <head> </head>
 <body bgcolor="lightblue">
 <script>
 function onGetControlChannel(value) {
 document.getElementById(
 'testChannel'
).innerHTML = value;
 } // to test csound.getControlChannel with QtWebEngine
 </script>
 <h2>Minimal Csound-Html5 example</h2>

 Frequency:
 <input
 type="range"
 id="slider"
 oninput='csound.setControlChannel("testChannel",this.value/100.0); '
 />

 <button
 id="button"
 onclick='csound.readScore("i 1 0 3")'
 >
 Event
 </button>

 Get channel from csound with callback (QtWebchannel):
 <label id="getchannel"></label>
 <button
 onclick='csound.getControlChannel("testChannel", onGetControlChannel)'
 >
 Get</button
 >

 Value from channel "testChannel":
 <label id="testChannel"></label>

 Get as return value (QtWebkit)
 <button
 onclick='alert("TestChannel: "+csound.getControlChannel("testChannel"))'
 >
 Get as retrun value
 </button>

 </body>
</html>

<CsInstruments>

sr = 44100
nchnls = 2
0dbfs = 1
ksmps = 32

chnset 0.5, "testChannel" ; to test chnget in the host

instr 1
 kfreq= 200+chnget:k("testChannel")*500
 printk2 kfreq
 aenv linen 1,0.1,p3,0.25
 out poscil(0.5,kfreq)*aenv
endin

; schedule 1,0,0.1, 1

</CsInstruments>
<CsScore>
i 1 0 0.5 ; to hear if Csound is loaded
f 0 3600
</CsScore>
</CsoundSynthesizer>
;example by Tarmo Johannes
;reformatted for flossmanual by Hlödver Sigurdsson

Styled_Sliders.csd

And now a more complete example where the user controls both the compositional algorithm, the logistic equation, and the sounds of the instruments. In addition, HTML styles are used to create a more pleasing user interface.

First the entire piece is presented, then the parts are discussed separately.

; Example about using CSS in html section of CSD
; By Michael Gogins 2016
; Reformatted for flossmanual by Hlödver Sigurdsson

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2

iampdbfs init 32768
prints "Default amplitude at 0 dBFS: %9.4f\n", iampdbfs
idbafs init dbamp(iampdbfs)
prints "dbA at 0 dBFS: %9.4f\n", idbafs
iheadroom init 6
prints "Headroom (dB): %9.4f\n", iheadroom
idbaheadroom init idbafs - iheadroom
prints "dbA at headroom: %9.4f\n", idbaheadroom
iampheadroom init ampdb(idbaheadroom)
prints "Amplitude at headroom: %9.4f\n", iampheadroom
prints "Balance so the overall amps at the end of performance -6 dbfs.\n"

connect "ModerateFM", "outleft", "Reverberation", "inleft"
connect "ModerateFM", "outright", "Reverberation", "inright"
connect "Reverberation", "outleft", "MasterOutput", "inleft"
connect "Reverberation", "outright", "MasterOutput", "inright"

alwayson "Reverberation"
alwayson "MasterOutput"
alwayson "Controls"

gk_FmIndex init 0.5
gk_FmCarrier init 1

//
// By Michael Gogins.
//
instr ModerateFM
 i_instrument = p1
 i_time = p2
 i_duration = p3
 i_midikey = p4
 i_midivelocity = p5
 i_phase = p6
 i_pan = p7
 i_depth = p8
 i_height = p9
 i_pitchclassset = p10
 i_homogeneity = p11
 iattack = 0.002
 isustain = p3
 idecay = 8
 irelease = 0.05
 iHz = cpsmidinn(i_midikey)
 idB = i_midivelocity
 iamplitude = ampdb(idB) * 4.0
 kcarrier = gk_FmCarrier
 imodulator = 0.5
 ifmamplitude = 0.25
 kindex = gk_FmIndex * 20
 ifrequencyb = iHz * 1.003
 kcarrierb = kcarrier * 1.004
 aindenv transeg 0.0, iattack, -11.0, 1.0, idecay, -7.0, 0.025, isustain, \
 0.0, 0.025, irelease, -7.0, 0.0
 aindex = aindenv * kindex * ifmamplitude
 isinetable ftgenonce 0, 0, 65536, 10, 1, 0, .02

 ; ares foscili xamp, kcps, xcar, xmod, kndx, ifn [, iphs]
 aouta foscili 1.0, iHz, kcarrier, imodulator, kindex / 4., isinetable
 aoutb foscili 1.0, ifrequencyb, kcarrierb, imodulator, kindex, isinetable

 ; Plus amplitude correction.
 asignal = (aouta + aoutb) * aindenv
 adeclick linsegr 0, iattack, 1, isustain, 1, irelease, 0
 asignal = asignal * iamplitude
 aoutleft, aoutright pan2 asignal * adeclick, i_pan
 outleta "outleft", aoutleft
 outleta "outright", aoutright
 prints "instr %4d t %9.4f d %9.4f k %9.4f v %9.4f p %9.4f\n", \
 p1, p2, p3, p4, p5, p7
endin

gkReverberationWet init .5
gk_ReverberationDelay init .6

instr Reverberation
 ainleft inleta "inleft"
 ainright inleta "inright"
 aoutleft = ainleft
 aoutright = ainright
 kdry = 1.0 - gkReverberationWet
 awetleft, awetright reverbsc ainleft, ainright, gk_ReverberationDelay, 18000
 aoutleft = ainleft * kdry + awetleft * gkReverberationWet
 aoutright = ainright * kdry + awetright * gkReverberationWet
 outleta "outleft", aoutleft
 outleta "outright", aoutright
 prints "instr %4d t %9.4f d %9.4f k %9.4f v %9.4f p %9.4f\n", \
 p1, p2, p3, p4, p5, p7
endin

gk_MasterLevel init 1

instr MasterOutput
 ainleft inleta "inleft"
 ainright inleta "inright"
 aoutleft = gk_MasterLevel * ainleft
 aoutright = gk_MasterLevel * ainright
 outs aoutleft, aoutright
 prints "instr %4d t %9.4f d %9.4f k %9.4f v %9.4f p %9.4f\n", \
 p1, p2, p3, p4, p5, p7
endin

instr Controls
 gk_FmIndex_ chnget "gk_FmIndex"
 if gk_FmIndex_ != 0 then
 gk_FmIndex = gk_FmIndex_
 endif

 gk_FmCarrier_ chnget "gk_FmCarrier"
 if gk_FmCarrier_ != 0 then
 gk_FmCarrier = gk_FmCarrier_
 endif

 gk_ReverberationDelay_ chnget "gk_ReverberationDelay"
 if gk_ReverberationDelay_ != 0 then
 gk_ReverberationDelay = gk_ReverberationDelay_
 endif

 gk_MasterLevel_ chnget "gk_MasterLevel"
 if gk_MasterLevel_ != 0 then
 gk_MasterLevel = gk_MasterLevel_
 endif
endin

</CsInstruments>
<CsScore>
</CsScore>
</CsoundSynthesizer>

<html>
 <head> </head>
 <body>
 <style type="text/css">
 input[type='range'] {
 -webkit-appearance: none;
 border-radius: 5px;
 box-shadow: inset 0 0 5px #333;
 background-color: #999;
 height: 10px;
 width: 100%;
 vertical-align: middle;
 }
 input[type='range']::-webkit-slider-thumb {
 -webkit-appearance: none;
 border: none;
 height: 16px;
 width: 16px;
 border-radius: 50%;
 background: yellow;
 margin-top: -4px;
 border-radius: 10px;
 }
 table td {
 border-width: 2px;
 padding: 8px;
 border-style: solid;
 border-color: transparent;
 color: yellow;
 background-color: teal;
 font-family: sans-serif;
 }
 </style>

 <h1>Score Generator</h1>

 <script>
 var c = 0.99;
 var y = 0.5;
 function generate() {
 csound.message('generate()...\n');
 for (i = 0; i < 50; i++) {
 var t = i * (1.0 / 3.0);
 var y1 = 4.0 * c * y * (1.0 - y);
 y = y1;
 var key = Math.round(36.0 + y * 60.0);
 var note = 'i 1 ' + t + ' 2.0 ' + key + ' 60 0.0 0.5\n';
 csound.readScore(note);
 }
 }

 function on_sliderC(value) {
 c = parseFloat(value);
 document.querySelector('#sliderCOutput').value = c;
 }

 function on_sliderFmIndex(value) {
 var numberValue = parseFloat(value);
 document.querySelector('#sliderFmIndexOutput').value = numberValue;
 csound.setControlChannel('gk_FmIndex', numberValue);
 }

 function on_sliderFmRatio(value) {
 var numberValue = parseFloat(value);
 document.querySelector('#sliderFmRatioOutput').value = numberValue;
 csound.setControlChannel('gk_FmCarrier', numberValue);
 }

 function on_sliderReverberationDelay(value) {
 var numberValue = parseFloat(value);
 document.querySelector(
 '#sliderReverberationDelayOutput'
).value = numberValue;
 csound.setControlChannel('gk_ReverberationDelay', numberValue);
 }

 function on_sliderMasterLevel(value) {
 var numberValue = parseFloat(value);
 document.querySelector('#sliderMasterLevelOutput').value = numberValue;
 csound.setControlChannel('gk_MasterLevel', numberValue);
 }
 </script>

 <table>
 <col width="2*" />
 <col width="5*" />
 <col width="100px" />
 <tr>
 <td>
 <label for="sliderC">c</label>
 </td>
 <td>
 <input
 type="range"
 min="0"
 max="1"
 value=".5"
 id="sliderC"
 step="0.001"
 oninput="on_sliderC(value)"
 />
 </td>
 <td>
 <output for="sliderC" id="sliderCOutput">.5</output>
 </td>
 </tr>
 <tr>
 <td>
 <label for="sliderFmIndex">Frequency modulation index</label>
 </td>
 <td>
 <input
 type="range"
 min="0"
 max="1"
 value=".5"
 id="sliderC"
 step="0.001"
 oninput="on_sliderFmIndex(value)"
 />
 </td>
 <td>
 <output for="sliderFmIndex" id="sliderFmIndexOutput">.5</output>
 </td>
 </tr>
 <tr>
 <td>
 <label for="sliderFmRatio">Frequency modulation ratio</label>
 </td>
 <td>
 <input
 type="range"
 min="0"
 max="1"
 value=".5"
 id="sliderFmRatio"
 step="0.001"
 oninput="on_sliderFmRatio(value)"
 />
 </td>
 <td>
 <output for="sliderFmRatio" id="sliderFmRatioOutput">.5</output>
 </td>
 </tr>
 <tr>
 <td>
 <label for="sliderReverberationDelay">Reverberation delay</label>
 </td>
 <td>
 <input
 type="range"
 min="0"
 max="1"
 value=".5"
 id="sliderReverberationDelay"
 step="0.001"
 oninput="on_sliderReverberationDelay(value)"
 />
 </td>
 <td>
 <output
 for="sliderReverberationDelay"
 id="sliderReverberationDelayOutput"
 >.5</output
 >
 </td>
 </tr>
 <tr>
 <td>
 <label for="sliderMasterLevel">Master output level</label>
 </td>
 <td>
 <input
 type="range"
 min="0"
 max="1"
 value=".5"
 id="sliderMasterLevel"
 step="0.001"
 oninput="on_sliderMasterLevel(value)"
 />
 </td>
 <td>
 <output
 for="sliderMasterLevel"
 id="sliderMasterLevelOutput">.5
 </output>
 </td>
 </tr>

 <tr>
 <td>
 <button onclick="generate()">Generate score</button>
 </td>
 </tr>
 </table>
 </body>
</html>

Here I have introduced a simple Csound orchestra consisting of a single frequency modulation instrument feeding first into a reverberation effect, and then into a master output unit. These are connected using the signal flow graph opcodes. The actual orchestra is of little interest here.

Generating the Score

This piece has no score, because the score will be generated at run time. In the <html> element, I also have added this button:

<button onclick="generate()"> Generate score </button>

When this button is clicked, it calls a JavaScript function that uses the logistic equation, which is a simple quadratic dynamical system, to generate a Csound score from a chaotic attractor of the system. This function also is quite simple. Its main job, aside from iterating the logistic equation a few hundred times, is to translate each iteration of the system into a musical note and send that note to Csound to be played using the Csound API function readScore(). So the following <script> element is added to the body of the <html> element:

<script>
var c = 0.99;
var y = 0.5;
function generate() {
 csound.message("generate()...\n");
 for (i = 0; i < 200; i++) {
 var t = i * (1.0 / 3.0);
 var y1 = 4.0 * c * y * (1.0 - y);
 y = y1;
 var key = Math.round(36.0 + (y * 60.0));
 var note = "i 1 " + t + " 2.0 " + key + " 60 0.0 0.5\n";
 csound.readScore(note);
 };
};
</script>

Adding Sliders

The next step is to add more user control to this piece. We will enable the user to control the attractor of the piece by varying the constant c, and we will enable the user to control the sound of the Csound orchestra by varying the frequency modulation index, frequency modulation carrier ratio, reverberation time, and master output level.

This code is demonstrated on a low level, so that you can see all of the details and understand exactly what is going on. A real piece would most likely be written at a higher level of abstraction, for example by using a third party widget toolkit, such as jQuery UI.

A slider in HTML is just an input element like this:

<input
 id="sliderC"
 type=range
 min=0
 max=1
 value=.5
 step=0.001
 oninput="on_sliderC(value)"
/>

This element has attributes of minimum value 0, maximum value 1, which normalizes the user’s possible values between 0 and 1. This could be anything, but in many musical contexts, for example VST plugins, user control values are always normalized between 0 and 1. The tiny step attribute simply approximates a continuous range of values.

The most important thing is the oninput attribute, which sets the value of a JavaScript event handler for the oninput event. This function is called whenever the user changes the value of the slider.

For ease of understanding, a naming convention is used here, with sliderC being the basic name and other names of objects associated with this slider taking names built up by adding prefixes or suffixes to this basic name.

Normally a slider has a label, and it is convenient to show the actual numerical value of the slider. This can be done like so:

<table>
 <col width="2*" />
 <col width="5*" />
 <col width="100px" />
 <tr>
 <td>
 <label for="sliderC">c</label>
 </td>

 <td>
 <input
 type="range"
 min="0"
 max="1"
 value=".5"
 id="sliderC"
 step="0.001"
 oninput="on_sliderC(value)"
 />
 </td>

 <td>
 <output for="sliderC" id="sliderCOutput">.5</output>
 </td>
 </tr>
</table>

If the slider, its label, and its numeric display are put into an HTML table, that table will act like a layout manager in a standard widget toolkit, and will resize the contained elements as required to get them to line up.

For this slider, the JavaScript handler is:

function on_sliderC(value) {
 c = parseFloat(value);
 document.querySelector('#sliderCOutput').value = c;
}

The variable c was declared at global scope just above the generate() function, so that variable is accessible within the on_sliderC function.

Keep in mind, if you are playing with this code, that a new value of c will only be heard when a new score is generated.

Very similar logic can be used to control variables in the Csound orchestra. The value of the slider has to be sent to Csound using the channel API, like this:

function on_sliderFmIndex(value) {
 var numberValue = parseFloat(value);
 document.querySelector('#sliderFmIndexOutput').value = numberValue;
 csound.setControlChannel('gk_FmIndex', numberValue);
}

Then, in the Csound orchestra, that value has to be retrieved using the chnget opcode and applied to the instrument to which it pertains. It is most efficient if the variables controlled by channels are global variables declared just above their respective instrument definitions. The normalized values can be rescaled as required in the Csound instrument code.

gk_FmIndex init 0.5
 instr ModerateFM
 ...
 kindex = gk_FmIndex * 20
 ...
endin

Also for the sake of efficiency, a global, always-on instrument can be used to read the control channels and assign their values to these global variables:

instr Controls
 gk_FmIndex_ chnget "gk_FmIndex"
 if gk_FmIndex_ != 0 then
 gk_FmIndex = gk_FmIndex_
 endif
 gk_FmCarrier_ chnget "gk_FmCarrier"
 if gk_FmCarrier_ != 0 then
 gk_FmCarrier = gk_FmCarrier_
 endif
 gk_ReverberationDelay_ chnget "gk_ReverberationDelay"
 if gk_ReverberationDelay_ != 0 then
 gk_ReverberationDelay = gk_ReverberationDelay_
 endif
 gk_MasterLevel_ chnget "gk_MasterLevel"
 if gk_MasterLevel_ != 0 then
 gk_MasterLevel = gk_MasterLevel_
 endif
endin

Note that each actual global variable has a default value, which is only overridden if the user actually operates its slider.

Customizing the Style

The default appearance of HTML elements is brutally simple. But each element has attributes that can be used to change its appearance, and these offer a great deal of control.

Of course, setting for example the font attribute for each label on a complex HTML layout is tedious. Therefore, this example shows how to use a style sheet. We don’t need much style to get a much improved appearance:

<style type="text/css">
input[type='range'] {
 -webkit-appearance: none;
 border-radius: 5px;
 box-shadow: inset 0 0 5px #333;
 background-color: #999;
 height: 10px;
 width: 100%;
vertical-align: middle;
}
input[type=range]::-webkit-slider-thumb {
 -webkit-appearance: none;
 border: none;
 height: 16px;
 width: 16px;
 border-radius: 50%;
 background: yellow;
 margin-top: -4px;
 border-radius: 10px;
}
table td {
 border-width: 2px;
 padding: 8px;
 border-style: solid;
 border-color: transparent;
 color:yellow;
 background-color: teal;
 font-family: sans-serif
}
</style>

This little style sheet is generic, that is, it applies to every element on the HTML page. It says, for example, that table td (table cells) are to have a yellow sans-serif font on a teal background, and this will apply to every table cell on the page. Style sheets can be made more specialized by giving them names. But for this kind of application, that is not usually necessary.

Conclusion

Most, if not all all, of the functions performed by other Csound front ends could be encompassed by HTML and JavaScript. However, there are a few gotchas. For CsoundQt and other front ends based on Chrome, there may be extra latency and processing overhead required by inter-process communications. For Emscripten and other applications that use Web Audio, there may also be additional latency.

Obviously, much more can be done with HTML, JavaScript, and other Web standards found in contemporary Web browsers. Full-fledged, three-dimensional, interactive, multi-player computer games are now being written with HTML and JavaScript. Other sorts of Web applications also are being written this way.

Sometimes, JavaScript is embedded into an application for use as a scripting language. The Csound front ends discussed here are examples, but there are others. For example, Max for Live can be programmed in JavaScript, and so can the open source score editor MuseScore. In fact, in MuseScore, JavaScript can be used to algorithmically generate notated scores.

 ch070.xhtml

13 A. DEVELOPING PLUGIN OPCODES

Csound is possibly one of the most easily extensible of all modern music programming languages. The addition of unit generators (opcodes) and function tables is generally the most common type of extension to the language. This is possible through two basic mechanisms: user-defined opcodes (UDOs), written in the Csound language itself and pre-compiled/binary opcodes, written in C or C++.1

To facilitate the latter case, Csound offers a simple opcode development API, from which dynamically-loadable, or plugin unit generators can be built. A similar mechanism for function tables is also available. For this we can use either the C++ or the C languages. C++ opcodes are written as classes derived from a template (“pseudo-virtual”) base class OpcodeBase. In the case of C opcodes, we normally supply a module according to a basic description. The sections on plugin opcodes will use the C language. For those interested in object-oriented programming, alternative C++ class implementations for the examples discussed in this text can be extrapolated from the original C code.

You may find additional information and examples at Csound’s Opcode SDK repository.

Csound data types and signals

The Csound language provides four basic data types: i-, k-, a- and f-types (there is also a fifth type, w, which will not be discussed here). These are used to pass the data between opcodes, each opcode input or output parameter relating to one of these types. The Csound i-type variable is used for initialisation variables, which will assume only one value in performance. Once set, they will remain constant throughout the instrument or UDO code, unless there is a reinitialisation pass. In a plugin opcode, parameters that receive i-type variables are set inside the initialisation part of the code, because they will not change during processing.

The other types are used to hold scalar (k-type) , vectorial (a-type) and spectral-frame (f) signal variables. These will change in performance, so parameters assigned to these variables are set and modified in the opcode processing function. Scalars will hold a single value, whereas vectors hold an array of values (a vector). These values are floating-point numbers, either 32- or 64-bit, depending on the executable version used, defined in C/C++ as a custom MYFLT type.

Plugin opcodes will use pointers to input and output parameters to read and write their input/output. The Csound engine will take care of allocating the memory used for its variables, so the opcodes only need to manipulate the pointers to the addresses of these variables.

A Csound instrument code can use any of these variables, but opcodes will have to accept specific types as input and will generate data in one of those types. Certain opcodes, known as polymorphic opcodes, will be able to cope with more than one type for a specific parameter (input or output). This generally implies that more than one version of the opcode will have to be implemented, which will be called depending on the parameter types used.

Plugin opcodes

Originally, Csound opcodes could only be added to the system as statically-linked code. This required that the user recompiled the whole Csound code with the added C module. The introduction of a dynamic-loading mechanism has provided a simpler way for opcode addition, which only requires the C code to be compiled and built as a shared, dynamic library. These are known in Csound parlance as plugin opcodes and the following sections are dedicated to their development process.

Anatomy of an opcode

The C code for a Csound opcode has three main programming components: a data structure to hold the internal data, an initialising function and a processing function. From an object-oriented perspective, an opcode is a simple class, with its attributes, constructor and perform methods. The data structure will hold the attributes of the class: input/output parameters and internal variables (such as delays, coefficients, counters, indices etc.), which make up its dataspace.

The constructor method is the initialising function, which sets some attributes to certain values, allocates memory (if necessary) and anything that is needed for an opcode to be ready for use. This method is called by the Csound engine when an instrument with its opcodes is allocated in memory, just before performance, or when a reinitialisation is required.

Performance is implemented by the processing function, or perform method, which is called when new output is to be generated. This happens at every control period, or ksmps samples. This implies that signals are generated at two different rates: the control rate, kr, and the audio rate, sr, which is kr * ksmps samples/sec. What is actually generated by the opcode, and how its perform method is implemented, will depend on its input and output Csound language data types.

Opcoding basics

C-language opcodes normally obey a few basic rules and their development require very little in terms of knowledge of the actual processes involved in Csound. Plugin opcodes will have to provide the three main programming components outlined above: a data structure plus the initialisation and processing functions. Once these elements are supplied, all we need to do is to add a line telling Csound what type of opcode it is, whether it is an i-, k- or a-rate based unit generator and what arguments it takes.

The data structure will be organised in the following fashion:

	The OPDS data structure, holding the common components of all opcodes.

	The output pointers (one MYFLT pointer for each output)

	The input pointers (as above)

	Any other internal dataspace member.

The Csound opcode API is defined by csdl.h, which should be included at the top of the source file. The example below shows a simple data structure for an opcode with one output and three inputs, plus a couple of private internal variables:

#include "csdl.h"

typedef struct _newopc {

OPDS h;
MYFLT *out;/* output pointer */
MYFLT *in1,*in2,*in3; /* input pointers */
MYFLT var1; /* internal variables */
MYFLT var2;

} newopc;

Initialisation

The initialisation function is only there to initialise any data, such as the internal variables, or allocate memory, if needed. The plugin opcode model in Csound 6 expects both the initialisation function and the perform function to return an int value, either OK or NOTOK. Both methods take two arguments: pointers to the CSOUND data structure and the opcode dataspace. The following example shows an example initialisation function. It initialises one of the variables to 0 and the other to the third opcode input parameter.

int newopc_init(CSOUND *csound, newopc *p){
 p->var1 = (MYFLT) 0;
 p->var2 = *p->in3;
return OK;
}

Control-rate performance

The processing function implementation will depend on the type of opcode that is being created. For control rate opcodes, with k- or i-type input parameters, we will be generating one output value at a time. The example below shows an example of this type of processing function. This simple example just keeps ramping up or down depending on the value of the second input. The output is offset by the first input and the ramping is reset if it reaches the value of var2 (which is set to the third input argument in the constructor above).

int newopc_process_control(CSOUND *csound, newopc *p){
 MYFLT cnt = p->var1 + *(p->in2);
 if(cnt > p->var2) cnt = (MYFLT) 0; /* check bounds */
 *(p->out) = *(p->in1) + cnt; /* generate output */
 p->var1 = cnt; /* keep the value of cnt */
 return OK;
}

Audio-rate performance

For audio rate opcodes, because it will be generating audio signal vectors, it will require an internal loop to process the vector samples. This is not necessary with k-rate opcodes, because, as we are dealing with scalar inputs and outputs, the function has to process only one sample at a time. If we were to make an audio version of the control opcode above (disregarding its usefulness), we would have to change the code slightly. The basic difference is that we have an audio rate output instead of control rate. In this case, our output is a whole vector (a MYFLT array) with ksmps samples, so we have to write a loop to fill it. It is important to point out that the control rate and audio rate processing functions will produce exactly the same result. The difference here is that in the audio case, we will produce ksmps samples, instead of just one sample. However, all the vector samples will have the same value (which actually makes the audio rate function redundant, but we will use it just to illustrate our point).

Another important thing to consider is to support the –sample-accurate mode introduced in Csound 6. For this we will need to add code to start processing at an offset (when this is given), and finish early (if that is required). The opcode will then lookup these two variables (called offset and early) that are passed to it from the container instrument, and act to ensure these are taken into account. Without this, the opcode would still work, but not support the sample-accurate mode.

int newopc_process_audio(CSOUND *csound, newopc *p){
 int i, n = CS_KSMPS;
 MYFLT *aout = p->out; /* output signal */
 MYFLT cnt = p->var1 + *(p->in2);
 uint32_t offset = p->h.insdshead->ksmps_offset;
 uint32_t early = p->h.insdshead->ksmps_no_end;

 /* sample-accurate mode mechanism */
 if(offset) memset(aout, '\0', offset*sizeof(MYFLT));
 if(early) {
 n -= early;
 memset(&aout[n], '\0', early*sizeof(MYFLT));
 }

 if(cnt > p->var2) cnt = (MYFLT) 0; /* check bounds */

 /* processing loop */
 for(i=offset; i < n; i++) aout[i] = *(p->in1) + cnt;

 p->var1 = cnt; /* keep the value of cnt */
 return OK;
}

In order for Csound to be aware of the new opcode, we will have to register it. This is done by filling an opcode registration structure OENTRY array called localops (which is static, meaning that only one such array exists in memory at a time):

static OENTRY localops[] = {
{ "newopc", sizeof(newopc), 0, 7, "s", "kki",(SUBR) newopc_init,
(SUBR) newopc_process_control, (SUBR) newopc_process_audio }
};

Linkage

The OENTRY structure defines the details of the new opcode:

	the opcode name (a string without any spaces).

	the size of the opcode dataspace, set using the macro S(struct_name), in most cases; otherwise this is a code indicating that the opcode will have more than one implementation, depending on the type of input arguments (a polymorphic opcode).

	Flags to control multicore operation (0 for most cases).

	An int code defining when the opcode is active: 1 is for i-time, 2 is for k-rate and 4 is for a-rate. The actual value is a combination of one or more of those. The value of 7 means active at i-time (1), k-rate (2) and a-rate (4). This means that the opcode has an init function, plus a k-rate and an a-rate processing functions.

	String definition the output type(s): a, k, s (either a or k), i, m (multiple output arguments), w or f (spectral signals).

	Same as above, for input types: a, k, s, i, w, f, o (optional i-rate, default to 0), p (opt, default to 1), q (opt, 10), v(opt, 0.5), j(opt, -1), h(opt, 127), y (multiple inputs, a-type), z (multiple inputs, k-type), Z (multiple inputs, alternating k- and a-types), m (multiple inputs, i-type), M (multiple inputs, any type) and n (multiple inputs, odd number of inputs, i-type).

	I-time function (init), cast to (SUBR).

	K-rate function.

	A-rate function.

Since we have defined our output as “s”, the actual processing function called by csound will depend on the output type. For instance

k1 newopc kin1, kin2, i1

will use newopc_process_control(), whereas

a1 newopc kin1, kin2, i1

will use newopc_process_audio(). This type of code is found for instance in the oscillator opcodes, which can generate control or audio rate (but in that case, they actually produce a different output for each type of signal, unlike our example).

Finally, it is necessary to add, at the end of the opcode C code the LINKAGE macro, which defines some functions needed for the dynamic loading of the opcode.

Building opcodes

The plugin opcode is build as a dynamic module. All we need is to build the opcode as a dynamic library, as demonstrated by the examples below.

On OSX:

gcc -O2 -dynamiclib -o myopc.dylib opsrc.c -DUSE_DOUBLE
 -I/Library/Frameworks/CsoundLib64.framework/Headers

Linux:

gcc -O2 -shared -o myopc.so -fPIC opsrc.c -DUSE_DOUBLE
 -I<path to Csound headers>

Windows (MinGW+MSYS):

gcc -O2 -shared -o myopc.dll opsrc.c -DUSE_DOUBLE
 -I<path to Csound headers>

CSD Example

To run Csound with the new opcodes, we can use the --opcode-lib=libname option.

<CsoundSynthesizer>
<CsOptions>
--opcode-lib=newopc.so ; OSX: newopc.dylib; Windows: newopc.dll
</CsOptions>
<CsInstruments>

schedule 1,0,100,440

instr 1

asig newopc 0, 0.001, 1
ksig newopc 1, 0.001, 1.5
aosc oscili 1000, p4*ksig
 out aosc*asig

endin

</CsInstruments>
</CsoundSynthesizer>
;example by victor lazzarini

	 For UDOs compare chapter 03 G↩︎

 ch071.xhtml

14 A. METHODS OF WRITING CSOUND SCORES

Although the use of Csound real-time has become more prevalent and arguably more important whilst the use of the score has diminished and become less important, composing using score events within the Csound score remains an important bedrock to working with Csound. There are many methods for writing Csound score several of which are covered here; starting with the classical method of writing scores by hand, then with the definition of a user-defined score language, and concluding several external Csound score generating programs.

Writing Score by Hand

In Csound’s original incarnation the orchestra and score existed as separate text files. This arrangement existed partly in an attempt to appeal to composers who had come from a background of writing for conventional instruments by providing a more familiar paradigm. The three unavoidable attributes of a note event - which instrument plays it, when, and for how long - were hardwired into the structure of a note event through its first three attributes or “p-fields”. All additional attributes (p4 and beyond), for example: dynamic, pitch, timbre, were left to the discretion of the composer, much as they would be when writing for conventional instruments. It is often overlooked that when writing score events in Csound we define start times and durations in beats. It just so happens that 1 beat defaults to a duration of 1 second leading to the consequence that many Csound users spend years thinking that they are specifying note events in terms of seconds rather than beats. This default setting can easily be modified and manipulated as shown later on.

The most basic score event as described above might be something like this:

 i 1 0 5

which would demand that instrument number 1 play a note at time zero (beats) for 5 beats. After time of constructing a score in this manner it quickly becomes apparent that certain patterns and repetitions recur. Frequently a single instrument will be called repeatedly to play the notes that form a longer phrase therefore diminishing the worth of repeatedly typing the same instrument number for p1, an instrument may play a long sequence of notes of the same duration as in a phrase of running semiquavers rendering the task of inputting the same value for p3 over and over again slightly tedious and often a note will follow on immediately after the previous one as in a legato phrase intimating that the p2 start-time of that note might better be derived from the duration and start-time of the previous note by the computer than to be figured out by the composer. Inevitably short-cuts were added to the syntax to simplify these kinds of tasks:

i 1 0 1 60
i 1 1 1 61
i 1 2 1 62
i 1 3 1 63
i 1 4 1 64

could now be expressed as:

i 1 0 1 60
i . + 1 >
i . + 1 >
i . + 1 >
i . + 1 64

where . would indicate that that p-field would reuse the same p-field value from the previous score event, where +, unique for p2, would indicate that the start time would follow on immediately after the previous note had ended and > would create a linear ramp from the first explicitly defined value (60) to the next explicitly defined value (64) in that p-field column (p4).

A more recent refinement of the p2 shortcut allows for staccato notes where the rhythm and timing remain unaffected. Each note lasts for 1/10 of a beat and each follows one second after the previous.

i 1 0 .1 60
i . ^+1 . >
i . ^+1 . >
i . ^+1 . >
i . ^+1 . 64

The benefits offered by these short cuts quickly becomes apparent when working on longer scores. In particular the editing of critical values once, rather than many times is soon appreciated.

Taking a step further back, a myriad of score tools, mostly also identified by a single letter, exist to manipulate entire sections of score. As previously mentioned Csound defaults to giving each beat a duration of 1 second which corresponds to this t statement at the beginning of a score:

t 0 60

“At time (beat) zero set tempo to 60 beats per minute”; but this could easily be anything else or evena string of tempo change events following the format of a linsegb statement.

t 0 120 5 120 5 90 10 60

This time tempo begins at 120bpm and remains steady until the 5th beat, whereupon there is an immediate change to 90bpm; thereafter the tempo declines in linear fashion until the 10th beat when the tempo has reached 60bpm.

m statements allow us to define sections of the score that might be repeated (s statements marking the end of that section). n statements referencing the name given to the original m statement via their first parameter field will call for a repetition of that section.

m verse
i 1 0 1 60
i . ^+1 . >
i . ^+1 . >
i . ^+1 . >
i . ^+1 . 64
s
n verse
n verse
n verse

Here a verse section is first defined using an m section (the section is also played at this stage). s marks the end of the section definition and n recalls this section three more times.

Just a selection of the techniques and shortcuts available for hand-writing scores have been introduced here (refer to the Csound Reference Manual for a more encyclopedic overview). It has hopefully become clear however that with a full knowledge and implementation of these techniques the user can adeptly and efficiently write and manipulate scores by hand.

Extension of the Score Language: bin=“…”

It is possible to pass the score as written through a pre-processor before it is used by Csound to play notes. instead it can be first interpretted by a binary (application), which produces a usual csound score as a result. This is done by the statement bin="..." in the <CsScore> tag. What happens?

	If just a binary is specified, this binary is called and two files are passed to it:

	A copy of the user written score. This file has the suffix .ext

	An empty file which will be read after the interpretation by Csound. This file has the usual score suffix .sco

	If a binary and a script is specified, the binary calls the script and passes the two files to the script.

If you have Python installed on your computer, you should be able to run the following examples. They do actually nothing but print the arguments (= file names).

Calling a binary without a script

EXAMPLE 14A01_Score_bin.csd

<CsoundSynthesizer>
<CsInstruments>
instr 1
endin
</CsInstruments>
<CsScore bin="python3">
from sys import argv
print("File to read = '%s'" % argv[0])
print("File to write = '%s'" % argv[1])
</CsScore>
</CsoundSynthesizer>

When you execute this .csd file in the terminal, your output should include something like this:

File to read = '/tmp/csound-idWDwO.ext'
File to write = '/tmp/csound-EdvgYC.sco'

And there should be a complaint because the empty .sco file has not been written:

cannot open scorefile /tmp/csound-EdvgYC.sco

Calling a binary and a script

To test this, first save this file as print.py in the same folder where your .csd examples are:

from sys import argv
print("Script = '%s'" % argv[0])
print("File to read = '%s'" % argv[1])
print("File to write = '%s'" % argv[2])

Then run this csd:

EXAMPLE 14A02_Score_bin_script.csd

<CsoundSynthesizer>
<CsInstruments>
instr 1
endin
</CsInstruments>
<CsScore bin="python3 print.py">
</CsScore>
</CsoundSynthesizer>

The output should include these lines:

Script = 'print.py'
File to read = '/tmp/csound-jwZ9Uy.ext'
File to write = '/tmp/csound-NbMTfJ.sco'

And again a complaint about the invalid score file:

cannot open scorefile /tmp/csound-NbMTfJ.sco

CsBeats

As an alternative to the classical Csound score, CsBeats is included with Csound. This is a domain specific language tailored to the concepts of beats, rhythm and standard western notation. To use Csbeat, specify “csbeats” as the CsScore bin option in a Csound unified score file.

<CsScore bin="csbeats">

For more information, refer to the Csound Manual.

Scripting Language Examples

The following example uses a perl script to allow seeding options in the score. A random seed can be set as a comment; like ;;SEED 123. If no seed has been set, the current system clock is used. So there will be a different value for the first three random statements, while the last two statements will always generate the same values.

EXAMPLE 14A03_Score_perlscript.csd

<CsoundSynthesizer>
<CsInstruments>
;example by tito latini

instr 1
 prints "amp = %f, freq = %f\n", p4, p5;
endin

</CsInstruments>
<CsScore bin="perl cs_sco_rand.pl">

i1 0 .01 rand() [200 + rand(30)]
i1 + . rand() [400 + rand(80)]
i1 + . rand() [600 + rand(160)]
;; SEED 123
i1 + . rand() [750 + rand(200)]
i1 + . rand() [210 + rand(20)]
e

</CsScore>
</CsoundSynthesizer>

cs_sco_rand.pl
my ($in, $out) = @ARGV;
open(EXT, "<", $in);
open(SCO, ">", $out);

while (<EXT>) {
 s/SEED\s+(\d+)/srand($1);$&/e;
 s/rand\(\d*\)/eval $&/ge;
 print SCO;
}

Pysco

Pysco is a modular Csound score environment for event generation, event processing, and the fashioning musical structures in time. Pysco is non-imposing and does not force composers into any one particular compositional model; Composers design their own score frameworks by importing from existing Python libraries, or fabricate their own functions as needed. It fully supports the existing classical Csound score, and runs inside a unified CSD file. The sources are on github, so although the code is still using Python2, it can certainly serve as an example about the possibilities of using Python as score scripting language.

Pysco is designed to be a giant leap forward from the classical Csound score by leveraging Python, a highly extensible general-purpose scripting language. While the classical Csound score does feature a small handful of score tricks, it lacks common computer programming paradigms, offering little in terms of alleviating the tedious process of writing scores by hand. Python plus the Pysco interface transforms the limited classical score into highly flexible and modular text-based compositional environment.

Transitioning away from the Classical Csound Score

Only two changes are necessary to get started. First, the optional bin argument for the CsScore tag needs to specify “python pysco.py” . Second, all existing classical Csound score code works when placed inside the score() function.

<CsScore bin="python pysco.py">

score('''
f 1 0 8192 10 1
t 0 144
i 1 0.0 1.0 0.7 8.02
i 1 1.0 1.5 0.4 8.05
i 1 2.5 0.5 0.3 8.09
i 1 3.0 1.0 0.4 9.00
''')

</CsScore>

Boiler plate code that is often associated with scripting and scoring, such as file management and string concatenation, has been conveniently factored out.

The last step in transitioning is to learn a few of Python or Pysco features. While Pysco and Python offers an incredibly vast set of tools and features, one can supercharge their scores with only a small handful.

Managing Time with the cue()

The cue() object is the Pysco context manager for controlling and manipulating time in a score. Time is a fundamental concept in music, and the cue() object elevates the role of time to that of other control such as if and for statements, synthesizing time into the form of the code.

In the classical Csound score model, there is only the concept of beats. This forces composers to place events into the global timeline, which requires an extra added incovenience of calculating start times for individual events. Consider the following code in which measure 1 starts at time 0.0 and measure 2 starts at time 4.0.

; Measure 1
i 1 0.0 1.0 0.7 8.02
i 1 1.0 1.5 0.4 8.05
i 1 2.5 0.5 0.3 8.09
i 1 3.0 1.0 0.4 9.00

; Measure 2
i 1 4.0 1.0 0.7 8.07
i 1 5.0 1.5 0.4 8.10
i 1 6.5 0.5 0.3 9.02
i 1 7.0 1.0 0.4 9.07

In an ideal situation, the start times for each measure would be normalized to zero, allowing composers to think local to the current measure rather than the global timeline. This is the role of Pysco's cue() context manager. The same two measures in Pysco are rewritten as follows:

Measure 1
with cue(0):
 score('''
 i 1 0.0 1.0 0.7 8.02
 i 1 1.0 1.5 0.4 8.05
 i 1 2.5 0.5 0.3 8.09
 i 1 3.0 1.0 0.4 9.00
 ''')

Measure 2
with cue(4):
 score('''
 i 1 0.0 1.0 0.7 8.07
 i 1 1.0 1.5 0.4 8.10
 i 1 2.5 0.5 0.3 9.02
 i 1 3.0 1.0 0.4 9.07
 ''')

The start of measure 2 is now 0.0, as opposed to 4.0 in the classical score environment. The physical layout of these time-based block structure also adds visual cues for the composer, as indentation and with cue() statements adds clarity when scanning a score for a particular event.

Moving events in time, regardless of how many there are, is nearly effortless. In the classical score, this often involves manually recalculating entire columns of start times. Since the cue() supports nesting, it's possible and rather quite easy, to move these two measures any where in the score with a new with cue() statement.

Movement 2
with cue(330):
 # Measure 1
 with cue(0):
 i 1 0.0 1.0 0.7 8.02
 i 1 1.0 1.5 0.4 8.05
 i 1 2.5 0.5 0.3 8.09
 i 1 3.0 1.0 0.4 9.00

 #Measure 2
 with cue(4):
 i 1 0.0 1.0 0.7 8.07
 i 1 1.0 1.5 0.4 8.10
 i 1 2.5 0.5 0.3 9.02
 i 1 3.0 1.0 0.4 9.07

These two measures now start at beat 330 in the piece. With the exception of adding an extra level of indentation, the score code for these two measures are unchanged.

Generating Events

Pysco includes two functions for generating a Csound score event. The score() function simply accepts any and all classical Csound score events as a string. The second is event_i(), which generates a properly formatted Csound score event. Take the following Pysco event for example:

event_i(1, 0, 1.5, 0.707 8.02)

The event_i() function transforms the input, outputting the following Csound score code:

i 1 0 1.5 0.707 8.02

These event score functions combined with Python’s extensive set of features aid in generating multiple events. The following example uses three of these features: the for statement, range(), and random().

from random import random

score('t 0 160')

for time in range(8):
 with cue(time):
 frequency = 100 + random() * 900
 event_i(1, 0, 1, 0.707, frequency)

Python’s for statement combined with range() loops through the proceeding code block eight times by iterating through the list of values created with the range() function. The list generated by range(8) is:

[0, 1, 2, 3, 4, 5, 6, 7]

As the script iterates through the list, variable time assumes the next value in the list; The time variable is also the start time of each event. A hint of algorithmic flair is added by importing the random() function from Python’s random library and using it to create a random frequency between 100 and 1000 Hz. The script produces this classical Csound score:

t 0 160
i 1 0 1 0.707 211.936363038
i 1 1 1 0.707 206.021046104
i 1 2 1 0.707 587.07781543
i 1 3 1 0.707 265.13585797
i 1 4 1 0.707 124.548796225
i 1 5 1 0.707 288.184408335
i 1 6 1 0.707 396.36805871
i 1 7 1 0.707 859.030151952

Processing Events

Pysco includes two functions for processing score event data called p_callback() and pmap(). The p_callback() is a pre-processor that changes event data before it’s inserted into the score object while pmap() is a post-processor that transforms event data that already exists in the score.

p_callback(event_type, instr_number, pfield, function, *args)
pmap(event_type, instr_number, pfield, function, *args)

The following examples demonstrates a use case for both functions. The p_callback() function pre-processes all the values in the pfield 5 column for instrument 1 from conventional notation (D5, G4, A4, etc) to hertz. The pmap() post-processes all pfield 4 values for instrument 1, converting from decibels to standard amplitudes.

p_callback('i', 1, 5, conv_to_hz)

score('''
t 0 120
i 1 0 0.5 -3 D5
i 1 + . . G4
i 1 + . . A4
i 1 + . . B4
i 1 + . . C5
i 1 + . . A4
i 1 + . . B4
i 1 + . . G5
''')

pmap('i', 1, 4, dB)

The final output is:

f 1 0 8192 10 1
t 0 120
i 1 0 0.5 0.707945784384 587.329535835
i 1 + . . 391.995435982
i 1 + . . 440.0
i 1 + . . 493.883301256
i 1 + . . 523.251130601
i 1 + . . 440.0
i 1 + . . 493.883301256
i 1 + . . 783.990871963

CMask

CMask is an application that produces score files for Csound, i.e. lists of notes or rather events. Its main application is the generation of events to create a texture or granular sounds. The program takes a parameter file as input and makes a score file that can be used immediately with Csound.

The basic concept in CMask is the tendency mask. This is an area that is limited by two time variant boundaries. This area describes a space of possible values for a score parameter, for example amplitude, pitch, pan, duration etc. For every parameter of an event (a note statement pfield in Csound) a random value will be selected from the range that is valid at this time.

There are also other means in CMask for the parameter generation, for example cyclic lists, oscillators, polygons and random walks. Each parameter of an event can be generated by a different method. A set of notes / events generated by a set of methods lasting for a certain time span is called a field.

A CMask example: creation of a dynamic texture

{
f1 0 8193 10 1 ;sine wave
}

f 0 20 ;field duration: 20 secs

p1 const 1
p2 ;decreasing density
rnd uni ;from .03 - .08 sec to .5 - 1 sec
mask [.03 .5 ipl 3] [.08 1 ipl 3] map 1
prec 2
p3 ;increasing duration
rnd uni mask [.2 3 ipl 1] [.4 5 ipl 1]
prec 2

p4 ;narrowing frequency grid
rnd uni mask [3000 90 ipl 1] [5000 150 ipl 1] map 1
quant [400 50] .95
prec 2
p5 ;FM index gets higher from 2-4 to 4-7
rnd uni mask [2 4] [4 7]
prec 2

p6 range 0 1 ;panorama position uniform distributed
prec 2 ;between left and right

The output is:

f1 0 8193 10 1 ;sine wave

; ------- begin of field 1 --- seconds: 0.00 - 20.00 --------
;ins time dur p4 p5 p6

i1 0 0.37 3205.55 3.57 0.8
i1 0.07 0.24 3190.83 3.55 0.28
i1 0.12 0.3 3589.39 2.74 0.51
i1 0.2 0.38 3576.81 3.46 0.14
i1 0.25 0.2 3158.89 2.3 0.8
i1 0.28 0.28 2775.01 2.25 1
........
........
........
i1 18.71 4.32 145.64 5.75 0.27
i1 19.12 3.27 129.68 5.27 0.3
i1 19.69 4.62 110.64 6.87 0.65

; ------- end of field 1 --- number of events: 241 -------

Cmask can be downloaded for MacOS9, Win, Linux (by André Bartetzki) and is ported to OSX(by Anthony Kozar).

nGen

nGen is a free multi-platform generation tool for creating Csound event-lists (score files) and standard MIDI files. It is written in C and runs on a variety of platforms (version 2.1.2 is currently available for OSX 10.5 and above, Linux Intel and Windows 7+). All versions run in the UNIX command-line style (at a command-line shell prompt). nGen was designed and written by composer Mikel Kuehn and was inspired in part by the basic syntax of Aleck Brinkman’s Score11 note list preprocessor (Score11 is available for Linux Intel from the Eastman Computer Music Center) and Leland Smith’s Score program.

nGen will allow you to do several things with ease that are either difficult or not possible using Csound and/or MIDI sequencing programs; nGen is a powerful front-end for creating Csound score-files and basic standard MIDI files. Some of the basic strengths of nGen are:

	Event-based granular textures can be generated quickly. Huge streams of values can be generated with specific random-number distributions (e.g., Gaussian, flat, beta, exponential, etc.).

	Note-names and rhythms can be entered in intuitive formats (e.g., pitches: C4, Df3; rhythms: 4, 8, 16, 32).

	“Chords” can be specified as a single unit (e.g., C4:Df:E:Fs). Textual and numeric macros are available.

Additionally, nGen supplies a host of conversion routines that allow p-field data to be converted to different formats in the resulting Csound score file (e.g., octave.pitch-class can be formatted to Hz values, etc.). A variety of formatting routines are also supplied (such as the ability to output floating-point numbers with a certain precision width).

nGen is a portable text-based application. It runs on most platforms (Windows, Mac, Linux, Irix, UNIX, etc.) and allows for macro- and micro-level generation of event-list data by providing many dynamic functions for dealing with statistical generation (such as interpolation between values over the course of many events, varieties of pseudo-random data generation, p-field extraction and filtering, 1/f data, the use of “sets” of values, etc.) as well as special modes of input (such as note-name/octave-number, reciprocal duration code, etc.). Its memory allocation is dynamic, making it useful for macro-level control over huge score-files. In addition, nGen contains a flexible text-based macro pre-processor (identical to that found in recent versions of Csound), numeric macros and expressions, and also allows for many varieties of data conversion and special output formatting. nGen is command-line based and accepts an ASCII formatted text-file which is expanded into a Csound score-file or a standard MIDI file. It is easy to use and is extremely flexible making it suitable for use by those not experienced with high-level computer programming languages.

*** An example of simple granular synthesis with wave forms ***

;These lines go directly to the output file
>f1 0 16384 10 1 ;sine wave
>f2 0 16384 10 1 0 .5 0 .25 0 .125 0 .0625 ;odd partials (dec.)
>f3 0 16384 10 1 .5 .25 .125 .0625 ;decreasing strength
>f4 0 16384 10 1 1 1 1 1 ;pulse
>f5 0 16384 10 1 0 1 0 1 ;odd
>f82 0 16385 20 2 1 ;grain envelope

#define MAX #16000# ;a macro for the maximum amplitude

i1 = 7 0 10 {
 p2 .01 ;intervalic start time

 /* The duration of each event slowly changes over time starting at 20 the
 initial start time interval to 1x the ending start-time interval. The "T"
 variable is used to control the duration of both move statements (50% of
 the entire i-block duration). */
 p3 mo(T*.5 1. 20 1) mo(T*.5 1. 1 10)

 /* Amplitude gets greater in the center to compensate for shorter grains
 the MAX macro (see above) is used to set the high range anchor. */
 p4 rd(.1) mo(T*.5, 1. E 0 $MAX) mo(T*.5 1. E $MAX 0)

 /* Frequency: moves logarithmically from 3000 to a range between 100 and
 200 then exponentially up to a range between 1000 and 4000. The "T"
 variable is again used to specify a percentage of the iblock's total
 duration. If you try to compile this as a MIDI file, all of the Herz
 values will turn into MIDI note numbers through VALUE % 128 -- rapidly
 skimming over the entire keyboard... */
 p5 rd(0) mo(T*.4 1. l 3000 [100 200]) \
 mo(T*.6 1. e [100 200] [1000 4000])

 /* Spatial placement: 25% hard-left 25% hard-right 50% a Gaussian value
 (near the middle). */
 p6(re2) ra(10 .25 0 .25 1 .5 [g 0 1])
 p7(in) se(T 1. [1 2 3 4 5]) ;select different wave-form function #s
}

The output is:

f1 0 16384 10 1 ;sine wave
f2 0 16384 10 1 0 .5 0 .25 0 .125 0 .0625 ;odd partials (dec.)
f3 0 16384 10 1 .5 .25 .125 .0625 ;decreasing strength
f4 0 16384 10 1 1 1 1 1 ;pulse
f5 0 16384 10 1 0 1 0 1 ;odd
f82 0 16385 20 2 1 ;grain envelope
;I-block #1 (i1):
i1 0.000 0.200 0.000 3000.000 0.00 3
i1 0.010 0.200 0.063 2673.011 0.79 3
i1 0.020 0.199 0.253 2468.545 1.00 2
i1 0.030 0.199 0.553 2329.545 1.00 5
i1 0.040 0.198 1.033 2223.527 1.00 2
i1 0.050 0.198 1.550 2160.397 0.50 4
........
........
........
i1 9.970 0.100 127.785 2342.706 0.48 1
i1 9.980 0.100 64.851 3200.637 1.00 1
i1 9.990 0.100 0.000 3847.285 1.00 2

e

nGen for Mac, Windows and Linux can be downloaded here

AthenaCL

The athenaCL system is a software tool for creating musical structures. Music is rendered as a polyphonic event list, or an EventSequence object. This EventSequence can be converted into diverse forms, or OutputFormats, including scores for the Csound synthesis language, Musical Instrument Digital Interface (MIDI) files, and other specialized formats. Within athenaCL, Orchestra and Instrument models provide control of and integration with diverse OutputFormats. Orchestra models may include complete specification, at the code level, of external sound sources that are created in the process of OutputFormat generation.

The athenaCL system features specialized objects for creating and manipulating pitch structures, including the Pitch, the Multiset (a collection of Pitches), and the Path (a collection of Multisets). Paths define reusable pitch groups. When used as a compositional resource, a Path is interpreted by a Texture object (described below).

The athenaCL system features three levels of algorithmic design. The first two levels are provided by the ParameterObject and the Texture. The ParameterObject is a model of a low-level one-dimensional parameter generator and transformer. The Texture is a model of a multi-dimensional generative musical part. A Texture is controlled and configured by numerous embedded ParameterObjects. Each ParameterObject is assigned to either event parameters, such as amplitude and rhythm, or Texture configuration parameters. The Texture interprets ParameterObject values to create EventSequences. The number of ParameterObjects in a Texture, as well as their function and interaction, is determined by the Texture’s parent type (TextureModule) and Instrument model. Each Texture is an instance of a TextureModule. TextureModules encode diverse approaches to multi-dimensional algorithmic generation. The TextureModule manages the deployment and interaction of lower level ParameterObjects, as well as linear or non-linear event generation. Specialized TextureModules may be designed to create a wide variety of musical structures.

The third layer of algorithmic design is provided by the Clone, a model of the multi-dimensional transformative part. The Clone transforms EventSequences generated by a Texture. Similar to Textures, Clones are controlled and configured by numerous embedded ParameterObjects.

Each Texture and Clone creates a collection of Events. Each Event is a rich data representation that includes detailed timing, pitch, rhythm, and parameter data. Events are stored in EventSequence objects. The collection all Texture and Clone EventSequences is the complete output of athenaCL. These EventSequences are transformed into various OutputFormats for compositional deployment.

AthenaCL can be downloaded here.

Common Music

Common Music is a music composition system that transforms high-level algorithmic representations of musical processes and structure into a variety of control protocols for sound synthesis and display. It generates musical output via MIDI, OSC, CLM, FOMUS and CSOUND. Its main user application is Grace (Graphical Realtime Algorithmic Composition Environment) a drag-and-drop, cross-platform app implemented in JUCE (C++) and S7 Scheme. In Grace musical algorithms can run in real time, or faster-than-real time when doing file-based composition. Grace provides two coding languages for designing musical algorithms: S7 Scheme, and SAL, an easy-to-learn but expressive algol-like language.

Some of the features:

	Runs on Mac, Windows and Linux

	Two coding languages for designing algorithms: S7 Scheme and SAL (an easy-to-learn alternate)

	Data visualization

Common Music 3 can be downloaded here.

 ch072.xhtml

14 B. PYTHON IN CSOUNDQT

If CsoundQt is built with PythonQt support,1 it enables a lot of new possibilities, mostly in three main fields: interaction with the CsoundQt interface, interaction with widgets and using classes from Qt libraries to build custom interfaces in python.

If you start CsoundQt and can open the panels Python Console and Python Scratch Pad, you are ready to go.

The CsoundQt Python Object

As CsoundQt has formerly been called QuteCsound, this name can still be found in the sources. The QuteCsound object (called PyQcsObject in the sources) is the interface for scripting CsoundQt. All declarations of the class can be found in the file pyqcsobject.h in the sources.

It enables the control of a large part of CsoundQt’s possibilities from the python interpreter, the python scratchpad, from scripts or from inside of a running Csound file via Csound’s python opcodes.2

By default, a PyQcsObject is already available in the python interpreter of CsoundQt called “q”. To use any of its methods, we can use a form like

q.stopAll()

The methods can be divided into four groups:

	access CsoundQt’s interface (open or close files, start or stop performance etc)

	edit Csound files which has already been opened as tabs in CsoundQt

	manage CsoundQt’s widgets

	interface with the running Csound engine

File and Control Access

If you have CsoundQt running on your computer, you should type the following code examples in the Python Console (if only one line) or the Python Scratch Pad (if more than one line of code).3

Create or Load a csd File

Type q.newDocument('cs_floss_1.csd') in your Python Console and hit the Return key. This will create a new csd file named cs_floss_1.csd in your working directory. And it also returns an integer (in the screenshot below: 3) as index for this file.

If you close this file and then execute the line q.loadDocument('cs_floss_1.csd'), you should see the file again as tab in CsoundQt.

Let us have a look how these two methods newDocument and loadDocument are described in the sources:

int newDocument(QString name)
int loadDocument(QString name, bool runNow = false)

The method newDocument needs a name as string (“QString”) as argument, and returns an integer. The method loadDocument also takes a name as input string and returns an integer as index for this csd. The additional argument runNow is optional. It expects a boolean value (True/False or 1/0). The default is false which means “do not run immediately after loading”. So if you type instead q.loadDocument('cs_floss_1.csd', True) or q.loadDocument('cs_floss_1.csd', 1), the csd file should start immediately.

Run, Pause or Stop a csd File

For the next methods, we first need some more code in our csd. So let your cs_floss_1.csd look like this:

EXAMPLE 14B01_run_pause_stop.csd

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
0dbfs = 1
nchnls = 1

giSine ftgen 0, 0, 1024, 10, 1

instr 1
kPitch expseg 500, p3, 1000
aSine poscil .2, kPitch, giSine
 out aSine
endin
</CsInstruments>
<CsScore>
i 1 0 10
</CsScore>
</CsoundSynthesizer>

This instrument performs a simple pitch glissando from 500 to 1000 Hz in ten seconds. Now make sure that this csd is the currently active tab in CsoundQt, and execute this:

 q.play()

This starts the performance. If you do nothing, the performance will stop after ten seconds. If you type instead after some seconds

 q.pause()

the performance will pause. The same task q.pause() will resume the performance. Note that this is different from executing q.play() after q.pause() ; this will start a new performance. With

q.stop()

you can stop the current performance.

Access to Different csd Tabs via Indices

The play(), pause() and stop() method, as well as other methods in CsoundQt’s integrated Python, allow also to access csd file tabs which are not currently active. As we saw in the creation of a new csd file by q.newDocument('cs_floss_1.csd'), each of them gets an index. This index allows universal access to all csd files in a running CsoundQt instance.

First, create a new file cs_floss_2.csd, for instance with this code:

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
0dbfs = 1
nchnls = 1

giSine ftgen 0, 0, 1024, 10, 1

instr 1
kPitch expseg 500, p3, 1000
aSine poscil .2, kPitch, giSine
 out aSine
endin
</CsInstruments>
<CsScore>
i 1 0 10
</CsScore>
</CsoundSynthesizer>

Now get the index of these two tabs in executing q.getDocument('cs_floss_1.csd') and q.getDocument('cs_floss_2.csd') . This will show something like this:

So in my case the indices are 3 and 4.4 Now you can start, pause and stop any of these files with tasks like these:

q.play(3)
q.play(4)
q.stop(3)
q.stop(4)

If you have checked Allow simultaneous play in CsoundQt’s Configure->General …

.. you should be able to run both csds simultaneously. To stop all running files, use:

q.stopAll()

To set a csd as active, use setDocument(index). This will have the same effect as clicking on the tab.

Send Score Events

Now comment out the score line in the file cs_floss_2.csd, or simply remove it. When you now start Csound, this tab should run. Now execute this command:

q.sendEvent('i 1 0 2')

This should trigger instrument 1 for two seconds.

Query File Name or Path

In case you need to know the name5 or the path of a csd file, you have these functions:

getFileName()
getFilePath()

Calling the method without any arguments, it refers to the currently active csd. An index as argument links to a specific tab. Here is a Python code snippet which returns indices, file names and file paths of all tabs in CsoundQt:

index = 0
while q.getFileName(index):
 print 'index = %d' % index
 print ' File Name = %s' % q.getFileName(index)
 print ' File Path = %s' % q.getFilePath(index)
 index += 1

Which returns for instance:

index = 0
File Name = /home/jh/Joachim/Stuecke/30Carin/csound/130328.csd
File Path = /home/jh/Joachim/Stuecke/30Carin/csound
index = 1
File Name = /home/jh/src/csoundmanual/examples/transegr.csd
File Path = /home/jh/src/csoundmanual/examples
index = 2
File Name = /home/jh/Desktop/test.csd
File Path = /home/jh/Desktop

Get and Set csd Text

One of the main features of Python scripting in CsoundQt is the ability to edit any section of a csd file. There are several get functions, to query text, and also set functions to change or insert text.

Get Text from a csd File

Make sure your cs_floss_2.csd is the active tab, and execute the following python code lines:

q.getCsd()
q.getOrc()
q.getSco()

You will get the full visible csd, the orc or the sco part as a unicode string.

You can also get the text for the <CsOptions>, the text for CsoundQt’s widgets and presets, or the full text of this csd:

q.getOptionsText()
q.getWidgetsText()
q.getPresetsText()
q.getFullText()

If you select some text or some widgets, you will get the selection with these commands:

q.getSelectedText()
q.getSelectedWidgetsText()

As usual, you can specify any of the loaded csds via its index. So calling q.getOrc(3) instead of q.getOrc() will return the orc text of the csd with index 3, instead of the orc text of the currently active csd.

Set Text in a csd File

Set the cursor anywhere in your active csd, and execute the following line in the Python Console:

q.insertText('my nice insertion')

You will see your nice insertion in the csd file. In case you do not like it, you can choose Edit->Undo. It does not make a difference for the CsoundQt editor whether the text has been typed by hand, or by the internal Python script facility.

Text can also be inserted to individual sections using the functions:

setCsd(text)
setFullText(text)
setOrc(text)
setSco(text)
setWidgetsText(text)
setPresetsText(text)
setOptionsText(text)

Note that the whole section will be overwritten with the string text.

Opcode Exists

You can ask whether a string is an opcode name, or not, with the function opcodeExtists, for instance:

py> q.opcodeExists('line')
True
py> q.opcodeExists('OSCsend')
True
py> q.opcodeExists('Line')
False
py> q.opcodeExists('Joe')
NotYet

Example: Score Generation

A typical application for setting text in a csd is to generate a score. There have been numerous tools and programs to do this, and it can be very pleasant to use CsoundQt’s Python scripting for this task. Let us modify our previous instrument first to make it more flexible:

EXAMPLE 14B02_score_generated.csd

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
0dbfs = 1
nchnls = 1

giSine ftgen 0, 0, 1024, 10, 1

instr 1
iOctStart = p4 ;pitch in octave notation at start
iOctEnd = p5 ;and end
iDbStart = p6 ;dB at start
iDbEnd = p7 ;and end
kPitch expseg cpsoct(iOctStart), p3, cpsoct(iOctEnd)
kEnv linseg iDbStart, p3, iDbEnd
aSine poscil ampdb(kEnv), kPitch, giSine
iFad random p3/20, p3/5
aOut linen aSine, iFad, p3, iFad
 out aOut
endin
</CsInstruments>
<CsScore>
i 1 0 10 ;will be overwritten by the python score generator
</CsScore>
</CsoundSynthesizer>

The following code will now insert 30 score events in the score section:

from random import uniform
numScoEvents = 30
sco = ''
for ScoEvent in range(numScoEvents):
 start = uniform(0, 40)
 dur = 2**uniform(-5, 3)
 db1, db2 = [uniform(-36, -12) for x in range(2)]
 oct1, oct2 = [uniform(6, 10) for x in range(2)]
 scoLine = 'i 1 %f %f %f %f %d %d\n' % (start,dur,oct1,oct2,db1,db2)
 sco = sco + scoLine
q.setSco(sco)

This generates a texture with either falling or rising gliding pitches. The durations are set in a way that shorter durations have a bigger probability than larger ones. The volume and pitch ranges allow many variations in the simple shape.

Widgets

Creating a Label

Click on the Widgets button to see the widgets panel. Then execute this command in the Python Console:

q.createNewLabel()

The properties dialog of the label pops up. Type Hello Label! or something like this as text.

When you click Ok, you will see the label widget in the panel, and a strange unicode string as return value in the Python Console:

The string u'{3a171aa2-4cf8-4f05-9f30-172863909f56}' is a “universally unique identifier” (uuid). Each widget can be accessed by this ID.

Specifying the Common Properties as Arguments

Instead of having a live talk with the properties dialog, we can specify all properties as arguments for the createNewLabel method:

q.createNewLabel(200, 100, "second_label")

This should be the result:

A new label has been created—without opening the properties dialog—at position x=200 y=1006 with the name second_label. If you want to create a widget not in the active document, but in another tab, you can also specify the tab index. The following command will create a widget at the same position and with the same name in the first tab:

q.createNewLabel(200, 100, "second_label", 0)

Setting the Specific Properties

Each widget has a xy position and a channel name.7 But the other properties depend on the type of widget. A Display has name, width and height, but no resolution like a SpinBox. The function setWidgetProperty refers to a widget via its ID and sets a property. Let us try this for a Display widget. This command creates a Display widget with channel name "disp_chan_01" at position x=50 y=150:

q.createNewDisplay(50, 150, "disp_chan_01")

And this sets the text to a new string:8

q.setWidgetProperty("disp_chan_01", "QCS_label", "Hey Joe!")

The setWidgetProperty method needs the ID of a widget first. This can be expressed either as channel name (disp_chan_01) as in the command above, or as uuid. As I got the string u'{a71c0c67-3d54-4d4a-88e6-8df40070a7f5}' as uuid, I can also write:

q.setWidgetProperty(u'{a71c0c67-3d54-4d4a-88e6-8df40070a7f5}',
 'QCS_label', 'Hey Joeboe!')

For humans, referring to the channel name as ID is certainly preferable.9 But as the createNew… method returns the uuid, you can use it implicitely, for instance in this command:

q.setWidgetProperty(q.createNewLabel(70, 70, "WOW"), "QCS_fontsize", 18)

Getting the Property Names and Values

How can we know that the visible text of a Display widget is called QCS_label and the fontsize QCS_fontsize? If we do not know the name of a property, we can ask CsoundQt for it via the function listWidgetProperties:

py> q.listWidgetProperties("disp_chan_01")
(u'QCS_x', u'QCS_y', u'QCS_uuid', u'QCS_visible', u'QCS_midichan',
 u'QCS_midicc', u'QCS_label', u'QCS_alignment', u'QCS_precision',
 u'QCS_font', u'QCS_fontsize', u'QCS_bgcolor', u'QCS_bgcolormode',
 u'QCS_color', u'QCS_bordermode', u'QCS_borderradius', u'QCS_borderwidth',
 u'QCS_width', u'QCS_height', u'QCS_objectName')

listWidgetProperties returns all properties in a tuple. We can query the value of a single property with the function getWidgetProperty, which takes the uuid and the property as inputs, and returns the property value. So this code snippet asks for all property values of our Display widget:

widgetID = "disp_chan_01"
properties = q.listWidgetProperties(widgetID)
for property in properties:
 propVal = q.getWidgetProperty(widgetID, property)
 print property + ' = ' + str(propVal)

Returns:

QCS_x = 50
QCS_y = 150
QCS_uuid = {a71c0c67-3d54-4d4a-88e6-8df40070a7f5}
QCS_visible = True
QCS_midichan = 0
QCS_midicc = -3
QCS_label = Hey Joeboe!
QCS_alignment = left
QCS_precision = 3
QCS_font = Arial
QCS_fontsize = 10
QCS_bgcolor = #ffffff
QCS_bgcolormode = False
QCS_color = #000000
QCS_bordermode = border
QCS_borderradius = 1
QCS_borderwidth = 1
QCS_width = 80
QCS_height = 25
QCS_objectName = disp_chan_01

Get the UUIDs of all Widgets

For getting the uuid strings of all widgets in the active csd tab, type

q.getWidgetUuids()

As always, the uuid strings of other csd tabs can be accessed via the index.

Some Examples for Creating and Modifying Widgets

Create a new slider with the channel name level at position 10,10 in the (already open but not necessarily active) document test.csd:

q.createNewSlider(10, 10, "level", q.getDocument("test.csd"))

Create ten knobs with the channel names partial_1, partial_2 etc, and the according labels amp_part_1, amp_part_2 etc in the currently active document:

for no in range(10):
 q.createNewKnob(100*no, 5, "partial_"+str(no+1))
 q.createNewLabel(100*no+5, 90, "amp_part_"+str(no+1))

Alternatively, you can store the uuid strings while creating:

knobs, labels = [], []
for no in range(10):
 knobs.append(q.createNewKnob(100*no, 5, "partial_"+str(no+1)))
 labels.append(q.createNewLabel(100*no+5, 90, "amp_part_"+str(no+1)))

The variables knobs and labels now contain the IDs:

py> knobs
[u'{8d10f9e3-70ce-4953-94b5-24cf8d6f6adb}',
u'{d1c98b52-a0a1-4f48-9bca-bac55dad0de7}',
u'{b7bf4b76-baff-493f-bc1f-43d61c4318ac}',
u'{1332208d-e479-4152-85a8-0f4e6e589d9d}',
u'{428cc329-df4a-4d04-9cea-9be3e3c2a41c}',
u'{1e691299-3e24-46cc-a3b6-85fdd40eac15}',
u'{a93c2b27-89a8-41b2-befb-6768cae6f645}',
u'{26931ed6-4c28-4819-9b31-4b9e0d9d0a68}',
u'{874beb70-b619-4706-a465-12421c6c8a85}',
u'{3da687a9-2794-4519-880b-53c2f3b67b1f}']
py> labels
[u'{9715ee01-57d5-407d-b89a-bae2fc6acecf}',
u'{71295982-b5e7-4d64-9ac5-b8fbcffbd254}',
u'{09e924fa-2a7c-47c6-9e17-e710c94bd2d1}',
u'{2e31dbfb-f3c2-43ab-ab6a-f47abb4875a3}',
u'{adfe3aef-4499-4c29-b94a-a9543e54e8a3}',
u'{b5760819-f750-411d-884c-0bad16d68d09}',
u'{c3884e9e-f0d8-4718-8fcb-66e82456f0b5}',
u'{c1401878-e7f7-4e71-a097-e92ada42e653}',
u'{a7d14879-1601-4789-9877-f636105b552c}',
u'{ec5526c4-0fda-4963-8f18-1c7490b0a667}'

Move the first knob 200 pixels downwards:

q.setWidgetProperty(knobs[0], "QCS_y", q.getWidgetProperty(knobs[0],
"QCS_y")+200)

Modify the maximum of each knob so that the higher partials have less amplitude range (set maximum to 1, 0.9, 0.8, … 0.1):

for knob in range(10):
 q.setWidgetProperty(knobs[knob], "QCS_maximum", 1-knob/10.0)

Deleting widgets

You can delete a widget using the method destroyWidget. You have to pass the widget’s ID, again either as channel name or (better) as uuid string. This will remove the first knob in the example above:

q.destroyWidget("partial_1")

This will delete all knobs:

for w in knobs:
 q.destroyWidget(w)

And this will delete all widgets of the active document:

for w in q.getWidgetUuids():
 q.destroyWidget(w)

Getting and Setting Channel Names and Values

After this cruel act of destruction, let us again create a slider and a display:

py> q.createNewSlider(10, 10, "level")
u'{b0294b09-5c87-4607-afda-2e55a8c7526e}'
py> q.createNewDisplay(50, 10, "message")
u'{a51b438f-f671-4108-8cdb-982387074e4d}'

Now we will ask for the values of these widgets10 with the methods getChannelValue and getChannelString:

py> q.getChannelValue('level')
0.0
py> q.getChannelString("level")
u''
py> q.getChannelValue('message')
0.0
py> q.getChannelString('message')
u'Display'

As you see, it depends on the type of the widget whether to query its value by getChannelValue or getChannelString. Although CsoundQt will not return an error, it makes no sense to ask a slider for its string (as its value is a number), and a display for its number (as its value is a string).

With the methods setChannelValue and setChannelString we can change the main content of a widget very easily:

py> q.setChannelValue("level", 0.5)
py> q.setChannelString("message", "Hey Joe again!")

This is much more handy than the general method using setWidgetProperty:

py> q.setWidgetProperty("level", "QCS_value", 1)
py> q.setWidgetProperty("message", "QCS_label", "Nono")

Presets

Now right-click in the widget panel and choose Store Preset -> New Preset:

You can (but need not) enter a name for the preset. The important thing here is the number of the preset (here 0). - Now change the value of the slider and the text of the display widget. Save again as preset, now being preset 1. - Now execute this:

q.loadPreset(0)

You will see the content of the widgets reloaded to the first preset. Again, with

q.loadPreset(1)

you can switch to the second one.

Like all python scripting functions in CsoundQt, you can not only use these methods from the Python Console or the Python Scratch Pad, but also from inside any csd. This is an example how to switch all the widgets to other predefined states, in this case controlled by the score. You will see the widgets for the first three seconds in Preset 0, then for the next three seconds in Preset 1, and finally again in Preset 0:

EXAMPLE 14B03_presets.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>

pyinit

instr loadPreset
 index = p4
 pycalli "q.loadPreset", index
endin

</CsInstruments>
<CsScore>
i "loadPreset" 0 3 0
i "loadPreset" + . 1
i "loadPreset" + . 0
</CsScore>
</CsoundSynthesizer>
;example by tarmo johannes and joachim heintz

Csound Functions

Several functions can interact with the Csound engine, for example to query information about it. Note that the functions getSampleRate, getKsmps, getNumChannels and getCurrentCsound refer to a running instance of Csound.

py> q.getVersion() # CsoundQt API version
u'1.0'
py> q.getSampleRate()
44100.0
py> q.getKsmps()
32
py> q.getNumChannels()
1
py> q.getCurrentCsound()
CSOUND (C++ object at: 0x2fb5670)

With getCsChannel, getCsStringChannel and setCsChannel you can access csound channels directly, independently from widgets. They are useful when testing a csd for use with the Csound API (in another application, a csLapdsa or Cabbage plugin, Android application) or similar. These are some examples, executed on a running csd instance:

py> q.getCsChannel('my_num_chn')
0.0
py> q.getCsStringChannel('my_str_chn')
u''

py> q.setCsChannel('my_num_chn', 1.1)
py> q.setCsChannel('my_str_chn', 'Hey Csound')

py> q.getCsChannel('my_num_chn')
1.1
py> q.getCsStringChannel('my_str_chn')
u'Hey Csound'

If you have a function table in your running Csound instance which has for instance been created with the line giSine ftgen 1, 0, 1024, 10, 1, you can query getTableArray like this:

py> q.getTableArray(1)
MYFLT (C++ object at: 0x35d1c58)

Finally, you can register a Python function as a callback to be executed in between processing blocks for Csound. The first argument should be the text that should be called on every pass. It can include arguments or variables which will be evaluated every time. You can also set a number of periods to skip to avoid.

registerProcessCallback(QString func, int skipPeriods = 0)

You can register the python text to be executed on every Csound control block callback, so you can execute a block of code, or call any function which is already defined.

Creating Own GUIs with PythonQt

One of the very powerful features of using Python inside CsoundQt is the ability to build own GUIs. This is done via the PythonQt library which gives you access to the Qt toolkit via Python. We will show some examples here. Have a look in the Scripts menu in CsoundQt to find much more (you will find the code in the Editor submenu).

Dialog Box

Sometimes it is practical to ask from user just one question - number or name of something and then execute the rest of the code (it can be done also inside a csd with python opcodes). In Qt, the class to create a dialog for one question is called QInputDialog.

To use this or any other Qt classes, it is necessary to import the PythonQt and its Qt submodules. In most cases it is enough to add this line:

from PythonQt.Qt import *

or

from PythonQt.QtGui import *

At first an object of QInputDialog must be defined, then you can use its methods getInt, getDouble, getItem or getText to read the input in the form you need. This is a basic example:

from PythonQt.Qt import *

inpdia = QInputDialog()
myInt = inpdia.getInt(inpdia,"Example 1","How many?")
print myInt
example by tarmo johannes

Note that the variable myInt is now set to a value which remains in your Python interpreter. Your Python Console may look like this when executing the code above, and then ask for the value of myInt:

py>
12
Evaluated 5 lines.
py> myInt
12

Depending on the value of myInt, you can do funny or serious things. This code re-creates the Dialog Box whenever the user enters the number 1:

from PythonQt.Qt import *

def again():
 inpdia = QInputDialog()
 myInt = inpdia.getInt(inpdia,"Example 1","How many?")
 if myInt == 1:
 print "If you continue to enter '1'"
 print "I will come back again and again."
 again()
 else:
 print "Thanks - Leaving now."
again()
example by joachim heintz

A simple example follows showing how an own GUI can be embedded in your Csound code. Here, Csound waits for the user input, and then prints out the entered value as the Csound variable giNumber:

EXAMPLE 14B04_dialog.csd

<CsoundSynthesizer>
<CsOptions>
-n
</CsOptions>
<CsInstruments>
ksmps = 32

pyinit
pyruni {{
from PythonQt.Qt import *
dia = QInputDialog()
dia.setDoubleDecimals(4)
}}

giNumber pyevali {{
dia.getDouble(dia,"CS question","Enter number: ")
}} ; get the number from Qt dialog

instr 1
 print giNumber
endin

</CsInstruments>
<CsScore>
i 1 0 0
</CsScore>
</CsoundSynthesizer>
;example by tarmo johannes

More complex examples can be found in CsoundQt’s Scripts menu.

List of PyQcsObject Methods in CsoundQt

Load/Create/Activate a csd File

int loadDocument(QString name, bool runNow = false)
int getDocument(QString name = "")
int newDocument(QString name)
void setDocument(int index)

Play/Pause/Stop a csd File

void play(int index = -1, bool realtime = true)
void pause(int index = -1)
void stop(int index = -1)
void stopAll()

Send Score Events

void sendEvent(int index, QString events)
void sendEvent(QString events)
void schedule(QVariant time, QVariant event)

Query File Name/Path

QString getFileName(int index = -1)
QString getFilePath(int index = -1)

Get csd Text

QString getSelectedText(int index = -1, int section = -1)
QString getCsd(int index = -1)
QString getFullText(int index = -1)
QString getOrc(int index = -1)
QString getSco(int index = -1)
QString getWidgetsText(int index = -1)
QString getSelectedWidgetsText(int index = -1)
QString getPresetsText(int index = -1)
QString getOptionsText(int index = -1)

Set csd Text

void insertText(QString text, int index = -1, int section = -1)
void setCsd(QString text, int index = -1)
void setFullText(QString text, int index = -1)
void setOrc(QString text, int index = -1)
void setSco(QString text, int index = -1)
void setWidgetsText(QString text, int index = -1)
void setPresetsText(QString text, int index = -1)
void setOptionsText(QString text, int index = -1)

Opcode Exists

bool opcodeExists(QString opcodeName)

Create Widgets

QString createNewLabel(
 int x = 0, int y = 0, QString channel = QString(), int index = -1
)
QString createNewDisplay(
 int x = 0, int y = 0, QString channel = QString(), int index = -1
)
QString createNewScrollNumber(
 int x = 0, int y = 0, QString channel = QString(), int index = -1
)
QString createNewLineEdit(
 int x = 0, int y = 0, QString channel = QString(), int index = -1
)
QString createNewSpinBox(
 int x = 0, int y = 0, QString channel = QString(), int index = -1
)
QString createNewSlider(
 QString channel, int index = -1
)
QString createNewSlider(
 int x = 0, int y = 0, QString channel = QString(), int index = -1
)
QString createNewButton(
 int x = 0, int y = 0, QString channel = QString(), int index = -1
)
QString createNewKnob(
 int x = 0, int y = 0, QString channel = QString(), int index = -1
)
QString createNewCheckBox(
 int x = 0, int y = 0, QString channel = QString(), int index = -1
)
QString createNewMenu(
 int x = 0, int y = 0, QString channel = QString(), int index = -1
)
QString createNewMeter(
 int x = 0, int y = 0, QString channel = QString(), int index = -1
)
QString createNewConsole(
 int x = 0, int y = 0, QString channel = QString(), int index = -1
)
QString createNewGraph(
 int x = 0, int y = 0, QString channel = QString(), int index = -1
)
QString createNewScope(
 int x = 0, int y = 0, QString channel = QString(), int index = -1
)

Query Widgets

QVariant getWidgetProperty(QString widgetid, QString property, int index= -1)
double getChannelValue(QString channel, int index = -1)
QString getChannelString(QString channel, int index = -1)
QStringList listWidgetProperties(QString widgetid, int index = -1)
QStringList getWidgetUuids(int index = -1)

Modify Widgets

void setWidgetProperty(
 QString widgetid, QString property, QVariant value, int index= -1
)
void setChannelValue(QString channel, double value, int index = -1)
void setChannelString(QString channel, QString value, int index = -1)

Delete Widgets

bool destroyWidget(QString widgetid)

Presets

void loadPreset(int presetIndex, int index = -1)

Live Event Sheet

QuteSheet* getSheet(int index = -1, int sheetIndex = -1)
QuteSheet* getSheet(int index, QString sheetName)

Csound / API

QString getVersion()
void refresh()
void setCsChannel(QString channel, double value, int index = -1)
void setCsChannel(QString channel, QString value, int index = -1)
double getCsChannel(QString channel, int index = -1)
QString getCsStringChannel(QString channel, int index = -1)
CSOUND* getCurrentCsound()
double getSampleRate(int index = -1)
int getKsmps(int index = -1)
int getNumChannels(int index = -1)
MYFLT *getTableArray(int ftable, int index = -1)
void registerProcessCallback(
 QString func, int skipPeriods = 0, int index = -1
)

	If not, have a look at the releases page. Python 2.7 must be installed, too. For building CsoundQt with Python support, have a look at the descriptions in CsoundQt’s Wiki.↩︎

	See chapter 12 B for more information on the python opcodes and ctcsound.↩︎

	To evaluate multiple lines of Python code in the Scratch Pad, choose either Edit->Evaluate Section (Alt+E), or select and choose Edit->Evaluate Selection (Alt+Shift+E).↩︎

	If you have less or more csd tabs already while creating the new files, the index will be lower or higher.↩︎

	Different to most usages, name means here the full path including the file name.↩︎

	Pixels from left and from top.↩︎

	Only a label does not have a channel name. So as we saw, in case of a label the name is its displayed text.↩︎

	For the main property of a widget (text for a Display, number for Sliders, SpinBoxes etc) you can also use the setChannelString and setChannelValue method. See below at Getting and Setting Channel Values↩︎

	 Note that two widgets can share the same channel name (for instance a slider and a spinbox). In this case, referring to a widget via its channel name is not possible at all.↩︎

	Here again accessed by the channel name. Of course accessing by uuid would also be possible (and more safe, as explained above).↩︎

 ch073.xhtml

14 C. AMPLITUDE AND PITCH TRACKING

Tracking the amplitude of an audio signal is a relatively simple procedure but simply following the amplitude values of the waveform is unlikely to be useful. An audio waveform will be bipolar, expressing both positive and negative values, so to start with, some sort of rectifying of the negative part of the signal will be required. The most common method of achieving this is to square it (raise to the power of 2) and then to take the square root. Squaring any negative values will provide positive results (-2 squared equals 4). Taking the square root will restore the absolute values.

An audio signal is an oscillating signal, periodically passing through amplitude zero but these zero amplitudes do not necessarily imply that the signal has decayed to silence as our brain perceives it. Some sort of averaging will be required so that a tracked amplitude of close to zero will only be output when the signal has settled close to zero for some time. Sampling a set of values and outputting their mean will produce a more acceptable sequence of values over time for a signal’s change in amplitude. Sample group size will be important: too small a sample group may result in some residual ripple in the output signal, particularly in signals with only low frequency content, whereas too large a group may result in a sluggish response to sudden changes in amplitude. Some judgement and compromise is required.

The procedure described above is implemented in the following example. A simple audio note is created that ramps up and down according to a linseg envelope. In order to track its amplitude, audio values are converted to k-rate values and are then squared, then square rooted and then written into sequential locations of an array 31 values long. The mean is calculated by summing all values in the array and divided by the length of the array. This procedure is repeated every k-cycle. The length of the array will be critical in fine tuning the response for the reasons described in the preceding paragraph. Control rate (kr) will also be a factor therefore is taken into consideration when calculating the size of the array. Changing control rate (kr) or number of audio samples in a control period (ksmps) will then no longer alter response behaviour.

EXAMPLE 14C01_Amplitude_Tracking_First_Principles.csd

<CsoundSynthesizer>
<CsOptions>
-dm128 -odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 16
nchnls = 2
0dbfs = 1

; a rich waveform
giwave ftgen 1,0, 512, 10, 1,1/2,1/3,1/4,1/5

instr 1
 ; create an audio signal
 aenv linseg 0,p3/2,1,p3/2,0 ; triangle shaped envelope
 aSig poscil aenv,300,giwave ; audio oscillator
 out aSig, aSig ; send audio to output

 ; track amplitude
 kArr[] init 500 / ksmps ; initialise an array
 kNdx init 0 ; initialise index for writing to array
 kSig downsamp aSig ; create k-rate version of audio signal
 kSq = kSig ^ 2 ; square it (negatives become positive)
 kRoot = kSq ^ 0.5 ; square root it (restore absolute values)
 kArr[kNdx] = kRoot ; write result to array
 kMean = sumarray(kArr) / lenarray(kArr) ; calculate mean of array
 printk 0.1,kMean ; print mean to console
; increment index and wrap-around if end of the array is met
 kNdx wrap kNdx+1, 0, lenarray(kArr)
endin

</CsInstruments>
<CsScore>
i 1 0 5
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

In practice it is not necessary for us to build our own amplitude tracker as Csound already offers several opcodes for the task. rms outputs a k-rate amplitude tracking signal by employing mathematics similar to those described above. follow outputs at a-rate and uses a sample and hold method as it outputs data, probably necessitating some sort of low-pass filtering of the output signal. follow2 also outputs at a-rate but smooths the output signal by different amounts depending on whether the amplitude is rising or falling.

A quick comparison of these three opcodes and the original method from first principles is given below:

The sound file used in all three comparisons is fox.wav which can be found as part of the Csound HTML Manual download. This sound is someone saying: “the quick brown fox jumps over the lazy dog”.

First of all by employing the technique exemplified in example 14C01, the amplitude following signal is overlaid upon the source signal:

It can be observed that the amplitude tracking signal follows the amplitudes of the input signal reasonably well. A slight delay in response at sound onsets can be observed as the array of values used by the averaging mechanism fills with appropriately high values. As discussed earlier, reducing the size of the array will improve response at the risk of introducing ripple. Another approach to dealing with the issue of ripple is to low-pass filter the signal output by the amplitude follower. This is an approach employed by the follow2 opcode. The second thing that is apparent is that the amplitude following signal does not attain the peak value of the input signal. At its peaks, the amplitude following signal is roughly 1/3 of the absolute peak value of the input signal. How close it gets to the absolute peak amplitude depends somewhat on the dynamic nature of the input signal. If an input signal sustains a peak amplitude for some time then the amplitude following signal will tend to this peak value.

The rms opcode employs a method similar to that used in the previous example but with the convenience of an encapsulated opcode. Its output superimposed upon the waveform is shown below:

Its method of averaging uses filtering rather than simply taking a mean of a buffer of amplitude values. rms allows us to set the cutoff frequency (kCf) of its internal filter:

kRms rms aSig, kCf

This is an optional argument which defaults to 10. Lowering this value will dampen changes in rms and smooth out ripple, raising it will improve the response but increase the audibility of ripple. A choice can be made based on some foreknowledge of the input audio signal: dynamic percussive input audio might demand faster response whereas audio that dynamically evolves gradually might demand greater smoothing.

The follow opcode uses a sample-and-hold mechanism when outputting the tracked amplitude. This can result in a stepped output that might require addition lowpass filtering before use. We actually defined the period, the duration for which values are held, using its second input argument. The update rate will be one over the period. In the following example the audio is amplitude tracked using the following line:

aRms follow aSig, 0.01

with the following result:

The hump over the word spoken during the third and fourth time divisions initially seem erroneous but it is a result of greater amplitude excursion into the negative domain. follow provides a better reflection of absolute peak amplitude.

follow2 uses a different algorithm with smoothing on both upward and downward slopes of the tracked amplitude. We can define different values for attack and decay time. In the following example the decay time is much longer than the attack time. The relevant line of code is:

iAtt = 0.04
iRel = 0.5
aTrk follow2 aSig, 0.04, 0.5

and the result of amplitude tracking is:

This technique can be used to extend the duration of short input sound events or triggers. Note that the attack and release times for follow2 can also be modulated at k-rate.

Dynamic Gating and Amplitude Triggering

Once we have traced the changing amplitude of an audio signal it is straightforward to use specific changes in that function to trigger other events within Csound. The simplest technique would be to simply define a threshold above which one thing happens and below which something else happens. A crude dynamic gating of the signal above could be implemented thus:

EXAMPLE 14C02_Simple_Dynamic_Gate.csd

<CsoundSynthesizer>
<CsOptions>
-dm128 -odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
; this is a necessary definition,
; otherwise amplitude will be -32768 to 32767

instr 1
 aSig diskin "fox.wav", 1 ; read sound file
 kRms rms aSig ; scan rms
 iThreshold = 0.1 ; rms threshold
 kGate = kRms > iThreshold ? 1 : 0 ; gate either 1 or zero
 aGate interp kGate ; interpolate to create smoother on->off->on switching
 aSig = aSig * aGate ; multiply signal by gate
 out aSig, aSig ; send to output
endin

</CsInstruments>
<CsScore>
i 1 0 10
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

Once a dynamic threshold has been defined, in this case 0.1, the RMS value is interrogated every k-cycle as to whether it is above or below this value. If it is above, then the variable kGate adopts a value of 1 (open) or if below, kGate is zero (closed). This on/off switch could just be multiplied to the audio signal to turn it on or off according to the status of the gate but clicks would manifest each time the gates opens or closes so some sort of smoothing or ramping of the gate signal is required. In this example I have simply interpolated it using the interp opcode to create an a-rate signal which is then multiplied to the original audio signal. This means that a linear ramp with be added across the duration of a k-cycle in audio samples – in this case 32 samples. A more elaborate approach might involve portamento and low-pass filtering.

The results of this dynamic gate are shown below:

The threshold is depicted as a red line. It can be seen that each time the RMS value (the black line) drops below the threshold the audio signal (blue waveform) is muted.

The simple solution described above can prove adequate in applications where the user wishes to sense sound event onsets and convert them to triggers but in more complex situations, in particular when a new sound event occurs whilst the previous event is still sounding and pushing the RMS above the threshold, this mechanism will fail. In these cases triggering needs to depend upon dynamic change rather than absolute RMS values. If we consider a two-event sound file where two notes sound on a piano, the second note sounding while the first is still decaying, triggers generated using the RMS threshold mechanism from the previous example will only sense the first note onset. (In the diagram below this sole trigger is illustrated by the vertical black line.) Raising the threshold might seem to be remedial action but is not ideal as this will prevent quietly played notes from generating triggers.

It will often be more successful to use magnitudes of amplitude increase to decide whether to generate a trigger or not. The two critical values in implementing such a mechanism are the time across which a change will be judged (iSampTim in the example) and the amount of amplitude increase that will be required to generate a trigger (iThresh). An additional mechanism to prevent double triggerings if an amplitude continues to increase beyond the time span of a single sample period will also be necessary. What this mechanism will do is to bypass the amplitude change interrogation code for a user-definable time period immediately after a trigger has been generated (iWait). A timer which counts elapsed audio samples (kTimer) is used to time how long to wait before retesting amplitude changes.

If we pass our piano sound file through this instrument, the results look like this:

This time we correctly receive two triggers, one at the onset of each note.

The example below tracks audio from the sound-card input channel 1 using this mechanism.

EXAMPLE 14C03_Dynamic_Trigger.csd

<CsoundSynthesizer>
<CsOptions>
-dm0 -iadc -odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1
 iThresh = 0.1 ; change threshold
 aSig inch 1 ; live audio in
 iWait = 1000 ; prevent repeats wait time (in samples)
 kTimer init 1001 ; initial timer value
 kRms rms aSig, 20 ; track amplitude
 iSampTim = 0.01 ; time across which change in RMS will be measured
 kRmsPrev delayk kRms, iSampTim ; delayed RMS (previous)
 kChange = kRms - kRmsPrev ; change
 if(kTimer>iWait) then ; if we are beyond the wait time...
 kTrig = kChange > iThresh ? 1 : 0 ; trigger if threshold exceeded
 kTimer = kTrig == 1 ? 0 : kTimer ; reset timer when a trigger generated
 else ; otherwise (we are within the wait time buffer)
 kTimer += ksmps ; increment timer
 kTrig = 0 ; cancel trigger
 endif
 schedkwhen kTrig,0,0,2,0,0.1 ; trigger a note event
endin

instr 2
 aEnv transeg 0.2, p3, -4, 0 ; decay envelope
 aSig poscil aEnv, 400 ; 'ping' sound indicator
 out aSig ; send audio to output
endin

</CsInstruments>
<CsScore>
i 1 0 [3600*24*7]
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

Pitch Tracking

Csound currently provides five opcode options for pitch tracking. In ascending order of newness they are: pitch, pitchamdf, pvspitch, ptrack and plltrack. Related to these opcodes are pvscent and centroid but rather than track the harmonic fundamental, they track the spectral centroid of a signal. An example and suggested application for centroid is given a little later on in this chapter.

Each offers a slightly different set of features – some offer simultaneous tracking of both amplitude and pitch, some only pitch tracking. None of these opcodes provide more than one output for tracked frequency therefore none offer polyphonic tracking although in a polyphonic tone the fundamental of the strongest tone will most likely be tracked. Pitch tracking presents many more challenges than amplitude tracking therefore a degree of error can be expected and will be an issue that demands addressing. To get the best from any pitch tracker it is important to consider preparation of the input signal – either through gating or filtering – and also processing of the output tracking data, for example smoothing changes through the use of filtering opcode such as port, median filtering to remove erratic and erroneous data and a filter to simply ignore obviously incorrect data. Parameters for these procedures will rely upon some prior knowledge of the input signal, the pitch range of an instrument for instance. A particularly noisy environment or a distant microphone placement might demand more aggressive noise gating. In general some low-pass filtering of the input signal will always help in providing a more stable frequency tracking signal. Something worth considering is that the attack portion of a note played on an acoustic instrument generally contains a lot of noisy, harmonically chaotic material. This will tend to result in slightly chaotic movement in the pitch tracking signal, we may therefore wish to sense the onset of a note and only begin tracking pitch once the sustain portion has begun. This may be around 0.05 seconds after the note has begun but will vary from instrument to instrument and from note to note. In general lower notes will have a longer attack. However we do not really want to overestimate the duration of this attack stage as this will result in a sluggish pitch tracker. Another specialised situation is the tracking of pitch in singing – we may want to gate sibilant elements (sss, t etc.). pvscent can be useful in detecting the difference between vowels and sibilants.

pitch is the oldest of the pitch tracking opcodes on offer and provides the widest range of input parameters.

koct, kamp pitch asig, iupdte, ilo, ihi, idbthresh [, ifrqs] [, iconf]
 [, istrt] [, iocts] [, iq] [, inptls] [, irolloff] [, iskip]

This makes it somewhat more awkward to use initially (although many of its input parameters are optional) but some of its options facilitate quite specialised effects. Firstly it outputs its tracking signal in oct format. This might prove to be a useful format but conversion to other formats is easy anyway. Apart from a number of parameters intended to fine tune the production of an accurate signal it allows us to specify the number of octave divisions used in quantising the output. For example if we give this a value of 12 we have created the basis of a simple chromatic autotune device. We can also quantise the procedure in the time domain using its update period input. Material with quickly changing pitch or vibrato will require a shorter update period (which will demand more from the CPU). It has an input control for threshold of detection which can be used to filter out and disregard pitch and amplitude tracking data beneath this limit. Pitch is capable of very good pitch and amplitude tracking results in real-time.

pitchamdf uses the so-called Average Magnitude Difference Function method. It is perhaps slightly more accurate than pitch as a general purpose pitch tracker but its CPU demand is higher.

pvspitch uses streaming FFT technology to track pitch. It takes an f-signal as input which will have to be created using the pvsanal opcode. At this step the choice of FFT size will have a bearing upon the performance of the pvspitch pitch tracker. Smaller FFT sizes will allow for faster tracking but with perhaps some inaccuracies, particularly with lower pitches whereas larger FFT sizes are likely to provide for more accurate pitch tracking at the expense of some time resolution. pvspitch tries to mimic certain functions of the human ear in how it tries to discern pitch. pvspitch works well in real-time but it does have a tendency to jump its output to the wrong octave – an octave too high – particularly when encountering vibrato.

ptrack also makes uses of streaming FFT but takes an normal audio signal as input, performing the FFT analysis internally. We still have to provide a value for FFT size with the same considerations mentioned above. ptrack is based on an algorithm by Miller Puckette, the co-creator of MaxMSP and creator of PD. ptrack also works well in real-time but it does have a tendency to jump to erroneous pitch tracking values when pitch is changing quickly or when encountering vibrato. Median filtering (using the mediank opcode) and filtering of outlying values might improve the results.

plltrack uses a phase-locked loop algorithm in detecting pitch. plltrack is another efficient real-time option for pitch tracking. It has a tendency to gliss up and down from very low frequency values at the start and end of notes, i.e. when encountering silence. This effect can be minimised by increasing its feedback parameter but this can also make pitch tracking unstable over sustained notes.

In conclusion, pitch is probably still the best choice as a general purpose pitch tracker, pitchamdf is also a good choice. pvspitch, ptrack and plltrack all work well in real-time but might demand additional processing to remove errors.

pvscent and centroid are a little different to the other pitch trackers in that, rather than try to discern the fundemental of a harmonic tone, they assess what the centre of gravity of a spectrum is. An application for this is in the identification of different instruments playing the same note. Softer, darker instruments, such as the french horn, will be characterised by a lower centroid to that of more shrill instruments, such as the violin.

Both opcodes use FFT. Centroid works directly with an audio signal input whereas pvscent requires an f-sig input. Centroid also features a trigger input which allows us to manually trigger it to update its output. In the following example we use centroid to detect individual drums sounds – bass drum, snare drum, cymbal – within a drum loop. We will use the dynamic amplitude trigger from earlier on in this chapter to detect when sound onsets are occurring and use this trigger to activate centroid and also then to trigger another instrument with a replacement sound. Each percussion instrument in the original drum loop will be replaced with a different sound: bass drums will be replaced with a kalimba/thumb piano sound, snare drums will be replaced by hand claps (a la TR-808), and cymbal sounds will be replaced with tambourine sounds. The drum loop used is beats.wav which can be found with the download of the Csound HTML manual (and within the Csound download itself). This loop is not ideal as some of the instruments coincide with one another – for example, the first consists of a bass drum and a snare drum played together. The beat replacer will inevitably make a decision one way or the other but is not advanced enough to detect both instruments playing simultaneously. The critical stage is the series of if … elseifs … at the bottom of instrument 1 where decisions are made about instruments’ identities according to what centroid band they fall into. The user can fine tune the boundary division values to modify the decision making process. centroid values are also printed to the terminal when onsets are detected which might assist in this fine tuning.

EXAMPLE 14C04_Drum_Replacement.csd

<CsoundSynthesizer>
<CsOptions>
-dm0 -odac
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

instr 1
 asig diskin "beats.wav",1

 iThreshold = 0.05
 iWait = 0.1*sr
 kTimer init iWait+1
 iSampTim = 0.02 ; time across which RMS change is measured
 kRms rms asig ,20
 kRmsPrev delayk kRms,iSampTim ; rms from earlier
 kChange = kRms - kRmsPrev ; change (+ve or -ve)

 if kTimer > iWait then ; prevent double triggerings
 ; generate a trigger
 kTrigger = kChange > iThreshold ? 1 : 0
 ; if trigger is generated, reset timer
 kTimer = kTrigger == 1 ? 0 : kTimer
 else
 kTimer += ksmps ; increment timer
 kTrigger = 0 ; clear trigger
 endif

 ifftsize = 1024
 ; centroid triggered 0.02 after sound onset to avoid noisy attack
 kDelTrig delayk kTrigger,0.02
 kcent centroid asig, kDelTrig, ifftsize ; scan centroid
 printk2 kcent ; print centroid values
 if kDelTrig==1 then
 if kcent>0 && kcent<2500 then ; first freq. band
 event "i","Cowbell",0,0.1
 elseif kcent<8000 then ; second freq. band
 event "i","Clap",0,0.1
 else ; third freq. band
 event "i","Tambourine",0,0.5
 endif
 endif
endin

instr Cowbell
 kenv1 transeg 1,p3*0.3,-30,0.2, p3*0.7,-30,0.2
 kenv2 expon 1,p3,0.0005
 kenv = kenv1*kenv2
 ipw = 0.5
 a1 vco2 0.65,562,2,0.5
 a2 vco2 0.65,845,2,0.5
 amix = a1+a2
 iLPF2 = 10000
 kcf expseg 12000,0.07,iLPF2,1,iLPF2
 alpf butlp amix,kcf
 abpf reson amix, 845, 25
 amix dcblock2 (abpf*0.06*kenv1)+(alpf*0.5)+(amix*0.9)
 amix buthp amix,700
 amix = amix*0.5*kenv
 out amix
endin

instr Clap
 if frac(p1)==0 then
 event_i "i", p1+0.1, 0, 0.02
 event_i "i", p1+0.1, 0.01, 0.02
 event_i "i", p1+0.1, 0.02, 0.02
 event_i "i", p1+0.1, 0.03, 2
 else
 kenv transeg 1,p3,-25,0
 iamp random 0.7,1
 anoise dust2 kenv*iamp, 8000
 iBPF = 1100
 ibw = 2000
 iHPF = 1000
 iLPF = 1
 kcf expseg 8000,0.07,1700,1,800,2,500,1,500
 asig butlp anoise,kcf*iLPF
 asig buthp asig,iHPF
 ares reson asig,iBPF,ibw,1
 asig dcblock2 (asig*0.5)+ares
 out asig
 endif
endin

instr Tambourine
 asig tambourine 0.3,0.01 ,32, 0.47, 0, 2300 , 5600, 8000
 out asig ;SEND AUDIO TO OUTPUTS
endin

</CsInstruments>
<CsScore>
i 1 0 10
</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

 ch074.xhtml

15 A. OPCODE GUIDE

If Csound is called from the command line with the option -z, a list of all opcodes is printed. The total number of all opcodes is more than 1500. There are already overviews of all of Csound’s opcodes in the Opcodes Overview and the Opcode Quick Reference of the Canonical Csound Manual.

This guide is another attempt to provide some orientation within Csound’s wealth of opcodes — a wealth which is often frightening for beginners and still overwhelming for experienced users.

Three selections are given here, each larger than the other:

1. The 33 Most Essential Opcodes. This selection might be useful for beginners. Learning ten opcodes a day, Csound can be learned in three days, and many full-featured Csound programs can be written with these 33 opcodes.

2. The Top 100 Opcodes. Adding 67 more opcodes to the first collection pushes the csound programmer to the next level. This should be sufficient for doing most of the jobs in Csound.

3. The third overview is rather extended already, and follows mostly the classification in the Csound Manual. It comprises nearly 500 opcodes.

Although these selections come from some experience in using and teaching Csound, they must remain subjective, as working in Csound can go in quite different directions.

33 ESSENTIAL OPCODES

Oscillators

poscil(3) — high precision oscillator with linear (cubic) interpolation

vco(2) — analog modelled oscillator

Noise and Random

rand — standard random (noise) generator

random — random numbers between min/max

randomi/randomh — random numbers between min/max with interpolating or hold segments

seed — set the global seed

Envelopes

linen(r) — linear fade in/out

Line Generators

linseg(r) — one or more linear segments

transeg(r) — one or more user-definable segments

Line Smooth

sc_lag(ud) — exponential lag (with different smoothing times)

(traditional alternatives are port(k) and tonek)

Sound Files / Samples

diskin — sound file read/playback with different options

Audio I/O

inch — read audio from one or more input channels

out — write audio to one or more output channels (starting from first hardware output)

Control

if — if clause

changed(2) — k-rate signal change detector

Instrument Control

schedule(k) — perform instrument event

turnoff(2) — turn off this or another instrument

Time

metro(2) — trigger metronome

Software Channels

chnset/chnget — set/get value in channel

MIDI

massign — assign MIDI channel to Csound instrument

notnum — note number received

veloc — velocity received

Key

sensekey — sense computer keyboard

Panning

pan2 — stereo panning with different options

Reverb

reverbsc — stereo reverb after Sean Costello

Delay

vdelayx — variable delay with highest quality interpolation

Distortion

distort(1) — distortion via waveshaping

Filter

butbp(hp/lp) — second order butterworth filter

Level

rms — RMS measurement

balance(2) — adjust audio signal level according to comparator

Math / Conversion

ampdb/dbamp — dB to/from amplitude

mtof/ftom — MIDI note number to/from frequency

Print

print(k) — print i/k-values

TOP 100 OPCODES

Oscillators / Phasors

poscil(3) — high precision oscillator with linear (cubic) interpolation

vco(2) — analog modelled oscillator

(g)buzz — buzzer

mpulse — single sample impulses

phasor — standard phasor

Noise and Random

rand — standard random (noise) generator

(bi)rnd — simple unipolar (bipolar) random generator

random — random numbers between min/max

randomi/randomh — random numbers between min/max with interpolation or hold numbers

seed — set the global seed

Envelopes

linen(r) — linear fade in/out

(m)adsr — traditional ADSR envelope

Line Generators

linseg(r) — one or more linear segments

expseg(r) — one or more exponential segments

cosseg — one or more cosine segments

transeg(r) — one or more user-definable segments

Line Smooth

sc_lag(ud) — exponential lag (with different smoothing times)

Sound Files / Samples

diskin — sound file read/playback with different options

mp3in — mp3 read/playback

loscil(3/x) — read sampled sound from a table

flooper(2) — crossfading looper

filescal/mincer — phase-locked vocoder processing with time and pitch scale

filelen — length of sound file

Audio I/O

inch — read audio from one or more input channels

out — write audio to one or more output channels (starting from first hardware output)

outch — write audio to arbitrary output channel(s)

monitor — monitor audio output channels

Tables (Buffers)

ftgen — create any table with a GEN subroutine

table(i/3) — read from table (with linear/cubic interpolation)

tablew — write data to a table

ftsamplebank — load files in a directory to tables

Arrays

fillarray — fill array with values

lenarray — length of array

getrow/getcol — get a row/column from a two-dimensional array

setrow/setcol — set a row/column of a two-dimensional array

Program Control

if — if clause

while — while loop

changed(2) — k-rate signal change detector

trigger — threshold trigger

Instrument Control

active — number of active instrument instances

maxalloc — set maximum number of instrument instances

schedule(k) — perform instrument event

turnoff(2) — turn off this or another instrument

nstrnum — number of a named instrument

Time

metro(2) — trigger metronome

timeinsts — time of instrument instance in seconds

Software Channels

chnget/chnset — get/set value from/to channel

chnmix/chnclear — mix value to channel / clear channel

MIDI

massign — assign MIDI channel to Csound instrument

notnum — note number received

veloc — velocity received

ctrl7(14/21) — receive controller

OSC

OSClisten — receive messages

OSCraw — listens to all messages

OSCsend — send messages

Key

sensekey — sense computer keyboard

Panning / Spatialization

pan2 — stereo panning with different options

vbap — vector base amplitude panning for multichannel (also 3d)

bformenc1/bformdec1 — B-format encoding/decoding

Reverb

freeverb — stereo reverb after Jezar

reverbsc — stereo reverb after Sean Costello

Spectral Processing

pvsanal — spectral analysis with audio signal input

pvstanal — spectral analysis from sampled sound

pvsynth — spectral resynthesis

pvscale — scale frequency components (pitch shift)

pvsmorph — morphing between two f-signals

pvsftw/pvsftr — write/read anplitude and/or frequency data to/from tables

pvs2array/pvsfromarray — write/read spectral data to/from arrays

Convolution

pconvolve — partitioned convolution

Granular Synthesis

partikkel — complete granular synthesis

Physical Models

pluck — plucked string (Karplus-Strong) algorithm

Delay

vdelayx — variable delay with highest quality interpolation

(v)comb — comb filter

Distortion

distort(1) — distortion via waveshaping

powershape — waveshaping by raising to a variable exponent

Filter

(a)tone — first order IIR low (high) pass filter

reson — second order resonant filter

butbp(hp/lp) — second order butterworth filter

mode — mass-spring system modelled

zdf_ladder — zero delay feedback implementation of 4 pole ladder filter

Level

rms — RMS measurement

balance(2) — adjust audio signal level according to comparator

Math / Conversion

ampdb/dbamp — dB to/from amplitude

mtof/ftom — MIDI note number to/from frequency

cent — cent to scaling factor

log2 — return 2 base log

abs — absolute value

int/frac — integer/fractional part

linlin — signal scaling

Amplitude / Pitch Tracking

follow(2) — envelope follower

ptrack — pitch tracking using STFT

Print

print(k) — print i/k-values

printarray — print array

ftprint — print table

File IO

fout — write out real-time audio output (for rendered audio file output see chapter 02E and 06A)

ftsave(k) — save table(s) to text file or binary

fprint(k)s — formatted printing to file

readf(i) — reads an external file line by line

directory — files in a directory as string array

Signal Type Conversion

i(k) / k(a) / a(k) — i-value from k-signal / k-signal from a-signal / a-signal from k-signal

 ch075.xhtml

EXTENDED OPCODE OVERVIEW IN CATEGORIES

I. AUDIO I/O AND SOUND FILES

AUDIO I/O

General Settings and Queries

Note that modern Csound frontends handle most of the Audio I/O settings. For command line usage, see this section in the Csound Options.

sr — set sample rate (default=44100)

ksmps — set block (audio vector) size (default=10) (setting to power-of-two (e.g. 32/64/128) is recommended)

nchnls — set number of I/O channels (default=1)

nchnls_i — set number of input channels if different from output

0dbfs — set zero dB full scale (default=32767) (setting 0dbfs=1 is strongly recommended)

nchnls_hw — report number of channels in hardware

setksmps — set local ksmps in User-Defined-Opcodes or instruments

Signal Input and Output

inch — read audio from one or more input channels

out — write audio to one or more output channels (starting from first hardware output)

outch — write audio to arbitrary output channel(s)

monitor — monitor audio output channels

SOUND FILES AND SAMPLES

Sound File Playback

diskin — sound file read/playback with different options

mp3in — mp3 read/playback

Sample Playback

(GEN01) — load file into table

loscil(3/x) — read sampled sound from a table

lposcil — read sampled sound with loops

flooper(2) — crossfading looper

Time Stretch and Pitch Shift

filescal — phase-locked vocoder processing with time and pitch scale

mincer — phase-locked vocoder processing on table loaded sound

mp3scal — tempo scaling of mp3 files

paulstretch — extreme time stretch

sndwarp(st) — granular-based time and pitch modification

NOTE that any granular synthesis opcode and some of the pvs opcodes (pvstanal, pvsbufred) can also be used for this approach

Soundfonts and Fluid Opcodes

see overview here

Sound File Queries

filelen — length of sound file

filesr — sample rate of sound file

filenchnls — number of channels in sound file

filepeak — peak in sound file

filebit — bit depth in sound file

filevalid — check whether file exists

mp3len — length of mp3 file

Directories

directory — files in a directory as string array

ftsamplebank — load files in a directory to tables

Sound File Output

fout — write out real-time audio output (for rendered audio file output see chapter 02E and 06A)

II. SIGNAL GENERATORS

OSCILLATORS AND PHASORS

Standard Oscillators

poscil(3) — high precision oscillator with linear (cubic) interpolation

oscili(3) — standard oscillator with linear (cubic) interpolation

lfo — low frequency oscillator of various shapes

oscilikt — interpolating oscillator with k-rate changeable tables

more … — more standard oscillators …

Note: oscil is not recommended as it has integer indexing which can result in low quality

Dynamic Spectrum Oscillators

(g)buzz — buzzer

mpulse — single sample impulses

vco(2) — analog modelled oscillator

squinewave — shape-shifting oscillator with hardsync

Phasors

phasor — standard phasor

syncphasor — phasor with sync I/O

ephasor — phasor with additional exponential decay output

sc_phasor — resettable phasor

RANDOM AND NOISE GENERATORS

Seed

seed — set the global seed

getseed — get the global seed

Noise Generators

rand — standard random (noise) generator

pinker — pinkt noise after Stefan Stenzel

pinkish — pink noise generator

fractalnoise — fractal noise generator

gauss(i) — Gaussian distribution random generator

gendy(c/x) — dynamic stochastic waveform synthesis conceived by Iannis Xenakis

General Random Generators

rnd — simple unipolar random generator

birnd — simple bipolar random generator

random — random numbers between min/max

rnd31 — random generator with controllable distributions

dust(2) — random impulses

gausstrig — random impulses around a frequency

lorenz — implements lorenz system of equations

urd — user-defined random distributions

Random Generators with Interpolating or Hold Numbers

randi(c) — bipolar random generator with linear (cubic) interpolation

randh — bipolar random generator with hold numbers

randomi — random numbers between min/max with interpolation

randomh — random numbers between min/max with hold numbers

more … — more random generators …

ENVELOPES AND LINES

Simple Standard Envelopes

linen — linear fade in/out

linenr — fade out at release

(x)adsr — ADSR envelope with linear (exponential) lines

m(x)adsr — ADSR for MIDI notes with linear (exponential) lines

more — more standard envelopes …

Envelopes by Linear and Exponential Generators

linseg — one or more linear segments

expseg — one or more exponential segments

transeg — one or more user-definable segments

linsegr — linear segments with final release segment

expsegr — exponential segments with release

transegr — user-definable segments with release

bpf — break point function with linear interpolation

jitter(2) — randomly segmented line

jspline — jitter-spline generated line

loopseg — loops linear segments

rspline — random spline curves

more — more envelope generators …

Signal Smooth

port(k) — portamento-like smoothing for control signals (with variable half-time)

sc_lag(ud) — exponential lag (with different smoothing times)

(t)lineto — generate glissando from control signal

PHYSICAL MODELS AND FM INSTRUMENTS

Waveguide Physical Modelling

see here and here

Frequency Modulation

foscili — basic FM oscillator

cross(p/f)m(i) — two mutually frequency and/or phase modulated oscillators

(see also chapter 04D)

FM Instrument Models

see here

III. SIGNAL MODIFIERS

DELAYS

Audio Delays

delay — simple constant audio delay

vdelay(3) — variable delay with linear (cubic) interpolation

vdelayx — variable delay with highest quality interpolation

vdelayxw — variable delay changing write rather than read position

delayr — establishe delay line and read from it

delayw — write into delay line

deltapxw — write into a delay line with high quality interpolation

deltap(i/3) — tap a delay line with linear (cubic) interpolation

deltapx — tap a delay line with highest quality interpolation

deltapn — tap a delay line at variable offsets

multitap — multiple tap delays with different gains

(v)comb — comb filter

Control Signal Delays

delayk — simple constant delay for k-signals

vdel_k — variable delay for k-signals

FILTERS

Compare the extensive Standard Filters and Specialized Filters overviews in the Csound Manual.

Low Pass Filters

tone — first order IIR filter

tonex — serial connection of several tone filters

butlp — second order IIR filter

clfilt — adjustable types and poles

High Pass Filters

atone — first order IIR filter

atonex — serial connection of several atone filters

buthp — second order IIR filer

clfilt — adjustable types and poles

dcblock(2) — removes DC offset

Band Pass And Resonant Filters

reson — second order resonant filter

resonx/resony — serial/parallel connection of several reson filters

resonr/resonz — variants of the reson filter

butbp — second order butterworth filter

mode — mass-spring system modelled

fofilter — formant filter

Band Reject Filters

areson — first order IIR filter

butbr — second order IIR filter

Equalizer

eqfil — equilizer filter

rbjeq — parametric equilizer and filter

exciter — non-linear filter to add brilliance

REVERB

freeverb — stereo reverb after Jezar

reverbsc — stereo reverb after Sean Costello

reverb — simple reverb

nreverb — reverb with adjustable number of units

babo — physical model reverberator

(v)alpass — reveberates with a flat frequency response

Note: Convolution reverb can be performed with pconvolve and similar opcodes.

DISTORTION AND SIMILAR MODIFICATIONS

Distortion and Wave Shaping

distort(1) — distortion via waveshaping

powershape — waveshaping by raising to a variable exponent

polynomial — polynominal over audio input signal

chebyshevpoly — chebyshev polynominals over audio input signal

fold — adds artificial foldover to an audio signal

pdclip — linear clipping of audio signal

Flanging, Phasing, Phase Shaping

flanger — flanger

phaser1(2) — first/second order allpass filters in series

pdhalf(y) — phase distortion synthesis

Sample Level Operations

samphold — performs sample-and-hold

vaget — audio vector read access

vaset — audio vector write access

framebuffer — reads/writes audio to/from array

shiftin/out — writes/reads the content of an audio variable to/from array

Other

doppler — doppler shift

diff — modify a signal by differentiation

integ — modify a signal by integration

mirror — reflects a signal which exceeds boundaries

select — select sample value based on audio-rate comparisons

wrap — wraps around a signal which exceeds boundaries

waveset — repeating cycles of input audio signal

sndloop — looping on audio input signal

mandel — Mandelbrot set formula for complex plane

SIGNAL MEASUREMENT AND DYNAMIC PROCESSING

Amplitude Measurement and Envelope Following

rms — RMS measurement

peak — maintains highest value received

max_k — local maximum/minimum of audio signal

follow(2) — envelopoe follower

vactrol — envelope follower

Pitch Estimation (Pitch Tracking)

ptrack — pitch tracking using STFT

pitch — pitch tracking using constant-Q DFT

pvspitch — pitch/amplitude tracking of a PVS signal

pvscent — spectral centroid of a PVS signal

Dynamic Processing

balance(2) — adjust audio signal level according to comparator

compress(2) — compress audio signal

dam — dynamic compressor/expander

clip — clips a signal to a predifined limit

limit(1) — sets lower and upper limit

SPATIALIZATION

Amplitude Panning

pan2 — stereo panning with different options

vbap — vector base amplitude panning for multichannel (also 3d)

Ambisonics

bformenc1 — B-format encoding

bformdec1 — B-format decoding

Binaural / HRTF

hrtfstat — static 3d binaural audio for headphones

hrtfmove(2) — dynamic 3d binaural audio

hrtfearly — early reflections in a HRTF room

hrtfreverb — binaural diffuse-field reverberator

Other

spat3d — positioning in 3d space with optional simulation of room acoustics

IV. GRANULAR SYNTHESIS AND SPECTRAL PROCESSING

GRANULAR SYNTHESIS

partikkel — complete granular synthesis

fof(2) — formant orientated granular synthesis

fog — fof synthesis with samples sound

diskgrain — synchronous granular synthesis with sound file

grain(2/3) — granular textures

granule — complex granular textures

syncgrain/syncloop — synchronous granular synthesis

others … — other granular synthesis opcodes …

(see also chapter 05G)

SPECTRAL PROCESSING WITH PVS OPCODES

Environment

pvsinit — initializes f-signal to zero

pvsinfo — get information about f-sig

pvsin — retrieve f-signal from input software bus

pvsout — writing f-signal to output software bus

Real-time Analysis and Resynthesis

pvsanal — spectral analysis with audio signal input

pvstanal — spectral analysis from sampled sound

pvstrace — retain only N loudest bins

pvsynth — spectral resynthesis

pvsadsyn — spectral resynthesis using fast oscillator bank

Writing Spectral Data to a File and Reading from it

pvsfwrite — writing f-sig to file

pvsfread — read f-sig data from a file loaded into memory

pvsdiskin — read f-sig data directly from disk

Writing Spectral Data to a Buffer or Array and Reading from it

pvsbuffer — create and write f-sig to circular buffer

pvsbufread(2) — read f-sig from pvsbuffer

pvsftw — write anplitude and/or frequency data to tables

pvsftr — read amplitude and/or frequency data from table

pvs2array(pvs2tab) — write spectral data to arrays

pvsfromarray(tab2pvs) — read spectral data from arrays

Processing Spectral Signals

pvsbin — obtain amp/freq from one bin

pvscent — spectral centroid of f-signal

pvsceps — cepstrum of f-signal

pvscale — scale frequency components (pitch shift)

pvshift — shift frequency compnents

pvsbandp — spectral band pass filter

pvsbandr — spectral band reject filter

pvsmix — mix two f-signals

pvscross — cross synthesis

pvsfilter — another cross synthesis

pvsvoc — phase vocoder

pvsmorph — morphing between two f-signals

pvsfreeze — freeze amp/freq time functions

pvsmaska — modify amplitudes using table

pvstencil — transform f-sig according to masking table

pvsarp — arpeggiate spectral components of f-sig

pvsblur — average amp/freq time functions

pvsmooth — smooth amp/freq time functions

pvslock — frequency lock input f-signal

pvswarp — warp the spectral envelope of an f-signal

OTHER SPECTRAL TRANSFORM

dct(inv) — (inverse) discrete cosine transformation

fft(inv) — (inverse) complex-to-complex FFT

r2c — real to complex conversion

mags — magnitudes of a complex-numbered array

phs — obtains phases of a complex-numbered array

pol2rect — polar to rectangular conversion of arrays

rect2pol — rectangular to polar format conversion

rfft — FFT of real-value array

rifft — complex-to-real inverse FFT

unwrap — unwraps phase values array

fmanal — AM/FM analysis from quadrature signal

hilbert(2) — Hilbert transform

mfb — mel scale filterbank for spectral magnitudes

CONVOLUTION

pconvolve — partitioned convolution

ftconv — table-based partitioned convolution

dconv — direct convolution

tvconv — time-varying convolution

V. DATA

BUFFERS / FUNCTION TABLES

Creating/Deleting Function Tables (Buffers)

ftgen — create any table with a GEN subroutine

GEN Routines — overview of subroutines

ftfree — delete function table

ftgenonce — create table inside an instrument

ftgentmp — create table bound to instrument instance

tableicopy — copy table from other table

copya2ftab — copy array to a function table

Writing to Tables

tablew — write data to a table

tablewkt — write to k-rate changeable tables

ftslice — copy a slice from one table to another table

modmatrix — modulation matrix reading from and writing to tables

ftmorf — morph between tables and write the result

Reading From Tables

table(i/3) — read from table (with linear/cubic interpolation)

tablexkt — reads function tables with linear/cubic/sinc interpolation

Saving Tables to Files

ftsave(k) — save table(s) to text file or binary

ftaudio — save table data to audio file

Loading Tables From Files

ftload(k) — load table(s) from file written with ftsave

GEN23 — read numeric values from a text file

GEN01 — load audio file into table

GEN49 — load mp3 sound file into table

Writing Tables to Arrays

copyf2array — copy function table to an array

tab2array — copy a slice from a table to an array

Table Queries

ftlen — length of a table

ftchnls — number of channels of a stored sound

ftsr — sample rate of a stored sound

nsamp — number of sample frames in a table

tabsum — sum of table values

getftargs — get arguments of table creation

ARRAYS

Creation

init — initiatlise array

fillarray — fill array with values

genarray(_i) — create array with artithmetic sequence

= — create or reset array as copy of another array

Analyse

lenarray — length of array

minarray — minimum value in array

maxarray — maximum value in array

sumarray — sum of values in array

cmp — compare two arrays

Content Modification

scalearray — scale values in an array

sorta(d) — sort an array in ascending (descending) order

limit(1) — limit array values

(de)interleave — combine/split arrays

Size Modification

slicearray — take slice of an array

trim(_i) — adjust size of one-dimensional array

Format Interchange

copya2ftab — copy array to a function table copyf2array — copy function table to an array

tab2array — copy a slice from a table to an array

pvs2array(pvs2tab) — write spectral data to arrays

pvsfromarray(tab2pvs) — read spectral data from arrays

Dimension Interchange

reshapearray — change dimensions of an array

getrow — get a row from a two-dimensional array

getcol — get a column from a two-dimensional array

setrow — set a row of a two-dimensional array

setcol — set a column of a two-dimensional array

getrowlin — copy a row from a 2D array and interpolate between rows

Functions

See chapter 03E for a list of mathematical function which can directly be applied to arrays.

STRINGS

Creation

= — direct assignment

sprintf(k) — string variable from format string

strget — string variable from strset number or p-field

strcpy(k) — string copy at i- or k-time

strsub — string as part of another string

String Queries

strcmp(k) — compare strings

strlen(k) — length of string

strindex(k) — first occurrence of string1 in string2

strrindex(k) — last occurrence of string1 in string2

strchar(k) — return ASCII code of character in string

String Manipulation

strcat(k) — concatenate strings

strstrip — removes white space from both ends of a string

strlower(k) — convert string to lower case

strupper(k) — convert string to upper case

Conversion and Assignment

S — number to string

strtod(k) — string to number

strset — link string with a numeric value

FILES

Note: for sound files see SOUND FILES AND SAMPLES

fprint(k)s — formatted printing to file

dumpk — write k-signal to file

hdf5write — write signals and arrays to hdf5 file

hdf5read — read signals and arrays from hdf5 file

readf(i) — reads an external file line by line

readk — read k-signal from file

VI. PROGRAM FLOW

INSTRUMENTS AND VARIABLES

Instances and Allocation

active — number of active instrument instances

maxalloc — set maximum number of instrument instances

prealloc — allocate memory before running an instrument

subinstr — instrument to be used as opcode

Variable Initialization and Conversion

init — inialize variables

reinit — re-initialize i-variable

i(k) — i-value from k-signal

k(a) — k-signal from a-signal

a(k) — a-signal from k-signal

On-the-fly Evaluation and Compilation

evalstr — evaluate Csound code as string

compilecsd — compile new instruments from csd file

compileorc — compile new instruments from raw orc file

compilestr — compile new instruments from string

Named Instruments

nstrnum — number of a named instrument

nstrstr — name of an instrument

TIME, CONDITIONS, LOOPS, SCORE ACCESS

Time Reading

times — absolute time in seconds

timek — absolute time in k-cycles

timeinsts — time of instrument instance in seconds

timeinstk — time of instrument instance in k-cycles

Conditions and Loops

if — if clause

(i/k)goto — jump in code

while — while loop

changed(2) — k-rate signal change detector

Score Parameter Access

p(index) — value in given p-field pset — inialize p-field values

passign — assign p-field values to variables or array

pcount — number of p-fields in instrument

EVENTS AND TRIGGERS

Events

schedule(k) — perform instrument event event(_i) — perform any score event

scoreline(_i) — perform score lines

sched(k)when(named) — perform score event by trigger

readscore — read and process score from input string

rewindscore — rewind playback position of current score

setscorepos — set score playback position

Trigger Generators

metro(2) — trigger metronome

trigger — threshold trigger

sc_trig — timed trigger

seqtime(2) — generates trigger according to values stored in a table

timedseq — time-variant sequencer

Terminate

turnoff — turn off this instrument instance

turnoff2 — turn off another instrument

mute — mute future instances of an instrument

remove — remove instrument definition

exitnow — exit Csound

PRINTING

Simple Printing

print — print i-values

printk — print k-values

printk2 — print k-values when changed

puts — print string

Formatted Printing

print(k)s — formatted printing

printf(_i) — formatted printing with trigger

Arrays and Tables

printarray — print array

ftprint — print table

SOFTWARE CHANNELS

Chn Opcodes

chn_k — declare k-signal channel

chn_a — declare a-signal channel

chn_S — declare string channel

chnset — set value in channel

chnget — get value from channel

chnmix — mix value to channel

chnclear — clear channel

chnseti/k/a/s — array based chnset

chngeti/k/a/s — array based chnget

Invalue / Outvalue

invalue — get value from channel

outvalue — set value to channel

Zak Patch System

see overview in the Csound Manual

Signal Flow Graph and Mixer

see here and here in the Csound Manual

MATHEMATICAL CALCULATIONS

Arithmetic Operations

+ — addition

- — subtraction

* — multiplication

/ — division

^ — power of

% — modulo

divz — safe division (avoids division by zero)

exp — e raised to x-th power

log(2/10) — logarithm (natural, 2, 10)

sqrt — square root

abs — absolute value

int — integer part

frac — fractional part

signum — signum function

round — round to nearest integer

ceil — round upwards

floor — round downwards

Trigonometric Functions

sin — sine

cos — cosine

tan — tangent

sinh — hyperbolic sine

cosh — hyperbolic cosine

tanh — hyperbolic tangent

sininv — arcsine

cosinv — arccosine

taninv(2) — arctangent

Comparisions

min — minimum of different i/k/a values

max — maximum of different i/k/a values

minabs — minimum of different absolute values/signals

maxabs — maximum of different absolute values/signals

ntropol — weighted mean of two values/signals

Logic Operators

&& — logical and

|| — logical or

Tests

qinf — question whether argument is infinite number

qnan — question whether argument is not a number

CONVERTERS

MIDI to/from Frequency

mtof — MIDI note number to frequency

ftom — frequency to MIDI note number

cpsmidinn — MIDI note number to frequency

mton — midi number to note name

ntom — note name to midi number

ntof — note name to frequency

Other Pitch Converters

cent — cent to scaling factor

octave — octave to scaling factor

octcps — frequency to octave-point-decimal

cpsoct — octave-point-decimal to frequency

cpspch — pitch-class to frequency

Amplitude Converters

ampdb(fs) — dB to amplitude (full scale)

db(fs)amp — amplitude to dB

Scaling

linlin — linear signal scaling

VII. PERIPHERALS AND CONNECTIONS

MIDI

Note: Modern frontends now usually handle MIDI input.

Assignments

massign — assign MIDI channel to Csound instrument

pgmassign — assign MIDI program to Csound instrument

Opcodes for Use in MIDI-Triggered Instruments

notnum — note number received

cpsmidi — frequency of note received

veloc — velocity received

ampmidi — velocity with scaling options

midichn — MIDI channel received

pchbend — pitch bend received

aftouch — after-touch received

polyaft — polyphonic after-touch received

Opcodes For Use In All Instruments

ctrl7(14/21) — receive controller

initc7(14/21) — initialize controller input

mclock — sends a MIDI clock message

mdelay — MIDI delay

MIDI Input and Output

midiin — generic MIDI messages received

midiout(_i) — MIDI message to MIDI Out port

midifilestatus — status of MIDI input file

midion — sends note on/off messages to MIDI Out port

more MIDI out opcodes

OPEN SOUND CONTROL AND NETWORK

Open Sound Control

OSCinit — initalize OSClisten port

OSCinitM — initializes multicast OSC listener

OSClisten — receive messages

OSCraw — listens to all messages

OSCsend — send messages

OSCbundle — send data in a bundle

OSCcount — report messages received but unread

Network Audio

socksend — send data

sockrecv — receive data

websocket — read and write signals and arrays

OTHER

Widgets

Note that GUI elements are provided by all frontends. Usage of the built-in FLTK widgets has limitations and is in general not recommended.

FLTK overview here

Keyboard

sensekey — sense computer keyboard

WII

wiiconnect — connect

wiidata — read

wiirange — set scaling and range limits

wiisend — send data

P5 Glove

p5gconnect — connect

p5gdata — read

Serial Opcodes

serialBegin — open a serial port

serialEnd — close a serial port

serialFlush — flush data from a serial port

serialPrint — print data from a serial port

serialRead — read data from a serial port

serialWrite(_i) — write data to a serial port

SYSTEM

getcfg — get configuration

system(_i) — call external program via system

pwd — print working directory

rtclock — read real time clock

date(s) — return date and time

PLUGINS

Python

pyinit — initialize Python interpreter

pyrun — run Python code

pyexec — execute script from file

pycall — write Python call to Csound variable

pyeval — evaluate Python expression and write to Csound variable

pyassign — assign Csound variable to Python variable

Faust

faustaudio — instantiate and run a faust program

faustcompile — invoke compiler

faustdsp — instantiate a faust program

faustctl — adjust a given control

faustgen — compile, instantiate and run a faust program

faustplay — run a faust program

Ladspa

dssiinit — load plugin

dssiactivate — (de)activate plugin

dssilist — list available plugins

dssiaudio — process audio using a plugin

dssictls — send control to plugin

This overview was compiled by Joachim Heintz in may 2020, based on Csound 6.14. Thanks to Tarmo Johannes, Victor Lazzarini, Gleb Rogozinsky, Steven Yi, Oeyvind Brandtsegg, Richard Boulanger, John ffitch, Luis Jure, Rory Walsh, Eduardo Moguillansky and others for their feedback which made the selections at least a tiny bit less subjective.

 ch076.xhtml

15 B. GLOSSARY

Math Symbols

Multiplication in formulars is usually denoted with the dot operator:

2⋅3=62 \cdot 3 = 6

In text, the * is also used (as in Csound and other programming languages), or with the cross x.

Proportionality is written as: ∝\propto.

Csound Terms

block size is the number of samples which are processed as vector or “block”. In Csound, we usually speak of ksmps: The number of samples in one control period.

control cycle, control period or k-loop is a pass during the performance of an instrument, in which all k- and a-variables are renewed. The time for one control cycle is measured in samples and determined by the ksmps constant in the orchestra header. For a sample rate of 44100 Hz and a ksmps value of 32, the time for one control cycle is 32/44100 = 0.000726 seconds. See the chapter about Initialization And Performance Pass for a detailed discussion.

control rate or k-rate (kr) is the number of control cycles per second. It can be calculated as the relationship of the sample rate sr and the number of samples in one control period ksmps. For a sample rate of 44100 Hz and a ksmps value of 32, the control rate is 1378.125, so 1378.125 control cycles will be performed in one second. (Note that this value is not necessarily an integer, whilst ksmps is always an integer.)

.csd file is a text file containing a Csound program to be compiled and run by Csound. This file format contains several sections or tags (similar to XML or HTML), amongst them the CsOptions (Csound options), the CsInstruments (a collection of the Csound instruments) and the CsScore (the Csound score).

DSP means Digital Signal Processing and is used as a general term to describe any modification we apply on sounds in the digital domain.

f-statement or function table statement is a score line which starts with "f" and generates a function table. See the chapter about function tables for more information. A dummy f-statement is a statement like "f 0 3600" which looks like a function table statement, but instead of generating any table, it serves just for running Csound for a certain time (here 3600 seconds = 1 hour). (This is usually not any more required since Csound now runs “endless” with empty score.)

frequency domain means to look at a signal considering its frequency components. The mathematical procedure to transform a time-domain signal into frequency-domain is called ""Fourier Transform**. See the chapters about Additive Synthesis and about Spectral Processing.

functional style is a way of coding where a function is written and the arguments of the function following in parentheses behind. Traditionally, Csound uses another convention to write code, but since Csound 6 functional style can be used as well. See the functional syntax chapter for more information.

GEN routine is a subroutine which generates a function table (mostly called buffer in other audio programming languages). GEN Routines are very different; they can load a sound file (GEN01), create segmented lines (GEN05 and others), composite waveforms (GEN10 and others), window functions (GEN20) or random distributions (GEN40). See the chapter about function tables and the Gen Routines Overview in the Csound Manual.

GUI Graphical User Interface refers to a system of on-screen sliders, buttons etc. used to interact with Csound, normally in real-time.

i-time or init-time or i-rate denotes the moment in which an instrument instance is initialized. In this initialization all variables starting with an "i" get their values. These values are just given once for an instrument call. See the chapter about Initialization And Performance Pass for more information.

k-loop see control cycle

k-time is the time during the performance of an instrument, after the initialization. Variables starting with a "k" can alter their values in each control cycle. See the chapter about Initialization And Performance Pass for more information.

k-rate see control rate

opcode is a basic unit in Csound to perform any job, for instance generate noise, read an audio file, create an envelope or oscillate through a table. In other audio programming languages it is called UGen (Unit Generator) or object. An opcode can also be compared to a build-in function (e.g. in Python), whereas a User Defined Opcode (UDO) can be compared to a function which is written by the user. For an overview, see the Opcode Guide.

options comprised as csound options and also called command line flags contain important decisions about how Csound has to run a .csd file. The -o option, for instance, tells Csound whether to output audio in realtime to the audio card, or to a sound file instead. See the overiew in the Csound Manual for a detailed list of these options. Options are usually specified in the CsOptions tag of a .csd file. Modern frontends mostly pass the options to Csound via their settings.

orchestra is a collection of Csound instruments in a program, or referring to the .csd file, the CsInstruments tag. The term is somehow outdated, as it points to the early years of Csound where an .orc file was separated from the .sco (score) file.

p-field refers to the score section of a .csd file. A p-field can be compared to a column in a spread sheet or table. An instrument, called by a line of score, receives any p-field parameter as p1, p2 etc: p1 will receive the parameter of the first column, p2 the parameter of the second column, and so on.

performance pass see control cycle

score as in the Csound score, is the section of Csound code where events are written in the score language (which is completely different from the Csound orchestra language). The main events are instrument event, where each line starts with the character i. Another type of events is the f event which creates a function table. In modern Csound usage the score can be omitted, as all score jobs can also be done from inside the Csound instruments. See the score chapter for more information.

time domain means to look at a signal considering the changes of amplitudes over time. It is the common way to plot audio signals (time as x-axis, amplitudes as y-axis).

time stretching can be done in various ways in Csound. See filescal, sndwarp, waveset, pvstanal mincer, pvsfread, pvsdiskin and the Granular Synthesis opcodes.

UDO or User-Defined Opcode is the definition of an opcode written in the Csound language itself. See the UDO chapter for more information.

widget normally refers to some sort of standard GUI element such as a slider or a button. GUI widgets normally permit some user modifications such as size, positioning colours etc. A variety of options are available for the creation of widgets usable by Csound, from its own built-in FLTK widgets to those provided by front-ends such as CsoundQt, Cabbage and Blue.

 ch077.xhtml

15 C. LINKS

Downloads

Csound FLOSS Manual Files: http://files.csound-tutorial.net/floss_manual/

Csound: http://csound.com/download.html

Csound source code: http://github.com/csound/csound

User Defined Opcodes for Csound: http://www.csounds.com/udo/ and http://github.com/csudo/csudo

CsoundQt: http://github.com/CsoundQt/CsoundQt/releases

Cabbage: http://cabbageaudio.com/

Blue: http://blue.kunstmusik.com/

WinXound: http://mnt.conts.it/winxound/

Community

The Csound commuity home page is the main place for news, basic infos, links and more.

The Csound Journal is a main source for different aspects of working with Csound.

Mailing Lists and Bug Tracker

Main place for questions and informations is the Csound Mailing List. To subscribe to the Csound User Discussion List, go to https://listserv.heanet.ie/cgi-bin/wa?A0=CSOUND. After subscribing, put questions at csound@listserv.heanet.ie. You can search in the list archive at nabble.com.

There is a Csound slack at https://csound.slack.com. Users can subscribe at https://csound-slack.herokuapp.com.

To subscribe to the CsoundQt User Discussion List, go to https://lists.sourceforge.net/lists/listinfo/qutecsound-users. You can browse the list archive here.

Csound Developer Discussions: https://listserv.heanet.ie/cgi-bin/wa?A0=CSOUND-DEV

Blue: http://sourceforge.net/mail/?group_id=74382

Cabbage http://forum.cabbageaudio.com/

Please report any bug you experienced in Csound at http://github.com/csound/csound/issues, and a CsoundQt related bug at http://sourceforge.net/tracker/?func=browse&group_id=227265&atid=1070588. Every bug report is an important contribution.

Tutorials

A Beginning Tutorial is a short introduction from Barry Vercoe, the “father of Csound”.

An Instrument Design TOOTorial by Richard Boulanger (1991) is another classical introduction, still very worth to read.

Introduction to Sound Design in Csound also by Richard Boulanger, is the first chapter of the famous Csound Book (2000).

Virtual Sound by Alessandro Cipriani and Maurizio Giri (2000)

A Csound Tutorial by Michael Gogins (2009), one of the main Csound Developers.

Video Tutorials

A playlist as overview by Alex Hofmann (some years ago):

http://www.youtube.com/view_play_list?p=3EE3219702D17FD3

CsoundQt (QuteCsound)

QuteCsound: Where to start?

http://www.youtube.com/watch?v=0XcQ3ReqJTM

First instrument:

http://www.youtube.com/watch?v=P5OOyFyNaCA

Using MIDI:

http://www.youtube.com/watch?v=8zszIN_N3bQ

About configuration:

http://www.youtube.com/watch?v=KgYea5s8tFs

Presets tutorial:

http://www.youtube.com/watch?v=KKlCTxmzcS0

http://www.youtube.com/watch?v=aES-ZfanF3c

Live Events tutorial:

http://www.youtube.com/watch?v=O9WU7DzdUmE

http://www.youtube.com/watch?v=Hs3eO7o349k

http://www.youtube.com/watch?v=yUMzp6556Kw

New editing features in 0.6.0:

http://www.youtube.com/watch?v=Hk1qPlnyv88

New features in 0.7.0:

https://www.youtube.com/watch?v=iytVlxMILyw

New features in 0.9.2:

https://youtu.be/q_1SUT1wD6o

Csoundo (Csound and Processing)

http://csoundblog.com/2010/08/csound-processing-experiment-i/

Open Sound Control in Csound

http://www.youtube.com/watch?v=JX1C3TqP_9Y

Csound and Inscore

http://vimeo.com/54160283 (installation)

http://vimeo.com/54160405 (examples)

german versions:

http://vimeo.com/54159567 (installation)

http://vimeo.com/54159964 (beispiele)

Csound Conferences

See the list at https://csound.com/conferences.html

Example Collections

Csound Realtime Examples by Iain McCurdy is certainly the most extended, approved and up-to-date collection.

The Amsterdam Catalog by John-Philipp Gather is particularily interesting because of the adaption of Jean-Claude Risset’s famous “Introductory Catalogue of Computer Synthesized Sounds” from 1969.

Books

Victor Lazzarini’s Computer Music Instruments (2017) has a lot of Csound examples, in conjunction with Python and Faust.

Csound — A Sound and Music Computing System (2016) by Victor Lazzarini and others is the new Csound Standard Book, covering all parts of the Csound audio programming language in depth.

Martin Neukom’s Signals, Systems and Sound Synthesis (2013) is a comprehensive computer music tutorial with a lot of Csound in it.

Csound Power! by Jim Aikin (2012) is a perfect up-to-date introduction for beginners.

The Audio Programming Book edited by Richard Boulanger and Victor Lazzarini (2011) is a major source with many references to Csound.

Virtual Sound by Alessandro Cipriani and Maurizio Giri (2000)

The Csound Book (2000) edited by Richard Boulanger is still the compendium for anyone who really wants to go in depth with Csound.

EPUB/media/file129.png

EPUB/media/file113.gif

EPUB/media/file78.png
Sound with three Harmonics

1200

Frequency (Hz) 400 800
Each Harmonic 100 Hz

Frequency (Hz) 300 500 700 900 1100 1300
Each harmonic +50 Hz

Frequency (Hz) 350 450 750 850 1150 1250

EPUB/media/file137.png
gain

M=

f1 =12 = 1/dist

dist

EPUB/media/file43.png
ksmps=128

ksmps=32

ksmps=1

ksmps=128 and --sample-accurate

time (s)

0.01

0.01

0.01

0.01

EPUB/media/file226.png

EPUB/media/file188.png
00000
T

EPUB/media/file218.png
File Edit Control View Examples Favorites Scripts Help

>m 0 e ® & A @ &% |40 (B N
Run Pause Stop Record RuninTerm Render Ext.Editor Ext.Player Configure | Widgets| Manual | Console| Inspector Liv

12€02 score_generator.csd - CsoundQt

Python Console ®
Py> g.createNewDisplay(s0, 150, "disp_chan_01")
U{a71c0c67-3d54-4d4a-88e6-8f40070a75)'
py>

Python Scratch Pad ®

1

130328.csd % | transegr.csd 3§ | testesd 3

4 <CsInstruments>

5 sr = 44100
6 ksmps = 32

Widgets ®
Helo Label
2, 1€
1 in
second_label and
¢ star
2nd
Dispiay dotste
p3,
V), K
20/ iFad random p3/20, p3/5
21| aout Linen asine, iFad,
22 out aout

EPUB/media/file153.png
FREQUENCY
DOMAIN

opcode

TIME
DOMAIN

Audio-Signal

f-Signal

el

pvsanal

<further f-signal modifications>

N

pvsynth

Audio-Signal

EPUB/media/file35.png
imode = 0

I
3 4 5
imode = 1
3 4 5
imode = 2
r

imode = 3

3 4 5
time(s)

EPUB/media/file161.png
@& Pd File Edit Put Find Media Window Help

00C¢ Pd

IN our
compute audio

= goq peak meters

cup car) —

Creating orchestra
Creating score

orchnane: /var/folders/mk/mkpuhJKKEJOEGPRHAD3NG+-+++T1/~Tmp-//cSound- tbKFbM. orc
scorenane: /var/folders/mk/mkpuhJKKE JOEGPIHAD3W++++T1/~Tp-//csound-Taunbs . sco
rtaudio: PortAudio module enabled

using callback interface

rtmidi: PortMIDI module enabled

orch compiler 000 control.pd - /Joachim/Csound /PD

instr
1

Elapsed time at end of orchestra compile
sorting score

done
Elapsed time at end of score sort: real: 0.002s, CPU: 0.0025
Csound version 5.12 (float samples) May 4 2010
displays suppressed
0dBFS level = 1.0
ftable 101
orch now loaded
audio buffered in 1024 sample-frane blocks
SECTION 1
new alloc for instr 1

real: 0.002s, CPU: 0.0025

set invalue
channels first

[Esoundapi~ control.csd]

EPUB/media/file5.png
10 kHz
Sine Wave

30 kHz
Sine (blue)

10 KHz aliased
Sine (red)

Time

Time

EPUB/media/file196.png
Csound Utilities

CVANAL | HETRO | LPANAL PVANAL ATSA
Input File Name
oss/resources/SourceMaterials/BratscheMono.wav
Output File Name
floss/resources/SourceMaterials/BratscheMono.het
Sample Rate (-s) Num Partials (-h)
44100 10

Channel (<) Max Amplitude (-M)

1 32767

Begin Time (-b) Min Amplitude (-m)
0.0 64

Duration (-d) Num Breakpoints (-n)
Start frequency (-f) Filter cutoff (-)

220 0

Reset Defaults Run HETRO

hetro
Analysis File Generation
(ATSA, CVANAL, HETRO,
LPANAL, PVANAL)

hetro

hetro — Decomposes an input soundfile into
component sinusoids.

Description

Hetrodyne filter analysis for the Csound adsyn
generator.

Syntax
csound -U hetro [flags] infilename outfilenam

hetro [flags] infilename outfilename

EPUB/media/file180.gif
File Edit Tools View Help

| YL RS E-X4

2 form caption("Untitled") size(460, 300), colour(58, 110, 182), pluginID("defl")
3 keyboard bounds(8, 158, 381, 95)

B

5

7en -d ~+rtmidi=NULL -MO -n0d --midi-key-cps=4 --nidi-velocity-amp=5

8

9

10; Initialize the global variables.

sr = 44100
12 ksmps = 32
13 nchnls = 2
140dbfs = 1

15

nstrument will be triggered by keyboard widget
7 instr 1

18 kEnv madsr .1,
19 a0ut veo2 p5, pd

20 outs aOut*kEnv, aOut*kEnv
21 endin

2

)

2

2

2, .6, .4

LinuxCPU: 2450MHz Cores: 4 7870MB

Cabbags Csound IDE

EPUB/media/file18.gif
p(x)

1234567809101112

EPUB/media/file71.png
1920Hz + + + + =5 + =5 +

1280 Hz + + + + + + + +

6A0Hz + + + + + + + +

1 sec 2 sec 3 sec 4 sec 5 sec 6 sec 7 sec 8 sec

EPUB/media/file211.png
<CsoundSynthesizer>
<Csoptions>
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
edbfs = 1
nchnls = 1

</CsInstruments>
<CsScore>

</CsScore>
</Csoundsynthesizer>

EPUB/media/file98.png
-0.54

EPUB/media/file157.png
receive $8-arduino)
T

Grauino 5

fa 5

Send $0-orduino-out

25 which analoglns to enable:
o[1[2[3]4[5]6[7]

wlnﬂnsnn

Send $0-orduino

B 910711213

e st
e s
B A Axauxwana

EPUB/media/file187.gif
o000
TITTITIrn

EPUB/media/file23.gif
100

EPUB/media/file12.png
Sound Pressure Level (dB SPL)

130
120
110
100
920
80
70
60
50
40
30
20
10
0
-10

10

(estimated) H

(threshold)

100 1000 10k

Equal-loudness contours (red) (from 1ISO 226:2003 revision)

Fletcher-Munson curves shown (blue) for comparison

100k

EPUB/media/file101.gif
250

15

10

EPUB/media/file133.png

EPUB/media/file55.png

EPUB/media/file145.png
10.5

+-0.5

EPUB/media/file86.png
Sine Input

Transfer function

05

0.0

0.5+

05

0.0

Waveshaped result

EPUB/media/file176.png

EPUB/media/file109.gif
v

EPUB/media/file82.jpg
Amp Freq

Modulator 2

Modulator 1

Carrier

FM Signal

EPUB/media/file90.png

EPUB/media/file222.png
fox.wav

EPUB/media/file31.png

EPUB/media/file9.png
SECTION 1:

Score finished in csoundPerformKsmps () with 2.

inactive allocs returned to freespace

end of score. overall amps: 0.49927 0.49927
overall samples out of range: 0

0 errors in performance

EPUB/media/file74.png
[—dinv

Pink Noise

[—dnv
j«—D3u4

JOXIN

HLQIMaNYE
ALISNZINI

l¢— 440110

Bandpass |,

Filters

Pulse
Waveform

A

JOXIN

EPUB/media/file192.png
File View Project Tools
Start Render From: 0.0

Score_<| Orchestra

Script Window Help.

To.

blue - 2.1.6 - Example 3 - blueLive.blue

Play Time: =i~

UDO | Tables | Global Orchestra | Global Score :| Project Properties |

I

“

yim

blueLive | Recompile | All Notes Off | MIDI Input

Orchestra

Instr Name
[Alpha v2

[X] finstr ID|

s

User Instrument Library.

Instrument Library

Physical Models
—p—

D) simple fm 2:1

[bsos

0 wiangle

D squareviave
D wabowstreson
[woclar
[fmbs

[waveshaper, jean-Claude (=

«

SoundObject Editor

= [mtrument Edior | commenss |
[Blue Synth Builder]
Interface | Code | upo |

Presets | Current Preset: Snapshots

0sC1
Waveform [Saw/Tri/Ramp

PulseWidth

000

03671411 0

Mix Detune

0sc2

Waveform [Triangle (no ramp)

PulseWidth

0.353801(0.29735(0.00001

Mix Detune

0sC 3
Waveform [Saw/Tri/Ramp

PulseWidth

000

Mix Detune

»

Synth Harp

Atack Decay Sustain Release

Amp Enva ,Q ,Q B

Linear ~ [5,004..]0.136..)_0_J0.572

0.46168
CutoffResonance Distortion

5647...]0.500.

VCF

butterlp v e

Attack Decay Sustain Release Depth

verEnv SOF SOF OF $OF GF

Disable v [0.107..)0.333..J0.070..][10 _10.925.

Freg OSC VCA VCF

LFo % 0¥ GF O

~ [2.450..]0.007..]0.804..]0.948.

Chorus

&

Dry

Update Edit Enabled

EPUB/media/file214.png
(] Allow key repeats for sensekey
(7] Debug mode for Live Event Sheet
& [Allow simuitaneous piay (May have problems with portmidi,coreaudio, and aisa audio)

Theme (requires restart) | boring

oK cancel |

EPUB/media/file169.png
Ele Edit View Object Amange Opfions Debug

0

EPUB/media/file122.png
02

0.0

02

0.0

linseg(0.2, 2, 0)

2 4
time (sec)
line(0.2. 2. 0)
: \
2 4

time (sec)

EPUB/media/file165.png
© O O controlout.pd - /Joachim/Csound/PD

51 = channel
52 = value

EPUB/media/file126.png

EPUB/media/file173.png
O1pvsanal_pvsynth.csd - QuteCsound

08 ¢ 930D (0 ® e A [X & @ .

New Open Save Undo Redo Cut Copy Paste |Run|Stop RuninTerm Record Render Ext.Editor Ext.Player Configure Widgets Manual
Inspector ® | test.csd | O1pvsanal_pvsynth.csd bl
Inspector opcode FilePlay2, aa, Skoo ; Credit to Joachim Heintz
v Opcodes sgives stereo output regardless your soundfile is mono or stereo

opcode FilePlay2, a3, Skoo... Sfil, kspeed, iskip, iloop xin

Macros ichn filenchnls Sfil

¥ Instruments if ichn == 1 then

;Notes on modifications fr.. aL diskin2 Sfil, kspeed, iskip, iloop
; Use Base64 encoded files.. aR = aL
;my Flags on Ubuntu: dadc-.. else
instr 1;GUI aL, aR diskin2 sfil, kspeed, iskip, iloop
instr2 endif

F-tables xout aL, aR

Score endop

instr 1 GUI
ktrig metro 10
if (kirig == 1) then

Output Console ®

Csound version 5.12 (double samples) Sep 15 2010
0dBFS level = 1.0

orch now loaded

audio buffered in 256 sample-frame blocks

ALSA input: total buffer size: 1024, period size: 256
reading 1024-byte blks of shorts from adc (RAW)
ALSA output: total buffer size: 1024, period size: 256
witing 1024-byte blks of shorts to dac

'SECTION 1:

new alloc for instr 1:

Line 25

EPUB/media/file148.png
Parameters for
Granulator

Parameters for
one Grain

Granulator

v
Grain

time

—

EPUB/media/file118.png
Position

Masses

100

Stiffness

Damping

Velocity

EPUB/media/file46.png
Sine

Square

Triangle

Impulse

EPUB/media/file59.png

EPUB/media/file183.gif
File Edit Tools View Help

FeaahvYede

stop [0 {11 [+ Soundfileresa | < FirstSynth.csd %
1

2 form caption("Soundfiler") size(439, 240), colour(58, 116, 182), pluginID("defl")
3

4 combobox bounds (324, 188, 160, 25), channel("presetsCombo"), populate('*.snaps")
5 filebutton bounds (262, 188, 60, 25) value(®) text("Save", "Save") mode("snapshot")
5

7 soundfiler bounds(6, 4, 417, 178) identchannel("soundfilerl") tablenumber(-1)

s filebutton bounds(8, 188, 81, 27) channel("filebuttonl") value(8) text("Open il
s button bounds(99, 188, 81, 27) channel("playbuttonl") text("Play file", "Stop file")
1

u I

12

13-n -d -#rtmidi=NULL -MO --midi-key-cps=
14

15

16; Initialize the global variables.

17sr = 44100

18 ksmps = 32

19 nchnls = 2

20 @dbfs = 1

P

22 gSfilepath init "" ;create a global filename
2

24dnstr 1

2

"Open file")

rory@rory-thinkpa
7606 pts/9

Soundfiler

(No audio file loaded)

LinuxCPU: 3020MHz Cores: 4 7870MB

new alloc for instr 1°

EPUB/media/file26.gif

EPUB/media/file199.png
100

075

050

025

000

-025

-0.50

-075

-100

100

075

050

025

000

-025

-0.50

075

-100

%6

si2

758

1024

si2

758

1024

EPUB/media/file16.png
A probability

[I |
minimum maximum values

EPUB/media/file229.png

EPUB/media/file63.png
<CsoundSynthesizer>
<CsOptions>

</CsOptions>
<CsInstruments>
sr 44100
ksmps = 32
nchn! 2
0dbfs 1
seed
instr 1
idur random
p3 =
ioct random
idb random
asig oscils
aEnv transeg
outs
endin
</CsInstruments>
<CsScore>
£ 0 36000
e
</CsScore>

0; random seed different each time

.5, 3; calculate instrument duration
idur; reset instrument duration

8, 11; random values between 8th and 1lth octave
-18, -6; random values between -6 and -18 dB
ampdb(idb), cpsoct(ioct), 0

1, p3, -10, 0

asig*aEnv, aSig*aEnv |& acgers,

</CsoundSynthesizer>

EPUB/media/file203.png
v [] waveDrawview
v [seroll View
Wave Loop Points View

EPUB/media/file179.gif
File Edit Tools View Help
LYY b 520
.

2 form caption("Soundfiler") size(430, 246), colour(58, 110, 182), pluginID("defl")
3

4 combobox bounds (324, 188, 100, 25), channel(“presetsCombo"), populate("*.snaps")
5 filebutton bounds(262, 188, 60, 25) value(8) text("Save", "Save") mode("snapshot")

5
7 soundfiler bounds(6, 4, 417, 178) identchannel("soundfiler1") tablenumber(-1)

o filebutton bounds(8, 188, 81, 27) channel("filebuttonl") value(8) text("Open il
s button bounds(90, 188, 81, 27) channel("playbuttonl”) text("Play file", "Stop file")
10

1

2

13-n -d -#rimidi=NULL -MO --midi-key-cps=
14

15

%6 ; Initialize the global variables.

175 = 44100

18 ksmps = 32

19 nchnls = 2

20 gdlbfs = 1

P

22g§filepath init "" ;create a global filename
2

24dnstr 1

2

di-velocity-amp=

"Open file")

LinuxCPU: 2135MHz Cores: 4 7870MB

‘Cabbage Csound IDE.

EPUB/media/file110.gif
=005

EPUB/media/file89.png

EPUB/media/file141.png
m[n Youn (6, 6) Yo (%, ¥, 2)
1|0 Sin[6] z
1 Cos[5] Cos[6] X
-1 Cos[6] Sin[6] y
2o 1[71+35m[6|2) %(*“312)
1 V3 Cosl6]Sin[25] V3xz
-1 > V3 sin[2 6] Sin[6] Viyz
2 5 /3 Cos[51? Cos[2 6] ‘(v: 2 -3y
-2 V3 Cos[5]2 Cos[6] Sin[0] V3xy
3]0 T (3 snlg] -5 sinl3 6 Jelaes2)
1 3 1 /6 /6
1 {3 (cosél -5 Cos o Coso) L (V8 x5 VEx2)
-1 ; v ; (Cos[6] - 5 Cos[3 1) Sin[6] ; (-VEy+5V6y2?)
2 | VIS Coslol Cosl2 01 Sinle] | (VIS z-2 V5 y2 2 V5 2)
2| V15 mmz Cos[6] Sin[5] Sin[6] VIS5 xyz
3 % N [costo? cost3 a1 (V102 =310 xy?)
3 ! V“E Cosls]? Sinf3 6] LBVI0y-yI0y)

EPUB/media/file4.png
AL
EJU\/VMWWV%

EPUB/media/file189.png
Options Simple Reverb

groupbox

®@e

Size Cut-Off Gain

EPUB/media/file52.png

EPUB/media/file200.png
100

075

050

025

000

025

050

075

-1.00

26

si2

768

1024

EPUB/media/file146.png

EPUB/media/file95.png
5130Hz +

3850 Hz +

2570Hz +

EPUB/media/file44.png

EPUB/media/file170.png
File Edit View Object Amange Options >>

€

pakcpitch 0 cmod$1

Souno- conrol_messages csd @scae]

EPUB/media/file87.png

EPUB/media/file209.png
+ tiv
T—: a, T InterpolateFill, 7C: 0, TT: TwelveEqual
pitchiiode: pitchspace, polyMode: Set, silenceMode: off, postMaphode: on
midiprogran: pianol
status: +, duration: 00.05--10.66
(4)nstrunent. 82 (csoundative: pluckunitEnvelope)
()ine range 00.0--10.0
®pm operatorAdd, (wavePowerbown,
(constaat, 0.1))
(e)hytnn markoveulse, a{3,1,1}b{2,1,1
(p)atn auto
(ca) X
10.00(s)
local (£)ie1a constant, 0 auniltory
local (o)ctave comstaat, 0
(2)mp1itude randontniforn, (constant, 0.
pan(a)ing wavesine, time, (constant, 9
au(x)itiary
0 constant, 0
= constant, 3
= valueSieve, 38051980|4€013¢
(0-0,0.1,0.24,0.32,0.48,0.54
=n mask, wrap, (breakPointLinea
(operatoradd, (waveSine, ever
= randomBeta, 0.2, 0.2, (Comsts
= cavalue, £{s}k{2}r{1}i{randos
0.05), sumkow, (comstant, 0)
x logisticuap, 0.5, (vaverrimn:
12000)
= noise, 100, (comstant, 3), (c
8 markovvalue, a{.8}b{2}c{4}:{s
texture (s)tatic
50 pitchelectorcontrol, randoar
s1 levelFielaMonophonic, event
2 leveloctavelionophonic, event
= totalkventcount, 50
st levelEventpartition, path
55 eventbensityPartition, durat
interpolationkethodControl, et iarylor it ecicains
levelPraneDuration, event
paransterInterpolationContro! .
saapSustaintine, on

randomBeta, 0.2, 0.2, (comsts

oneOver, (waveSine, event, (c)
constant, 1 _euxiliary 7: moise

auxiiiary 8: markowalus

EPUB/media/file219.png
12€02 score_generator.csd - CsoundQt

File Edit Control View Examples Favorites Scripts Help
> moe B & A o & 4] © ®
Run Pause Stop Record RuninTerm Render Ext.Editor Ext.Player Configure |Widgets| Manual | Console| Inspector L
Python Console ® | 130328.csd 3§ | transegr.csd 3 | testcsd 3§
Ppy> g.createNewDisplay(50, 150, "disp_chan_01") = S
U{a71c0c67-3d54-4d4a-88e6-8df40070a7f5) g sﬁsi"‘s':;;'e"e"ts
py> qlistWidgetPropertes('disp.chan 01" 6 ksmps = 32
(U'QCS_x', w'QCS.y', u'QCS_uuid', u'QCS visible, v,
wQCS_midicc, u'QCS_label, u'QCS_alignmen Widgets ®
u'QCs_font’, u'QCs_fontsize', u'QCS_bgcolor’, u'QCS_bgcolormode’, Hello Label!
u'QCS_color’, u'QCS_bordermode’, u'QCS_borderradius’, 24, 1
uQCS_borderwidth, u'QCS_width', U'QCS_height’, w'QCS_objectName’)
Py> q.setWidgetProperty(“disp_chan_01", "QCS_label", "Hey Joel") m
oy
‘ a0
: sta
2nd
Joel
Python Scratch Pad ® 2 ’ngt
1 W),
20 iFad random p3/20, p3/5
21 aout Linen asine, iFad,
out aout

EPUB/media/file195.png
Csound Utilities

CVANAL HETRO
Input File Name

LPANAL PVANAL | ATSA
input.wav
Output File Name
output.ats
Begin Time (-b)
0.0

End time (&)

Hopsize () SMR Thresh. (-T)
0.25 30

0.0 Lowest mag (-m)
Lowest freq () -60

20 Track len (-t)
Highest freq (-H) [3

20000

Freq. deviat. (-d)
01 all

Win cycle (<) Min. gap len. (-g) Window (-w)
4 3 Blackman H

Last pk. con. (-P)
0.0

SMR contr. (-M)
05

Min. seg. len (-s) File type (-F)

Reset Defaults Run ATSA

atsa
Analysis File Generation
(ATSA, CVANAL, HETRO,
LPANAL, PVANAL)

atsa

atsa — Performs ATS analysis on a soundfile.

Description

ATS analysis for use with the Csound ATS
Resynthesis opcodes.

Syntax

csound -U atsa [flags] infilename outfilename

The following flags can be set for atsa (The default
values are stated in parenthesis):

EPUB/media/file62.png
Width =
Channel name =

Type

Text:

108 [2) v= 3 [)
100 (3 Height= 30 [1]
lutont |

(oot Value 1,000000
Push me!

i)

EPUB/media/file152.png
Hz Hz Hz

1000 size = 512, bins 0 - 11 1000 size = 1024, bins 0 - 22 1000 size = 2048, bins 0 - 45
800 A 800 800
600 600 600
400 400 400
200 1 200 200 A
0 0 0

EPUB/media/file67.png
Amplitude / rel. Units

EPUB/media/file102.gif
20

EPUB/media/file164.png
800 event.pd - [Joachim/Csound/PD

call instruent 1

choose different function tables for the sound

saw [pne £1 01028 101 5 3

STATE

T
Square [§gat £ 10 702 1010 33 0 -2 0 1a3]
Y

rrtangle [9YgRt £ 10 1023 10 10 131 0 04 0 .02 0 o1z]

mpulse [SWt £1 01028 10111111111

EPUB/media/file130.jpg

EPUB/media/file121.png
128

0-5 sec

128

5-10 sec

128

10-15 sec

128

0

128

0

128

EPUB/media/file22.gif

EPUB/media/file83.jpg
Amp Freq

Modulator

Carrier 1 N ~ Carrier 2

FM VSignaI

EPUB/media/file108.gif

EPUB/media/file114.gif
=

EPUB/media/file72.png
[€«—WHO33AVM

g
5 2 g
i l »
3o
g ']
3 2
Oscillator 1 3 z
) ‘ '
= Lowpass Amplitude
X > , >
H [} Filter Envelope
o
o
% % %
Oscillator 1

EPUB/media/file225.png
follow

EPUB/media/file56.png

EPUB/media/file38.png
0.000227 0.000454 0.000680 0.000907

Time for Control %° ’ ! " "
Cycles (sec) I I I I I
00 0000113 0000227 000034 0000454 000067 0000630 0.000794

Time for

Samples (se€) 4+t -+t I I I [i
(5=44100) A

0.000023
Control Cycles I 2‘ ? “ ?
(Block Size = 10) [I I I I

T Biock/Vector ' T Block/Vector | " Block/Vector ' Block/Vector |

Samples L e e e S B e
1 5 10 15 20 25 30 35 40

EPUB/media/file158.png
receive $8-arduino)
Grauino 5
fa 5
Send $0-arduino-out

which analoglns to enable:
o[1[2[3]4[5]6[7]

T

Send $0-arduino

Foute aigital]
0123256789

o - WBL T L)

01T 1213

Set ctrll ctr12| [Control ctrl1 81 Control ctri2 51

-~ control.csd

EPUB/media/file99.png
0.5+

-0.54

EPUB/media/file221.png

EPUB/media/file30.png
["options

EPUB/media/file13.png
RANDOM

TN

every event isolated; one event depends on
no history the previous one;
process / history
uniformly dissimilarly Random Walk Markov Chain
distributed distributed

/ |

€.9. dle_s, linear triangular exponential Gauss etc. ...
white noise

EPUB/media/file168.png
File Edit View Object >>

Soung- heligwordced @acaed

AOEEAA

EPUB/media/file39.png
Scoreline

calculation of i-
variables

outs “aL; aR

endin

1st calculation of k-
and a-variables

endin

2nd calculation of
k- and a-variables

endin

3rd calculation of
k- and a-variables

Init-Pass

Control Cycle 1

Control Cycle 2

Control Cycle 3

Performance Time:

0.01

0.02

0.03

sec

EPUB/media/file125.png

EPUB/media/file131.png
Sound Position B-Format Speaker—
x,y.2) (W,X,Y,2)

EPUB/media/file66.png
006 Terminal — csound — 80x24

sorting score ...
. done

Elapsed time at end of score sort: real: ©.120s, CPU: 0.024s
Csound version 5.12 (float samples) Jun 4 2010
0dBFS level = 1.0
Seeding from current time 500726401
orch now loaded
stdmode = 00000002 Linefd = @
audio buffered in 1024 sample-frame blocks
PortAudio V19-devel (built Feb 12 2010 09:42:54)
PortAudio: available output devices:

@: Built-in Output

1: Gerd

PortAudio: selected output device 'Built-in Output”
writing 4096-byte blks of shorts to dac
SECTION 1:
il1e01

rtevent: T 35.318 TT 35.318 M: 0.00000 ©0.00000
new alloc for instr 1:
il1e01

rtevent: T 39.776 TT 39.776 M: 0.20663 0.20663
il1e01

rtevent: T 48.437 TT 48.437 M: 0.24186 0.24186

EPUB/media/file40.png
10 —

0.8

0.6

0.4

02

0.0

0 32 64 9% 132 samples
0.000 0.001 0.002 0003 seconds

EPUB/media/file174.png
ites Scripts_Help

O bpEm @ @ B B2 @ LI | g

instr 1Pipe (physical wave.
instr 99:Reverb unit

v Fables
£100256-2500.00
£110512-2500.00012475
£10128-2500.002272727.
£201282508.175798921

sl Tsnes forposcl 1 If “ u I

Mt D s fe Ve scl |Nese o mes kr i Tne e srec W
20,00020.800 0,000 10,000 0000 0250 J| 1000 78.000 0.340 0320 0.00 120000200 -0.450 0240

‘AR ENVELOPPE

chni 16 using instr 1
ALSA midi: Using ail devices

'ALSA: opened MIDI input device L0’
orch now loaded

audio uffered n 1024 sample-frame bl

ALSA:-b 1024 not allowed on this device;

reading 8192.byte biks o foats from ace [{ RIS S Bamp || Wine fine | Sree i WO Wm0 K

I Mo s 0 | so.000 1640 79.200)| -12.000 0200 0.450 0.000) 0000 0000 1000 79.200 60000 1000

witing B152-byte biks of flats o dac
SECTION 1.

*» T T : t 41|

Tme LR S R lp D WD Feq Spn Day Pos M
a0 15 o4 26.000 0590 16800 45.600 1440000000 1800 0420 0300 0500 0510 0340

51 1 04

sioa 2 04

Scopechz

si 1 25 o4
70 3 04
s i 1 s o4

s 1 4 04

EPUB/media/file191.png
File View Project Tools Script Window Help

start Render From: 0.0 To Play Time Loop | 41| 1y |41 | b | @ [blueLive [Recompile | All Notes Off [MIDI Input
Score :_Orchestra_:| UDO | Tables :| Global Orchestra_:| Global Score | Project Properties

Score [Single Line [Multi Line_ » root

Use Tempo [+

Sound Layers ~ [o09 ., o905, 009, , 1005 929, 0@% ., (030, , 1939 , (09, , (095, , 1990, , 959, , (109, , 195, , 1909, 1A%
Setup u[s orchest

s [PHarmony Log
s

129 .. 0

Alpha

Triangle [PTriangle
Horn PHorm
Guitar PGuiar

Chords FChords - A hords - B Chords - A
Chords FChords - C Chords - D

AV [+
I SoundObject Editor

PythonObject Process On Load Test
F = crestechord("6. 12", [3,3,2,3,21, 801
[score = chordGroup.performSplitia)

EPUB/media/file49.png

EPUB/media/file215.png
py> a.createNewLabel()

Hello Labell

[0]
—_—
om®

—_—

EPUB/media/file210.png
| Load Instrument

stochastic.sem
touch-tone.scm
tubebell.scm
two-tab.scm
vkey.scm
vox.scm
wave.scm
wurley.scm

zc.sem

~ Load at startup

(define (gong num dur freq amp loc dist rev)

(process repeat num

for frq = (between freq (* freq 3))

do
(wave Celapsed
mpeny
everb rev
‘degree loc
ist dist))

;; define a process to

(define (gongalong num

(process for i below
do

(sprout (gong (pick 2

num

) dur frq amp
‘@011 10

540 .2

sprout gong processes

rate dur fregenv)

3) dur

Cinterp (7 i num) fregen
.05 45 0 0))

(wait rate)))

(sprout (gongalong 28 .5 2 '(@ 440 1 300))

Granular Synthesis
Waveshaping
Frequency Modulation
Waveshaping

Sound Processing
Frequency Modulation
Waveshaping
Frequency Modulation
Filtering

Filtering

flute sound
implement touch tone telephone s...
Perry Cook’s tubular bell

interpolate between stored wavefor...
virtual sampler

Mark LeBrun's fm voice instrument
sinewave with envelope and gliss

Perry Cook's Wurlitzer?

interpolating all pass filters

interpolating comb filters (phasing)

| Open Examples | Export...

4),

AutoLoad

Export All...

Sndlib 23 (c) 2014 William Schottstaedt &

Ross Bencina

Music 3.9.0

/ \\W
Loading wave.scm
wave
gong
gongalong
#<unspecified>

Output: "/Users/hkt/gongalong.wav"
Channels: 1
Srate: 44100
Reverb: #f

Header-type:
Data-format:

"mus-riff"

"little endian short (16 bits)"

EPUB/media/file184.gif
File Edit Tools View Help
L YLRE E-1

stop [0 {11 [+ Soundfilercsa | FirstSynth.csd %
1

2 form caption("Soundfiler") size(430, 248), colour(58, 110, 182), pluginID("defl")
3

4 combobox bounds (324, 188, 100, 25), channel("presetsCombo"), populate("*.snaps")
5 filebutton bounds (262, 188, 60, 25) value(@) text("Save", "Save") mode("snapshot")
5

7 soundfiler bounds(6, 4, 417, 1]8) identchannel("soundfilerl") tablenumber (-1)

& filebutton bounds(8, 188, 81, 27) channel("filebuttonl") value(@) text("Open fil
9button bounds (90, 188, 81, 27) channel("playbuttonl") text("Play file", "Stop file")
10

1

12

13

14

150 ~d edrtmidi=NULL «M@ --midi-key-cps=4 --midi-velocity-amp=5

15

7

18 ; Initialize the global variables.

19 sr = 44100

20 ksmps = 32

21 nchnls 2

22 0dbfs = 1

2

24 gSfilepath init " ;create a global filename

2

"Open file")

LinuxCPU: 3020MHz Cores: 4 7870MB

new alloc for instr 1°

EPUB/media/file27.gif
200

100

EPUB/media/file136.png
Jinph

EPUB/media/file77.png
Amp Freq Amp Freq

Modulator ~N ~ Carrier

RM Signal

EPUB/media/file142.png
M 81 82 & 84 8 26 &7 88

T [T[0333333

2|1 05 01

3 [T 06 02 | 00285714

7| |1]0666667 0285714 | 00714286 | 000793651

5| |1]0.714286 0357143 | 0.119048 | 0.0238095 | 0.0021645

G| |T| 075 0416667 0.166667 | 0.0454545 | 000757576 | 0000582751

7| |1]0.777778 | 0466667 | 0212121 | 0.0707071 | 0016317 | 0002331 | 00001554

B [T| 08 |0309091 | 0254545 | 00979021 | 0027972 | 0.00559441 | 0000699301 | 0.000041135

EPUB/media/file119.png
05

0.0

Table gipos at 0 sec

Table gipos at 8 sec

Table gipos at 16 sec

Table givel at 0 sec

Table givel at 8 sec

Table givel at 16 sec

0.5 0.5
0.0 0.0 \//\
05 0.5

EPUB/media/file17.png
previous
element

next

element

a

b

C

0.2

0.5

0.3

0.5

0.0

0.5

0.1

0.8

0.1

EPUB/media/file94.png
end=s

EPUB/media/file204.png
15:20 © 5§ [e

Csound: xanadu.csd OPEN.. RUN 3

EDITOR MESSAGES HTML WIDGETS HELP :

1 <CsoundSynthesizer>

2 <CsOptions>

3 -odac -d

4 </CsOptions>

5 <CsInstruments>

6 sr = 48000

7 ksmps = 100

8 nchnls = 2

2 TR L S I Ry S P
10 ,;Instrument 1 : plucked strings chorused left/rig
1M1 pitch-shifted and delayed taps thru exporn
12 functions, and delayed.

L I e
14

15 instr 1

16 ishift = .00666667 ;
17 1ipch = cpspch(p5) h
18 ioct = octpch(p5) .
19 kvib poscil 1/120, ipch/50, 1 iy
20 ag pluck 2000, cpsoct(ioct+kvib),
21 agleft pluck 2000, cpsoct(ioct+ishift)
22 agright pluck 2000, cpsoct(ioct-ishift)
23 adamping linsegr 0.0, 0.006, 1.0, p3 - 0.0
24 ag = adamping * ag

25 agleft = adamping * agleft

26 agright = adamping * agright

27 af1 expon 1, @3, 1.0)
28 af2 expon 1.0, P33, -1 ;
29 adump delayr 2.0)
30 atap1 deltap3 af1 h
31 atap2 deltap3 af2 b
32 adil deltap3 2.0 K
33 ad2 deltap3 1.1 ;]
34 delayw ag .
B5 outs agleft+atapl+adl, agright
36 endin

37 e enim i i o i i i e
38 ,Instrument 2 :@ plucked strings chorused left/rig
g9 pitch-shifted with fixed delayed taps.
A0 e e e e e
41
42 instr 2
43 ishift = .00666667 ;
44 1ipch = cpspch(p5) :
45 ioct = octpch(p5))
46 kvib poscil 1/120, ipch/50, 1)

47 ag pluck 1000, cpsoct(ioct+kvib),

EPUB/media/file178.gif
File Edit Tools View Help

| YL RS E-X

2 form caption("Untitled") size(460, 360), colour(58, 110, 182), pluginID("defl")
3keyboard bounds(8, 158, 381, 95)

B

5

7en ~d trtmidisNULL M0 -n0d --midi-key-cps=4 --midi-velocity-anp=5

8

5

10; Initialize the global variables.

iisr = 44100
12 ksmps = 32
13 nchnls = 2
140dbfs = 1

15

nstrument will be triggered by keyboard widget
17 instr 1

18 kEnv madsr .1,
19 a0ut veo2 p5, pd

20 outs aOut*kEnv, aOut*kEnv
21 endin

2

2

2

2

2, .6, .4

LinuxCPU: 3001MHz Cores: 4 7870MB

midi channel 16 using instr 1

EPUB/media/file8.png
0.20 0.20

015 015

0.10 0.10

I Y LML g, :
LT A I

0.10 -0.10
0.15 -0.15
0.20 -0.20

2.0000 2.0005 2.0010 2.0015 2.0020 2.0025 8.0000 8.0005 8.0010 8.0015 8.0020 8.0025

EPUB/media/file51.png

EPUB/media/file34.png
betarand

EPUB/media/file171.png
o TN -° T

File Edit View Object Amange Options Debug Extras >>

makenole 641000
chk o 0 pak10
midiformat 1

Csound~ midi.csd @scale 0

EPUB/media/file61.png
Widgets.

Create Slider
Create Label
Create Display

Create ScrollNumber
Create LineEdit
Create SpinBox

Create Knob

ate instrul
nstrument
values be
om values
psoct (ioct

ig+aknv

Create Checkbox
Create Menu
Create Controller
Create Console

Create Graph th octave
Create Scope 18 dB

Cut

Copy

Paste

Select all widgets
Duplicate Selected
Delete Selected
Clear all widgets

Properties

Store Preset
Recall Preset
New Preset

EPUB/media/file96.png
5130Hz + + + +

3850 Hz + + +

2570Hz + +

EPUB/media/file53.png

EPUB/media/file201.png
15

10

[

00

26

si2

768

1024

EPUB/media/file10.png
0
0000 0383

05 -

0707 0924

1000 0924 0707 0383

000

0383 0707 0924

-1.000 -0924 -0.707 -0.383

EPUB/media/file103.gif
05

~05

EPUB/media/file147.png
table 1

table 2

table 3

table 4

table 5

table 6

table 7

table 8

EPUB/media/file111.gif
=025

EPUB/media/file139.png
Elevation &

Azimuth 6

EPUB/media/file21.gif

EPUB/media/file45.png
Stereo, 4410002

32-bitfloat

Summ | Soio
O

L %
O

10

0.5

00

0.5

-10

10

0.5

00

0.5

-10

EPUB/media/file88.png

EPUB/media/file107.gif

EPUB/nav.xhtml

UNTITLED

		THE CSOUND FLOSS MANUAL		00 INTRODUCTION		A. PREFACE

		B. HOW TO USE THIS MANUAL

		C. ON THIS RELEASE

		D. CREDITS

		01 BASICS		A. DIGITAL AUDIO

		B. PITCH AND FREQUENCY

		C. INTENSITIES

		D. RANDOM

		02 QUICK START		A. MAKE CSOUND RUN

		B. CSOUND SYNTAX

		C. CONFIGURING MIDI

		D. LIVE AUDIO

		E. RENDERING TO FILE

		03 CSOUND LANGUAGE		A. INITIALIZATION AND PERFORMANCE PASS

		B. LOCAL AND GLOBAL VARIABLES

		C. CONTROL STRUCTURES

		D. FUNCTION TABLES

		E. ARRAYS

		F. LIVE EVENTS

		G. USER DEFINED OPCODES

		H. MACROS

		I. FUNCTIONAL SYNTAX

		04 SOUND SYNTHESIS		A. ADDITIVE SYNTHESIS

		B. SUBTRACTIVE SYNTHESIS

		C. AMPLITUDE AND RING MODULATION

		D. FREQUENCY MODULATION

		E. WAVESHAPING

		F. GRANULAR SYNTHESIS

		G. PHYSICAL MODELLING

		H. SCANNED SYNTHESIS

		05 SOUND MODIFICATION		A. ENVELOPES

		B. PANNING AND SPATIALIZATION

		C. FILTERS

		D. DELAY AND FEEDBACK

		E. REVERBERATION

		F. AM / RM / WAVESHAPING

		G. GRANULAR SYNTHESIS

		H. CONVOLUTION

		I. FOURIER ANALYSIS / SPECTRAL PROCESSING

		K. ATS RESYNTHESIS

		06 SAMPLES		A. RECORD AND PLAY SOUNDFILES

		B. RECORD AND PLAY BUFFERS

		07 MIDI		A. RECEIVING EVENTS BY MIDIIN

		B. TRIGGERING INSTRUMENT INSTANCES

		C. WORKING WITH CONTROLLERS

		D. READING MIDI FILES

		E. MIDI OUTPUT

		08 OTHER COMMUNICATION		A. OPEN SOUND CONTROL

		B. CSOUND AND ARDUINO

		09 CSOUND IN OTHER APPLICATIONS		A. CSOUND IN PD

		B. CSOUND IN MAXMSP

		C. CSOUND AS A VST PLUGIN

		10 CSOUND FRONTENDS		A. CSOUNDQT

		B. CABBAGE

		C. BLUE

		D. WINXOUND

		E. CSOUND VIA TERMINAL

		F. WEB BASED CSOUND

		11 CSOUND UTILITIES		A. ANALYSIS

		B. FILE INFO AND CONVERSION

		C. MISCELLANEOUS

		12 CSOUND AND OTHER PROGRAMMING LANGUAGES		A. THE CSOUND API

		B. PYTHON AND CSOUND

		C. LUA AND CSOUND

		D. CSOUND IN iOS

		E. CSOUND ON ANDROID

		F. CSOUND AND HASKELL

		G. CSOUND IN HTML AND JAVASCRIPT

		13 EXTENDING CSOUND		A. DEVELOPING PLUGIN OPCODES

		14 MISCELLANEA		A. METHODS OF WRITING CSOUND SCORES

		B. PYTHON IN CSOUNDQT

		C. AMPLITUDE AND PITCH TRACKING

		15 APPENDIX		A. OPCODE GUIDE

		B. GLOSSARY

		C. LINKS

		PREFACE

		HOW TO USE THIS MANUAL

		ON THIS RELEASE

		CREDITS

		01 A. DIGITAL AUDIO		Elements of a Sound Wave

		Transduction

		Sampling

		Sample Rate and the Sampling Theorem

		Aliasing

		Bits, Bytes and Words

		Bit-depth Resolution

		ADC / DAC

		01 B. PITCH AND FREQUENCY		Frequencies		Wavelength

		Periodic and Nonperiodic Sounds

		Upper and Lower Limits of Hearing

		Pitches		Logarithms, Frequency Ratios and Intervals

		Equal tempered scale

		MIDI Notes

		Other Pitch Representation

		Cent

		Tuning Systems

		Frequently Used Formulas		New Frequency from Frequency and Proportion

		New Frequency from Frequency and Cent Difference

		Cent Difference of two Frequencies

		01 C. INTENSITIES		Real World Intensities and Amplitudes		SIL — Sound Intensity Level

		SPL — Sound Pressure Level

		Sound Intensity and Amplitudes

		What is 0 dB?

		dB Scale Versus Linear Amplitude

		RMS Measurement

		Fletcher-Munson Curves

		01 D. RANDOM		I. GENERAL INTRODUCTION		Random is Different

		Random Without History

		Uniform Distribution and Seed

		Other Distributions

		Scalings

		Random With History

		II. SOME MATHS PERSPECTIVES ON RANDOM		Random Processes

		III. MISCELLANEOUS EXAMPLES

		02 A. MAKE CSOUND RUN		Csound and Frontends

		How to Download and Install Csound		Windows

		Mac OS X

		Linux and others

		iOS

		Android

		Install Problems?

		The Csound Reference Manual

		How to Execute a Simple Example		Using CsoundQt

		Using the Terminal / Console

		Using Cabbage

		02 B. CSOUND SYNTAX		Orchestra and Score

		The Csound Document Structure

		Opcodes

		Variables

		Using the Manual

		02 C. CONFIGURING MIDI		Platform Specific Modules		Linux

		OS X

		Windows

		How to Use a MIDI Keyboard

		How to Use a MIDI Controller

		Other Type of MIDI Data

		02 D. LIVE AUDIO		Select the Audio Device

		Select the Audio Driver

		Tuning Performance and Latency

		The "--realtime" Option

		Csound Can Produce Extreme Dynamic Range!

		Using Live Audio Input and Output

		02 E. RENDERING TO FILE		When to Render to File

		Rendering to File		Rendering Options

		Realtime and Render-To-File at the Same Time

		03 A. INITIALIZATION AND PERFORMANCE PASS		Basic Distinction		Init Pass

		Performance Pass

		Implicit Incrementation

		Init versus Equals

		A Look at the Audio Vector

		A Summarizing Example

		Applications and Concepts		Accessing the Initialization Value of a k-Variable

		k-Values and Initialization in Multiple Triggered Instruments

		Reinitialization

		Order of Calculation

		Named Instruments

		Instruments with Fractional Numbers

		Tips for Pratical Use		About i-time and k-rate Opcodes

		Possible Problems with k-Rate Tick Size

		Time Impossible

		Yet another Look at the Audio Vector

		Hidden Initialization of k- and S-Variables

		When to Use i- or k- Rate

		03 B. LOCAL AND GLOBAL VARIABLES		Variable Types

		Local Scope

		Global Scope

		How To Work With Global Audio Variables

		The chn Opcodes for Global Variables

		03 C. CONTROL STRUCTURES		If i-Time then not k-Time!

		If - then - [elseif - then -] else		i-Rate Examples

		k-Rate Examples

		Short Form: (a v b ? x : y)

		If - goto		i-Rate Examples

		k-Rate Examples

		Loops		i-Rate Examples

		k-Rate Examples

		While / Until

		Time Loops		Timout Basics

		Timout Applications

		Time Loops by using the metro Opcode

		Time Loops by Using a Clock Variable

		Self-Triggering and Recursion

		03 D. FUNCTION TABLES		How to Generate a Function Table		GEN02 and General Parameters for GEN Routines

		GEN01: Importing a Soundfile

		GEN10: Creating a Waveform

		How to Write Values to a Function Table		i-Rate Example

		k-Rate Example

		a-Rate Example

		How to Retrieve Values from a Function Table		The table Opcode

		Oscillators

		Saving the Contents of a Function Table to a File		Writing a File in Csound’s ftsave Format at i-Time or k-Time

		Writing a Soundfile from a Recorded Function Table

		Other GEN Routine Highlights

		GEN08

		GEN16

		GEN19

		GEN30

		03 E. ARRAYS		Naming Conventions

		Creating an Array		init

		fillarray

		genarray

		Copy with \(=\)

		Implicit as Opcode Output

		Types of Arrays		i- and k-Rate

		Audio Arrays

		Strings

		Local or Global

		Different Rates between Array and Index

		Init Values of k-Arrays

		Operations on Arrays		Analyse

		Content Modifications

		Size Modifications

		Format Interchange

		1D - 2D Interchange

		Functions

		Print

		Arrays in UDOs		Input and Output Declaration

		Overload

		Example: Array Shuffle

		03 F. LIVE EVENTS		Order of Execution Revisited

		Instrument Events from the Score

		Using MIDI Note-On Events

		Using Widgets		FLTK Button

		CsoundQt Button

		Using A Realtime Score		Command Line with the -L stdin Option

		By Conditions

		Using i-Rate Loops for Calculating a Pool of Instrument Events

		Using Time Loops

		Which Opcode Should I Use?		i-rate Versions: schedule, event_i, scoreline_i

		k-rate versions: schedulek, event, scoreline, schedkwhen

		Recompilation		compileorc / compilestr

		03 G. USER DEFINED OPCODES		Transforming Csound Instrument Code to a User Defined Opcode		Basic Example

		Is There an Optimal Design for a User Defined Opcode?

		How to Use the User Defined Opcode Facility in Practice		Loading User Defined Opcodes in the Orchestra Header

		Loading by an #include File

		The setksmps Feature

		Default Arguments

		Overloading

		Recursive User Defined Opcodes

		Examples		Play A Mono Or Stereo Soundfile

		Change the Content of a Function Table

		A Recursive User Defined Opcode for Additive Synthesis

		Filter implementation via Sample-by-Sample Processing

		03 H. MACROS		Orchestra Macros

		Score Macros

		03 I. FUNCTIONAL SYNTAX		Declare your color: i, k or a?

		fun() with UDOs

		04 A. ADDITIVE SYNTHESIS		Main Parameters of Additive Synthesis

		Different Methods for Additive Synthesis		Simple Additions of Sinusoids Inside an Instrument

		Simple Additions of Sinusoids via the Score

		Creating Function Tables for Additive Synthesis

		Triggering Instrument Events for the Partials

		Applying User-controlled Random Variations

		Using a Recursive UDO

		Csound Opcodes for Additive Synthesis		gbuzz, buzz and GEN11

		hsboscil

		04 B. SUBTRACTIVE SYNTHESIS		A Csound Two-Oscillator Synthesizer

		Simulation of Timbres from a Noise Source

		Vowel-Sound Emulation Using Bandpass Filtering

		Conclusion

		04 C. AMPLITUDE AND RING MODULATION		Sidebands

		AM/RM of Complex Sounds

		04 D. FREQUENCY MODULATION		Basic Model		Carrier/Modulator Ratio

		Index of Modulation

		Standard FM with Ratio and Index

		Using the foscil opcode

		More Complex FM Algorithms		Multiple Modulators (MM FM)

		Multiple Carriers (MC FM)

		The John Chowning FM Model of a Trumpet

		Phase Modulation - the Yamaha DX7 and Feedback FM

		04 E. WAVESHAPING		Basic Implementation Model

		Powershape

		Distort

		04 F. GRANULAR SYNTHESIS		Concept Behind Granular Synthesis

		Granular Synthesis Demonstrated Using First Principles

		Granular Synthesis of Vowels: FOF

		Asynchronous Granular Synthesis

		Synthesis of Dynamic Sound Spectra: grain3

		04 G. PHYSICAL MODELLING		The Mass-Spring Model

		Implementing Simple Physical Systems		Integrating the Trajectory of a Point

		Introducing damping

		Introducing excitation

		Introducing nonlinear acceleration

		The Van der Pol Oscillator

		The Karplus-Strong Algorithm: Plucked String

		Csound Opcodes for Physical Modelling		wgbow - A Waveguide Emulation of a Bowed String by Perry Cook

		barmodel - a Model of a Struck Metal Bar by Stefan Bilbao

		PhISEM - Physically Inspired Stochastic Event Modeling

		04 H. SCANNED SYNTHESIS		A Quick Scanned Synth		Profiles

		Dynamic Tables

		A More Flexible Scanned Synth		The Scanned Matrix

		The Hammer

		More on Profiles

		Control Rate Profile Scalars

		Audio Injection

		Connecting to Scans

		Scan Trajectories

		Table Size and Interpolation

		Using Balance to Tame Amplitudes

		05 A. ENVELOPES		line

		linseg

		Different behaviour in linear continuation

		expon and expseg

		Envelopes with release segment

		Envelopes in Function Tables

		Comparison of the Standard Envelope Opcodes

		lpshold, loopseg and looptseg - A Csound TB303

		05 B. PANNING AND SPATIALIZATION		Simple Stereo Panning

		3D Binaural Encoding

		Going Multichannel

		Sending Multichannel Sound to the Loudspeakers

		Flexibly Moving Between Stereo and Multichannel

		VBAP		Basic Steps

		The Spread Parameter

		Different VBAP Layouts in one File

		Ambisonics I: bformenc1 and bformdec1		Different Orders

		Ambisonics II: UDOs		Introduction

		Ambisonics2D

		In-phase Decoding

		Distance

		Adding third dimension

		Ambisonics Equivalent Panning (AEP)

		Summary of the Ambisonics UDOs

		05 C. FILTERS		Lowpass Filters

		Highpass Filters

		Bandpass Filters

		Comb Filtering

		Other Filters Worth Investigating

		Filter Comparision

		05 D. DELAY AND FEEDBACK		Basic Delay Line Read-Write Unit

		Delay with Feedback

		Tap Delay Line

		Flanger

		Custom Delay Line

		05 E. REVERBERATION		The Schroeder Reverb Design

		05 F. AM / RM / WAVESHAPING		AMPLITUDE AND RING MODULATION

		WAVESHAPING		Bit Depth Reduction

		Transformation and Distortion

		05 G. GRANULAR SYNTHESIS		A Self-Made Granulator		The Grain Unit

		The Granulator Unit

		Csound Opcodes for Granular Synthesis		sndwarp - Time Stretching and Pitch Shifting

		granule - Clouds of Sound

		Grain delay effect with fof2

		05 H. CONVOLUTION		pconvolve

		ftconv

		liveconv

		05 I. FOURIER ANALYSIS / SPECTRAL PROCESSING		General Aspects		FT, STFT, DFT and FFT

		Window Size, Bins and Time-Frequency-Tradeoff

		FFT in Csound		From Time Domain to Frequency Domain: pvsanal

		Pitch shifting

		Spectral Shifting

		Cross Synthesis

		Sound Quality in FFT Signals

		Retrieving Single Bins from FFT

		05 K. ATS RESYNTHESIS		The ATS Technique		General overview

		The ATS File Format

		Performing ATS Analysis with the ATSA Command-line Utility of Csound		Graphical Resources for Displaying ATS Analysis Files

		Parameters Explanation and Proper Analysis Settings

		Synthesizing ATS Analysis Files		Synthesis Techniques Applied to ATS.

		Csound Opcodes for Reading ATS Data Files

		Synthesizing ATS data: ATSadd, ATSaddnz, ATSsinnoi. ATScross.

		06 A. RECORD AND PLAY SOUNDFILES		Playing Soundfiles from Disk - diskin		Sound File Name, Absolute or Relative Path

		Diskins Output Arguments: Single or Array

		Speed, Skiptime and Loop

		Writing Audio to Disk

		Both Audio to Disk and RTAudio Output - fout with monitor

		06 B. RECORD AND PLAY BUFFERS		Playing Audio from RAM - flooper2

		Csound’s Built-in Record-Play Buffer - sndloop

		Recording to and Playback from a Function Table

		Encapsulating Record and Play Buffer Functionality to a UDO

		Further Opcodes for Investigation

		07 A. RECEIVING EVENTS BY MIDIIN

		07 B. TRIGGERING INSTRUMENT INSTANCES		Csound’s Default System of Instrument Triggering Via Midi

		Using massign to Map MIDI Channels to Instruments

		Using Multiple Triggering

		07 C. WORKING WITH CONTROLLERS		Scanning MIDI Continuous Controllers

		Scanning Pitch Bend and Aftertouch

		Initialising MIDI Controllers

		Smoothing 7-bit Quantisation in MIDI Controllers

		RECORDING CONTROLLER DATA

		07 D. READING MIDI FILES

		07 E. MIDI OUTPUT		Initiating Realtime MIDI Output

		midiout - Outputting Raw MIDI Data

		midion - Outputting MIDI Notes Made Easier

		MIDI File Output

		08 A. OPEN SOUND CONTROL		Data Types and Csound Signifiers

		Sending and Receiving Different Data Types		Send/Receive an integer

		Send/Receive more than one data type in a message

		Send/Receive arrays

		Send/Receive function tables

		Send/Receive audio

		Other OSC Opcodes

		08 B. CSOUND AND ARDUINO		Arduino - Pd - Csound

		Arduino - Processing - Csound

		Arduino as a MIDI Device

		The Serial Opcodes

		HID

		09 A. CSOUND IN PD		Installing

		Control Data

		Live Input

		MIDI

		Score Events

		Control Output

		Send/Receive Buffers from PD to Csound and back

		Settings

		09 B. CSOUND IN MAXMSP		Installing

		Creating a csound~ Patch

		Audio I/O

		Control Messages

		MIDI

		Events

		09 C. CSOUND AS A VST PLUGIN

		10 A. CSOUNDQT		Installing

		General Usage and Configuration		Configuring CsoundQt

		10 B. CABBAGE		Download and Install

		Using Cabbage		Opening files

		Creating a new file

		Building/exporting instruments

		Creating GUI interfaces for instruments

		Editing the audio graph

		Navigating large source files

		Using the code repository

		Settings		Audio and MIDI settings

		Editor

		Directories

		Colours

		Code Repository

		First Synth		Getting started

		Don’t be a click head!

		Controlling ADSR parameters.

		Low-pass me the Cabbage please…

		Sightings of LFOs!

		A basic Cabbage effect		Example

		Learning More

		10 C. BLUE		General Overview

		Organization of Tabs and Windows		Editor

		The Score Timeline as a Graphical Representation of the Composition

		SoundObjects		Modifying a SoundObject

		Instruments with a graphical interface		BlueSynthBuilder (BSB)-Instruments

		Blue Mixer

		Automation

		Libraries

		Other Features

		10 D. WINXOUND

		10 E. CSOUND VIA TERMINAL		The Csound Command

		10 F. WEB BASED CSOUND		Using Csound via UDP with the –port Option

		libcsound.js - Csound as a Javascript Library		Caveats

		Getting libcsound.js

		Using libcsound.js

		Running Csound

		11 A. ANALYSIS		Analysis Utilities		atsa

		cvanal

		hetro

		lpanal

		pvanal

		11 B. FILE INFO AND CONVERSION		sndinfo

		File Conversion Utilities		het_import / het_export

		pvlook

		pvexport / pvimport

		sdif2ad

		src_conv

		11 C. MISCELLANEOUS

		12 A. THE CSOUND API		Threading

		Channel I/O		Named Channels with no Callback

		Named Channels with Callback

		Other Channel Functions

		Score Events

		Callbacks

		CsoundPerformanceThread: A Swiss Knife for the API

		Csound API Review

		Deprecated Functions

		Builtin Wrappers

		Foreign Function Interfaces

		References & Links

		12 B. PYTHON AND CSOUND		Csound in Python using ctcsound		Installing

		iCsound

		Some features

		Building GUI with PySimpleGUI

		Python in Csound using the Python Opcodes		Starting the Python Interpreter and Running Python Code at i-Time: pyinit and pyruni

		Python Variables are usually Global

		Running Python Code at k-Time

		Running External Python Scripts: pyexec

		Passing values from Python to Csound: pyeval(i)

		Passing Values from Csound to Python: pyassign(i)

		Calling Python Functions with Csound Variables

		Local Instrument Scope

		Triggered Versions of Python Opcodes

		Simple Markov Chains Using the Python Opcodes

		12 C. LUA AND CSOUND		Installing

		Setting the Lua Path

		Running Csound in Lua

		Future Applications for Lua and Csound 

		12 D. CSOUND IN iOS		I. Features of Csound in iOS		Getting Started

		Recording and Rendering

		The CsoundUI Class

		The CsoundMotion Class

		The CsoundBinding Protocol

		The CsoundObjListener Protocol

		Console Output

		Csound-iOS and MIDI

		Other Functionality

		II. How to Fully Integrate Csound into Apple's iOS CoreAudio		Getting Started

		Setup for an Audio App

		Initialize Csound and Communicate with it

		Enabling Audiobus and Inter-App Audio

		Buffer Frame vs ksmps

		Static ksmps

		Dynamic ksmps, Buffer Frame and Sampling Rate Synchronization

		Plot a Waveform

		Write into a Csound GEN table

		Optimize performance and add a custom opcode

		Conclusion

		Links

		12 E. CSOUND ON ANDROID		The Csound for Android app

		Installing the App		Google Play Store

		Install from Another Source

		User Interface		Tabs

		Main Menu

		Settings Menu

		Loading and Performing a Piece		Example Pieces

		Running an Existing Piece

		Creating a New Piece

		Using the Widgets

		12 F. CSOUND AND HASKELL		Csound-expression

		Key principles

		How to try out the library

		Links

		12 G. CSOUND IN HTML AND JAVASCRIPT		Introduction		An Example of Use

		How it Works

		Tutorial User Guide		HelloWorld.csd

		Minimal_HTML_Example.csd

		Styled_Sliders.csd

		Conclusion

		13 A. DEVELOPING PLUGIN OPCODES		Csound data types and signals

		Plugin opcodes		Anatomy of an opcode

		Opcoding basics

		Initialisation

		Control-rate performance

		Audio-rate performance

		Linkage

		Building opcodes		CSD Example

		14 A. METHODS OF WRITING CSOUND SCORES		Writing Score by Hand

		Extension of the Score Language: bin=“…”		Calling a binary without a script

		Calling a binary and a script

		CsBeats

		Scripting Language Examples

		Pysco		Transitioning away from the Classical Csound Score

		Managing Time with the cue()

		Generating Events

		Processing Events

		CMask		A CMask example: creation of a dynamic texture

		nGen

		AthenaCL

		Common Music

		14 B. PYTHON IN CSOUNDQT		The CsoundQt Python Object

		File and Control Access		Create or Load a csd File

		Run, Pause or Stop a csd File

		Access to Different csd Tabs via Indices

		Send Score Events

		Query File Name or Path

		Get and Set csd Text		Get Text from a csd File

		Set Text in a csd File

		Opcode Exists

		Example: Score Generation

		Widgets		Specifying the Common Properties as Arguments

		Setting the Specific Properties

		Getting the Property Names and Values

		Get the UUIDs of all Widgets

		Some Examples for Creating and Modifying Widgets

		Deleting widgets

		Getting and Setting Channel Names and Values

		Presets

		Csound Functions

		Creating Own GUIs with PythonQt		Dialog Box

		List of PyQcsObject Methods in CsoundQt		Load/Create/Activate a csd File

		Play/Pause/Stop a csd File

		Send Score Events

		Query File Name/Path

		Get csd Text

		Set csd Text

		Opcode Exists

		Create Widgets

		Query Widgets

		Modify Widgets

		Delete Widgets

		Presets

		Live Event Sheet

		Csound / API

		14 C. AMPLITUDE AND PITCH TRACKING		Dynamic Gating and Amplitude Triggering

		Pitch Tracking

		15 A. OPCODE GUIDE		33 ESSENTIAL OPCODES

		TOP 100 OPCODES

		EXTENDED OPCODE OVERVIEW IN CATEGORIES		I. AUDIO I/O AND SOUND FILES		AUDIO I/O

		SOUND FILES AND SAMPLES

		II. SIGNAL GENERATORS		OSCILLATORS AND PHASORS

		RANDOM AND NOISE GENERATORS

		ENVELOPES AND LINES

		PHYSICAL MODELS AND FM INSTRUMENTS

		III. SIGNAL MODIFIERS		DELAYS

		FILTERS

		REVERB

		DISTORTION AND SIMILAR MODIFICATIONS

		SIGNAL MEASUREMENT AND DYNAMIC PROCESSING

		SPATIALIZATION

		IV. GRANULAR SYNTHESIS AND SPECTRAL PROCESSING		GRANULAR SYNTHESIS

		SPECTRAL PROCESSING WITH PVS OPCODES

		OTHER SPECTRAL TRANSFORM

		CONVOLUTION

		V. DATA		BUFFERS / FUNCTION TABLES

		ARRAYS

		STRINGS

		FILES

		VI. PROGRAM FLOW		INSTRUMENTS AND VARIABLES

		TIME, CONDITIONS, LOOPS, SCORE ACCESS

		EVENTS AND TRIGGERS

		PRINTING

		SOFTWARE CHANNELS

		MATHEMATICAL CALCULATIONS

		CONVERTERS

		Other Pitch Converters

		VII. PERIPHERALS AND CONNECTIONS		MIDI

		OPEN SOUND CONTROL AND NETWORK

		OTHER

		SYSTEM

		PLUGINS

		15 B. GLOSSARY		Math Symbols

		Csound Terms

		15 C. LINKS		Downloads

		Community

		Mailing Lists and Bug Tracker

		Tutorials

		Video Tutorials		CsoundQt (QuteCsound)

		Csoundo (Csound and Processing)

		Open Sound Control in Csound

		Csound and Inscore

		Csound Conferences

		Example Collections

		Books

EPUB/media/file84.png
10.5

EPUB/media/file115.gif
NI

3

i

AR

EPUB/media/file224.png

EPUB/media/file92.png
20 kHz + + + +
16 kHz + + + 1
12 kHz + + + sssammssssmessrs

8 kHz +

power = 50 power = 0.5

EPUB/media/file41.png
10

0.8

0.6

0.4

02

0.0

0.1

02
time(s)

EPUB/media/file37.png
10
time(s)

EPUB/media/file143.jpg

EPUB/media/file151.png
1.0 1

0.8 1

0.6 1

0.4 1

0.2 1

0.0

256

512

768

samples

1024

1280

1536

1792

EPUB/media/file127.png

EPUB/media/file120.png
Position

0.0100

0.0001

Masses

EPUB/media/file3.png
AN AT

)
o
S o0
S
VA
1_
3
c 0
E]
z
—1

EPUB/media/file68.png
Partial 1

Partial 2

Partial 3

Partial 4

Sum

EPUB/media/file163.png
YOU MUST USE THE OPTION -+rtmidi=null -MO IN YOUR CSD FILE!

receive note-on messages

pack note number and velocity

EPUB/media/file73.png
[—dinv

White
Noise

[—dnv
j«—D3u4

JOXIN

£
2 2 2 g
Lowpass Highpass Bandpass |,
Filter Filter Filter

Pulse
Generator

|l

JOXIN

EPUB/media/file124.png
expon(1, 1, 0.001)

[1
time (sec)
expon(1, 1, 0.000001)
[1
time (sec)

expon(1, 1, 0.000000000000001)

05

1
time (sec)

EPUB/media/file65.png
800 Terminal — csound — 80x24

orchname: /var/folders/mk/mkpuhjKkEjOEgPNHAD3W@++++TI/-Tmp-//csound-y4a0li.orc
scorename: /var/folders/mk/mkpuhjKkEjOEgPNHAD3wW@++++TI/-Tmp-//csound-1nbéha.sco
rtaudio: PortAudio module enabled ... using callback interface
rtmidi: PortMIDI module enabled
orch compiler:

instr 1
Elapsed time at end of orchestra compile: real: ©.003s, CPU: ©.002s
sorting score ...

. done
Elapsed time at end of score sort: real: ©.120s, CPU: 0.024s
Csound version 5.12 (float samples) Jun 4 2010
@dBFS level = 1.0
Seeding from current time 500726401
orch now loaded
stdmode = 00000002 Linefd = @
audio buffered in 1024 sample-frame blocks
PortAudio V19-devel (built Feb 12 2010 09:42:54)
PortAudio: available output devices:
@: Built-in Output
1: Gerd

PortAudio: selected output device 'Built-in Output”
writing 4096-byte blks of shorts to dac
SECTION 1:

EPUB/media/file132.png
+ x (front)

y (right)

EPUB/media/file159.png
AllArduinolnputsToOSC | Processing 1.2.1

00 BEHDX

AllArduinolnputsToOSC §

Processing Arduino to DSC example sketch - written by Lian Lacey (nttp://1id

This processing sketch allows comunication to and fron the Arduino (using
and then comverts the data into/fron 0SC (using the oscP5 Library) to conmur|

In this exmple sketch, all analog pins are being read, as well as all digit]

* In order for this sketch to comunicate with the Arduino board, the StandarcF|
(Examples > Firnata > StandardFirnata)

* 0SC code adapted from “oscPSsendreceive’ by andreas schlegel
* Arduino code taken ron the tutorial at EEp://uw.arduino.ce/playground/ ntey

0

//Uibraries needed for arduino comunication
inport. prosessing.serial X
inport oe.arduino.x

//libraries needed for ose
inport oscPs X3
inport netps

~

//varicbles needed for arduing comunication 2

—)<l

EPUB/media/file57.png

EPUB/media/file24.gif

EPUB/media/file205.png
15:15 © 4%
Csound: xanadu.csd OPEN...
EDITOR MESSAGES HTML WIDGETS

Creating options
Creating orchestra
closing tag

Creating score
CsoundOboe: :Start...
displays suppressed
0dBFS level = 32768.0
orch now loaded

audio buffered in 2048 sample-frame blocks
SECTION 1:
CsoundOboe:
CsoundOboe:
CsoundOboe:
CsoundOboe:
CsoundOboe:
CsoundOboe:
CsoundOboe: :PerformAndReset. ..
Current CPU ID is 0.
setCsoundText...

Thread affinity set.

ftable 1:
ftable 2:
ftable 3:
new alloc
new alloc
new alloc
new alloc
new alloc
new alloc for
new alloc for instr
B 0.000 .. 0.100 T O.
new alloc for instr 1:

B 0.100 .. 0.200 T O.
new alloc for instr 1:
B 0.200 .. 0.300T O
new alloc for instr 1:
B 0.300 .. 0.400T O
new alloc for instr 1:
B 0.400 .. 0.500 T O.
new alloc for instr 1:

B 0.500 .. 7.500T 7.
new alloc for instr
new alloc for instr
new alloc for instr
new alloc for instr
new alloc for instr
new alloc for instr
new alloc for instr
B 7.500 .. 7.600T 7.
new alloc for instr 2:
B 7.600 .. 7.700 T 7
new alloc for instr 2:
B 7.700 .. 7.800T 7.
new alloc for instr 2:

B 7.800 .. 7.900 T 7.
new alloc for instr 2:
8.000 T 8.

:Start:
:Start:
:Start:
:Start:
:Start:
:Start:

AAudio is supported: true.
AAudio is recommended: true.

100.
AAudio.

Frames per burst:
Oboe audio API is:

instr
instr
instr
instr
instr
instr

for
for
for
for
for

WwWwwwww =

100 TT 0.100 M: 1999.3

200 TT 0.200 M: 5821.5

.300 TT 0.300 M: 9125.0

.400 TT 0.400 M: 10031.4

500 TT 0.500 M: 11943.3

500 TT 7.500 M: 13842.7

WwwwwwnN

600 TT 7.600 M: 5703.7

.700 TT 7.700 M: 6032.8

800 TT 7.800 M: 7235.7

900 TT 7.900 M: 6150.9

B 7.900 ..

000 TT 8.000 M: 10943.0

(-_,))

(1}

STOP

HELP

Audio output stream format is: Float.

Started Oboe audio output stream...

1999.4

3826.9

4661.1

6791.4

7936.3

13147.7

6560.9

6938.6

7139.3

7523.6

7029.9

4+ =

A

EPUB/media/file177.gif
Cabbage /home!

EPUB/media/file175.png
New Open Save

Inspector

Inspector
v Opcodes

Macros

¥ Instruments
instr 1;Pipe (physical wave...

One 4% D b

Undo Redo Cut Copy Paste

» opcode PIPE, a,iiiikkkkk.
opcode REVERB, aa, akkkk...

instr 99;Reverb unit
v Ftables

F£100256-2500.000006 12...
F110512-2500.00012475
F10128-2500.002272727.

[Menu

Event p1(instr) p2 (start) p3(dur) p4

1
1
1

v| View [sheet v| Tempo [100.00 | LoopLength |8.000

0

0.5

15

25

35

@ ® | test.csd 01pvsanal_pvsynth.csd | Pipe_Syntt

H

<CsoundSynthesizer>

B

Run Stop RuninTerm Record Render Ext.Editor Ext.Player

New

o

R &

Configure Widgets Manual

stop All

<CsOptions>
“odac -b1024 -B2048 —expressi
</CsOptions> & %
<CsInstruments> g
hysical Waveguide Midi synth with Q| & | ®
lodified for QuteCsound examples by

show | Pla

sr = 48000
ksmps =512
nchnls =2

5 2
B [Me

0.4 64
0.4 68 ki

1i
0.4 71

2i
0.4 69

3i
0.4 60
0.4 61
0.4 61
0.4 68 L

1i

0.4 61

20

0.4 67

3

0.4 68

0.1 o7 ali

0.1 60 5|t

6

0.1 73

0.1 66 2i

0.1

61

y | Loop

nu

1
1
1

[Menu

Event p1 (instr) p2 (start) p3 (dur)

1

1
1

1

1
1

sync

New
Line
Short

Vview [sheet |

a5
5

Live Event — Short

Vview [sheet |

a5
5
55
6

65
7

Event | p1 (instr) p2 (start) p3 (dur)

0.4
0.4

0.1

0.4

0.4
0.1
0.1
0.1

0.1

Tempo | 60.00

p4
67
68
o7

Tempo | 60.00

p4
67
68
o7
60
73
66

ps

ps

Loop length

LoopRange | Tempo

11 100
11 60
11 60

Loop Length | 8.000

Loop Length | 8.000

EPUB/media/file48.png

EPUB/media/file220.png
12€02 score_generator.csd - CsoundQt

File Edit Control View Examples Favorites Scripts Help
= -
>Pmo e ® & A @ & |4 0B
Run Pause Stop Record RuninTerm Render Ext.Editor Ext. Player Configure | Widgets Manual | Console Inspector
Python Console 25 130328050 % | transegrisd % | testesd % | @ cs i
Py> qlistWidgetProperties("disp_chan_01")
(U'QCS X', w'QCS.y', u'QCS_uuid', w'QCS_visible', u'QCS_midichan’, 4 <CsInstruments>
wQCs._midicc’, wQCs labef, w'QCs alignment’, wQCs_precision’, 5 sr = 44100
u'QCs_font', u'QCS_fontsize', u'QCS_bgcolor', u'QCS_bgcolormode’, 6 ksmps = 32
u'QCS_color’, u'QCS_bordermode’, u'QCS_borderradius’, Toadees -
u'QCS_borderwidth’, w'QCS_width', u'QCS_height’, Widgets ®
U'QCS_objectName’) =
>
Py> g.setWidgetProperty("disp_chan_01", "QCS_label", "Hey Joe!") R4
oy
q.setWidgetProperty(u'{a71c0c67-3d54-4d4a-88e6-8df40070a7fSy,)
"QCS_label", "Hey Joeboel") wow 7 i
py> q.setWidgetProperty(q.createNewLabel(70, 70, "WOW"), second.label 2na
"QCs fontsize", 18) - E s
Py> 2na
Jostoe!
Python Scratch Pad ® 2 ’C;
1)
20 iFad random p3/20, p3/5
21 aout Linen asine, iFad
22 out aout
23 endin
24 </CsInstruments>

EPUB/media/file80.png
Amplitude

>

<<

5

»

<<

&

»

<<

<«

<<

<<

<«

<<

&

Y

<<

5

»

Frequency

EPUB/media/file14.png
probability
A

} i -
minimum maximum values

EPUB/media/file185.gif
File

1

2 form size(200, 20
3 gentable bounds (2
B

Edit Tools

View Help

NEaalhV oo Er—

RingModSynth.csd

-d -+rtmidi=NU

gi5
gib

gi7
instr 1
endin

o 3600

5
s
i

LinuxCPU: 3002MHz Cores:

Cabbags Csound IDE

testpatn.cabbage * [piay - [H] [+ iSoundhlencsd

JACK :

4100 Hz :

EPUB/media/file100.png
® a2 @ a3
0.5+ @al ®
a5
S | | | | L J | 1 | | -
a0 State
(Time)
@ a9
-0.5+ @ a6

@ a7

@ as

EPUB/media/file194.jpg
e S e Sk

EPUB/media/file160.png
ANALOG

EPUB/media/file135.png
5

6

7

8

Enorm (M)

T[075

0.625

0.546875

0492188

0451172

0418945

0392761

EPUB/media/file29.png
linrand

EPUB/media/file186.png
Amplitude

Maximum =<

Sustain Level <

attack decay release

EPUB/media/file93.png
tanh 1

EPUB/media/file216.png
py> a.createNewLabel)
U'{3a171322-4cf8-4705-f30-172863900156}'

<Csoundsynthesizer>
<Csoptions>
o </Csoptions>

linseg
poscil

EPUB/media/file50.png

EPUB/media/file7.png
020 020
015 015
010 010
005 005 ﬂ
0.00 0.00

0.05 -0.05

0.10 -0.10

0.15 -0.15

0.20 -0.20

2.0000 2.0005 2.0010 2.0015 2.0020 2.0025 8.0000 8.0005 8.0010 8.0015 8.0020 8.0025

EPUB/media/file76.png
Amp Freq Amp=1 Freq

Modulator e e Carrier

<+>— DC Offset

()

AM Signal

EPUB/media/file190.png
File View Project Tools Script Window Help
Start Render From: 0.0 To Play Time

Score | Orchestra < _UDO .| Tables | Global Orchestra | Global Score :| Project Properties

[Loop.

afw

4] b [[bluetive [Recompite | Al Notes Off [MIDI nput

Orchestra [+ | mstrument Editor | Comments |

"W 0 B nstrjNa i Generic Editor - Type: blue.orchestra.Genericinstrument
Simple VCO2 Moog...
Instrument Text | Global Orchestra | Global score | UDO |

lipch = cpspch(pd)
1amp = ampdbfs{ps)

kenv Linsegr 6, .005, 1, .085, .95, .1, 8
out veomoogladder iamp k kenv, ipch

User Instrument Library louts zout, aout

instrument Library

—p—
D) simple fm 2:1

[bsos

0 wiangle

D squareviave

D wabowstreson

[waclar

[fmbs

[waveshaper, jean-Claude (=

< [

SoundObject Editor

EPUB/media/file33.png
bexprand

EPUB/media/file0.png

EPUB/media/file28.gif

EPUB/media/file167.png
800 settings.pd - /Joachim/Csound/PD.

csound runs by default, run 0 message stops it, run 1
re-starts it
[Fun_s1

console messages on/oft

nds the score without recompilation

offsets the score playback by 20 secs

rosets the engine and recompiles the score
[Gpen csapi_demo-csdl opens a new ore/score

csoundapi~ is built with the number of audio output
channels taken from the orchestra, or it can be built with
a set number of out/inlets (when its lst argument is
numeric)

(all descriptions from victor lazzarini’s csoundapi.pd
example patch which comes with the csoundapi~ object)

EPUB/media/file197.png
CVANAL HETRO
Input File Name
input.wav
Output File Name
output.Ip
Sample Rate (-s)
44100

Channel (<)

1

Begin Time (-b)
0.0

Duration (-d)

0.0

Num poles (-p)
34

Reset Defaults

Csound Utilities

LPANAL = PVANAL ATSA

Hop size (-h)
200

Lowest freq (-P)
Max freq (-Q)
200

Verbosity

none (0)

v Alternate storage (-a)

Run LPANAL

Ipanal

Analysis File Generation

(ATSA, CVANAL, HETRO,
LPANAL, PVANAL)

Ipanal

Ipanal — Performs both linear predictive and pitch-
tracking analysis on a soundfile.

Description

Linear predictive analysis for the Csound Linear
Predictive Coding (LPC) Resynthesis opcodes.

Syntax

csound -U lpanal [flags] infilename outfilenz

1lpanal [flags] infilename outfilename

Initialization

EPUB/media/file81.jpg
Amp Freq Amp Freq

Modulator 1 Modulator 2

Freq

Carrier

FM Signal

EPUB/media/file154.png
read pointer (s)

3.0

2.5

2.0

15

05

0.0

10
performance time (s)

15

20

EPUB/media/file162.png
@& Pd File Edit Put Find Media Window Help

0 Pd
IN our
compute audio
= goq peak meters
cup car) —

Creating orchestra
Creating score

orchnane: /var/folders/mk/mkpuhJKKEJOEGPRHAD3NG+-+++T1/~Tmp~//cSound-LIt19Q. orc
scorenane: /var/folders/mk/mkpuhJKKE JOEGPIHAD3W++++T1/~Tmp-//csound-KAvitUg . sco
rtaudio: PortAudio module enabled

using callback interface

rtmidi: PortMIDI module enabled 800 live.pd_~ /Joachim/Csound/PD.
orch compiler

instr
1

Elapsed tine at end of orchestra compile: real: 0.002s, CPU: 0.001s Be careful with feedback!
sorting score
done
Elapsed time at end of score sort: real: 0.002s, CPU: 0.0025
Csound version 5.12 (float samples) May 4 2010
displays suppressed
0dBFS level = 1.0
orch now loaded
audio buffered in 1024 sample-frane blocks
SECTION 1
new alloc for instr 1
saved to: /Joachim/Csound/PD/Live.pd

EPUB/media/file181.gif
File Edit Tools View Help

FeaahvVede

Soundfilercsd

1
2 form caption("Soundfiler") size(430, 240), colour(58, 116, 182), pluginiD("defl")

3

4 combobox bounds (324, 188, 160, 25), channel("presetsCombo"), populate("*.snaps")

5 filebutton bounds (262, 188, 60, 25) value(@) text("Save", "Save") mode("snapshot")

5

7 soundfiler bounds(6, 4, 417, 178) identchannel("soundfilerl") tablenumber(-1)

s filebutton bounds(8, 188, 81, 27) channel("filebuttonl’) value(8) text("Open file", "Open file") populate(
9 button bounds (90, 188, 81,
10 button bounds(174, 188, 80,
n

12

13

14en -d -4rimidi=NULL -HO --m)
15

1

17; Initialize the global var|
185 = 44100

19 ksmps = 32

20 nchnls = 2

219dbfs = 1

2

23 g§filepath init "" scre

i 135MHz Cores: 4 7870MB. \ \ L]
new alloc for instr 1

EPUB/media/file104.gif
10

-10

EPUB/media/file138.png
gain

a

atan (d-7/2)
S
atan (d-7/2)
S

72 =(1-e7)-

EPUB/media/file112.gif
AdB]
w0

0 m“llllu f

EPUB/media/file106.gif
-n

-2n

EPUB/media/file227.png

EPUB/media/file144.png
Amp Freq

File or Buffer

N

Playback

Modulator

RM Signal

Carrier

EPUB/media/file79.png
Amp Freq

FM Signal

Carrier

Modulator

EPUB/media/file6.png
Amplitude values without grid Amplitude values with 3 bit grid

m

10

100

Time Time

o

o0

Amplitude in 3 bit resalution

001

o0

EPUB/media/file156.png

EPUB/media/file36.png
imode = 0

3 4 5
imode = 1

3 4 5
imode = 2

3 4 5
imode = 3

3 4 5

time(s)

EPUB/media/file11.png
0.000 0.146 0500 0854

1000 0854 0500 0.146 0.000 0.146 0500 0854

1.000 0854 0500 0.146

EPUB/media/file97.png
Amp Freq

Grain envelope

) Grain waveform

0

-1

EPUB/media/file54.png

EPUB/media/file2.png
Time

Period

EPUB/media/file207.png
ICRVASE | QF4am

Csound: i.csd OPEN... STOP

' MESSAGES HTML WIDGETS HELP ABOUT

slider1 ' ———
slider2 ' e ————————
slider3 ' —————
slider4 ' —
slider5 ' —————
slider6 ' ——
slider7 ' ——————————

slider8 '
slider9 '

trackpad

EPUB/media/file91.png

EPUB/media/file85.png
05

0.0

0.5+

1024

2048
table index

3072

4096

EPUB/media/file42.png
0.4

02

0.0

0.0

0.1

02

03

0.4

05

0.6

EPUB/media/file212.png
;y> g.newDocument(cs_floss_1.csd') <Csoundsynthesizer>
<Csoptions>
</CsOptions>
<CsInstruments>

sr = 44100

ksmps = 32

edbfs = 1

nchnls = 1

</CsInstruments>
<CsScore>

</CsScore>

</Csoundsynthesizer>

EPUB/media/file69.png
1920Hz + + + + + + + +

1280 Hz + + + + + + + +

6A0Hz + + + + + + + +

1 sec 2 sec 3 sec 4 sec 5 sec 6 sec 7 sec 8 sec

EPUB/media/file193.png
File View Project Tools Script Window Help

start Render From: 0.0 To Play Time

_ Score «_Orchestra | UDO | Tables | Global Orchestra | Global Score .| Project Properties | Blue Live |
Single Line [Mult Line_ » root
7] Use Tempo [~ |

Sound Layers [~ |lo09 . , 1905, . 1989, , 1985

N T P
sewp [M[STN[AT~ Borchest
vier

D toop [1

b [44] b [@ [bluetive [Recompit [Al Notes Off [MiDI nput

e I e e

129 .. 0

7] Enabled

Extra Render Time

Master
Pre

SubChannell

Pre

ReverbsC
Chorus
M "

o= Level

ReverbSC
Feedback Cut-Off Wet/Dry

0.713891(3259.38[0.40667
Output Output

Output Output

Master

SubChannell w | [Master Master

<

SoundObject Editor _Mixer

EPUB/media/file128.png

EPUB/media/file150.png
1.0 1

0.8 1

0.6 1

0.4 1

0.2 1

—— Hamming
—— von-Hann (Hanning)

0.0

256

512
Samples

768 1024

EPUB/media/file60.png

EPUB/media/file19.gif
I(x)
2

05

EPUB/media/file213.png
Py> g.getDocument(cs floss_1.csd)

k <Csoundsynthesizer>

<CsOptions>
Ppy> q.getDocument('cs_floss_2.csd’) </CsOptions>
4 <CsInstruments>
sr = 44100
ksmps = 32
edbfs = 1
nchnls = 1

oy |

gisine 0, 0, 1024, 10, 1

instr 1
kPitch 560, p3, 1060
asine .2, kpitch, gisine
asine

endin

</CsInstruments>

<csscore>

1010
</Csscore>
</Csoundsynthesizer>

EPUB/media/file208.shtml

 		Scrims v2, for Csound+HTML5
 		Michael Gogins

 		Time:
 		0

 		Subset:
 		

 		Point:
 		

 		X:
 		

 		Y:
 		

 		Chord:
 		

 		Notes:
 		

 		

<CsoundSynthesizer>
<CsOptions>
; Needed to work with csound.node:
-d -f -m195 -+rtaudio=alsa -odac:plughw:1,0 -iadc:plughw:1,0 --ksmps=128
</CsOptions>
<CsInstruments>

sr = 48000
ksmps = 128
nchnls = 2
nchnls_i = 1
0dbfs = 15

connect "BarModel", "outleft", "ReverbSC", "inleft"
connect "BarModel", "outright", "ReverbSC", "inright"
connect "Blower", "outleft", "ReverbSC", "inleft"
connect "Blower", "outright", "ReverbSC", "inright"
connect "Bower", "outleft", "ReverbSC", "inleft"
connect "Bower", "outright", "ReverbSC", "inright"
connect "Buzzer", "outleft", "ReverbSC", "inleft"
connect "Buzzer", "outright", "ReverbSC", "inright"
connect "Droner", "outleft", "ReverbSC", "inleft"
connect "Droner", "outright", "ReverbSC", "inright"
connect "FMModerate2", "outleft", "ReverbSC", "inleft"
connect "FMModerate2", "outright", "ReverbSC", "inright"
connect "Harpsichord", "outleft", "ReverbSC", "inleft"
connect "Harpsichord", "outright", "ReverbSC", "inright"
connect "KarplusStrong3", "outleft", "ReverbSC", "inleft"
connect "KarplusStrong3", "outright", "ReverbSC", "inright"
connect "Phaser", "outleft", "ReverbSC", "inleft"
connect "Phaser", "outleft", "ReverbSC", "inright"
connect "Plucked", "outright", "ReverbSC", "inleft"
connect "Plucked", "outleft", "ReverbSC", "inright"
connect "Rhodes", "outleft", "ReverbSC", "inleft"
connect "Rhodes", "outright", "ReverbSC", "inright"
connect "Sweeper", "outleft", "ReverbSC", "inleft"
connect "Sweeper", "outright", "ReverbSC", "inright"
connect "Shiner", "outleft", "ReverbSC", "inleft"
connect "Shiner", "outright", "ReverbSC", "inright"
connect "Xing", "outleft", "MasterOutput", "inleft"
connect "Xing", "outright", "MasterOutput", "inright"
connect "YiString", "outleft", "ReverbSC", "inleft"
connect "YiString", "outright", "ReverbSC", "inright"
connect "YiString", "chorusleft", "SolinaChorus", "inleft"
connect "YiString", "chorusright", "SolinaChorus", "inright"
connect "SolinaChorus", "outleft", "ReverbSC", "inleft"
connect "SolinaChorus", "outright", "ReverbSC", "inright"
connect "ReverbSC", "outleft", "MasterOutput", "inleft"
connect "ReverbSC", "outright", "MasterOutput", "inright"

alwayson "Controls"
alwayson "SolinaChorus"
alwayson "ReverbSC"
alwayson "MasterOutput"

gk_Plucked_level init 0
instr Plucked
; Author: Michael Gogins
i_instrument = p1
i_time = p2
i_duration = p3
i_midi_key = p4
i_midi_velocity = p5
k_space_front_to_back = p6
k_space_left_to_right = p7
k_space_bottom_to_top = p8
i_phase = p9
i_frequency = cpsmidinn(i_midi_key)
; Adjust the following value until "overall amps" at the end of performance is about -6 dB.
i_overall_amps = 101
i_normalization = ampdb(-i_overall_amps) / 2
i_amplitude = ampdb(i_midi_velocity) * i_normalization
k_gain = ampdb(gk_Plucked_level)
isine ftgenonce 0, 0, 65537, 10, 1
aenvelope transeg 1.0, 20, -12.0, 0.05
aexcite poscil 1.0, 1, isine
asignal1 wgpluck2 0.1, 1.0, i_frequency, 0.25, 0.22
asignal2 wgpluck2 0.1, 1.0, i_frequency * 1.003, 0.20, 0.223
asignal3 wgpluck2 0.1, 11, i_frequency * 0.997, 0.23, 0.224
a_signal = (asignal1 + asignal2 + asignal3) * aenvelope
i_attack = .002
i_sustain = p3
i_release = 0.01
xtratim i_attack + i_release
a_declicking linsegr 0, i_attack, 1, i_sustain, 1, i_release, 0
a_signal = a_signal * i_amplitude * a_declicking * k_gain
#ifdef USE_SPATIALIZATION
a_spatial_reverb_send init 0
a_bsignal[] init 16
a_bsignal, a_spatial_reverb_send Spatialize a_signal, k_space_front_to_back, k_space_left_to_right, k_space_bottom_to_top
outletv "outbformat", a_bsignal
outleta "out", a_spatial_reverb_send
#else
a_out_left, a_out_right pan2 a_signal, k_space_left_to_right
outleta "outleft", a_out_left
outleta "outright", a_out_right
#endif
prints "%-24.24s i %9.4f t %9.4f d %9.4f k %9.4f v %9.4f p %9.4f #%3d\n", nstrstr(p1), p1, p2, p3, p4, p5, p7, active(p1)
endin

gk_Rhodes_level init 0
gi_Rhodes_sine ftgen 0, 0, 65537, 10, 1
gi_Rhodes_cosine ftgen 0, 0, 65537, 11, 1
gi_Rhodes_blank ftgen 0, 0, 65537, 10, 0 ; Blank wavetable for some Cook FM opcodes.
instr Rhodes
; Authors: Perry Cook, John ffitch, Michael Gogins
i_instrument = p1
i_time = p2
i_duration = p3
i_midi_key = p4
i_midi_velocity = p5
k_space_front_to_back = p6
k_space_left_to_right = .5
k_space_bottom_to_top = p8
i_phase = p9
i_frequency = cpsmidinn(i_midi_key)
; Adjust the following value until "overall amps" at the end of performance is about -6 dB.
i_overall_amps = 82
i_normalization = ampdb(-i_overall_amps) / 2
i_amplitude = ampdb(i_midi_velocity) * i_normalization
k_gain = ampdb(gk_Rhodes_level)
iindex = 4
icrossfade = 3
ivibedepth = 0.2
iviberate = 6
ifn1 = gi_Rhodes_sine
ifn2 = gi_Rhodes_cosine
ifn3 = gi_Rhodes_sine
ifn4 = gi_Rhodes_blank
ivibefn = gi_Rhodes_sine
a_signal fmrhode i_amplitude, i_frequency, iindex, icrossfade, ivibedepth, iviberate, ifn1, ifn2, ifn3, ifn4, ivibefn
i_attack = .002
i_sustain = p3
i_release = 0.01
xtratim i_attack + i_release
a_declicking linsegr 0, i_attack, 1, i_sustain, 1, i_release, 0
a_signal = a_signal * a_declicking * k_gain
#ifdef USE_SPATIALIZATION
a_spatial_reverb_send init 0
a_bsignal[] init 16
a_bsignal, a_spatial_reverb_send Spatialize a_signal, k_space_front_to_back, k_space_left_to_right, k_space_bottom_to_top
outletv "outbformat", a_bsignal
outleta "out", a_spatial_reverb_send
#else
a_out_left, a_out_right pan2 a_signal, k_space_left_to_right
outleta "outleft", a_out_left
outleta "outright", a_out_right
#endif
prints "%-24.24s i %9.4f t %9.4f d %9.4f k %9.4f v %9.4f p %9.4f #%3d\n", nstrstr(p1), p1, p2, p3, p4, p5, p7, active(p1)
endin

gk_Buzzer_attack init .125
gk_Buzzer_release init .25
gk_Buzzer_harmonics init 8
gk_Buzzer_level init 0
gk_Buzzer_midi_dynamic_range init 127
gi_Buzzer_sine ftgen 0, 0, 65537, 10, 1
instr Buzzer
i_instrument = p1
i_time = p2
i_duration = p3
i_midi_key = p4
i_midi_dynamic_range = i(gk_Buzzer_midi_dynamic_range)
i_midi_velocity = p5 * i_midi_dynamic_range / 127 + (63.5 - i_midi_dynamic_range / 2)
k_space_front_to_back = p6
k_space_left_to_right = p7
k_space_bottom_to_top = p8
i_phase = p9
i_frequency = cpsmidinn(i_midi_key)
; Adjust the following value until "overall amps" at the end of performance is about -6 dB.
i_level_correction = 79.5
i_normalization = ampdb(-i_level_correction) / 2
i_amplitude = ampdb(i_midi_velocity) * i_normalization
k_gain = ampdb(gk_Buzzer_level)
i_attack = i(gk_Buzzer_attack)
i_release = i(gk_Buzzer_release)
i_sustain = p3
xtratim i_attack + i_release
a_envelope transegr 0.0, i_attack / 2.0, 1.5, i_amplitude / 2.0, i_attack / 2.0, -1.5, i_amplitude, i_sustain, 0.0, i_amplitude, i_release / 2.0, 1.5, i_amplitude / 2.0, i_release / 2.0, -1.5, 0
a_signal buzz a_envelope, i_frequency, gk_Buzzer_harmonics, gi_Buzzer_sine

a_signal = a_signal * k_gain
#ifdef USE_SPATIALIZATION
a_spatial_reverb_send init 0
a_bsignal[] init 16
a_bsignal, a_spatial_reverb_send Spatialize a_signal, k_space_front_to_back, k_space_left_to_right, k_space_bottom_to_top
outletv "outbformat", a_bsignal
outleta "out", a_spatial_reverb_send
#else
a_out_left, a_out_right pan2 a_signal, k_space_left_to_right
outleta "outleft", a_out_left
outleta "outright", a_out_right
#endif
;printks "Buzzer i %9.4f t %9.4f d %9.4f k %9.4f v %9.4f p %9.4f #%3d l%9.4f r%9.4f\n", 1, p1, p2, p3, p4, p5, p7, active(p1), dbamp(rms(a_out_left)), dbamp(rms(a_out_right))
prints "%-24.24s i %9.4f t %9.4f d %9.4f k %9.4f v %9.4f p %9.4f #%3d\n", nstrstr(p1), p1, p2, p3, p4, p5, p7, active(p1)
endin

gk_Droner_partial1 init .5
gk_Droner_partial2 init .05
gk_Droner_partial3 init .1
gk_Droner_partial4 init .2
gk_Droner_partial5 init .1
gk_Droner_partial6 init 0
gk_Droner_partial7 init 0
gk_Droner_partial8 init 0
gk_Droner_partial9 init 0
gk_Droner_partial10 init 0
gk_Droner_level init 0
gi_Droner_waveform init 0
instr Droner
i_instrument = p1
i_time = p2
i_duration = p3
i_midi_key = p4
i_midi_velocity = p5
k_space_front_to_back = p6
k_space_left_to_right = p7
k_space_bottom_to_top = p8
i_phase = p9
i_frequency = cpsmidinn(i_midi_key)
; Adjust the following value until "overall amps" at the end of performance is about -6 dB.
i_overall_amps = -20 + 98 + 4
i_normalization = ampdb(-i_overall_amps) / 2
i_amplitude = ampdb(i_midi_velocity) * i_normalization
k_gain = ampdb(gk_Droner_level)
k1 = gk_Droner_partial1
k2 = gk_Droner_partial2
k3 = gk_Droner_partial3
k4 = gk_Droner_partial4
k5 = gk_Droner_partial5
k6 = gk_Droner_partial6
k7 = gk_Droner_partial7
k8 = gk_Droner_partial8
k9 = gk_Droner_partial9
k10 = gk_Droner_partial10
iwaveform = gi_Droner_waveform
iattack = .5
idecay = .5
xtratim iattack + idecay
isustain = p3
aenvelope transegr 0.0, iattack / 2.0, 1.5, 1 / 2.0, iattack / 2.0, -1.5, 1, isustain, 0.0, 1, idecay / 2.0, 1.5, 1 / 2.0, idecay / 2.0, -1.5, 0
ihertz = cpsmidinn(i_midi_key)
isine ftgenonce 0, 0, 65537, 10, 1, 0, .02
if iwaveform == 0 goto i_waveform_0
if iwaveform == 1 goto i_waveform_1
if iwaveform == 2 goto i_waveform_2
i_waveform_0:
asignal poscil3 1, ihertz, isine
goto i_waveform_endif
i_waveform_1:
asignal vco2 1, ihertz, 8 ; integrated saw
goto i_waveform_endif
i_waveform_2:
asignal vco2 1, ihertz, 12 ; triangle
i_waveform_endif:
asignal chebyshevpoly asignal, 0, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10
adeclicking linsegr 0, .004, 1, p3 - .014, 1, .1, 0
a_signal = asignal * adeclicking
a_signal = a_signal * i_amplitude * k_gain * 1.4
#ifdef USE_SPATIALIZATION
a_spatial_reverb_send init 0
a_bsignal[] init 16
a_bsignal, a_spatial_reverb_send Spatialize a_signal, k_space_front_to_back, k_space_left_to_right, k_space_bottom_to_top
outletv "outbformat", a_bsignal
outleta "out", a_spatial_reverb_send
#else
a_out_left, a_out_right pan2 a_signal, k_space_left_to_right
outleta "outleft", a_out_left
outleta "outright", a_out_right
#endif
prints "%-24.24s i %9.4f t %9.4f d %9.4f k %9.4f v %9.4f p %9.4f #%3d\n", nstrstr(p1), p1, p2, p3, p4, p5, p7, active(p1)
endin

gk_YiString_midi_dynamic_range init 127
gk_YiString_level init 0
gk_YiString_reverb_send init .5
gk_YiString_chorus_send init .5
gi_YiString_overlap init .1
instr YiString
//
// Original by Steven Yi.
// Adapted by Michael Gogins.
//
i_instrument = p1
i_time = p2
i_duration = p3
i_midi_key = p4
i_midi_dynamic_range = i(gk_YiString_midi_dynamic_range)
i_midi_velocity = p5 * i_midi_dynamic_range / 127 + (63.5 - i_midi_dynamic_range / 2)
k_space_front_to_back = p6
k_space_left_to_right = p7
k_space_bottom_to_top = p8
i_phase = p9
i_frequency = cpsmidinn(i_midi_key)
; Adjust the following value until "overall amps" at the end of performance is about -6 dB.
i_level_correction = 71.5
i_normalization = ampdb(-i_level_correction) / 2
i_amplitude = ampdb(i_midi_velocity) * i_normalization
k_gain = ampdb(gk_YiString_level)
iattack = gi_YiString_overlap
isustain = p3
idecay = gi_YiString_overlap
xtratim iattack + idecay
aenvelope transeg 0.0, iattack / 2.0, 1.5, i_amplitude / 2.0, iattack / 2.0, -1.5, i_amplitude, isustain, 0.0, i_amplitude, idecay / 2.0, 1.5, i_amplitude / 2.0, idecay / 2.0, -1.5, 0
;ampenv = madsr:a(1, 0.1, 0.95, 0.5)
asignal = vco2(1, i_frequency)
asignal = moogladder(asignal, 6000, 0.1)
a_signal = asignal * aenvelope
i_attack = .002
i_release = 0.01
i_sustain = p3 - (i_attack + i_release)
a_declicking linsegr 0, i_attack, 1, i_sustain, 1, i_release, 0
a_signal = a_signal * i_amplitude * a_declicking * k_gain
#ifdef USE_SPATIALIZATION
a_spatial_reverb_send init 0
a_bsignal[] init 16
a_bsignal, a_spatial_reverb_send Spatialize a_signal, k_space_front_to_back, k_space_left_to_right, k_space_bottom_to_top
outletv "outbformat", a_bsignal
outleta "out", a_spatial_reverb_send
#else
a_signal_reverb = a_signal * gk_YiString_reverb_send
a_signal_chorus = a_signal * gk_YiString_chorus_send
a_out_left, a_out_right pan2 a_signal_reverb, p7
outleta "outleft", a_out_left
outleta "outright", a_out_right
a_out_left, a_out_right pan2 a_signal_chorus, p7
outleta "chorusleft", a_out_left
outleta "chorusright", a_out_right
;printks "YiString %9.4f %9.4f\n", 0.5, a_out_left, a_out_right
#endif
prints "%-24.24s i %9.4f t %9.4f d %9.4f k %9.4f v %9.4f p %9.4f #%3d\n", nstrstr(p1), p1, p2, p3, p4, p5, p7, active(p1)
endin

gk_FMModerate2_level init 0
gi_FMModerate2_carrier init 1
gi_FMModerate2_modulator init 4
gi_FMModerate2_fmamplitude init 9
gi_FMModerate2_index init 2
instr FMModerate2
; Author: Michael Gogins
i_instrument = p1
i_time = p2
i_duration = p3
i_midi_key = p4
i_midi_velocity = p5
k_space_front_to_back = p6
k_space_left_to_right = p7
k_space_bottom_to_top = p8
i_phase = p9
i_overall_amps = 85
i_normalization = ampdb(-i_overall_amps) / 2
i_amplitude = ampdb(i_midi_velocity) * i_normalization
i_frequency = cpsmidinn(i_midi_key)
k_gain = ampdb(gk_FMModerate2_level)
iattack = 0.002
isustain = p3
idecay = 1.5
irelease = 0.05
xtratim iattack + irelease
icarrier = gi_FMModerate2_carrier
imodulator = gi_FMModerate2_modulator
ifmamplitude = gi_FMModerate2_fmamplitude
index = gi_FMModerate2_index
ifrequencyb = i_frequency * 1.003
icarrierb = icarrier * 1.004
aindenv transegr 0.0, iattack, -8.0, 1.0, idecay, -8.0, 0.025, isustain, 0.0, 0.025, irelease, 7.0, 0.0
aindex = aindenv * index * ifmamplitude
icosine ftgenonce 0, 0, 65537, 11, 1
aouta foscili 1.0, i_frequency, icarrier, imodulator, index, icosine
aoutb foscili 1.0, ifrequencyb, icarrierb, imodulator, index, icosine; Plus amplitude correction.
a_signal = (aouta + aoutb) * aindenv
i_attack = .002
i_sustain = p3
i_release = 0.01
xtratim i_attack + i_sustain + i_release
a_declicking linsegr 0, i_attack, 1, i_sustain, 1, i_release, 0
a_signal = a_signal * i_amplitude * a_declicking * k_gain
#ifdef USE_SPATIALIZATION
a_spatial_reverb_send init 0
a_bsignal[] init 16
a_bsignal, a_spatial_reverb_send Spatialize a_signal, k_space_front_to_back, k_space_left_to_right, k_space_bottom_to_top
outletv "outbformat", a_bsignal
outleta "out", a_spatial_reverb_send
#else
a_out_left, a_out_right pan2 a_signal, k_space_left_to_right
outleta "outleft", a_out_left
outleta "outright", a_out_right
#endif
prints "%-24.24s i %9.4f t %9.4f d %9.4f k %9.4f v %9.4f p %9.4f #%3d\n", nstrstr(p1), p1, p2, p3, p4, p5, p7, active(p1)
endin

gk_Phaser_attack init .125
gk_Phaser_release init .125
gk_Phaser_ratio1 init 1
gk_Phaser_ratio2 init 1/3
gk_Phaser_index1 init 2
gk_Phaser_index2 init 0.0125
gk_Phaser_level init 0.5
gk_Phaser_midi_dynamic_range init 127
gi_Phaser_sine ftgen 0,0,65537,10,1
instr Phaser
i_instrument = p1
i_time = p2
i_duration = p3
i_midi_key = p4
i_midi_dynamic_range = i(gk_Phaser_midi_dynamic_range)
i_midi_velocity = p5 * i_midi_dynamic_range / 127 + (63.5 - i_midi_dynamic_range / 2)
k_space_front_to_back = p6
k_space_left_to_right = p7
k_space_bottom_to_top = p8
i_phase = p9
i_frequency = cpsmidinn(i_midi_key)
; Adjust the following value until "overall amps" at the end of performance is about -6 dB.
i_level_correction = 85.5
i_normalization = ampdb(-i_level_correction) / 2
i_amplitude = ampdb(i_midi_velocity) * i_normalization
k_gain = ampdb(gk_Phaser_level)
i_attack = i(gk_Phaser_attack)
i_release = i(gk_Phaser_release)
i_sustain = 1000
xtratim i_attack + i_release
a_envelope transegr 0.0, i_attack / 2.0, 1.5, i_amplitude / 2.0, i_attack / 2.0, -1.5, i_amplitude, i_sustain, 0.0, i_amplitude, i_release / 2.0, 1.5, i_amplitude / 2.0, i_release / 2.0, -1.5, 0
a1,a2 crosspm gk_Phaser_ratio1, gk_Phaser_ratio2, gk_Phaser_index1, gk_Phaser_index2, i_frequency, gi_Phaser_sine, gi_Phaser_sine
a_signal = (a1 + a2) * k_gain * a_envelope
#ifdef USE_SPATIALIZATION
a_spatial_reverb_send init 0
a_bsignal[] init 16
a_bsignal, a_spatial_reverb_send Spatialize a_signal, k_space_front_to_back, k_space_left_to_right, k_space_bottom_to_top
outletv "outbformat", a_bsignal
outleta "out", a_spatial_reverb_send
#else
a_out_left, a_out_right pan2 a_signal, k_space_left_to_right
outleta "outleft", a_out_left
outleta "outright", a_out_right
#endif
prints "%-24.24s i %9.4f t %9.4f d %9.4f k %9.4f v %9.4f p %9.4f #%3d\n", nstrstr(p1), p1, p2, p3, p4, p5, p7, active(p1)
;printks "Phaser i %9.4f t %9.4f d %9.4f k %9.4f v %9.4f p %9.4f #%3d l%9.4f r%9.4f\n", 1, p1, p2, p3, p4, p5, p7, active(p1), dbamp(rms(aleft)), dbamp(rms(aright))
endin

gk_Bower_midi_dynamic_range init 127
gk_Bower_attack init .125
gk_Bower_release init .125
gk_Bower_level init 0
gk_Bower_pressure init 0.25
gi_Bower_sine ftgen 0,0,65537,10,1
instr Bower
i_instrument = p1
i_time = p2
i_duration = p3
i_midi_key = p4
i_midi_dynamic_range = i(gk_Bower_midi_dynamic_range)
i_midi_velocity = p5 * i_midi_dynamic_range / 127 + (63.5 - i_midi_dynamic_range / 2)
k_space_front_to_back = p6
k_space_left_to_right = p7
k_space_bottom_to_top = p8
i_phase = p9
i_frequency = cpsmidinn(i_midi_key)
; Adjust the following value until "overall amps" at the end of performance is about -6 dB.
i_level_correction = 80
i_normalization = ampdb(-i_level_correction) / 2
i_amplitude = ampdb(i_midi_velocity) * i_normalization
k_gain = ampdb(gk_Bower_level)
iattack = i(gk_Bower_attack)
idecay = i(gk_Bower_release)
isustain = p3
iamp = i_amplitude
xtratim iattack + idecay
kenvelope transegr 0.0, iattack / 2.0, 1.5, iamp / 2.0, iattack / 2.0, -1.5, iamp, isustain, 0.0, iamp, idecay / 2.0, 1.5, iamp / 2.0, idecay / 2.0, -1.5, 0
ihertz = cpsmidinn(i_midi_key)
kamp = kenvelope
kfreq = ihertz
kpres = 0.25
krat rspline 0.006,0.988,1,4
kvibf = 4.5
kvibamp = 0
iminfreq = i(kfreq) / 2
aSig wgbow kamp,kfreq,gk_Bower_pressure,krat,kvibf,kvibamp,gi_Bower_sine,iminfreq
a_signal = aSig * kenvelope * k_gain
aleft, aright pan2 a_signal, k_space_left_to_right
outleta "outleft", aleft
outleta "outright", aright
prints "%-24.24s i %9.4f t %9.4f d %9.4f k %9.4f v %9.4f p %9.4f #%3d\n", nstrstr(p1), p1, p2, p3, p4, p5, p7, active(p1)
endin

gk_Blower_grainDensity init 40
gk_Blower_grainDuration init 0.2
gk_Blower_grainAmplitudeRange init 100
gk_Blower_grainFrequencyRange init 3
gk_Blower_level init 0
gk_Blower_midi_dynamic_range init 127
gi_Blower_grtab ftgen 0, 0, 65537, 10, 1, .3, .1, 0, .2, .02, 0, .1, .04
gi_Blower_wintab ftgen 0, 0, 65537, 10, 1, 0, .5, 0, .33, 0, .25, 0, .2, 0, .167
instr Blower
//
// Original by Hans Mikelson.
// Adapted by Michael Gogins.
//
i_instrument = p1
i_time = p2
i_duration = p3
i_midi_key = p4
i_midi_dynamic_range = i(gk_Blower_midi_dynamic_range)
i_midi_velocity = p5 * i_midi_dynamic_range / 127 + (63.5 - i_midi_dynamic_range / 2)
k_space_front_to_back = p6
k_space_left_to_right = p7
k_space_bottom_to_top = p8
i_phase = p9
i_frequency = cpsmidinn(i_midi_key)
; Adjust the following value until "overall amps" at the end of performance is about -6 dB.
i_level_correction = 132
i_normalization = ampdb(-i_level_correction) / 2
i_amplitude = ampdb(i_midi_velocity) * i_normalization
k_gain = ampdb(gk_Blower_level)
iHz = i_frequency
ihertz = iHz
ip4 = i_amplitude
ip5 = iHz
ip6 = gi_Blower_grtab
ip7 = gi_Blower_wintab
ip8 = 0.033
ip8 = .002
ip9 = 150
ip9 = 100
ip10 = 1.6
ip10 = 3
idur = p3
iamp = i_amplitude ; p4
ifqc = iHz ; cpspch(p5)
igrtab = ip6
iwintab = ip7
ifrng = ip8
idens = ip9
ifade = ip10
igdur = 0.2
iattack = 0.5
i_sustain = p3
idecay = 1.5
xtratim iattack + idecay
kenvelope transegr 0.0, iattack / 2.0, 1.5, .5, iattack / 2.0, -1.5, 1, i_sustain, 0.0, 1, idecay / 2.0, 1.5, .5, idecay / 2.0, -1.5, 0
; kamp linseg 0, ifade, 1, idur - 2 * ifade, 1, ifade, 0
kamp = kenvelope
; Amp Fqc Dense AmpOff PitchOff GrDur GrTable WinTable MaxGrDur
aoutl grain ip4, ifqc, gk_Blower_grainDensity, gk_Blower_grainAmplitudeRange, gk_Blower_grainFrequencyRange, gk_Blower_grainDuration, igrtab, iwintab, 5
aoutr grain ip4, ifqc, gk_Blower_grainDensity, gk_Blower_grainAmplitudeRange, gk_Blower_grainFrequencyRange, gk_Blower_grainDuration, igrtab, iwintab, 5
a_signal = aoutl + aoutr
i_attack = .002
i_release = 0.01
xtratim i_attack + i_release
a_declicking linsegr 0, i_attack, 1, i_sustain, 1, i_release, 0
a_signal = a_signal * i_amplitude * a_declicking * k_gain
#ifdef USE_SPATIALIZATION
a_spatial_reverb_send init 0
a_bsignal[] init 16
a_bsignal, a_spatial_reverb_send Spatialize a_signal, k_space_front_to_back, k_space_left_to_right, k_space_bottom_to_top
outletv "outbformat", a_bsignal
outleta "out", a_spatial_reverb_send
#else
a_out_left, a_out_right pan2 a_signal, k_space_left_to_right
outleta "outleft", a_out_left
outleta "outright", a_out_right
#endif
prints "%-24.24s i %9.4f t %9.4f d %9.4f k %9.4f v %9.4f p %9.4f #%3d\n", nstrstr(p1), p1, p2, p3, p4, p5, p7, active(p1)
;printks "Blower i %9.4f t %9.4f d %9.4f k %9.4f v %9.4f p %9.4f #%3d l%9.4f r%9.4f\n", 1, p1, p2, p3, p4, p5, p7, active(p1), dbamp(rms(a_out_left)), dbamp(rms(a_out_right))
endin

gk_Xing_level init 0
instr Xing
; Author: Andrew Horner
i_instrument = p1
i_time = p2
i_duration = p3
i_midi_key = p4
i_midi_velocity = p5
k_space_front_to_back = p6
k_space_left_to_right = p7
k_space_bottom_to_top = p8
i_phase = p9
i_overall_amps = 75
i_normalization = ampdb(-i_overall_amps) / 2
i_amplitude = ampdb(i_midi_velocity) * i_normalization
i_frequency = cpsmidinn(i_midi_key)
k_gain = ampdb(gk_Xing_level)
isine ftgenonce 0, 0, 65537, 10, 1
iinstrument = p1
istarttime = p2
ioctave = p4
idur = p3
kfreq = k(i_frequency)
iamp = 1
inorm = 32310
aamp1 linseg 0,.001,5200,.001,800,.001,3000,.0025,1100,.002,2800,.0015,1500,.001,2100,.011,1600,.03,1400,.95,700,1,320,1,180,1,90,1,40,1,20,1,12,1,6,1,3,1,0,1,0
adevamp1 linseg 0, .05, .3, idur - .05, 0
adev1 poscil adevamp1, 6.7, isine, .8
amp1 = aamp1 * (1 + adev1)
aamp2 linseg 0,.0009,22000,.0005,7300,.0009,11000,.0004,5500,.0006,15000,.0004,5500,.0008,2200,.055,7300,.02,8500,.38,5000,.5,300,.5,73,.5,5.,5,0,1,1
adevamp2 linseg 0,.12,.5,idur-.12,0
adev2 poscil adevamp2, 10.5, isine, 0
amp2 = aamp2 * (1 + adev2)
aamp3 linseg 0,.001,3000,.001,1000,.0017,12000,.0013,3700,.001,12500,.0018,3000,.0012,1200,.001,1400,.0017,6000,.0023,200,.001,3000,.001,1200,.0015,8000,.001,1800,.0015,6000,.08,1200,.2,200,.2,40,.2,10,.4,0,1,0
adevamp3 linseg 0, .02, .8, idur - .02, 0
adev3 poscil adevamp3, 70, isine ,0
amp3 = aamp3 * (1 + adev3)
awt1 poscil amp1, i_frequency, isine
awt2 poscil amp2, 2.7 * i_frequency, isine
awt3 poscil amp3, 4.95 * i_frequency, isine
asig = awt1 + awt2 + awt3
arel linenr 1,0, idur, .06
a_signal = asig * arel * (iamp / inorm)
i_attack = .002
i_sustain = p3
i_release = 0.01
xtratim i_attack + i_release
a_declicking linsegr 0, i_attack, 1, i_sustain, 1, i_release, 0
a_signal = a_signal * i_amplitude * a_declicking * k_gain
#ifdef USE_SPATIALIZATION
a_spatial_reverb_send init 0
a_bsignal[] init 16
a_bsignal, a_spatial_reverb_send Spatialize a_signal, k_space_front_to_back, k_space_left_to_right, k_space_bottom_to_top
outletv "outbformat", a_bsignal
outleta "out", a_spatial_reverb_send
#else
a_out_left, a_out_right pan2 a_signal, k_space_left_to_right
outleta "outleft", a_out_left
outleta "outright", a_out_right
#endif
prints "%-24.24s i %9.4f t %9.4f d %9.4f k %9.4f v %9.4f p %9.4f #%3d\n", nstrstr(p1), p1, p2, p3, p4, p5, p7, active(p1)
endin

gk_Harpsichord_midi_dynamic_range init 127
gk_Harpsichord_level init 0
gk_Harpsichord_pick init .075
gk_Harpsichord_reflection init .5
gk_Harpsichord_pluck init .75
instr Harpsichord
i_instrument = p1
i_time = p2
i_duration = p3
i_midi_key = p4
i_midi_dynamic_range = i(gk_Harpsichord_midi_dynamic_range)
i_midi_velocity = p5 * i_midi_dynamic_range / 127 + (63.6 - i_midi_dynamic_range / 2)
k_space_front_to_back = p6
k_space_left_to_right = p7
k_space_bottom_to_top = p8
i_phase = p9
i_frequency = cpsmidinn(i_midi_key)
; Adjust the following value until "overall amps" at the end of performance is about -6 dB.
i_level_correction = 82.4
i_normalization = ampdb(-i_level_correction) / 2
i_amplitude = ampdb(i_midi_velocity) * i_normalization
k_gain = ampdb(gk_Harpsichord_level)
iHz = cpsmidinn(i_midi_key)
kHz = k(iHz)
aenvelope transeg 1.0, 20.0, -10.0, 0.05
k_amplitude = 1
apluck pluck 1, kHz, iHz, 0, 1
iharptable ftgenonce 0, 0, 65536, 7, -1, 1024, 1, 1024, -1
aharp poscil 1, kHz, iharptable
aharp2 balance apluck, aharp
a_signal	= (apluck + aharp2)
i_attack = .002
i_sustain = p3
i_release = 0.01
xtratim i_attack + i_release
a_declicking linsegr 0, i_attack, 1, i_sustain, 1, i_release, 0
a_signal = a_signal * i_amplitude * a_declicking * k_gain
#ifdef USE_SPATIALIZATION
a_spatial_reverb_send init 0
a_bsignal[] init 16
a_bsignal, a_spatial_reverb_send Spatialize a_signal, k_space_front_to_back, k_space_left_to_right, k_space_bottom_to_top
outletv "outbformat", a_bsignal
outleta "out", a_spatial_reverb_send
#else
a_out_left, a_out_right pan2 a_signal, k_space_left_to_right
outleta "outleft", a_out_left
outleta "outright", a_out_right
#endif
;printks "Harpsichord %9.4f %9.4f\n", 0.5, a_out_left, a_out_right
prints "%-24.24s i %9.4f t %9.4f d %9.4f k %9.4f v %9.4f p %9.4f #%3d\n", nstrstr(p1), p1, p2, p3, p4, p5, p7, active(p1)
endin

gk_Bower_midi_dynamic_range init 127
gk_Bower_attack init .125
gk_Bower_release init .125
gk_Bower_level init 0
gk_Bower_pressure init 0.25
gi_Bower_sine ftgen 0,0,65537,10,1
instr Bower
i_instrument = p1
i_time = p2
i_duration = p3
i_midi_key = p4
i_midi_dynamic_range = i(gk_Bower_midi_dynamic_range)
i_midi_velocity = p5 * i_midi_dynamic_range / 127 + (63.5 - i_midi_dynamic_range / 2)
k_space_front_to_back = p6
k_space_left_to_right = p7
k_space_bottom_to_top = p8
i_phase = p9
i_frequency = cpsmidinn(i_midi_key)
; Adjust the following value until "overall amps" at the end of performance is about -6 dB.
i_level_correction = 80
i_normalization = ampdb(-i_level_correction) / 2
i_amplitude = ampdb(i_midi_velocity) * i_normalization
k_gain = ampdb(gk_Bower_level)
iattack = i(gk_Bower_attack)
idecay = i(gk_Bower_release)
isustain = p3
iamp = i_amplitude
xtratim iattack + idecay
kenvelope transegr 0.0, iattack / 2.0, 1.5, iamp / 2.0, iattack / 2.0, -1.5, iamp, isustain, 0.0, iamp, idecay / 2.0, 1.5, iamp / 2.0, idecay / 2.0, -1.5, 0
ihertz = cpsmidinn(i_midi_key)
kamp = kenvelope
kfreq = ihertz
kpres = 0.25
krat rspline 0.006,0.988,1,4
kvibf = 4.5
kvibamp = 0
iminfreq = i(kfreq) / 2
aSig wgbow kamp,kfreq,gk_Bower_pressure,krat,kvibf,kvibamp,gi_Bower_sine,iminfreq
a_signal = aSig * kenvelope * k_gain
aleft, aright pan2 a_signal, k_space_left_to_right
outleta "outleft", aleft
outleta "outright", aright
prints "%-24.24s i %9.4f t %9.4f d %9.4f k %9.4f v %9.4f p %9.4f #%3d\n", nstrstr(p1), p1, p2, p3, p4, p5, p7, active(p1)
endin

gk_Sweeper_midi_dynamic_range init 127
gk_Sweeper_attack init .125
gk_Sweeper_release init .25
gk_Sweeper_britel init 0.1
gk_Sweeper_briteh init 2.9
gk_Sweeper_britels init 2
gk_Sweeper_britehs init 1
gk_Sweeper_level init 0
gi_Sweeper_sine ftgen 0, 0, 65537, 10, 1
gi_Sweeper_octfn ftgen 0, 0, 65537, -19, 1, 0.5, 270, 0.5
instr Sweeper
//
// Original by Iain McCurdy.
// Adapted by Michael Gogins.
//
i_instrument = p1
i_time = p2
i_duration = p3
i_midi_key = p4
i_midi_dynamic_range = i(gk_Sweeper_midi_dynamic_range)
i_midi_velocity = p5 * i_midi_dynamic_range / 127 + (63.5 - i_midi_dynamic_range / 2)
k_space_front_to_back = p6
k_space_left_to_right = p7
k_space_bottom_to_top = p8
i_phase = p9
i_frequency = cpsmidinn(i_midi_key)
; Adjust the following value until "overall amps" at the end of performance is about -6 dB.
i_level_correction = 78.3
i_normalization = ampdb(-i_level_correction) / 2
i_amplitude = ampdb(i_midi_velocity) * i_normalization
k_gain = ampdb(gk_Sweeper_level)

iattack = i(gk_Sweeper_attack)
irelease = i(gk_Sweeper_release)
isustain = p3
xtratim iattack + irelease
kenvelope transegr 0.0, iattack / 2.0, 1.5, i_amplitude / 2.0, iattack / 2.0, -1.5, i_amplitude, isustain, 0.0, i_amplitude, irelease / 2.0, 1.5, i_amplitude / 2.0, irelease / 2.0, -1.5, 0
ihertz = i_frequency
icps = ihertz
kamp expseg 0.001,0.02,0.2,p3-0.01,0.001
ktonemoddep jspline 0.01,0.05,0.2
ktonemodrte jspline 6,0.1,0.2
ktone poscil3 ktonemoddep, ktonemodrte, gi_Sweeper_sine
kbrite rspline gk_Sweeper_britel, gk_Sweeper_briteh, gk_Sweeper_britels, gk_Sweeper_britehs
ibasfreq init icps
ioctcnt init 3
iphs init 0
a1 hsboscil kenvelope, ktone, kbrite, ibasfreq, gi_Sweeper_sine, gi_Sweeper_octfn, ioctcnt, iphs
amod poscil3 0.25, ibasfreq*(1/3), gi_Sweeper_sine
arm = a1*amod
kmix expseg 0.001, 0.01, rnd(1), rnd(3)+0.3, 0.001
kmix=.25
a1 ntrpol a1, arm, kmix
kpanrte jspline 5, 0.05, 0.1
kpandep jspline 0.9, 0.2, 0.4
kpan poscil3 kpandep, kpanrte, gi_Sweeper_sine
;a1,a2 pan2 a1, kpan
a1,a2 pan2 a1, k_space_left_to_right
aleft delay a1, rnd(0.1)
aright delay a2, rnd(0.11)
a_signal = (aleft + aright) * k_gain
#ifdef USE_SPATIALIZATION
a_spatial_reverb_send init 0
a_bsignal[] init 16
a_bsignal, a_spatial_reverb_send Spatialize a_signal, k_space_front_to_back, k_space_left_to_right, k_space_bottom_to_top
outletv "outbformat", a_bsignal
outleta "out", a_spatial_reverb_send
#else
a_out_left, a_out_right pan2 a_signal, k_space_left_to_right
outleta "outleft", a_out_left
outleta "outright", a_out_right
#endif
prints "%-24.24s i %9.4f t %9.4f d %9.4f k %9.4f v %9.4f p %9.4f #%3d\n", nstrstr(p1), p1, p2, p3, p4, p5, p7, active(p1)
endin

gk_Shiner_midi_dynamic_range init 127
gk_Shiner_attack init .0125
gk_Shiner_release init .0125
gk_Shiner_level init 0.5
instr Shiner
i_instrument = p1
i_time = p2
i_duration = p3
i_midi_key = p4
i_midi_dynamic_range = i(gk_Shiner_midi_dynamic_range)
i_midi_velocity = p5 * i_midi_dynamic_range / 127 + (63.5 - i_midi_dynamic_range / 2)
k_space_front_to_back = p6
k_space_left_to_right = p7
k_space_bottom_to_top = p8
i_phase = p9
i_frequency = cpsmidinn(i_midi_key)
; Adjust the following value until "overall amps" at the end of performance is about -6 dB.
i_level_correction = 92
i_normalization = ampdb(-i_level_correction) / 2
i_amplitude = ampdb(i_midi_velocity) * i_normalization
k_gain = ampdb(gk_Shiner_level)

iattack = i(gk_Shiner_attack)
idecay = i(gk_Shiner_release)
isustain = p3 - i(gk_Shiner_attack)
xtratim iattack + idecay
kenvelope transeg 0.0, iattack / 2.0, 1.5, i_amplitude / 2.0, iattack / 2.0, -1.5, i_amplitude, isustain, 0.0, i_amplitude, idecay / 2.0, 1.5, i_amplitude / 2.0, idecay / 2.0, -1.5, 0
ihertz = cpsmidinn(i_midi_key)
gk_Harmonics = 1 * 20
asignal vco2 kenvelope * 4, ihertz, 12
kgain = ampdb(gk_Shiner_level) * .5
adamping linseg 0, 0.03, 1, p3 - 0.1, 1, 0.07, 0
a_signal = asignal * kgain * adamping
aleft, aright pan2 asignal, k_space_left_to_right
;printks2 "master gain:", kgain
outleta "outleft", aleft
outleta "outright", aright
prints "%-24.24s i %9.4f t %9.4f d %9.4f k %9.4f v %9.4f p %9.4f #%3d\n", nstrstr(p1), p1, p2, p3, p4, p5, p7, active(p1)
endin

/**
 * Solina Chorus, based on Solina String Ensemble Chorus Module

 J. Haible: Triple Chorus
 http://jhaible.com/legacy/triple_chorus/triple_chorus.html

 Hugo Portillo: Solina-V String Ensemble
 http://www.native-instruments.com/en/reaktor-community/reaktor-user-library/entry/show/4525/

 Parabola tabled shape borrowed from Iain McCurdy delayStereoChorus.csd:
 http://iainmccurdy.org/CsoundRealtimeExamples/Delays/delayStereoChorus.csd

 Author: Steven Yi
 Date: 2016.05.22
 Adapted by Michael Gogins
*/
gi_solina_parabola ftgen 0, 0, 65537, 19, 0.5, 1, 180, 1
; 3 sine wave LFOs, 120 degrees out of phase
opcode sol_lfo_3, aaa, kk
kfreq, kamp xin
aphs phasor kfreq
; Funny: Function syntax does not work in this context.
a0 tablei aphs, gi_solina_parabola, 1, 0, 1
a120 tablei aphs, gi_solina_parabola, 1, 0.333, 1
a240 tablei aphs, gi_solina_parabola, 1, -0.333, 1
xout (a0 * kamp), (a120 * kamp), (a240 * kamp)
endop

opcode solina_chorus, a, akkkk
aLeft, klfo_freq1, klfo_amp1, klfo_freq2, klfo_amp2 xin
imax = 100
;; slow lfo
as1, as2, as3 sol_lfo_3 klfo_freq1, klfo_amp1
;; fast lfo
af1, af2, af3 sol_lfo_3 klfo_freq2, klfo_amp2
at1 = limit(as1 + af1 + 5, 0.0, imax)
at2 = limit(as2 + af2 + 5, 0.0, imax)
at3 = limit(as3 + af3 + 5, 0.0, imax)
a1 vdelay3 aLeft, at1, imax
a2 vdelay3 aLeft, at2, imax
a3 vdelay3 aLeft, at2, imax
xout (a1 + a2 + a3) / 3
endop

gk_SolinaChorus_chorus_lfo1_hz init .18
gk_SolinaChorus_chorus_lfo1_amp init .6
gk_SolinaChorus_chorus_lfo2_hz init 6
gk_SolinaChorus_chorus_lfo2_amp init .2
instr SolinaChorus
aleft inleta "inleft"
aright inleta "inright"
aleft solina_chorus aleft, gk_SolinaChorus_chorus_lfo1_hz, gk_SolinaChorus_chorus_lfo1_amp, gk_SolinaChorus_chorus_lfo2_hz, gk_SolinaChorus_chorus_lfo2_amp
aright solina_chorus aright, gk_SolinaChorus_chorus_lfo1_hz, gk_SolinaChorus_chorus_lfo1_amp, gk_SolinaChorus_chorus_lfo2_hz, gk_SolinaChorus_chorus_lfo2_amp
outleta "outleft", aleft
outleta "outright", aright
prints "%-24.24s i %9.4f t %9.4f d %9.4f k %9.4f v %9.4f p %9.4f #%3d\n", nstrstr(p1), p1, p2, p3, p4, p5, p7, active(p1)
endin

gk_Reverb_feedback init 0.975
gi_Reverb_delay_modulation init 0.875
gk_Reverb_frequency_cutoff init 15000
instr ReverbSC
adummy init 0
azero init 0
aleft init 0
aleft_zero init 0
aright init 0
aright_zero init 0
aleft inleta "inleft"
aright inleta "inright"
; aoutL, aoutR reverbsc ainL, ainR, kfblvl, kfco[, israte[, ipitchm[, iskip]]]
aleft, adummy reverbsc aleft, azero, gk_Reverb_feedback, gk_Reverb_frequency_cutoff, sr, gi_Reverb_delay_modulation
adummy, aright reverbsc azero, aright, gk_Reverb_feedback, gk_Reverb_frequency_cutoff, sr, gi_Reverb_delay_modulation
outleta "outleft", aleft
outleta "outright", aright
prints "%-24.24s i %9.4f t %9.4f d %9.4f k %9.4f v %9.4f p %9.4f #%3d\n", nstrstr(p1), p1, p2, p3, p4, p5, p7, active(p1)
endin

gk_MasterOutput_level init 0
gS_MasterOutput_filename init ""
instr MasterOutput
aleft inleta "inleft"
aright inleta "inright"
k_gain = ampdb(gk_MasterOutput_level)
printks2 "Master gain: %f\n", k_gain
iamp init 1
aleft butterlp aleft, 18000
aright butterlp aright, 18000
outs aleft * k_gain, aright * k_gain
; We want something that will play on my phone.
i_amplitude_adjustment = ampdbfs(-3) / 32767
i_filename_length strlen gS_MasterOutput_filename
if i_filename_length > 0 goto filename_exists
goto filename_endif
filename_exists:
prints sprintf("Output filename: %s\n", gS_MasterOutput_filename)
fout gS_MasterOutput_filename, 18, aleft * i_amplitude_adjustment, aright * i_amplitude_adjustment
filename_endif:
prints "%-24.24s i %9.4f t %9.4f d %9.4f k %9.4f v %9.4f p %9.4f #%3d\n", nstrstr(p1), p1, p2, p3, p4, p5, p7, active(p1)
endin

instr Controls
 gk_BarModel_level chnget "gk_BarModel_level"
 gk_BarModel_kbcL chnget "gk_BarModel_kbcL"
 gk_BarModel_kbcR chnget "gk_BarModel_kbcR"
 gi_BarModel_iK chnget "gi_BarModel_iK"
 gi_BarModel_ib chnget "gi_BarModel_ib"
 gk_BarModel_kscan chnget "gk_BarModel_kscan"
 gi_BarModel_iT30 chnget "gi_BarModel_iT30"
 gi_BarModel_ipos chnget "gi_BarModel_ipos"
 gi_BarModel_ivel chnget "gi_BarModel_ivel"
 gi_BarModel_iwid chnget "gi_BarModel_iwid"
 gk_Bower_attack chnget "gk_Bower_attack"
 gk_Bower_release chnget "gk_Bower_release"
 gk_Bower_level chnget "gk_Bower_level"
 gk_Bower_pressure chnget "gk_Bower_pressure"
 gk_Blower_grainDensity chnget "gk_Blower_grainDensity"
 gk_Blower_grainDuration chnget "gk_Blower_grainDuration"
 gk_Blower_grainAmplitudeRange chnget "gk_Blower_grainAmplitudeRange"
 gk_Blower_grainFrequencyRange chnget "gk_Blower_grainFrequencyRange"
 gk_Blower_level chnget "gk_Blower_level"
 gk_Buzzer_attack chnget "gk_Buzzer_attack"
 gk_Buzzer_release chnget "gk_Buzzer_release"
 gk_Buzzer_harmonics chnget "gk_Buzzer_harmonics"
 gk_Buzzer_level chnget "gk_Buzzer_level"
 gk_Droner_partial1 chnget "gk_Droner_partial1"
 gk_Droner_partial2 chnget "gk_Droner_partial2"
 gk_Droner_partial3 chnget "gk_Droner_partial3"
 gk_Droner_partial4 chnget "gk_Droner_partial4"
 gk_Droner_partial5 chnget "gk_Droner_partial5"
 gk_Droner_partial6 chnget "gk_Droner_partial6"
 gk_Droner_partial7 chnget "gk_Droner_partial7"
 gk_Droner_partial8 chnget "gk_Droner_partial8"
 gk_Droner_partial9 chnget "gk_Droner_partial9"
 gk_Droner_partial10 chnget "gk_Droner_partial10"
 gi_Droner_waveform chnget "gi_Droner_waveform"
 gk_Droner_level chnget "gk_Droner_level"
 gk_FMModerate2_level chnget "gk_FMModerate2_level"
 gi_FMModerate2_carrier chnget "gi_FMModerate2_carrier"
 gi_FMModerate2_modulator chnget "gi_FMModerate2_modulator"
 gi_FMModerate2_fmamplitude chnget "gi_FMModerate2_fmamplitude"
 gi_FMModerate2_index chnget "gi_FMModerate2_index"
 gk_Harpsichord_level chnget "gk_Harpsichord_level"
 gk_Harpsichord_pick chnget "gk_Harpsichord_pick"
 gk_Harpsichord_reflection chnget "gk_Harpsichord_reflection"
 gk_Harpsichord_pluck chnget "gk_Harpsichord_pluck"
 gk_MasterOutput_level chnget "gk_MasterOutput_level"
 gk_Phaser_release chnget "gk_Phaser_release"
 gk_Phaser_attack chnget "gk_Phaser_attack"
 gk_Phaser_ratio1 chnget "gk_Phaser_ratio1"
 gk_Phaser_ratio2 chnget "gk_Phaser_ratio2"
 gk_Phaser_index1 chnget "gk_Phaser_index1"
 gk_Phaser_index2 chnget "gk_Phaser_index2"
 gk_Phaser_level chnget "gk_Phaser_level"
 gk_Reverb_feedback chnget "gk_Reverb_feedback"
 gi_Reverb_delay_modulation chnget "gi_Reverb_delay_modulation"
 gk_Reverb_frequency_cutoff chnget "gk_Reverb_frequency_cutoff"
 gk_Shiner_level chnget "gk_Shiner_level"
 gk_Shiner_attack chnget "gk_Shiner_attack"
 gk_Shiner_release chnget "gk_Shiner_release"
 gk_SolinaChorus_chorus_lfo1_hz init .18
 gk_SolinaChorus_chorus_lfo1_amp init .6
 gk_SolinaChorus_chorus_lfo2_hz init 6
 gk_SolinaChorus_chorus_lfo2_amp init .2
 gk_Sweeper_attack chnget "gk_Sweeper_attack"
 gk_Sweeper_release chnget "gk_Sweeper_release"
 gk_Sweeper_britel chnget "gk_Sweeper_britel"
 gk_Sweeper_briteh chnget "gk_Sweeper_briteh"
 gk_Sweeper_britels chnget "gk_Sweeper_britels"
 gk_Sweeper_britehs chnget "gk_Sweeper_britehs"
 gk_Sweeper_level chnget "gk_Sweeper_level"
 gk_YiString_reverb_send chnget "gk_YiString_reverb_send"
 gk_YiString_cbhorus_send chnget "gk_YiString_cbhorus_send"
 gk_YiString_level chnget "gk_YiString_level"
prints "Controls i %9.4f t %9.4f d %9.4f k %9.4f v %9.4f p %9.4f\\n", p1, p2, p3, p4, p5, p7
endin

</CsInstruments>
<CsScore>
f 0 3600
</CsScore>
<CsoundSynthesizer>

EPUB/media/file140.png
x = r-cos(d)cos(d) y = rcos(d)sin(f)

reyRe e 2 6=arctan(ylx)

EPUB/media/file166.png
File Edit Put Find Windows Media Help

fox

tinme

Loadbang
ps

) a1

[Fead stime vay stime

Soundfiler

Svent 110210 1) play table 1 in csound and you vill hear nothing because
the table is enpty
2) copies from array "stime" to csound table no 1

Tabset stime 1

[Svent 11021 3) now play table 1 in csound again

[Svent i102.672 4) play table 2 in csound

Tabget fox 2 5) copy this table to the pd array “fox"

[eset

csoundapi», 09406, csd

dac

EPUB/media/file58.png

EPUB/media/file117.png
0,085 0,090 0,095 0,100 0,105 0,110 0,115 0,120 0,125 0,130

[10

| o5

0,04 T I i T

| o5

0,0-

EPUB/media/file15.png
probability
A

1 | >
minimum maximum values

EPUB/media/file134.png
M 81 &2 & 84 8&s %6 &7 8
T[] 05

2 | 10666667 |0.166667

3| [T o075 03 005

T [T 0% 04 | 0.114286 | 00142857

5 | [1]0833333 | 047619 |0.178571 | 0.0396825 | 0.00396825

6 | |1]0857143 0535714 | 0238095 | 0.0714286 | 0012987 |0.00108225

7| [1]| 0875 0583333 | 0291667 | 0.1060601 | 00265152 | 0.00407925 | 0.000291375

8 | |1 |0.888889 | 0622222 | 0.339394 | 0.141414 | 0043512 | 0009324 | 00012432 |0.0000777

EPUB/media/file25.gif

EPUB/media/file116.gif
.
<

EPUB/media/file223.png

EPUB/media/file32.png
exprand

EPUB/media/file206.png
[)
<)
;.).
| N

15119 © 5§

Csound: Message.html OPEN.. STOP

EDITOR MESSAGES HTML WIDGETS HELP :

MESSAGE FROM
ANOTHER PLANET,
VERSION 3

Adapted for Csound with HTMLS5 by
Michael Gogins, from "Message from
Another Planet" by Jacob Joaquin

Frequency spread
factor

Bass emphasis
factor

Reverb delay
feedback

Reverb highpass
cutoff (Hz)

Master output level
(dB)
Play | Stop | Save || Restore

opreaaer : P IYIY [VvIvIVIV]

new alloc for instr Spreader:

Spreader: 2.0000 0.0000 256.0000 3000.0000 6.0000 8.0000 1.0200
new alloc for instr Spreader:
Spreader: 2.0000 0.0000 256.0000 3000.0000 6.0000 2.28517 1.0900
new alloc for instr Spreader:
Spreader: 2.0000 0.0000 256.0000 3000.0000 6.0000 1.8000 1.1300
new alloc for instr Spreader:
Spreader: 2.0000 0.0000 256.0000 3000.0000 6.0000 3.2000 1.0600
new alloc for instr Spreader:
Spreader: 2.0000 0.0000 256.0000 1000.0000 6.0000 9.0000 1.0100
new alloc for instr Spreader:
Spreader: 2.0000 0.0000 256.0000 3000.0000 6.0000 3.0000 1.0700
new alloc for instr Spreader:
Spreader: 2.0000 0.0000 256.0000 3000.0000 6.0000 1.7770 1.1400
new alloc for instr Spreader:
Spreader: 2.0000 0.0000 256.0000 3000.0000 6.0000 1.6000 1.1500
new alloc for instr Spre