

A Csound Tutorial

Michael Gogins
michael.gogins@gmail.com

December 20, 2009

Contents

1 Introduction 1
2 Getting Started 3
2.1 On Windows e e 3
2.1.1 Obtaining Csound 3
2.1.2 Installing Csound 3
2.1.3 Real-Time MIDI Performance 18
2.2 OnLinux e 21
2.3 OnApple . . . 21
3 Writing Orchestras and Scores 23
3.1 Signal Flow Graphs o 23
3.2 How Csound Works, 24
321 Csound Files 24
3.2.2 Performance Loop 25
3.3 Writing Your First Piece o L. 26
3.3.1 Simple Sine Wave 28
3.3.2 Simple Sine Wave, De-Clicked 30
3.3.3 Simple Sine Wave, De-Clicked, ADSR Envelope 31
3.3.4 Frequency Modulation, De-Clicked, ADSR Envelope 31

3.3.5 Frequency Modulation, De-Clicked, ADSR Envelope, Time-
Varying Modulation 0 0L 32

3.3.6 Frequency Modulation, De-Clicked, ADSR Envelope, Time-
Varying Modulation, Stereo Phasing 32
3.3.7 MIDI Performance 33
4 Using CsoundVST 37
4.1 Configuring CsoundVST 0. 37
4.2 Using CsoundVST 37
4.2.1 Create a Cubase Song 40
4.2.2 Create an Instance of CsoundVST 40
4.2.3 Load a Csound Orchestra 42
4.2.4 Configure the Orchestra for VST 42
4.2.5 Compile the Orchestra 43
4.2.6 Track Setup 44
4.2.7 MIDI Channel Setup 44
4.2.8 Write Some Music 45

iii

Contents

v

Python Scripting

5.1 Running Csound from Python
5.2 Generating a Score
5.3 Varying the Parameters

Extra Features and Their Requirements

Helper Applications

B.1 Audio Editors

B.1.1 Audacity e

B.2 Text Editors .
B.2.1 Emacs
B.2.2 SciTE

B.3 Composing Environments
B.3.1 athenaCL

B.3.2 Blue .

B.3.3 CsoundAC,
B.3.4 Common Music
B.3.5 PureData
B.4 Programming Languages

B.4.1 C/C++
B.4.2 Java .
B.4.3 Lisp .
B.4.4 Lua .
B.4.5 Python

Audio Quality

47
48
49
52

53

55
35
95
95
95
35
95
o6
o6
26
26
26
o6
o6
57
a7
a7
o7

59

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

2.1
2.2

Download Page, 4
Windows Installer, 4
Csound License 5
Csound Location 6
Csound Menu Location 6
Csound Components 7
Csound Installing 8
Installation Completed 8
Csound Start Menu 9
Csound Console 12
Command-Line Rendering 13
QuteCsound.o 14
Configuring QuteCsound (Run) 16
Configuring QuteCsound (General) 17
Configuring QuteCsound (Environment) 17
QuteCsound with Xanaduw 19
Contex-Sensitive Opcode Help 19
QuteCsound Rendering 20
Edit/Play Output Soundfile 20
MIDI Performance0 22
tutorial2.csd Lo e 30
Playing tutorial2.csd Live. 35
CsoundVST Plugin Path 38
CsoundVST Loaded 39
Creating a New Project 40
Creating a New Track 41
Creating a New Instance of CsoundVST 41
Loading an Orchestra 42
Compiled Orchestra 44
Channel Setup o 45
Scoring with Csound 46
Running Csound with Python inIdle 50
Running Csound with Python in SciTE 52

1. Introduction

In the words of its author, Barry Vercoe, Csound [1] is a “sound processing language.”
Technically speaking, Csound is a general-purpose, user-programmable software syn-
thesis system (SWSS). Like most SWSS, Csound uses Max Mathews’ original 1957
unit generator design [2]. However, Csound was the first SWSS to be written in the
C programming language [3]. Being written in C, which is the most efficient and
most portable high-level language, and also very widely used, has ensured Csound’s
survival and growth.

Vercoe wrote Csound at the Massachusetts Institute of Technology in 1984. Ever
since then, Csound has received contributions from researchers, programmers, and
musicians all over the world. Csound runs on Unix, Linux, Windows, the Macin-
tosh, and other operating systems. Csound can be extended by writing plugin unit
generators, and Csound itself runs as a VST plugin. Csound can be programmed
in C, C++, Java, Lisp, Lua, and Python. Csound is taught in a number of leading
universities and conservatories. Books have been written on how to use it [4, 5, 0].
Csound can be compiled to use double-precision floating point audio samples for the
highest sound quality.

In short, Csound must be considered one of the most powerful musical instruments
ever created.

Csound is, perhaps, harder to use than such competing programmable synthe-
sizers as SuperCollider 7], Max [8], or Reaktor [9]. One difficulty is that Csound
was written a generation ago as a Unix application, and is controlled by dozens of
arcane command-line options (although, precisely because it is older, Csound runs
faster and has more unit generators). Another difficulty is that Csound lacks some
convenient features of other high-level programming languages.

Still, once you learn a few things, Csound is not really so hard to use. The sound
processing language turns out to be simple, the documentation is good, Csound
always tries to tell you what it is doing (or why it is not doing what you told it)...
and the power begins to sing.

The purpose of this tutorial is to teach those often neglected first few things. There
are three introductory sections, one each for Windows (Section 2.1), Linux (Section
2.2), and Apple computers (Section 2.3), that lead you, step by step, through ob-
taining, installing, configuring, and running Csound (also see the Csound Reference
Manual [10]). Then follow chapters on writing your own orchestras and scores (Chap-
ter 3), using CsoundVST as a VST plugin in a studio sequencer (Chapter 4), and
writing Python scripts to do algorithmic composition using the Csound application
programming interface (API) (Chapter 5). Finally, there is a list of software required
to use the extra features of Csound (Appendix A), a list of other helper applications
and languages for Csound (Appendix B), and some advice on how to achieve good
sound quality with Csound (Appendix C).

2. Getting Started

This chapter contains the same information — how to obtain, install, configure, and
run Csound — repeated for each of the main personal computer operating systems
in use today: Windows, Linux, and Macintosh OS X.

2.1. On Windows
2.1.1. Obtaining Csound

Windows installers for Csound can be obtained from at least two Web sites: Source-
Forge, at http://csound.sourceforge.net; and my blog, at http://michael-gogins.
com/?page_id=59.

SourceForge hosts the general Csound project, including source code and binary
packages for a variety of operating systems. The Windows installers at SourceForge,
however, are not permitted to contain CsoundVST or the vstdcs opcodes because
they depend on the proprietary Steinberg VST STK, which is not compatible with
free or open source software licenses. To download from SourceForge, use your Web
browser to go to the Main Download page link. On the download page, click on
the link to the csound5 package. You will see a list of releases. At the time this was
written, the most recent downloadable version of Csound for Windows is 5.11. You
will see a csound5.11 link on the page. Click on that, and it will expand to show
Csound5.11-win32-d.exe and Csound5.11-win32-f.exe. Both of these programs
are Windows installers for Csound 5.11 (Figure 2.1). For later versions and releases,
substitute the actual version number for 5.11 in the links and filenames.

Csound5.11-win32-f.exe installs a version of Csound that has been compiled to
use 32-bit floating point numbers internally to represent audio samples. As a result,
it runs about 15% faster than Csound5.11-win32-d.exe. Csound5.11-win32-d.exe
installs a more complete version of Csound, which has been compiled to use 64-bit
floating point numbers for audio samples, so that it is a slightly more accurate
synthesizer than Csound5.11-win32-f.exe [11].

If you are putting on live shows using Csound with complex instruments, and need
extra efficiency, download Csound5.11-win32-f.exe. Otherwise, you will be better
off with Csound5.11-win32-d.exe. But if you want to use CsoundVST or vstdcs,
download the installer from http://michael-gogins.com/7page_id=59. The rest
of this tutorial, which covers CsoundVST, assumes you have done this.

2.1.2. Installing Csound

Csound comes with a number of extra features that require other software to work.
These extras and their requirements are listed in Appendix A. Please note: if you

http://csound.sourceforge.net
http://michael-gogins.com/?page_id=59
http://michael-gogins.com/?page_id=59
http://michael-gogins.com/?page_id=59

2. Getting Started

¥ Sourceforge.net: Files - Mozilla Firefox =151 x|
Fle Edt Wiew Go Bookmarks Took Help

@-op-E 0 Re y x - id-120462 B 0w [CL

0STG -Th
Find IT.
SOURCER. RGE
shet \ Log In - Greate Account | O, [Saftvere Search | Advanced
SEnet Projects My Page
S Riee
SF net » Projects » Csound » Files B D9
Csound S onate toproject [Stats - Activity: 99.25% [T
Summary | Admin | Home Page | Forums | Tracker | Manual | Bugs | Support Requests | Patches | Feature Requests | Mail | Tasks | Daes | Screenshats | News | GV | Files Q [Fies _Setih | ncvanced
souc i RGE
You have selected to download csounds AMDZI B
Below s a list of releases and files contained in this package. Before downloading, you may want to read the Release Notes: - B -

Release (date) Filename i Downloads Architecture

Latezt =l esound5.03 [otes] (z005-08.22 15 00
Csound5.03-win32-d.exe 11877267 558 386 exe (32-bit Windows) _
Cs0unds.03-win32f exe 10085676 256 386 exe (32-bit Windows)

[*] csound5.02 otes] (2005-08-07 14:07)

csoundd.0 piotes] 2005-0225 13:09)

=] esound5.00 [istes] (2005-02:01 13145

View older releases in the csound3 package »
Totals: 4 62 438161608 14884

| Find a Tech Job B seoncortine B ericecatee produces |

SEARCH JOBS SALARIES 10B TOOLS Dounload Oracle JDeveloper for fiee to develop EJE 3.0 components FAX 575 Personal Plain Paper Fax, Phone & Copier : $37.99 =

[ore
Bset] (G LREH IAOULCANPIBET TN ORMOB O T DG DM ([E2rrelon- & o .| fvmews.. | [Trewice...| B2eto..o| g2 s mi il sl @ 8 1201 pm
HpHaz e s e g oitutshi, ., | T2 csoun, |) mbox- 0., | @ siencet ., | Fruoral ok || D @DMB LT 1 seturday

Figure 2.1.: Download Page

do not install any of this other software, the standard features of Csound will still
work!

To install Csound, simply run the installer. It will display a dialog box (Figure
2.2).

RI=E

Welcome to the Csound Setup
Wizard

This wizard will guide vaou through the installation of Csound,
It is recommended that vou close all other applications
before starting Setup. This will make it possible to update
relevant system Files without having to reboot your

compuket,

Click Mext ko continue,

Cancel |

Figure 2.2.: Windows Installer

2.1. On Windows

Click on the Next > button to proceed. You should now see the Csound license
agreement (Figure 2.3). You must click on the I Agree button to indicate your
acceptance of the Csound license before you can install Csound.

{37 Csound Setup E]
License Agreement Prem
Please review the license terms before instaling Csound. k 9 7

Press Page Down to see the rest of the agreement.

CSOUMD AMD CSOUMD VST Y
Version 5.10.1 I'm|

A user-programmable and user-extensible sound processing langquage
and software synthesizer.

Csound is copyright () 1991 Barry Vercoe, John ffitch.
CsoundVST is copyright (c) 2001 by Michael Gogins.
VST Plugln Interface Technology by Steinberg Soft- und Hardware GmbH

quqnd anc_l _Csu;uundVST are free sof't'.w_ar_e,' you can redistribute_ H'u;m v

If you accept the terms of the agreement, dick I Agree to continue. You must accept the
agreement to install Csound.

[< Back “ 1 Agree l [Cancel

Figure 2.3.: Csound License

Tell the installer where to put Csound. Although the default location is the
standard Windows Program Files directory, Csound may actually work better if
you install it in a directory without any spaces in the pathname, such as C:\Csound
(Figure 2.4).

Tell Csound where to put the Windows Start Menu folder for Csound. You can
skip this step if you want, but I recommend that you accept the default location
(Figure 2.9).

Next, the installer gives you a choice of components to install (see Figure 2.6.
To simply run Csound, you need only the “core” installation. However, to complete
this tutorial including the section on scripting Csound, you should also select the
documentation and the Python features (which require that you first install Python
2.6). A reasonable set of components for completing all sections of this tutorial
would include:

e Csound
— Csound engine, opcodes, and drivers
— Utilities
— Documentation
x Csound Reference Manual

* A Csound Tutorial

C:\ Csound

2. Getting Started

'(::r Csound Setup o ! [»;]

Choose Install Location
Choose the folder in which to install Csound. 'Y

Setup will install Csound in the following folder. To install in a different folder, dick Browse and
select another folder. Click Mext to continue.

Destination Folder

| C:\utahopt\Csound-5. 11.rc1y, | Browse...

Space required; 42, 7MB
Space available: 36.3GE

Mullsaft Install Systenm w2, 45

[< Back][Mext =] [Cancel

Figure 2.4.: Csound Location

r(::r Csound Setup o [»;]

Choose Start Menu Folder —_—
Choose a Start Menu folder for the Csound shortcuts. '

Select the Start Menu folder in which you would like to create the program's shortcuts. You
can also enter a name to create a new folder.

Csound |

ZBrightSparks ~
Accessories
activePDF

Administrative Tools

CMake 2.6

CodeBlocks

Csound

CVSMNT

DVD-RAM

Games

Ghostgum M
[]Do not create shortouts

Mullsaft Install Systenm w2, 45

[< Back][Mext >][Cancel]

Figure 2.5.: Csound Menu Location

2.1. On Windows

e ['ront ends
— QuteCsound
— CsoundVST

e Interfaces
— Python
x Python opcodes
x csnd: Python interface to Csound
% CsoundAC: Python interface to Csound algorithmic composition
If you want to use Lua for scripting Csound, or use Csound as Java library, or with

Lisp, you should select the relevant features. It does no harm to select a complete
installation.

{37 Csound Setup E]
Choose Components e,
Choose which features of Csound you want to install. r\ 9 7

Check the components you want to install and unchecdk the components you don't want to
install. Click Install to start the installation.

Select the type of install: Custom v

Cr, select the apﬁu_nal QuteCsound (user-defined widgets) |
;;nsnt'u;i:lnents you wish to CsoundVST (requires VST host) B |
‘ [telesound (requires TCL/TE)
[] csoundapi~ {requires Pure Data)
= Csound interfaces

#-[]cic++

+-[] Lua (uajit included)
Space required: 75.7MB * EF_’?thuF ':re‘,q“"e_s Py}’r‘lnn 28);

< »

[< Back “ Install l [Cancel]

Figure 2.6.: Csound Components

Click on the Install button. The installer will now unpack and install Csound in
your selected location (Figure 2.7). When the installer has finished, you should see
the message shown in Figure 2.8. Open the Windows Start Menu, where you should
find a Csound submenu containing various Csound programs and documentation
(Figure 2.5).

Configuring and Running Csound on the Command Line

Csound is capable of state-of-the-art audio quality, equal to or better than the best
recording gear. For more discussion of how to achieve this quality, see Appendix
C. The short piece you are about to render has been modified to render at high

2. Getting Started

NI

Installing F.-
Please wait while Csound is being installed. E 9 7

Extract; PrefaceTop.hkml,.. 100%

L

ullsaft Install Systen w2, 06

% Barck | et = | Zancel

Figure 2.7.: Csound Installing

aIEY

Completing the Csound Setup
Wizard

Csound has been installed on your computer,

Click Finish ko close this wizard,

= Back

Cance| |

Figure 2.8.: Installation Completed

Internet
Mozila Firefox

@

Gﬂ E-mail
Outiok Express

Adobe Reader ¢

B e

-

‘# Paint

B Notepad

@ v

ﬁ

@ SetProgram Access and Defaults
W Windows Catalog

& Windows Update

A VIDLE for Python 2.6

) Accessories

@ owaam

) cames

[Intel PROSet Wireless
@) intervideo winDVD
I Protector suite QL
i QuickTime

i) Real

€| @ sonic

@ Startup

@) TosHEa

[TOSHIBA Applcations

[Windows Digital Media Enhancements
& mnternet Explorer

@ Meda Center

W msh

[4) Outiook Express

wd Recovery Disc Creator (Express Media Player)
o Remote Assistance

) windows Mediz Player

B Windows Messenger

& Windows Movie Maker

@ 2erightsparks

) Microsoft Visual C-++ 2008 Express Edition
[Google Earth

@ Tortoisssvy

i@ Tuezp

= s

i@ cvsnT

[POV-Ray for Windows v3.6

@ WinCvs

@ Pov-Ray for windows

@ Ghostoum

[Ghostsaript

2.1. On Windows

B Adobe Reader 9

[Microsoft Directt SDK (August 2008)
|3 openOffice.org 3.0

[Kaspersky Internet Security 2009
1) Pd-extended

@ e

LR.LS, OCR Registration

{5} Audacity 1.3 Bets (Unicode)

(@ MKTex 2.7

(@ Python 2.5

[WD Diagnostics

(@ Modartt

[steinberg Cubase 4

(@ Syncrosoft

I activePDF

[steinberg HALionOne

@ putry

IE) CodeBlodss

(@ winMerge

1) CMske 2.6

(@) Grapviz2.22

) Microsoft DirectX SBK (March 2008)
I Microsoft Windows SDK v7.0

@ qutecsound

@ Pythen 2.6 [cstalsh
(@) wxGlade B csuish
| Qut=Csound (doubles) [lusjit
@ uiypond [€) APrReference

G Nsis
I Qt SDK by Mokia v2008.03 (open source)
@ M-Audio USB Duo

(@) videoLAN

Sy

B Csound
[E] License

(&) Manual

= Tutorial

J Adobe Updater
Undates are ready to be installed.,

Mo DK s0opm
T dagéd o vonday
| | R@REES s

3 Csound
][) tutorialp..

[T TexnicCe.][15 D:\utzh,

| G coounds

resolution, so it should

do.

Figure 2.9.: Csound Start Menu

serve as something of a demonstration of what Csound can

As you may have gathered, there many ways of running Csound. The two ways

we are concerned with here are the original way, as a command-line program,

I and

as a GUI program. We will run the piece both ways.

This section assumes that you have installed Csound in the C:\Csound directory.
In the following, replace this with your actual installation directory. Using a text
editor (not a word processor!)?, take a look at the C:\Csound\ .csoundrc file. This
file provides default command-line options that take effect each time you run Csound,
unless you provide another value for the option. As installed, it reads:

'What is the command line? Every operating system has one. It is a “console window” that has a
prompt where the user can type in text commands. On Windows, you can open the console by
going to the Start menu, selecting the Run item, typing cmd in the Open: field, and clicking
the OK button. When you see the prompt, type dir and press the ENTER key as an example
of executing a command.

Do not use the default text editor on Windows, which is Notepad!

Csound files typically

have Unix line endings (linefeed only), whereas Notepad only works properly with Windows

line endings (linefeed plus carriage return).

I recommend that you install and use SciTE

[12], a general-purpose text editor for which you can get Csound orchestra language syn-
tax coloring. You can obtain Csound API and orchestra language syntax coloring prop-

erties from http://solipse.free.fr/Api_&_
solipse.free.fr/Api_&_csound.properties/csound.properties,

csound.properties/csound.api and http://
respectively. Then in

your global options file, around line 539 add a new line Csound|orc||\ and around line 611
add a new line import csound. Line numbers are very approximate, but you should see similar
statements for other languages in the correct locations. You can even run Csound from SciTE.
If you must use an existing Windows program, use WordPad, not Notepad, and be sure to save
your work as a plain text file with the proper filename extension.

C:\ Csound
C:\ Csound\ .csoundrc
http://solipse.free.fr/Api_&_csound.properties/csound.api
http://solipse.free.fr/Api_&_csound.properties/csound.properties
http://solipse.free.fr/Api_&_csound.properties/csound.properties

2. Getting Started

-d -m135 -HO -s -W -o dac -+rtaudio=pa -b 128 -B 2048 --expression-opt

The meaning of these options is as follows:

-d Do not show graphs of function tables.

-m135 Print informational messages about audio amplitude, audio samples out of
range, warnings, and errors, using color codes.

-HO Do not print a heartbeat at each kperiod.?
-s Use 16-bit short integers for audio samples.
-W Use the standard Microsoft WAV format for soundfiles.

-0 dac Send real-time audio output to your computer’s default audio interface (i.e.,
digital-to-audio converter).

-+rtaudio=pa Use the PortAudio driver for real-time audio (works on Windows,
Linux and Apple).

-b 128 The number of audio sample frames* in Csound’s software buffer.

-B 2048 The number of audio sample frames in the audio interface’s hardware
buffer. This should be a small (e.g. 2 to 10) integral multiple of -b.

-expression-opt Tell the Csound orchestra language compiler to optimize arith-
metic and logic expressions.

For the complete meaning of all Csound options, see the reference manual [10].
The above options should work for real-time audio output on all operating systems
and computers. For now, there is no need to change these options, but later you
may wish to modify them according to what you learn about your computer and
audio interface. The layers of buffering in Csound work as follows:

1. Every ksmps sample frames, Csound reads audio from the spin buffer into
the in family of opcodes; gets score events from the score, MIDI, and other
real-time control queues and dispatches those events to instrument instances;
writes audio from the out family of opcodes to the spout buffer; and copies the
spout buffer to the “software” or -b buffer. Consequently, ksmps determines
the minimum granularity of event and audio processing.

2. Every -b sample frames, Csound copies the “software” or -b buffer to the
“hardware” or -B buffer. If -b is a multiple of ksmps, then if Csound is late
producing a spout buffer, the -b buffer contains enough audio to give Csound
a chance to catch up during the next ksmps.

3A kperiod is one Csound control sample, during which Csound computes 1 or more audio sample
frames. By computing anywhere from 10 to a hundred or so sample frames per kperiod, Csound
can run much more efficiently.

4An audio sample is one number. An audio sample frame consists one number for each channel
of an audio signal. When people say “sample rate,” they usually mean “sample frame rate.”

10

2.1. On Windows

3. Every -B sample frames, the sound card plays the “hardware” or -B buffer. If
-B is a multiple of -b, then if Csound is late producing a -b buffer, the -B
buffer still contains enough audio so that the sound card can keep playing while
Csound catches up during the next -b period. Consequently, -B determines
the minimum latency of audio input and output.

Csound configuration is affected by a number of environment variables,® which
are all documented in the Csound manual [10].

To run Csound, select the Csound command from the Csound Start menu. This
will open a console window in the Csound bin directory and run Csound to display
its command-line options (see Figure 2.10). Alternatively, you can open a console
window from the (Windows Start menu, Run item, type cmd into the Open: field,
press the ENTER key). Type C: [ENTER] ([ENTER] means press the ENTER key)
or whatever the drive is where you installed Csound). Type cd \Csound [ENTER]
to navigate to the Csound directory. Type csound [ENTER] to run Csound. To see
even more options, type csound --help [ENTER].

Now, type csound examples\xanadu-high-resolution.csd [ENTER]. The .csd
file contains in plain text, like all . csd files, a Csound score, a Csound orchestra for
rendering the score, and command-line options in the <CsOptions> tag to control
the rendering. The meanings of the options for this piece are as follows:

-R Rewrite the header of the output soundfile periodically, so that if you stop
Csound in mid-performance, or it crashes, you should still be able to hear
as much of the soundfile as was written before Csound stopped.

-W Use the standard Microsoft WAV soundfile format.

-Z Dither the signal just before writing to the output. Dither is noise that is applied
to the signal in order to mask and hide other noise.

-f Use floating-point numbers to represent audio samples. Float samples have the
greatest dynamic range and precision.

-0 xanadu.wav Output to a soundfile named xanadu.wav.

The messages (Figure 2.11) list the instruments that Csound has compiled, e.g.
instr 1, instr 2, and so on (more on this later), then some other information
about how Csound has compiled the orchestra and score in the .csd file, then the
name of the output soundfile. Then come messages indicating the progress and
status of rendering, e.g. new alloc for instr 1: indicates that a new instance of
instrument 1 has been created to satisfy the demands of the score. Messages starting
with B, e.g.

> An environment variable is a string in the form NAME=value that the user sets, and the operating
system remembers and passes along to programs when they start. The program can look up the
value that has been assigned to the variable in order to locate directories and files, set numbers,
and so on. The proper way to set environment variables depends on your version of Windows.
On Windows XP, go to the Start Menu, Settings item, Control Panel item, System icon,
Advanced tab, Environment Variables button to bring up a dialog box where you can
create, edit, or delete persistent environment variables.

11

2. Getting Started

PortMIDI real me MIDI plugin f und
PortAudio real-time audio module for Csound
vboard rea1 time MIDI plugin

orefile

—-help print 1unq usage Dpr1un_
unam run wutili
use Cscore proce g orefile
I-time on

lename
1 1ename
(Dr - prd

create a W

create an IRCAM

no header on outp

8 gned_char
unsigned_ char

fnam

] at tempo N
ore rather than a temporal

read Line-oriented Fea1r1me rce

read MIDI rea

read MIDIfile

continually rewrit hile writing soundfile (

print heartbeat /1 2 at each undf11e

(ring the bell) when s

v
defer GENOL soundfile Toads until perTDrmance time
lect MIDI output d
izt opcodes in this
1er lepug

Csound Command ER ffici ent_argl_lmem-
leting C++ objec rom dopple

tah und-5.11. rcl>

Figure 2.10.: Csound Console

12

2.1. On Windows

B 15.500 .. 22.500 T 22.500 TT 22.500 M: 9286.3 9200.8
B 22.500 .. 22.600 T 22.600 TT 22.600 M: 5744.3 6443.3
B 22.600 .. 22.700 T 22.700 TT 22.700 M: 7632.9 7294.0
B 22.700 .. 22.800 T 22.800 TT 22.800 M: 88565.0 7862.5
B 22.800 .. 22.900 T 22.900 TT 22.900 M: 8845.9 7613.5
B 22.900 .. 23.000 T 23.000 TT 23.000 M: 8541.2 7858.1

indicate blocks of synthesis, including the time within a marked section of the
score T, the total time for the whole score TT, and the mean amplitude M of the
signal in each channel of the audio output during that time. These amplitudes are
critical, for Csound can easily produce a signal that is so loud it clips. Every time
this happens, Csound prints a warning message. A new block begins for each new
score event.

utput
in thi

g default Tlanguage.

<.d11' 1s not a Csound plugin Tibrary

for Cs id by n Warga

beta (double samples) Jul

und >
dfil

adu. csd

dio modu b o g callb interface
I module e &

Figure 2.11.: Command-Line Rendering

There are various ways to now actually hear the piece. All installations of Win-
dows feature the Windows media player, which can play high-resolution soundfiles,
and which is usually accessible on the Windows task bar. Open the media player,
and use the File menu, Open command to navigate to the Csound directory and

13

2. Getting Started

open the xanadu.wav file. You can now play the piece, although of course it will
sound much better if you have an audio interface running into monitor speakers or
good home stereo speakers. The piece may also sound good through headphones
plugged directly into your computer, though that will depend on the quality of
your computer’s audio systems — newer computers have much better sound. Media
Center PCs may even have high-resolution audio built in.

Configuring and Running QuteCsound

To run QuteCsound, select the QuteCsound command from the Csound Start
menu. You should see something like Figure 2.12.

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Manual

i) T I IS E SO A AN T e T P J I T 7 @6 | Gwe. | Yae. |@con [Don e
O@anO@9 2000000 LALRO0EEC T A Qoswt.. | @ csou.. | BB adob. @

Figure 2.12.: QuteCsound.

Please be aware that configuring audio and MIDI on any computer can involve
trial and error, reconfiguration of the operating system and/or device drivers, visits
to online user forums and mailing lists, and patience. Using Csound can make this
procedure even more tedious. If you are patient and methodical, you will almost
certainly be able to achieve reliable, low-latency results with excellent audio quality.
If you are familiar with other software synthesizers, you will soon be able to judge
for yourself whether Csound has anything to offer in the sound department.

Note also that QuteCsound can be configured either using its own configuration
dialogs, or through the Csound options section of the .csd file. In this tutorial,
I focus on the QuteCsound configuration dialogs, because they make it easier to
remember what you are doing.

All QuteCsound configuration examples in this tutorial are based on my own
practice, using the Roland Edirol UA-25EX USB audio/MIDI interface on Windows
XP and on Linux (Ubuntu or Eeebuntu). I chose this interface because it is small,
bus-powered, and works reasonably well on both Windows and Linux. If you are
using this device on Windows, make sure that the ADVANCED DRIVER switch
on the back panel is set to ON and that the SAMPLE RATE switch is set to 48.

14

xanadu.wav

2.1. On Windows

This is only the combination of settings for the UA-25EX that enables simultaneous
audio input and output with MIDI.

Click on the Configure button to open the Configuration dialog, and select the
Run tab. Configure the dialog as shown in Figure 2.13. The purpose of the settings
is as follows:

e Buffer Size (-b) 100 is a small size that produces low latency. It also is the
same as the sampling rate divided by the control rate (ksmps).

e HW Buffer Size (-B) 200 is a small integral multiple of the buffer size.

e Additional command line flags -midi-key=4 -midi-velocity=5 routes
MIDI key numbers to pfield 4 and MIDI velocity numbers to pfield 5. This
enables the use of the same Csound instruments both for rendering to file,
and for real-time MIDI performance. The other settings of -r 48000 -k 480
set Csound’s sampling rate to 48000 (the same as the UA-25EX) and control
rate to 480. This combination of settings should produce an input latency
on the order of 2 milliseconds. This is about the fastest possible. If you
experience problems, double the buffer size and halve the control rate. If
you still experience problems, double again. The -R -W parameters cause
Csound to periodically update the soundfile header during performance so that
the output soundfile will still be playable if the rendering is stopped partway
through the score, and to use the standard Windows WAV output soundfile
format.

e In the File (offline render) group:

— Checking Use QuteCsound options and Ignore CsOptions means
that QuteCsound will ignore the Csound options from the .csd file and
use only the options from this dialog when rendering to a soundfile.

— File type WAVE makes Csound use the industry-standard Microsoft WAV
format for the output soundfile.

— Sample format 32 bit makes Csound use 32-bit floating-point samples
in the output soundfile. This is extremely-high precision audio and is
becoming standard in studio work.

— Setting Output Filename enables QuteCsound to launch external ap-
plications to edit or play the Csound output soundfile.

e In the Realtime Play group:

— Checking Use QuteCsound options and Ignore CsOptions means
that QuteCsound will ignore the Csound options from the .csd file and
use only the options from this dialog when rendering in real time.

— RT Audio Module portaudio selects the PortAudio driver, which is
advisable on Windows in order to use ASIO for low latency.

— Input device (-i) adc6 selects the ASIO input driver for the UA-25EX.
This value was selected by clicking on the button with three dots to the
right of the field. Select the appropriate driver for your own computer.

15

2. Getting Started

— Output device (-0) dac6 selects the ASIO output driver for the UA-
25EX. This value was selected by clicking on the button with three dots to
the right of the field. Select the appropriate driver for your own computer.

— RT MIDI module winmm selects the Windows multimedia driver for
This usually works better than the PortMidi driver on
Windows. This value was selected by clicking on the button with three
dots to the right of the field. Select the appropriate driver for your own

MIDI output.

computer.

— Input device (-M) 0 selects the UA-25EX MIDI in driver. This value
was selected by clicking on the button with three dots to the right of the

field. Select the appropriate driver for your own computer.

20
Run | General | Enwvironment |
¥ Buffer Size (-b) 100
F# Hiw Buffer Size (B) [200 I Dither
¥ additional command line fags I--mldl-key=4 --midi-velocity=5 -r 48000 -k 480 -, -
—File {offline render}
¥ Use QuteCsound options I Ignore CsOptions
I~ sk for Filename every time File bype Im
I Play file when finished sample farmat m
I~ Input Flename | _I
¥ Cutput Filename IC:J‘utah,l’opt,l’Csound—S.l1.rcl,l’tutorialftutoriaIZ.wav _I
—Realtime Play
[V Use QuteCsound options ¥ Ignore CsOptions
RT Audio Module |p0rtaudl0 ;I RT MIDI Module |W|nmm LI
Input device (-i) Iadc6 _I Input device (-M) ID _I
output device (-a) Idac6 _I output device {-G1) I _I
Jack clignt name I
O I Cancel

Figure 2.13.: Configuring QuteCsound (Run)

Select the General tab and configure it as shown in Figure 2.14. The purpose of

the settings is as follows:

e In the Editor and Console groups, the font size of 9 displays more text while

still being readable. Set an appropriate value for your own display.

e Run Utilities and Render using Csound API enables QuteCsound to
run its embedded instance of Csound, which affords tighter integration and

allows Csound messages to print in QuteCsound’s console panel.

Now select the Environment tab and configure it as shown in Figure 2.15. The

purpose of the settings is as follows.

16

= QuteCsound Configuration

Run General | Envircnment |

—Editar

Font | Courier |
Size Ja =l
Tab Width |40 =

IV Colar Variables

I~ Autoplay files when launched from file

¥ Save changes automatically on run

¥ Remember open Fles from previous session
IV Show ket For toolbar icons

v Wrap Lines

—Csound execution

2.1. On Windows

21|

[~ Runin separate thread
Run Utilities and Render using:

+ Csound API

" External shell

—widgets

¥ Enable Widgets

V¥ Enable invalusfoutvalus
¥ Save widgets in csd file
W Show Widgets on Play

[+ Show Tooltips for widgets

—Record
I Enable FLTK {unisafe)
Record sample Format 16 Bit Ink =l
—Console
Font Courisr | Font: Color -
Size Background Calor |

o]

Cancel |

Figure 2.14.: Configuring QuteCsound (General)

QuteCsound Configuration

Run | General Environment |

L
x

—Directories

Herl Do Direckary |D:,l’utahjhome,l’mkg,l’manual,l’html

I” oPCoDEDIR |

™ santn |

[~ s=oIe |

I” sFoIR |

[~ NCDIR |

[~ Default csd I

—External programs

Terminal I cmd, e

‘Wave Editar |audacity.exe

‘Wave Player |sndrec32.exe

Browser I Firefosx, exe

Dot | [fukahjoptfiGraphviz/binddat. exe

a(a(aiaiEl|{alalalalalElE

Interface Language (requires restart)

English

o]

Cancel |

Figure 2.15.: Configuring QuteCsound (Environment)

17

2. Getting Started

e Html Doc Directory records the directory containing of the Csound refer-
ence manual HTML pages. Use the button with three dots to the right of the
field to find this directory on your computer.

e Wave Editor records the complete pathname of an external soundfile editor
that QuteCsound can use to display, edit, or play Csound output soundfiles.
Use the button with three dots to the right of the field to find the appropriate
program on your computer.

e Wave Player records the complete pathname of an external media player
that QuteCsound can use to play Csound output soundfiles. Use the button
with three dots to the right of the field to find the appropriate program on
your computer.

e Dot records the complete pathname of the Graphviz dot.exe program, which
QuteCsound can use to print useful flow charts of Csound orchestra code. Use
the button with three dots to the right of the field to find this program on
your computer.

To render Xanadu using QuteCsound, use the File menu, Open File... dialog to
navigate to the Csound examples directory and load the xanadu-high-resolution.
csd file. You should see something like Figure 2.16. Note that, if properly configured,
the Csound Reference Manual is open in a panel in the upper right corner, and can be
browsed to obtain help. Not the only that, but if you place the cursor on an opcode
name in the editor and press Shift-F1, the manual will jump to the documentation
for that opcode (Figure 2.17).

Now click on the Render button, to render the piece to a soundfile. You should
see something like Figure 2.18.

As the piece renders, the Csound output console panel prints messages from
Csound about the progress of rendering. You can stop rendering at any time by
click on the Stop button. After stopping, you can restart.

When the piece has finished rendering, you can hear it by clicking on the Edit
button for the Output file field, which, if you have configured an audio editor for
QuteCsound, will open the editor with the output soundfile already loaded and ready
to play or edit (Figure 2.19).

2.1.3. Real-Time MIDI Performance

Real-time MIDI performance means playing Csound as a live MIDI synthesizer. Your
computer must have an audio interface connected to headphones or speakers, your
computer must also have a MIDI interface, and you must plug the MIDI out port
of your MIDI keyboard or other controller into the MIDI In port of your MIDI
interface.

You start Csound with an orchestra that is designed for real-time MIDI perfor-
mance, you play your controller, Csound renders what you play as you play it, and
you hear the audio output from your speakers or headphones. Use QuteCsound’s
File menu, Open dialog to open the CsoundAC.csd file from the Csound examples

18

examples
xanadu-high-resolution.csd
xanadu-high-resolution.csd
CsoundAC.csd

2.1. On Windows

xa resol

= S %]
File Edit Control View Examples Help
Onelaesnn

New Open Save || Undo Redo Cut Copy Paste || Run Stop RuninTerm Record Render ExtEditor Ext.Player || Configure | Widgets | Manual | Console | Utities
@ topped.csd | @ xenaducsd | @ xanadihigh-resouuton.csd] [3¢] [opcode Help 5 x
<CsoundSynthesizer> The Canonical Csound Reference Manual
<CsOptions> i A & en
csound -d -R -W -2 -f -o xanadu-high-resoluticn.wav
</CsOptions> The Canonical Csound Reference
<CsInstruments>
sr - 8200 Manual
Esmps 1
nchnls 2 Frames Ver:
;Instrument 1 : plucked strings chorused left/right and inn 5 11

piteh-shifted and delayed taps thru exponential Widgets & %

functions, and delayed.

instr 1

ishift = - 00666667 sshift it 8/1200.
ipch cpspch(p5) ;convert parameter & to cps.
ioct octpch(p5) ;convert parameter § to oct. { S S [y) e |
kvib poescil 1/120, ipch/S0, 1 svibrato
ag pluck 2000, cpsoct(ioct+kvib), 1000, 1, 1
agleft pluck 2000, cpsoct(ioct+ishift), 1000, 1, 1
agright pluck 2000, cpsoct(iocct-ishift), 1000, 1, 1
adanping linsegr 0.0, 0.006, 1.0, p3 - 0.066, 1.0, 0.06, 0.0
ag adamping * ag
agleft adamping * agleft
agrignt adanping * agright
ar1 expon. .1, p3, 1.0 ;exponential from 0.1 £o0 1.0 ”
Csound Output Console 8 X

Line 1
LB K ss7eM
A dhih o Vondsy

BEIFEE S s/10/2009

@2n. 'H winc... lumce... lﬂmml

O@afdd@2 200000 0bLbPHNO0EHESQ+T 4

Figure 2.16.: QuteCsound with Xanadu

xa resol

- =) %]
Fle Edt Contol View Examples Help
08¢ @930 D

 New Open Save || Undo Redo Cut Copy Paste

]
{Run Stop RuninTerm Record Render Ext.Editor Ext.Player

Configure | widgets | Manual | Console | Utiities

@ opped.csd | @ xenaducsd | @ xenadhhighesobuton.csd] B x
<CsoundSynthesizer> linsegr
<CsOptions> Orchestra Opcodes and Operators
csound ~d -R - -2 ~f -0 xanadu-high-resolutien.wav
</CsOptions>
<CsInstruments>
sr 8200
Rsups - 1 linsegr 3€" Trace & series of line segments between specified points induding
nennls 2 2 release segment.
sInstrument 1 : plucked strings chorused left/right and Description
piteh-shifted and delayed taps thru exponenti Trace a series of line segments between specified points indluding a refease
: functions, end delayed. segment.
Syntax
instr 1 . . .
ishift . 00666667 sshift it 8/1200. eresiiinseqrlie Sidoct SIDILMideca i 23e]
ipch - cpspch (ps) scenvert paramster § to ps. Vras Tinesmm 4s AAnei An f Adnest r 4en
16et octpch p3) soonvers parameter 5 to oct. 4 n
kvib poscil 17120, tpea/s0, 1 svibrate Widgets
ag pluck 2000, epsect(ioctkvib), 1000, 1, 1
agleft pluck 2000, epsoct(icctéisnift), 1000, 1, 1
agright pluck 2000, cpsoct(ioct-isnift), 1000, 1, 1
adamping UASEH 0.0, 0.006, 1.0, p3 - 0.066, 1.0, 0.06, 0.0
ag adamping * ag
aglert adamping * agleft
agright adamping * agrignt o o oouou
ar1 expon .1, p3, 1.0 ;exponential from 0.1 to 1.0 <
Csound Output Console: 8 X
Line 23

L@ el (K %:02pM
Taa @B Mondsy
k) 8/10/2009

-] dhwne.. | ¥ aue.. | Ecsouns |

O@a00@e 200000 0L PHNO0EESQ+E 4

Figure 2.17.: Contex-Sensitive Opcode Help

19

2. Getting Started

'@ xanadu-high-resolution.csd - QuteCsound B=Ex]
Fie Edit Confrel View Examples Help

08¢ a9l 0D

New Open Save |! Undo Redo Cut Copy Paste |!|Run |Stop RuninTerm Record Render Ext Editor Ext.Player || Configure | Viidgets | Manual | Console | Utiities

@ topped.csd | @ xansducsd | @ xanadhigh-resolution.csd \ [>¢] [opcode Help & x

<CsoundSynthesizer> The Canonical Csound Reference Manual

<CsOptions> i A A next

csound -d -R -W -Z -f -o xanadu-high-resolution.wav

<resOptions> The Canonical Csound Reference

<CsInstruments>

sr 8200 Manual

Esmps 1

nchnls 2 Frames Ver:

;Instrument 1 : plucked strings chorused left/rignt and inn 5 11

; pitch-shifted and delayed taps thru exponeat. Widgets & %

functions, and delayed.
instr

ishift = - 00666667 sshift it 8/1200.

ipch cpspch (p5) jcenvert parameter § to cps.

ioct octpch (p5) scenvert paramster 5 to oct. [S Ry [y [|

kvib poscil 17120, ipch/S0, 1 svibrato

ag pluck 2000, cpsoct(ioct+kvib), 1000, 1, 1

agleft pluck 2000, cpsoct(ioct+ishife), 1000, 1, 1

agright pluck 2000, cpsoct({ioct-ishift), 1000, 1, 1

adamping linsegr 0.0, 0.006, 1.0, p3 - 0.086, 1.0, 0.06, 0.0

ag adamping * ag

agleft adamping * agleft

agrignt adanping * agrignt

ar1 expon .1, p3, 1.0 : R "

Csound Output Console & X

ftable 3:

new alloc for instr 1:

new alloc for instr 3:

new alloc for instr 3:

new alloc for instr 3:

new alloc for instr 3:

new alloc for instr 3:

new alloc for instr 3:

B 0.000 .. 0.100 T 0.100 TT 0.100 M: 2017.5 2013.5

new alloc for imstr 1: H
v

Line 1
T e — n ¥ s
[| | ¥ aute... | E¥Csouna | L&?!i&g\i ;::’:

E@ﬂﬁﬁ!@&hhhhhﬁh@@ﬂﬁﬁ@G‘@Gﬂ@é

GEIF S 5102000

Figure 2.18.: QuteCsound Rendering

«sd - QuteCsound M [=]B3] & xanadu- [E]
File Edit Control View Examples Help File Edit Wiew Transport Tracks Generate Effect MHE‘YZE Help
HEeHD D E = i i
0z @ » » A= |
News Open Save Undo Redo Cut Copy Paste Run Stop RuninTerm Record Render Configure ﬁ|H 24 12 0 ;ﬂ 24 12 0
high (Opeode Hel & X
@ anaducsd xanadi-high-resolution.csd | 4| | €| [opcode Help | o1) S ey J
<CsoundSynthesizer> = R The Canonical Esnllr:d Reference Manual . ﬂ =
<CsOptions> B A A W.ﬁﬁﬂﬂf"’l—{lﬂ | @ A PN A P E [e iy
csound -4 R U -2 -f -0 xanadu-high- | - 15 15 30 15 100
zezolution, vay The Canonical Csound Reference : : ; — .
<fCsOptions> X]ranzdutip ¥ 1.0 -
<CsTnstrments> Manual Sterea, Bozn0rz
sr #8200 32-bit flost 0.5
ksmps = 1 Erames Version Mde T Solo
nchnls z

n 511

: - Ver:

Instrument @ : plucked strings Barry vercoe
chorused left/right and

pitch-shifted and dsleyed taps
thr exponantial
; functions, and delayed. et.al.

MIT Media Lab

imste | widgers

ishift = .D0EEBEET

sshift it 8/1200.

ipch cpspch (p5)

jconvert peramster 5 to Gps.

iost - octpch p5)

joomvert peramster 5 to oct. i (| O |

kvib poscil 1/120, ipch/S0,

1 fvibrato

Csound Output Console

B 55.260 .. 55.300 T §5.300 TT §5.300 M: S162.2 7751.5

B 55.300 .. 55.360 T §5.360 TT 55.360 M: 6226.7 7625.4

B 55.360 .. 55.400 T 55.400 TT 55.400 M 7495.7 6158.5

B 55.400 .. 55.460 T 55.460 TT 55.460 M 7600.2 6162.3

B 55.460 .. 55.500 T 55.500 TT 55.500 M 6614.3 5516.2

B 55.500 .. 55.560 T 55.560 TT 55.560 M 6472.8 5752.2

B 55.560 .. 57.500 T 57.500 TT 57.500 M 7153.5 T494.9

B 57.500 .. 60.000 T 60.000 TT 60.000 M 6811.0 6161.8

B 60.000 .. 65.000 T 65.000 TT 65.000 M: 5363.4 5213.3 roject Rate (Ha): Selection Start: & End © Length Audio Position:

Seore finished in csoundPerformksmps i) . :1 83200 ~ ‘ snapTo ™ [00h 00 m 00 s¥ [D0hoomoo s> “UU hoOmoo sy

Line 1 || [
Astart LNERCIE - - BoROYalM@AOOROe < Al O @ @O0 | Dcihlo... || @ sanadu-hi. eknicCente .| g0 W) EAK | b 10a2Pm
BRE2OOOOLO L RPENOOEHEAR>@AC Y untiled - Peint | {5} xansdur-high 7B A@EIE BT wednesday

Figure 2.19.: Edit/Play Output Soundfile

20

2.2. On Linux

directory. This is a large Csound orchestra in which all instruments are designed to
be usable not only for rendering to a soundfile, but also for real-time performance
with MIDI control.

In the Csound editor, edit line 88 or thereabouts to specify which instrument you
want to play on MIDI channel 0 using the massign opcode. The following lines select
instrument 19, a high-quality flute emulation adapted from code by Lee Zakian:

::

”””””””””””” massign 0, g R
massign 1, 19

The following explains how to do real-time MIDI performance on my notebook
computer, running Windows XP Media Center Edition, using a Roland Edirol UA-
25EX USB audio/MIDI interface (I chose this unit because it works reasonably well
on both Windows and Linux). The configuration is as given above.

Click on the Run button. You should hear nothing, because the <CsScore> tag
in the .csd file contains no notes — you will be playing the notes in. If you do hear
anything, you have a problem! Click on the Stop button to end performance and
reconfigure.

Now, play a few notes on your keyboard or other MIDI controller. You should
hear something now. More specifically, you should hear a flute sound. If you don’t
hear anything, or if you do hear something but it sounds wrong, you have a problem.
Click on the Stop button.

The most likely problem is that the selected audio or MIDI drivers that you
selected are not suitable. Go back to the QuteCsound Configuration dialog, Run
tab and change the driver selections. If that doesn’t help, try larger buffers and a
smaller control rate.

When all is configured, if you have a reasonably new personal computer with a
reasonably up to date version of Windows, you will hear what you are playing within
a few milliseconds of when you play it. Since your reaction time is probably around
20 milliseconds, and even the best keyboard players are only accurate within about
5 milliseconds, that is fast enough to seem almost instantaneous. You should see
something like Figure 2.20.

You can stop rendering at any time by clicking on the Stop button, and after
stopping you can restart.

To hear different Csound instruments, change the massign statement to other in-
strument numbers, or change the MIDI channel assignment of your MIDI controller,
and start Csound again.

2.2. On Linux

To be completed.

2.3. On Apple

To be completed.

21

2. Getting Started

CsoundALC.csd - QuteCsound =]

Fle Edt Conral view Examples Help

”DB@H‘DC“&@@

Mew Open Save ||| Undo Redo Cut Copy Paste ”Run Stop RuninTerm Record Render Ext Edtor Ext, Player ”Cnnﬁgure Widgets | Manual | Cansole Utilties

© treped.csd | @ sensducsd | @ xamadurhighresoltion.csd | CsoundAC.csd | X [opeode e al el B X
ishift = 8.0/ 1z00.0 Al The Canonical Csound Reference Manual i’
kpch - Kz A i v
kact = octeps (xpch)
; kadsr linseg 0, p3/3, 1.0, pA/3, 1.0, pi/E, 0 ; ADSR eavelope f
amodi Linsey 0, ip3/E, 5, ip3/3, 3, 133, 0 : ADSE envelope for I The Cancnical Csound Reference
ips - 1.2 | Manual
ip7 - 0.8
amodr Linseg ip6, ip3, ip? ; r moves from pé-sp7 in pd sec.
a1 - amodi * (amodr - 1/ amodr) / 2 Erames Version
alnax - ahsial ¥ 2 / 20 ; al%z is normelized from 0-1.
a2 - amodi * (amodr + 1 / amodr) / 2 Version 5.11
a3 tahled alndx, gila, 1 lockuy tbl in £3, nornal index
a0l poscil al, kpch, gicosine Barry vercoe
a1 = exp(-0.5 ¥ a3 + aol] LT Media Lab
an2 poscil a2 * kpch, kpeh, gicosine
aout1 poscil 17 a1, a02 + cpsect (koct + ishift), gisine
aoutr poscil 1% a1, a02 + cpsect (koct - ishift), gisine et.al.
alert - aoutl * ianplitude * adamping
aright - aoutr + ismplitude * adamping]
hssigniend pi, 0.0, 0.0, 0.z, 1 widgats B X
SendOut pi, aleft, aright
endin
instr § 7 Tons wheel organ, Mikslson
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, O
iHz,kHe, lauplitude,idE Noteln 4, PS5, 25.0 = B
iphase = .
ikey = P4 ;i2 4 dntpd - 6) + 100 # (pd - &) |
Csound Output Console B x
rtevent: T 23.863 TT 23.863 M: 0.42753 0.41126 =l
midiKey: pfield: 4 value: 77
midiVelocity: pfield: 5 value: 84
rtevent: T 24.442 TT 24.442 M: 1.00599 0.99779
midiKey: pfield: 4 value: 74
widivelowity: pfield: 5 value: B84
rrevent: T 24.498 TT 24.498 M: 1.00684 1.0006%
widiKey: pfield: 4 value: 76
widivelowity: pfield: 5 value: 84
revenc: T 25.146 TT 25.146 M: 1.03078 1.033851 j
Lie &

Figure 2.20.: MIDI Performance

22

3. Writing Orchestras and Scores

The chapter starts with two short sections on how software synthesizers in general,
and Csound in particular, work. You can skip these sections if you are not interested.
There follows a section on writing the simplest possible instrument, and making it
sound better and better through a sequence of increasingly refined versions.

3.1. Signal Flow Graphs

Almost all software synthesizers run as a set of unit generators (opcodes, in Csound
terminology) that are connected so that the outputs of some units feed into the
inputs of other units. It is very similar to a modular electronic synthesizer, such as
a Moog synthesizer, in which small electronic units are patched together with cords.
In software engineering, this kind of wiring diagram is called a synchronous signal
flow graph. Oscillators, filters, modulators, envelope generators, and even arithmetic
operators and functions are all unit generators.

In Csound, each instr or instrument block in the orchestra code is one signal
flow graph. The inputs to an instrument consist of any number of pfields (standing
for parameter fields), which come from i statements in the score, or from real-time
events:

pl Always represents instrument number, which can be an integer or a fraction.
Score events with fractional numbers are considered to be “tied” in the sense
that after an instrument instance is initialized, a new score event with the
same fractional number is sent to the already running instrument instance,
which skips its initialization run. This produces a very good approximation of
a slur tying two notes in music notation.

p2 Always represents the time that the score event begins, although this time can
be in seconds or, if the score contains a t (tempo) statement, in musical beats.

p3 Always represents the duration of the score event, in seconds or in beats; if -1,
the event will continue indefinitely. Note that instruments can modify the
value of their own p3 fields.

p4...pN Higher pfields have user-defined meanings. However, throughout this tu-
torial, p4 represents pitch as MIDI key number,! and p5 represents loudness
as MIDI velocity number.?

!MIDI key number represents pitch in semitones, ranging from 0 to 127, with middle C = 60. In
Csound, fractional MIDI key numbers can be used to represent non-equally-tempered pitches.

2MIDI velocity number represents loudness in a roughly logarithmic scale, ranging from 0 to 127,
with mezzo-forte being perhaps 100.

23

3. Writing Orchestras and Scores

Each Csound opcode is one unit generator, and is written as one line of text.
Assignment statements, logical operators, and arithmetic operators are also imple-
mented, when the orchestra file is compiled, as unit generators.

Opcodes accept zero more input arguments, and output zero or more return values.
The output of an instrument block is sent to output using various opcodes, usually
outs or outc. Since these opcodes have no outputs inside the instrument, they are
root nodes of the graph (of course, a graph may have more than one root node).

In Csound, variables and opcodes are active at different rates:

i-rate Initialization rate — scalar variables whose names begin with the letter i,
and whose values are fixed when an instrument instance is initialized, and
never change after that.

k-rate Control rate — scalar variables whose names begin with the letter k, and
whose values can change at the control rate.

a-rate Audio rate — vector variables whose names begin with the letter a, and whose
values can change at the sample frame rate. Obviously, all input and output
audio signals must be represented in a-rate variables.

3.2. How Csound Works
3.2.1. Csound Files

Listing 3.1 shows a very simple .csd file, which creates the simplest possible instru-
ment and plays one note on it. The code is however extensively commented.

Listing 3.1: Simple Orchestra

<CsoundSynthesizer >
<CsOptions>

-R -W -f -o tutorial.wav
</CsOptions >
<CsInstruments >

; Sample frames per second.

sr = 88200
; Number of sample frames per control period.
ksmps = 1
; Number of audio output channels.
nchnls = 2
; Amplitude of 0 decibels full scale (maximum amplitude).
0dbfs = 32767
; Instrument number one -- very simple.
instr 1
; Pfield 4 contains pitch as MIDI key number.
ikey = p4
; Pfield 5 contains loudness as MIDI velocity number.
ivelocity = p5
; Translate MIDI key to linear octave.
ioctave = ikey / 12 + 3
; Translate linear octave to cycles per second.
ifrequency = cpsoct (ioctave)
; Translate MIDI velocity to decibels full scale.
idb = ivelocity / 127 * 84
; Translate decibels to output amplitude.
iamplitude = ampdb (idb)

; Generate a band-limited sawtooth wave.

24

3.2. How Csound Works

aout vco2 iamplitude, ifrequency
; Send the output to both channels

outs aout, aout

endin

</CsInstruments >
<CsScore>

i 115 60 100
</CsScore>
</CsoundSynthesizer >

A .csd file is a kind of XML file, containing sections marked off by tags. The
<CsOptions> tag contains command-line options, the <CsInstruments> tag contains
the Csound orchestra, which in turns contains a header and one or more instrument
definition blocks, and the <CsScore> tag contains zero or more f statements (for
generating function tables) and i statements (for sending notes to instruments).
Any line beginning with a semicolon is a comment and is not interpreted.

In order to make instrument definitions easier to read, many people follow the
convention of writing each opcode line in 3 widely and evenly spaced columns, with
the output variables flush left, the opcode itself in the middle (remember that = is
an opcode), and the input parameters on the right. I also think it is easier to read
if comments go above lines, not at the right of lines.

3.2.2. Performance Loop

When Csound reads the .csd file, this is what happens:

1. Csound loads any plugins in the OPCODEDIR (for 32 bit sample Csound) or
OPCODEDIR64 (for 64 bit sample Csound) directory.

2. Csound reads its input files. If the input is a .csd file, Csound creates a
temporary orchestra (.orc) file from the <CsInstruments> tag of the .csd
file, and a temporary score (.sco) file from the <CsScore> tag of the .csd file.

3. Csound parses its command-line options, which can come from various sources
(in order of increasing precedence):
a) Csound’s internal defaults.

b) A .csoundrc file in the user’s home directory, or the directory specified
by the CSOUNDRC environment variable.

¢) A .csoundrc file in the current directory.
d) The <CsOptions> tag in the .csd file.

e) The command line.

4. Csound loads and enables any plugin modules required for audio or MIDI input
or output.

5. Csound reads the orchestra file, and sets the sample frame rate, kperiod size,
and number of audio output channels from the sr, ksmps, and nchnls state-
ments, respectively, in the orchestra header.

25

3. Writing Orchestras and Scores

6. Csound parses the instr blocks in the orchestra file, and compiles each instr
block into an instrument template, which contains storage for input fields, and
two linked lists of opcode templates. One list is for initializing an instrument
instance, and the other list is for operating the instance.

7. Csound reads the score file, translates tempo statements, score sections, macros,
continuation and increment operators, and so on, and sorts the results to pro-
duce a sorted, time-warped, compiled score file.

8. Csound actually performs the compiled score with the compiled instrument
templates:

a) Csound runs down the initialization list for any global instruments or op-
codes, and calls each opcode’s initialization function (e.g., to load Sound-
Fonts).

b) Csound checks to see if any real-time events or score events are pending,
or if performance has finished. If £ statements are pending, Csound goes
to step 8c. If i statements are pending, Csound goes to step 8d. If
performance is finished, Csound goes to step 8f.

¢) Csound allocates memory for any pending f statements, and initializes
the function table; this can involve computing a mathematical curve, or
loading a soundfile or a table of data from the disk.

d) Csound looks for an inactive instrument instance for each pending i state-
ment. If an inactive instance is found, Csound activates it. If there is
no inactive instance, Csound creates a new instance by copying the in-
strument template (and its associated lists of opcode templates). Csound
fills in the instance’s pfields from the i statement. Csound then runs
down the instance’s initialization list, and calls each opcode’s initializa-
tion function.

e) Csound performs one kperiod. Csound runs down the list of instrument
instances. For each active instance, Csound runs down the instances’s
operation list, and calls each opcode’s operation function. Inside the op-
eration function, if there are any a-rate variables, an inner loop must run
for ksmps sample frames to compute each element of the vector. If the cur-
rent time has passed the sum of p2 and p3, or if an instrument has turned
itself off, Csound deactivates the instance. When all the instances have
been run, Csound sends the audio output buffer to the output soundfile
or device. Csound then goes back to step 8b.

f) Csound calls a deinitialization function in each plugin, closes any device
plugins, deallocates instrument instances, and resets itself for another
performance (or exits).

3.3. Writing Your First Piece

Use a text editor to create a .csd file named tutorial2.csd, which should contain
only the empty tags:

26

3.3. Writing Your First Piece

Listing 3.2: Empty .csd File

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
</CsInstruments >
<CsScore>

</CsScore>
</CsoundSynthesizer>

Now fill in the tags one at a time. If you are going to run the piece using
QuteCsound, you do not need to fill in the <CsOptions> tag. It may be a good
idea, however, to put in some reasonable default options:

<CsOptions>
-W -f -R -o tutorial2.wav
</CsOptions>

Create the orchestra header for a sample frame rate of 88200, a control sample
rate of 1, and stereo channels (i.e. for a high-resolution stereo soundfile):

<CsInstruments >
sr

ksmps

nchnls
</CsInstruments >

88200
1
2

Add a global ftgen opcode to generate a global function containing a high-
resolution sine wave. The number of the wavetable is stored in the global gisine
variable. The pfields mean:

1. Function number (0 means automatically generate the number).

2. Time at which the function table will be created (0 means the beginning of
performance).

3. Size of the table. The bigger the table, the less noise in the signal. 65536 is
2 to the 16th power, which produces a low-noise signal; increasing the size by
1 means that interpolating oscillators that require a power of 2 size have one
element past the end of the table to use for interpolation (a guard point).

4. The GEN function used to generate the table; GEN 10 generates a series of
harmonic partials.

5. Further arguments depend on the GEN function. For GEN 10, the single pfield
1 means generate the first partial with amplitude 1, and no other partials —
i.e. a sine wave.

<CsInstruments>

sT = 88200

ksmps = 1

nchnls = 2

gisine ftgen 0o, 0, 65537, 10, 1

</CsInstruments >

27

3. Writing Orchestras and Scores

3.3.1. Simple Sine Wave

Add an empty instrument definition for instrument number 1. Instrument definitions
begin with the keyword instr and the instrument number, and end with the keyword
endin.

<CsInstruments >

sT = 88200

ksmps = 1

nchnls = 2

gisine ftgen 0, 0, 65537, 10, 1
instr 1
endin

</CsInstruments>

In the instrument definition, create i-rate variables to receive MIDI key number
and velocity number from pfields 4 and 5:

instr 1
ikey = p4
ivelocity = PS5

endin

Translate the MIDI key number in semitones with middle C = 60 to linear octaves
with middle C = 8, and translate the MIDI velocity number to range from 0 to 84
(roughly the dynamic range in decibels of a compact disc):

instr 1

ikey = p4

ivelocity = PS5

ioctave = ikey / 12 + 3

idb = ivelocity / 127 #* 84
endin

Translate the octave and decibels to Csound’s native units, which are cycles per
second and amplitude:

instr 1
ikey = p4
ivelocity = p5
ioctave = ikey / 12 + 3
idb = ivelocity / 127 % 84
ifrequency = cpsoct (ioctave)
iamplitude = ampdb (idb)

endin

Add a signal generator, in this case a precision wavetable oscillator for producing
a sine wave from our global table:

instr 1
ikey = p4
ivelocity = p5
ioctave = ikey / 12 + 3
idb = ivelocity / 127 x 84
ifrequency = cpsoct(ioctave)
iamplitude = ampdb (idb)
asignal poscil iamplitude, ifrequency, gisine

endin

Send the signal you have generated to each channel of the stereo output:

instr 1
ikey = p4
ivelocity = p5
ioctave = ikey / 12 + 3
idb = ivelocity / 127 x 84

28

3.3. Writing Your First Piece

ifrequency = cpsoct(ioctave)

iamplitude = ampdb (idb)

asignal poscil iamplitude, ifrequency, gisine
outs asignal, asignal
endin

Your new instrument takes 5 pfields:

1. Instrument number.
2. Time in seconds.

3. Duration in seconds.
4. MIDI key number.

5. MIDI velocity.

Create an i statement to play a middle C note at mezzo-forte on this instrument
at time 1 second for 3 seconds:

<CsScore>
i1 1 3 60 100
</CsScore>

Your piece is now ready to perform (Listing 3.3).

Listing 3.3: Instrument Definition

<CsoundSynthesizer >
<CsOptions>
</CsOptions>
<CsInstruments>

sr = 88200

ksmps = 1

nchnls = 2

gisine ftgen 0o, 0, 65537, 10, 1
instr 1

ikey = p4

ivelocity = p5

ioctave = ikey / 12 + 3

idb = ivelocity / 127 x 84

ifrequency = cpsoct(ioctave)

iamplitude = ampdb (idb)

asignal poscil iamplitude, ifrequency, gisine
outs asignal, asignal
endin

</CsInstruments>
<CsScore>

i11 3 60 100
</CsScore>
</CsoundSynthesizer>

Run QuteCsound. Use the File menu, Open... dialog to open your tutorial2.
csd file. Use the Configure dialog, Run page and type tutorial2.wav in the
Output Filename field. Click on the Render button to render the piece. When
the rendering has completed, click on the Ext. Editor button to hear the piece
(Figure 3.1).

Well, it’s not a very interesting piece! And typing in note statements becomes
extremely tedious, even for a simple piece like Three Blind Mice. Of course, people

29

tutorial2.csd
tutorial2.csd

3. Writing Orchestras and Scores

tutorial2.csd - QuteCsound M [u] B3| * tutorial2 P[]
File Edit Control View Examples Help File Edit Wiew Transport Tracks Generate Effect Ana\yze HE\D
E T Tl Il
= E
ONG[aes0D[pE @ @ B | R[]) s« » of — !
New Open Save ||| Unda Redo cur Copy Paste | Run Stop RunimTem Record Render corfigue ||)))))) p|._.‘ 4,)’J HA20 S w20
toncsd | @ CroundaCosd weoraizesd | 4[] €] [opeoc Helo al el & i(To
CsoundSynthesizer> = The Canonical Csound Reference Manual R :I g
cempraonas A A A ;wa@%ww | o ;a;app 4@;
--midi-key=4 --nidi-velocity=5 5 1 20 25
<#Csiptions> The Canonical Csound Reference : — ~
<CsInstrumentss Xltu\nrm\z1 [10 g
e - 88200 Manual Seeo, o0t |
Kemps B 1 — 325t float
nchnls - 2 Frames Version e B Q 5
g i -
massign L8 Version 5.11 L R |01
I o W
gisine ttgen o, 0, Barey vercoe 10
65537, 10, 1
HIT Midia Lab 10
instr L 05
ikey = » et. al.
ivelocity = 5 .
ioctave - ikey /12 0 ot
+ 3
s _ velosty £ 127 Table of Contents 05
g4 _
ifrequency = epsoct {inctave) widgets
iamplitude = ampdb (i)
asignal poscil
iamplitude, ifrequency, gisine
outs asignal, asignal
endin
instr 2 == B e e
ikey = »
ivelocity = pI
1octave - ikey / 12
+ 35
idb = ivelocity / 127
T8l
itrequency = epsoct (1octave)
{4 e = e {5) =l
Csound Output Console &8 x — —
B 5.000 .. 9.000 T 5.000 1T 9.000 M: 2028.1 2028.1 21 EJeroect Rate ¢z Selection Start: # End ¢ Length Audio Position
new alloe for instr 3: =1 Framoon ‘ i j‘ i
B 9.000 .. 12.000 T 13.000 TT 13.000 M: 2023.5 2023.5 = 7] |sanTer [@ah0oman sy [fonoomoosT |[pohoomons
Line€ | [click and drag to select audio [actualRate: 45000/
Bsat] G5 48 IBOEMNBSCHOIENBDAODZ OIS 2 & dDOM @B | Swas | Emme.. | cond | [Tremec. | (2 00Ok a1 sum
O@0=20000000LPERONEE~0«FAQ | @ teori.. | D rworete | 4 unered .| Do B AQEITTE vondsy

Figure 3.1.: tutorial2.csd

who actually use Csound to make music either write programs to generate scores, or
they use a MIDI sequencer or notation software, or they play live. Here, however,
we will focus only on improving the sound of the instrument.

3.3.2. Simple Sine Wave, De-Clicked

The most obvious problem right now is that the sound begins and ends with an
obnoxious click. This is caused by the sharp discontinuity in the signal when the
note abruptly turns on and abruptly turns off. This can be fixed by adding a
damping envelope to tail off the clicks. In fact, every Csound instrument, with rare
exceptions, should have such a damping envelope. Make a copy of your instrument,
and number it 2, and add a linsegr opcode to tail off the clicks. It is a good idea
to add the attack and release times to p3, just in case you have a very short note.

instr 2
ikey = p4
ivelocity = p5
ioctave = ikey / 12 + 3
idb = ivelocity / 127 * 84
ifrequency = cpsoct(ioctave)
iamplitude = ampdb (idb)
asignal poscil iamplitude, ifrequency, gisine
iattack = 0.0015
irelease = 0.002
isustain = p3
p3 = iattack + isustain + irelease
adamping linsegr 0.0, iattack, 1.0, isustain, 1.0, irelease, 0.0
asignal = asignal * adamping

outs asignal, asignal

endin

30

3.3. Writing Your First Piece

Also add a note to test the new instrument. The ~+4 in pfield 2 means to add
4 to pfield 2 of the previous i statement. We do this to create a second of silence
between each test note. For all subsequent modifications, in the same way, we will
make a copy of the previous instrument and add a new test note to play it.

<CsScore>
i11 360 100
i 2 "+4 3 60 100
</CsScore >
Again, render and listen. The note now starts and ends abruptly but without

clicks, which is what we want. Of course, the sound is still boring.

3.3.3. Simple Sine Wave, De-Clicked, ADSR Envelope

Let’s add a real envelope to give some shape to the sound. Use the mxadsr opcode
to add an attack, decay, sustain, release (ADSR) envelope with exponentially rising
and falling segments (this is musically one of the commonest types of envelope).

instr 3
ikey = p4
ivelocity = pP5
ioctave = ikey / 12 + 3
idb = ivelocity / 127 x 84
ifrequency = cpsoct(ioctave)
iamplitude = ampdb (idb)
ienvattack = 0.004
ienvdecay = 0.5
ienvlevel = 0.25
ienvrelease = 0.05
aenvelope mxadsr ienvattack, ienvdecay, ienvlevel, ienvrelease
asignal poscil iamplitude, ifrequency, gisine
asignal = asignal * aenvelope
iattack = 0.0015
irelease = 0.002
isustain = p3
p3 = iattack + isustain + irelease
adamping linsegr 0.0, iattack, 1.0, isustain, 1.0, irelease, 0.0
asignal = asignal * adamping
outs asignal, asignal
endin

Better, but a sine wave is too plain.

3.3.4. Frequency Modulation, De-Clicked, ADSR Envelope

Add some basic frequency modulation to thicken up the sound. Use another poscil
opcode to modulate the frequency of the signal generating oscillator. This has the
effect of generating additional harmonics in the signal, whose content is controlled
by both the amplitude and the frequency of the modulation.

instr 4
ikey = p4
ivelocity = p5
ioctave = ikey / 12 + 3
idb = ivelocity / 127 * 84
ifrequency = cpsoct(ioctave)
iamplitude = ampdb (idb)
ienvattack = 0.004
ienvdecay = 0.5
ienvlevel = 0.25
ienvrelease = 0.05

31

3. Writing Orchestras and Scores

aenvelope mxadsr ienvattack, ienvdecay, ienvlevel, ienvrelease
amodulator poscil 800.0, ifrequency * 7.00, gisine

asignal poscil iamplitude, ifrequency + amodulator, gisine
asignal = asignal * aenvelope
iattack = 0.0015
irelease = 0.002
isustain = p3
p3 = iattack + isustain + irelease
adamping linsegr 0.0, iattack, 1.0, isustain, 1.0, irelease, 0.0
asignal = asignal * adamping
outs asignal, asignal
endin

The sound is thicker, but it’s not changing much as it sounds. Real musical sounds
tend to vary subtly all the time.

3.3.5. Frequency Modulation, De-Clicked, ADSR Envelope,
Time-Varying Modulation
Take a step in this direction by using the ADSR envelope to modulate not only the

signal amplitude, but also the amount of frequency modulation. The only difference
is to multiply the amodulator variable by the aenvelope variable.

instr 5
ikey p4
ivelocity = PS5
ioctave = ikey / 12 + 3
idb = ivelocity / 127 #* 84
ifrequency = cpsoct (ioctave)

iamplitude

ampdb (idb)

ienvattack = 0.004
ienvdecay = 0.5
ienvlevel = 0.25
ienvrelease = 0.05

aenvelope mxadsr ienvattack, ienvdecay, ienvlevel, ienvrelease
amodulator poscil 800.0, ifrequency * 7.00, gisine
asignal poscil iamplitude, ifrequency + amodulator * aenvelope,
gisine
asignal = asignal * aenvelope
iattack = 0.0015
irelease = 0.002
isustain = p3
p3 iattack + isustain + irelease
adamping linsegr 0.0, iattack, 1.0, isustain, 1.0, irelease, 0.0
asignal = asignal * adamping
outs asignal, asignal
endin

The sound is now almost usable. In fact, in some contexts, it probably is usable.
In general, the more notes are playing, the simpler the actual sounds should be, and
the fewer notes are playing, the more complex the individual notes should be. This
sound would probably be usable in a busy texture. But suppose we are hearing only
a few notes at a time?

3.3.6. Frequency Modulation, De-Clicked, ADSR Envelope,
Time-Varying Modulation, Stereo Phasing

Add some delay lines with modulation of the delay times in opposing phase. This
will create a moving texture that will shift from one side of the sound stage to the
other. Apply the de-clicking envelope to the signal written to the delay line as well.

32

instr
ikey =
ivelocity =
ioctave =
idb =
ifrequency =
iamplitude =
ienvattack =
ienvdecay =
ienvlevel =
ienvrelease =
aenvelope mxadsr
amodulator poscil
asignal poscil

gisine

asignal =
iattack =
irelease =
isustain =
p3
adamping linsegr
krtapmod poscil
kltapmod poscil
adump delayr
adl deltapi
ad2 deltapi

delayw
aleft =
aright =

outs

endin

6

p4

p5

ikey / 12 + 3
ivelocity / 127 * 84
cpsoct(ioctave)
ampdb (idb)
0.004

0.5

0.25

0.05

3.3. Writing Your First Piece

ienvattack, ienvdecay, ienvlevel, ienvrelease

800.0, ifrequency *
iamplitude, ifrequen

asignal * aenvelope
0.0015

0.002

p3

iattack + isustain +
0.0, iattack, 1.0, i
0.002, 1.1, gisine,
0.003, 1, gisine, O.
1.0

0.025 + kltapmod
0.026 + krtapmod
asignal * adamping
asignal + adl
asignal + ad2

7.00, gisine
cy + amodulator * aenvelope,

irelease

sustain, 1.0, irelease, 0.0
0
5

aleft * adamping, aright * adamping

3.3.7. MIDI Performance

You can easily modify your patch in order to play it live with a MIDI controller

(Figure 3.2).

1. Add anmassign 1, 6 statement in the orchestra header, to send MIDI channel
1 to Csound instrument 6.

2. Add a pset statement to instrument 6 to set default values for all 5 of your
pfields, so that instrument instances triggered by live MIDI events will receive
values (otherwise, warning messages about p4 and p5 not being legal for MIDI
will print). Such default values can be useful if you use score pfields to set
sound-generating parameters in your instruments. In this case, they can all be

Zeros.

3. You may wish to delete all i statements from the <CsScore> tag. If you do so,
you must add an £ 0 3600 statement, to tell Csound to render without score
events for 3600 seconds (of course 3600 can be any value).

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>

sr =
ksmps =
nchnls =

massign

88200
1
2
1, 6

33

3. Writing Orchestras and Scores

gisine ftgen 0, 0, 65537, 10, 1
instr 6
pset o, 0, 0, 0, O
ikey = p4
ivelocity = p5
ioctave = ikey / 12 + 3
idb = ivelocity / 127 % 84
ifrequency = cpsoct (ioctave)
iamplitude = ampdb (idb)
ienvattack = 0.004
ienvdecay = 0.5
ienvlevel = 0.25
ienvrelease = 0.05
aenvelope mxadsr ienvattack, ienvdecay, ienvlevel, ienvrelease
amodulator poscil 800.0, ifrequency * 7.00, gisine
asignal poscil iamplitude, ifrequency + amodulator * aenvelope,
gisine
asignal = asignal * aenvelope
iattack = 0.0015
irelease = 0.002
isustain = p3
p3 = iattack + isustain + irelease
adamping linsegr 0.0, iattack, 1.0, isustain, 1.0, irelease, 0.0
krtapmod poscil 0.002, 1.1, gisine, 0
kltapmod poscil 0.003, 1, gisine, 0.5
adump delayr 1.0
ad1 deltapi 0.025 + kltapmod
ad2 deltapi 0.026 + krtapmod
delayw asignal * adamping
aleft = asignal + adl
aright = asignal + ad2
outs aleft * adamping, aright * adamping
endin

</CsInstruments >
<CsScore>
i1 1 3 60 100

i 2 ~+4 3 60 100
i 3 ~+4 3 60 100
i 4 ~+4 3 60 100
i 5 ~+4 3 60 100
i 6 ~+4 3 60 100

</CsScore>
</CsoundSynthesizer >

Click on the Run button, play your MIDI controller, and you should see something
like Figure 3.2.

If you plan to do both off-line rendering and live performance, you may wish to
standardize some aspects of your instrument definitions:

1. Always use the new MIDI routing flags such as --midi-key for MIDI input,
not the older MIDI opcodes such as notnum, or even the more recent MIDI
interoperability opcodes such as midinoteonkey.

2. Always put function table statements in the orchestra header, not in the score;
in other words, use ftgen instead of f statements. If you put function tables
in the score, you won’t be able to just throw out a score to use an orchestra
in live performance.

3. Always specify pitch as MIDI key number.

4. Always specify loudness as MIDI velocity.

34

3.3. Writing Your First Piece

tutorial2.csd - QuteCsound =10l x|

Ouelaesopien. @ e | %

New Open Save Undo Redo Cut Copy Pasts Run Stop RuminTerm Record Rendsr Exk Editor Ext, Player Configurs | widgets | Manual | Console Utilitiss
@ trepped.csd | @ xenaducsd | @ xanaci-highrssoltin.csd | @ Csoundacesd @ tutorialz.sd | X [opcode Hep alL ol 8 x
<CsoundSynthesizer> = The Canonical Csound Reference Manual i’
<CsOptions> A A At
—-miai-key=4 —-uidi-velocityss
</CsOptions> The Canonical Csound Reference
<CsInstruments>
sr = 4800 Manual
ksmps = 1 =
nchnls = 2 Frames Version
massign Lo Version 5.11
gisine ftgen 0, 0, 65537, 10, 1 Barry Yercoe
instr 1 MIT Media Lab
ikey = »l
ivelocity = »s et. al. -
ioctawe = ikey /12 + 3 _I
idn = ivelocity / 127 * 84 Widaets B x
ifrequency = cpsoct [ioctave)
iamplitude = ampdb {idb)
asignal poscil iamplitude, ifrequency, gisine
outs asignal, asignal
endin
instr 2 { ey e e B e
ikey = »
ivelocity =)
ioctave = ikey / 12 + 3
idb = ivelocity / 127 % 84
ifrequency = epsoct [ioctave) =
Csound Output Console 8 x
widiKey: pfield: 4 walue: &7 L‘
widiVelocity: pfield: 5 walue: 45
rtevent: T 5.433 TT 5.433 M: 12096.0 12096.0
rtevent: T 5.573 TT 5.573 M: 2038.7 2047.4
widiKey: pfield: 4 wvalue: 67
widiVelocity: pfield: 5 walue: 127
rtevent: T &.812 TT &5.812 M: 25976.6 23047.2
E 5.000 .. 9.000 T 9.000 TT 9.000 M: B550.6 13990.3
new alloc for instr 3: j
nel
st G ORAEE AN GCANP2IBET DY MHOB O EC G T W | [Trekicenter L. | & wncs - Dita. | @tutoriscsd -5 | [£ @AY RZBO @B o
AR B WP B ORI) ceound conse .. [[] Csound 5 ‘o 1 ZBUDPMTEIR Tuesdey

Figure 3.2.: Playing tutorial2.csd Live

5. In fact, always use the same set of standard pfields in all your instruments —
you may add additional pfields to set sound generating parameters that are
specific to an instrument.

6. Always use a pset statement to give a default value to each pfield, even if it
is 0.

7. Always use a releasing envelope generator so that notes will end gracefully
during live performance. The names of all the releasing envelope opcodes end
with r.

8. Worry about sound quality first, and efficiency second. If your computer is
having trouble keeping up, you can take a good sounding orchestra and figure
out where to substitute more efficient opcodes (oscil for poscil, for example)
much more easily than you can make an orchestra written for efficiency sound
good.

This chapter is only a superficial introduction to a very deep topic — some excel-
lent books have been written on it |1, 5, 6].

35

4. Using CsoundVST

CsoundVST is an extended version of Csound that provides the ability to run as a
VST instrument (VSTi) or effect plugin in hosts such as Cubase [13]. One reason
for doing this is to write pieces for Csound in standard music notation. Another
reason is that Csound instruments can easily sound better than most other VSTis,
although some Csound orchestras use a lot of CPU time. This chapter shows how
to use Csound as a programmable VSTi in Cubase SX 3. Other audio sequencers
should follow similar procedures.

4.1. Configuring CsoundVST

The following assumes that you have installed Csound from a version of the Windows
installers that includes CsoundVST (the current version on SourceForge does not).

To configure Cubase for Csound VST, run Cubase. Use the Devices menu, Plugin
information dialog, VST Plug-ins tab. In the Shared VST Plug-ins folders
field type the path to CsoundVST.d11, again ;C:\Csound\bin. Then click on the
Add button to append the CsoundVST path to the existing Cubase plugin path
(Figure 4.1).

Verify that CsoundVST is now available as follows. Quit Cubase and start it
again, and use the Devices menu, VST Instruments dialog to select CsoundVST
as a VSTi. After a brief delay for loading, you should see something like Figure 4.2.

If you don’t see this, see Footnote 5 about environment variables. Look for a
variable named PYTHONPATH. If it exists, append ;C:\Csound\bin to its value. If
does not exist, create it with the value ;C:\Csound\bin. Then try again.

4.2. Using CsoundVST

In order to use CsoundVST:

1. Begin a Cubase song, and create a MIDI track in it.
2. Create an instance of CsoundVST.

3. Load a Csound orchestra in CsoundVST.

4. Configure the orchestra for VST input and output.
5. Compile the orchestra.

6. Select CsoundVSt as an output for the MIDI track.

37

;C:\ Csound\ bin
;C:\ Csound\ bin
;C:\ Csound\ bin

4. Using CsoundVST

L=

File Edit Project Audio MIDI Scores Pool Transport Dewvices Window Help

© Plug-in Information

VST Plugins | Diect<Plgin | MIDIPlgins |

Shared WST Plug-ins Folders

D witahio i | Change.. Femaove

Update List | Ex=part List | W Show used only

4| In | Hame Mb I/C| Categary “Yendor WET Ve | Delay[:| U| MbPs

~

- |DoubleDelay 212 Effect Houpert Digit 22 0w
- [ModDelay | 272 Effect |Houpert Digtd 22 | 0|
|

[»

Figure 4.1.: CsoundVST Plugin Path

38

4.2. Using CsoundVST

=

Fie Edit Project Audio MIDI Scores Pool Transport Devices Window Help

Hew |_Iersiun| Open.. |I_mporl.. Save ‘Savegs Eerfurm| Stop

Settings | Orchestra ‘ Score | Ahout|

|VST M instrument [Effect Edit soundfiles with
|d: futah/fopt fandacitySaudacity

|MDde [Classic [Python | [auto edit after performance

Classic Cgound command ling
csound temp.orc temp.sco

INT.

Figure 4.2.: CsoundVST Loaded

39

4. Using CsoundVST

7. Assign your track’s MIDI channel to a Csound instrument number in your
orchestra (in fact, you can create any number of tracks assigned to CsoundVST,
and you can also create multiple instances of CsoundVST).

8. Enter some music — by playing notes in from a MIDI controller, by importing
a MIDI file, by using the piano roll editor, or by writing music notation.

Alternatively, with Cubase 4 and later, you can create an Instrument track, which
combines the VST instrument and the MIDI track into one track; the Csound or-
chestra would be loaded and configured in the same way as above.

These steps can be carried out as follows.

4.2.1. Create a Cubase Song

Run Cubase, and use the File menu, New item to create a new empty project
(Figure 4.3).

© Cubase 5%
File Edt Project Audio MIDI Scores Pool Transport Devices Window Help

E mpy

16 Track MID Sequencer

24 Track (Mono Inpus) Audio Sequencer
default

MID! & Ao Play Order Sequencer
Music (5.1 Suround) For Movie

Steren Masteiing For Audia CD

A< »pllojo]>]e]

1AV CAND2IBET T OHOEOEOS T M |@eren | [rewceter [| Avmwes | (a5 0B 2=2 el ooum
LY AC RO 2 Dueahiopticsa.., [+ Cubase sx W utied-pare | [1 s @ SBEITTE onday

Figure 4.3.: Creating a New Project

Use the Project menu to add a new MIDI Track to your song (Figure 4.4).

4.2.2. Create an Instance of CsoundVST

Use the Devices menu, VST Instruments dialog to create a new instance of
CsoundVST. Right-click the mouse on an empty field to bring up a context menu
listing available VSTis, and select CsoundVST. You should now see the Csound-
VST GUI in Cubase (Figure 4.5). Make sure that the Instrument checkbox is
enabled; if not, enable it, then click on the Apply button to save your preference.

40

4.2. Using CsoundVST

©Cubase 5X

File Edt Project Audio MIDI Scores Pool Transport Devices Window (1

) Help
©Cubase SX Project - Untitled1

RETET

-1 o B D

n) =) EN.
8y Rju

Mormal

) start

VIS b | @ oo -

|3 DnfutahioptiCso.

exniccenter - [... | ff] MinGwazi |

| G- cubase sx Y csoundust_new_

WARS YR IFO Bl 1w00sem
M 1 g e @EITT & monday

Figure 4.4.: Creating a New Track

©Cubase 5%

File Edt Project Audio MIDI Scores Pool Transport Devices Window (1

) Help

RETET

Seﬂlngs‘ Orches1ra| Scum‘ nhnu\l

‘VST M instrument [~ Eflect | Edit soundfiles with

d: fucah/ope faudacity/ audacicy
Mode [~ Classic | Python
Classic Cgound command line

czound

[~ Auta edit after perfarmance

temp_orc temp-sco

brk: OFf|pro:

Weat| | @ 00 & 9 2 M IO ROE D VEC ST B | 8 riefo «| [T] tekniccenter - [... |) Mingwszis |) i W RED B\ 1009
20 Nl JEZ 3 Di\utshiopt|Coo... [(= Cubase 5x Y csoundvst_new_..| [1 w2 SBEINEF monday

Figure 4.5.: Creating a New Instance of CsoundVST

41

4. Using CsoundVST

4.2.3. Load a Csound Orchestra

Click on CsoundVST’s Open button, navigate to C:\Csound\examples directory,
and open the CsoundVST-nomixer-flags.csd file, which contains a prewritten or-
chestra of sample Csound instruments for VST plugin use (Figure 4.6; for some
reason, the Mixer opcodes don’t seem to work in CsoundVST). You can click on the
Orchestra tab to look at or edit the code.

© Cubase sx
Fls Edit Projsct fudio MIDI Srores Pool Tramsport Devices Window (1) Help

'O Cubase S Project - Untitledl

New ‘_Iersiun‘ Open.. ‘I_mpur‘..‘ Saye ‘Savea_s..lljermrml Stop | Edit ‘ Apphy ‘

Settings |;0n:heslra" Score | about |

RN ST 25 WA I A I SR IS AR ok S (2 4
i Copyright (c) 2005 by Michael Bogins.

i 1L rights reserved.

i Thers is ene inpur buss for sach effect,

i and each instrument has a send to each buss

i Mixer levels are set with instr L

? Tumbered instruments range from Z through 100.

; Effects range from 200 up.

i Incorperated instruments can be naued and wrapped
b,

4 instrument definitiens.

ust ksups for bast balance betwesn performance and stability.

= 30

nchnls = z
; Adjust Ddbfs te allow for MIDI velosity as decibels
Odb £ = 1000000

; Wove that -1 dB for float is 23205 >

I DIFEa——] 4

.|

De®% a & &) wincus - 2 Termi.., | [T texocce., | Gmyoow., | [Faw M o@D 1 A Sm 00em
PERALEHOY S [Ce cubase .. % tutoriel p | 1 csouns .. D AE GO BB EN sy

Figure 4.6.: Loading an Orchestra

4.2.4. Configure the Orchestra for VST

Click on CsoundVST’s Settings tab, and configure the orchestra you have loaded
to work inside a VST plugin by typing the following options in the Classic Csound
command line text field.

csound -m3 -f -h -+rtmidi=null -MO --midi-key-oct=4 --midi-velocity=5 -d -n temp.
orc temp.sco

The meanings of each option are as follows. Each setting that is required for VST
performance is indicated.

csound In CsoundVST, the Csound command must be entered just as if you were
executing this command line on the command line.

-m3 Display Csound messages to level 3: amplitude messages and signal out of range
warnings.

-f Output floating-point samples.

42

C:\ Csound \ examples
CsoundVST-nomixer-flags.csd

4.2. Using CsoundVST

-h Do not output a soundfile header (which might sound like a click), since Csound’s
audio output is going straight into Cubase.

-+rtmidi=null Required. Use a “dummy” MIDI driver. CsoundVST’s code inserts
the parts of a MIDI driver into Csound that CsoundVST requires to receive
MIDI from the VST host.

-MO Required. Receive MIDI from port 0 (again, this is a “dummy” that simply
enables Csound to receive MIDI events).

-midi-key-oct=4 Required. Send MIDI note on message key numbers as linear
octaves to pfield 4 of the Csound instruments in the orchestra.

-midi-velocity=5 Required. Send MIDI velocity key numbers to pfield 5 of the
Csound instruments in the orchestra.

-d Required. Display no graphs of wavetables.

-n Required. Do not send any audio output to actual audio devices or soundfiles —
CsoundVST copies audio straight out of the internal buffers of Csound into
the host buffers.

temp.orc Required. CsoundVST stores the Csound orchestra internally in its VST
patch. But to perform the score, Csound must automatically export the or-
chestra using this filename.

temp.sco Required. CsoundVST stores the Csound score internally in its VST
patch. But to perform the score, Csound must automatically export the score
using this filename.

When you have created your options, you must make sure that your edits are
saved with the Cubase File menu, Save command.

4.2.5. Compile the Orchestra

Before you can play an orchestra, it must be compiled. In Cubase, you activate
a VST plugin by clicking on the on/off button (it will light up) that is found on
the upper left hand corner of the VST instrument GUI, or also on the MIDI track
channel settings. You de-activate the plugin by clicking again on the on/off button
(it will go dark). When CsoundVST is activated, it exports its stored orchestra and
score, compiles them, and performs them; they are then ready to receive MIDI input
from Cubase. When CsoundVST is de-activated, it stops performing.

Note: when Cubase loads a song containing CsoundVST, Cubase will automatically
activate CsoundVST. This can cause a delay as the orchestra compiles.

As the orchestra compiles, which normally takes a second or so, Csound will print
informational messages to the message text area at the bottom of the Settings tab.
When the messages stop scrolling, compilation is complete (Figure 4.7).

43

4. Using CsoundVST

© Cubase 5% =15 x|
Fle Edi Project fudo MIDI Scores Pool Iransport Devices Window(1) Help o Caocmivar =

O Cubase 5% Project - Untitled] |
0 D=EER | i oy = | bew |versin | open. | mpor.. | save |saveas.|perorm| st | e | amy |

Settmgsl Orchestra ‘ Su:rel nhum‘

|VST u " Effiect | Editsoundfiles with

T r——

Mode [“Classic [Pwthon | [~ auto editafter performance:

Clagsic Csound command line
csound b —trcwidisnull -MO -d n w3 --midi-key-oct=4 -—-midi-t

foable 113:

foable 1ld:

foable 115:

frable Ll6:

foable 117:

feable 1la:

feable 1ls:

orch new loaded

audio buffered in 128 sample-frame blocks

ENDED CppSeund:
ENDED CppSound: :

&]

T 1| Selv | B | I GIEe— .
st (G ORED IAONLCANPIBET I NRMOBOTO G DM |Sunes . | Mzrem. | [rencce. | Gmpon. | [Zaw a9 b 22 Sm a0em
HPpERRLS DY S [Go cubase . % turorialoef | Y esoundvs. . D axm @10 LW EN sindey

Figure 4.7.: Compiled Orchestra

4.2.6. Track Setup

Before you can actually get any sound out of CsoundVST, you must select it as an
output in your MIDI track. In the Track panel, out field, use the left mouse button
to pop up a list of available outputs. If it has been activated, CsoundVST should be
one of these. Select it.

4.2.7. MIDI Channel Setup

Now, assign your MIDI track’s channel number. The orchestra contains many more
than 16 instruments, but you can assign MIDI channels to instruments numbered
higher than 16 by using the massign statement in the Csound orchestra header.

Create a part in your MIDI track, set up a loop for the part, use the Track
panel’s chn field to assign your track’s MIDI channel to a number between 1 and
16, inclusive.

Start recording, and play some notes on your MIDI controller. If notes begin
appearing in your part, you know your MIDI interface is working. You may hear
nothing at all, or you may hear a loud distorted sound. Use the VST instrument
volume control to adjust the gain, if necessary (Figure 4.8). If you still hear nothing,
check the Csound messages pane, and re-activate Csound if necessary.

If you make any changes to the Csound orchestra, be sure you use the Cubase File
menu, Save command to save your edits. These edits are saved inside the Cubase
song (.cpr) file, not to the Csound orchestra that you originally exported, although
you can re-export the .csd file if you wish.

44

4.2. Using CsoundVST

e

Fle Edi Project Audio MIDI Scores Pool Transport Devices Window (1) Help

O Cubase 5X Project - test2.cpr

“soundvST [

= 3]

BS

Boad®9 g LSS YOO E O VEDG T H | @toreesd-sc.. | & wincs - Diuta... | [T] TexnicCenter -[.. | |0 o8 P @ % 25 1 52 1043m
db@Egasdedy S (e Cubase ¥ @ o SOMSBRERETD B Monday

Figure 4.8.: Channel Setup

4.2.8. Write Some Music

There are of course many ways to write music with CsoundVST in Cubase, or any
other VST-enabled audio sequencer or notation software. You can play in tracks,
write music notation, type in event lists, and so on. Figure 4.9 shows CsoundVST
rendering a Buxtehude fugue that has been imported from a public domain MIDI
file. Note that a single instance of Csound is being used to render all 6 tracks,
each of which may play 1, 2, or more voices. Each track is assigned to a different
MIDI channel, which in turn is assigned to a different instrument number in the
CsoundVST. csd orchestra.

Although in this piece the CPU load (as shown by the leftmost vertical meter on
the transport bar) is light, it is easy to create instruments and effects in Csound that
use a lot of CPU cycles. In such cases, you can use Cubase’s own off-line rendering
facility, or you can render one track at a time by soloing it and freezing it.

45

4. Using CsoundVST

© Cubase SX =8|
File Edit Project Audio MIDI Scores Pool Transport Devices ‘Window (1) Help 1-_Csound¥ysT

O Cubase 5% Project - tutorial3.cpr

Settmusl Orchestra ‘ Scurel nhuut‘

|vm] ["Effect | Edit soundfiles with
[a: rutamsopt raudacioy/ andacity
Mods [MClassic ["Python |1 auto edit after perfarmance

Classic Csound command line
csound b —trowidienull Mo —-midi-key-oco=4 —-midi-y

Insert] (o] il
[Joar Handes [Jmagen totes [t

rhevent:

Nctep

T/

&y wincys - Dfut... |) 2 Terminal pr.. | AN S T RE D w0ern
3 mypouuments (e cubase 5% (4w @D B WM EM sundey

Bsean| FIOHOEO O T ®

Figure 4.9.: Scoring with Csound

46

5. Python Scripting

There may be thousands or even hundreds of thousands of notes in a single piece of
music. Consequently, most musicians do not compose pieces for Csound by typing
in one note at a time.

The commonest way of writing Csound scores is to write programs to generate
scores. This is called generative music or algorithmic composition. This, again, is a
very deep subject |14, 15, 16, 17].

Of course, if you are the kind of a composer who hears music in his or her head and
you just need to get the notes you hear into Csound, you can use Sibelius, export a
MIDI file, and have Csound perform your MIDI file using the --midifile option:

csound --midi-key=4 --midi-velocity=b --midifile mypiece.mid -RWZfo myrendering.wav

On the other hand, if you are such a composer and you have some facility with
programming, it is probably just as easy to write snippets of code to generate runs,
chord progressions, minimalist-style cells, and so on. In other words, a programming
language is just another form of music notation. For some purposes, code is a better
form of notation. More significantly, composing by programming opens up vast new
musical possibilities:

e You can compose things that transcend the limits of your imagination.

If you have composed something that transcends the limits of your imagination
but you don’t like it, you can change the code until you do like it — sometimes.

With recursive or fractal algorithms, a single change in the code can have
global effects on the piece, at every level of structure at the same time.

e You can compose things that are too tedious to notate by hand, or too precise
for performers to play.

In my view, this is the outstanding reason to use Csound — it is an ideal orchestra
for algorithmic composition.

Score generators have been written in many languages. But some languages can
operate Csound directly. At the time of writing, these include C [3], C++ [18], Java
[19], Lisp [20], Lua [21], and Python [22|. This chapter is about using Python.

Python is an open source, dynamic, high-level, object-oriented programming lan-
guage with some features of functional programming. Python is widely used, and
there is a huge number of libraries available for it, including libraries for scientific
computing that turn out to be very useful for computer music. Of all the languages
I have used, both in my career as a programmer and in my career as an algorithmic
composer, Python has been by far the easiest and most productive language to learn
and to use.

47

5. Python Scripting

The remainder of this chapter assumes that you have at least some experience
with Python. If not, running through the Python tutorial at the beginning of the
Python manual should be enough to get you started [23].

Csound comes with not just one but two Python interfaces:

csnd This is a Python interface to the complete Csound API, also including facilities
for loading Csound .csd, .orc, and .sco files, and for building up .sco files
in memory one statement at a time — very useful for score generation.

CsoundAC Includes everything in csnd, plus my Silence system [24] for algorithmic
composition based on music graphs, which represent scores as hierarchical
structures in somewhat the same way that a ray tracer represents a visual
image as a hierarchical scene graph.

This tutorial uses csnd. First we use it simply to run an existing piece — the
tutorial?2.csd piece from Chapter 3. Then we use Python to generate a piece using
a Koch curve, in which each segment of a curve is replaced by a generator curve [25].
We use an existing Csound orchestra to render the piece we have generated. Finally,
we experiment with changing the parameters of the compositional algorithm.

5.1. Running Csound from Python
1. Run Idle, the Python editor that comes with Python.
2. Create a Python file, tutorial4.py.

3. Import csnd. To verify that the import succeeded, print a directory of the
csnd module, which should list all the API functions and constants in the
module.

4. Create an instance of csnd.CppCsound, which is the Python interface to the
high-level Csound C++ class that has facilities for managing Csound files, as
well as the rest of the standard Csound API.

5. Enable Python to print Csound messages by calling csound . setPythonMessageCallback().
6. Load the tutorial2.csd piece.

7. Set the Csound command-line options. Note that the command must be com-
pletely spelled out, as if you were entering it on the command line, including
csound and the names of the .orc and .sco files.

8. Print out the loaded and modified .csd file by calling print csound.getText ().

9. Render the piece by calling csound.perform(). You should see the Csound
messages printing out in the Idle Python Shell window.

This is illustrated in Listing 5.1 and Figure 5.1.

48

5.2. Generating a Score

Listing 5.1: Running Csound with Python

Import the Csound API extension module.
import csnd

Print a directory of its attributes

(variables, functions, and classes)

to verify that it was properly imported.
print dir(csnd)

Create an instance of Csound.

csound = csnd.CppSound ()

Enable Csound to print console messages
to the Python console.

csound.setPythonMessageCallback ()

Load the tutorial2 piece created earlier.
csound.load(’tutorial2.csd’)

Set the Csound command for off-line rendering.

csound.setCommand (’csound -RWfo tutorial4.py.wav temp.orc temp.sco’)
Print the complete .csd file.

print csound.getCSD ()

Export the .orc and .sco file for performance.

csound . exportForPerformance ()

Actually run the performance.

csound .perform()

5.2. Generating a Score

In Csound, a score is basically a list of i statements, each with its own list of pfields.
This tutorial has always used the same layout of pfields. This has advantages for
algorithmic composition. It makes it easy to build up scores algorithmically.

A sample piece is shown in Listing 5.2. To understand what is happening, read
the comments in the code.

Some of the important points are as follows. The score generator is written as
a Python class, and an instance of Csound is created as a class member. After
generating the score, the code appends an e (end) statement to the score, which turns
off the reverb instrument and other effects that are running on the CsoundVST.csd
orchestra’s mixer buss with indefinite durations. The code tests to see if it is running
as __main__, in which case a score is generated (as in this case), or whether it is
running because it was imported by another module, in which case no score is
generated. The other module can then initialize the generator, derive other classes
from it, and otherwise use tutorial5.py as a class library.

Listing 5.2: Koch Curve Score Generator

import csnd

49

5. Python Scripting

SIS . python Shell =lolx]
Fle Edt Forms Run Options Windows Help Fle Edt Shel Debug Options Wdows Help
csnd |15 1ines reaa |
air fesnd) inser 1
coound = cend. CppSound () ingtr 2
csound. load (' tucorial?.csd') inscr 3
csound. setCommand (' csound ~RVfo test.wav temp.orc temp.sco' | instr 4
sound. getCsD () inscr S
coound. exportForPer formance () inscr 6
csound. setPythontessageCal lback) Elapsed time at end of orchestra compile: real: 0.051s, CPU: 0.047s
csound. perform () sorting score ...
. done

Elapsed time at end of score sort: real: 0.068s, CPU: 0.063s
Csound wersion 5.03.0 beta (double samples) Jul 31 2006
aisplays suppressed

PSET: isno=s, pmax=s

..0.000000. .. .0.000000. . ..0.000000. . ..0.000000. . . .0.000000. .
OABFS level = 32768.0

chnl 1 weing instr 6

frable 101:

orch now loaded

audio buffered in 128 sample-frame hlosks

writing 1024-byte hlks of LlOAts to Lest.vay (WAW)

SECTION 1:
ENDED CppSound: :compile.

B 0.000 .. 1.000 T 1.000 TT 1.000 H: 0.0 0.0
new alloc for instr i:

B 1.000 .. 5.000 T 5.000 TT 5.000 M: 2028.1 2028.1
new alloc for instr 2:

E 5.000 .. S9.000 T 9.000 TT 5.000 H: 2028.1 2028.1

new alloc for inscr 3:
B 9.000 .. 13.000 T 13.000 TT 13.000 M: 2023.7 2023.7

nev alloc £or instr 4:

B 13.000 .. 17.000 T 17.000 TT 17.000 M: 2025.1 2025.1

new alloc for instr 5:

B 17.000 .. 21.000 T 21.000 TT 21.000 M: 2024.9 2024.9

new alloc for instr 6:

nxtopds = 01019338 opdslim = 0101kZDS

B 21.000 .. 24.000 T 24.003 TT 24.003 M: 3349.8 3878.3

B 24.000 .. 24.054 T 24.054 TT 24.054 H: 294.0 §75.3

Score finished in csoundPerformKsmps ().

inactive allocs returned to freespace

end of score. overall amwps: 3349.8 3878.3

0 errors in performance

Elapsed time at end of performance: real: 1.406s, CPU: 1.407s

16575 1024-byte soundblis of floats written to test.uvav [VAV)
Removing temperary file C:)DOCUME~1\Michael)LOCALS~1YTemp\csZ.srt ...
Elapsed time = 1.658000 seconds.

ENDED CppSound: :perform.

3> _
L 11[Cak 0 Lri 231 [Cal 4
distart| | (3 X CEH@E O VED ST | S wnes-Diuta... | [T] tesniccenter - L... |[@2 Firefox . RO 2FZ L@@ 1029em
o U e £ 12, coldfrapp- ... | o Adsbsreader | Bllzpvtone | e 1 s @2 @l # Tuesday

H O H W

Figure 5.1.: Running Csound with Python in Idle

Class to represent transforming a note

by modifying an implicit initial note,

creating a duration, adding or subtracting pitch,
adding or subtracting loudness.

class Transform(object):

def __init__(self, duration, deltaKey, deltaVelocity):
self .duration = duration
self.deltaKey = deltaKey
self.deltaVelocity = deltaVelocity
self.normalizedDuration = 1.0

Class for generating a piece using a long initial note
and a set of transforms, recursively layering atop generated notes.

class Generator (object):

50

def __init__(self):
Create an instance of CppSound for rendering.
self.csound = csnd.CppSound()
self.csound.setPythonMessageCallback ()
self.csound.load(’../examples/CsoundVST.csd’)
To contain a list of transforms.
self .transforms = []
Assign instruments to levels (level:instrument)
self .arrangement = {0:12, 1:4, 2:21, 3:7, 4:37}
Assign gains to levels (level:gain)
self .gains = {0:1.5, 1:1.25, 2:1, 3:1, 4:1}
Assign pans to levels (level:pan)
self .pans = {0:0, 1:-.75, 2:.75, 3:-.5, 4:.5, 5:-.25, 6:.25%}
def addTransform(self, deltaTime, deltaKey, deltaVelocity):
self .transforms.append (Transform(deltaTime, deltaKey, deltaVelocity
))
self .normalize ()
def normalize (self):
sum = 0.0
for transform in self.transforms:

H o H

5.2. Generating a Score

sum = sum + transform.duration
for transform in self.transforms:
transform.normalizedDuration = transform.duration / sum

Generate a score in the form of a Koch curve.

Each note in a generating motive

will get a smaller copy of the motive nested atop it,

and so on.

def generate(self, level, levels, initialTime, totalDuration, initialKey,
initialVelocity) :

If the bottom level has already been reached,
return without further recursion.
if level >= levels:

return
time = initialTime
key = initialKey
velocity = initialVelocity
for transform in self.transforms:
instrument = self.arrangement[level]
duration = totalDuration * transform.normalizedDuration
key = key + transform.deltaKey
velocity = velocity + (transform.deltaVelocity * self.gains
[levell)
phase = 0

pan = self.pans[levell

print "%2d: %2d %9.3f %9.3f %9.3f %9.3f %9.3f %9.3f" % (
level, instrument, time, duration, key, velocity, phase
, pan)

self.csound.addNote (instrument , time, duration, key,
velocity, pan)

Recurse to the next level.

self.generate(level + 1, levels, time, duration, key,
velocity)

time = time + duration

Render the generated score.
def render(self):

Ends indefinitely playing effects on the mixer buss.

self.csound.addScoreline("e 2")

Print the generated score for diagnostic purposes.

print self.csound.getScore ()

High-resolution rendering.

self.csound.setCommand(’csound -R -W -Z -f -r 88200 -k 88200 -o
tutorialb.py.wav temp.orc temp.sco?’)

self .csound.exportForPerformance ()

self.csound.perform()

self .csound.removeScore ()

If running stand-alone, generate a piece;
if imported by another module, do not generate a piece
(enables the Generator class to be used as a library).

if __name__ == ’__main__7:
Create a generator with four notes
in the same interval relationship as B, A, C, H,
i.e. Bb, A, C, B,
i.e. 0, -1, +3, -1,
offset by a tritone.
generator = Generator ()
generator .addTransform (10, 6 + O, 0)
generator.addTransform(8, -1, 3)
generator .addTransform(6, + 3, -2)
generator.addTransform(12, -1, 0)

Generate a 5 minute piece.
generator.generate(0, 3, 0, 300, 38, 84)
generator.render ()

Now run the piece. I find that SciTE [12] actually makes a better environment for

o1

5. Python Scripting

Python programming with Csound than Idle (as long as I don’t have to do source-
level debugging, which SciTE doesn’t support), because if you kill Csound while it is
running from Idle, Csound often keeps running anyway as a zombie process, whereas
if you kill Csound while it is running from SciTE, it really dies and you can start it
again. You can use the Tools menu, Go command to run Python on the currently
edited .py file, and you can use the Tools menu, Stop Executing command to
stop Python. Figure 5.2 shows SciTE running the tutorial5.py piece.

S tutorialS.py - STE [1 of 2] =181

Fle Edt Seach Wew Iook Options Lenguage Buffers Help
DSEAR[&S] s =R X[~[Qa@

1 tutorials py |g:snunnvsmsn |

w iieltine v mow Lowied =
s S - tiered in 126 sample-irame blocks
= velesity o amisialvalecisy uricing Lozaiyes biks of floscs w0 turerials.py.vay (VA7)
53 — for transfo: SECTION 1
o shetrusent = sele. arrangeuens(levell
5 Guration = oralburarion * transfora.normalisedurarion
s ey = ey + vrans form, dsltakey Lo Lo e 4 im + coreEe
o el velocity + (txansiom. deltaVelosicy * self.gainslievell) oTFSase opds
82 Bha OFFEDZC opdslim = OOFFCCCC
= pan = self.pansflevel] or imstr 71
e 120 59.9f 9.8 49,96 4331 33,01 §3.06% @ (leval, nsvrumem, tine, curesion, key, val [T
e o 4. 0ot e (instrumene., tine, dursvion, key, valecicy, pan) s
e e +2 tha nast 2ava1 o
e - (evel = 1, Levels, vine, Guravion, hey, velociord o 1o o 220
c 220 umar 3 p-fisids bu i given ©
e 90T 6.4% T €430 K. fousd.s s478%.2
- or ineur 21
& rtopds - 01014p48 opdsiia - oLoiscEs
- o cas0 L 11604 T 11874 11 11674 m se726.2 121470.
- o 11,574 | 15492 T 15,452 TT 15,40z M. 108101.6 leszel o
& o 5i43z || 23140 T 230148 TT 23145 M. 1241750 2083855
» e a1toc Tor imetr 4

mreopas = 0101484 opdsiin - oLotBels
s md <D T -z < -7 83200 <k $3200 o Tutorialf.py.vay Cemp.ore emp.seo’) e o T L o L i76910.1 2256907
B self und. exportForPer fornanced) B 28.23%2 .. 32.407 T 32.407 TT 32.407 M: 187233.3 134535.6
74 B 32.407 .. 35.454 T 35.494 TT 35.494 M: 308076.2 337335.9
% B 35.494 .. 41.667 T 41.667 TT 41.667 M: 241150.3 234536.¢
7€ B 41.867 .. 45.525 T 45.525 TT 45.525 M: 117228.5 160432.0

B 45.525 .. 48.611 T 48.611 TT 48.611 M: 225413.1 245824.6
B 48.611 .. 50.326 T 50.5z5 TT 50.926 M: l49614.6 160703.1
B £0.92¢ .. SE.556 T E5.555 TT S5.556 M: L68406.5 149016.2

97 # If rwming stam
98 % if imported by
99 # (emablas the G

an B 55.556 .. €3.272 T £9.272 TT £3.272 M: 145178.6 171018.6
8l —if _neme — '_main ' B 83272 .. 69.444 T £3.444 TT 63.444 M: 113707.0 103120.6
a2 B 55,444 . 74.074 T 74.074 TT 74.074 M: 158138.5 1409531
= # Crasta 2 gamerstor with fous notes B 74.074 .. 23.333 T 22.233 TT 23.332 M: 100308.3 117522.9
84 # im the seme interval relastionship as B. A, ¢. H. :;B:;: = D;DJEDDE opdolin - 0101FD7C

&5 #ree BeACE B 53.333 .. 80.477 T 88.477 TT 88.477 M: 91394.5 1247453
e #doe 00 L3 L B 82.477 .. 92.593 T 92.593 TT 92.593 M: 163380.3 190189.4
0 # offsat by a tritoma. B 92.595 .. 95.679 T 95.679 TT 95.5679 M: 299435.2 9198L1.9
& B 35675 ..101.852 TLOL.652 TT101.852 M: 260503.7 24106%.2
9 BL01.852 ..105.367 T105.967 TT105.967 M: 312465.4 311174.6
£ Bl05.967 ..109.259 T105.259 TT10S.259 M: 35733L.6 2904995
a1 BL09.259 ..111.728 T111.728 TT1l1.72% M: 369498.1 292215.6
sz BL11.726 ..116.667 TL16.667 TT116.667 M: 306155.2 0631712
53 = . BL16.667 ..115.753 T115.753 TT115.753 M: 244741.7 252478.5
94 BL19.753 ..122.222 T122.222 T1122.227 M: 229659.5 190422.2
55 # Gomerate & § mimute piece Blez.222 ..124.074 T124.074 TT124.074 M: 272919.7 2578L8.6
% _l|p1z24.074 127775 T127.778 TTL27.776 M: 220746.2 210842.0

o generator.generace(n, 3, 0, 300, 3, 4 _,;l Bl27.778 ..133.351 T133.951 TT133.951 M: 137010.5 l443lo.l
3

line 1, colurn 1 (INS) (LF) - O chrs selected

Bstat| @ R ED IACALCONP P Ban (2 WO E O ED S T M | 2 wnos Dita., | [Texviccenter .. |[@72 Frefox AEIEYRFNDmEE 0eem
HphERaLHEY S &1z cofrapn- ... | o Adebereader | Bllzpvttons o] o 1 &P ADBMITE]E ruestay

Figure 5.2.: Running Csound with Python in SciTE

Note also that you can load a Csound orchestra file (CsoundVST.csd in this case)
into SciTE at the same time as you are editing or running a Python script.

5.3. Varying the Parameters

Once you have rendered this piece, you can experiment with changing the numbers
inside the generators, adding and removing segments from the generators, trying
more layers, and so on.

For example, try just the following changes: change the number of levels from 3
to 4, and change the second transform’s MIDI key movement from -1 to +1. You
will see what two small changes do the overall structure of the piece.

52

A. Extra Features and Their
Requirements

If you wish to use any of these extra features, you should install the other required
software first according to its standard instructions.

ATS opcodes ATS is a library of C and Lisp functions for spectral Analysis, Trans-
formation, and Synthesis of sound based on a sinusoidal plus critical-band noise
model. A modeled sound in ATS can be sculpted using a variety of transfor-
mation functions. The ATS opcodes in Csound use these transformations, but
to use the opcodes, you must install ATS and analyze some sounds [26].

csoundapi” is an external enabling Csound to run inside Pure Data, another SWSS.
To use it, you must install Pure Data [27].

tclesound is a GUI front end for Csound that use the Tcl/Tk scripting environment.
To use tclesound, you must install Tel/Tk [28].

VST hosting opcodes enable Csound to use external VST plugins as opcodes. To
use them, of course, you must acquire them.

Java API To use this, you must install the Java software development kit (SDK)

[19].

Lisp API To use this, you must install the Lisp programming language [20].

Lua API To use this, you do not need to install the Lua programming language —
it comes in the Windows installer as luajit.exe! But, if you do use the Lua
API, you may to install various Lua libraries and helpers that you can find
starting at http://www.lua.org.

Python API to use this, you must install the Python programming language, specif-
ically version 2.4 [22].

93

csoundapi~
luajit.exe
http://www.lua.org

B. Helper Applications

The following is a highly selective subset of the various applications that the Csound
community has found helpful for working with Csound. All are cross-platform and
should work, at a minimum, on both Windows and Linux. All are freely available,
open source applications.

B.1. Audio Editors

You can play Csound files using the media player that comes with your operating
system, but a dedicated audio editor is much more useful. It will enable you to see
your soundfiles, edit out clicks, normalize amplitudes, and more.

B.1.1. Audacity

Audacity [29] is the most powerful freely available, cross-platform audio editor. Get
it.

B.2. Text Editors

You can edit Csound scores and orchestras with a word processor, but you should
find a real programmer’s editor much more useful. Each of the following has add-ons
for working with Csound files.

B.2.1. Emacs

Emacs [30] has been widely used as a programmer’s editor for decades. It has various
Csound environments.

B.2.2. SciTE

Not as powerful as Emacs, more user-friendly than vi. SciTE [12] is the editor that
I most often use with Csound. You can get a Csound syntax coloring package for
SciTE, which can run both Csound and Python from its own shell.

B.3. Composing Environments

A variety of specialized music composition environments have been developed, either
specifically for Csound, or that can work with Csound. These are mainly intended
for art music and algorithmic composition.

95

B. Helper Applications

B.3.1. athenaCL

Christopher Ariza’s athenaCL [31] is a powerful Python-based composing environ-
ment that is designed to work with Csound, and which has incorporated within itself
many facilities from other earlier composition software. It is designed to be used as
an interactive command-line shell, but can also be used as a Python class library.

B.3.2. Blue

Steven Yi’s Blue 32|, written in Java, provides a visual composing environment for
Csound based on time lines. Blue can also run Python scripts.

B.3.3. CsoundAC

CsoundAC, by me, contains a set of classes that implement my idea of music graphs
[24]. Tt is the only composing environment that is distributed with Csound. The
Windows installer for Csound comes with luajit, a runtime interpreter for the
Lua language that has a built-in just-in-time compiler. So, if you want to compose
by writing Lua code, you don’t need to install anything! But if you want to use
CsoundAC from Python, you must install Python before you install Csound. You
can write CsoundAC programs using either a Python development environment, or
from a Python-aware text editor. I use either the default Python IDE (IDLE), or
SciTE, as my main composing environment.

B.3.4. Common Music

Rick Taube’s Common Music [33] is a very powerful Lisp-based programming lan-
guage dedicated to algorithmic composition. It contains facilities for automatically
generating Csound scores.

B.3.5. Pure Data

Miller Puckette’s Pure Data [27] is, itself, a widely used SWSS. However, it is also
used as a composing environment, and it contains a csoundapi”™ external that can
receive events from Pure Data, route them to Csound using the Csound API, and
feed audio or events from Csound back into Pure Data.

B.4. Programming Languages

The following programming languages can use Csound through the Csound API.
Such languages are especially useful for algorithmic composition.

B.4.1. C/C++

C [3] and C++ |18] are still the standard programming languages for “systems pro-
gramming,” i.e. writing the fastest, most complex, and most demanding software.

56

B.4. Programming Languages

Most operating systems are written in C, and most commercial applications are
written in C++ or C. You can use Csound as a “synthesis engine” in your own C
and C-+- applications by using the Csound C or C++ APIs, and linking with the
Csound library.

B.4.2. Java

Java [19] is another widely used language. It is only about a third as efficient as C or
C-++, but it is somewhat easier to program. The Csound API has a Java interface.

B.4.3. Lisp

Lisp [20] is the second-oldest (after FORTRAN) high-level programming language.
It is particularly noteworthy for being the implementation language for Common
Music, an excellent algorithmic composition system that is designed to work with
Csound.

B.4.4. Lua

Lua [21] is a lightweight, interpreted high-level language. As it is relatively new, it
features a good balance of features from earlier languages. On Windows, there is a
just-in-time compiler for Lua that can run Lua programs as fast as compiled Java
code (i.e., about 1/3 as fast as C or C++). The Windows installers for Csound
actually installs not only the Lua interface to the Csound API, but also the Lua
just-in-time compiler itself.

B.4.5. Python

Python [22] is my favorite programming language for working with Csound. I find
it is easier to read and write than other programming languages, and it has very
extensive libraries, e.g. for scientific computing and for computer graphics.
Although Python is an interpreted language and therefore does not run fast,
Python can call into precompiled extensions written in C or other efficient languages.
The Csound API’s Python interfaces are themselves examples of such extensions.

57

C. Audio Quality

Currently, studio recording is done to stereo or surround sound (5.1 or 7.1) on
computers, hard disk recorders, or professional digital audio tape (DAT) recorders
to 24-bit or floating-point samples at a rate of 48,000, 88,200, 96,000 or even 192,000
sample frames per second. This is “high-resolution audio.” At this time, the only
digital consumer electronics formats that can reproduce high-resolution audio are
DVD-A and SACD.

CD-quality audio is of distinctly lower resolution: stereo sound with 16 bit integer
samples at 44,100 samples per second.

High-resolution audio, on good speakers or earphones, sounds airy, present, spa-
cious, and undistorted. CD-quality audio, by contrast, can sound flat, shrill, harsh,
and flat or boxed in. Usually, this is the result of cumulative mistakes made in this
less forgiving medium — CDs actually are precise enough to reproduce most of what
we hear. Therefore, CDs made by experts can sound very good indeed, except for
their more limited dynamic range and less detailed quiet sounds. Normally, it takes
educated ears to hear these differences.

Vinyl records of high quality are not directly comparable to digital recordings.
They have their own virtues and flaws. They are more detailed, airy, and spacious
than CDs, but can have harmonic distortion, rumbling, hiss, and crackling. In gen-
eral, well-made records, especially if pressed from direct metal masters, are roughly
equal to high-resolution audio in aesthetic quality, even if they are not really as
precise.

If you are not used to high-resolution audio, you will need to educate your hearing
before you can achieve it (or even hear it). Develop your ears by listening critically
to outstanding work on flat, deep, high-resolution audio systems, e.g. real studio
monitor speakers or good headphones, at loud but not overwhelming volume in a
quiet, sound-adsorbent environment. Listen to your own work in direct comparison.
Learn to be objective and to set your own feelings aside, and to hear what others
say about your work without becoming defensive.

Listen to live orchestral and chamber music, and big-band jazz, from good ensem-
bles, in good halls, from good seats. This is the gold standard for sound — even the
best, high-resolution audio can’t touch it. Also listen to outstanding recordings of
orchestral, chamber, piano, rock, folk, jazz, New Age, film music (and again, film
music) and of course computer music. For computer music, listen to academic com-
puter music, EA, "dance music", mods and demos, and even chip tunes. Each of
these genres has something valuable to say about audio beauty and music production
quality that is relevant to computer music.

Csound is eminently capable of high-resolution audio. It can render to any number
of channels, at any sampling rate, using floating-point samples. Csound also con-
tains high-quality software implementations of all the effects applied by mastering

29

C. Audio Quality

engineers. Therefore, Csound is as good or better than the best studio gear.

If you have a professional or semi-professional audio interface on your computer,
you can play high-resolution soundfiles made with Csound (although you will not
hear their full dynamic range unless you have professional gear).

Specific technical advice in decreasing order of importance (all this assumes you
don’t care how long it takes to render a piece, only if it sounds good):

10.

60

. Some of the sounds made by Csound have no counterpart in other kinds of

music. They may contain excessive high frequencies, aliasing distortion, or
other kinds of noise. On the other hand, the sounds can be of extreme clarity
and precision — hyper-real. You need to be constantly aware of what your
sounds actually sound like.

Always render to floating-point soundfiles at 88,200 samples per second. You
can translate them to 24 bits or to CD quality later if you want, but having the
extra precision and dynamic range is vital. There is no audible difference in
quality between 88,200 and 96,000 samples per second, but 88,200 can trans-
lated to CD quality by direct downsampling, whereas 96,000 requires fancy
filtering and lots of time.

If you use sampled sounds, use the best samples you can possibly find. Pay if
you must!

Also if you use sampled sounds, beware of their own ambience clashing with
any reverberation or other ambience you set up using Csound. Samples may
also have unwanted noise — it may be possible to de-noise them (Csound has
facilities for doing this t00).

Use a “de-clicking” envelope to wrap all your instrument final output signals.

. Watch out for aliasing, which can make sounds buzzy or harsh, in frequency

modulation and wavetable oscillators. Aliasing happens when the signal con-
tains frequencies above half the sampling rate (the Nyquist frequency), so that
under digital sampling they reflect or fold back under the Nyquist frequency.
For so-called “analog” sounds with simple waveforms such as square or saw-
tooth waves, use non-aliasing opcodes such as vco or vco2. You do not need
to worry about aliasing with plain sine or cosine waves.

For final renderings, always render with ksmps=1.

Use a-rate variables for envelopes and, in general, wherever opcodes permit.
This enables decent results with ksmps=100 or so.

Use only the most precise interpolating oscillators, such as poscil or poscil3.

For wavetable oscillators, the larger the wavetable, the less noisy the signal;
65537 is not too big.

11.

12.

13.

14.

Be vigilant for artifacts and noise introduced by various digital signal process-
ing algorithms, especially echoes in reverberation. Don’t over-use effects — this
is a very common error that you can fix by listening to good examples of studio
and live recording.

Experiment with some modest compression, e.g. by using the compress or dam
opcodes.

Use the 64-bit sample version of Csound.

Do not use the dither (-Z option). There is no need to dither if you are ren-
dering to a floating-point medium. Furthermore, the dither option in Csound
currently does nothing. If you do need to render to a fixed-point (i.e. inte-
ger) medium, such as CD audio, keep your work in high-resolution format as
long as possible. When the piece is completely finished, use a soundfile editor
or a conversion program with a dither effect to convert the soundfile to the
fixed-point format.

61

Bibliography

[1]

2]

3]

4]

[5]

[6]

7]

18]

19]
[10]

[11]

[12]

[13]

[14]

[15]

Barry Vercoe, John ffitch, Istvan Varga, Michael Gogins, et al. Csound. http:
//csound.sourceforge.net. 1

Max Mathews. The Technology of Computer Music. The MIT Press, Cam-
bridge, Massachusetts, 1969. 1

Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Prentiss-Hall, 2 edition, 1988. 1, 47, 56

Richard Boulanger, editor. The Csound Book. The MIT Press, Cambridge,
Massachusetts, 2000. 1, 35

Riccardo Bianchini and Alessandro Cipiriani. Virtual Sound: Sound Synthesis
and Signal Processing — Theory and Practice with Csound. ConTempo, Rome,
1998. English edition (2000), translated by Agostino Di Scipio. 1, 35

Andrew Horner and Lydia Ayers. Cooking with Csound Part 1: Woodwind and
Brass Recipes. A-R Editions, Middletown, Wisconsin, 2002. 1, 35

James McCartney et al. SuperCollider, 2004. http://supercollider.
sourceforge.net. 1

Cycling 74. Max/MSP. http://www.cycling74.com/products/maxmsp.html.
1

Native Instruments. Reaktor 4. http://www.native-instruments.com. 1

Barry Vercoe, John ffitch, et al. The Canonical Csound Reference Manual,
2006. http://www.csounds.com/manual/html/indexframes.html. 1, 10, 11

Michael Gogins. Double Blind Listening Tests of Csound 5 Compiled with
Single-Precision and Double-Precision Samples, 2006. http://ruccas.org/
pub/Gogins/csoundabx.pdf. 3

SciTE: A Free Source Code Editor for Win32 and X, 2006. http://www.
scintilla.org/SciTE.html. 9, 51, 55

Steinberg Media Technologies GmbH. http://www.steinberg.net. 37

Lejaren Hiller and L.M. Isaacson, editors. Fzperimental Music: Composition
with an Electronic Computer. McGraw—Hill, New York, New York, 1959. 47

Tom Johnson. Self-Similar Melodies. Editions 75, Paris, 1996. 47

63

http://csound.sourceforge.net
http://csound.sourceforge.net
http://supercollider.sourceforge.net
http://supercollider.sourceforge.net
http://www.cycling74.com/products/maxmsp.html
http://www.native-instruments.com
http://www.csounds.com/manual/html/indexframes.html
http://ruccas.org/pub/Gogins/csoundabx.pdf
http://ruccas.org/pub/Gogins/csoundabx.pdf
http://www.scintilla.org/SciTE.html
http://www.scintilla.org/SciTE.html
http://www.steinberg.net

Bibliography

[16]

[17]

18]

[19]

[20]
21

[22]

23]

[24]

[25]

[26]

[27]
28]
[29]
30]

[31]
32]
33]

64

David Cope. The Algorithmic Composer. Number 16 in Computer Music and
Digital Audio. A-R Editions, Middleton, Wisconsin, 2000. 47

Heinrich K. Taube. Notes from the Metalevel. http://pinhead.music.uiuc.
edu/~hkt/nm/. 47

Bjarne Stroustrup. The C++ Programming Language, 2006.
http://www.research.att.com/ bs/C—++.html. 47, 56

Sun Developer Network. The Source for Java Developers, 2006. http://java.
sun.com. 47, 53, 57

Association of Lisp Users, 2006. http://www.lisp.org/alu/home. 47, 53, 57

Robert Ierusalemichy, Waldemar Celes, and Luiz Henrique de Figueirido. The
Programming Language Lua, 2006. http://www.lua.org. 47, 57

Guido van Rossum. Python, 2006. http://www.python.org. 47, 53, 57

Guido van Rossum and Jr. (Ed.) Fred L. Drake. Python Tutorial, 2006.
http://docs.python.org/tut/tut.html. 48

Michael Gogins. Music Graphs for Algorithmic Composition and Synthesis with
an Extensible Implementation in Java. In Mary Simoni, editor, Proceedings of
the 1998 International Computer Music Conference, pages 369-376, San Fran-
cisco, California, 1998. International Computer Music Association. 48, 56

Heinz-Otto Peitgen, Hartmut Jiirgens, and Dietmar Saupe. Chaos and fractals:
New frontiers of science. In Chaos and Fractals: New Frontiers of Science,
chapter 5, pages 229-296. Springer-Verlag, 1992. 48

Juan Pampin, Oscar Pablo Di Liscia, Pete Moss, and Alex
Norman. Analysis — transformation — synthesis (ats), 2006.
http://www.dxarts.washington.edu/ats/. 53

Miller Puckette. Pure Data. http://puredata.info. 53, 56
Tel Developer Xchange, 2006. http://www.tcl.tk. 53
Audacity. http://audacity.sourceforge.net. 55

Richard W. Stallman et al. GNU Emacs, 2006. http://www.gnu.org/
software/emacs/. 55

Christopher Ariza. athenaCL. http://www.flexatone.net/athena.html. 56
Steven Yi. blue. http://csounds.com/stevenyi/blue. 56

Rick Taube. Common Music. http://commonmusic.sourceforge.net/doc.
56

http://pinhead.music.uiuc.edu/~hkt/nm/
http://pinhead.music.uiuc.edu/~hkt/nm/
http://java.sun.com
http://java.sun.com
http://www.lisp.org/alu/home
http://www.lua.org
http://www.python.org
http://puredata.info
http://www.tcl.tk
http://audacity.sourceforge.net
http://www.gnu.org/software/emacs/
http://www.gnu.org/software/emacs/
http://www.flexatone.net/athena.html
http://csounds.com/stevenyi/blue
http://commonmusic.sourceforge.net/doc

	Introduction
	Getting Started
	On Windows
	Obtaining Csound
	Installing Csound
	Real-Time MIDI Performance

	On Linux
	On Apple

	Writing Orchestras and Scores
	Signal Flow Graphs
	How Csound Works
	Csound Files
	Performance Loop

	Writing Your First Piece
	Simple Sine Wave
	Simple Sine Wave, De-Clicked
	Simple Sine Wave, De-Clicked, ADSR Envelope
	Frequency Modulation, De-Clicked, ADSR Envelope
	Frequency Modulation, De-Clicked, ADSR Envelope, Time-Varying Modulation
	Frequency Modulation, De-Clicked, ADSR Envelope, Time-Varying Modulation, Stereo Phasing
	MIDI Performance

	Using CsoundVST
	Configuring CsoundVST
	Using CsoundVST
	Create a Cubase Song
	Create an Instance of CsoundVST
	Load a Csound Orchestra
	Configure the Orchestra for VST
	Compile the Orchestra
	Track Setup
	MIDI Channel Setup
	Write Some Music

	Python Scripting
	Running Csound from Python
	Generating a Score
	Varying the Parameters

	Extra Features and Their Requirements
	Helper Applications
	Audio Editors
	Audacity

	Text Editors
	Emacs
	SciTE

	Composing Environments
	athenaCL
	Blue
	CsoundAC
	Common Music
	Pure Data

	Programming Languages
	C/C++
	Java
	Lisp
	Lua
	Python

	Audio Quality

