PREFACE

$SOUND IS ONE OF THE BEST KNOWN AND LONGEST ESTABLISHED PROGRAMS IN THE F
PROGRAMMING *T WAS DEVELOPED INTHE MID S AT THE .ASSACHUSETTS *NSTITUTE
SECHNOLOGY .*5 BY #ARRY 7TERCOE

$SOUND S HISTORY LIES DEEP IN THE ROOTS OF COMPUTER MUSIC *T IS A DIRECT DES
OLDEST COMPUTER PROGRAM FOR SOUND SYNTHESIS .USIC/ BY .AX.ATHEWS $SOUN
AND OPEN 40URCE DISTRIBUTED UNDER THE -(1- LICENCE AND IS TENDED AND EXPANLC
CORE OF DEVELOPERS WITH SUPPORT FROM A WIDER COMMUNITY

$SOUND HAS BEEN GROWING FOR MORE THAN YEARS 5HERE IS RARELY ANYTHING RI
AUDIO YOU CANNOT DO WITH $SOUND :0U CAN WORK BY RENDERING OFFLINE OR IN R
PROCESSING LIVE AUDIO AND SYNTHESIZING SOUND ON THE FLY :0U CAN CONTROL $<
% 04% OR VIA THE $SOUND "1* "PPLICATION 1IROGRAMMING *NTERFACE *N $SOUND
WILL FIND THE WIDEST COLLECTION OF TOOLS FOR SOUND SYNTHESIS AND SOUND MO
INCLUDING SPECIAL FILTERS AND TOOLS FOR SPECTRAL PROCESSING

*S $SOUND DIFFICULT TO LEARN (ENERALLY SPEAKING GRAPHICAL AUDIO PROGRAMM

LIKE 1URE %A OR 3EAKTOR ARE EASIER TO LEARN THAN TEXT CODED AUDIO PROGR
LANGUAGES LIKE $SOUND 4UPER$OLLIDER OR $HUC, :0U CANNOT MAKE A TYPO WHICI
PRODUCES AN ERROR WHICH YOU DO NOT UNDERSTAND :0U PROGRAM WITHOUT BEIN
YOU ARE PROGRAMMING *T FEELS LIKE PATCHING TOGETHER DIFFERENT UNITSINA S
FANTASTIC APPROACH #UT WHEN YOU DEAL WITH MORE COMPLEX PROJECTS A TEXT
PROGRAMMING LANGUAGE IS OFTEN EASIER TO USE AND DEBUG AND MANY PEOPLE P
PROGRAM BY TYPING WORDS AND SENTENCES RATHER THAN BY WIRING SYMBOLS TO(
MOUSE

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

introduction#InsertNoteID_6

SHANKS TO THE WORK OF 7ICTOR -AZZARINI AND %AVIS 1YON IT IS ALSO VERY EASY TC
$SOUND AS A KIND OF AUDIO ENGINE INSIDE 1D OR .AX)AVE A LOO$oIMTO THE CHAPTEF
in Other Application$OR FURTHER INFORMATION

"MONGST TEXT BASED AUDIO PROGRAMMING LANGUAGES $SOUND IS ARGUABLY THE ¢
DO NOT NEED TO KNOW ANY SPECIFIC PROGRAMMING TECHNIQUES OR BE A COMPUTE
5HE BASICS OF THE $SOUND LANGUAGE ARE A STRAIGHTFORWARD TRANSFER OF THE
PARADIGM TO TEXT

'OR EXAMPLE TO CREATE A)Z SINE OSCILLATOR WITH AN AMPLITUDE OF THISIS TF
FLOW

5HIS IS A POSSIBLE TRANSFORMATION OF THE SIGNAL GRAPH INTO $SOUND CODE

instr Sine
aSig oscils 0.2,400,0
out aSig

endin

5HE OSCILLATOR IS REPRESENTED®YISANMBEDHHS INPUT ARGUMENTS ON THE
RIGHT HAND SIDE 5HESE ARE AMPLITUDE FREQUENCY AND PHASE *T PRODUC
AUDIO SIGNAL GAEigEDTHE LEFT SIDE WHICH IS IN TURN THE INPUT OF THE SECOND OP
out SHE FIRST AND LAST LINES ENCASE THESE CONNECTIONS INSIDE AN INSTRUMENT C
SHAT SIT

#UT IT IS OFTEN DIFFICULT TO FIND UP TO DATE RESOURCES THAT SHOW AND EXPLAIN
WITH $SOUND %OCUMENTATION AND TUTORIALS PRODUCED BY DEVELOPERS AND EXI
TEND TO BE SCATTERED ACROSS MANY DIFFERENT LOCATIONS 5HIS WAS ONE OF THE
MOTIVATIONS IN PRODUCING THIS MANUAL TO FACILITATE A FLOW BETWEEN THE KNO\
CONTEMPORARY $SOUND USERS AND THOSE WISHING TO LEARN MORE ABOUT $SOUNI

5EN YEARS AFTER THE MILESTONE OF 3ICHySRDJAMHAGBERSOUND '-044
ANUAL IS INTENDED TO OFFER AN EASY TO UNDERSTAND INTRODUCTION AND TO PRO\

http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=3349

UP TO DATE INFORMATION ABOUT THE MANY FEATURES OF $SOUND NOT AS DETAILED
AS THE $SOUND #OOK BUT INCLUDING NEW INFORMATION AND SHARING THIS KNOWLE
WIDER $SOUND COMMUNITY

SHROUGHOUT THIS MANUAL WE WILL ATTEMPT A DIFFICULT BALANCING ACT WE WANT
USERS WITH MOST OF THE IMPORTANT ASPECTS OF $SOUND BUT WE ALSO WANT TO S
SIMPLE ENOUGH TO KEEP YOU FROM DROWNING UNDER THE MULTITUDE OF WHAT CAN
$SOUND 'REQUENTLY THIS MANUAL WILL LINK TO OTHER MORE DETAILED RESOURCES
SANONICAL $SOUND 3EFERENCEHERBAMARY DOCUMENTATION PROVIDED BY THE
$SOUND DEVELOPERS AND ASSOCIATED COMMUNITY OVERUND YEARBAND THE
EDITED BY 4TEVEN :I AND +AMES)EARON A QUARTERLY ONLINE PUBLICATION WITH M/
$SOUND RELATED ARTICLES

&NJOY AND HAPPY $SOUNDING

MORE COMMONLY KNOWN AS 1DUBEEAAIA '-044 ANUROR FURTHER
INFORMATION

http://csounds.com/manual/html/index
http://www.csounds.com/journal/articleIndex.html
http://en.flossmanuals.net/puredata/
introduction#InsertNoteID_6_marker7

HOW TO USE THIS MANUAL

5HE GOAL OF THIS MANUAL IS TO PROVIDE A READABLE INTRODUCTION TO $SOUND *N
MEANT AS A REPLACEMERANOR CAE$SOUND 3EFERENCH ISNNAENDED AS AN
INTRODUCTION TUTORIAL REFERENCE HYBRID GATHERING THE MOST IMPORTANT INFC
TO WORK WITH $SOUND IN A VARIETY OF SITUATIONS *N MANY PLACES LINKS ARE PRC
RESOURCES SUGH®ESICIAL MATREBSIOUND +OURXAIMPLE COLLECTIONS AND

MORE

*T IS NOT NECESSARY TO READ EACH CHAPTER IN SEQUENCE FEEL FREE TO JUMP TO /
INTERESTS YOU ALTHOUGH BEAR IN MIND THAT OCCASIONALLY A CHAPTER WILL MAKE
PREVIOUS ONE

FYOU ARE NEW TO $SOUND THE 26$, 45"35 CHAPTER WILL BE THE BEST PLACE TO GO
STARTED #"4*$4 PROVIDES A GENERAL INTRODUCTION TO KEY CONCEPTS ABOUT DIGIT
TO UNDERSTANDING HOW $SOUND DEALS WITH AUDIO 5HE $406/% -"/(6"(& CHAPTER

PROVIDES GREATER DETAIL ABOUT HOW $SOUND WORKS AND HOW TO WORK WITH $S(

406/% 4:/5)&4*4 INTRODUCES VARIOUS METHODS OF CREATING SOUND FROM SCRATCH
406/% .0%**$"5*0/ DESCRIBES VARIOUS METHODS OF TRANSFORMING SOUNDS THAT
ALREADY EXIST WITHIN $SOUND 4".1-&4 OUTLINES WAYS IN WHICH TO RECORD AND PL/
SAMPLES IN $SOUND AN AREA THAT MIGHT BE OF PARTICULAR INTEREST TO THOSE INT
$SOUND AS A REAL TIME PERFORMANCE INSTRUMENT 5HE .*%* AND 01&/ 406/%

$0/530- CHAPTERS FOCUS ON DIFFERENT METHODS OF CONTROLLING $SOUND USIN
SOFTWARE OR HARDWARE 5HE FINAL CHAPTERS INTRODUCE VARIOUS FRONT ENDS Tt
INTERFACE WITH THE $SOUND ENGINE AND $SOUND S COMMUNICATION WITH OTHER Al

*F YOU WOULD LIKE TO KNOW MORE ABOUT A TOPIC AND IN PARTICULAR ABOUT THE U:
OPCODE REFER FIRBINCINTEH. $SOUND 3EFERENCE .ANUAL

"LL FILES EXAMPLES AND AUDIO FILES CAN BEWOWNISTAINAD RITORKAL NET

YOU USE $SOUND2T YOU CAN FIND ALL THE EXAMPLES IN $SOUND2T S EXAMPLES MEN
'LOSS .ANUAL &XAMPLES 8HEN LEARNING $SOUND OR ANY OTHER PROGRAMMING LA
YOU MAY BENEFIT FROM TYPING OUT THE EXAMPLES YOURSELF AS IT WILL HELP YOU |
$SOUND S SYNTAX AS WELL AS HOW TO USE THE OPCODES 5HE MORE YOU GET USED*
$SOUND CODE THE MORE PROFICIENT YOU WILL BE AT INTEGRATING NEW TECHNIQUE:!
CONCENTRATION WILL SHIFT FROM THE CODE TO THE IDEA BEHIND THE CODE AND THE
FOR YOU TO DESIGN YOUR OWN INSTRUMENTS AND COMPOSITIONS

-IKE OTHER "UDIO 500LS $SOUND CAN PRODUCE EXTREME DYNAMIC RANGE #E CAREF
YOU RUN THE EXAMPLES 4TART WITH A LOW VOLUME SETTING ON YOUR AMPLIFIER AN
CARE WHEN USING HEADPHONES

http://www.csounds.com/manual/html/index.html
http://www.csounds.com/manual/html/index.html
http://www.csounds.com/journal/articleIndex.html
http://www.csounds.com/manual/html/index.html
http://www.csound-tutorial.net

:OU CAN HELP TO IMPROVE THIS MANUAL EITHER BY REPORTING BUGS OR REQUESTS
AS AWRITER +UST CONTACT ONE OF THE MAINTAINERS SEE THE LIST IN 0/ 5)*4 3&-&"4&

SHANKS TO "LEX)OFMANN THIS MANUAL CAN BE ORDERED AS A PRINT ON DEMAND AT

WWW LULU CEMT USE THE SEARCH UTILITY THERE AND LOOK FOR $SOUND +UST THE
NOT WORK

how-to-use-this-manual/www.lulu.com

ON THIS RELEASE

*T IS WITH GREAT PRIDE THAT WE OFFER THIS THIRD RELEASE OF THE $SOUND 'LOSS .A
AGAIN IT HAS BEEN AN EXCITING YEAR FOR $SOUND AND $SOUND DEVELOPMENT 4INCI
PREVIOUS RELEASE OF THE $SOUND 'LOSS .ANUAL $SOUND HAS TAKEN GREAT STRIDE
FROM $SOUND TO $SOUND AND THANKS TO THE WORK OF 7ICTOR -AZZARINI 4TEVEN
FFITCH AND "NDRaS $ABRERA $SOUND WILL SOON BE ABLE TO OFFER MANY NEW POSS
WHICH $SOUND USERS LONGED FOR FOR MANY YEARS 5HESE INCLUDE

d 5HE USE OF ARRAYS IN A COMMON NOTATION SUCH AS I"RR< > OR K"RR<K*NDX>

d 5HE USE OF MORE THAN ONE STRING IN A SCORE LINE

d -IVE CODING IN THE FORM OF ON THE FLY COMPILATION LOADING UNLOADING ¢
INSTRUMENTS

d 4IGNIFICANT IMPROVEMENTS IN REAL TIME PERFORMANCE AND STABILITY

5HE $SOUND 'LOSS .ANUAL HAS BECOME A COMPANION TO THIS DEVELOPMENT 8E ARE
TO KEEP IT UP TO DATE AND WE ARE VERY HAPPY THAT SO MANY PEOPLE ARE CONTRI
1ARTICULAR THANKS GOES TO "LEXANDRE "BRIOUX WHOSE DILIGENT PROOF READING
ABOUT CONSIDERABLE IMPROVEMENTS AND CONSISTENCY IN THE WHOLE BOOK

What's new in this Release

d /EW CHAPTERS

0 &"33"4 5ARMO +OHANNES +OACHIM)EINTZ

0)A4$"//&% 4:/5)&4*4 $HRISTOPHER 4AUNDERS

0 # $406/% "% "3%6%/0 *AIN .CSURDY

0 # 1:5)0/ */4*%& $406/% "NDRaS $ABRERA +OACHIM)EINTZ

0 $1:5)0/*/ $406/%25 5ARMO +OHANNES +OACHIM)EINTZ

d 3EVISED CHAPTERS

0 "."&$406/% 36/ 6PDATED SECTION ABOUT 8INDOWS INSTALL
+IM "IKIN AND NEW SECTIONS ABOUT $SOUND ON "NDROID AND 104
+ACQUES -APLAT

0 " HAEXXEX0[[0 183'03."/$& 1"44 HAS COMPLETELY
BEEN REWRITTEN +OACHIM)EINTZ

0 ""0%*5*7& 4:/5)&4*4 HAS BEEN EXPANDED *AIN .C$URDY #JfRN
JOUDORF

o # 1"//*("% 41"5*"-*"5*0/ NOW CONTAINS DESCRIPTIONS
ABOUT MULTI CHANNEL AUDIO IN $SOUND IN GENERAL AND 7#'1 AND
"MBISONICS IN PARTICULAR *AIN .C$URDY +OACHIM)EINTZ

0 "$406/%25 NOW CONTAINS A DESCRIPTION OF THE OPTIONS AND CHOICE
IN $SOUND2T S $ONFIGURE 1ANEL 1EIMAN ,HOSRAVI +OACHIM)EINTZ

0 % $"##"(& HAS BEEN UPDATED AND COVERS NOW SOME OF THE EXCITING
NEW DEVELOPMENTS 30RY 8ALSH

0 "5)& $406/% "1* HAS BEEN REVISED AND EXTENDED 'RANCOIS 1INOT

0 5HE 01$0%& (6*%& HAS BEEN UPDATED *AIN .C$URDY

0 5HE .&5)0%4 0' 83*5*/($406/% 4$03&4 NOW CONTAIN A
DESCRIPTION OF 1YSCO +ACOB +OAQUIN

d (ENERAL ADDITIONS AND CHANGES

o 5HE CODE EXAMPLES NOW ALSO CARRY SOME HOPEFULLY MEANINGFUL
IN ADDITION TO THE NUMBERS

o .ANY IMPROVEMENTS TO EXISTING EXAMPLES HAVE BEEN MADE BY *AIN
.C$URDY

SHANKS IN ADVANCE TO "LEX)OFMANN WHO WILL AGAIN MAKE GETTING THIS RELEASE
$SOUND 'LOSS .ANUAL AS A PRINTED BOOK AT LULU COM POSSIBLE

#ERLIN AND)ANNOVER TH "PRIL

*AIN .C$URDY AND +OACHIM)EINTZ

Foreword on the Second Release

8E ARE HAPPY TO ANNOUNCE THE SECOND RELEASE OF THE $SOUND 'LOSS .ANUAL *T
EXCITING YEAR FOR $SOUND WITH MANY ACTIVITIES AND IMPORTANT DEVELOPMENTS
THE LONG AND HARD WORK OF 4TEVEN :I +OHN FFITCH 5ITO -ATINI AND OTHERS A NEV
BEEN WRITTEN 5HIS OPENS UP MANY NEW POSSIBILITIES FOR FUTURE LANGUAGE ADA
MORE FLEXIBILITY WITHIN THE $SOUND SYNTAX *N AUTUMN THESBIRSD INTERNATIOMN
$ONFERENODBK PLACE AT).5.)ANNOVER WITH MANY INSPIRING WORKSHOPS CONCER’
PAPERS AND MOST NOTABLY DISCUSSIONS BETWEEN DEVELOPERS AND USERS *N EAF
"IKIN SCsound PowerWAS PUBLISHED AND IT REPRESENTS A VERY WELL WRITTEN INTROI
TO $SOUND *N EARLY SPRING 7ICTOR -AZZARINI AND 4TEVEN :I PUBLISHED THE FIRST |
$SOUND ON "NDROID DEVICES AND ALL DEVELOPERS ARE CURRENTLY PUSHING TOWA

5HE FIRST EDITION OF THE $SOUND 'LOSS .ANUAL HAS BEEN A HUGE SUCCESS 8E ARE |
GLAD TO SEE IT USED LINKED AND QUOTED IN MANY PLACES *T HAS COME TO BE REG£
COMPLEMENT TO THE $SOUND .ANUAL 8E HOPE WE CAN CONTINUE TO REFLECT $SOUNM

http://www.incontri.hmtm-hannover.de/de/elektronisches-studio/csound-conference/
http://www.incontri.hmtm-hannover.de/de/elektronisches-studio/csound-conference/
http://www.amazon.com/Csound-Power-Jim-Aikin/dp/1435460049

DEVELOPMENT IN THIS MANUAL 5HE CORE WRITERS OF THE $SOUND 'LOSS MANUAL W(
EXTEND THEIR THANKS TO 3ICHARD #OULANGER +OHN $LEMENTS AND OTHERS FOR Tt
TO ALL THE WRITERS FOR THEIR VARIOUS CONTRIBUTIONS 5HANKS ALSO ARE DUE TO!
THE TEAM AT FLOSSMANUALS NET FOR MAINTAINING AND DEVELOPING THIS IMPORTAN
FREE LIBRE OPEN SOURCE SOFTWARE

What's new in this Release

d /EW CHAPTERS
0 ."$304 $SOUND -ANGUAGE
0 $"##"(& $SOUND 'RONTENDS
0 #6*-%*/($406/% "PPENDIX
0 .&5)0%4 0' 83*5*/($406/% 4$03&4 "PPENDIX
d $SHAPTERS NOW COMPLETED
0 8"7&4)"1*/(4AOUND 4YNTHESIS
0 1):4*$"- .0%&--*/(4OUND 4YNTHESIS
o0 $0/70-65*0/ 40UND .ODIFICATION
0 $406/% 7*" 5&3.*/"- $SOUND 'RONTENDS
0 $406/% 65*-*5*&4
d 4IGNIFICANT AMENDMENTS AND ADDITIONS TO THE FOLLOWING CHAPTERS
o". 3. 8"7&4)"1*/(4OUND .ODIFICATION
0 (3"/6-"3 4:/5)&4*4 40UND .ODIFICATION
0 $406/% */ 1% $SOUND IN OTHER "PPLICATIONS
0 -*/,4 "PPENDIX
d /EW CHAPTERS AS DRAFTS
0 $406/% */ "#-&50/ -*7& $SOUND IN OTHER "PPLICATIONS
0 $406/% "4 " 745 1-6(*/ $SOUND IN OTHER "PPLICATIONS
0 1:5)0/ */ $406/%25
0 -6"*/ $406/%
d 4LIGHT CHANGES IN THE STRUCTURE THE 5&3.*/"- 1S NOW CONSIDERED AS A FRC
AND 5)& $406/% "1* CHAPTER IS NOW PART OF THE SECTION $SOUND AND OTHER
1ROGRAMMING -ANGUAGES

Still on the To-Do-List:

d .ORE AND BETTER ILLUSTRATIONS

d "DDING EXAMPLES FOR 7#"1 "MBISONICS ETC IN 1"//*/("/%
41"5*"-*;"5*0/ 40UND .ODIFICATION

d "DDING EXAMPLES AND EXPLANATIONS IN .&5)0%4 0' 83*5*/($406/%
4%$03&4 "PPENDIX

d 6PDATE 01$0%& (6*%& AND MORE EYES ON IT AT ALL

.UCH MORE SHOULD BE WRITTEN IN THE (-044"3:

d &XCEPT THE NEW DRAFTED CHAPTERS 1:5)0/ */4*%& $406/% AND
&95&/%*/($406/% ARE STILL TO WRITE

o

-AST SUMMER "LEX)OFMANN PUT A LOT OF WORK INTO MAKING THIS MANUAL AVAILABL
BOOK QMWW LULU C&aWT USE THE SEARCH UTILITY THERE AND LOOK FOR $SOUND IF
WOULD LIKE TO OBTAIN A PRINTED VERSION 5HIS SECOND RELEASE WILL BE AVAILABLI

4URROUND 8UNDERBAR 4TUDIOS #ERLIN TH .ARCH

+OACHIM)EINTZ *AIN .C$URDY

Foreword on the First Release

*N SPRING A GROUP OF $SOUNDERS DECIDED TO START THIS PROJECT 5HE CHAPTE
SUGGESTED BY +OACHIM)EINTZ WITH SUGGESTIONS AND IMPROVEMENTS PROVIDED E
#OULANGER OEYVIND #RANDTSEGG "NDRaS $ABRERA "LEX)OFMANN +ACOB +OAQUIN
.C$URDY 30RY 8ALSH AND OTHERS 30ORY ALSO POINTED US TO THE '-044 .ANUALS PLA’
AS A POSSIBLE ENVIRONMENT FOR WRITING AND PUBLISHING 4TEFANO #ONETTI 'RAN"
%AVIS 1YON AND 4TEVEN :1 JOINED LATER AND WROTE CHAPTERS

*N A VOLUNTEER PROJECT LIKE THIS IT IS NOT ALWAYS EASY TO SUSTAIN MOMENTUM ¢
OF SOME MEMBERS OF THE TEAM MET IN #ERLIN FOR A BOOK SPRINT TO ACHIEVE A
COMPLETION AND PUBLISH A FIRST RELEASE

8ITH HEADS SPINNING AND SQUARE EYES WE ARE HAPPY AND PROUD TO OFFER THIS M
“T THE SAME TIME WE REALIZE THAT THIS IS A FIRST RELEASE WITH MUCH POTENTIAL F
IMPROVEMENT 4EVERAL CHAPTERS HAVE YET TO BE WRITTEN OTHERS ARE NOT YET C
DIFFERENCES BETWEEN THE VARIOUS AUTHORS IN TERMS OF THE LEVEL AT WHICH TH
DEGREE OF DETAIL ARE PERHAPS LARGER THAN THEY SHOULD BE

on-this-release/www.lulu.com

SHIS IS THEREFORE A BEGINNING &VERYONE IS INVITED TO IMPROVE THIS BOOK :0OU C
WRITE FOR ONE OF THE EMPTY CHAPTERS CONTRIBUTE TO AN EXISTING ONE OR INSEF
WHERE YOU FEEL THEY ARE OF BENEFIT :OU JUST NEED TO CREATE AN ACCOUNT AT
HTTP BOOKI FLOSSMANRRALS NET US KNOW OF YOUR SUGGESTIONS

8E HOPE YOU ENJOY USING THIS MANUAL WE HAD FUN WRITING IT

#ERLIN ST .ARCH

+OACHIM)EINTZ "LEX)OFMANN *AIN .C$URDY

JH AT JOACHIMHEINTZ DE ALEX AT BOOMCLICKS DE I@MCCURDY AT HOTMAIL COM

:OU CAN ORDER A PRINTED VERSION HERE

HTTP WWW LULU COM PRODUCT PAPERBACK CSOUND FLOSS MANUAL

License

"LL CHAPTERS COPYRIGHT OF THE AUTHORS SEE BELOW 6NLESS OTHERWISE STATEL
THIS MANUAL LICENSENWBdhderal Public License version 2

S5HIS DOCUMENTATION IS FREE DOCUMENTATION YOU CAN REDISTRIBUTE IT AND ORM
THE TERMS OF THE (/6 (ENERAL 1UBLIC -ICENSE AS PUBLISHED BY THE 'REE 4OFTWARE
'OUNDATION EITHER VERSION OF THE -ICENSE OR AT YOUR OPTION ANY LATER VERC

5HIS DOCUMENTATION IS DISTRIBUTED IN THE HOPE THAT IT WILL BE USEFUL BUT 8*5)0
8"33"/5: WITHOUT EVEN THE IMPLIED WARRANTY OF .&38$)"/5"#*-*5: OR

5/&44'03 " 1"35$6-"3 163104& 4EE THE (/6 (ENERAL 1UBLIC -ICENSE FOR

MORE DETAILS

:OU SHOULD HAVE RECEIVED A COPY OF THE (/6 (ENERAL 1UBLIC -ICENSE ALONG WITH"
DOCUMENTATION IF NOT WRITE TO THE 'REE 4OFTWARE 'OUNDATION *NC 'RANKLIN
'IFTH 'LOOR #OSTON ." 64"

AUTHORS

/OTE THAT THIS BOOK IS A COLLECTIVE EFFORT SO SOME OF THE CONTRIBUTORS MAY
QUOTED CORRECTLY *F YOU ARE ONE OF THEM PLEASE CONTACT US OR SIMPLY PUT
RIGHT PLACE

INTRODUCTION

PREFACE

+OACHIM)EINTZ "NDRES $ABRERA "LEX)OFMANN *AIN .C$URDY "LEXANDRE "BRIOUX
HOW TO USE THIS MANUAL

+OACHIM)EINTZ "NDRES $ABRERA *AIN .C$URDY "LEXANDRE "BRIOUX

01 BASICS

A. DIGITAL AUDIO
"LEX)OFMANN 30RY 8ALSH *AIN .C3URDY +OACHIM)EINTZ

B. PITCH AND FREQUENCY
30RY 8ALSH *AIN .C$URDY +OACHIM)EINTZ

C. INTENSITIES
+OACHIM)EINTZ

02 QUICK START

A. RUN CSOUND
"LEX)OFMANN +OACHIM)EINTZ "NDRES $ABRERA *AIN .C$URDY +IM "IKIN +ACQUES
-APLAT

B. CSOUND SYNTAX

"LEX)OFMANN +OACHIM)EINTZ "NDRES $ABRERA *AIN .C$URDY
C. CONFIGURING MIDI

"NDRES $ABRERA +OACHIM)EINTZ *AIN .C$URDY

D. LIVE AUDIO

"LEX)OFMANN "NDRES $ABRERA *AIN .C3URDY +OACHIM)EINTZ
E. RENDERING TO FILE

+OACHIM)EINTZ "LEX)OFMANN "NDRES $ABRERA *AIN .C$URDY

03 CSOUND LANGUAGE

A. INITIALIZATION AND PERFORMANCE PASS
+OACHIM)EINTZ

B. LOCAL AND GLOBAL VARIABLES

+OACHIM)EINTZ "NDRES $ABRERA *AIN .C$URDY
C. CONTROL STRUCTURES

+OACHIM)EINTZ

D. FUNCTION TABLES

+OACHIM)EINTZ *AIN .C$URDY

E. ARRAYS

5ARMO +OHANNES +OACHIM)EINTZ

F. TRIGGERING INSTRUMENT EVENTS
+OACHIM)EINTZ *AIN .C$URDY

G. USER DEFINED OPCODES

+OACHIM)EINTZ

H. MACROS

*AIN .C$URDY

04 SOUND SYNTHESIS

A. ADDITIVE SYNTHESIS

"NDRES $ABRERA +OACHIM)EINTZ #JORN)JOUDORF
B. SUBTRACTIVE SYNTHESIS

*AIN .C$URDY

C. AMPLITUDE AND RINGMODULATION
"LEX)OFMAN

D. FREQUENCY MODULATION
"LEX)OFMANN #JORN)OUDORF

E. WAVESHAPING

+OACHIM)EINTZ

F. GRANULAR SYNTHESIS

*AIN .C$URDY

G. PHYSICAL MODELLING
+OACHIM)EINTZ *AIN .C$URDY
H. SCANNED SYNTHESIS
$HRISTOPHER 4AUNDERS

05 SOUND MODIFICATION

A. ENVELOPES

*AIN .C$URDY

B. PANNING AND SPATIALIZATION

*AIN .C3URDY +OACHIM HEINTZ

C. FILTERS

*AIN .C3URDY

D. DELAY AND FEEDBACK

*AIN .C$URDY

E. REVERBERATION

*AIN .C$URDY

F. AM/RM / WAVESHAPING

"LEX)OFMANN +OACHIM)EINTZ

G. GRANULAR SYNTHESIS

*AIN .CSURDY OEYVIND #RANDTSEGG #JORN)OUDORF
H. CONVOLUTION

*AIN .C$URDY

|. FOURIER ANALYSIS / SPECTRAL PROCESSING
+OACHIM)EINTZ

06 SAMPLES

A. RECORD AND PLAY SOUNDFILES

*AIN .C$URDY +OACHIM)EINTZ

B. RECORD AND PLAY BUFFERS

*AIN .C3URDY +OACHIM)EINTZ "NDRES $ABRERA

07 MIDI

A. RECEIVING EVENTS BY MIDIIN

*AIN .C$URDY

B. TRIGGERING INSTRUMENT INSTANCES
+OACHIM)EINTZ *AIN .C$URDY

C. WORKING WITH CONTROLLERS

*AIN .C3URDY

D. READING MIDI FILES

*AIN .C$URDY

E. MIDI OUTPUT

*AIN .C$URDY

08 OTHER COMMUNICATION

A. OPEN SOUND CONTROL
"LEX)OFMANN

B. CSOUND AND ARDUINO
*AIN .C$URDY

09 CSOUND IN OTHER APPLICATIONS

A. CSOUND IN PD

+OACHIM)EINTZ +IM "IKIN

B. CSOUND IN MAXMSP
%AVIS 1YON

C. CSOUND IN ABLETON LIVE
30RY 8ALSH

D. CSOUND AS A VST PLUGIN
30RY 8ALSH

10 CSOUND FRONTENDS

CSOUNDQT

"NDRaS $ABRERA 1EIMAN ,HOSRAVI +OACHIM)EINTZ
WINXOUND

ATEFANO #ONETTI

BLUE

ATEVEN I

CABBAGE

30RY 8ALSH

CSOUND VIA TERMINAL
*AIN .C$URDY

11 CSOUND UTILITIES

CSOUND UTILITIES
*AIN .C3URDY

12 CSOUND AND OTHER PROGRAMMING LANGUAGES

A. THE CSOUND API
'RAN"OIS 1INOT 30RY 8ALSH

B.PYTHON INSIDE CSOUND
"NDRaS $ABRERA +OACHIM)EINTZ

C.PYTHON IN CSOUNDQT
5ARMO +OHANNES +OACHIM)EINTZ

D. LUAIN CSOUND

13 EXTENDING CSOUND

EXTENDING CSOUND

OPCODE GUIDE

OVERVIEW

+OACHIM)EINTZ *AIN .C$URDY
SIGNAL PROCESSING |
+OACHIM)EINTZ *AIN .C$URDY
SIGNAL PROCESSING I
+OACHIM)EINTZ *AIN .C$URDY
DATA

+OACHIM)EINTZ *AIN .C$URDY
REALTIME INTERACTION
+OACHIM)EINTZ *AIN .C$URDY
INSTRUMENT CONTROL
+OACHIM)EINTZ *AIN .C$URDY
MATH, PYTHON/SYSTEM, PLUGINS
+OACHIM)EINTZ *AIN .C$URDY

APPENDIX

GLOSSARY
+OACHIM)EINTZ *AIN .C$URDY

LINKS
+OACHIM)EINTZ 4ATEFANO #ONETTI

BUILDING CSOUND
&RNESTO *LLESCAS .ENNO ,NEVEL +OACHIM)EINTZ

METHODS OF WRITING CSOUND SCORES
*AIN .C3URDY +OACHIM)EINTZ +ACOB +OAQUIN

7 'INAL &DITING 5SEAM IN .ARCH

+OACHIM)EINTZ "LEX)OFMANN *AIN .C$URDY
7 'INAL &DITING 5SEAM IN .ARCH

+OACHIM)EINTZ *AIN .C$URDY

7 'INAL &DITING 5SEAM IN .ARCH

+OACHIM)EINTZ *AIN .C$URDY

'REE MANUALS FOR FREE SOFTWARE

http://www.flossmanuals.net/
http://www.flossmanuals.net/

DIGITAL AUDIO

"T APURELY PHYSICAL LEVEL SOUND IS SIMPLY A MECHANICAL DISTURBANCE OF A ME!
MEDIUM IN QUESTION MAY BE AIR SOLID LIQUID GAS OR A MIXTURE OF SEVERAL OF Tt
DISTURBANCE TO THE MEDIUM CAUSES MOLECULES TO MOVE TO AND FRO IN A SPRING
"S ONE MOLECULE HITS THE NEXT THE DISTURBANCE MOVES THROUGH THE MEDIUM C
TO TRAVEL 5HESE SO CALLED COMPRESSIONS AND RAREFACTIONS IN THE MEDIUM CA
AS SOUND WAVES 5HE SIMPLEST TYPE OF WAVEFORM DESCRIBING WHAT IS REFERRE
HARMONIC MOTION IS A SINE WAVE

&ACH TIME THE WAVEFORM SIGNAL GOES ABOVE THE MOLECULES ARE IN A STATE OF
MEANING THEY ARE PUSHING TOWARDS EACH OTHER &VERY TIME THE WAVEFORM SIC
BELOW THE MOLECULES ARE IN A STATE OF RAREFACTION MEANING THEY ARE PULLIN
EACH OTHER 8HEN A WAVEFORM SHOWS A CLEAR REPEATING PATTERN AS IN THE CA:
SAID TO BE PERIODIC 1ERIODIC SOUNDS GIVE RISE TO THE SENSATION OF PITCH

ELEMENTS OF A SOUND WAVE

1ERIODIC WAVES HAVE FOUR COMMON PARAMETERS AND EACH OF THE FOUR PARAME
THE WAY WE PERCEIVE SOUND

d Period S5HISSTHEENGUH IMETTAKESORWAVEFORGCOMPLEIREYCLE
SHIS AMOUNT OF TIME IS REFERRED TO AS

d Wavelength() THBISTANCEAKEDRWAVECCOMPLEIREULIRERIOBHISS
USUALLY MEASURED IN METERS

d Frequency THNUMBEBFCYCLESPERIOPERSECONREQUENCGMEASURED
IN)ERTZ*FA SOUNBASA FREQUENIEY)Z ITCOMPLETES CYCLEVERY
SECON@VEN A FREQUENONECANEASILEALCULAREPERIOCOFANYSOUND
ATHEMATICATNEMPERIABTHRECIPROOUAHEREQUENMVICEVERSAN
EQUATION FORM THIS IS EXPRESSED AS FOLLOWS

Frequency = 1/Period Period = 1/Frequency

SHEREFOREEREQUEMNTHIENVERSETHPERIOBOAWAVBF)Z FREQUENB®
APERIOCDF OR SECSIKEWISFREQUENEY)Z HARPERICDF OR

SECSOCALCULAHEVAVELENGIASSOUNNANYGIVENMEDIUMVECANUSHHE
FOLLOWING EQUATION

JUMANEANMEARREQUENEREB)Z TO)Z ALTHOUGHE AW IFFERAMATICALLY
FROM INDIVIDUAL TO INDIVIDUAL :0U CAN READ MORE ABQNEXHRE(AENRY IN THE

d Phase:5HIS IS THE STARTING POINT OF A WAVEFORM 5HE STARTING POINT ALON
AXIS OF OUR PLOTTED WAVEFORM IS NOT ALWAYS 5HIS CAN BE EXPRESSED IN
IN RADIANS " COMPLETE CYCLE OF A WAVEFORM WILL COVER DEGREESOR ?
RADIANS

d Amplitude: "MPLITUDISREPRESEBVHBIEY AXIOFAPLOTTERESSWREVE
SHESTREN@TWHICHHEMOLECUIFRR DRPUSIAWAYFROMACKD THBRILL
DETERMINEWFARBOVENIBELOW THENAVELUCTUASHEGREATHIRY
VALUEHESREATEHRAMPLITUDEOURVAVESHEGREATHREOMPRESSIKNND
RAREFACTIONS THE GREATER THE AMPLITUDE

TRANSDUCTION

SHE ANALOGUE SOUND WAVES WE HEAR IN THE WORLD AROUND US NEED TO BE CONV
ELECTRICAL SIGNAL IN ORDER TO BE AMPLIFIED OR SENT TO A SOUNDCARD FOR RECO
OF CONVERTING ACOUSTICAL ENERGY IN THE FORM OF PRESSURE WAVES INTO AN ELE
CARRIED OUT BY A DEVICE KNOWN AS A A TRANSDUCER

"TRANSDUCER WHICH IS USUALLY FOUND IN MICROPHONES PRODUCES A CHANGING |
VOLTAGE THAT MIRRORS THE CHANGING COMPRESSION AND RAREFACTION OF THE AIF
BY THE SOUND WAVE 5HE CONTINUOUS VARIATION OF PRESSURE IS THEREFORE TRAI
CONTINUOUS VARIATION OF VOLTAGE 5HE GREATER THE VARIATION OF PRESSURE TH
VARIATION OF VOLTAGE THAT IS SENT TO THE COMPUTER

*DEALLY THE TRANSDUCTION PROCESS SHOULD BE AS TRANSPARENT AND CLEAN ASF
WHATEVER GOES IN COMES OUT AS A PERFECT VOLTAGE REPRESENTATION *N THE RE
THIS IS NEVER THE CASE /OISE AND DISTORTION ARE ALWAYS INCORPORATED INTO TH

http://en.flossmanuals.net/csound/ch007_b-pitch-and-frequency/

TIME SOUND PASSES THROUGH A TRANSDUCER OR IS TRANSMITTED ELECTRICALLY A C
QUALITY WILL RESULT 8HEN WE TALK OF NOISE WE ARE TALKING SPECIFICALLY ABOU
SIGNAL CAPTURED DURING THE TRANSDUCTION PROCESS 5HIS NORMALLY MANIFESTS
UNWANTED HISS

SAMPLING

SHE ANALOGUE VOLTAGE THAT CORRESPONDS TO AN ACOUSTIC SIGNAL CHANGES COI
AT EACH INSTANT IN TIME IT WILL HAVE A DIFFERENT VALUE *T IS NOT POSSIBLE FOR A
RECEIVE THE VALUE OF THE VOLTAGE FOR EVERY INSTANT BECAUSE OF THE PHYSICAL
BOTH THE COMPUTER AND THE DATA CONVERTERS REMEMBER ALSO THAT THERE ARE
NUMBER OF INSTANCES BETWEEN EVERY TWO INSTANCES

8HAT THE SOUNDCARD CAN DO HOWEVER IS TO MEASURE THE POWER OF THE ANALOG
INTERVALS OF EQUAL DURATION 5HIS IS HOW ALL DIGITAL RECORDING WORKS AND IS |
SAMPLING 5HE RESULT OF THIS SAMPLING PROCESS IS A DISCRETE OR DIGITAL SIGNA
MORE THAN A SEQUENCE OF NUMBERS CORRESPONDING TO THE VOLTAGE AT EACH Sl
TIME

#ELOW LEFT IS A DIAGRAM SHOWING A SINUSOIDAL WAVEFORM 5HE VERTICAL LINES TI
THROUGH THE DIAGRAM REPRESENTS THE POINTS IN TIME WHEN A SNAPSHOT IS TAKE
"FTER THE SAMPLING HAS TAKEN PLACE WE ARE LEFT WITH WHAT IS KNOWN AS A DISCI
CONSISTING OF A COLLECTION OF AUDIO SAMPLES AS ILLUSTRATED IN THE DIAGRAM C
SIDE BELOW *F ONE IS RECORDING USING A TYPICAL AUDIO EDITOR THE INCOMING SAN
STORED IN THE COMPUTER 3". 3ANDOM "CCESS .EMORY *N $SOUND ONE CAN PROCES
INCOMING AUDIO SAMPLES IN REAL TIME AND OUTPUT A NEW STREAM OF SAMPLES OR
TO DISK IN THE FORM OF A SOUND FILE

*T IS IMPORTANT TO REMEMBER THAT EACH SAMPLE REPRESENTS THE AMOUNT OF VO
NEGATIVE THAT WAS PRESENT IN THE SIGNAL AT THE POINT IN TIME THE SAMPLE OR Sl
TAKEN

SHE SAME PRINCIPLE APPLIES TO RECORDING OF LIVE VIDEO " VIDEO CAMERA TAKES A
PICTURES OF SOMETHING IN MOTION FOR EXAMPLE .OST VIDEO CAMERAS WILL TAKE B
AND STILL PICTURES A SECOND &ACH PICTURE IS CALLED A FRAME 8HEN THESE FRA

PLAYED WE NO LONGER PERCEIVE THEM AS INDIVIDUAL PICTURES 8E PERCEIVE THEM
CONTINUOUS MOVING IMAGE

ANALOGUE VERSUS DIGITAL

*N GENERAL ANALOGUE SYSTEMS CAN BE QUITE UNRELIABLE WHEN IT COMES TO NOIS
DISTORTION &ACH TIME SOMETHING IS COPIED OR TRANSMITTED SOME NOISE AND DI
INTRODUCED INTO THE PROCESS *F THIS IS DONE MANY TIMES THE CUMULATIVE EFFE
DETERIORATE A SIGNAL QUITE CONSIDERABLY *T IS BECAUSE OF THIS THE MUSIC INDL
TO DIGITAL TECHNOLOGY WHICH SO FAR OFFERS THE BEST SOLUTION TO THIS PROBLE
ABOVE IN DIGITAL SYSTEMS SOUND IS STORED AS NUMBERS SO A SIGNAL CAN BE EFFI
CLONED .ATHEMATICAL ROUTINES CAN BE APPLIED TO PREVENT ERRORS IN TRANSMI
COULD OTHERWISE INTRODUCE NOISE INTO THE SIGNAL

SAMPLE RATE AND THE SAMPLING THEOREM

SHE SAMPLE RATE DESCRIBES THE NUMBER OF SAMPLES PICTURES SNAPSHOTS TAKE
50 SAMPLE AN AUDIO SIGNAL CORRECTLY IT IS IMPORTANT TO PAY ATTENTION TO THE
THEOREM

"CCORDING TO THIS THEOREM A SOUNDCARD OR ANY OTHER DIGITAL RECORDING DEV
ABLE TO REPRESENT ANY FREQUENCY ABOVE THE SAMPLING RATE)ALF THE SAMPLI
ALSO REFERRED TO AS THE /YQUIST FREQUENCY AFTER THE 4WEDISH PHYSICIST)ARF
FORMALIZED THE THEORY IN THE S 8HAT IT ALL MEANS IS THAT ANY SIGNAL WITH FRI
ABOVE THE /YQUIST FREQUENCY WILL BE MISREPRESENTED 'URTHERMORE IT WILL RE!
FREQUENCY LOWER THAN THE ONE BEING SAMPLED 8HEN THIS HAPPENS IT RESULTS |
KNOWN AS ALIASING OR FOLDOVER

ALIASING

)ERE IS A GRAPHICAL REPRESENTATION OF ALIASING

SHE SINUSOIDAL WAVE FORM IN BLUE IS BEING SAMPLED AT EACH ARROW 5HE LINE TH
RED CIRCLES TOGETHER IS THE CAPTURED WAVEFORM "S YOU CAN SEE THE CAPTURE
THE ORIGINAL WAVEFORM HAVE DIFFERENT FREQUENCIES)ERE IS ANOTHER EXAMPLE

8E CAN SEE THAT IF THE SAMPLE RATE IS THERE IS NO PROBLEM SAMPLING A SIGNA

,)Z ON THE OTHER HAND IN THE SECOND EXAMPLE IT CAN BE SEEN THAT A K)Z WAVEI
IS NOT GOING TO BE CORRECTLY SAMPLED *N FACT WE END UP WITH A WAVEFORM TH,
RATHER THAN K)Z

5HE FOLLOWING $SOUND INSTRUMENT PLAYS A)Z TONE FIRST DIRECTLY AND THEN
THE FREQUENCY IS)Z LOWER THAN THE SAMPLE RATEOF)Z

EXAMPLE 01A01_Aliasing.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;example by Joachim Heintz
Sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

instr 1

asig oscils .2,p4,0
outs asig, asig

endin

</Cslnstruments>
<CsScore>

i10 21000 ;1000 Hz tone

i 13243100 ;43100 Hz tone sounds like 1000 Hz because of aliasing
</CsScore>

</CsoundSynthesizer>

SHE SAME PHENOMENON TAKES PLACES IN FILM AND VIDEO TOO :O0U MAY RECALL HAV!
WAGON WHEELS APPARENTLY MOVE BACKWARDS IN OLD 8ESTERNS -ET US SAY FOR E
CAMERA IS TAKING FRAMES PER SECOND OF A WHEEL MOVING *F THE WHEEL IS COM
ROTATION IN EXACTLY TH OF ASECOND THEN EVERY PICTURE LOOKS THE SAME AS
WHEEL APPEARS TO STAND STILL *F THE WHEEL SPEEDS UP | E INCREASES FREQUEN
APPEAR AS IF THE WHEEL IS SLOWLY TURNING BACKWARDS 5HIS IS BECAUSE THE WHE
COMPLETE MORE THAN A FULL ROTATION BETWEEN EACH SNAPSHOT 5HIS IS THE MOS
EFFECT OF ALIASING WRONG INFORMATION

"S AN ASIDE IT IS WORTH OBSERVING THAT A LOT OF MODERN GLITCH MUSIC INTENTIC
FEATURE OF THE SPECTRAL DISTORTION THAT ALIASING INDUCES IN DIGITAL AUDIO

"UDIO $% 2UALITY USES A SAMPLE RATEOF ,Z K)Z 5HIS MEANS THAT $%

QUALITY CAN ONLY REPRESENT FREQUENCIES UP TO)Z)UMANS TYPICALLY HAVE Al
UPPER LIMIT OF HEARING OF ABOUT ,HZ THUS MAKING ,)Z AREASONABLE STANDAREL
SAMPLING RATE

BITS, BYTES AND WORDS. UNDERSTANDING
BINARY.

"LL DIGITAL COMPUTERS REPRESENT DATA AS A COLLECTION OF BITS SHORT FOR BINZA
THE SMALLEST POSSIBLE UNIT OF INFORMATION ONE BIT CAN ONLY BE ONE OF TWO ST
ON OR 5HE MEANING OF THE BIT WHICH CAN REPRESENT ALMOST ANYTHING IS UNII
THIS POINT 5HE THING TO REMEMBER IS THAT ALL COMPUTER DATA A TEXT FILE ON DI
IN MEMORY A PACKET ON ANETWORK IS ULTIMATELY A COLLECTION OF BITS

#ITS IN GROUPS OF EIGHT ARE CALLED BYTES AND ONE BYTE USUALLY REPRESENTS A
OF DATA IN THE COMPUTER *T SALITTLE USED TERM BUT YOU MIGHT BE INTERESTED
A NIBBLE IS HALF ABYTE USUALLY BITS

THE BINARY SYSTEM

“"LL DIGITAL COMPUTERS WORK IN A ENVIRONMENT THAT HAS ONLY TWO VARIABLES A
NUMBERS IN OUR DECIMAL SYSTEM THEREFORE MUST BE TRANSLATED INTO S AND S
SYSTEM *F YOU THINK OF

BINARY NUMBERS IN TERMS OF SWITCHES 8ITH ONE SWITCH YOU CAN REPRESENT UP
DIFFERENT NUMBERS

0" %ECIMAL
0/ %ECIMAL

SHUS A SINGLE BIT REPRESENTS NUMBERS TWO BITS CAN REPRESENT NUMBERS Tt
REPRESENT NUMBERS FOUR BITS REPRESENT NUMBERS AND SO ONUP TO ABYTE

WHICH REPRESENTS NUMBERS 5S5HEREFORE EACH ADDED BIT DOUBLES THE AMOUNT
NUMBERS THAT CAN BE REPRESENTED 1UT SIMPLY THE MORE BITS YOU HAVE AT YOU
MORE INFORMATION YOU CAN STORE

BIT-DEPTH RESOLUTION

"PART FROM THE SAMPLE RATE ANOTHER IMPORTANT PARAMETER WHICH CAN AFFEC”
DIGITAL SIGNAL IS THE ACCURACY WITH WHICH EACH SAMPLE IS KNOWN IN OTHER WO
HOW STRONG EACH VOLTAGE IS &VERY SAMPLE OBTAINED IS SET TO A SPECIFIC AMPL
MEASURE OF STRENGTH FOR EACH VOLTAGE LEVEL 5HE NUMBER OF LEVELS DEPEND
PRECISION OF THE MEASUREMENT IN BITS |E HOW MANY BINARY DIGITS ARE USED TC
SAMPLES 5HE NUMBER OF BITS THAT A SYSTEM CAN USE IS NORMALLY REFERRED TO ¢/
RESOLUTION

*F THE BIT DEPTH RESOLUTION IS THEN THERE ARE POSSIBLE LEVELS OF AMPLITUDE
USE FOR EACH SAMPLE 8E CAN SEE THIS IN THE DIAGRAM BELOW "T EACH SAMPLING F
SOUNDCARD PLOTS AN AMPLITUDE "S WE ARE ONLY USING A BIT SYSTEM THE RESOLL
GOOD ENOUGH TO PLOT THE CORRECT AMPLITUDE OF EACH SAMPLE 8E CAN SEE IN Tk
SOME VERTICAL LINES STOP ABOVE OR BELOW THE REAL SIGNAL 5HIS IS BECAUSE OUI
NOT HIGH ENOUGH TO PLOT THE AMPLITUDE LEVELS WITH SUFFICIENT ACCURACY AT E
PERIOD

example here for 4, 6, 8, 12, 16 bit of a sine signal ...
... coming in the next release

5HE STANDARD RESOLUTION FOR $%S IS BIT WHICH ALLOWS FOR DIFFERENT POS!
AMPLITUDE LEVELS EITHER SIDE OF THE ZERO AXIS 6SING BIT RATES LOWER THAN
GOOD IDEA AS IT WILL RESULT IN NOISE BEING ADDED TO THE SIGNAL 5HIS IS REFERRE
QUANTIZATION NOISE AND IS A RESULT OF AMPLITUDE VALUES BEING EXCESSIVELY RO

DOWN WHEN BEING DIGITIZED 2UANTIZATION NOISE BECOMES MOST APPARENT WHEN
REPRESENT LOW AMPLITUDE QUIET SOUNDS 'REQUENTLY A TINY AMOUNT OF NOISE |
DITHER SIGNAL WILL BE ADDED TO DIGITAL AUDIO BEFORE CONVERSION BACK INTO AN
SIGNAL "DDING THIS DITHER SIGNAL WILL ACTUALLY REDUCE THE MORE NOTICEABLE N
QUANTIZATION "S HIGHER BIT DEPTH RESOLUTIONS ARE EMPLOYED IN THE DIGITIZING

NEED FOR DITHERING IS REDUCED " GENERAL RULE IS TO USE THE HIGHEST BIT RATE /

ANY ELECTRONIC MUSICIANS MAKE USE OF DELIBERATELY LOW BIT DEPTH QUANTIZAT
ADD NOISE TO A SIGNAL 5HE EFFECT IS COMMONLY KNOWN AS BIT CRUNCHING AND I€
EASY TO DO IN $SOUND

ADC / DAC

SHE ENTIRE PROCESS AS DESCRIBED ABOVE OF TAKING AN ANALOGUE SIGNAL AND Cc
A DIGITAL SIGNAL IS REFERRED TO AS ANALOGUE TO DIGITAL CONVERSION OR "%$ OF (
TO ANALOGUE CONVERSION %"$ IS ALSO POSSIBLE 5HIS IS HOW WE GET TO HEAR OUI
THROUGH OUR 1$ S HEADPHONES OR SPEAKERS 'OR EXAMPLE |F ONE PLAYS A SOUNL
1LAYER OR ISUNES THE SOFTWARE WILL SEND A SERIES OF NUMBERS TO THE COMPUT
FACT IT WILL MOST LIKELY SEND NUMBERS A SECOND *F THE AUDIO THAT IS PLAYIN
THEN THESE NUMBERS WILL RANGE FROM TO

8HEN THE SOUND CARD RECEIVES THESE NUMBERS FROM THE AUDIO STREAM IT WILL (
CORRESPONDING VOLTAGES TO A LOUDSPEAKER 8HEN THE VOLTAGES REACH THE LO
CAUSE THE LOUDSPEAKERS MAGNET TO MOVE INWARDS AND OUTWARDS 5HIS CAUSE.
IN THE AIR AROUND THE SPEAKER RESULTING IN WHAT WE PERCEIVE AS SOUND

FREQUENCIES

"S MENTIONED IN THE PREVIOUS SECTION FREQUENCY IS DEFINED AS THE NUMBER OF
PERIODS PER SECOND 'REQUENCY IS MEASURED IN)ERTZ *F A TONE HAS A FREQUENC
COMPLETES CYCLES EVERY SECOND (IVEN A TONE S FREQUENCY ONE CAN EASILY (
PERIOD OF ANY SOUND .ATHEMATICALLY THE PERIOD IS THE RECIPROCAL OF THE FRE
VICE VERSA *N EQUATION FORM THIS IS EXPRESSED AS FOLLOWS

Frequency = 1/Period Period = 1/Frequency

SHEREFOREEREQUENTHENVERSETHPERIOBCAWAVDEF)Z FREQUENB$
PERIGDF OR SECONDEKEWISFREQUEREY)Z HARPERIQDF OR

SECONBS CALCULAHEVAVELENGIASOUND ANYGIVEMEDIUMVECANUSE
THE FOLLOWING EQUATION

'OR INSTANCE AWAVE OF)ZINAIR VELOCITY OF DIFFUSION ABOUT M S HAS A LEN
OF APPROXIMATELY M CM

LOWER AND HIGHER BORDERS FOR HEARING

5HE HUMAN EAR CAN GENERALLY HEAR SOUNDS IN THE RANGEK)Z 5BIS)Z

UPPER LIMIT TENDS TO DECREASE WITH AGE DUE TO A CONDITION KNOWN AS PRESBY/
RELATED HEARING LOSS .OST ADULTS CANKHENRITIEABORITCHILDREN CAN HEAR
BEYOND THIS "T THE LOWER END OF THE SPECTRUM THE HUMAN EAR DOES NOT RESP
FREQUENCIES BELOW)Z WITH OF)ZBEING THE LOWEST MOST PEOPLE CAN PERCI

40 IN THE FOLLOWING EXAMPLE YOU WILL NOT HEAR THE FIRST)Z TONE AND PROB
THE LAST K)Z ONE BUT HOPEFULLY THE OTHERONES)z)Z)Z

EXAMPLE 01B01_BordersForHearing.csd

<CsoundSynthesizer>
<CsOptions>

-odac -m0

</CsOptions>
<Cslnstruments>

;example by joachim heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

instr 1
prints "Playing %d HertzI\n", p4

asig oscils .2,p4,0
outs asig, asig
endin

</Cslnstruments>
<CsScore>

i10210

i.+.100

i.+.1000
i.+.10000
i.+.20000
</CsScore>
</CsoundSynthesizer>

LOGARITHMS, FREQUENCY RATIOS AND
INTERVALS

"LOT OF BASIC MATHS IS ABOUT SIMPLIFICATION OF COMPLEX EQUATIONS 4HORTCUTS
THE TIME TO MAKE THINGS EASIER TO READ AND EQUATE .ULTIPLICATION CAN BE SEEN
SHORTHAND OF ADDITION FOR EXAMPLE X &XPONENTS ARE

SHORTHAND FOR MULTIPLIGATIOK -OGARITHMS ARE SHORTHAND FOR EXPONENTS
AND ARE USED IN MANY AREAS OF SCIENCE AND ENGINEERING IN WHICH QUANTITIES V
LARGE RANGE &XAMPLES OF LOGARITHMIC SCALES INCLUDE THE DECIBEL SCALE THE
FOR MEASURING EARTHQUAKE MAGNITUDES AND THE ASTRONOMICAL SCALE OF STELI
.USICAL FREQUENCIES ALSO WORK ON A LOGARITHMIC SCALE MORE ON THIS LATER

*NTERVALS IN MUSIC DESCRIBE THE DISTANCE BETWEEN TWO NOTES 8HEN DEALING W
MUSICAL NOTATION IT IS EASY TO DETERMINE AN INTERVAL BETWEEN TWO ADJACENT I
EXAMPLE A PERFECT TH IS ALWAYS MADE UP OF SEMITONES 8HEN DEALING WITH)Z \
THINGS ARE DIFFERENT " DIFFERENCE OF SAY)Z DOES NOT ALWAYS EQUATE TO THE
MUSICAL INTERVAL 5HIS IS BECAUSE MUSICAL INTERVALS AS WE HEAR THEM ARE REPI
AS FREQUENCY RATIOS "N OCTAVE FOR EXAMPLE IS ALWAYS 5HAT IS TO SAY EVERY
DOUBLE A)Z VALUE YOU WILL JUMP UP BY A MUSICAL INTERVAL OF AN OCTAVE

$ONSIDER THE FOLLOWING " FLUTE CAN PLAY THE NOTE"AT)Z *F THE PLAYER PLAY
" AN OCTAVE ABOVE IT AT)ZTHE DIFFERENCEIN)ZIS /OW CONSIDER THE PICCOLO
HIGHEST PITCHED INSTRUMENT OF THE ORCHESTRA *T CAN PLAY A FREQUENCY OF
ALSO PLAY AN OCTAVE ABOVE THISAT)Z X)Z 8HILE THE DIFFERENCE IN)ERTZ
BETWEEN THE TWO NOTES ON THE FLUTE IS ONLY)Z THE DIFFERENCE BETWEEN THE
PITCHED NOTES ON APICCOLOIS)ZYET THEY ARE BOTH ONLY PLAYING NOTES ONE
APART

8HAT ALL THIS DEMONSTRATES IS THAT THE HIGHER TWO PITCHES BECOME THE GREA’
DIFFERENCE IN)ERTZ NEEDS TO BE FOR US TO RECOGNIZE THE DIFFERENCE AS THE S/
INTERVAL 5HE MOST COMMON RATIOS FOUND IN THE EQUAL TEMPERAMENT SCALE AR

THE OCTAVE THE PERFECT FIFTH THE PERFECT FOURTH THE MAJOR THII
AND THE MINOR THIRD

SHE FOLLOWING EXAMPLE SHOWS THE DIFFERENCE BETWEEN ADDING A CERTAIN FREC(
APPLYING A RATIO 'IRST THE FREQUENCIES OF AND)Z ALL GET AN ADDITION OF
)Z 5HIS SOUNDS VERY DIFFERENT THOUGH THE ADDED FREQUENCY IS THE SAME 4EC

PERFECT FIFTH IS APPLIED TO THE SAME FREQUENCIES 5HIS SOUNDS ALWAYS THE
THOUGH THE FREQUENCY DISPLACEMENT IS DIFFERENT EACH TIME

EXAMPLE 01B02_Adding_vs_ratio.csd

<CsoundSynthesizer>
<CsOptions>

-odac -m0

</CsOptions>
<Cslnstruments>

;example by joachim heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

instr 1

prints "Playing %d Hertz!\n", p4
asig oscils .2,p4,0

outs asig, asig
endin

instr 2

prints "Adding %d Hertz to %d Hertz!\n", p5, p4
asig oscils .2, p4+p5, 0

outs asig, asig
endin

instr 3
prints "Applying the ratio of %f (adding %d Hertz)
to %d Hertz\n", p5, p4*p5, p4
asig oscils .2, p4*p5, 0
outs asig, asig
endin

</CslInstruments>

<CsScore>

;adding a certain frequency (instr 2)
i101100

i211100100

i131400

i241400 100

i161800

i271800 100

;applying a certain ratio (instr 3)
i1101 100

i3111100[3/2]

i1131 400

i 3141400 [3/2]
i116 1800

i 3171800 [3/2]
</CsScore>
</CsoundSynthesizer>

40 WHAT OF THE ALGORITHMS MENTIONED ABOVE "S SOME READERS WILL KNOW THE
PREFERRED METHOD OF TUNING WESTERN INSTRUMENTS IS BASED ON EQUAL TEMPEF
&SSENTIALLY THIS MEANS THAT ALL OCTAVES ARE SPLIT INTO EQUAL INTERVALS 5HE

SEMITONE HAS A RATIO QFHICH IS APPROXIMATELY

40 WHAT ABOUT THE REFERENCE TO LOGARITHMS IN THE HEADING ABOVE "S STATED |

LOGARITHMS ARE SHORTHAND FOR EXPONEAN&LSO BE WRITTEN AS
LOG SHEREFORE MUSICAL FREQUENCY WORKS ON A LOGARITHMIC SCALE

MIDI NOTES

$SOUND CAN EASILY DEAL WITH .*%* NOTES AND COMES WITH FUNCTIONS THAT WILL C
NOTES TO)ERTZ VALUES AND BACK AGAIN *N .*%* SPEAK" IS EQUAL TO" AND IS .*%*
NOTE :OU CAN THINK OF" AS BEING THE FOURTH " FROM THE LOWEST " WE CAN HEAF
ALMOST HEAR

Caution: like many 'standards' there is occasional disagreement about the mapping
between frequency and octave number. You may occasionally encounter A440 being
described as A3.

INTENSITIES

REAL WORLD INTENSITIES AND AMPLITUDES

SHERE ARE MANY WAYS TO DESCRIBE A SOUND PHYSICALLY ONE OF THE MOST COMMC
40UND *NTENSITY -EVEL 4*- *T DESCRIBES THE AMOUNT OF POWER ON A CERTAIN SUF

UNIT IS 8ATT PER SQUAREQIAESR". SHE RANGE OF HUMAN HEARING IS

ABOUTCLASS ". AT THE THRESHOLD OF HEARING TO

CLASS ". AT THE THRESHOLD OF PAIN 'OR ORDERING THIS IMMENSE RANGE AND TO |
THE MEASUREMENT OF ONE SOUND INTENSITY BASED UPON ITS RATIO WITH ANOTHER
SCALE IS USED 5HBeUDEBCRIBES THE RELATION OF OIEANSEENSITYO A

REFERENCE INFEREASS ". * AS FOLLOWS

CLASS " Sound Intensity Level in Bel

*F FOR INSTANCE THELRSBO. CLASS ". IS THISIS #EL *F THE RATIO
IS THISIS #EL

'OR REAL WORLD SOUNDS IT MAKES SENSE TO SET THHAREFERENCEQAHEE

THRESHOLD OF HEARING WHICH HAS BEERSIXED AS AT
)JERTZ 40 THE RANGE OF HEARING COVERS ABOUT #EL 6SUALLY #EL IS DIVIDED INTC
#EL SO THE COMMON FORMULA FOR MEASURING A SOUND INTENSITY IS

CLASS ". Sound Intensity Level (SIL) in Decibel (dBNVITH
CLASS "

8HILE THE SOUND INTENSITY LEVEL IS USEFUL TO DESCRIBE THE WAY IN WHICH THE HL
WORKS Thtasuremer®F SOUND IS MORE CLOSELY RELATED TO THE SOUND PRESSURE
DEVIATIONS 40UND WAVES COMPRESS AND EXPAND THE AIR PARTICLES AND BY THIS®
AND DECREASE THE LOCALIZED AIR PRESSURE 5HESE DEVIATIONS ARE MEASURED AN
BY A MICROPHONE 40 THE QUESTION ARISES WHAT IS THE RELATIONSHIP BETWEEN T
PRESSURE DEVIATIONS AND THE SOUND INTENSITY 5HE ANSWER IS SOUND INTENSITY
CLASS " ARE PROPORTIONA{UEEDHE HE SOUND PRESSURE CHANGES

CLASS " "S AFORMULA

CLASS " CLASS " Relation between Sound Intensity and Sound
Pressure

-ET US TAKE AN EXAMPLE TO SEE WHAT THIS MEANS 5HE SOUND PRESSURE AT THE TH
HEARING CAN BE FIXEIDASS " 5HIS VALUE IS THE REFERENCE VALUE OF
THE 40UND 1RESSURE -EVEL 41- *F WE HAVE NORLASAL'UE OF

THE CORRESPONDING SOUND INTENSITY RELATION CAN BE CALCULATED AS

CLASS "

CLASS ". 40 AFACTOR OF AT THE PRESSURE RELATION YIELDS A FACTOR OF AT
INTENSITY RELATION *N GENERAL THE D# SCALER@RBIHE PRREEANRED TO
THE PRESSUREASS ". 1 IS

CLASS "

Sound Pressure Level (SPL) in Decibel (dBJITHCLASS .

8ORKING WITH %IGITAL "UDIO BASICALLY MEAN S RIBSSHMT M/E ARE

DEALING WITH MICROPHONES ARE AMPLITUDES "NY AUDIO FILE IS A SEQUENCE OF AMI
8HAT YOU GENERATE IN $SOUND AND WRITE EITHER TO THE %"$ IN REALTIME OR TO A ¢
ARE AGAIN NOTHING BUT A SEQUENCE OF AMPLITUDES "S AMPLITUDES ARE DIRECTLY
SOUND PRESSURE DEVIATIONS ALL THE RELATIONS BETWEEN SOUND INTENSITY AND ¢
CAN BE TRANSFERRED TO RELATIONS BETWEEN SOUND INTENSITY AND AMPLITUDES

CLASS ". Relation between Intensity and Ampltitudes
CLASS " Decibel (dB) Scale of Amplitude&/ITH ANY AMPLITUDE
CLASS " RELATED TO AN OTHER ABIRISTSUDE

*F YOU DRIVE AN OSCILLATOR WITH THE AMPLITUDE AND ANOTHER OSCILLATOR WITH
AND YOU WANT TO KNOW THE DIFFERENCE IN D# YOU CALCULATE

CLASS "

40 THE MOST USEFUL THING TO KEEP IN MIND IS WHEN YOU DOUBLE THE AMPLITUDE
D# WHEN YOU HAVE HALF OF THE AMPLITUDE AS BEFORE YOU GET D#

WHAT IS 0 DB?

"S DESCRIBED IN THE LAST SECTION ANY D# SCALE FOR INTENSITIES PRESSURES OR
JUST A WAY TO DES€éRiBEship 50 HAVE ANY SORT OF QUANTITATIVE MEASUREMENT YO
WILL NEED TO KNOW THE REFERENCE VALUE REFERRED TOAS D# 'OR REAL WORLD
MAKES SENSE TO SET THIS LEVEL TO THE THRESHOLD OF HEARING 5HIS IS DONE AS W

SETTING THE 4*NBSP CLASS ". AND THE 41-TO
CLASS " CLASS "

#UT FOR WORKING WITH DIGITAL SOUND IN THE COMPUTER THIS DOES NOT MAKE ANY
YOU WILL HEAR FROM THE SOUND YOU PRODUCE IN THE COMPUTER JUST DEPENDS Ol
AMPLIFICATION THE SPEAKERS AND SO ON *T HAS NOTHING PER SE TO DO WITH THE
AUDIO EDITOR OR IN $SOUND /EVERTHAIRSHOMERREFERENCE LEVEL FOR THE
AMPLITUDES *N A DIGITAL SYSTEM THERE IS A STRICT LIMIT FOR THE MAXIMUM NUMBE
STORE AS AMPLITUDE 5HIS MAXIMUM POSSIBLE LEVEL IS CALLED D#

&ACH PROGRAM CONNECTS THIS MAXIMUM POSSIBLE AMPLITUDE WITH A NUMBER 6SU
WHICH IS A GOOD CHOICE BECAUSE YOU KNOW THAT EVERYTHING ABOVE IS CLIPPINC
HAVE A HANDY RELATION FOR LOWER VALUES #UT ACTUALLY THIS VALUE IS NOTHING |
AND IN $SOUND YOU ARE FREE TO SET IT TO ANY VAIDEE BPCOBRE BRUALE Y

YOU SHOULD USE THIS STATEMENT IN THE ORCHESTRA HEADER

Odbfs = 1

S5HIS MEANS 4ET THE LEVEL FOR ZERO D# AS FULL SCALE TO AS REFERENCE VALUE |,
BECAUSE OF HISTORICAL REASONS THE DEFAULT VALUE IN $SOUND IS NOT BUT 4C
HAVE THIfs = ISTATEMENT IN YOUR HEADER IF YOU WANT TO SET $SOUND TO THE VAI
PROBABLY ALL OTHER AUDIO APPLICATIONS HAVE

DB SCALE VERSUS LINEAR AMPLITUDE

-ET S SEE SOME PRACTICAL CONSEQUENCES NOW OF WHAT WE HAVE DISCUSSED SO F
POINT IS FOR GETTING SMOOTH TRANSITIONS BETWEEN INTENSITY LEVELS YOU MUST
LINEAR TRANSITION OF THE AMPLITUDES BUT A LINEAR TRANSITION OF THE D# EQUIVA

http://www.csounds.com/manual/html/Zerodbfs.html

FOLLOWING EXAMPLE SHOWS A LINEAR RISE OF THE AMPLITUDES FROM TO AND THE
OF THED#S FROM TO D# BOTHOVER SECONDS

EXAMPLE 01C01_db_vs_linear.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;example by joachim heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

instr 1 ;linear amplitude rise
kamp line 0, p3,1;amprise 0->1
asig oscils 1, 1000, 0 ;1000 Hz sine
aout = asig * kamp

outs aout, aout
endin

instr 2 ;linear rise of dB
kdb line -80, p3, 0 ;dB rise -60 -> 0
asig oscils 1, 1000, 0 ;1000 Hz sine
kamp = ampdb(kdb) ;transformation db -> amp
aout = asig * kamp
outs aout, aout
endin

</Cslnstruments>
<CsScore>

i1010

i21110

</CsScore>
</CsoundSynthesizer>

:OU WILL HEAR HOW FAST THE SOUND INTENSITY INCREASES AT THE FIRST NOTE WITH
RISE AND THEN STAYS NEARLY CONSTANT "T THE SECOND NOTE YOU SHOULD HEAR A
AND CONSTANT INCREMENT OF INTENSITY

RMS MEASUREMENT

40UND INTENSITY DEPENDS ON MANY FACTORS ONE OF THE MOST IMPORTANT IS THE |
MEAN OF THE AMPLITUDES IN A CERTAIN TIME SPAN 5HIS IS CALLED THE 300T .EAN 4Q!
3.4 VALUE 50 CALCULATEIT YOU HAVE TO CALCULATE THE SQUARED AMPLITUDES ¢
/ SAMPLES 5HEN YOU DIVIDE THE RESULT BY / TO CALCULATE THE MEAN OF IT 'INALL
TAKE THE SQUARE ROOT

-ET S SEE A SIMPLE EXAMPLE AND THEN HAVE A LOOK HOW GETTING THE RMS VALUE V
$SOUND "SSUMEING WE HAVE A SINE WAVE WHICH CONSISTS OF SAMPLES WE GET T
AMPLITUDES

SHESE ARE THE SQUARED AMPLITUDES

SHE MEAN OF THESE VALUES IS

CLASS "

“"ND THE RESULTING 3.4 VALUE ISLASS ".

5HERM®PCODE IN $SOUND CALCULATES THE 3.4 POWER IN A CERTAIN TIME SPAN AND
SMOOTHES THE VALUES IN TIME ACGQRIARSBMBEIBRETHE HIGHER THIS VALUE THE

DEFAULT IS)Z THE SNAPPIER THE MEASUREMENT AND VICE VERSA 5HIS OPCODE C/
TO IMPLEMENT A SELF REGULATING SYSTEM IN WHICH THE RMS OPCODE PREVENTS Tt
EXPLODING &ACH TIME THE RMS VALUE EXCEEDS A CERTAIN VALUE THE AMOUNT OF F

REDUCED 5HIS IS AN EXAMPLE

EXAMPLE 01C02_rms_feedback_system.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>

http://www.csounds.com/manual/html/rms.html
c-intensities#InsertNoteID_6

<Cslnstruments>

;example by Martin Neukom, adapted by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen 0, 0, 210, 10, 1 ;table with a sine wave

instr 1
a3 int O
kamp linseg 0, 1.5,0.2, 1.5, 0 ;envelope for initial input
asnd poscil kamp, 440, giSine ;initial input

if p4 == 1 then ;choose between two sines ...
adell poscil 0.0523, 0.023, giSine
adel2 poscil 0.073, 0.023, giSine,.5

else ;or a random movement for the delay lines
adell randi 0.05,0.1,2
adel2 randi 0.08,0.2,2

endif
a0 delayr 1 ;delay line of 1 second
al deltapi adell + 0.1 ;first reading
a2 deltapi adel2 + 0.1 ;second reading
krms rms a3 ;rms measurement

delayw asnd + exp(-krms) * a3 ;feedback depending on rms
a3 reson -(al+a2), 3000, 7000, 2 ;calculate a3
aout linen al/3, 1, p3, 1 ;apply fade in and fade out
outs aout, aout

endin
</CslInstruments>
<CsScore>
i 1060 1 ;two sine movements of delay with feedback
i161. 2 ;tworandom movements of delay with feedback
</CsScore>
</CsoundSynthesizer>

FLETCHER-MUNSON CURVES

JUMAN HEARING IS ROUGHLY IN A RANGE BETWEEN AND)Z #UT INSIDE THIS RANGE
HEARING IS NOT EQUALLY SENSITIVE 5HE MOST SENSITIVE REGION IS AROUND)Z *F
COME TO THE UPPER OR LOWER BORDER OF THE RANGE YOU NEED MORE INTENSITY 1
SOUND AS EQUALLY LOUD

5HESE CURVES OF EQUAL LOUDNESS ARE MOSTLY CALLED 'LETCHER .UNSON $URVES
THE PAPER OF) 'LETCHER AND 8 " .UNSON IN 5HEY LOOK LIKE THIS

5RY THE FOLLOWING TEST *N THE FIRST SECONDS YOU WILLHEAR ATONEOF)Z "D
LEVEL OF YOUR AMPLIFIER TO THE LOWEST POSSIBLE POINT AT WHICH YOU STILL CAN
5HEN YOU HEAR A TONE WHOSE FREQUENCY STARTS AT)ERTZ AND ENDS AT)ERT.

SECONDS 5RY TO MOVE THE FADER OR KNOB OF YOUR AMPLIFICATION EXACTLY IN A
STILL CAN HEAR ANYTHING BUT AS SOFT AS POSSIBLE 5HE MOVEMENT OF YOUR FADE
ROUGHLY BE SIMILAR TO THE LOWEST 'LETCHER .UNSON $URVE STARTING RELATIVEL)
DOWN AND DOWN UNTIL)ERTZ AND THEN UP AGAIN "S ALWAYS THIS TEST DEPEND:
YOUR SPEAKER HARDWARE *F YOUR SPEAKER DO NOT PROVIDE PROPER LOWER FREC
NOT HEAR ANYTHING IN THE BASS REGION

EXAMPLE 01C03_FletcherMunson.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

sr =44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen 0, 0, 2*10, 10, 1 ;table with a sine wave

instr 1

kfreq expseg p4, p3, p5
printk 1, kfreq ;prints the frequencies once a second

asin poscil .2, kfreq, giSine

aout linen asin, .01, p3, .01
outs aout, aout

endin

</CslInstruments>

<CsScore>

i 1051000 1000

i162020 20000

</CsScore>

</CsoundSynthesizer>

*T IS VERY IMPORTANT TO BEAR IN MIND THAT THE PERCEIVED LOUDNESS DEPENDS ML
FREQUENCIES :O0U MUST KNOW THAT PUTTING OUT A SINE OF)Z WITH A CERTAIN AMF
TOTALLY DIFFERENT FROM A SINE OF)Z WITH THE SAME AMPLITUDE THE LATTER WI
MUCH LOUDER

CF .ARTIN /EUKOM 4IGNALE 4YSTEME ,LANGSYNTHESE ;bR’)ICH P

c-intensities#InsertNoteID_6_marker7

MAKE CSOUND RUN

CSOUND AND FRONTENDS

5HE CORE ELEMENT OF $SOUND IS AN AUDIO ENGINE FOR THE $SOUND LANGUAGE *T +
GRAPHICAL INTERFACE AND IT IS DESIGNED TO TAKE $SOUND TEXT FILES CALLED CSI
PRODUCE AUDIO EITHER IN REALTIME OR BY WRITING TO A FILE *T CAN STILL BE USED
BUT MOST USERS NOWADAYS PREFER TO USE $SOUND VIA A FRONTEND " FRONTEND I
APPLICATION WHICH ASSISTS YOU IN WRITING CODE AND RUNNING $SOUND #EYOND TI
OF A SIMPLE TEXT EDITOR A FRONTEND ENVIRONMENT WILL OFFER COLOUR CODED HI
LANGUAGE SPECIFIC KEYWORDS AND QUICK ACCESS TO AN INTEGRATED HELP SYSTEN
CAN ALSO EXPAND POSSIBILITIES BY PROVIDING TOOLS TO BUILD INTERACTIVE INTERF.
SOMETIMES AS ADVANCED COMPOSITIONAL TOOLS

*N THE $SOUND DEVELOPERS DECIDEBISOQUNDRHDEHE STANDARD FRONTEND TO

BE INCLUDED WITH THE $SOUND DISTRIBUTION SO YOU WILL ALREADY HAVE THIS FROI
HAVE INSTALLED ANY OF THE RECENT PRE BUILT VERSIONS OF $SOUND $ONVERSELY |
FRONTEND YOU WILL REQUIRE A SEPARATE INSTALLATION OF $SOUND IN ORDER FOR I
YOU EXPERIENCE ANY PROBLEMS WITH 2UTE$SOUND OR SIMPLY PREFER ANOTHER FR
TREINOOUNDDRABBAGAS ALTERNATIVE

HOW TO DOWNLOAD AND INSTALL CSOUND

50 GET $SOUND YOU FIRST NEED TO DOWNLOAD THE PACKAGE FOR YOUR SYSTEM FR(
40URCE'ORGE PAGE SOURCEFORGE NET PROJECTS CSOORIBEFQENSISOUND
PERHAPS AFTER MID

SHERE ARE MANY FILES HERE SO HERE ARE SOME GUIDELINES TO HELP YOU CHOOSE"
VERSION

Windows

8INDOWS INSTALLERS ARE THE ON&& EDIOKNEOR THE LATEST VERSION OF $SOUND ANC
FIND A FILE WHICH SHOULD BE CALLED SCYdEHTA3NG drikiEvin32-d.eXsHE

IMPORTANT THING TO NOTE IS THE FINAL LETTER OF THE INSTALLER NAME WHICH CAN
5HIS SPECIFIES THE COMPUTATION PRECISION OF THE $SOUND ENGINE 'LOAT PRECISI(
FLOAT IS MARKED WITH F AND DOUBLE PRECISION BIT FLOAT IS MARKED D S5HISIS
IMPORTANT TO BEAR IN MIND AS A FRONTEND WHICH WORKS WITH THE FLOATS VERS
RUN IF YOU HAVE THE DOUBLES VERSGREINETENTEVERSIONS OF THE PRE BUILT
8INDOWS INSTALLER HAVE ONLY BEEN RELEASED IN THE DOUBLES VERSION

http://qutecsound.sourceforge.net
http://winxound.codeplex.com
http://code.google.com/p/cabbage/
http://sourceforge.net/projects/csound/files/csound5/

"FTER YOU HAVE DOWNLOADED THE INSTALLER YOU MIGHT FIND IT EASIEST JUST TO L.
EXECUTABLE INSTALLER AND FOLLOW THE INSTRUCTIONS ACCEPTING THE DEFAULTS
MODIFY THE COMPONENTS THAT WILL BE INSTALLED DURING THE INSTALLATION PROCI
FRONT ENDS DOCUMENTATION ETC CREATING EITHER A FULLY FEATURED INSTALLAT
LIGHT INSTALLATION WITH JUST THE BARE BONES

:OU MAY ALSO FIND IT USEFUL TO INSTALL THE 1YTHON OPCODES AT THE THIS STAGE
$SOUND INTERFACES *F YOU CHOOSE TO DO THIS HOWEVER YOU WILL HAVE TO SEPA
1YTHON ITSELFWILL NEED TO INSTALL 1YTHON IN ANY CASE IF YOU PLAN TO USE THE $S
FRONT END AS THE CURRENT VERSION OF $SOUND2T REQUIRES 1YTHON "S OF .ARCH
7ERSION OF 1YTHON IS THE CORRECT CHOICE

$SOUND WILL BY DEFAULT INSTALL INTO YOUR 1ROGRAM'ILES FOLDER BUT YOU MAY
INSTALL DIRECTLY INTO A FOLDER IN THE ROOT DIRECTORY OF YOUR $ DRIVE

ONCE INSTALLATION HAS COMPLETED YOU CAN FIND A $SOUND FOLDER IN YOUR 4TAR"
CONTAINING SHORT CUTS TO VARIOUS ITEMS OF DOCUMENTATION AND $SOUND FRON

http://www.python.org/getit/

SHE 8INDOWS INSTALLER WILL NOT CREATE ANY DESKTOP SHORTCUTS BUT YOU CAN E
YOURSHBYRIGHT CLICKING THE $SOUND2T EXECUTABLE FOR EXAMPLE AND SELECTIN
SHORTCUT %RAG THE NEWLY CREATED SHORTCUT ONTO YOUR DESKTOP

Mac OS X

5HE .AC 04 9 INSTALLERS ARE THE FILESEHNDNG FOR THE LATEST VERSION OF
$SOUND FOR YOUR PARTICULAR SYSTEM FOR EXAMPLE A 6NIVERSAL BINARY FOR W
SOMETHING kcBtENd5.19.02-0SX10.8-universal.d@®gEN YOU DOUBLE CLICK THE
DOWNLOADED FILE YOU WILL HAVE A DISK IMAGE ON YOUR DESKTOP WITH THE $SOUN
$SOUND2T AND A README FILE %OUBLE CLICK THE INSTALLER AND FOLLOW THE INSTF
$SOUND AND THE BASIC $SOUND UTILITIES WILL BE INSTALLED 50 INSTALL THE $SOUNI
YOU ONLY NEED TO MOVE IT TO YOUR "PPLICATIONS FOLDER

Linux and others
$SOUND IS AVAILABLE FROM THE OFFICIAL PACKAGE REPOSITORIES FOR MANY DISTRIE

OPEN4USE %EBIAN 6BUNTU 'EDORA "RCHLINUX AND (ENTOO *F THERE ARE NO BINAR
PACKAGES FOR YOUR PLATFORM OR YOU NEED A MORE RECENT VERSION YOU CAN G

PACKAGE FROM THE 40URCE'ORGE PAGE AND BUILD FROM SOURCE 40OME BUILD INSTF
BE FOUND IN THE CHAPTER #6*-%*/($406/% IN THE APPENDD$ZOIDNN SHIE

ON 40URCEF@EGEILED INFORMATION CAN ALSO BAHOWUNG HEOHEID . ANUAL

1AGE

/OTE THAT THE $SOUND REPOSITORY HAS MOVED FROM CVS TO GIT "FTER INSTALLING
USE THIS COMMAND TO CLONE THE $SOUND REPOSITORY IF YOU LIKE TO HAVE ACCES
PERHAPS UNSTABLE SOURCES

git clone git://git.code.sf.net/p/csound/csound5-git
I0S
5HANKS TO 4TEVEN :I AND 7ICTOR -AZZARINI $SOUND HAS BEEN PORTED TO "NDROID A

104 -

5HE 104 FILES FOR $40UND ARE FOUND IN A SUBFOLDER OF THE $40OUND FILES ON 40UF
“T THE TIME OF WRITING THE LT IGOLBRCEFORGE NET PROJECTS CSOUND FILES
CSOUND 104

SHE FILE OF INTERES®UISD 104 9 99 99 9 ZIPNVHERE 999 99 9 IS THE VERSION

NUMBER 5HE ARCHIVE FILE CONTAINS THE $40UND PROGRAMMING LIBRARY SAMPLE
1%' INTRODUCTION TO PROGRAMMING $40UND FOR 104 DENJOER -AWHIAREN BY

AND 4TEVEN I

S5HIS DISTRIBUTION IS AIMED AT 104 PROGRAMMERS THERE ARE NO APPS THAT CAN BE
DIRECTLY THIS IS DUE TO THE FACT THAT 104 APPS CANNOT BE INSTALLED DIRECTLY I(
BE DOWNLOADED AND INSTALLED FROM "PPLE S APP STORE

ON "PPLE S APP STORE THERE ARE SOME EXAMPLES OF APPS THAT USE $40UND #ELO
SMALL SAMPLE OF APPS THAT MAKE USE OF $40UND

d CS(RAIN DEVELOPED BY THE #OULANGERWAB®/ BOULANGERLISBS COM
COMPLEX AUDIO EFFECTS APP THAT WORKS WITH AUDIO FILES OR LIVE AUDIO IN
d 10RTABLE %ANDY AN INNOVATIVE SAMPLER SYNTHESISER FOR 104 SEE
HTTP_ WWW BAREFOOT CODERS COM
d IIJULSARET AN IMPRESSIVE SYNTHESIZER APRVBEIEENSITYTIGS COM

http://sourceforge.net/apps/mediawiki/csound/index.php?title=Csound_development
http://sourceforge.net/apps/mediawiki/csound/index.php?title=Csound_development
http://www.csounds.com/manual/html/BuildingCsound.html
http://www.csounds.com/manual/html/BuildingCsound.html
a-make-csound-run#InsertNoteID_6
http://sourceforge.net/projects/csound/files/csound5/iOS/
http://sourceforge.net/projects/csound/files/csound5/iOS/
http://www.boulangerlabs.com
http://www.barefoot-coders.com
http://www.densitytigs.com

SHIS IS AN ON GOING SITUATION AND WE CAN EXPECT TO SEE MORE APPS MADE AVAIL,
GOES BY

Android
5HE "NDROID FILES FOR $SOUND ARE FOUND IN A SUBFOLDER OF THE $SOUND FILES O

40URCE'ORGE "T THE TIME OF WRITING THIH POGATRSESORGE NET PROJECTS CSOUNI
FILES CSOUND "NDROID

5WO FILES ARE OF INTEREST HERE ONE IS\V$3%4 PXBEBRES $40OUND FILES ON AN
"NDROID DEVITHE $4% PLAYER APP |SSSAILED"'PP 999 APRHERE 999 IS THE
VERSION NUMBER OF THE APP

SHE OTHER FILE OF POSSIBLE INTEREST TO IS CSOUND ANDROID 999 99 ZIP WHERE 99
THE VERSION NUMBER THIS FILE CONTAINS AN "NDROID PORT OF THE $40OUND PROGR
LIBRARY AND SAMPLE "NDROID PROJECTS 5HE SOURCE CODE FOR THE $4% PLAYER Ml
ABOVE IS ONE OF THE SAMPLEHR&BGIHECIISOULD NOT BE INSTALLED ON AN “NDROID
DEVICE

50 INSTALLSBEEIND"PP 999 APBN AN "NDROID DEVICE THE FOLLOWING STEPS ARE TAKE

5HESSOUND"PP 999 APRILE IS COPIED ONTO THE "NDRB@RDEVICE

EXAMPLENT SDCARD DOWNLOAD OR SOMETHING SIMILAR

ONE OR MORE $4% FILES NOT INCLUDED IN THE DISTRIBUTION SHOULD BE COPII
DEVICE S SHARED STORAGE LOCATIORNNYWSIERESNADRBELOW MNT SDCARD
-AUNCH A FILE EXPLORER APP ON THE DEVICE AND NAVIGATE TO THE FOLDER C(
FILESOUND"PP 999 APK COPIED IN STEP 4ELECT THE APK FILE AND WHEN
PROMPTED SELECT TOSNERRR IS INSTALLED AS $4% 1LAYER

*N THE DEVICE S APP BROWSER THE SCREEN WHICH IS USED TO LAUNCH ALL TF
THE DEVICE RUN THE $4% 1LAYER APP

$4% 1LAYER DISPLAYS ITS INITIAL SCREEN 5AP THE #ROWSE BUTTON TO FIND A
FILE TO PLAY ON YOUR DEVICE $4% 1LAYER DISPLAYS A FILE BROWSER STARTIN
THBEVICE S SHARED STORAGE LOCNINOMSDRCARD | ¥ELECT A CSD FILE THAT

YOU HAVE COPIED TO THE DEVICE STEP

5AP THE PLAY TOGGLE TO PLAY THE SELECTED $4%

ON (OOGLE S 1LAY 4TORE THERE ARE SOME APPS THAT USE $40OUND #ELOW IS A SMALL
SUCH APPS

d %*: 4OUND 4ALAD DEVELOPED BHIAFCHIATCHU COM CATEGO®A STORY
MULTI SAMPLE RECORD AND PLAYBACK APP 2UITE ENJOYABLE TO USE

d $HIME 1AD DEVELOPED BY "RTHUR # HURRIN8WW ARTHUNKINSAOM
SOOTHING CHIME PLAYER APP

d .ONO %OT .ICRO DEVELOPED BY "COUSTIETORCHARIJSTICORCHARD COM
MICROSYNTH MARKIETAPP IS A OSCILLATOR SYNTHESISER WITH EFFECTS

http://sourceforge.net/projects/csound/files/csound5/Android/
http://sourceforge.net/projects/csound/files/csound5/Android/
http://www.zatchu.com
http://www.arthunkins.com
http://acousticorchard.com/microsynth/market
http://acousticorchard.com/microsynth/market

d 1SYCHO 'LUTE DEVELOPED BY #RIAN 3EDFERN SOURCE CODE AVAILABLE AT
HTTP GITHUB COM BREDFERN 13V (GH0'PBIVESICAL MODELLING FLUTE SYNTH
#OTH FUN AND INTERESTING

INSTALL PROBLEMS?

*F FOR ANY REASON YOU CAN T FIND THE $SOUND2T FORMERLY 2UTE$SOUND FRONT
SYSTEM AFTER INSTALL OR IF YOU WANT TO INSTALL THE MOST RECENT VERSION OF §
YOU PREFER ANOTHER FRONTEND ALTOGETHER SEE THE $406/% '30/5&/%4 SECTION Ol
MANUAL FOR FURTHER INFORMATION *F YOU HAVE ANY INSTALL PROBLEMS CONSIDEF
$SOUND .AILING -TSTREPORT YOUR ISSUES OR WRITE A MAIL TO ONE OF THE MAINTAINI
0/ 5)*4 3&-&"4&

THE CSOUND REFERENCE MANUAL

5HE $SOUND 3EFERENCE .ANUAL IS AN INDISPENSABLE COMPANION TO $SOUND *T IS A
IN VARIOUS FORMATS FROM THE SAME PLACE AS THE $SOUND INSTALLERS AND IT IS IN
THE PACKAGES FOR 04 9 AND 8INDOWS *T CAN ALSO BE BRESSHDNDNLINE AT

ANUAL 4ECTION AT $SOUNDPSITGRONTENDS WILL PROVIDE YOU WITH DIRECT AND EAS
ACCESS TO IT

HOW TO EXECUTE A SIMPLE EXAMPLE

Using CsoundQt

3UN $SOUND2T (O INTO THE $SOUND2T MENUBAR AND CHOOSE &XAMPLES (ETTING
STARTED #ASICS)ELLO8SORLD

:OU WILL SEE A VERY BASIC $SOUND FILE CSD WITH A LOT OF COMMENTS IN GREEN

$LICK ON THE 36/ ICON IN THE $SOUND2T CONTROL BAR TO START THE REALTIME $SOL
:OU SHOULD HEAR A)Z SINE WAVE

:OU CAN ALSO RUN THE $SOUND ENGINE IN THE TERMINAL FROM WITHIN 2UTE$SOUND

ON 3UN IN5ERM " CONSOLE WILL POP UP AND $SOUND WILL BE EXECUTED AS AN INDE
PROCESS 5HE RESULT SHOULD BE THE SAME THE)Z BEEP

Using the Terminal / Console

4AVE THE FOLLOWING CODE IN ANY PLAIN TEXT EDITOR AS)ELLO8ORLD CSD

EXAMPLE 02A01_ Helloworld.csd

http://github.com/bredfern/PsychoFlute
http://www.csounds.com/community
http://www.csounds.com/manual/html/index.html
http://www.csounds.com/manual/html/index.html

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>
;Example by Alex Hofmann
instr 1

asin oscils 0dbfs/4, 440, 0
out asin

endin

</Cslnstruments>

<CsScore>

i101

</CsScore>
</CsoundSynthesizer>

OPEN THE 5ERMINAL 1ROMPT $ONSOLE

5YPE csound /full/path/HelloWorld.csd
WHERH#l/path/HelloWorld.csdS THE COMPLETE PATH TO YOUR FILE :OU ALSO EXECUTE Tt
FILE BY JUST TeRINGITHEN DRAGGING THE FILE INTO THE TERMINAL WINDOW AND THEN
RETURN

:OU SHOULD HEAR A)ZTONE

ATEVEN :I AND 7ICTOR -AZZSRINND ON "NDRIAIPER AT THE -INUX "UDIO
$ONFERENCE #RIAN SEDRERRODUCING THE "NDROID $4$5OUNER

+OURNAL *SSUE ~ 'ALL?

http://lac.linuxaudio.org/2012/papers/20.pdf
http://www.csounds.com/journal/issue17/android_csd_player.html
a-make-csound-run#InsertNoteID_6_marker7

CSOUND SYNTAX

ORCHESTRA AND SCORE

*N $SOUND YOU MUST DEFINE INSTRUMENTS WHICH ARE UNITS WHICH DO THINGS F
INSTANCE PLAYING A SINE WAVE 5HESE INSTRUMENTS MUST BE CALLED OR TURNED C
SCORE 5HE $SOUND SCORE IS ALIST OF EVENTS WHICH DESCRIBE HOW THE INSTRU
BE PLAYED IN TIME *T CAN BE THOUGHT OF AS A TIMELINE IN TEXT

" $SOUND INSTRUMENT IS CONTAINED WITHIN AN *NSTRUMENT #LOCK WHICH STARTS \
KEYWORISTAND ENDS WITH THE KENRIRRDINSTRUMENTS ARE GIVEN A NUMBER OR A
NAME TO IDENTIFY THEM

instr 1
... instrument instructions come here...
endin

4CORE EVENTS IN $SOUND ARE INDIVIDUAL TEXT LINES WHICH CAN TURN ON INSTRUMI
CERTAIN TIME 'OR EXAMPLE TO TURN ON INSTRUMENT AT TIME FOR SECONDS YOL

i102

THE CSOUND DOCUMENT STRUCTURE

" $SOUND DOCUMENT IS STRUCTURED INTO THREE MAIN SECTIONS

d CsOptions $ONTAINS THE CONFIGURATION OPTIONS FOR $SOUND 'OR EXAMPLE L
O DAC IN THIS SECTION WILL MAKE $SOUND RUN IN REAL TIME INSTEAD OF WRIT

SOUND FHLE
d Csinstruments $ONTAINS THE INSTRUMENT DEFINITIONS AND OPTIONALLY SOME

SETTINGS AND DEFINITIONS LIKE SAMPLE RATE ETC
d CsScore $ONTAINS THE SCORE EVENTS WHICH TRIGGER THE INSTRUMENTS

&ACH OF THESE SECTIONS IS OPENED WITH A XYZ TAG AND CLOSED WITHA XYZ TAG
$SOUND FILE STARTS WITH THE $SOUND4YNTHESIZER TAG AND ENDS WITH
$SOUNDAYNTHESIZER ONLY THE TEXT IN BETWEEN WILL BE USED BY $SOUND

EXAMPLE 02B01_DocStruct.csd

<CsoundSynthesizer>; START OF A CSOUND FILE

<CsOptions> ; CSOUND CONFIGURATION
-odac
</CsOptions>

http://www.csounds.com/manual/html/instr.html
http://www.csounds.com/manual/html/endin.html
b-csound-syntax#InsertNoteID_16
b-csound-syntax#InsertNoteID_28

<Cslnstruments> ; INSTRUMENT DEFINITIONS GO HERE

; Set the audio sample rate to 44100 Hz
sr=44100

instr 1

; a 440 Hz Sine Wave

asin oscils 0dbfs/4, 440, 0
out asin

endin

</Cslnstruments>

<CsScore> ; SCORE EVENTS GO HERE
i101
</CsScore>

</CsoundSynthesizer> ; END OF THE CSOUND FILE
; Anything after is ignored by Csound

$OMMENTS WHICH ARE LINES OF TEXT THAT $SOUND WILL IGNORE ARE STARTED WITF
CHARACTER .ULTI LINE COMMENTS CAN BE MADE BY ENCASING THEM BETWEEN ANL

OPCODES

OPCODES OR 6NIT GENERATORS ARE THE BASIC BUILDING BLOCKS OF $SOUND 0PCO
MANY THINGS LIKE PRODUCE OSCILLATING SIGNALS FILTER SIGNALS PERFORM MATHE
FUNCTIONS OR EVEN TURN ON AND OFF INSTRUMENTS OPCODES DEPENDING ON THEI
TAKE INPUTS AND OUTPUTS &ACH INPUT OR OUTPUT IS CALLED IN PROGRAMMING TEFR
ARGUMENT OPCODES ALWAYS TAKE INPUT ARGUMENTS ON THE RIGHT AND OUTPUT T
THE LEFT LIKE THIS

output OPCODE inputl, input2, input3, .., inputN

'OR EXAMPLEJHEIGRFPCODE HAS THREE INPUTS AMPLITUDE FREQUENCY AND PHASE A
PRODUCES A SINE WAVE SIGNAL

asSin oscils 0dbfs/4, 440, 0

*N THIS CASE A)ERTZ OSCILLATION STARTING AT PHASE RADIANS WITH AN AMPLITL
Odbfs/4 A QUARTER OF D# AS FULL SCALE WILL BE CREATED AND ITS OUTPUT WILL BE ¢
CONTAINER Gf8ihBBBIE ORDER OF THE ARGUMENTS IS IMPORTAN®sGEHE FIRST INPUT TO
WILL ALWAYS BE AMPLITUDE THE SECOND FREQUENCY AND THE THIRD PHASE

ANY OPCODES INCLUDE OPTIONAL INPUT ARGUMENTS AND OCCASIONALLY OPTIONAL 1
ARGUMENTS 5HESE WILL ALWAYS BE PLACED AFTER THE ESSENTIAL ARGUMENTS *N T
ANUAL DOCUMENTATION THEY ARE INDICATED USING SQUARE BRACKETS <> *F OPTIC
ARGUMENTS ARE OMITTED THEY ARE REPLACED WITH THE DEFAULT VALUES INDICATEI

http://www.csounds.com/manual/html/oscils.html

ANUAL 5HE ADDITION OF OPTIONAL OUTPUT ARGUMENTS NORMALLY INITIATES A DIFFE
THAT OPCODE FOR EXAMPLE A STEREO AS OPPOSED TO MONO VERSION OF THE OPC(

VARIABLES

" VARIABLE IS A NAMED CONTAINER *T IS APLACE TO STORE THINGS LIKE SIGNALS OR
WHERE THEY CAN BE RECALLED BY USING THEIR NAME *N $SOUND THERE ARE VARIOU
VARIABLES 5HE EASIEST WAY TO DEAL WITH VARIABLES WHEN GETTING TO KNOW $SO
IMAGINE THEM AS CABLES

*F YOU WANT TO PATCH THIS TOGETHER OSCILLATOR 'ILTER OUTPUT

YOU NEED TWO CABLES ONE GOING OUT FROM THE OSCILLATOR INTO THE FILTER AND
FILTER TO THE OUTPUT 5HE CABLES CARRY AUDIO SIGNALS WHICH ARE VARIABLES BE
LETTER A

aSource buzz 0.8, 200, 10,1
aFiltered moogladder aSource, 400, 0.8
out aFiltered

*N THE EXAMPLE ABOMEBZTHRECODE PRODUCES A COMPLEX WAVERSIRIMAS SIGNAL

SHIS SIGNAL IS FED IMQ@OGEADOBRODE WHICH IN TURN PRODUCES THE SIGNAL
aFiltered SHEOUDPCODE TAKES THIS SIGNAL AND SENDS IT TO THE OUTPUT WHETHER
THE SPEAKERS OR TO A RENDERED FILE

0THER COMMON VARIABLE TYPES ARE K VARIABLES WHICH STORE CONTROL SIGNALS
UPDATED LESS FREQUENTLY THAN AUDIO SIGNALS AND | VARIABLES WHICH ARE CON
EACH INSTRUMENT NOTE

:OU CAN FIND MORE INFORMATION ABOUT NERE\BHESTMRES AHEBIN THE
$SOUND +OURNAL

USING THE MANUAL

5HESSOUND 3EFERENCE .FSNWBDMPREHENSIVE SOURCE REGARDING $SOUND S SYNTA!
OPCODES "LL OPCODES HAVE THEIR OWN MANUAL ENTRY DESCRIBING THEIR SYNTAX.
AND THE MANUAL CONTAINS A DETAILED REFERENCE ON THE $SOUND LANGUAGE AND

*N$SOUNDXYDOU CAN FIND THE $SOUND .ANUAL IN THE)ELP .ENU :OU CAN QUICKLY GO T
PARTICULAR OPCODE ENTRY IN THE MANUAL BY PUTTING THE CURSOR ON THE OPCOD
4HIFT' 8IN9SOUNDSABBAGENELURALSO PROVIDE EASY ACCESS TO THE MANUAL

http://www.csounds.com/manual/html/buzz.html
http://www.csounds.com/manual/html/moogladder.html
http://www.csounds.com/manual/html/out.html
http://en.flossmanuals.net/bin/view/Csound/LOCALANDGLOBALVARIABLES
http://www.csounds.com/journal/issue10/CsoundRates.html
http://www.csounds.com/manual/html/indexframes.html
http://qutecsound.sourceforge.net
http://winxound.codeplex.com
http://code.google.com/p/cabbage
http://blue.kunstmusik.com/

‘IND ALL OPTIONS FLAGS IN ALPHABETICAL ORDER AT WWW CSOUNDS COM MA
HTML $OMMAND'LAGS HTML OR SORTED BY CATEGORY AT WWW CSOUNDS COM

HTML $OMMAND'LAGS$ATEGGRY HTML

*T IS NOT OBLIGATORY TO INCLUDE ORCHESTRA)EADER 4TATEMENTS SR KR K&
ETC INTHE SECTION *F THEY ARE OMITTED THEN THE DEFAULT VALUE WILL BE
sr AUDIO SAMPLING RATE DEFAULT VALUE IS

kr CONTROL RATE DEFAULT VALUE IS BUT OVERWRITTEN IF KSMPS IS SPECIF
KR SR KSMPS

ksmps NUMBER OF SAMPLES IN A CONTROL PERIOD DEFAULT VALUE IS

nchnls NUMBER OF CHANNELS OF AUDIO OUTPUT DEFAULT VALUE IS MONO
Odbfs VALUE OF DECIBELS USING FULL SCALE AMPLITUDE DEFAULT IS

.ODERN AUDIO SOFTWARE NORMAL USES DBFS

3EAD CHAPTER TO KNOW MORE ABOUT THESE TERMS FROM A GENERAL PERSF

3EAD CHAPTER " TO KNOW MORE IN DETAIL ABOUT KSMPS AND FRIENDS

b-csound-syntax#InsertNoteID_16_marker17
b-csound-syntax#InsertNoteID_28_marker29

CONFIGURING MIDI

$SOUND CAN RECEIVE .*%* EVENTS LIKE .*%* NOTES AND .*%* CONTROL CHANGES FRC
EXTERNAL .*%* INTERFACE OR FROM ANOTHER PROGRAM VIA A VIRTUAL .*%* CABLE 5F
INFORMATION CAN BE USED TO CONTROL ANY ASPECT OF SYNTHESIS OR PERFORMAN(

$SOUND RECEIVES .*%* DATA THROUGH .*%* 3EALTIME .ODULES 5HESE ARE SPECIAL $¢
PLUGINS WHICH ENABLE .*%* INPUT USING DIFFERENT METHODS ACCORDING TO PLATF
ARE ENABLED USHN@GTMHECOMMAND LINEIRIAEECSsOptions>SECTION OF YOUR

CSD FILE BUT CAN ALSO BE SET INTERACTIVELY ON SOME FRONT ENDS VIA THE CONFI
SETUPS

SHERE IS THE UNIVERSAL PORTMIDRAMODISIACROSS PLATFORM MODULE FOR .*%*
*0 AND SHOULD BE AVAILABLE ON ALL PLATFORMS 50 ENABLE THE PORTMIDI MODULE
USE THE FLAG

-+rtmidi=portmidi

"FTER SELECTING THE 35 .*%* MODULE FROM A FRONT END OR THE COMMAND LINE YO
SELECT THE .*%* DEVICES FOR INPUT AND OUTPUT 5HESE ARE SET USING THE FLAGS .
RESPECTIVELY FOLLOWED BY THE NUMBER OF THE INTERFACE :O0U CAN USUALLY USE

-M999
50 GET A PERFORMANCE ERROR WITH A LISTING OF AVAILABLE INTERFACES

'OR THE 10RT.IDI MODULE AND OTHERS LIKE "-4" YOU CAN SPECIFY NO NUMBER TO US
DEFAULT .*%* INTERFACE OR THE A CHARACTER TO USE ALL DEVICES 5HIS WILL EVEN
% DEVICES ARE PRESENT

-Ma

40 IF YOU WANT .*%* INPUT USING THE PORTMIDI MODULE USING DEVICE FOR INPUT A
DEVICE FOR OUTPWCEYO®iiRNs>SECTION SHOULD CONTAIN

-+rtmidi=portmidi -M2 -Q1

SHERE IS A SPECIAL VIRTUAL 35 .*%* MODULE WHICH ENABLES YIRTNRUT FROM A
KEYBOARO ENABLE IT YOU CAN USE

http://www.csounds.com/manual/html/CommandFlagsCategory.html
http://portmedia.sourceforge.net/
http://www.csounds.com/manual/html/MidiTop.html#MidiVirtual
http://www.csounds.com/manual/html/MidiTop.html#MidiVirtual

-+rtmidi=virtual -MO

PLATFORM SPECIFIC MODULES

*F THE PORTMIDI MODULE IS NOT WORKING PROPERLY FOR SOME REASON YOU CAN T
PLATFORM SPECIFIC MODULES

Linux
ON -INUX SYSTEMS YOU MIGHT ALSO HAVE AN ALSA MODULE TO USE THE ALSA RAW .*¢

INTERFACE 5HIS IS DIFFERENT FROM THE MORE COMMON ALSA SEQUENCER INTERFAC
TYPICALLY REQUIRE THE SND VIRMIDI MODULE TO BE LOADED

OS X
ON 04 9 YOU MAY HAVE A COREMIDI MODULE AVAILABLE
Windows

ON 8INDOWS YOU MAY HAVE A WINMME .*%* MODULE

MIDI I/O IN CSOUNDQT

"S WITH "UDIO *0 YOU CAN SET THE .*%* PREFERENCES IN THE CONFIGURATION DIALOC
YOU WILL FIND A SELECTION BOX FOR THE 35 .*%* MODULE AND TEXT BOXES FOR .*%* |
OUTPUT DEVICES

HOW TO USE A MIDI KEYBOARD

ONCE YOU VE SET UP THE HARDWARE YOU ARE READY TO RECEIVE .*%* INFORMATION
IT IN$SOUND #Y DEFAULT WHEN A .*%* NOTE IS RECEIVED IT TURNS ON THE $SOUND I
CORRESPONDING TO ITS CHANNEL NUMBER SO IF ANOTE IS RECEIVED ON CHANNEL
INSTRUMENT IF IT IS RECEIVED ON CHANNEL IT WILL TURN ON INSTRUMENT AND S(

F YOU WANT TO CHANGE THIS ROUTING OF .%* CHANNELS TO INSTRUMENTS YOU CAN
MASSIGNPCODE 'OR INSTANCE THIS STATEMENT LETS YOU ROUTE YOUR .*%* CHANNEL
INSTRUMENT

massign 1, 10

ON THE FOLLOWING EXAMPLE A SIMPLE INSTRUMENT WHICH PLAYS A SINE WAVE IS DE
INSTRUMENT SHERE ARE NO SCORE NOTE EVENTS SO NO SOUND WILL BE PRODUCEL
NOTE IS RECEIVED ON CHANNEL

EXAMPLE 02C01_Midi_Keybd_in.csd

<CsoundSynthesizer>
<CsOptions>
-+rtmidi=portmidi -Ma -odac
</CsOptions>
<Cslnstruments>

:Example by AndrZs Cabrera

sr=44100
ksmps = 32
nchnls = 2
Odbfs =1

massign 0, 1 ;assign all MIDI channels to instrument 1
giSine ftgen 0,0,2710,10,1 ;a function table with a sine wave

instr 1

iCps cpsmidi ;get the frequency from the key pressed

iAmp ampmidi 0dbfs * 0.3 ;get the amplitude

aOut poscil iAmp, iCps, giSine ;generate a sine tone
outs aOut, aOut ;write it to the output

endin

</Cslnstruments>
<CsScore>

e 3600

</CsScore>
</CsoundSynthesizer>

/OTE THAT $SOUND HAS AN UNLIMITED POLYPHONY IN THIS WAY EACH KEY PRESSED S
INSTANCE OF INSTRUMENT AND YOU CAN HAVE ANY NUMBER OF INSTRUMENT INSTAN
SAME TIME

HOW TO USE A MIDI CONTROLLER

50 RECEIVE .*%* CONTROLLER EVENTSQORCANBE IWSED THE FOLLOWING

EXAMPLE INSTRUMENT IS TURNED ON FOR SECONDS *T WILL RECEIVE CONTROLLER
MODULATION WHEEL ON CHANNEL AND CONVERT .*%* RANGE TO A RANGE BETWI
AND 5HIS VALUE IS USED TO SET THE FREQUENCY OF A SIMPLE SINE OSCILLATOR

http://www.csounds.com/manual/html/massign.html
http://www.csounds.com/manual/html/ctrl7.html

EXAMPLE 02C02_Midi_Ctl_in.csd

<CsoundSynthesizer>
<CsOptions>

-+rtmidi=virtual -M1 -odac
</CsOptions>
<Cslnstruments>

:Example by AndrZs Cabrera

sr=44100
ksmps = 32
nchnls = 2
Odbfs =1

giSine ftgen 0,0,2710,10,1

instr 1
; --- receive controller number 1 on channel 1 and scale from 220 to 440
kFreq ctrl7 1, 1, 220, 440
; --- use this value as varying frequency for a sine wave
aOut poscil 0.2, kFreq, giSine
outs aOut, aOut
endin
</Cslnstruments>
<CsScore>
i1060
e
</CsScore>
</CsoundSynthesizer>

OTHER TYPE OF MIDI DATA

$SOUND CAN RECEIVE OTHER TYPE OF .*%* LIKE PITCH BEND AND AFTERTOUCH THROI
OF SPECIFIC OPCODES (ENERIC .*%* %ATA CAN BE REMIENNEIFPCODEG SHE
EXAMPLE BELOW PRINTS TO THE CONSOLE THE DATA RECEIVED VIA .*%*

EXAMPLE 02C03_Midi_all_in.csd

<CsoundSynthesizer>
<CsOptions>
-+rtmidi=portmidi -Ma -odac
</CsOptions>
<Cslnstruments>

:Example by AndrZs Cabrera

sr=44100
ksmps = 32
nchnls = 2
Odbfs =1

instr 1
kStatus, kChan, kDatal, kData2 midiin

http://www.csounds.com/manual/html/midiin.html

if kStatus != 0 then ;print if any new MIDI message has been received
printk O, kStatus
printk 0, kChan
printk 0, kDatal
printk 0, kData2
endif

endin

</Cslnstruments>
<CsScore>

i1 0 3600

e

</CsScore>
</CsoundSynthesizer>

LIVE AUDIO

CONFIGURING AUDIO & TUNING AUDIO
PERFORMANCE

Selecting Audio Devices and Drivers

$SOUND RELATES TO THE VARIOUS INPUTS AND OUTPUTS OF SOUND DEVICES INSTALL
COMPUTER AS A NUMBERED LIST *F YOU WISH TO SEND OR RECEIVE AUDIO TO OR FRO
AUDIO CONNECTION YOU WILL NEED TO KNOW THE NUMBER BY WHICH $SOUND KNOWS
ARE NOT SURE OF WHAT THAT IS YOU CAN TRICK $SOUND INTO PROVIDING YOU WITH A
AVAILABLE DEVICES BY TRYING TO RUN $SOUND USING AN OBVIOUSLY OUT OF RANGE |
LIKE THIS

EXAMPLE 02D01_GetDevicelList.csd

<CsoundSynthesizer>
<CsOptions>

-iadc999 -odac999
</CsOptions>
<Cslnstruments>
;Example by AndrZs Cabrera
instr 1

endin
</Cslnstruments>
<CsScore>

e

</CsScore>
</CsoundSynthesizer>

SHE INPUT AND OUTPUT DEVICES WILL BE LISTED SEPERATELY 4PECIFY YOUR INPUT DI
-iadc FLAG AND THE NUMBER OF YOUR INPUT DEVICE AND YOUR @da®UT DEVICE WITH"
FLAG AND THE NUMBER OF YOUR OUTPUT DEVICE 'OR INSTANCE IF YOU SELECT THE ¢
FROM THE LIST ABOVE BOTH FOR INPUT AND OUTPUT YOU MAY INCLUDE SOMETHING L

-iadc2 -odac3
IN THE $SOPTIONS SECTION OF YOU CSD FILE

5HE 35 REAL TIME OUTPUT MODULE CAN BESEUWTH.ABE*F YOU DON T USE

THIS FLAG THE 10RT"UDIO DRIVER WILL BE USED OTHER POSSIBLE DRIVERS ARE JACK
-INUX MME 8INDOWS OR $ORE"UDIO .AC 40 THIS SETS YOUR AUDIO DRIVER TO MME
INSTEAD OF 10RT "UDIO

-+rtaudio=mme

Tuning Performance and Latency

-IVE PERFORMANCE AND LATENCY DEPEND MAINLY ON THE SIZES OF THE SOFTWARE A
HARDWARE BUFFERS 5HEY CAN BE SET IN THE $SOPTIONS USING THE # FLAG FOR THI

BUFFER AND THE B FLAG FOR THE SOORVMABEANEEERIIS STATEMENT SETS THE
HARDWARE BUFFER SIZE TO SAMPLES AND THE SOFTWARE BUFFER SIZETO SAMPL

-B512 -b128

5HE OTHER FACTOR WHICH AFFECTS $SOUND S LIVES#EREAIRNANB IS [BHEET
IN THE HEADER OF THE $S*NSTRUMENTS SECTION #Y THIS VALUE YOU DEFINE HOW M
SAMPLES ARE PROCESSED EVERY $SOUND CONTROL CYCLE

SRY YOUR REALTIME PERFORMANCE WITH # B ANDBK$SMPSOFTWARE

BUFFER OF SAMPLES A HARDWARE BUFFER OF AND A SAMPLE RATEOF YOU WII
AROUND MS LATENCY WHICH IS USABLE FOR LIVE KEYBOARD PLAYING *F YOU HAVE F
WITH EITHER THE LATENCY OR THE PERFORMANCE TWEAKIBREVALUES AS DESCRIBEL

CsoundQt

50 DEFINE THE AUDIO HARDWARE USED FOR REALTIME PERFORMANCE OPEN THE CON
DIALOG *N THE 3UN 5AB YOU CAN CHOOSE YOUR AUDIO INTERFACE AND THE PREFEF
:OU CAN SELECT INPUT AND OUTPUT DEVICES FROM A LIST IF YOU PRESS THE BUTTONES
THE TEXT BOXES FOR INPUT AND OUTPUT NAMES 40FTWARE AND HARDWARE BUFFER
AT THE TOP OF THIS DIALOGUE BOX

d-live-audio#InsertNoteID_8
http://www.csounds.com/manual/html/ksmps.html
d-live-audio#InsertNoteID_6
http://www.csounds.com/manual/html/UsingOptimizing.html

CSOUND CAN PRODUCE EXTREME DYNAMIC
RANGE!

$SOUND Qabiduce extreme dynamic rangeSO KEEP AN EYE ON THE LEVEL YOU ARE
SENDING TO YOUR OUTPUT 5HE NUMBER WHICH DESCRIBES THE LEVEL OF D# CAN BE
$SOUND BY THE-ASSIGNMENT IN THE $S*NSTRUMENTS HEADER 5HERE IS NO LIMITATI
YOU SET DBFS AND SEND A VALUEMM¥-can damage your ears and speakers!

USING LIVE AUDIO INPUT AND OUTPUT

50 PROCESS AUDIO FROM AN EXTERNAL SOURCE FOR EXAMPUEBHICROPHONE USE
OPCODE TO ACCESS ANY OF THE INPUTS OF YOUR AUDIO INPUDUDESHVESOR THE OUTP!
YOU ALL NECESSARY FLEXIBILITY 5HE FOLLOWING EXAMPLE TAKES A LIVE AUDIO INPU

http://www.csounds.com/manual/html/Zerodbfs.html
http://www.csounds.com/manual/html/inch.html
http://www.csounds.com/manual/html/outch.html

TRANSFORMS ITS SOUND USING RING MODULATION 5HE $SOUND $ONSOLE SHOULD OL
TIMES PER SECOND THE INPUT AMPLITUDE LEVEL

EXAMPLE 02D02_Livelnput.csd

<CsoundSynthesizer>

<CsOptions>

;CHANGE YOUR INPUT AND OUTPUT DEVICE NUMBER HERE IF NECESSARY!
-iadcO -odac0 -B512 -b128

</CsOptions>

<Cslnstruments>

;Example by Joachim Heintz

sr=44100 ;set sample rate to 44100 Hz

ksmps = 32 ;number of samples per control cycle
nchnls = 2 ;use two audio channels

O0dbfs = 1 ;set maximum level as 1

giSine ftgen 0, 0, 2*10, 10, 1 ;table with sine wave

instr 1

aln inch 1 ;take input from channel 1

kinLev downsamp aln ;convert audio input to control signal
printk .2, abs(kinLev)

;make modulator frequency oscillate 200 to 1000 Hz

kModFreq poscil 400, 1/2, giSine

kModFreq = kModFreg+600
aMod poscil 1, kModFreq, giSine ;modulator signal
aRM = aln * aMod ;ring modulation
outch 1, aRM, 2, aRM ;output to channel 1 and 2
endin
</CslInstruments>
<CsScore>
i 103600
</CsScore>

</CsoundSynthesizer>

-IVE "UDIO IS FREQUENTLY USED WITH LIVE DEVICES LIKE WIDGETS OR .*%* *N $SOUND
CAN FIND SEVERAL EXAMPLES IN &XAMPLES (ETTING 4TARTED 3EALTIME *NTERACTI

"S 7ICTOR -AZZARINI EXPLAINS MAIL TO +OACHIM)EINTZ MARCH THE ROLE
OF B AND # VARIES BETWEEN THE "UDIO .ODULES

'OR PORTAUDIO # 1S ONLY USED TO SUGGEST A LATENCY TO THE BACKEND W
IS USED TO SET THE ACTUAL BUFFERSIZE

'OR COREAUDIO # 1S USED AS THE SIZE OF THE INTERNAL CIRCULAR BUFFER £/
USED FOR THE ACTUAL *0 BUFFER SIZE

'OR JACK # IS USED TO DETERMINE THE NUMBER OF BUFFERS USED IN CONJUI
WITH B NUM [. . BIS THE SIZE OF EACH BUFFER

'OR ALSA # 1S THE SIZE OF THE BUFFER SIZE B IS THE PERIOD SIZE A BUFFER
DIVIDED INTO PERIODS

'OR PULSE B IS THE ACTUAL BUFFERSIZE PASSED TO THE DEVICE # IS NOT US

*N OTHER WORDS # IS NOT TOO SIGNIFICANT IN NOT USED IN BUT HAS A PAF

PLAY IN AND WHICH IS FUNCTIONALLY SIMILAR
*T IS ALWAYS PREFERABLE TO USE POWER OF TWO VALUES FOR KSMPS WHICH
AS BLOCK SIZE IN 1URE%ATA OR VECTOR SIZE IN .AX +UST WITH KSMPS

YOU WILL TAKE ADVANTAGE OF THE FULL DUPLEX AUDIO WHICH PROVIDES
TIME AUDIO .AKE SURE YOUR KSMPS DIVIDES YOUR BUFFER SIZE WITH NO REMA

40 FOR B YOU CAN USE KSMPS OR?

d-live-audio#InsertNoteID_8_marker9
d-live-audio#InsertNoteID_6_marker7

RENDERING TO FILE

WHEN TO RENDER TO FILE

$SOUND CAN ALSO RENDER AUDIO STRAIGHT TO A SOUND FILE STORED ON YOUR HARL
AS LIVE AUDIO SENT TO THE AUDIO HARDWARE 5HIS GIVES YOU THE POSSIBILITY TO HE
OF VERY COMPLEX PROCESSES WHICH YOUR COMPUTER CAN T PRODUCE IN REALTIME
TO RENDER SOMETHING IN $SOUND TO IMPORT IT IN AN AUDIO EDITOR OR AS THE FINA

TAPE PIECE

$SOUND CAN RENDER TO FORMATS LIKE WAV AIFF OR OGG AND OTHER LESS POPULAI
MP DUE TO ITS PATENT AND LICENCING PROBLEMS

RENDERING TO FILE

4AVE THE FOLLOWING CODE AS 3ENDER CSD

EXAMPLE 02E01 Render.csd

<CsoundSynthesizer>

<CsOptions>

-0 Render.wav

</CsOptions>

<Cslnstruments>

;Example by Alex Hofmann

instr 1

aSin oscils 0dbfs/4, 440, 0
out aSin

endin

</Cslnstruments>

<CsScore>

i101

e

</CsScore>

</CsoundSynthesizer>

OPEN THE 5ERMINAL 1ROMPT $ONSOLE AND TYPE

csound /path/to/Render.csd

/OW BECAUSE YOU CHANGHEDAGIEN THE $SOPTIONS FROM O DAC TO O

filename THE AUDIO OUTPUT IS NO LONGER WRITTEN IN REALTIME TO YOUR AUDIO DEVI
INSTEAD TO A FILE 5HE FILE WILL BE RENDERED TO THE DEFAULT DIRECTORY USUALL
DIRECTORY 5HIS FILE CAN BE OPENED AND PLAYED IN ANY AUDIO PLAYER OR EDITOR

"UDACITY #Y DEFAULT CSOUND IS A NON REALTIME PROGRAM 40 IF NO COMMAND LIN

e-rendering-to-file#InsertNoteID_6

ARE GIVEN IT WILL ALWAYS RENDER THE C&stMadANIEYCALMEADL HEAR NOTHING
IN REALTIME

SHE-0 FLAG CAN ALSO BE USED TO WRITE THE OUTPUT FILE TO A CERTAIN DIRECTORY -
THIS FOR 8INDOWS

<CsOptions>
-0 c:/music/samples/Render.wav
</CsOptions>

AND THIS FOR -INUX OR .AC 049

<CsOptions>
-0 /Users/JSB/organ/tatata.wav
</CsOptions>

Rendering Options

5HE INTERNAL RENDERING OF AUDIO DATA IN $SOUND IS DONE WITH BIT FLOATING PC
NUMBERS %EPENDING ON YOUR NEEDS YOU SHOULD DECIDE THE PRECISION OF YOU
OUTPUT FILE

d *F YOU WANT TO RENDER BIT FLOATS USEfTHE OPTION FLAG

d *F YOU WANT TO RENDER BIT USE THE FLAG

d *F YOU WANT TO RENDER BIT USEORIEGTAMNG BECAUSE THIS IS ALSO THE
DEFAULT IN $SOUND

'OR MAKING SURE THAT THE HEADER OF YOUR SOUNDFILE WILL BE WRITTEN CORRECT
USE THE FLAG FOR A 8"7 FILE OR FHEG FOR A"™" FILE 40 THESE OPTIONS WILL
RENDER THE FILE 80W WAV AS 8"7 FILE WITH BIT ACCURACY

<CsOptions>
-0 Wow.wav -W -3
</CsOptions>

Realtime and Render-To-File at the Same Time

40METIMES YOU MAY WANT TO SIMULTANEOUSLY HAVE REALTIME OUTPUT AND FILE RE
DISK LIKE RECORDING YOUR LIVE PERFORMANCE 5HIS CAN BEAOHIEVED BY USING TH
OPCODE :0U JUST HAVE TO SPECIFY YOUR OUTPUT FILE NAME 'ILE TYPE AND FORMAT
A NUMBER FOR INSTANCE SPECIFIES WAV BIT SEE THE MANUAL PAGE FOR MORE
INFORMATION S5HE FOLLOWING EXAMPLE CREATES A RANDOM FREQUENCY AND PANN
OF A SINE WAVE AND WRITES IT TO THE FILE LIVE@RECORD WAV IN THE SAME DIREC"
CSD FILE

EXAMPLE 02E02_RecordRT.csd

http://www.csounds.com/manual/html/fout.html

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

seed 0 ;each time different seed for random
giSine ftgen 0, 0, 210, 10, 1 ;a sine wave

instr 1
kFreq randomi 400, 800, 1 ;random sliding frequency
aSig poscil .2, kFreq, giSine ;sine with this frequency
kPan randomi O, 1, 1 ;random panning
aL,aR pan2 aSig, kPan ;stereo output signal
outs al, aR ;live output
fout "live_record.wav", 18, alL, aR ;write to soundfile
endin

</Cslnstruments>
<CsScore>

i1010

e

</CsScore>
</CsoundSynthesizer>

CsoundQt

“"LL THE OPTIONS WHICH ARE DESCRIBED IN THIS CHAPTER CAN BE HANDLED VERY EAS
$SOUND2T

d 3ENDERING TO FILE IS SIMPLY DONE BY CLICKING THE 3ENDER BUTTON OR CHC
$ONTROL 3ENDER TO'ILE IN THE .ENU

d 50 SET FILE DESTINATION AND FILE TYPE YOU CAN MAKE YOUR OWN SETTINGS |
$SOUND2T $SONFIGURATION UNDER THE TAB 3UN 'ILE OFFLINE RENDER 5HE
DEFAULT ISA #IT WAV FILE

d 50 RECORD A LIVE PERFORMANCE JUST CLICK THE 3ECORD BUTTON :0OU WILL
WITH THE SAME NAME AS YOUR CSD FILE AND A NUMBER APPENDED FOR EACH
TASK IN THE SAME FOLDER AS YOUR CSD FILE

OR BIT DEPTH SEE THE SECTION ABOUT #IT DEPTH 3ESOLUTION IN CHAPTER " ¢
?
"UbDIO*

e-rendering-to-file#InsertNoteID_6_marker7

INITIALIZATION AND
PERFORMANCE PASS

/OT ONLY FOR BEGINNERS BUT ALSO FOR EXPERIENCED $SOUND USERS MANY PROBL
FROM THE MISUNDERSTANDING OF THE SO CALLED | RATE AND K RATE :0U WANT $SOL
SOMETHING JUST ONCE BUT $SOUND DOES IT CONTINUOUSLY :OU WANT $SOUND TO L
CONTINUOUSLY BUT $SOUND DOES IT JUST ONCE *F YOU EXPERIENCE SUCH A CASE Y
PROBABLY HAVE CONFUSED | AND K RATE VARIABLES

SHE CONCEPT BEHIND THIS IS ACTUALLY NOT COMPLICATED #UT IT IS SOMETHING WHI¢
IMPLICITLY MENTIONED WHEN WE THINK OF A PROGRAM FLOW WHEREAS $SOUND WAN
EXPLICITELY 40 WE TEND TO FORGET IT WHEN WE USE $SOUND AND WE DO NOT NOTI(
ORDERED A STONE TO BECOME A WAVE AND A WAVE TO BECOME A STONE 5HIS CHAP?
EXPLICATE VERY CAREFULLY THE DIFFERENCE BETWEEN STONES AND WAVES AND HC
FROM THEM AFTER YOU UNDERSTOOD AND ACCEPTED BOTH QUALITIES

THE INIT PASS

8HENEVER A $SOUND INSTRUMENT IS CALLED ALL VARIABLES ARE SET TO INITIAL VALU
CALLED THE INITIALIZATION PASS

SHERE ARE CERTAIN VARIABLES WHICH STAY IN THE STATE IN WHICH THEY HAVE BEEN
INIT PASS 5HESE VARIABLES STARTHWEYAREK LOCAL ONLY CONSIDERED INSIDE AN
INSTRUMENT ORQVIFHKEY ARE GLOBAL CONSIDERED OVERALL IN THE ORCHESTRA
A SIMPLE EXAMPLE

EXAMPLE 03A01_Init-pass.csd

<CsoundSynthesizer>
<Cslnstruments>

giGlobal = 1/2
instr 1
iLocal = 1/4

print giGlobal, iLocal
endin

instr 2
iLocal = 1/5

print giGlobal, iLocal
endin

</Cslnstruments>
<CsScore>
i100

i200

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

SHE OUTPUT SHOULD INCLUDE THESE LINES
4&$5*0/

NEW ALLOC FOR INSTR

INSTR GI(LOBAL I-OCAL

NEW ALLOC FOR INSTR

INSTR GI(LOBAL I-OCAL

"S YOU SEE THE LOCAL VA&HIABXESAVE DIFFERENT MEANINGS IN THE CONTEXT OF THE
INSTRUMENT WHERE&ReDIS KNOWN EVERYWHERE AND IN THE SAME WAY *T IS ALSO WO
MENTIONING THAT THE PERFORMANCE TIME OF THE INSTRUMENTS P IS ZERO 5HIS M/

AS THE INSTRUMENTS ARE CALLED BUT ONLY THE INIT PASS IS PERFORMED

THE PERFORMANCE PASS

"FTER HAVING ASSIGNED INITIAL VALUES TO ALL VARIABLES $SOUND STARTS THE ACTL

"S MUSIC IS A VARIATION OF VALUESUNIOMESNALS ARE PRODUCING VALUES WHICH VAF
IN TIME *N ALL DIGITAL AUDIO THE TIME UNIT IS GIVEN BY THE SAMPLE RATE AND ONE

THE SMALLEST POSSIBLE TIME ATOM 'OR A SAMPLE RNESMMPLEZCOMES UP TO
THE DURATION OF SECONDS

40 PERFORMANCE FOR AN AUDIO APPLICATION MEANS BASICALLY CALCULATE ALL TH
ARE FINALLY BEING WRITTEN TO THE OUTPUT :0U CAN IMAGINE THIS AS THE COOPERA
AND A CALCULATOR 'OR EACH SAMPLE THE CLOCK TICKS AND FOR EACH TICK THE NE
CALCULATED

.OST AUDIO APPLICATIONS DO NOT PERFORM THIS CALCULATION SAMPLE BY SAMPLE *
MORE EFFICIENT TO COLLECT SOME AMOUNT OF SAMPLES IN A BLOCK OR VECTOR A
THEM ALL TOGETHER 5HIS MEANS IN FACT TO INTRODUCE ANOTHER INTERNAL CLOCK
APPLICATION A CLOCK WHICH TICKS LESS FREQUENTLY THAN THE SAMPLE CLOCK 'OR
ALWAYS ASSUMED YOUR SAMPLE RATE IS)Z YOUR BLOCK SIZE CONSISTS OF SAM
YOUR INTERNAL CALCULATION TIME CLOCK TICKS EVERY SECONDS *F YOUR E
SIZE CONSISTS OF SAMPLES THE CLOCK TICKS EVERY SECONDS

SHE FOLLOWING ILLUSTRATION SHOWS AN EXAMPLE FOR A BLOCK SIZE OF SAMPLES

ARE SHOWN AT THE BOTTOM LINE "BOVE ARE THE CONTROL TICKS ONE FOR EACH TEN
TOP TWO LINES SHOW THE TIMES FOR BOTH CLOCKS IN SECONDS *N THE UPMOST LINE
THE FIRST CONTROL CYCLE HAS BEEN FINISHED AT SECONDS THE SECOND ONE A

SECONDS AND SO ON

a-initialization-and-performance-pass#InsertNoteID_6
a-initialization-and-performance-pass#InsertNoteID_8
a-initialization-and-performance-pass#InsertNoteID_10
a-initialization-and-performance-pass#InsertNoteID_28

5HE RATE FREQUENCY OF THESE TICKS IS CALLED THE CONTROL RATE IN $SOUND #Y

REASONIT IS CALLED KONTROL RATE INSTEAD OF CONTROL RATE AND ABBREVIATED A
OF CR &ACH OF THE CALCULATION CYCLES IS CALLED A KCYCLE 5HE BLOCK SIZE OR
GIVEN BY KdBpsPARAMETER WHICH MEANS HOW MANY SAMPLES SMPS ARE COLLECT

ONE K CYELE
-ET US SEE SOME CODE EXAMPLES TO ILLUSTRATE THESE BASIC CONTEXTS
Implicit Incrementation

EXAMPLE 03A02_Perf-pass_incr.csd

<CsoundSynthesizer>
<Cslnstruments>

sr =44100

ksmps = 4410

instr 1

kCount init 0; set kcount to O first

kCount = kCount + 1; increase at each k-pass

printk 0, kCount; print the value
endin

</Cslnstruments>
<CsScore>

i101

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

:OUR OUTPUT SHOULD CONTAIN THE LINES
TIME
TIME
TIME

I
I
I
| TIME

a-initialization-and-performance-pass#InsertNoteID_12
a-initialization-and-performance-pass#InsertNoteID_14

| TIME
| TIME
| TIME
| TIME
| TIME
| TIME
" COUNTER K$OUNT IS SET HERE TO ZERO AS INITIAL VALUE 5HEN IN EACH CONTROL ¢
COUNTER IS INCREASED BY ONE 8HAT WE SEE HERE IS THE TYPICAL BEHAVIOUR OF A
LOOP HAS NOT BEEN SET EXPLICITELY BUT WORKS IMPLICITELY BECAUSE OF THE CON
RECALCULATION OF ALL K VARIABLES 40 WE CAN ALSO SPEAK ABOUT THE K CYCLES A

AND TIME TRIGGERED-KRY@MHANGING THE KSMPS VALUE FROM TO ANDTO
AND OBSERVE THE DIFFERENCE

S5HE NEXT EXAMPLE READS THE INCREGEMIAT RININGE FREQUENCY 5HE FIRST
INSTRUMENT CALLED 3ISE SETS THE KiEAGETRRBQEENTXL VALUE OF)Z AND

THEN ADDS)ZIN EVERY NEW K CYCLE "SKSMPS ONEKCYCLETAKES SECONDT
PERFORM 40 IN SECONDS THE FREQUENCY RISESFROM TO)Z "T THE LAST K CY1

THE FINAL FREQUENCY VALUE IS PSHETHBEOOWND INSTRUMENT 1ARTIALS INCREMENTS
THE COUNTER BY ONE FOR EACH K CYCLE BUT ONLY SETS THIS AS NEW FREQUENCY F
STEPS 40 THE FREQUENCY STAYS AT)Z FOR ONE SECOND THEN AT)Z FOR ONE SE
AND SO ON "S THE RESULTING FREQUENCIES ARE IN THE RATIO WE HEAR PART
ONA)ZFUNDAMENTAL FROM THE FIRST PARTIAL UP TO THE ST 5HE OPCODE PRINT
OUT THE FREQUENCY VALUE WHENEVER IT HAS CHANGED

EXAMPLE 03A03_Perf-pass_incr_listen.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<Cslnstruments>
sr=44100

ksmps = 441

Odbfs =1

nchnls = 2

;build a table containing a sine wave

giSine ftgen 0, 0,210, 10,1

instr Rise

kFreq init 100

aSine poscil .2, kFreq, giSine
outs aSine, aSine

;increment frequency by 10 Hz for each k-cycle

kFreq = kFreq + 10

;print out the frequency for the last k-cycle

kLast release

if kLast == 1 then

a-initialization-and-performance-pass#InsertNoteID_16
a-initialization-and-performance-pass#InsertNoteID_18

printk 0, kFreq
endif
endin

instr Partials

;initialize kCount

kCount init 100

;get new frequency if kCount equals 100, 200, ...
if kCount % 100 == 0 then

kFreq = kCount
endif

aSine poscil .2, kFreq, giSine
outs aSine, aSine

;increment kCount

kCount = kCount + 1

;print out kFreq whenever it has changed
printk2 kFreq

endin

</Cslnstruments>

<CsScore>

i "Rise" 03

i "Partials" 4 31

</CsScore>

</CsoundSynthesizer>

;example by joachim heintz

Init versus Equals

"FREQUENTLY OCCURING ERROR IS THAT INSTEAD OF SEJGUNGTHETKISARIABLE AS
SET ASount = 0 5HE MEANING OF BOTH STATEMENTS HAS ONE SIGKEMGANT DIFFERENCI
init 0 SETS THE VALUE FOR K$OUNT TO ZERO ONLY IN THE INIT PASS WITHOUT AFFECTI!
PERFORMANCE PASS K$OUNT SETS THE VALUE FOR K$OUNT TO ZERO AGAIN AND AC
PERFORMANCE CYCLE 40 THE INCREMENT ALWAYS STARTS FROM THE SAME POINT Al
REALLY HAPPENS

EXAMPLE 03A04_Perf-pass_no_incr.csd

<CsoundSynthesizer>
<Cslnstruments>

Sr=44100

ksmps = 4410

instr 1

kcount = 0; sets kcount to 0 at each k-cycle

kcount = kcount + 1; does not really increase ...
printk 0, kcount; print the value

endin

</CslInstruments>
<CsScore>
i101

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

OUTPUTS
I TIME
I TIME
I TIME
I TIME
I TIME
I TIME
I TIME
I TIME
I TIME
I TIME

A Look at the Audio Vector

5HERE ARE DIFFERENT OPCODES TO PRINGOERKISARABRESDE IN $SOUND TO
PRINT OUT THE AUDIO VECTOR DIRECTLY BWEg¥QPCANEITE BHE WHAT IS
HAPPENING INSIDE ONE CONTROL CYCLE WITH THE AUDIO SAMPLES

EXAMPLE 03A05_Audio_vector.csd

<CsoundSynthesizer>
<Cslnstruments>

sr =44100
ksmps =5
Odbfs =1
instr 1
aSine oscils 1, 2205, 0
kVecl vaget 0, aSine
kVec2 vaget 1, aSine
kVec3 vaget 2, aSine
kVec4 vaget 3, aSine
kVech vaget 4, aSine
printks "kVecl =% f, kVec2 = % f, kVec3 = % f, kVec4 = % f, kVec5 = % fin",\
0, kVecl, kVec2, kVec3, kVec4, kVech
endin
</Cslnstruments>
<CsScore>
i 10[1/2205]
</CsScore>

</CsoundSynthesizer>
;example by joachim heintz

SHE OUTPUT SHOWS THESE LINES
K7EC K7EC K7EC K7EC K7EC

a-initialization-and-performance-pass#InsertNoteID_20

K7EC K7EC K7EC K7EC K7EC
K7EC K7EC K7EC K7EC K7EC

K7EC K7EC K7EC K7EC K7EC

*N THIS EXAMPLE THE NUMBER OF AUDIO SAMPLES IN ONE K CYCLE IS SET TO FIVE BY -
STATEMENMiTps=55HE FIRST ARGUMENT TO VAGET SPECIFIES WHICH SAMPLE OF THE BL
GET 'OR INSTANCE

kVecl vaget 0, aSine

GETS THE FIRST VALUE OF THE AUDIO VECTOR AND WRITES IT INTO THE VARIABLE K7EC
FREQUENCY OF)Z AT ASAMPLE RATEOF)Z YOUNEED SAMPLES TO WRITE ONE
COMPLETE CYCLE OF THE SINE 40 WE CALL THE INSTRUMENT FOR SECONDS AND \
CYCLES 5HE PRINTOUT SHOWS EXACTLY ONE PERIOD OF THE SINE WAVE

A Summarizing Example

"FTER HAVING PUT SO MUCH ATTENTION TO THE DIFFERENT SINGLE ASPECTS OF INITIA
PERFORMANCE AND AUDIO VECTORS THE NEXT EXAMPLE TRIES TO SUMMARIZE AND IL
ASPECTS IN THEIR PRACTICAL MIXTURE

EXAMPLE 03A06_Init_perf_audio.csd

<CsoundSynthesizer>

<CsOptions>

-0 dac

</CsOptions>

<Cslnstruments>

sr=44100

ksmps = 441

nchnls = 2

Odbfs = 1

instr 1

iAmp = p4 ;amplitude taken from the 4th parameter of the score line

iFreq = p5 ;frequency taken from the 5th parameter

; --- move from 0 to 1 in the duration of this instrument call (p3)

kPan line 0,p3,1

aNote oscils iAmp, iFreq, O ;create an audio signal

aL,aR pan2 aNote, kPan ;let the signal move from left to right
outs al, aR ;write it to the output

endin

</Cslnstruments>

<CsScore>

i1030.2443

</CsScore>

</CsoundSynthesizer>
;example by joachim heintz

"SKSMPS EACH CONTROL CYCLEIS SECONDS LONG 40 THIS HAPPENS
WHEN THE INSTRUMENT CALL IS PERFORMED

*NIT"ND1ERF1ASS

ACCESSING THE INITIALIZATION VALUE OF A
K-VARIABLE

*T HAS BEEN SAID THAT THE INIT PASS SETS INITIAL VALUES TO ALL VARIABLES *T MUST
THAT THIS INDEED CONCERNS ALL VARIABLES NOT ONLY THE | VARIABLES *T IS ONLY T
VARIABLES ARE NOT AFFECTED BY ANYTHING WHICH HAPPENS LATER IN THE PERFORN
K AND A VARIABLES GET THEIR INITIAL VALUES

"S WE SAW THE INIT OPCODE IS USED TO SET INITIAL VALUES FOR K OR A VARIABLES E
THE OTHER HAND YOU CAN GET THE INITIAL VALUE OF A K VARIABLE WHICH HAS NOT B
EXPLICITELY BY THE | FACILITY 5HIS IS A SIMPLE EXAMPLE

EXAMPLE 03A07_Init-values_of k-variables.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<Cslnstruments>

instr 1

gkLine line 0, p3, 1

endin

instr 2

ilnstr2LineValue = i(gkLine)
print ilnstr2LineValue
endin

instr 3

ilnstr3LineValue = i(gkLine)
print ilnstr3LineValue
endin

</CslInstruments>
<CsScore>

i105

i220

i340

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

OUTPUTS

NEW ALLOC FOR INSTR
5 55
NEW ALLOC FOR INSTR
INSTR I*NSTR -INE7ALUE
5 55
NEW ALLOC FOR INSTR
INSTR I*NSTR -INE7ALUE
5 55

*NSTRUMENT PRODUCES A RISING K SIGNAL STARTING AT ZERO AND ENDING AT ONE
FIVE SECONDS 5HE VALUES OF THIS LINE RISE ARE WRITTEHQKLOer flE EROBAL VARIABLE
TWO SECONDS INSTRUMENT IS CALLED AND EXAYKINESATHES/NLUPASFS VIA

i(gkLine) SHE VALUE AT THIS TIME IS PRINTED OUT AMYNMEZLINBWERIASSHE

SAME HAPPENS FOR INSTRUMENT WHIG${rBRH¢Val@JF 0.800AS IT HAS BEEN

STARTED AT SECONDS

SHE | FEATURE IS PARTICULARILY USEFUL IF YOU NEED TO EXAMINE THE VALUE OF AN
SIGNAL FROM A WIDGET OR FROM MIDI AT THE TIME WHEN AN INSTRUMENT STARTS

REINITIALIZATION

"S WE SAW ABOVE AN I VALUE IS NOT AFFECTED BY THE PERFORMANCE LOOP 40 YOU
EXPECT THIS TO WORK AS AN INCREMENTATION

EXAMPLE 03A08_Init_no_incr.csd

<CsoundSynthesizer>
<Cslnstruments>

sr=44100

ksmps = 4410

instr 1

iCount init 0 ;set iCount to O first
iCount = iCount + 1 ;increase

print iCount ;print the value
endin

</Cslnstruments>
<CsScore>

i101

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

SHE OUTPUT IS NOTHING BUT
INSTR ISOUNT

#UT YOU CAN ADVISE $SOUND TO REPEAT THE INITIALIZATION OF AN | VARIABLE 5HIS IS
THEeinit OPCODE :OU MUST MARK A SECTION BY A LABEL ANY NAME FOLLOWED BY A C(
SHEN THE REINIT STATEMENT WILL CAUSE THE | VARIABLE TO REFRESH 6SE RIRETURN
SECTION

EXAMPLE 03A09_Re-init.csd

<CsoundSynthesizer>
<Cslnstruments>

sr=44100
ksmps = 4410
instr 1
iCount init 0 ; set icount to O first
reinit new ; reinit the section each k-pass
new:
iCount = iCount + 1 ; increase
print iCount ; print the value
rireturn
endin

</Cslnstruments>
<CsScore>

i101

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

OUTPUTS

INSTR ISOUNT
INSTR ISOUNT
INSTR ISOUNT
INSTR ISOUNT
INSTR ISOUNT
INSTR ISOUNT
INSTR ISOUNT
INSTR ISOUNT
INSTR ISOUNT
INSTR ISOUNT
INSTR ISOUNT

8HAT HAPPENS HERE MORE IN DETAIL IS THE FOLLOWING *NCotiit ISCSEJALANIT PASS
ZERO M@ount init 0 4TILL IN THIS INIT PASS IT IS INCREMENTED BY ONE I$SOUNT [I$SOUNT
AND THE VALUE IS PRINTEDWUF AB00/OW STARTS THE FIRST PERFORMANCE PASS 5HE
STATEMEiIt newADVICES $SOUND TO INITIALISE AGAIN THE SECTION LABELED AS NEW
THE STATEMBNt = iCount + 1IS EXECUTED AGAIN "S THE CURRENUNATLUE OF
THISTIMEIS THE RESULTIS 40 THE PRINTOUT AT THIS FIREJoBERFORMANCE PASS IS
2.000 SHE SAME HAPPENS IN THE NEXT NINE PERFORMANCE CYCLES SO THE FINAL COL

ORDER OF CALCULATION

*N THIS CONTEXT IT CAN BE VERY IMPORTANT TO OBSERVE THE ORDER IN WHICH THE |
$SOUND ORCHESTRA ARE EVALUATED 5HIS ORDER IS DETERMINED BY THE INSTRUMEN
IF YOU WANT TO USE DURING THE SAME PERFORMANCE PASS A VALUE IN INSTRUMENT
GENERATED BY ANOTHER INSTRUMENT YOU MUST NOT GIVE THIS INSTRUMENT THE NLU
HIGHER *N THE FOLLOWING EXAMPLE FIRST INSTRUMENT USES A VALUE OF INSTRUN
VALUE OF INSTRUMENT

EXAMPLE 03A10_ Order_of calc.csd

<CsoundSynthesizer>
<Cslnstruments>

sr =44100

ksmps = 4410

instr 1

gkcount init 0 ;set gkcount to O first
gkcount = gkcount + 1 ;increase
endin

instr 10
printk 0, gkcount ;print the value
endin

instr 100

gkcount init 0 ;set gkcount to O first
gkcount = gkcount + 1 ;increase
endin

</Cslnstruments>
<CsScore>

firstil and i10

i101

i1001

;then i100 and i10
i10011

i1011

</CsScore>
</CsoundSynthesizer>
;Example by Joachim Heintz

SHE OUTPUT SHOWS THE DIFFERENCE

NEW ALLOC FOR INSTR
NEW ALLOC FOR INSTR
I TIME

I TIME

I TIME

I TIME

I TIME

I TIME

I TIME

I TIME

I TIME

I TIME

5 55
NEW ALLOC FOR INSTR
I TIME

I TIME

I TIME

I TIME

I TIME

I TIME

I TIME

I TIME

I TIME

5 55

*NSTRUMENT CAN USE THE VALUES WHICH INSTRUMENT HAS PRODUCED IN THE SAV
CYCLE BUT IT CAN ONLY REFER TO VALUES OF INSTRUMENT WHICH ARE PRODUCED
PREVIOUS CONTROL CYCLE #Y THIS REASON THE PRINTOUT SHOWS VALUES WHICH Al
LATTER CASE

NAMED INSTRUMENTS

*T HAS BEEN SAID IN CHAPTER # 2UICK 4TART THAT INSTEAD OF A NUMBER YOU CAN /
NAME FOR AN INSTRUMENT 5HIS IS MOSTLY PREFERABLE BECAUSE YOU CAN GIVE ME,
NAMES LEADING TO A BETTER READABLE CODE #UT WHAT ABOUT THE ORDER OF CAL(
NAMED INSTRUMENTS

5HE ANSWER IS SIMPLE $SOUND CALCULATES THEM IN THE SAME ORDER AS THEY ARE
ORCHESTRA 40 IF YOUR INSTRUMENT COLLECTION IS LIKE THIS

EXAMPLE 03A11 Order_of calc_named.csd

<CsoundSynthesizer>
<CsOptions>

-nd

</CsOptions>
<Cslnstruments>

instr Grain_machine
prints " Grain_machine\n"
endin

instr Fantastic_FM
prints " Fantastic_FM\n"
endin

instr Random_Filter
prints " Random_Filter\n"
endin

instr Final_Reverb
prints " Final_Reverb\n"
endin

</CslInstruments>
<CsScore>

i "Final_Reverb" 0 1

i "Random_Filter" 0 1

i "Grain_machine" 0 1

i "Fantastic_FM" 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

YOU CAN COUNT ON THIS OUTPUT
NEW ALLOC FOR INSTR (RAIN@MACHINE
(RAIN@MACHINE
NEW ALLOC FOR INSTR 'ANTASTIC@'.

'ANTASTIC@'.
NEW ALLOC FOR INSTR 3ANDOM@'ILTER
3SANDOM@'ILTER
NEW ALLOC FOR INSTR 'INAL@3EVERB
'INAL@3EVERB

/OTE THAT THE SCORE HAS NOT THE SAME ORDER #UT INTERNALLY $SOUND TRANSFC
NUMBERS IN THE ORDER THEY ARE WRITTEN FROM TOP TO BOTTOM 5HE NUMBERS AR

THE TOP OF $SOUND S-OUTPUT

INSTR (RAIN@MACHINE USES INSTRUMENT NUMBER
INSTR 'ANTASTIC@'. USES INSTRUMENT NUMBER
INSTR 3ANDOM@'ILTER USES INSTRUMENT NUMBER
INSTR 'INAL@3EVERB USES INSTRUMENT NUMBER

ABOUT "I-TIME" AND "K-RATE" OPCODES

*T IS OFTEN CONFUSING FOR THE BEGINNER THAT THERE ARE SOME OPCODES WHICH ¢
TIME OR I RATE AND OTHERS WHICH ONLY WORK AT KRATE OR KTIME 'OR INSTANC
USER WANTS TO PRINT THE VALUE OF ANY VARIABLE S HE THINKS 0, PRINTIT OUT #

REPLIES 1LEASE TELL ME FIRST IF YOU WANT TO PRINT-AN | OR A K VARIABLE

SHEPRINDOPCODE JUST PRINTS VARIABLES WHICH ARE UPDATED AT EACH INITIALIZATIOR

TIME OR IRATE *F YOU WANT TO PRINT A VARIABLE WHICH IS UPDATED AT EACH CON
KRATE OR KTIME YOU NEED ITS CEBENMRSAARTIPERFORMANCE PASS IS

USUALLY UPDATED SOME THOUSANDS TIMES PER SECOND YOU HAVE AN ADDITIONAL |

PRINTK TELLING $SOUND HOW OFTEN YOU WANT TO PRINT OUT THE K VALUES

40 SOME OPCODES ARE JUST FOR | RATEIVARERBLESOIHERS ARE JUST FOR K
RATE VARIABLBEOIRERIAX@KANY OPCODES HAVE VARIANTS FOR EITHER | RATE VARIAE
OR K RATE VARIABLUESINTRER P RINTFPRINANCEPRINTERRINDANYCS TRINDEXK

.OST OF THE $SOUND OPCODES ARE ABLE TO WORK EITHER AT | TIME OR AT K TIME OR
BUT YOU HAVE TO THINK CAREFULLY WHAT YOU NEED AS THE BEHAVIOUR WILL BE VEF
YOU CHOOSE THE | K OR A VARIANTE OF AN OPCODRAQR BMACAHDE AANE

WORK AT ALL THREE RATES

ires random imin, imax : works at "i-time"
kres random kmin, kmax : works at "k-rate"
ares random kmin, kmax : works at "audio-rate"

a-initialization-and-performance-pass#InsertNoteID_22
a-initialization-and-performance-pass#InsertNoteID_24
http://csounds.com/manual/html/print.html
http://csounds.com/manual/html/printk.html
http://csounds.com/manual/html/filelen.html
http://csounds.com/manual/html/ftgen.html
http://csounds.com/manual/html/metro.html
http://csounds.com/manual/html/max_k.html
http://csounds.com/manual/html/printf.html
http://csounds.com/manual/html/printf.html
http://csounds.com/manual/html/sprintf.html
http://csounds.com/manual/html/sprintf.html
http://csounds.com/manual/html/strindex.html
http://csounds.com/manual/html/strindexk.html
http://csounds.com/manual/html/random.html

*F YOU USE THE | RATE RANDOM GENERATOR YOU WILL GET ONE VALUE FOR EACH NO
IF YOU WANT TO HAVE A DIFFERENT PITCH FOR EACH NOTE YOU ARE GENERATING YOL
ONE

*F YOU USE THE K RATE RANDOM GENERATOR YOU WILL GET ONE NEW VALUE ON EVEF
CYCLE *F YOUR SAMPLE RATEIS AND YOUR KSMPS YOU WILL GET NEW VALUES
SECOND *F YOU TAKE THIS AS PITCH VALUE FOR ANOTE YOU WILL HEAR NOTHING BUT
JUMPING *F YOU WANT TO HAVE A MOVING PITCHRADNIDOMKNRIBNTBE THE K

RATE RANDOM GENERATOR WHICH CAN REDUCE THE NUMBER OF NEW VALUES PER SE
INTERPOLATE BETWEEN THEM

*F YOU USE THE A RATE RANDOM GENERATOR YOU WILL GET AS MANY NEW VALUES PE
YOUR SAMPLE RATE IS *F YOU USE IT IN THE RANGE OF YOUR D# AMPLITUDE YOU PRC
NOISE

EXAMPLE 03A12_Random_at_ika.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

sr =44100

ksmps = 32

Odbfs =1

nchnls = 2

seed 0 ;each time different seed
giSine ftgen 0, 0, 210, 10, 1 ;sine table

instr 1 ;i-rate random

iPch random 300, 600

aAmp linseg .5,p3,0

aSine poscil aAmp, iPch, giSine
outs aSine, aSine

endin

instr 2 ;k-rate random: noisy

kPch random 300, 600

aAmp linseg .5,p3,0

aSine poscil aAmp, kPch, giSine
outs aSine, aSine

endin

instr 3 ;k-rate random with interpolation: sliding pitch
kPch randomi 300, 600, 3
aAmp linseg .5,p3,0
aSine poscil aAmp, kPch, giSine
outs aSine, aSine
endin

instr 4 ;a-rate random: white noise

http://csounds.com/manual/html/randomi.html

aNoise random -.1,.1
outs aNoise, aNoise
endin

</Cslnstruments>
<CsScore>

il0 .5

i1.25.5

il5 .5

i1.75.5

i22 1

i34 2

i35 2

i36 2

i49 1

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

POSSIBLE PROBLEMS WITH K-RATE TICK SIZE

*T HAS BEEN SAID THAT USUALLY THE K RATE CLOCK TICKS MUCH SLOWER THAN THE S
CLOCK 'OR A COMMON SIZE OF KSMPS ONE K VALUE REMAINS THE SAME FOR SAMP
S5HIS CAN LEAD TO PROBLEMS FOR INSTANCE IF YOU USE K RATE ENVELOPES -ET US A
YOU WANT TO PRODUCE A VERY SHORT FADE IN OF MILLISECONDS AND YOU DO IT WI'
FOLLOWING LINE OF CODE

kFadeln linseg 0, .003, 1

:OUR ENVELOPE WILL LOOK LIKE THIS

4UCH A STAIRCASE ENVELOPE IS WHAT YOU HEAR IN THE NEXT EXAMPLE AS ZIPPER N1
TRANSEG OPCODE PRODUCES A NON LINEAR ENVELOPE WITH A SHARP PEAK

SHE RISE AND THE DECAY ARE EACH SECONDS LONG *F THIS ENVELOPE IS PRODUC
WITH A BLOCKSIZE OF INSTR THE NOISE IS CLEARLY AUDIBLE 5RY CHANGING KSMF
OR AND COMPARE THE AMOUNT OF ZIPPER NOISE *NSTRUMENT USES AN ENVELO

AUDIO RATE INSTEAD 3EGARDLESS THE BLOCKSIZE EACH SAMPLE IS CALCULATED SEF
ENVELOPE WILL ALWAYS BE SMOOTH

EXAMPLE 03A13 Zipper.csd

<CsoundSynthesizer>

<CsOptions>

-0 dac

</CsOptions>

<Cslnstruments>

sr=44100

;--- increase or decrease to hear the difference more or less evident
ksmps = 128

nchnls = 2

Odbfs =1

instr 1 ;envelope at k-time
aSine oscils .5,800,0
kEnv transeg O,.1,5,1,.1,-5,0
aOut = aSine * kEnv

outs aOut, aOut
endin

instr 2 ;envelope at a-time
aSine oscils .5,800,0
aEnv transeg O0,.1,5,1,.1,-5,0
aOut = aSine * aEnv

outs aOut, aOut
endin

</Cslnstruments>
<CsScore>

r 5 ;repeat the following line 5 times
i101

s ;end of section

rs

i201

e

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

TIME IMPOSSIBLE

5HERE ARE TWO INTERNAL CLOCKS IN $SOUND 5HE SAMPLE RATE SR DETERMINES TH
WHEREAS THE CONTROL RATE KR DETERMINES THE RATE IN WHICH A NEW CONTROL
STARTED AND A NEW BLOCK OF SAMPLES CAN BE PERFORMED *N GENERAL $SOUND C

ANY EVENT IN BETWEEN TWO CONTROL-CYSHERBXOREKAMPLE CHOOSES AN
EXTREME SMALL CONTROL RATE ONLY K CYCLES PER SECOND TO ILLUSTRATE THIS

EXAMPLE 03A14_Time_Ilmpossible.csd

a-initialization-and-performance-pass#InsertNoteID_26

<CsoundSynthesizer>
<CsOptions>

-0 test.wav -d
</CsOptions>
<Cslnstruments>

sr =44100

ksmps = 4410

nchnls =1

Odbfs =1

instr 1
aPink oscils .5, 430, 0
out aPink

endin
</Cslnstruments>
<CsScore>
i10.050.1
i10.40.15
</CsScore>
</CsoundSynthesizer>

SHE FIRST CALL ADVICES INSTRUMENT TO START PERFORMANCE AT TIME ~ #UT THIS
IMPOSSIBLE AS IT LIES BETWEEN TWO CONTROL CYCLES 5HE SECOND CALL STARTS AT
BUT THE DURATION OF AGAIN DOES NOT COINCIDENT WITH THE CONTROL RATE 40T
STARTS THE FIRST CALL AT TIME AND EXTENDS THE SECOND CALLTO SECONDS

WHEN TO USE I- OR K- RATE

8HEN YOU CODE ON YOUR $SOUND INSTRUMENT YOU MAY SOMETIMES WONDER WHET
SHALL USE AN | RATE OR AK RATE OPCODE 'ROM WHAT IS SAID THE GENERAL ANSWEF
| RATE IF SOMETHING HAS TO BE DONE ONLY ONCE OR IN A SOMEHOW PUNCTUAL MANI
RATE IF SOMETHING HAS TO BE DONE CONTINUOUSLY OR IF YOU MUST REGARD WHAT
THE PERFORMANCE

:OU WOULD NOT GET ANY OTHER RESULT IF YOU SETP TO OR ANY OTHER VALL

NOTHING IS DONE HERE EXCEPT INITIALIZATION
'OR THE PHYSICAL RESULT WHICH COMES OUT OF THE LOUDSPEAKERS OR HEAL

VARIATION IS THE VARIATION OF’AIR PRESSURE
SAMPLES PER SECOND

a-initialization-and-performance-pass#InsertNoteID_6_marker7
a-initialization-and-performance-pass#InsertNoteID_8_marker9
a-initialization-and-performance-pass#InsertNoteID_10_marker11

5HESE ARE BY THE WAY THE TIMES WHICH $SOUND REPORTS IF YOU ASK FOR Tk
CYCLES 5HE FIRST CONTROL CYCLE IN THIS EXAMPLE SR KSMPS WOULDE

REPORTED AS SECONDS NOT AS SECONDS

"S 3ICHARD #OULANGER EXPLAINS IN EARLY $SOUND A LINE STARTING WITH C \
COMMENT LINE 40 IT WAS NOT POSSIBLE TO ABBREVIATE CONTROL VARIABLES!
HTTP CSOUND N NABBLE COM 05 WHY IS CONTROL RATE CALLED KONTROL

?

RATE TD HTML A *
"S THE KRATE IS DIRECTLY DEPENDING ON SAMPLE RATE SR AND KSMPS KR S

IT IS PROBABLY THE BEST STYLE TO SPECIFY SR AND KSMPS IN THE HEADER BU'
SHIS MUST NOT BE CONFUSED WITH A REAL KLOOP WHERE INSIDE ONE SINGLE

LOOP IS PERFORMED 4EE CHAPTER $ SECTION -OOPS FOR EXAMPLES
SHE VALUE IS INSTEAD OF BECAUSE IT HAS ALREADY BEEN INCREMENTED B

?

AEE THE MANUAL PAGE FOR PRINTK PRINTK PRINTKS PRINTE TO KNOW MORE £
DIFFERENCES
*F YOU WANT TO KNOW THE NUMBER IN AN INSTRUMENT USE THE NSTRNUM OP(

4EE THE FOLLOWING SECTION # ABOUT THE VARIABLE TYPES FOR MORE ON THI
*N CSOUND THE POSSIBILITIES OF THESE IN BETWEEN WILL BE ENLARGED VIA

SAMPLE ACCURATE OPTION

a-initialization-and-performance-pass#InsertNoteID_28_marker29
a-initialization-and-performance-pass#InsertNoteID_12_marker13
a-initialization-and-performance-pass#InsertNoteID_14_marker15
a-initialization-and-performance-pass#InsertNoteID_16_marker17
a-initialization-and-performance-pass#InsertNoteID_18_marker19
a-initialization-and-performance-pass#InsertNoteID_20_marker21
a-initialization-and-performance-pass#InsertNoteID_22_marker23
a-initialization-and-performance-pass#InsertNoteID_24_marker25
a-initialization-and-performance-pass#InsertNoteID_26_marker27

LOCAL AND GLOBAL VARIABLES

VARIABLE TYPES

*N $SOUND THERE ARE SEVERAL TYPES OF VARIABLES *T IS IMPORTANT TO UNDERST/
DIFFERENCES BETWEEN THESE TYPES 5HERE ARE

d initialization VARIABLES WHICH ARE UPDATED AT EACH INITIALIZATION PASS | E A
BEGINNING OF EACH NOTE OR SCORE EVENT 5HEY STARODWHIH THE CHARACTET
GROUP COUNT ALSO THE SCORE PARAMETER FIELDS WHICH ALWAYS STARTS W
FOLLOWED BY ANY NUINREEFRERS TO THE FIRST PARAMETER R2OIN THE SCORE
THE SECOND ONE AND SO ON

d control VARIABLES WHICH ARE UPDATED AT EACH CONTROL CYCLE DURING THE
PERFORMANCE OF AN INSTRUMENT 5HEY STARKWITH THE CHARACTER

d audio VARIABLES WHICH ARE ALSO UPDATED AT EACH CONTROL CYCLE BUT INS
SINGLE NUMBER LIKE CONTROL VARIABLES THEY CONSIST OF AVECTOR A COL
NUMBERS HAVING IN THIS WAY ONE NUMBER FOR EACH SAMPLE 5HEY START W
CHARAGTER

d string VARIABLES WHICH ARE UPDATED EITHER AT | TIME OR AT K TIME DEPENDII
THE OPCODE WHICH PRODUCES A STRING 5HEY START WITH THE CHARACTER

&XCEPT THESE FOUR STANDARD TYPES THERE ARE TWO OTHER VARIABLE TYPES WHI(
SPECTRAL PROCESSING

d f VARIABLES ARE USED FOR THE STREAMING PHASE VOCODER OPCODES ALL ST
THE CHARAQVMER®HICH ARE VERY IMPORTANT FOR DOING REALTIME "5 'AST
'OURIER 5RANSFORM IN $SOUND 5HEY ARE UPDATED AT K TIME BUT THEIR VALL
DEPEND ALSO ON THE "5 PARAMETERS LIKE FRAME SIZE AND OVERLAP

d w VARIABLES ARE USED IN SOME OLDER SPECTRAL PROCESSING OPCODES

SHE FOLLOWING EXAMPLE EXEMPLIFIES ALL THE VARIABLE TYPES EXCEPT THE W TYPE

EXAMPLE 03B01_Variable types.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
Sr=44100

ksmps = 32

Odbfs =1

nchnls = 2

seed 0; random seed each time different

instr 1; i-time variables

ivarl = p2; second parameter in the score
ivar2 random 0, 10; random value between 0 and 10
ivar = iVarl + iVar2; do any math at i-rate

print iVarl, ivar2, iVar
endin

instr 2; k-time variables

kvarl line 0, p3, 10; moves from 0 to 10 in p3

kvar2 random 0, 10; new random value each control-cycle

kvar = kVarl + kVar2; do any math at k-rate

; --- print each 0.1 seconds

printks "kVarl = %.3f, kVar2 = %.3f, kVar = %.3f%n", 0.1, kVarl, kVar2, kVar
endin

instr 3; a-variables
avarl oscils .2, 400, O; first audio signal: sine
avar2 rand 1; second audio signal: noise
avar3 butbp aVar2, 1200, 12; third audio signal: noise filtered
avar = aVarl + aVar3; audio variables can also be added
outs aVar, aVar; write to sound card
endin

instr 4; S-variables
iMyVar random 0, 10; one random value per note
kMyVar random 0, 10; one random value per each control-cycle
;S-variable updated just at init-time
SMyVarl sprintf "This string is updated just at init-time:
kMyVar = %d\n", iMyVar
printf_i "%s", 1, SMyVarl
;S-variable updates at each control-cycle
printks "This string is updated at k-time:
kMyVar = %.3f\n", .1, kMyVar
endin

instr 5; f-variables
aSig rand .2; audio signal (noise)
; f-signal by FFT-analyzing the audio-signal
fSigl pvsanal aSig, 1024, 256, 1024, 1
; second f-signal (spectral bandpass filter)
fSig2 pvsbandp fSigl, 350, 400, 400, 450
aOut pvsynth fSig2; change back to audio signal
outs aOut*20, aOut*20
endin

</Cslnstruments>

<CsScore>
;pl p2 p3
il 0 01
il 0.1 01
i2 1 1
i3 2 1
i4 3 1
i5 4 1

</CsScore>
</CsoundSynthesizer>

:OU CAN THINK OF VARIABLES AS NAMED CONNECTORS BETWEEN OPCODES :0OU CAN C
OUTPUT FROM AN OPCODE TO THE INPUT OF ANOTHER 5SHE TYPE OF CONNECTOR AUL
IS DETERMINED BY THE FIRST LETTER OF ITS NAME

'OR A MORE DETAILED DISCUSSION S&fEoMdE/iRRTDEOSound Variable Tydg¥
"NDRaS $ABRERA IGsbHiid JournalAND THE PAGE AB@ddTConstants and
VariablesIN THEanonical Csound Manual

LOCAL SCOPE

S5HEscopeOF THESE VARIABLES IS USStAIhdnTHNEWHICH THEY ARE DEFINED 5HEY
ARBcal VARIABLES *N THE FOLLOWING EXAMPLE THE VARIABLES IN INSTRUMENT AND
INSTRUMENT HAVE THE SAME NAMES BUT DIFFERENT VALUES

EXAMPLE 03B02_Local_scope.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz

sr=44100

ksmps = 4410; very high because of printing

nchnls = 2

Odbfs =1

instr 1

;i-variable

iMyVar init O

iMyVar = iMyVar + 1
print iMyVar

;k-variable

kMyVar init O

kMyvar = kMyVar + 1

printk 0, kMyVar
;a-variable
aMyVar oscils .2,400,0
outs aMyVar, aMyVar
;S-variable updated just at init-time
SMyVarl sprintf "This string is updated just at init-time:
kMyVar = %d\n", i(kMyVar)
printf "%s", kMyVar, SMyVarl
;S-variable updated at each control-cycle
SMyVar2 sprintfk "This string is updated at k-time:
kMyVar = %d\n", kMyVar
printf "%s", kMyVar, SMyVar2
endin

http://www.csounds.com/journal/issue10/CsoundRates.html
http://www.csounds.com/journal/articleIndex.html
http://www.csounds.com/manual/html/OrchKvar.html
http://www.csounds.com/manual/html/OrchKvar.html
http://www.csounds.com/manual/html/index.html

instr 2

;i-variable

iMyVar init 100

iMyVar = iMyVar + 1
print iMyVar

;k-variable

kMyVar init 100

kMyvar = kMyVar + 1
printk 0, kMyVar

;a-variable

aMyVar oscils .3, 600, 0
outs aMyVar, aMyVar
;S-variable updated just at init-time
SMyVarl sprintf "This string is updated just at init-time:
kMyVar = %d\n", i(kMyVar)
printf "%s", kMyVar, SMyVarl
;S-variable updated at each control-cycle
SMyVar2 sprintfk "This string is updated at k-time:
kMyVar = %d\n", kMyVar
printf "%s", kMyVar, SMyVar2
endin

</Cslnstruments>
<CsScore>

i10.3

i21.3

</CsScore>
</CsoundSynthesizer>

SHIS IS THE OUTPUT FIRST THE OUTPUT AT INIT TIME BY THE PRINT OPCODE THEN AT E
THE OUTPUT OF PRINTK AND THE TWO PRINTF OPCODES
NEW ALLOC FOR INSTR

INSTR .LY7AR

I TIME

SHIS STRING IS UPDATED JUST AT INIT TIME K.Y7AR

SHIS STRING IS UPDATED AT KTIME K.Y7AR

I TIME

SHIS STRING IS UPDATED JUST AT INIT TIME K.Y7AR

SHIS STRING IS UPDATED AT KTIME K.Y7AR

I TIME

SHIS STRING IS UPDATED JUST AT INIT TIME K.Y7AR

SHIS STRING IS UPDATED AT KTIME K.Y7AR

5 55
NEW ALLOC FOR INSTR
INSTR .LY7AR

I TIME

SHIS STRING IS UPDATED JUST AT INIT TIME K.Y7AR
SHIS STRING IS UPDATED AT KTIME K.Y7AR
I TIME

SHIS STRING IS UPDATED JUST AT INIT TIME K.Y7AR
SHIS STRING IS UPDATED AT KTIME K.Y7AR

I TIME

SHIS STRING IS UPDATED JUST AT INIT TIME K.Y7AR
SHIS STRING IS UPDATED AT KTIME K.Y7AR

5 55

GLOBAL SCOPE

*F YOU NEED VARIABLES WHICH ARE RECOGNIZED BEYOND THE SCOPE OF AN INSTRUN
DEFINE THEMI&I 5HIS IS DONE BY PREFIXING THEBEHRRRETHHRE TYPES | K AOR
4 AEE THE FOLLOWING EXAMPLE

EXAMPLE 03B03_Global _scope.csd

<CsoundSynthesizer>

<Cslnstruments>

;Example by Joachim Heintz

sr=44100

ksmps = 4410; very high because of printing
nchnls = 2

Odbfs =1

;global scalar variables should be inititalized in the header
giMyVar init O
gkMyVar init 0

instr 1
;global i-variable
giMyVar = giMyVar + 1

print giMyVar
;global k-variable
gkMyVar = gkMyVar + 1
printk 0, gkMyVar
;global S-variable updated just at init-time
gSMyVarl sprintf "This string is updated just at init-time:
gkMyVar = %d\n", i(gkMyVar)
printf "%s", gkMyVar, gSMyVarl
;global S-variable updated at each control-cycle
gSMyVar2 sprintfk "This string is updated at k-time:
gkMyVar = %d\n", gkMyVar
printf "%s", gkMyVar, gSMyVar2

endin
instr 2
;global i-variable, gets value from instr 1
giMyVar = giMyVar + 1

print giMyVar
;global k-variable, gets value from instr 1

gkMyVar = gkMyVar + 1
printk 0, gkMyVar
;global S-variable updated just at init-time, gets value from instr 1
printf "Instr 1 tells: '%s"\n", gkMyVar, gSMyVarl
;global S-variable updated at each control-cycle, gets value from instr 1
printf "Instr 1 tells: '%s"\n\n", gkMyVar, gSMyVar2
endin

</Cslnstruments>
<CsScore>

i10.3

i20.3

</CsScore>
</CsoundSynthesizer>

SHE OUTPUT SHOWS THE GLOBAL SCOPE AS INSTRUMENT USES THE VALUES WHICH F
CHANGED BY INSTRUMENT IN THE SAME CONTROL CYCLE NEW ALLOC FOR INSTR
INSTR GLY7AR

NEW ALLOC FOR INSTR

INSTR GLY7AR

I TIME

SHIS STRING IS UPDATED JUST AT INIT TIME GK.Y7AR

S5HIS STRING IS UPDATED AT K TIME GK.Y7AR

I TIME

*NSTR TELLS 5HIS STRING IS UPDATED JUST AT INIT TIME GK.Y7AR

*NSTR TELLS 5HIS STRING IS UPDATED AT K TIME GK.Y7AR

I TIME

SHIS STRING IS UPDATED JUST AT INIT TIME GK.Y7AR

S5HIS STRING IS UPDATED AT K TIME GK.Y7AR

I TIME

*NSTR TELLS 5HIS STRING IS UPDATED JUST AT INIT TIME GK.Y7AR
*NSTR TELLS 5HIS STRING IS UPDATED AT K TIME GK.Y7AR

I TIME

SHIS STRING IS UPDATED JUST AT INIT TIME GK.Y7AR

S5HIS STRING IS UPDATED AT K TIME GK.Y7AR

I TIME

*NSTR TELLS 5HIS STRING IS UPDATED JUST AT INIT TIME GK.Y7AR
*NSTR TELLS 5HIS STRING IS UPDATED AT K TIME GK.Y7AR

HOW TO WORK WITH GLOBAL AUDIO
VARIABLES

40ME SPECIAL CONSIDERATIONS MUST BE TAKEN IF YOU WORK WITH GLOBAL AUDIO V¢
"CTUALLY $SOUND BEHAVES BASICALLY THE SAME WHETHER YOU WORK WITH A LOCAI
AUDIO VARIABLE #UT USUALLY YOU WORK WITH GLOBAL AUDIO ®#dRIABLES IF YOU WAN
SEVERAL AUDIO SIGNALS TO A GLOBAL SIGNAL AND THAT MAKES A DIFFERENCE

SHE NEXT FEW EXAMPLES ARE GOING INTO A BIT MORE DETAIL *F YOU JUST WANT TO S
GLOBAL AUDIO USUALLY MUST BE CLEARED YOU CAN SKIP THE NEXT EXAMPLES AND
THE LAST ONE OF THIS SECTION

*T SHOULD BE UNDERSTOOD FIRST THAT A GLOBAL AUDIO VARIABLE IS TREATED THE S,
IT IS APPLIED LIKE A LOCAL AUDIO SIGNAL

EXAMPLE 03B04_Global_audio_intro.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

instr 1; produces a 400 Hz sine
gaSig oscils .1,400,0
endin

instr 2; outputs gaSig
outs gaSig, gaSig
endin

</Cslnstruments>
<CsScore>

i103

i203

</CsScore>
</CsoundSynthesizer>

OF COURSE THERE IS NO NEED TO USE A GLOBAL VARIABLE IN THIS CASE *F YOU DO IT
AUDIO WILL BE OVERWRITTEN BY AN INSTRUMENT WITH A HIGHER NUMBER USING THE
NAME *N THE FOLLOWING EXAMPLE YOU WILL JUST HEAR A)Z SINE TONE BECAUSE "
)Z SINE OF INSTRUMENT IS OVERWRITTEN BY THE)Z SINE OF INSTRUMENT

EXAMPLE 03B05_Global_audio_overwritten.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>

<Cslnstruments>

;Example by Joachim Heintz
sr =44100

ksmps = 32

nchnls = 2

Odbfs =1

instr 1; produces a 400 Hz sine
gaSig oscils .1, 400, 0
endin

instr 2; overwrites gaSig with 600 Hz sine
gaSig oscils .1, 600, 0
endin

instr 3; outputs gaSig
outs gaSig, gaSig
endin

</Cslnstruments>
<CsScore>

i103

i203

i303

</CsScore>
</CsoundSynthesizer>

*N GENERAL YOU WILL USE A GLOBAL AUDIO VARIABLE LIKE A BUS TO WHICH SEVERAL
SIGNAL CAldsled *T S THIS ADDITION OF A GLOBAL AUDIO SIGNAL TO ITS PREVIOUS STA’
CAN CAUSE SOME TROUBLE -ET S FIRST SEE A SIMPLE EXAMPLE OF A CONTROL SIGNAI
WHAT IS HAPPENING

EXAMPLE 03B06_Global _audio_added.csd

<CsoundSynthesizer>

<Cslnstruments>

;Example by Joachim Heintz

sr=44100

ksmps = 4410; very high because of printing
nchnls = 2

Odbfs =1

instr 1
kSum init 0O; sumis zero at init pass

kAdd = 1; control signal to add
kSum = kSum + kAdd; new sum in each k-cycle
printk 0, kKSum; print the sum
endin

</Cslnstruments>
<CsScore>

i101

</CsScore>
</CsoundSynthesizer>

*N THIS CASE THE SUM BUS K4UM INCREASES AT EACH CONTROL CYCLE BY BECAUS
K"DD SIGNAL WHICH IS ALWAYS IN EACHK PASS TO ITS PREVIOUS STATE *T IS NO DIF
THIS IS DONE BY A LOCAL K SIGNAL LIKE HERE OR BY A GLOBAL K SIGNAL LIKE IN THE I
EXAMPLE

EXAMPLE 03B07_Global_control_added.csd

<CsoundSynthesizer>

<Cslnstruments>

;Example by Joachim Heintz

sr=44100

ksmps = 4410; very high because of printing
nchnls = 2

Odbfs =1

gkSum init 0; sum is zero at init

instr 1
gkAdd = 1; control signal to add
endin
instr 2
gkSum = gkSum + gkAdd; new sum in each k-cycle

printk 0, gkSum; print the sum
endin

</Cslnstruments>
<CsScore>

i101

i201

</CsScore>
</CsoundSynthesizer>

8HAT HAPPENS WHEN WORKING WITH AUDIO SIGNALS INSTEAD OF CONTROL SIGNALS I
REPEATEDLY ADDING A SIGNAL TO ITS PREVIOUS STATE "UDIO SIGNALS IN $SOUND ARE
OF NUMBERS AVECTOR 5HE SIZE OF THIS VECTOR IS GIVEN BY THE KSMPS CONSTAN"
SAMPLE RATE IS AND KSMPS YOU WILL CALCULATE TIMES IN ONE SECOND A

VECTOR WHICH CONSISTS OF NUMBERS INDICATING THE AMPLITUDE OF EACH SAMPI

40 |IF YOU ADD AN AUDIO SIGNAL TO ITS PREVIOUS STATE DIFFERENT THINGS CAN HAF
ON THE VECTOR S PRESENT AND PREVIOUS STATES *F BOTH PREVIOUS AND PRESENT
KSMPS ARE < >YOU WILL GET A SIGNAL WHICH IS TWICE AS
STRONG < > #UT IF THE PRESENT STATE IS OPPOSITE <

> YOU WILL ONLY GET ZEROS WHEN YOU ADD THEM 5HIS IS SHOWN IN THE
NEXT EXAMPLE WITH A LOCAL AUDIO VARIABLE AND THEN IN THE FOLLOWING EXAMPLE
AUDIO VARIABLE

EXAMPLE 03B08_Local audio_add.csd

<CsoundSynthesizer>

<CsOptions>

-0 dac

</CsOptions>

<Cslnstruments>

;Example by Joachim Heintz

sr=44100

ksmps = 4410; very high because of printing
;(change to 441 to see the difference)

nchnls = 2

Odbfs =1

instr 1
;initialize a general audio variable
aSum init O
;produce a sine signal (change frequency to 401 to see the difference)
aAdd oscils .1,400, 0
;add it to the general audio (= the previous vector)
aSum = aSum + aAdd
kmax max_k aSum, 1, 1; calculate maximum
printk 0, kmax; print it out
outs aSum, aSum
endin

</Cslnstruments>
<CsScore>

i101

</CsScore>
</CsoundSynthesizer>

PRINTS
I TIME
I TIME
I TIME
I TIME
I TIME
I TIME
I TIME
I TIME
I TIME
I TIME

EXAMPLE 03B09_Global_audio_add.csd

<CsoundSynthesizer>

<CsOptions>

-0 dac

</CsOptions>

<Cslnstruments>

;Example by Joachim Heintz

sr=44100

ksmps = 4410; very high because of printing

;(change to 441 to see the difference)
nchnls = 2
Odbfs =1

;initialize a general audio variable
gaSum init O

instr 1
;produce a sine signal (change frequency to 401 to see the difference)
aAdd oscils .1,400, 0
;add it to the general audio (= the previous vector)
gaSum = gaSum + aAdd
endin

instr 2
kmax max_k gaSum, 1, 1; calculate maximum
printk 0, kmax; print it out
outs gaSum, gaSum
endin

</Cslnstruments>
<CsScore>

i101

i201

</CsScore>
</CsoundSynthesizer>

*N BOTH CASES YOU GET A SIGNAL WHICH INCREASES EACH SECOND BECAUSE YOL
CONTROL CYCLES PER SECOND KSMPS AND THE FREQUENCY OF)Z CAN BE EVEN
DIVIDED BY THIS *F YOU CHANGE THE KSMPS VALUE TO YOU WILL GET A SIGNAL WHI
INCREASES MUCH FASTER AND IS OUT OF RANGE AFTER SECOND *F YOU CHANGE Tt
TO)Z YOU WILL GET A SIGNAL WHICH INCREASES FIRST AND THEN DECREASES BEC,
AUDIO VECTOR HAS CYCLES OF THE SINE WAVE 40 THE PHASES ARE SHIFTING FIRS
STRONGER AND THEN WEAKER *F YOU CHANGE THE FREQUENCY TO)Z AND THEN TC
KSMPS YOU CANNOT HEAR ANYTHING BUT IF YOU RENDER TO FILE YOU CAN SEE T
PROCESS OF EITHER ENFORCING OR ERASING QUITE CLEAR

Self-reinforcing global audio signal on account of its state in one control cycle being the
same as in the previous one

Partly self-erasing global audio signal because of phase inversions in two subsequent
control cycles

40 THE RESULT OF ALL IS *F YOU WORK WITH GLOBAL AUDIO VARIABLES IN A WAY THAT
SEVERAL LOCAL AUDIO SIGNALS TO A GLOBAL AUDIO VARIABLE WHICH WORKS LIKE A E
clear THIS GLOBAL BUS AT EACH CONTROL CYCLE "S IN $SOUND ALL THE INSTRUMENTS
CALCULATED IN ASCENDING ORDER IT SHOULD BE DONE EITHERtADRHE BEGINNING OF
THE END ORaBHENSTRUMENT 1ERHAPS IT IS THE BEST IDEA TO DECLARE ALL GLOBAL AL

VARIABLES IN THE ORCHESTRA HEADER FIRST AND THEN CLEAR THEM IN AN ALWAYS (
WITH THE HIGHEST NUMBER OF ALL THE INSTRUMENTS USED 5HIS IS AN EXAMPLE OF A
SITUATION

EXAMPLE 03B10_Global_with_clear.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

;initialize the global audio variables
gaBusL init O
gaBusR init O
;make the seed for random values each time different
seed O

instr 1; produces short signals
loop:
iDur random .3,15
timout O, iDur, makenote
reinit loop
makenote:
iFreg random 300, 1000
iVol random -12,-3;dB
iPan random 0, 1; random panning for each signal
aSin oscil3 ampdb(iVol), iFreq, 1
aEnv transeg 1, iDur, -10, O; env in a-rate is cleaner
aAdd = aSin * aEnv
aL,aR pan2 aAdd, iPan

gaBusL = gaBusL + alL; add to the global audio signals
gaBusR = gaBusR + aR
endin

instr 2; produces short filtered noise signals (4 partials)
loop:
iDur random .1,.7
timout O, iDur, makenote
reinit loop
makenote:
iFreq random 100, 500
iVol random -24,-12; dB
iPan random 0,1
aNois rand ampdb(iVol)
aFilt reson aNois, iFreq, iFreq/10
aRes balance aFilt, aNois
aEnv transeg 1,iDur, -10,0

aAdd = aRes * aEnv

aL,aR pan2 aAdd, iPan

gaBusL = gaBusL + alL; add to the global audio signals
gaBusR = gaBusR + aR

endin

instr 3; reverb of gaBus and output
alL,aR freeverb gaBusL, gaBusR, .8, .5
outs al,aR
endin

instr 100; clear global audios at the end
clear gaBusL, gaBusR
endin

</Cslnstruments>
<CsScore>
f101024101.5.3.1
i1020

i2020

i3020

11000 20

</CsScore>
</CsoundSynthesizer>

THE CHN OPCODES FOR GLOBAL VARIABLES

*NSTEAD OF USING THE TRADITIONAL G VARIABLES FOR ANY VALUES OR SIGNALS WHIC
BETWEEN SEVERAL INSTRUMENTS IT IS ALSO EGNSIBIDES USE TKEA OR 4

VALUE OR SIGNAL CAN BHSEAMY RECEIVEDHNGBNE ADVANTAGE IS TO HAVE

STRINGS AS NAMES SO THAT YOU CAN CHOOSE INTUITIVE NAMES

'OR AUDIO VARIABLES INSTEAD OF PERFORMING AN ADDITHNNVNMRCOBRR USE THE
'OR CLEARING AN AUDIO VARIABICHE EIFFEODE CAN BE USED

EXAMPLE 03B11_Chn_demo.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr =44100

ksmps = 32

nchnls = 2

Odbfs =1

instr 1; send i-values
chnset 1, "sio"
chnset -1, "non"
endin

instr 2; send k-values
kfreq randomi 100, 300, 1
chnset kfreq, “cntrfreq”
kbw = kfreq/10
chnset kbw, "bandw"
endin

instr 3; send a-values
anois rand .1
chnset anois, "noise"
loop:
idur random .3,1.5
timout 0, idur, do
reinit loop
do:
ifreq random 400, 1200
iamp random .1,.3
asig oscils iamp, ifreq, O
aenv transeg 1, idur, -10,0
asine = asig * aenv
chnset asine, "sine"
endin

instr 11; receive some chn values and send again

http://www.csounds.com/manual/html/chn.html
http://www.csounds.com/manual/html/chnset.html
http://www.csounds.com/manual/html/chnget.html
http://www.csounds.com/manual/html/chnmix.html
http://www.csounds.com/manual/html/chnclear.html

ivall chnget "sio
ival2 chnget "non
print ivall, ival2
kentfreq chnget “cntrfreq”
kbandw chnget "bandw"
anoise chnget "noise"
afiit reson anoise, kentfreq, kbandw
afiit balance afilt, anoise
chnset afilt, "filtered”

endin

instr 12; mix the two audio signals

amixl chnget "sine"

amix2 chnget “filtered"
chnmix amix1, "mix"
chnmix amix2, "mix"

endin

instr 20; receive and reverb
amix chnget "mix"
aL, aR freeverb amix, amix, .8, .5
outs aL, aR

endin

instr 100; clear
chnclear "mix"
endin

</Cslnstruments>
<CsScore>
i1020

i2020

i3020

111020
112020
120020

11000 20
</CsScore>
</CsoundSynthesizer>

CONTROL STRUCTURES

*N AWAY CONTROL STRUCTURES ARE THE CORE OF A PROGRAMMING LANGUAGE 5HE
ELEMENT IN EACH LANGUAGE IS THIEE ERANDTHORAUALLY ALL OTHER CONTROL STRUCTL

LIKE FOR UNTIL OR WHILE LOOPS CAN BE TRACED BACK TO IF STATEMENTS

40 $SOUND PROVIDES MAINLY THE IF STATEMENT EHhdBR KeHBRW SURAIN

THE OLDER WAYf@BtASTATEMENT 5HESE WILL BE COVERED FIRST 5HOUGH ALL NECES
LOOPS CAN BE BUILT JUST BY IF STATENEWFAGEOYNDFEERS A MORE COMFORTABLE
WAY OF PERFORMING LOOPS 5HEY WILL BE INTRODUCED LATER IN THE -OOP SECTION
CHAPTER 'INALLY TIME LOOPS ARE SHOWN WHICH ARE PARTICULARY IMPORTANT IN A
PROGRAMMING LANGUAGES

IF I-TIME THEN NOT K-TIME!

5HE FUNDAMENTAL DIFFERENCE IN $SOUND BETWEEN | TIME AND K TIME WHICH HAS BE
EXPLAINED IN CHAPTERIST BE REGARDED VERY CAREFULLY WHEN YOU WORK WITH CC
STRUCTURES *F YOU MAKE A CONDITIGMmeL BRANONIATION WILL BE&STESTED

once for each noteAT THE INITIALIZATION PASS *F YOU MAKE A CONB{i@NAL BRANCH AT
THE CONDITION WILL BfdiB&nERgain in each control-cycle

'OR INSTANCE IF YOU TEST A SOUNDFILE WHETHER IT IS MONO OR STEREO THIS IS DOI
*FYOU TEST AN AMPLITUDE VALUE TO BE BELOW A CERTAIN THRESHOLD IT IS DONE AT
TIME KTIME *FYOU GET USER INPUT BY A SCROLL NUMBER THIS IS ALSO A K VALUE S
A K CONDITION

SHUS AIHANDOOBPCODES HAVE AN | AND A K DESCENDANT *N THE NEXT FEW SECTI(
GENERAL INTRODUCTION INTO THE DIFFERENT CONTROL TOOLS IS GIVEN FOLLOWED E
AT | TIME AND AT K TIME FOR EACH TOOL

IF - THEN - [ELSEIF - THEN -] ELSE

SHE USE OF THE IF THEN ELSE STATEMENT IS VERY SIMILAR TO OTHER PROGRAMMING
/OTE THAT IN $SOUND THEN MUST BE WRITTEN IN THE SAME LINE AS IF AND THE EXPF
BE TESTED AND THAT YOU MUST CLOSE THE IF BLOCK WITH AN ENDIF STATEMENT ON

if <condition> then
else
endif

*T IS ALSO POSSIBLE TO HAVE NO ELSE STATEMENT

c-control-structures#InsertNoteID_10
http://en.flossmanuals.net/bin/view/Csound/InitAndPerfPass
http://www.csounds.com/manual/html/if.html
http://www.csounds.com/manual/html/loop_lt.html

if <condition> then

é”ndif

OR YOU CAN HAVE ONE OR MORE ELSEIF THEN STATEMENTS IN BETWEEN
if <condition1> then

éiseif <condition2> then

else

é”ndif

*F STATEMENTS CAN ALSO BE NESTED &ACH LEVEL MUST BE CLOSED WITH AN ENDIF
EXAMPLE WITH THREE LEVELS

if <condition1> then; first condition opened
if <condition2> then; second condition openend
if <condition3> then; third condition openend

else
endif; third condition closed
elseif <condition2a> then

endif; second condition closed
else

endif; first condition closed

I-Rate Examples

"TYPICAL PROBLEM IN $SOUND :0U HAVE EITHER MONO OR STEREO FILES AND WANT
WITH A STEREO OUTPUT 'OR THE REAL STEREO ONES THAT MEANS USE SOUNDIN DISt
WITH TWO OUTPUT ARGUMENTS 'OR THE MONO GNESIDTMEAND ISEEN

WITH ONE OUTPUT ARGUMENT AND THROW IT TO BOTH OUTPUT CHANNELS

EXAMPLE 03C01_IfThen_i.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

instr 1

http://www.csounds.com/manual/html/soundin.html
http://www.csounds.com/manual/html/diskin.html
http://www.csounds.com/manual/html/diskin2.html

Sfile = "Imyl/file.wav" ;your soundfile path here
ifilchnls filenchnls Sfile

if ifilchnls == 1 then ;mono
aL soundin Sfile

aR = aL
else ;stereo

aL, aR soundin Sfile
endif

outs aL, aR
endin

</Cslnstruments>
<CsScore>

i105

</CsScore>
</CsoundSynthesizer>

*F YOU USE $SOUND2T YOU CAN BROWSE IN THE WIDGET PANEL FOR THE SOUNDFILE
CORRESPONDING EXAMPLE IN THE $SOUND2T &XAMPLE MENU

k-Rate Examples

SHE FOLLOWING EXAMPLE ESTABLISHES A MOVING GATE BETWEEN AND *F THE GATE
THE GATE OPENS AND YOU HEARTAEQXHEE IS EQUAL OR BELOW THE GATE CLOSES
AND YOU HEAR NOTHING

EXAMPLE 03C02_IfThen_k.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

seed 0; random values each time different
giTone ftgen 0,0,2710,10,1,.5, .3, .1

instr 1

; move between 0 and 1 (3 new values per second)
kGate randomi 0,1, 3
; move between 300 and 800 hz (1 new value per sec)
kFreq randomi 300, 800, 1
; move between -12 and 0 dB (5 new values per sec)
kdB randomi -12,0,5
aSig oscil3 1, kFreq, giTone
kvol init O

if kGate > 0.5 then; if kGate is larger than 0.5

kvol = ampdb(kdB); open gate

else
kvol = 0; otherwise close gate
endif
kVol port kVol, .02; smooth volume curve to avoid clicks
aOut = aSig * kVol
outs aOut, aOut
endin

</Cslnstruments>
<CsScore>

i1030

</CsScore>
</CsoundSynthesizer>

Short Form: (avb ? x:y)

*F YOU NEED AN IF STATEMENT TO GIVE AVALUE TO AN | ORK VARIABLE YOU CAN AL

TRADITIONAL SHORT FORM IN PARBNXHESES ASKS WHETHER THE CONDITION AOR B
IS TRUE *F A THE VALUE IS SET TGOR INBTARIGE THE LAST EXAMPLE COULD BE WRITTE
IN THIS WAY

EXAMPLE 03C03_IfThen_short_form.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CslInstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

seed O
giTone ftgen 0,0, 210, 10,1, .5, .3,.1

instr 1

kGate randomi 0, 1, 3; moves between 0 and 1 (3 new values per second)
kFreq randomi 300, 800, 1; moves between 300 and 800 hz

;(1 new value per sec)
kdB randomi -12, 0, 5; moves between -12 and 0 dB

;(5 new values per sec)

aSig oscil3 1, kFreq, giTone
kvol init O

kvol = (kGate > 0.5 ? ampdb(kdB) : 0); short form of condition
kvVol port kVol, .02; smooth volume curve to avoid clicks
aOut = aSig * kVol

outs aOut, aOut
endin

</Cslnstruments>

http://www.csounds.com/manual/html/equals.html
c-control-structures#InsertNoteID_12

<CsScore>

i1020

</CsScore>
</CsoundSynthesizer>

IF - GOTO

"N OLDER WAY OF PERFORMING A CONDITIONAL BRANCH BUT STILL USEFUL IN CERTAI

IF STATEMENT WHICH IS NOT FOLLOWED BY A THEN BUT BY A LABEL NAME 5HE ELSE
CONSTRUCTION FOLLOWS OR DOESN T FOLLOW IN THE NEXT LINE -IKE THE IF THEN El
THE IF GOTO WORKS EITHER AT | TIME OR AT K TIME :OU SHOULD DECLARE THE TYPE B
IGOTOKGBOTO 6SUALLY YOU NEED AN ADDITIONAL IGOTO KGOTO STATEMENT FOR OMI’
ELSE BLOCK IF THE FIRST CONDITION IS TRUE 5HIS IS THE GENERAL SYNTAX

| TIME

if <condition> igoto this; same as if-then
igoto that; same as else
this: ;the label "this" ...

igoto continue ;skip the "that" block
that: ; ... and the label "that" must be found

continue: ;go on after the conditional branch

K TIME

if <condition> kgoto this; same as if-then
kgoto that; same as else
this: ;the label "this" ...

kgoto continue ;skip the "that" block
that: ; ... and the label "that" must be found

continue: ;go on after the conditional branch

I-Rate Examples

S5HIS IS THE SAME EXAMPLE AS ABOVE IN THE IF THEN ELSE SYNTAX FOR A BRANCH DEF
MONO OR STEREO FILE *F YOU JUST WANT TO KNOW WHETHER A FILE IS MONO OR STE
USE THE PURE IFIGOTO STATEMENT

EXAMPLE 03C04_IfGoto_i.csd

<CsoundSynthesizer>
<Cslnstruments>
;Example by Joachim Heintz

sr=44100
ksmps = 32
nchnls = 2
Odbfs =1

instr 1
Sfile = "/Joachim/Materialien/SamplesKlangbearbeitung/Kontrabass.aif"
ifilchnls filenchnls Sfile
if ifilchnls == 1 igoto mono; condition if true
igoto stereo; else condition

mono:
prints "The file is mono!%n"
igoto continue
stereo:
prints "The file is stereo!%n"
continue:
endin

</Cslnstruments>
<CsScore>

i100

</CsScore>
</CsoundSynthesizer>

#UT IF YOU WANT TO PLAY THE FILE YOU MUST ALSO USE A K RATE IF KGOTO BECAUSE
YOU HAVE AN EVENT AT I TIME INITIALIZING THE SOUNDIN OPCODE BUT ALSO AT K TIME
AN AUDIO SIGNAL 40 THE CODE IN THIS CASE IS MUCH MORE CUMBERSOME OR OBFUES
THE PREVIOUS IF THEN ELSE EXAMPLE

EXAMPLE 03C05_IfGoto_ik.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

instr 1
Sfile = "my/file.wav"
ifilchnls filenchnls Sfile
if ifilchnls == 1 kgoto mono
kgoto stereo
if ifilchnls == 1 igoto mono; condition if true
igoto stereo; else condition
mono:
aL soundin Sfile
aR = aL
igoto continue
kgoto continue

stereo:
aL, aR soundin Sfile
continue:
outs aL, aR
endin

</Cslnstruments>
<CsScore>

i105

</CsScore>
</CsoundSynthesizer>

k-Rate Examples

5HIS IS THE SAME EXAMPLE AS ABOVE $ INTHE IF THEN ELSE SYNTAX FOR A MOVING
BETWEEN AND

EXAMPLE 03CO06_IfGoto_k.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

seed O
giTone ftgen 0,0,2710,10,1,.5, .3, .1

instr 1
kGate randomi O, 1, 3; moves between 0 and 1 (3 new values per second)
kFreq randomi 300, 800, 1; moves between 300 and 800 hz
;(1 new value per sec)
kdB randomi -12, 0, 5; moves between -12 and 0 dB
;(5 new values per sec)
aSig oscil3 1, kFreq, giTone
kvol init O
if kGate > 0.5 kgoto open; if condition is true
kgoto close; "else" condition

open:
kvol = ampdb(kdB)

kgoto continue

close:

kVol = 0

continue:

kVol port kVol, .02; smooth volume curve to avoid clicks
aOut = aSig * kvol

outs aOut, aOut
endin

</Cslnstruments>
<CsScore>

i1030

</CsScore>
</CsoundSynthesizer>

LOOPS

-OOPS CAN BE BUILT EITHER AT | TIME OR AT K TIME JUST WITH THE IF FACILITY 5HE FC
EXAMPLE SHOWS AN | RATE AND A K RATE LOOP CREATED USING THE IF | KGOTO FACILI

EXAMPLE 03C07_Loops_with_if.csd

<CsoundSynthesizer>
<Cslnstruments>
;Example by Joachim Heintz

instr 1 ;i-time loop: counts from 1 until 10 has been reached
icount = 1
count:
print icount
icount = icount + 1
if icount < 11 igoto count
prints "i-END!%n"
endin

instr 2 ;k-rate loop: counts in the 100th k-cycle from 1 to 11
kcount init O
ktimek timeinstk ;counts k-cycle from the start of this instrument
if ktimek == 100 kgoto loop
kgoto noloop
loop:
printks "k-cycle %d reached!%n", 0, ktimek
kcount = kcount + 1
printk2 kcount
if kcount < 11 kgoto loop
printks "k-END!%n", 0
noloop:
endin

</Cslnstruments>
<CsScore>

i100

i201

</CsScore>
</CsoundSynthesizer>

#UT $SOUND OFFERS A SLIGHTLY SIMPLER SYNTAX FOR THIS KIND OF | RATE OR K RATE
ARE FOUR VARIANTS OF THE LOOP OPCODE |abelASUREEHRARTDIG POINT OF THE

LOOP Aidex variableAS A COUNTERcraMentORIecrementAND FINALLtefekence

value MAXIMUM OR MINIMUM AS COMPARISION

d LOOP@OUNTS UPWARDS AND LOOKS IF THE INGWeX MARTAHEEE 1S
REFERENCE VALUE

d LOOP@ILSO COUNTS UPWARDS AND LOOKSawerHitaliNareEqual to THE
REFERENCE VALUE

d LOOP@®UNTS DOWNWARDS AND LOOKS ¢ffetittE tINDEPXHESREFERENCE
VALUE

d LOOP@AKEISO COUNTS DOWNWARDS AND LOOK$datéiHBEdN DEOLEI
to THE REFERENCE VALUE

"S ALWAYS ALL FOUR OPCODES CAN BE APPLIED EITHER AT | TIME OR AT K TIME)ERE £
EXAMPLES FIRST FOR | TIME LOOPS AND THEN FOR K TIME LOOPS

I-Rate Examples

SHE FOLLOWING CSD PROVIDES A SIMPLE EXAMPLE FOR ALL FOUR LOOP OPCODES

EXAMPLE 03C08_Loop_opcodes_i.csd

<CsoundSynthesizer>
<Cslnstruments>
;Example by Joachim Heintz

instr 1 ;loop_lt: counts from 1 upwards and checks if < 10

icount = 1
loop:
print icount
loop_lIt icount, 1, 10, loop
prints "Instr 1 terminated!%n"
endin

instr 2 ;loop_le: counts from 1 upwards and checks if <= 10

icount = 1
loop:
print icount
loop_le icount, 1, 10, loop
prints "Instr 2 terminated!%n"
endin

instr 3 ;loop_gt: counts from 10 downwards and checks if > 0

icount = 10
loop:
print icount
loop_gt icount, 1, 0, loop
prints "Instr 3 terminated!%n"
endin

instr 4 ;loop_ge: counts from 10 downwards and checks if >= 0

icount
loop:

= 10

print icount
loop_ge icount, 1, 0, loop
prints "Instr 4 terminated!%n"

endin

http://www.csounds.com/manual/html/loop_lt.html
http://www.csounds.com/manual/html/loop_le.html
http://www.csounds.com/manual/html/loop_gt.html
http://www.csounds.com/manual/html/loop_ge.html

</Cslnstruments>
<CsScore>

i100

i200

i300

i400

</CsScore>
</CsoundSynthesizer>

SHE NEXT EXAMPLE PRODUCES A RANDOM STRING OF CHARACTERS AND PRINTS IT O!

EXAMPLE 03C09_ Random_string.csd

<CsoundSynthesizer>
<Cslnstruments>
;Example by Joachim Heintz

instr 1
icount = 0
Sname = "' starts with an empty string
loop:
ichar random 65, 90.999
Schar sprintf "%c", int(ichar); new character
Sname strcat Sname, Schar; append to Sname
loop_It icount, 1, 10, loop; loop construction
printf_i "My name is '%s"\n", 1, Sname; print result
endin

</Cslnstruments>
<CsScore>

; call instr 1 ten times
r10

i100

</CsScore>
</CsoundSynthesizer>

:OU CAN ALSO USE AN | RATE LOOP TO FILL A FUNCTION TABLE BUFFER WITH ANY KIN
S5HIS TABLE CAN THEN BE READ OR MANIPULATED AND THEN BE READ AGAIN *N THE NE
FUNCTION TABLE WITH POSITIONS INDICES IS FILLED WITH RANDOM INTEGERS BETW
BY INSTRUMENT /EARLY THE SAME LOOP CONSTRUCTION IS USED AFTERWARDS TO R
VALUES BY INSTRUMENT

EXAMPLE 03C10_Random_ftable fill.csd

<CsoundSynthesizer>
<Cslnstruments>
;Example by Joachim Heintz

giTable ftgen 0, 0, -20, -2, 0; empty function table with 20 points
seed 0; each time different seed

instr 1 ; writes in the table

icount = 0
loop:
ival random 0, 10.999 ;random value
; --- write in giTable at first, second, third ... position
tableiw int(ival), icount, giTable
loop_It icount, 1, 20, loop; loop construction
endin

instr 2; reads from the table
icount = 0
loop:
; --- read from giTable at first, second, third ... position
ival tablei icount, giTable
print ival; prints the content
loop_It icount, 1, 20, loop; loop construction
endin

</Cslnstruments>
<CsScore>

i100

i200

</CsScore>
</CsoundSynthesizer>

k-Rate Examples

SHE NEXT EXAMPLE PERFORMS A LOOP AT K TIME ONCE PER SECOND EVERY VALUE Of
FUNCTION TABLE IS CHANGED BY A RANDOM DEVIATION OF 5HOUGH THERE ARE SOM
OPCODES FOR THIS TASK AND IN $SOUND PROBABLY ARRAY IT CAN ALSO BE DONE B
LOOP LIKE THE ONE SHOWN HERE

EXAMPLE 03C11_Table_random_dev.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 441

nchnls = 2

Odbfs =1

giSine ftgen 0, 0, 256, 10, 1; sine wave
seed 0; each time different seed

instr 1
ktiminstk timeinstk ;time in control-cycles
kcount init 1
if ktiminstk == kcount * kr then; once per second table values manipulation:
kndx = 0
loop:

krand random -.1, .1;random factor for deviations

kval table kndx, giSine; read old value

knewval = kval + (kval * krand); calculate new value
tablew knewval, kndx, giSine; write new value
loop_It kndx, 1, 256, loop; loop construction

kcount = kcount + 1; increase counter

endif

asig poscil .2, 400, giSine

outs asig, asig
endin

</Cslnstruments>
<CsScore>

i1010

</CsScore>
</CsoundSynthesizer>

TIME LOOPS

6NTIL NOW WE HAVE JUST DISCUSSED LOOPS WHICH ARE EXECUTED AS FAST AS POS!
| TIME OR AT KTIME #UT IN AN AUDIO PROGRAMMING LANGUAGE TIME LOOPS ARE OF |
INTEREST AND IMPORTANCE " TIME LOOP MEANS REPEATING ANY ACTION AFTER A CEI
OF TIME 5HIS AMOUNT OF TIME CAN BE EQUAL TO OR DIFFERENT TO THE PREVIOUS TIM
ACTION CAN BE FOR INSTANCE PLAYING A TONE OR TRIGGERING AN INSTRUMENT OR
NEW VALUE FOR THE MOVEMENT OF AN ENVELOPE

*N $SOUND THE USUAL WAY OF PERFORMING TIMWELERIRS TS BHE USE OF
TIMOUT IS ABIT INTRICATE SO SOME EXAMPLES ARE GIVEN STARTING FROM VERY SIM
COMPLEX ONES

"NOTHER WAY OF PERFORMING TIME LOOPS IS BY USING A MEASUREMENT OF TIME OR
S5HIS METHOD IS ALSO DISCUSSED AND SIMILAR EXAMPLESTIVMOHINEODEED FOR THE
ARE GIVEN SO THAT BOTH METHODS CAN BE COMPARED

timout Basics

SHETIMOWPCODE REFERS TO THE FACT THAT IN THE TRADITIONAL WAY OF WORKING W
EACH NOTE AN | SCORE EVENT HAS ITS OWN TIME 5HIS IS THE DURATION OF THE NG
THE SCORE BY THE DURATION PARAMETER ABBRENIMEATEBIHNT'SAYS * AM

NOW JUMPING OUT OF THIS P DURATION AND ESTABLISHING MY OWN TIME 5HIS TIME \
REPEATED AS LONG AS THE DURATION OF THE NOTE ALLOWS IT

-ET S SEE AN EXAMPLE 5HIS IS A SINE TONE WITH A MOVING FREQUENCY STARTING AT
ENDING AT)Z 5HE DURATION OF THIS MOVEMENT IS SECONDS FOR THE FIRST NOTE
SECONDS FOR THE SECOND NOTE

EXAMPLE 03C12_Timout_pre.csd

http://www.csounds.com/manual/html/timout.html
http://www.csounds.com/manual/html/timout.html
http://www.csounds.com/manual/html/timout.html
http://www.csounds.com/manual/html/timout.html

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen 0, 0, 2°10, 10,1

instr 1
kFreq expseg 400, p3, 600
aTone poscil .2, kFreq, giSine
outs aTone, aTone
endin

</Cslnstruments>
<CsScore>

i103

i145

</CsScore>
</CsoundSynthesizer>

/OW WE PERFORM A TIME LODVMQWYHICH IS SECOND LONG 40 FOR THE FIRST NOTE 1T
WILL BE REPEATED THREE TIMES AND FIVE TIMES FOR THE SECOND NOTE

EXAMPLE 03C13_Timout_basics.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen 0, 0, 2°10, 10,1

instr 1
loop:
timout 0, 1, play
reinit loop
play:

kFreq expseg 400, 1, 600
aTone poscil .2, kFreq, giSine
outs aTone, aTone
endin

</Cslnstruments>

http://www.csounds.com/manual/html/timout.html

<CsScore>

i103

i145

</CsScore>
</CsoundSynthesizer>

SHIS IS THE GENERAL SYINTAXTOF

first_label:
timout istart, idur, second_label
reinit first_label

second_label:

... <any action you want to have here>

SHEfrst_label IS AN ARBITRARY WORD FOLLOWED BY A COLON TO MARK THE BEGINNINC
TIME LOOP SECTIOBIaBHERGUMENT FOR TIMOUT TELLS SOH¢DNilV BN THE

SECTION IS TO BE EXECUTED 6SUALLY ISTART IS ZERO TELLING $SOUND EXECUTE THI
SECTION IMMEDIATELY WITHOUT ANYUDRAIRGUSHENT FOR TIMOUT DEFINES FOR HOW
MANY SECONDSeCT6it_|abeSECTION IS TO BE EXECUTED BEFORE THE TIME LOOP BEGIN
AGAIN /OTE THAEINHErst_label IS NECESSARY TO START THE SE@IND LOOP AFTER
SECONDS WITH A RESETTING OF ALL THE VALUES 4EE THE EXPLANATIONS ABOUT REIT
THE CHAPIRERLALIZATION "ND 1IERFORMANCE 1ASS

"S USUAL WHEN YOU WORKREMNDPEODE YOU CANRIEEETARNTEMENT TO
CONSTRAIN THE REINIT PASS *N THIS WAY YOU CAN HAVE BOTH THE TIMELOOP SECTI(
TIMELOOP SECTION IN THE BODY OF AN INSTRUMENT

EXAMPLE 03C14_Timeloop_and_not.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen 0, 0, 2°10, 10,1

instr 1

loop:
timout 0, 1, play
reinit loop

play:

kFreql expseg 400, 1, 600

aTonel oscil3 .2, kFreql, giSine
rireturn ;end of the time loop

kFreg2 expseg 400, p3, 600

aTone2 poscil .2, kFreg2, giSine

http://www.csounds.com/manual/html/timout.html
http://en.flossmanuals.net/bin/view/Csound/InitAndPerfPass
http://www.csounds.com/manual/html/reinit.html
http://www.csounds.com/manual/html/rireturn.html

outs aTonel+aTone2, aTonel+aTone2
endin

</Cslnstruments>
<CsScore>

i103

i145

</CsScore>
</CsoundSynthesizer>

timout Applications

*N ATIME LOOP IT IS VERY IMPORTANT TO CHANGE THE DURATION OF THE LOOP 5HIS (
EITHER BY REFERRING TO THE DURATION OF THIS NOTE P

EXAMPLE 03C15_Timout_different_durations.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen 0, 0, 2710, 10,1

instr 1
loop:
timout 0, p3/5, play
reinit loop
play:

kFreq expseg 400, p3/5, 600
aTone poscil .2, kFreq, giSine
outs aTone, aTone
endin

</Cslnstruments>
<CsScore>

i103

i145

</CsScore>
</CsoundSynthesizer>

OR BY CALCULATING NEW VALUES FOR THE LOOP DURATION ON EACH REINIT PASS F
RANDOM VALUES

EXAMPLE 03C16_Timout_random_durations.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen 0, 0, 2°10, 10,1

instr 1
loop:
idur random .5, 3 ;new value between 0.5 and 3 seconds each time
timout O, idur, play
reinit loop
play:
kFreq expseg 400, idur, 600
aTone poscil .2, kFreq, giSine
outs aTone, aTone
endin

</Cslnstruments>
<CsScore>

i1020

</CsScore>
</CsoundSynthesizer>

SHE APPLICATIONS DISCUSSED SO FAR HAVE THE DISADVANTAGE THAT ALL THE SIGNAI
LOOP MUST DEFINITELY BE FINISHED OR INTERRUPTED WHEN THE NEXT LOOP BEGINS
IS NOT POSSIBLE TO HAVE ANY OVERLAPPING OF EVENTS 50 ACHIEVE THIS THE TIME L
USED TO SIMfgger an event SHIS CAN BE DONEEWENT@FSCORELINNGHE

FOLLOWING EXAMPLE THE TIME LOOP IN INSTRUMENT TRIGGERS A NEW INSTANCE OF
WITH A DURATION OF TO SECONDS EVERY TO SECONDS 40 IN MOST CASES THE
INSTANCE OF INSTRUMENT WILL STILL BE PLAYING WHEN THE NEW INSTANCE IS TRIGC
CALCULATIONS ARE EXECUTED IN INSTRUMENT SO THAT EACH NOTE WILL HAVE A DIFF
PITCH CREATING A GLISSANDO EFFECT

EXAMPLE 03C17_Timout_trigger_events.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

http://www.csounds.com/manual/html/event_i.html
http://www.csounds.com/manual/html/scoreline_i.html

giSine ftgen 0, 0, 2°10, 10,1

instr 1
loop:
idurloop random .5, 2 ;duration of each loop
timout O, idurloop, play

reinit loop
play:
idurins random 1, 5 ;duration of the triggered instrument
event_i "i", 2, 0, idurins ;triggers instrument 2
endin
instr 2

ifreql random 600, 1000 ;starting frequency
idiff random 100, 300 ;difference to final frequency
ifreq2 = ifreql - idiff ;final frequency
kFreq expseg ifreql, p3, ifreq2 ;glissando
iMaxdb random -12, 0 ;peak randomly between -12 and 0 dB
kAmp transeg ampdb(iMaxdb), p3, -10, O ;envelope
aTone poscil kAmp, kFreq, giSine
outs aTone, aTone
endin

</Cslnstruments>
<CsScore>

i1030

</CsScore>
</CsoundSynthesizer>

5HE LAST APPLICATION OF A TIME LOUPWIHFEAQBIE WHICH IS SHOWN HERE IS A

randomly moving envelope*F YOU WANT TO CREATE AN ENVELOPE IN $SOUND WHICH MO\
BETWEEN A LOWER AND AN UPPER LIMIT AND HAS ONE NEW RANDOM VALUE IN A CERT
FOR INSTANCE ONCE A SECOND THE TIMBUSORBANVAY TO ACHIEVE IT " LINE
MOVEMENT MUST BE PERFORMED IN EACH TIME LOOP FROM A GIVEN STARTING VALUE
EVALUATED FINAL VALUE 5HEN IN THE NEXT LOOP THE PREVIOUS FINAL VALUE MUST |
NEW STARTING VALUE AND SO ON)ERE IS A POSSIBLE SOLUTION

EXAMPLE 03C18_Timout_random_envelope.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen 0, 0, 2°10, 10,1
seed O

http://www.csounds.com/manual/html/timout.html
http://www.csounds.com/manual/html/timout.html

instr 1

iupper = 0; upper and ...

ilower = -24; ... lower limit in dB

ivall random ilower, iupper; starting value
loop:

idurloop random .5, 2; duration of each loop
timout O, idurloop, play

reinit loop
play:
ival2 random ilower, iupper; final value
kdb linseg ivall, idurloop, ival2
ivall = ival2; let ival2 be ivall for next loop

rireturn ;end reinit section
aTone poscil ampdb(kdb), 400, giSine
outs aTone, aTone
endin

</Cslnstruments>
<CsScore>

i1030

</CsScore>
</CsoundSynthesizer>

/OTE THAT IN THIS CASE THE OSCILLATOR HAS BEEN PUT AFTER THE TIME LOOP SECTIC
TERMINATED BRIRHESHNTEMENT OTHERWISE THE OSCILLATOR WOULD START AFRESH
PHASE IN EACH TIME LOOP THUS PRODUCING CLICKS

Time Loops by using themetroOpcode

SHEMETROPCODE OUTPUTS A AT DISTINCT TIMES OTHERWISE IT OUTPUTS A
FREQUENCY OF THIS BANGING WHICH IS IN SOME WAY SIMILAR TO THE METRO OBJEC
AX IS GIVEN BY KHEqQINPUT ARGUMENT 40 THE REBTROHFEBRS A SIMPLE AND

INTUITIVE METHOD FOR CONTROLLING TIME LOOPS IF YOU USE IT TO TRIGGER A SEPAF
WHICH THEN CARRIES OUT ANOTHER JOB #ELOW IS A SIMPLE EXAMPLE FOR CALLING A

TWICE PER SECOND

EXAMPLE 03C19_Timeloop_metro.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

instr 1; triggering instrument
kTrig metro 2; outputs "1" twice a second
if KTrig == 1 then

http://www.csounds.com/manual/html/rireturn.html
http://www.csounds.com/manual/html/metro.html
http://www.csounds.com/manual/html/metro.html

event "i",2,0,1
endif
endin

instr 2; triggered instrument
aSig oscils .2,400,0
aEnv transeg 1, p3,-10,0
outs aSig*aEnv, aSig*aEnv
endin

</Cslnstruments>
<CsScore>

i1010

</CsScore>
</CsoundSynthesizer>

5HE EXAMPLE WHICH IS GIVEN ABOVE $ @5IMOUT@TRIGGER@EVENTS CSD AS AFLE
LOOP BYMOUCTAN BE DONE WIMETIHEPCODE IN THIS WAY

EXAMPLE 03C20_Metro_trigger_events.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen 0, 0, 2°10, 10,1
seed O

instr 1
kfreq init 1; give a start value for the trigger frequency
kTrig metro kfreq
if kKTrig == 1 then ;if trigger impulse:
kdur random 1, 5; random duration for instr 2

event "i", 2,0, kdur; call instr 2
kfre@ random .5, 2; set new value for trigger frequency
endif
endin
instr 2

ifreql random 600, 1000; starting frequency
idiff random 100, 300; difference to final frequency
ifreq2 = ifreql - idiff; final frequency
kFreq expseg ifreql, p3, ifreq2; glissando
iMaxdb random -12, O; peak randomly between -12 and 0 dB
kAmp transeg ampdb(iMaxdb), p3, -10, O; envelope
aTone poscil kAmp, kFreq, giSine
outs aTone, aTone
endin

http://www.csounds.com/manual/html/timout.html
http://www.csounds.com/manual/html/metro.html

</Cslnstruments>
<CsScore>

i1030

</CsScore>
</CsoundSynthesizer>

/OTE THE DIFFERENCES IN WORKMEARGPIEOBE COMPARED IMDUFEATURE

d "S METR@®ORKS AT K TIME YOU MUST USE THERV/¥ZAERBNDK BIHE
CALL THE SUBINSTRUMENIOBTH MUST USE THE | VARIAENRTEROF
scoreline EVENTANCECORELINBETAUSE IT USES REINITIALIZATION FOR PERFORMI
THE TIME LOOPS

d :OU MUST SELECT THE ONE K CYCLMEWHRBREOBHESENDS A 5HIS IS
DONE WITH AN IF STATEMENT 5HE REST OF THE INSTRUMENT IS NOT AFFECTED
TIMOUYOU USUALLY MUST SEPERATE THE REINITIALIZED FROM THE NOT REINITI/
SECTION BMRETISRRTEMENT

LINKS

4TEVEN :I $ONTROL 'IBRT $SOUND +OURNAL 4PRINGART $SOUND +OURNAL
4UMMER

8HILE WRITING ON THIS RELEASE SPRING = WE ARE IN A PERIOD OF INCLUDING
CONTROL STRUCTURES IN $SOUND "S AFIRST TEST THE UNTIL LOOP HAS BEEN
$SOUND 4EE THE EXAMPLE INHTTP WWW CSOUNDS COM MANUAL HTML

UNTIL HTML
AINCE THE NEW PARSER $SOUND YOU CAN ALSO WRITE WITHOUT PARENTHE

http://www.csounds.com/manual/html/metro.html
http://www.csounds.com/manual/html/timout.html
http://www.csounds.com/manual/html/metro.html
http://www.csounds.com/manual/html/event.html
http://www.csounds.com/manual/html/scoreline.html
http://www.csounds.com/manual/html/timout.html
http://www.csounds.com/manual/html/event_i.html
http://www.csounds.com/manual/html/scoreline_i.html
http://www.csounds.com/manual/html/metro.html
http://www.csounds.com/manual/html/timout.html
http://www.csounds.com/manual/html/rireturn.html
http://www.csounds.com/journal/2006spring/controlFlow.html
http://www.csounds.com/journal/2006summer/controlFlow_part2.html
c-control-structures#InsertNoteID_10_marker11
c-control-structures#InsertNoteID_12_marker13

FUNCTION TABLES

"FUNCTION TABLE IS ESSENTIALLY THE SAME AS WHAT OTHER AUDIO PROGRAMMING L

A BUFFER A TABLE ALIST OR AN ARRAY *T IS A PLACE WHERE DATA CAN BE STORED IN

WAY &ACH FUNCTION TAS8kE HOB/MUCH DATA IN $SOUND JUST NUMBERS CAN BE

STORED IN IT &ACH VALUE IN THE TABLE CAN BitAC CERSHEDNEY AROM TO

SIZE 'ORINSTANCE IF YOU HAVE A FUNCTION TABLE WITH A SIZE OF AND THE NUMB!
>INIT THIS IS THE RELATION OF VALUE AND INDEX

7"-6&
*[%&9

40 |IF YOU WANT TO RETRIEVE THE VALUE YOU MUST POINT TO THE VALUE STORED

SHE USE OF FUNCTION TABLES IS MANIFOLD " FUNCTION TABLE CAN CONTAIN PITCH VA
YOU MAY REFER USING THE INPUT OF A .*%* KEYBOARD " FUNCTION TABLE CAN CONTA
OF A WAVEFORM WHICH IS READ PERIODICALLY BY AN OSCILLATOR :OU CAN RECORD L
INPUT IN A FUNCTION TABLE AND THEN PLAY IT BACK 5HERE ARE MANY MORE APPLICA
USING THE FAST ACCESS BECAUSE FUNCTION TABLES ARE STORED IN 3". AND FLEXIBL
FUNCTION TABLES

HOW TO GENERATE A FUNCTION TABLE

&ACH FUNCTION TABLE MUSToBEERESARIBE USED &VEN IF YOU WANT TO WRITE
VALUES LATER YOU MUST FIRST CREATE AN EMPTY TABLE BECAUSEOMEJ MUST INITIAL
SPACE IN MEMORY FOR IT

&ACH CREATION OF A FUNCTION TABLE IN $SOUND IS PERFENRR&RiBS ONE OF THE
&ACH (& 30OUTINE GENERATES A FUNCTION TABLE IN @&PARTIRANARBERSYAUDIO
SAMPLES FROM A SOUNDFILE INTO&/TABVHEWANMWRITE VALUES IN BY HAND ONE

BY ONE/ CALCULATES A WAVEFORM USING INFORMATION DETERMINING A SUM OF ¢
(&/ GENERATES WINDOW FUNCTIONS TYPICALLY USED FOR GRANULAR SYNTHESIS |
5HERE IS A GOQERVIBWTHESOUND .ANUBE ALL EXISTING (& 30OUTINES)ERE WE

WILL EXPLAIN THE GENERAL USE AND GIVE SIMPLE EXAMPLES FOR SOME FREQUENT C/

GENO02 And General Parameters For GEN Routines

-ET S START WITH OUR EXAMPLE ABOVE AND WRITE THE NUMBERS INTO A FUNCTION °
SAME SIZE 'OR THIS UEH OF AUNCTION TAREQUIRED " SHERIRIPTOBGN
(& FROM THE MANUAL READS AS FOLLOWS

f# time size 2v1v2v3 ...

http://www.csounds.com/manual/html/GEN01.html
http://www.csounds.com/manual/html/GEN02.html
http://www.csounds.com/manual/html/GEN10.html
http://www.csounds.com/manual/html/GEN20.html
http://www.csounds.com/manual/html/ScoreGenRef.html
http://www.csounds.com/manual/html/index.html
http://www.csounds.com/manual/html/GEN02.html
http://www.csounds.com/manual/html/GEN02.html
http://www.csounds.com/manual/html/GEN02.html

SHIS IS THE TRADITIONAL WAY OF CREATING A FUNSIAtEDNeMABREABIYSAdie
event IN RELATION FOR INSTANCE TO | SCORE EVENTS WHICH CALEHESTRUMENT INST.
INPUT PARAMETERS AFTER THE F ARE THE FOLLOWING

d # ANUMBER AS POSITIVE INTEGER FOR THIS FUNCTION TABLE

d time AT WHICH TIME THE FUNCTION TABLE IS MADE AVAILABLE USUALLY FROM
BEGINNING

d size THE SIZE OF THE FUNCTION TABLE 5HIS IS A BIT TRICKY BECAUSE IN THE EA
OF $SOUND JUST POWER OF TWO SIZES FOR FUNCTION TABLES WERE POSSIBLE

/OWADAYS NEARLY EVERY (& 30OUTINE ACCEPTS OTHERBIZES BUT THESE

power-of-two sizes must be declared as a negative number

d 2 THE NUMBER OF THE (& 30OUTINE WHICH IS USED TO GENERATE THE TABLE "N
IS ANOTHER IMPORTANT POINT WHICH MUSTdREaRE GARIDTED
normalizes the table values5HIS MEANS THAT THE MAXIMUM IS SCALED TO IF
POSITIVE AND TO IF NEGABVENSESOUND FROM NORMAINZdsE/eA
NUMBER MUST BE GIVEN AS (& NUMBER HERE INSTEAD OF

d viv2v3...THE VALUES WHICH ARE WRITTEN INTO THE FUNCTION TABLE

40 THIS IS THE WAY TO PUT THE VALUES < >IN
A FUNCTION TABLE WITH THE NUMBER

EXAMPLE 03D01_Table_norm_notNorm.csd

<CsoundSynthesizer>
<Cslnstruments>
;Example by Joachim Heintz
instr 1 ;prints the values of table 1 or 2
prints "%nFunction Table %d:%n", p4
indx init O
loop:
ival table indx, p4
prints "Index %d = %f%n", indx, ival
loop_It indx, 1, 10, loop
endin
</CslInstruments>
<CsScore>
f10-10-21.12.23.35.58.813.13 21.21 34.34 55.55 89.89; not normalized
f20-1021.12.23.35.58.813.13 21.21 34.34 55.55 89.89; normalized
i 100 1; prints function table 1
i 100 2; prints function table 2
</CsScore>
</CsoundSynthesizer>

*NSTRUMENT JUST SERVES TO PRINT THE VALURS (BPTEDEARIE BEHE
EXPLAINED LATER 4EE THE DIFFERENCE WHETHER THE TABLE IS NORMALIZED POSITI
NUMBER OR NOT NORMALIZED NEGATIVE (& NUMBER

http://www.csounds.com/manual/html/tablei.html

6SING THEGENCODE IS A MORE MODERN WAY OF CREATING A FUNCTION TABLE WHICI

USUALRPREFERABLE TO THE OLD WAY OF WRITING AN F STASHEIENNTAX HE SCORE
EXPLAINED BELOW

giVar ftgen ifn, itime, isize, igen, iargl [, iarg2 [, ...]]

d giVar A VARIABLE NAME &ACH FUNCTION IS STORED IN AN | VARIABLE 6SUALLY "
WANT TO HAVE ACCESS TO IT FROM EVERY INSTRUMENT SO A Gl VARIABLE GLO
INITIALIZATION VARIABLE 1S GIVEN

d ifn ANUMBER FOR THE FUNCTION TABLE *F YOU TYPE IN YOU GIVE $SOUND TH
CHOOSE A NUMBER WHICH IS MOSTLY PREFERABLE

5HE OTHER PARAMETERS SIZE (& NUMBER INDIVIDUAL ARGUMENTS ARE THE SAME A
STATEMENT IN THE SCORE "S THIS (& CALL IS NOW A PART OF THE ORCHESTRA EACH .
SEPARATED FROM THE NEXT BY A COMMA NOT BY A SPACE OR TAB LIKE IN THE SCORE

40 THIS IS THE SAME EXAMPLE AS ABOVE BUT NOW WITH THE FUNCTION TABLES BEINC
THE ORCHESTRA HEADER

EXAMPLE 03D02_Table_ftgen.csd

<CsoundSynthesizer>
<Cslnstruments>
;Example by Joachim Heintz

giFtl ftgen 1, O, -10, -2, 1.1, 2.2, 3.3, 5.5, 8.8, 13.13, 21.21, 34.34, 55.55, 89.89
giFt2 ftgen 2, 0, -10, 2, 1.1, 2.2, 3.3, 5.5, 8.8, 13.13, 21.21, 34.34, 55.55, 89.89

instr 1; prints the values of table 1 or 2
prints "%nFunction Table %d:%n", p4
indx init O
loop:
ival table indx, p4
prints "Index %d = %f%n", indx, ival
loop_It indx, 1, 10, loop
endin

</Cslnstruments>

<CsScore>

i 100 1; prints function table 1
i 100 2; prints function table 2
</CsScore>
</CsoundSynthesizer>

GENO1: Importing a Soundfile

(&/ IS USED FOR IMPORTING SOUNDFILES STORED ON DISK INTO THE COMPUTER S 3
FOR FOR USE BY A NUMBER OF $SOUND S OPCODES IN THETGESHAHEMENT TYPICAL
FOR THIS IMPORT MIGHT BE THE FOLLOWING

http://www.csounds.com/manual/html/ftgen.html
d-function-tables#InsertNoteID_6
http://www.csounds.com/manual/html/GEN01.html
http://www.csounds.com/manual/html/ftgen.html

varname ifn itime isize igen Sfilnam iskip iformat ichn

giFile

d

d

ftgen 0, 0, 0O, 1, "myfilewav"’,0, 0, O

varname ifn itime 5HESE ARGUMENTS HAVE THE SAME MEANING AS EXPLAINED
ABOVE IN REFERENCE TO (&/

isize 6SUALLY YOU WON T KNOW THE LENGTH OF YOUR SOUNDFILE IN SAMPLES .
TO HAVE A TABLE LENGTH WHICH INCLUDES EXACTLY ALL THE SAMPLES 5HIS IS
SETTIMG@e=0 /OTE THAT SOME OPCODES MAY NEED A POWER OF TWO TABLE *N'
CASE YOU CAN NOT USE THIS OPTION BUT MUST CALCULATE THE NEXT LARGER
VALUE AS SIZE FOR THE FUNCTION TABLE

igen "S EXPLAINED IN THE PREVIOUS SUBCHAPTER THIS IS ALWAYS THE PLACE F
INDICATING THE NUMBER OF THE (& 30OUTINE WHICH MUST BE USED "S ALWAYS
POSITIVE NUMBER MEANS NORMALIZING WHICH IS USUALLY CONVENIENT FOR A
SAMPLES

Sfilnam 5HE NAME OF THE SOUNDFILE IN DOUBLE QUOTES 4IMILAR TO OTHER AU
PROGRAMMING LANGUAGES $SOUND RECOGNIZES JUST THE NAME IF YOUR CS
SOUNDFILE ARE IN THE SAME FOLDER OTHERWISE GIVE THE FULL PATH :0OU CA
INCLUDE THE FOLDER VIA THE 44%*3 VARIABLE OR ADD THE FOLDER VIA THE
ENV /".& 7"-6& OPTION

iskip SHE TIME IN SECONDS YOU WANT TO SKIP AT THE BEGINNING OF THE SOUN!
MEANS READING FROM THE BEGINNING OF THE FILE

iformat 6SUALLY WHICH MEANS READ THE SAMPLE FORMAT FROM THE SOUNDF
HEADER

ichn READ THE FIRST CHANNEL OF THE SOUNDFILE INTO THE TABLE READ Tt
CHANNEL ETC MEANS THAT ALL CHANNELS ARE READ

5HE NEXT EXAMPLE PLAYS A SHORT SAMPLE :OU |CAREUIPWNHEAENRT BELOW
SAVE IT TO THE SAME LOCATION AS THE FOX WAV SOUNDFILE OR ADD THE FOLDER VI

ENV /".& 7"-6& OPTION — AND IT SHOULD WORK 3EADING THE FUNCTION TABLE IS DC
HERE WITHPBHECIOPCODE WHICH CAN DEAL WITH NON POWER OF TWO TABLES

EXAMPLE 03D03_Sample_to_table.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr =44100

ksmps = 32

nchnls = 2

Odbfs =1

giSample ftgen 0,0,0, 1, "fox.wav", 0,0, 1

instr 1

itablen

= ftlen(giSample) ;length of the table

http://www.csounds.com/manual/html/examples/fox.wav
d-function-tables#InsertNoteID_24
http://www.csounds.com/manual/html/poscil3.html

idur = itablen / sr ;duration
aSamp poscil3 .5, 1/idur, giSample
outs aSamp, aSamp
endin

</Cslnstruments>
<CsScore>

i102.757
</CsScore>
</CsoundSynthesizer>

GEN10: Creating a Waveform

SHE THIRD EXAMPLE FOR GENERATING A FUNCTION TABLE COVERS A CLASSIC CASE Bl
FUNCTION TABLE WHICH STORES ONE CYCLE OF A WAVEFORM 5HIS WAVEFORM IS THE
OSCILLATOR TO PRODUCE A SOUND

5HERE ARE MANY (& 30OUTINES TO ACHIEVE THIS 5HE @IMPLESTPBRIPLECES A
WAVEFORM BY ADDING SINE WAVES WHICH HAVE THE HARMONIC FREQUENCY RELATI
"FTER THE USUAL ARGUMENTS FOR FUNCTION TABLE NUMBER START SIZE AND GE
NUMBER WHICH ARE THE FIRST FOURPARBORIENI &RINBOUTINES YOU MUST
SPECIFY FOR (& THE RELATIVE STRENGTHS OF THE HARMONICS 40 IF YOU JUST PRO
ARGUMENT YOU WILL END UP WITH A SINE WAVE ST HARMONIC S5HE NEXT ARGUMENT
STRENGTH OF THE ND HARMONIC THEN THE RD AND SO ON *N THIS WAY YOU CAN BL
STANDARD HARMONIC WAVEFORMS BY SUMS OF SINOIDS 5HIS IS DONE IN THE NEXT E>
INSTRUMENTS *NSTRUMENT USES THE SINE WAVETABLE TWICE FOR GENERATING |
SOUND AND THE ENVELOPE

EXAMPLE 03D04_Standard_waveforms_with_ GEN10.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen 0, 0, 2710, 10,1

giSaw ftgen 0,0, 2”10, 10, 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9
giSquare ftgen 0, 0, 2710, 10, 1,0, 1/3, 0, 1/5, 0, 1/7, 0, 1/9

giTri ftgen 0,0, 2710, 10, 1, 0, -1/9, 0, 1/25, 0, -1/49, 0, 1/81
giimp ftgen 0,0,2710,10,1,1,1,1,1,1,1,1,1

instr 1 ;plays the sine wavetable
aSine poscil .2, 400, giSine
aEnv linen aSine, .01, p3, .05
outs aEnv, aEnv

http://www.csounds.com/manual/html/GEN10.html
http://www.csounds.com/manual/html/ftgen.html

endin

instr 2 ;plays the saw wavetable
aSaw poscil .2, 400, giSaw
aEnv linen aSaw, .01, p3, .05
outs aEnv, aEnv
endin

instr 3 ;plays the square wavetable
aSqu poscil .2,400, giSquare
aEnv linen aSqu, .01, p3, .05
outs aEnv, aEnv
endin

instr 4 ;plays the triangular wavetable
aTri poscil .2, 400, giTri
aEnv linen aTri, .01, p3, .05
outs aEnv, aEnv
endin

instr 5 ;plays the impulse wavetable
almp poscil .2, 400, gilmp
aEnv linen almp, .01, p3, .05
outs aEnv, aEnv
endin

instr 6 ;plays a sine and uses the first half of its shape as envelope
aEnv poscil .2, 1/6, giSine
aSine poscil aEnv, 400, giSine
outs aSine, aSine
endin

</Cslnstruments>
<CsScore>

i103

i243

i383

i4123

i516 3

16203

</CsScore>
</CsoundSynthesizer>

HOW TO WRITE VALUES TO A FUNCTION
TABLE
"S WE SAW EACH (& 30UTINE GENERATES A FUNCTION TABLE AND BY DOING THIS IT \

VALUES INTO IT #UT IN CERTAIN CASES YOU MIGHT FIRST WANT TO CREATE AN EMPTY "
WRITE THE VALUES INTO IT LATER 5HIS SECTION IS ABOUT HOW TO DO THIS

"CTUALLY IT IS NOT CORRECT TO SPEAK OF AN EMPTY TABLE *F $SOUND CREATES AN
TABLE IN FACT IT WRITES ZEROS TO THE INDICES WHICH ARE NOT SPECIFIED 5HIS IS P
EASIEST METHOD OF CREATING AN EMPTY TABLE FOR VALUES

giEmpty ftgen 0,0, -100, 2,0

SHE BASIC OPCODE WHICH WRITES VALUES TO EXISTINGBUARDIONS TABLES IS
DESCENDAMNELEIN®TE THAT YOU MAY HAVE PROBLEMS WITH SOME FEATURES IF YOUR 1
NOT A POWER OF TWO SIZE *N THIS CASE YDABCANBWEVIIHEY DON T HAVE

THE OFFSET AND THE WRAPAROUND FEATURE "S USUAL YOU MUST DIFFERENTIATE IF
VARIABLE IS | RATE KRATE OR A RATE 5HE USAGE IS SIMPLE AND DIFFERS JUST IN TH
VALUES YOU WANT TO WRITE TO THE TABLE | K OR A VARIABLES

tableiw isig, indx, ifn [, ixmode] [, ixoff] [, iwgmode]
tablew ksig, kndx, ifn [, ixmode] [, ixoff] [, iwgmode]
tablew asig, andx, ifn [, ixmode] [, ixoff] [, iwgmode]

d isig ksig asiglS THE VALUE VARIABLE YOU WANT TO WRITE INTO SPECIFIED LOCA

THE TABLE

indx kndx andx|S THE LOCATION INDEX WHERE YOU WRITE THE VALUE

ifn IS THE FUNCTION TABLE YOU WANT TO WRITE IN

d ixmode GIVES THE CHOICE TO WRITE BY RAW INDICES COUNTING FROM TO SIZE
BY ANORMALIZED WRITING MODE IN WHICH THE START AND END OF EACH TABLE
REFERRED AS AND NOT DEPENDING ON THE LENGTH OF THE TABLE S5HE DEF/
IXMODE WHICH MEANS THE RAW INDEX MODE " VALUE NOT EQUAL TO ZERO FOI
IXMODE CHANGES TO THE NORMALIZED INDEX MODE

d ixoff DEFAULT GIVES AN INDEX OFFSET 40 IF INDX AND IXOFF YOU WILL WRI
AT INDEX

d iwgmode TELLS WHAT YOU WANT TO DO IF YOUR INDEX IS LARGER THAN THE SIZE
TABLE *FIWGMODE DEFAULT ANY INDEX LARGER THAN POSSIBLE IS WRITTEN
POSSIBLE INDEX *F IWGMODE THE INDICES ARE WRAPPED AROUND 'OR INSTAI
YOUR TABLE SIZE IS AND YOUR INDEX IS IN THE WRAPAROUND MODE THE VAI
BE WRITTEN AT INDEX

o o

)ERE ARE SOME EXAMPLES FOR | K AND A RATE VALUES
i-Rate Example

SHE FOLLOWING EXAMPLE CALCULATES THE FIRST VALUES OF A'IBONACCI SERIES AN
A TABLE 5HIS TABLE HAS BEEN CREATED FIRST IN THE HEADER FILLED WITH ZEROS 5l

CALCULATES THE VALUES IN AN | TIME LOOP AND WRITES THEM TO THE TABLE WITH T/
*NSTRUMENT JUST SERVES TO PRINT THE VALUES

http://www.csounds.com/manual/html/tablew.html
http://www.csounds.com/manual/html/tableiw.html
http://www.csounds.com/manual/html/tab.html
http://www.csounds.com/manual/html/tab.html

EXAMPLE 03D05_Write_Fibo_to_table.csd

<CsoundSynthesizer>
<Cslnstruments>

;Example by Joachim Heintz
giFt ftgen 0,0,-12,-2,0

instr 1; calculates first 12 fibonacci values and writes them to giFt

istart = 1
inext = 2
indx = 0
loop:

tableiw istart, indx, giFt ;writes istart to table
istartold = istart ;keep previous value of istart

istart = inext ;reset istart for next loop
inext = istartold + inext ;reset inext for next loop
loop_It indx, 1, 12, loop
endin

instr 2; prints the values of the table
prints "%nContent of Function Table:%n"
indx init O
loop:
ival table indx, giFt
prints "Index %d = %f%n", indx, ival
loop_It indx, 1, ftlen(giFt), loop
endin

</Cslnstruments>
<CsScore>

i100

i200

</CsScore>
</CsoundSynthesizer>

k-Rate Example

SHE NEXT EXAMPLE WRITES A K SIGNAL CONTINUOUSLY INTO A TABLE 5HIS CAN BE USE
ANY KIND OF USER INPUT FOR INSTANCE BY .*%* OR WIDGETS *T CAN ALSO BE USED T(
RANDOM MOVEMENTS OF K SIGNALS LIKE HERE

EXAMPLE 03D06_Record_ksig_to_table.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

giFt ftgen 0, 0, -5*kr, 2, O; size for 5 seconds of recording
giwave ftgen 0,0, 2”10, 10, 1, .5, .3, .1; waveform for oscillator
seed O

; - recording of a random frequency movement for 5 seconds, and playing it
instr 1
kFreq randomi 400, 1000, 1 ;random frequency
aSnd poscil .2, kFreq, giWave ;play it
outs aSnd, asnd
;;record the k-signal
prints "RECORDING!%n"
;create a writing pointer in the table,
;moving in 5 seconds from index 0 to the end
kindx linseg O, 5, ftlen(giFt)
;write the k-signal
tablew kFreq, kindx, giFt
endin

instr 2; read the values of the table and play it again
;;read the k-signal
prints "PLAYING!%n"
;create a reading pointer in the table,
;moving in 5 seconds from index 0 to the end
kindx linseg O, 5, ftlen(giFt)
;read the k-signal
kFreq table kindx, giFt
aSnd oscil3 .2, kFreq, giWave; play it
outs aSnd, asnd
endin

</Cslnstruments>
<CsScore>

i105

i265

</CsScore>
</CsoundSynthesizer>

"SYOU SEE IN THIS TYPICAL CASE OF WRITING K VALUES TO A TABLE YOU NEED A MOV
FOR THE INDEX 5HIS CAN BE DONENISRIGIHEPCODE LIKE HERE OR BY USING A
PHAS(RIE PHASOR ALWAYS MOVES FROM TO IN A CERTAIN FREQUENCY 40 IF YOU YV
PHASOR TO MOVE FROM TO IN SECONDS YOU MUST SET THE FREQUENCY TO #Y ¢
IXMODE ARGUMENT OF TABLEW TO YQIh&aNOUSPUHRBIRECTLY AS WRITING

POINTER 40 THIS IS AN ALTERNATIVE VERSION OF INSTRUMENT TAKEN FROM THE PRE

instr 1; recording of a random frequency movement for 5 seconds, and playing it
kFreq randomi 400, 1000, 1; random frequency
aSnd oscil3 .2, kFreq, giWave; play it
outs aSnd, asnd
;;record the k-signal with a phasor as index
prints "RECORDING!%n"
;create a writing pointer in the table,
;moving in 5 seconds from index 0 to the end

http://www.csounds.com/manual/html/line.html
http://www.csounds.com/manual/html/linseg.html
http://www.csounds.com/manual/html/phasor.html

kindx phasor 1/5
;write the k-signal
tablew kFreq, kindx, giFt, 1
endin

a-Rate Example

3ECORDING AN AUDIO SIGNAL IS QUITE SIMILAR TO RECORDING A CONTROL SIGNAL :Ol
A SIGNAL AS INPUT AND ALSO AS INDEX 5HE FIRST EXAMPLE SHOWS FIRST THE RECOR
RANDOM AUDIO SIGNAL *F YOU HAVE LIVE AUDIO INPUT YOU CAN THEN RECORD YOUR
SECONDS

EXAMPLE 03D07_Record_audio_to_table.csd

<CsoundSynthesizer>
<CsOptions>

-iadc -odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

giFt ftgen 0, 0, -5*sr, 2, O; size for 5 seconds of recording audio
seed O

instr 1 ;generating a band filtered noise for 5 seconds, and recording it
aNois rand .2
kCfreq randomi 200, 2000, 3; random center frequency
aFilt butbp aNois, kCfreq, kCfreq/10; filtered noise
aBal balance aFilt, aNois, 1; balance amplitude
outs aBal, aBal
;;record the audiosignal with a phasor as index
prints "RECORDING FILTERED NOISE!%n"
;Create a writing pointer in the table,
;moving in 5 seconds from index O to the end
aindx phasor 1/5
;write the k-signal
tablew aBal, aindx, giFt, 1
endin

instr 2 ;read the values of the table and play it
prints "PLAYING FILTERED NOISE!%n"
aindx phasor 1/5
aSnd table3 aindx, giFt, 1
outs aSnd, aSnd
endin

instr 3 ;record live input
ktim timeinsts ; playing time of the instrument in seconds
prints "PLEASE GIVE YOUR LIVE INPUT AFTER THE BEEP!%n"

kBeepEnv linseg 0,1,0,.01,1,.5,1,.01,0
aBeep oscils .2,600,0
outs aBeep*kBeepEnv, aBeep*kBeepEnv
;;record the audiosignal after 2 seconds
if ktim > 2 then
ain inch 1
printks "RECORDING LIVE INPUT!%n", 10
;create a writing pointer in the table,
;moving in 5 seconds from index 0 to the end
aindx phasor 1/5
;write the k-signal
tablew ain, aindx, giFt, 1
endif
endin

instr 4 ;read the values from the table and play it
prints "PLAYING LIVE INPUT!%n"
aindx phasor 1/5
aSnd table3 aindx, giFt, 1
outs aSnd, asnd
endin

</Cslnstruments>
<CsScore>

i105

i265

13127

i4205

</CsScore>
</CsoundSynthesizer>

HOW TO RETREIVE VALUES FROM A FUNCTION

TABLE

SHERE ARE TWO METHODS OF READING TABLE VALUES OABCANBHEEGRELSE THE
WHICH ARE UNIVERSALLY USABLE BUT NEED AN INDEX OR YOU CAN USE AN OSCILLAT!

TABLE AT K RATE OR A RATE

The table Opcode

SHETABIBPCODE IS QUITE SIMILAR IN SYNBLEIMBHIHEOPCODES WHICH ARE

EXPLAINED ABOVE *T S JUST ITS COUNTERPART IN READING VALUES FROM A FUNCTIO
OF WRITING VALUES TO IT 40 ITS OUTPUT IS EITHER AN |
INDEX OF THE APPROPRIATE RATE | INDEX FOR | OUTPUT K INDEX FOR K OUTPUT A INL
OUTPUT 5HE OTHER ARGUMENTS ARE AS EXIPABINHVABBEONE FOR

ires table indx, ifn [, ixmode] [, ixoff] [, iwrap]
kres table kndx, ifn [, ixmode] [, ixoff] [, iwrap]
ares table andx, ifn [, ixmode] [, ixoff] [, iwrap]

K OR A SIGNAL 5HE MAIN INP

http://www.csounds.com/manual/html/table.html
http://www.csounds.com/manual/html/tab.html
http://www.csounds.com/manual/html/table.html
http://www.csounds.com/manual/html/tableiw.html
http://www.csounds.com/manual/html/tablew.html
http://www.csounds.com/manual/html/tableiw.html
http://www.csounds.com/manual/html/tablew.html

"S TABLE READING OFTEN REQUIRES INTERPOLATION BETWEEN THE TABLE VALUES FC
READ K OR A VALUES FASTER OR SLOWER THAN THEY HAVE BEEN WRITTEN IN THE TAE
OFFERS TWO DESCENDANTS OF TABLE FAR INTERPOLATEMNLINEARIABVAHILST

PERFORMS CUBIC INTERPOLATION WHICH IS GENERALLY PREFERABLE BUT IS COMPUT

SLIGHTLY MORE EXPENSIVE

"NOTHER VARIANTIISBIEEAB®PCODE WHICH MISSES SOME FEATURES BUT MAY BE
PREFERABLE IN SOME SITUATIONS *F YOU HAVE ANY PROBLEMS IN READING NON POW
TABLES GIVE THEM A TRY 5HEY SHOULD ALSO BE FASTER THAN THE TABLE OPCODE B
TAKE CARE THEY INCLUDE FEWER BUILT IN PROTECABDEABEANDORBE ANAN

IF THEY ARE GIVEN INDEX VALUES THAT EXCEED THE TABLE SIZE $SOUND WILL STOP Al
PERFORMANCE ERROR

&XAMPLES OF THE USEABKHMEODES CAN BE FOUND IN THE EARLIER EXAMPLES IN THE
)OW 50 8RITE 7TALUES SECTION

Oscillators

50 READ TABLE VALUES USING AN OSCILLATOR IS STANDARD WHEN READING TABLES V
ONE CYCLE OF A WAVEFORM AT AUDIO RATE #UT ACTUALLY YOU CAN READ ANY TABLE
OSCILLATOR EITHER AT A OR AT KRATE 5HE ADVANTAGE IS THAT YOU NEEDN T CREA
SIGNAL :0OU CAN SIMPLY SPECIFY THE FREQUENCY OF THE OSCILLATOR

:OU SHOULD BEAR IN MIND THAT MANY OF THE OSCILLATORS IN $SOUND WILL WORK ON
POWER OF TWO TABLE SEZESCBEECIDPCODES DO NOT HAVE THIS RESTRICTION AND
OFFER A HIGH PRECISION BECAUSE THEY WORK WITH FLOATING POINT INDICES SO IN
RECOMMENDED TO USE THEM #ELOW IS AN EXAMPLE THAT DEMONSTRATES BOTH REA

AND AN A RATE SIGNAL FROM ABOEEERNNDBEILLATOR WITH A CUBIC INTERPOLATION

D \ »
D «

EXAMPLE 03D08_RecPlay_ak_signals.csd

<CsoundSynthesizer>

<CsOptions>

-iadc -odac

</CsOptions>

<CslInstruments>

;Example by Joachim Heintz

sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

; -- size for 5 seconds of recording control data

giControl ftgen 0, 0, -5*kr, 2, 0

; -- size for 5 seconds of recording audio data

giAudio ftgen 0,0, -5*sr, 2,0

giwave ftgen 0,0, 2”10, 10, 1, .5, .3, .1; waveform for oscillator
seed O

; -- ;recording of a random frequency movement for 5 seconds, and playing it
instr 1
kFreq randomi 400, 1000, 1; random frequency

http://www.csounds.com/manual/html/tablei.html
http://www.csounds.com/manual/html/table3.html
d-function-tables#InsertNoteID_8
http://www.csounds.com/manual/html/tab.html
http://www.csounds.com/manual/html/tab.html
http://www.csounds.com/manual/html/table.html
http://www.csounds.com/manual/html/tablei.html
http://www.csounds.com/manual/html/table3.html
http://www.csounds.com/manual/html/table.html
http://www.csounds.com/manual/html/poscil.html
http://www.csounds.com/manual/html/poscil3.html
http://www.csounds.com/manual/html/poscil3.html

aSnd poscil .2, kFreq, giWave; play it
outs aSnd, asnd
;;record the k-signal with a phasor as index
prints "RECORDING RANDOM CONTROL SIGNAL!%n"
;create a writing pointer in the table,
;moving in 5 seconds from index O to the end
kindx phasor 1/5
;write the k-signal
tablew kFreq, kindx, giControl, 1
endin

instr 2; read the values of the table and play it with poscil
prints "PLAYING CONTROL SIGNAL!%n"
kFreq poscil 1, 1/5, giControl
aSnd poscil .2, kFreq, giWave; play it
outs aSnd, asnd
endin

instr 3; record live input
ktim timeinsts ; playing time of the instrument in seconds
prints "PLEASE GIVE YOUR LIVE INPUT AFTER THE BEEP!%n"
kBeepEnv linseg 0,1,0,.01,1,.5,1,.01,0
aBeep oscils .2,600,0
outs aBeep*kBeepEnv, aBeep*kBeepEnv
;;record the audiosignal after 2 seconds
if ktim > 2 then
ain inch 1
printks "RECORDING LIVE INPUT!%n", 10
;create a writing pointer in the table,
;moving in 5 seconds from index 0 to the end
aindx phasor 1/5
;write the k-signal
tablew ain, aindx, giAudio, 1
endif
endin

instr 4; read the values from the table and play it with poscil
prints "PLAYING LIVE INPUT!%n"
asSnd poscil .5, 1/5, giAudio
outs aSnd, asnd
endin

</Cslnstruments>
<CsScore>

i105

i265

13127

i4205

</CsScore>
</CsoundSynthesizer>

SAVING THE CONTENTS OF A FUNCTION TABLE
TO A FILE

" FUNCTION TABLE EXISTS ONLY AS LONG AS YOU RUN THE $SOUND INSTANCE WHICH H
*F $SOUND TERMINATES ALL THE DATA IS LOST *F YOU WANT TO SAVE THE DATA FOR L
MUST WRITE THEM TO A FILE SHERE ARE SEVERAL CASES DEPENDING FIRSTLY ON WH
AT | TIME OR AT K TIME AND SECONDLY ON WHAT KIND OF FILE YOU WANT TO WRITE TO

Writing a File in Csound's ftsave Format at i-Time or k-Time

"NY FUNCTION TABLE IN $SOUND CAN EASILY BE WRITHEBAVE MHLEBY THE
FTSAVERKTIME OPCODE S5HEIR USE IS VERY SIMPLE SHE FIRST ARGUMENT SPECIFIES Ti
FILENAME IN DOUBLE QUOTES THE SECOND ARGUMENT CHOOSES BETWEEN A TEXT F
ZERO OR A BINARY FORMAT ZERO TO WRITE THEN YOU JUST GIVE THE NUMBER OF Tk
TABLE S TO SAVE

8ITH THE FOLLOWING EXAMPLE YOU SHOULD END UP WITH TWO TEXTFILES IN THE SAM
YOUR CSD | TIME@SAVE TXT SAVES FUNCTION TABLE A SINEWAVE AT ITIME K
TIME@SAVE TXT SAVES FUNCTION TABLE A LINEAR INCREMENT PRODUCED DURING T
PERFORMANCE AT K TIME

EXAMPLE 03D09 _ftsave.csd

<CsoundSynthesizer>
<Cslnstruments>

;Example by Joachim Heintz
Sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

giWave ftgen 1,0, 2”7, 10, 1; sine with 128 points
giControl ftgen 2, 0, -kr, 2, 0; size for 1 second of recording control data
seed O

instr 1; saving giWave at i-time
ftsave ‘“i-time_save.txt", 1, 1
endin

instr 2; recording of a line transition between 0 and 1 for one second
kline linseg 0,1,1
tabw Kline, kline, giControl, 1
endin

instr 3; saving giWave at k-time
ftsave "k-time_save.txt", 1, 2
endin

</Cslnstruments>
<CsScore>

http://www.csounds.com/manual/html/ftsave.html
http://www.csounds.com/manual/html/ftsavek.html

il100

i201

i31.1

</CsScore>
</CsoundSynthesizer>

SHE COUNTERPARSAFESAVERE THELORDLOADRCODES 6SING THEM YOU CAN
LOAD THE SAVED FILES INTO FUNCTION TABLES

Writing a Soundfile from a Recorded Function Table

*F YOU HAVE RECORDED YOUR LIVE INPUT TO ABUFFER YOU MAY WANT TO SAVE YOUI
SOUNDFILE 5HERE IS NO OPCODE IN $SOUND WHICH DOES THAT BUT IT CAN BE DONE |
RATE LOOP ANIDUTBIECODE 5HIS IS SHOWN IN THE NEXT EXAMPLE IN INSTRUMENT 'IRS
INSTRUMENT RECORDS YOUR LIVE INPUT 5HEN INSTRUMENT WRITES THE TESTWRIT
INTO THE SAME FOLDER AS YOUR CSD 5HIS IS DONE AT THE FIRST K CYCLE OF INSTRU
REPEATEDLY READING THE TABLE VALUES AND WRITING THEM AS AN AUDIO SIGNAL TO
IS DONE THE INSTRUMENT IS TURNED OFF BYRNEHATTHMENHE

EXAMPLE 03D10_Table_to_soundfile.csd

<CsoundSynthesizer>
<CsOptions>

-i adc

</CsOptions>

<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs = 1

; - size for 5 seconds of recording audio data
giAudio ftgen 0,0, -5%sr, 2,0

instr 1 ;record live input
ktim timeinsts ; playing time of the instrument in seconds
prints "PLEASE GIVE YOUR LIVE INPUT AFTER THE BEEP!%n"
kBeepEnv linseg 0,1,0,.01,1,.5/1,.01,0
aBeep oscils .2,600,0
outs aBeep*kBeepEnv, aBeep*kBeepEnv
;;record the audiosignal after 2 seconds
if ktim > 2 then
ain inch 1
printks "RECORDING LIVE INPUT!%n", 10
;Create a writing pointer in the table,
;moving in 5 seconds from index O to the end
aindx phasor 1/5
;write the k-signal
tablew ain, aindx, giAudio, 1
endif
endin

http://www.csounds.com/manual/html/ftsave.html
http://www.csounds.com/manual/html/ftsavek.html
http://www.csounds.com/manual/html/ftload.html
http://www.csounds.com/manual/html/ftloadk.html
http://www.csounds.com/manual/html/fout.html
http://www.csounds.com/manual/html/turnoff.html

instr 2; write the giAudio table to a soundfile

Soutname = "testwrite.wav"; name of the output file
iformat = 14; write as 16 bit wav file
itablen = ftlen(giAudio); length of the table in samples

kent init O; set the counter to O at start

loop:

kent = kent+ksmps; next value (e.g. 10 if ksmps=10)

andx interp Kkcnt-1; calculate audio index (e.g. from O to 9)

asig tab andx, giAudio; read the table values as audio signal
fout Soutname, iformat, asig; write asig to a file

if kent <= itablen-ksmps kgoto loop; go back as long there is something to do
turnoff ; terminate the instrument
endin

</Cslnstruments>
<CsScore>

i107

i27.1

</CsScore>
</CsoundSynthesizer>

5HIS CODE CAN ALSO BE TRANSTEHRMEBDANAD OPCDCAN BE FOUENTTE

Related Opcodes
FTGESREATES A FUNCTION TABLE IN THE ORCHESTRA USING ANY (& 30UTINE

TABLHABLETABLESEAD VALUES FROM A FUNCTION TABLE AT ANY RATE EITHER BY DIRE
INDEXING TABLE OR BY LINEAR TABLEI OR CUBIC TABLE INTERPOLATION 5HESE OP
PROVIDE MANY OPTIONS AND ARE SAFE BECAUSE OF BOUNDARY CHECK BUT YOU MAY
PROBLEMS WITH NON POWER OF TWO TABLES

TAB@TAB3EAD VALUES FROM A FUNCTION TABLE AT | RATE TAB@I KRATE OR ARATE
NO INTERPOLATION AND LESS OPTIONS THAN THE TABLE OPCODES BUT THEY WORK Al
POWER OF TWO TABLES 5HEY DO NOT PROVIDE A BOUNDARY CHECK WHICH MAKES Tt
ALSO GIVE THE USER THE RESPOSABILITY NOT READING ANY VALUE OFF THE TABLE BO

TABLEIWABLEBRITE VALUES TO A FUNCTION TABLE AT | RATE TABLEIW K RATE AND AF
TABLEW 5HESE OPCODES PROVIDE MANY OPTIONS AND ARE SAFE BECAUSE OF BOUN
BUT YOU MAY HAVE PROBLEMS WITH NON POWER OF TWO TABLES

TABW@IABVBRITE VALUES TO A FUNCTION TABLE AT | RATE TABW@I| K RATE OR A RATI
OFFER LESS OPTIONS THAN THE TABLEIW TABLEW OPCODES BUT WORK ALSO FOR NON
TABLES 5HEY DO NOT PROVIDE A BOUNDARY CHECK WHICH MAKES THEM FAST BUT AL
USER THE RESPOSABILITY NOT WRITING ANY VALUE OFF THE TABLE BOUNDARIES

http://www.csounds.com/manual/html/OrchUDO.html
http://www.csounds.com/udo/displayOpcode.php?opcode_id=122
http://www.csounds.com/manual/html/ftgen.html
http://www.csounds.com/manual/html/table.html
http://www.csounds.com/manual/html/tablei.html
http://www.csounds.com/manual/html/table3.html
http://www.csounds.com/manual/html/tab.html
http://www.csounds.com/manual/html/tab.html
http://www.csounds.com/manual/html/tableiw.html
http://www.csounds.com/manual/html/tablew.html
http://www.csounds.com/manual/html/tab.html
http://www.csounds.com/manual/html/tab.html

POSCIPOSCIIRECISE OSCILLATORS FOR READING FUNCTION TABLES AT K OR A RATE

POSCIL OR CUBIC POSCIL INTERPOLATION SHEY SUPPORT ALSO NON POWER OF TW
IT S USUALLY RECOMMENDED TO USE THEM INSTEAD OF THE OLDER OSCILI OSCIL OPC
HAS ALSO A RATE INPUT FOR AMPLITUDE AND FREQUENCY WHILE POSCIL HAS JUST K |

OSCILOSCILSHE STANDARD OSCILLATORS IN $SOUND FOR READING FUNCTION TABLES.
RATE WITH LINEAR OSCILI OR CUBIC OSCIL INTERPOLATION 5SHEY SUPPORT ALL RAT
AMPLITUDE AND FREQUENCY INPUT BUT ARE RESTRICTED TO POWER OF TWO TABLES
LONG TABLES AND LOW FREQUENCIES THEY ARE NOT AS PRECISE AS THE POSCIL POS(

FTSAVETSAVEBKVE A FUNCTION TABLE AS AFILE AT I TIME FTSAVE OR K TIME FTSAVEK
CAN BE A TEXT FILE OR A BINARY FILE BUT NOT A SOUNDFILE *F YOU WANT TO SAVE A
THE 6SER %EFINED OBAKMEI5 04"

FTLOABTLOABBAD A FUNCTION TABLE WHICH HAS BEEN WRITTEN BY FTSAVE FTSAVEK

LINELINSE®@HASCHAN BE USED TO CREATE INDEX VALUES WHICH ARE NEEDED TO REAL
K OR A SIGNALS WITH THE TABLE TABLEW OR TAB TABW OPCODES

AINLY BECAUSE YOU CAN REFER TO THE FUNCTION TABLE BY A VARIABLE NAME

NOT DEAL WITH TABLES’NUMBERS

*FYOUNn CSD FILE IS FOR INSTANCE IN THE DIRECTORY HOME JH CSOUND AND
FILE IN THE DIRECTORY HOME JH SAMPLES YOU SHOULD ADD THIS INSIDE THE
$SOPTIONS TAG

ENV 44%*3 HOME JH SAMPLES 5HIS MEANS -OOK ALSO IN HOME JH SAMPLE A
40UND 4AMPLE %IRECTORY 44%*3

?

'OR A GENERAL INTRODUCTION ABOUT INTERPOLATION SEE FOR INSTANCE
HTTP_EN WIKIPEDIA ORG WIKI *NTERPOLATION

http://www.csounds.com/manual/html/poscil.html
http://www.csounds.com/manual/html/poscil3.html
http://www.csounds.com/manual/html/oscili.html
http://www.csounds.com/manual/html/oscil3.html
http://www.csounds.com/manual/html/ftsave.html
http://www.csounds.com/manual/html/ftsavek.html
http://www.csounds.com/udo/displayOpcode.php?opcode_id=122
http://www.csounds.com/manual/html/ftload.html
http://www.csounds.com/manual/html/ftloadk.html
http://www.csounds.com/manual/html/line.html
http://www.csounds.com/manual/html/linseg.html
http://www.csounds.com/manual/html/phasor.html
d-function-tables#InsertNoteID_6_marker7
d-function-tables#InsertNoteID_24_marker25
http://en.wikipedia.org/wiki/Interpolation
d-function-tables#InsertNoteID_8_marker9

ARRAYS

4INCE $SOUND SEE THRELEASE NG®HRE IS A POSSIBILITY TO USE AN EXPERIMENTAL W/
OF HANDLING ARRAYS CALLED T YeARHABHESHARE BASICALLY VECTORS OF K

VARIABLES *N $SOUND THE IMPLEMENTATION OF ARRAYS HAS BEEN EXTENDED CONS
IS CONTINUOUSLY DEVELOPING 1LEASE KEEP AN EYE ON THE CHANGES AND DOCUME!

"S FOR NOW WE WILL GIVE SOME EXAMPLES FOR T VARIABLES IN $SOUND AND SORT
ON ARRAYS IN $SOUND

$SOUND
Initialisation and allocation:
tl init 10

ALLOCATES T <>THROUGH T <> INITIALISED TO ZERO

t2 init 20, 1
ALLOCATES T <>THROUGH T < > INITIALISED TO

*NDIVIDUAL ELEMENTS CAN BE ASSIGNED VIA

tl[kvar] = ...expression...
AND ALL EXPRESSIONS CAN CONTAIN T <KEXPR>

*T IS POSSIBLE TO COPY A TABLE WITH

t1 =12

"T PRESENT THERE ARE NO GLOBAL T VARIABLES USE FTABLES
Interaction with tables

tans copy2ftab tab, kftbl

SHEcopy2ftabOPCODE TAKES A T VAR AND COPIES THE CONTENTS TO AN F TABLE

tans copy2ttab tab, kftbl

SHEcopy?ttabOPCODE TAKES AN F TABLE AND COPIES THE CONTENTS TO AT VAR

http://www.csounds.com/node/1517
http://www.csounds.com/manual/html/copy2ftab.html
http://www.csounds.com/manual/html/copy2ttab.html

'OR EXAMPLE IF YOU WANT TO TRANSFER DATA FROM ONE INSTRUMENT TO ANOTHER
GLOBAL F TABLES AND THERE IS PLENTY OF OTHER CASES WHERE IT IS NECESSARY TC
F TABLE TO T ARR&RYWERa)

EXAMPLE 03EO1_Array to table.csd

<CsoundSynthesizer>
<CsOptions>

-odac -d

;Example by Tarmo Johannes
</CsOptions>
<Cslnstruments>

sr=44100

ksmps = 32
nchnls = 1

Odbfs =1

giTabl ftgen 0, O,
giTab2 ftgen 0, O,

0,11,12,13,14,15

NN

-6,-2,1
-6,-2,0
instr 1
tvar init ftlen(giTabl) ; declare and initialize array tvar
copy2ttab tvar,giTabl ; copy giTabl to tvar
printk2 tvar[4]
tvar[4]=tvar[4]+tvar[3] ; change a value
copy2ftab tvar, giTab2 ; write the whole array to the other table
turnoff ; stop after 1st k-cycle
endin

instr 2
index=0
loophere:
ival tab_i index,giTab2
print index,ival
loop_It index, 1, ftlen(giTab2), loophere
endin

</CslInstruments>

<CsScore>

i 100.1; must have some duration, since tvar is handled in k-time (percormance pass)
i 20.20 ; here only i-values, no duration needed

</CsScore>
</CsoundSynthesizer>

Other opcodes with t-variables

PLUSTAB 1ERFORMS AN ELEMENT BY ELEMENT ADDITION OF TWO VECTORS

tans plustab tleft, tright

MULTTAB 1IERFORMS AN ELEMENT BY ELEMENT MULTIPLICATION OF TWO VECTORS

http://www.csounds.com/manual/html/plustab.html
http://www.csounds.com/manual/html/multtab.html

tans multtab tleft, tright

MAXTAB RETURNS THE MAXIMUM VALUE IN A VECTOR

kmax maxtab tab

MINTAB RETURNS THE MINIMUM VALUE IN A VECTOR

kmin mintab tab

SUMTAB RETURNS THE SUM OF THE ELEMENTS IN A VECTOR

ksum sumtab tab

SCALET SCALES THE VALUES IN A RANGE OF A VECTOR

scalet tab, kmin, kmax[, kleft, kright]

tab TABLE FOR OPERAIMCOtax TARGET MINIMUM AND MAXIMUMMNALUES
kright RANGE OF TABLE TO USE DEFAULTING TO AND SIZE OF THE VECTOR

PVS TAB COPIES SPECTRAL DATATO T VARIABLES

kframe pvs2tab tvar, fsig

TAB PVSCOPIES SPECTRAL DATA FROM T VARIABLES

fsig tab2pvs tvar[,ihopsize, iwinsize, iwintype]
Examples

Example 1INORMALIZE TWO TABLES TABLES TO THE MAXIMUM VALUB&EBHE TABLES US
ANDBcalet CAN BE USEFUL FOR LEVELING ALSO TABLES WITH AUDIO DATA

EXAMPLE 03EO02_norm_to_max.csd

<CsoundSynthesizer>
<CsOptions>

-odac ; no -d -allow displays
;Example by Tarmo Johannes
</CsOptions>
<Cslnstruments>

sr=44100

ksmps = 32
nchnls =1

Odbfs =1

#define ELEMENTS #5#
seed 0

http://www.csounds.com/manual/html/maxtab.html
http://www.csounds.com/manual/html/mintab.html
http://www.csounds.com/manual/html/sumtab.html
http://www.csounds.com/manual/html/scalet.html
http://www.csounds.com/manual/html/pvs2tab.html
http://www.csounds.com/manual/html/tab2pvs.html

giTabl ftgen 0,0,-$ELEMENTS,-21,1,100 ; table of random numbers, 5 elements, maximum 100
giTab2 ftgen 0,0,-$ELEMENTS,-21,1,100

instr 1

tl init SELEMENTS
t2 init SELEMENTS

copy2ttab t1, giTabl ; f-tables to vectors
copy2ttab t2, giTab2

; find out maxima
kmaxl maxtab t1
kmax2 maxtab t2

if (kmax1>kmax2) then
scalet t2, 0,kmax1 ; scale to the maximum of the higer table
printks "Vector 1 has higer maximum: %f\n",0, kmax1
copy2ftab t2, giTab2 ; and write it back to f-table

else
scalet t1, 0,kmax2 ; scale to the maximum of the higer table
printks "Vector 2 has higer maximum %f\n",0, kmax2
copy2ftab t1, giTabl

endif

; output the new values of the vectors
kindex=0

loop2:
event "i", 2, 0, 0, 1,kindex,t1[kindex]
event "i", 2, 0, 0, 2,kindex,t2[kindex]
loop_lIt kindex,1,$ELEMENTS, loop2

turnoff ; finish after 1 performance pass
endin

instr 2 ; output values
prints "Vector: %d index: %d value: %f\n", p4,p5,p6
endin

</Cslnstruments>
<CsScore>

i100.1

</CsScore>
</CsoundSynthesizer>

&XAMPLE DETECT PEAKS IN THE SIGNAL SAVE DATA FROM "5 ANALYZE TO ARRAY P!
SCAN THE ARRAY FOR PEAKS AND PLAY BACK SOUND ON THE FREQUENCIES AND AMPL
PEAKS AS ARPEGGIO

EXAMPLE 03E03_FFT_peaks_arpegg.csd

<CsoundSynthesizer>
<CsOptions>

-odac -d -m128

; Example by Tarmo Johannes
</CsOptions>
<Cslnstruments>

sr=44100

ksmps = 32

nchnls = 2
Odbfs =1

giSine ftgen 0, 0, 4096, 10, 1

instr getPe

endin

instr sound

aks

; generate signal to analyze

kfrcoef jspline 60,0.1,1 ; change the signal in time a bit for better testing
kharmcoef jspline 4,0.1,1

kmodcoef jspline 1,0.1,1

kenv linen 0.5,0.05,p3,0.05

asig foscil kenv, 300+kfrcoef,1,1+kmodcoef, 10,giSine

outs asig*0.05,asig*0.05 ; original sound in backround

; FFT analyze

ifftsize =1024

ioverlap = ifftsize / 4

iwinsize = ifftsize

iwinshape =1

fsig pvsanal asig, ifftsize, ioverlap, iwinsize, iwinshape

ithresh= 0.001 ; detect only peaks over this value

tFrames init iwinsize+2 ; declare array

kframe pvs2tab tFrames, fsig ; FFT values to array - every even member - amp of one bin,

; detect peaks
kindex = 2 ; start checking from second bin, to be able to compare it to previous one
kcounter =0
iMaxPeaks = 13 ; track up to iMaxPeaks peaks
ktrigger metro 1/2 ; check after every 2 seconds
if (kframe>0 && ktrigger==1) then
labell:
if (tFrames[kindex-2]<=tFrames[kindex] && tFrames[kindex]>tFr
kamp = tFrames[kindex]
kfreq = tFrames[kindex+1]
event "i", "sound", kcounter*0.1, 1, kamp, kfreq ; play
kcounter=kcounter+1

endif
loop_lIt kindex,2,ifftsize,labell;
endif
iamp= p4
ifreq=p5

kenv adsr 0.1,0.1,0.5,p3/2
kndx line 5,p3,1

asig foscil iamp*kenv, ifreq,1,0.75,kndx,giSine
outs asig, asig
endin

</Cslnstruments>
<CsScore>

i "getPeaks" 0 60
</CsScore>
</CsoundSynthesizer>

ARRAYS IN CSOUND 6

%URING THE TIME OF WRITING ON THIS RELEASE $SOUND IS STILL IN ALPHA DEVELOP
MAY NEVERTHELESS BE USEFUL TO PUT SOME EXAMPLES FOR ARRAYS IN $SOUND HE
WORKING ALREADY NOW IN MARCH

I-Arrays Local

<CsoundSynthesizer>
<CsOptions>

-dnmO

</CsOptions>
<Cslnstruments>

;test local iArrays
;jh march 2013

instr 1

prints “iArr in instr %d:\n", p1
iAre[] init 4
icounter = 0

until (icounter >= 4) do
iArr[icounter] = icounter ~ 2
prints " iArr[%d] = %f\n", icounter, iArr[icounter]

icounter += 1
od
endin
instr 2
prints “iArr in instr %d:\n", p1
iAre[] init 4
icounter = 0

until (icounter >= 4) do
iArr[icounter] = icounter 2 + 1
prints " iArr[%d] = %f\n", icounter, iArr[licounter]
icounter += 1
od
endin

</Cslnstruments>
<CsScore>
i100

i200
</CsScore>
</CsoundSynthesizer>

1RINTS
I"RR IN INSTR
I"RR< >
I"RR< >
I"RR< >
I"RR< >
I"RR IN INSTR
I"RR< >
I"RR< >
I"RR< >
I"RR< >

I-Arrays Global

<CsoundSynthesizer>
<CsOptions>

-dnmO

</CsOptions>
<Cslnstruments>

;test global iArrays
;jh march 2013

giArr[] init 4

instr 1
prints "Printing giArr[] in instr %d:\n [*, p1
icounter = 0
until (icounter == 3) do
prints "%f ", giArr[icounter]
icounter += 1
od
prints "%f]\n", giArr[3]
endin

instr 2
prints "Changing giArr[] in instr %d.\n", p1
icounter = 0
until (icounter == 4) do
giArrficounter] = rnd(10)
printf_i " giArr[%d] = %f\n", icounter+1, icounter, giArr[icounter]
icounter += 1
od
endin

instr 3
prints ~ "Printing giArr[] in instr %d:\n [*, p1
icounter = 0

until (icounter == 3) do
prints "%f ", giArr[icounter]
icounter += 1
od
prints "%f]\n", giArr[3]
endin
</Cslnstruments>
<CsScore>
i100
i200
i300
</CsScore>
</CsoundSynthesizer>

1RINTS

1RINTING GI"RR<>IN INSTR
< >
$HANGING GI"RR<> IN INSTR
GI"RR< >

GI"RR< >

GI"RR< >

GI"RR< >

1RINTING GI"RR<>IN INSTR
< >

k-Arrays Local

<CsoundSynthesizer>
<CsOptions>

-dnmO

</CsOptions>
<Cslnstruments>

;test local kArrays
;jh march 2013

instr 1

printks "kArr in instr %d:\n", 0, p1
KArr] init 4
kcounter = 0

until (kcounter == 4) do
kArr[kcounter] = kcounter ~ 2
printf " kArr[%d] = %f\n", kcounter+1, kcounter, kArr[kcounter]
kcounter += 1
od
turnoff
endin

instr 2

printks "kArr in instr %d:\n", 0, p1
KAr] init 4
kcounter = 0

until (kcounter == 4) do
kArr[kcounter] = kcounter 2 + 1
printf " kArr[%d] = %f\n", kcounter+1, kcounter, kArr[kcounter]
kcounter += 1
od
turnoff
endin

</Cslnstruments>
<CsScore>

i101

i201

</CsScore>
</CsoundSynthesizer>

1RINTS

K'RR IN INSTR
K'RR< >
K'RR< >
K'RR< >
K'RR< >

K'RR IN INSTR
K'RR< >
K'RR< >
K'RR< >
K'RR< >

k-Arrays Global

<CsoundSynthesizer>
<CsOptions>

-dnmO

</CsOptions>
<Cslnstruments>

;test global iArrays
;jh march 2013

giArrLen = 5
gkArr[] init giArrLen

instr 1
printks "Printing gkArr[] in instr %d:\n [*, O, p1
kcounter = 0
until (kcounter == giArrLen-1) do
printf "%f ", kcounter+1, gkArr[kcounter]
kcounter += 1
od
printf "%f]\n", kcounter+1, gkArr[kcounter]
turnoff
endin

instr 2
printks "Changing gkArr[] in instr %d.\n", 0, p1
kcounter = 0
kLim init 10
until kcounter == giArrLen do
gkArr[kcounter] = rnd(kLim)
printf " gkArr[%d] = %f\n", kcounter+1, kcounter, gkArr[kcounter]
kcounter += 1
od
turnoff
endin

instr 3
printks "Printing gkArr[] in instr %d:\n [*, 0, p1
kcounter = 0
until (kcounter == giArrLen-1) do
printf "%f ", kcounter+1, gkArr[kcounter]
kcounter += 1
od
printf "%f|\n", kcounter+1, gkArr[kcounter]
turnoff
endin
</CslInstruments>
<CsScore>
i101
i201
i301
</CsScore>
</CsoundSynthesizer>

1RINTS

1RINTING GK"RR<>IN INSTR
< >
$HANGING GK"RR<> IN INSTR
GK"RR< >

GK"RR< >

GK"RR< >

GK"RR< >

GK"RR< >

1RINTING GK"RR<>IN INSTR
< >

a-Arrays Local

<CsoundSynthesizer>
<CsOptions>

-odac -d
</CsOptions>
<Cslnstruments>

;test local aArrays
;jh march 2013

sr=44100
ksmps = 32
nchnls = 2

instr 1

aArr[] init 2

al oscils .2, 400, 0

a2 oscils .2,500, 0
KEnv transeg 1, p3,-3,0

aArr[0] = al * kEnv * 20000
aArrl] = a2 * kEnv * 20000

outch 1, aArr[0], 2, aArr[1]
endin

instr 2 ;to test identical names

aArr[] init 2

al oscils .2,600, 0

a2 oscils .2,700, 0

KEnv transeg O, p3-p3/10, 3, 1, p3/10, -6, 0

aArr[0] = al * kEnv * 20000
aArrl] = a2 * kEnv * 20000
outch 1, aArr[0], 2, aArr[1]
endin
</Cslnstruments>
<CsScore>
i103
i203
</CsScore>

</CsoundSynthesizer>

a-Arrays Global

<CsoundSynthesizer>
<CsOptions>

-odac -d
</CsOptions>
<Cslnstruments>

;test global aArrays
;jh march 2013 (using code from iain mccurdy)

sr=44100
ksmps = 32
nchnls = 2

gaArr[] init 2

instr 1 ; left channel
KEnv loopseg 0.5, 0, 0, 1,0.003, 1,0.0001, 0,0.9969
aSig pinkish KEnv
gaArr[0] = aSig * 20000

endin

instr 2 ; right channel

KEnv loopseg 0.5, 0, 0.5, 1,0.003, 1,0.0001, 0,0.9969
aSig pinkish kEnv
gaArrl] = aSig * 20000

endin

instr 3 ; reverb
alnSigL = gaArr[0] /3
alnSigR = gaArr[1]/ 2
aRvbL,aRVbR reverbsc alnSigL, alnSigR, 0.88, 8000

gaArr[0] = gaArr[0] + aRvbL
gaArrl] = gaArr[1] + aRvbR
outs gaArr[0], gaArr[1]
gaArr[0] = 0
gaArrl] = 0
endin
</Cslnstruments>
<CsScore>
i1010
i2010
i3012
</CsScore>

</CsoundSynthesizer>

S-Arrays Local

<CsoundSynthesizer>
<CsOptions>

-dnmO

</CsOptions>
<Cslnstruments>

;test local SArrays

;(same code in instr 1 and 2, different values)
;create and fill string array at i-time, modify at k-time
;jh march 2013

opcode StrAgrm, S, Sj
;changes the elements in Sin randomly, like in an anagram
Sin, iLen xin
if iLen == -1 then
iLen strlen Sin
endif
Sout =
;for all elements in Sin
iCnt = 0
iRange = iLen
loop:
;get one randomly
iRnd rd31 iRange-.0001, O
iRnd = int(abs(iRnd))
Sel strsub Sin, iRnd, iRnd+1
Sout strcat Sout, Sel
;take it out from Sin
Ssubl strsub Sin, 0, iRnd
Ssub2 strsub Sin, iRnd+1

Sin strcat Ssubl, Ssub2
;adapt range (new length)
iRange = iRange-1
loop_It iCnt, 1, iLen, loop
xout Sout
endop

instr 1
prints "SArr[] in instr %d at init-time:\n [, p1
;create
S_Arr]] init 4
Sfill
iCounter = 0
until (iCounter ==4) do
S new StrAgrm “"csound"
S_ArrfiCounter]= S_new
iCounter +=1
od
;print
iCounter = 0
until (iCounter ==4) do
printf_i "%s ", iCounter+1, S_Arr[iCounter]
iCounter +=1
od
prints "\n"

kCycle timeinstk
printks "SArr[] in instr %d at k-cycle %d:\n [", 0, p1, kCycle
Sfill
kCounter = 0
until (kCounter ==4) do
kChar random 33, 127
S new sprintfk "%c ", int(kChar)
S_Arr[kCounter] strcpyk S_new ;'=" should work but does not
kCounter +=1
od
;print
kCounter = 0
until (kCounter ==4) do
printf "%s ", kCounter+1, S_Arr[kCounter]
kCounter +=1
od
printks "|\n", 0
if kCycle == 3 then

turnoff
endif
endin
instr 2
prints "SArr[] in instr %d at init-time:\n [, p1
;create

S_Arr]] init 4
Sfill
iCounter = 0
until (iCounter ==4) do

S new StrAgrm “"csound"
S_ArrfiCounter]= S_new
iCounter +=1
od
;print
iCounter = 0
until (iCounter ==4) do
printf_i "%s ", iCounter+1, S_Arr[iCounter]
iCounter +=1
od
prints "\n"

kCycle timeinstk
printks "SArr[] in instr %d at k-cycle %d:\n [", 0, p1, kCycle
Sfill
kCounter = 0
until (kCounter ==4) do
kChar random 33, 127
S new sprintfk "%c ", int(kChar)
S_Arr[kCounter] strcpyk S_new ;'=' should work but does not
kCounter +=1
od
;print
kCounter = 0
until (kCounter ==4) do
printf "%s ", kCounter+1, S_Arr[kCounter]
kCounter +=1
od
printks "|\n", 0
if kCycle == 3 then
turnoff
endif
endin

</Cslnstruments>
<CsScore>

i101

i211

</CsScore>
</CsoundSynthesizer>

1RINTS

4"RR<>IN INSTR AT INIT TIME
<CONSDU UNCDOS ODUSCN SCODUN >
4"RR<>IN INSTR AT K CYCLE

<S X >

4"RR<>IN INSTR AT K CYCLE

<1:R>

4"RR<>IN INSTR AT K CYCLE

<U6B,>

4"RR<>IN INSTR AT INIT TIME
<UOCDSN ODSCNU USCDON SNCDUO >
4"RR<>IN INSTR AT K CYCLE

<C HH>

4"RR<>IN INSTR AT K CYCLE
< 6>

4"RR<>IN INSTR AT K CYCLE
<X':L>

S-Arrays Global

<CsoundSynthesizer>
<CsOptions>

-dnmO

</CsOptions>
<Cslnstruments>

;test global SArrays
;jh march 2013

giArrLen = 5
gSArr[] init giArrLen

opcode StrAgrm, S, Sj
;changes the elements in Sin randomly, like in an anagram
Sin, iLen xin
if iLen == -1 then
iLen strlen Sin
endif
Sout =
;for all elements in Sin
iCnt = 0
iRange = iLen
loop:
;get one randomly
iRnd rd31 iRange-.0001, O
iRnd = int(abs(iRnd))
Sel strsub Sin, iRnd, iRnd+1
Sout strcat Sout, Sel
;take it out from Sin
Ssubl strsub Sin, 0, iRnd
Ssub2 strsub Sin, iRnd+1
Sin strcat Ssubl, Ssub2
;adapt range (new length)
iRange = iRange-1
loop_It iCnt, 1, iLen, loop
xout Sout
endop

instr 1
prints "Filling gSArr[] in instr %d at init-time\n", p1
iCounter = 0
until (iCounter == giArrLen) do
S new StrAgrm “csound"
gSArrfiCounter] = S_new
iCounter +=1

od
endin

instr 2
prints "Printing gSArr[] in instr %d at init-time:\n [, p1
iCounter = 0
until (iCounter == giArrLen) do
printf_i "%s ", iCounter+1, gSArr[iCounter]
iCounter +=1
od
prints "\n"
endin

instr 3
printks "Printing gSArr[] in instr %d at perf-time:\n [, 0, p1
kcounter = 0
until (kcounter == giArrLen) do
printf "%s ", kcounter+1, gSArr[kcounter]

kcounter += 1
od
printks "|\n", O
turnoff
endin
instr 4

prints "Modifying gSArr[] in instr %d at init-time\n", p1
iCounter = 0
until (iCounter == giArrLen) do
S new StrAgrm “"csound"
gSArriCounter]= S_new
iCounter +=1
od
endin

instr 5
prints "Printing gSArr[] in instr %d at init-time:\n [, p1
iCounter = 0
until (iCounter == giArrLen) do
printf_i "%s ", iCounter+1, gSArr[iCounter]
iCounter +=1
od
prints "\n"
endin

instr 6
kCycle timeinstk
printks "Modifying gSArr[] in instr %d at k-cycle %d\n", 0, p1, kCycle
kCounter = 0
until (kCounter == giArrLen) do
kChar random 33, 127
S new sprintfk "%c ", int(kChar)
gSArr[kCounter] strcpyk S_new ;'=" should work but does not
kCounter +=1
od
if kCycle == 3 then
turnoff

endif
endin

instr 7
kCycle timeinstk

printks "Printing gSArr[] in instr %d at k-cycle %d:\n [", 0, p1, kCycle

kCounter = 0
until (kCounter == giArrLen) do
printf "%s ", kCounter+1, gSArr[kCounter]
kCounter +=1
od
printks "|\n", 0
if kCycle == 3 then
turnoff
endif
endin
</Cslnstruments>
<CsScore>
i101
i201
i301
i411
i511
i611
i711
</CsScore>
</CsoundSynthesizer>

1RINTS

'ILLING G4"RR<> IN INSTR AT INIT TIME
1RINTING G4"RR<>IN INSTR AT INIT TIME
<NUDOSC COUDNS DSOCUN OCSUND OSNCDU >
1RINTING G4"RR<>IN INSTR AT PERF TIME
<NUDOSC COUDNS DSOCUN OCSUND OSNCDU >
.ODIFYING G4"RR<> IN INSTR AT INIT TIME
1RINTING G4"RR<>IN INSTR AT INIT TIME
<OUSNDC UOCDNS SUDOCN USNOCD OUNCDS >
.ODIFYING G4"RR<>IN INSTR AT KCYCLE
1RINTING G4"RR<>IN INSTR AT KCYCLE

<§ X >

.ODIFYING G4"RR<>IN INSTR AT KCYCLE
1RINTING G4"RR<>IN INSTR AT KCYCLE
<l1;RUG6>

.ODIFYING G4"RR<>IN INSTR AT KCYCLE
1RINTING G4"RR<>IN INSTR AT KCYCLE

<B,C H>

TRIGGERING INSTRUMENT EVENTS

5HE BASIC CONCEPT OF $SOUND FROM THE EARLY DAYS OF THE PROGRAM IS STILL VAI
BECAUSE IT IS A FAMILIAR MUSICAL ONE :0U CREATE A SET OF INSTRUMENTS AND INST
PLAY AT VARIOUS TIMES 5HESE CALLS OF INSTRUMENT INSTANCES AND THEIR EXECU
INSTRUMENT EVENTS

S5HIS SCHEME OF INSTRUMENTS AND EVENTS CAN BE INSTIGATED IN A NUMBER OF WAY
CLASSICAL APPROACH YOU THINK OF AN ORCHESTRA WITH A NUMBER OF MUSICIANS |
SCORE BUT YOU CAN ALSO TRIGGER INSTRUMENTS USING ANY KIND OF LIVE INPUT Fl
FROM 04%$ FROM THE COMMAND LINE FROM A (6* SUCH AS $SOUND S '-5, WIDGETS OR

$SOUND2T S WIDGETS FROM THE "1* ALSO USED IN $SOUND2T S -IVE &VENT 4HEET OF
CAN CREATE A KIND OF MASTER INSTRUMENT WHICH IS ALWAYS ON AND TRIGGERS C
INSTRUMENTS USING OPCODES DESIGNED FOR THIS TASK PERHAPS UNDER CERTAIN C
LIVE AUDIO INPUT FROM A SINGER HAS BEEN DETECTED TO HAVE A BASE FREQUENCY (

)Z THEN START AN INSTRUMENT WHICH PLAYS A SOUNDFILE OF BROKEN GLASS

S5HIS CHAPTER IS ABOUT THE VARIOUS WAYS TO TRIGGER INSTRUMENT EVENTS WHETHE
THE SCORE BY USING .*%* BY USING WIDGETS THROUGH USING CONDITIONALS OR BY
SHE FOLLOWING SECTION CAN BE SKIPPED FIRST AND READ LATER IF YOU WANT TO GC

ORDER OF EXECUTION REVISITED

8HATEVER YOU DO IN $SOUND WITH INSTRUMENT EVENTS YOU MUST BEAR IN MIND THI
EXECUTION THAT HAS BEEN EXPLAINED IN THE FIRST CHAPTER OF THIS SECTION ABOU
Initialization and Performance PastNSTRUMENTS ARE EXECUTED ONE BY ONE BOTH IN THE
INITIALIZATION PASS AND IN EACH CONTROL CYCLE AND ThigI@@RDER IS DETERMINED
instrument number

*T 1S WORTH TO HAVE A CLOSER LOOK TO WHAT IS HAPPENING EXACTLY IN TIME IF YOU
INSTRUMENT FROM INSIDE ANOTHER INSTRUMENT 5HE FIRST EXAMPLE SHOWS THE RE
INSTRUMENT TRIGGERS INSTRUMENT ABRCOANSTRUMENT

EXAMPLE 03F01_OrderOfExc_event _i.csd

<CsoundSynthesizer>
<CsOptions>

-nmO0

</CsOptions>
<Cslnstruments>
sr=44100

ksmps = 441

instr 1
kCycle timek

prints "Instrument 1 is here at initialization.\n"
printks "Instrument 1: kCycle = %d\n", 0, kCycle
endin

instr 2

kCycle timek

prints * Instrument 2 is here at initialization.\n"
printks " Instrument 2: kCycle = %d\n", 0, kCycle
event_i "i", 3,0, .02

event_i"i", 1, 0, .02

endin

instr 3

kCycle timek

prints " Instrument 3 is here at initialization.\n"
printks " Instrument 3: kCycle = %d\n", 0, kCycle
endin

</Cslnstruments>
<CsScore>

i20.02

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

SHIS IS THE OUTPUT
*NSTRUMENT IS HERE AT INITIALIZATION
*NSTRUMENT IS HERE AT INITIALIZATION
*NSTRUMENT IS HERE AT INITIALIZATION
*NSTRUMENT K$YCLE
*NSTRUMENT K$YCLE
*NSTRUMENT K$YCLE
*NSTRUMENT K$YCLE
*NSTRUMENT K$YCLE
*NSTRUMENT K$YCLE

*NSTRUMENT IS THE FIRST ONE TO INITIALIZE BECAUSE IT IS THE ONLY ONE WHICH IS |
SCORE 5HEN INSTRUMENT IS INITIALIZED BECAUSE IT IS CALLED FIRST BY INSTRUMEN
ONE IS INSTRUMENT "LL THIS IS DONE BEFORE THE ACTUAL PERFORMANCE BEGINS *I
PERFORMANCE ITSELF STARTING FROM THE FIRST CONTROL CYCLE ALL INSTRUMENT
THEIR ORDER

-ET US COMPARE NOW WHAT IS HAPPENING WHEN INSTRUMENT CALLS INSTRUMENT .
during the performance AT K TIME

EXAMPLE 03F02_OrderOfExc_event_k.csd

<CsoundSynthesizer>
<CsOptions>
-nmO0

</CsOptions>
<Cslnstruments>
sr=44100
ksmps =441
Odbfs =1

nchnls = 1

instr 1

kCycle timek

prints "Instrument 1 is here at initialization.\n"
printks "Instrument 1: kCycle = %d\n", 0, kCycle
endin

instr 2
kCycle timek
prints * Instrument 2 is here at initialization.\n"
printks " Instrument 2: kCycle = %d\n", 0, kCycle
if kCycle == 1 then
event i, 3, 0, .02
event "i", 1, 0, .02
endif
printks " Instrument 2: still in kCycle = %d\n", 0, kCycle
endin

instr 3

kCycle timek

prints " Instrument 3 is here at initialization.\n"
printks " Instrument 3: kCycle = %d\n", 0, kCycle
endin

instr 4
kCycle timek
prints " Instrument 4 is here at initialization.\n"

printks " Instrument 4: kCycle = %d\n", 0, kCycle
endin

</Cslnstruments>
<CsScore>

i40.02

i20.02

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

SHIS IS THE OUTPUT
*NSTRUMENT IS HERE AT INITIALIZATION
*NSTRUMENT IS HERE AT INITIALIZATION
*NSTRUMENT K$YCLE
*NSTRUMENT STILL IN K$YCLE
*NSTRUMENT K$YCLE
*NSTRUMENT IS HERE AT INITIALIZATION
*NSTRUMENT IS HERE AT INITIALIZATION
*NSTRUMENT K$YCLE

*NSTRUMENT K$YCLE
*NSTRUMENT STILL IN K$YCLE
*NSTRUMENT K$YCLE
*NSTRUMENT K$YCLE

*NSTRUMENT STARTS WITH ITS INIT PASS AND THEN INSTRUMENT IS INITIALIZED "S'Y
REVERSE ORDER OF THE SCORELINES HAS NO EFFECT THE INSTRUMENTS WHICH STAI
ARE EXECUTED IN ASCENDING ORDER DEPENDING ON THEIR NUMBERS

*N THIS FIRST CYCLE INSTRUMENT CALLS INSTRUMENT AND "SYOU SEE BY THE OU
INSTRUMENT THE WHOLE CONTROL CYCLE IS FINISHED FIRST BEFORE INSTRUMENT

ORDER ARE INITIABHESE BOTH INSTRUMENTS START THEIR PERFORMANCE IN CYCLE N
TWO WHERE THEY FIND THEMSELVES IN THE USUAL ORDER INSTRUMENT BEFORE INS
THEN INSTRUMENT BEFORE INSTRUMENT

6SUALLY YOU WILL NOT NEED TO KNOW THIS IN SUCH A PRECISE TIMING #UT IN CASE Y
EXPERIENCE ANY PROBLEMS THE KNOWLEDGE ABOUT THESE PROCEEDINGS MAY HEL

INSTRUMENT EVENTS FROM THE SCORE

SHIS IS THE CLASSICAL WAY OF TRIGGERING INSTRUMENT EVENTS YOU WRITE A LIST It
SECTION OF A CSD FILE &ACH LINE WHICH BEGINS WITH AN | IS AN INSTRUMENT EVEN
VERY SIMPLE AND EXAMPLES CAN BE FOUND EASILY LET US FOCUS INSTEAD ON SOME
FEATURES WHICH CAN BE USEFUL WHEN YOU WORK IN THIS WAY %OCUMENTATION FC
FEATURES CAN BE FOUNIDRETHEATENECTEON OF THE $ANONICAL $SOUND 3EFERENCE
ANUAL)ERE ARE SOME EXAMPLES

EXAMPLE 03F03_Score_tricks.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

giWwav ftgen 0,0, 210, 10,1, .5, .3, .1

instr 1
kFadout init 1
krel release ;returns"l1"if last k-cycle
if krel == 1 && p3 < 0 then ;if so, and negative p3:
xtratim .5 ;give 0.5 extra seconds
kFadout linseg 1, .5, 0 ;and make fade out

e-triggering-instrument-events#InsertNoteID_26
http://www.csounds.com/manual/html/ScoreStatements.html

endif
kKEnv linseg O, .01, p4, abs(p3)-.1, p4, .09, 0; normal fade out
aSig poscil kEnv*kFadout, p5, giwav
outs aSig, aSig
endin

</CslInstruments>

<CsScore>

t0120 ;set tempo to 120 beats per minute

i 1 0 1 .2 400;playinstr1 for one second

i 1 2 -10 .5 500 ;play instr 1 indefinetely (negative p3)
i -1 50 ;turn it off (negative pl)

; -- turn on instance 1 of instr 1 one sec after the previous start
i 1.1 ~+1 -10 .2 600

i 1.2 ~+2 -10 .2 700 ;another instance of instr 1

i -1.2 42 0 ;turn off 1.2

; -- turn off 1.1 (dot = same as the same p-field above)

-1.1 M1

[

S ;end of a section, so time begins from new at zero
i 1 1 1 .2 800

rs ;repeats the following line (until the next "s")
i 1 .25 .25 .2 900

s

V2 ;lets time be double as long

i 1 0 2 .2 1000

i 1 1 1 .2 1100

s

v 0.5 ;lets time be half as long

i 1 0 2 .2 1200

i 1 1 1 .2 1300

S ;time is normal now again

i 1 0 2 .2 1000

i 1 1 1 .2 900

s

; -- make a score loop (4 times) with the variable "LOOP"
{4 LOOP

i 1 [0+4*3$LOOP.] 3 .2 [1200 - $LOOP. * 100]
1 [1+4*$LOOP.] 2 . [1200 - $LOOP. * 200]
1 [2+4*$LOOP.] 1 . [1200 - $LOOP. *300]

i
i

}
e

</CsScore>
</CsoundSynthesizer>

SRIGGERING AN INSTRUMENT WITH AN INDEFINITE DURATION BY SETTING P TO ANY NE!
AND STOPPING IT BY A NEGATIVE P VALUE CAN BE AN IMPORTANT FEATURE FOR LIVE E
TURN INSTRUMENTS OFF IN THIS WAY YOU MAY HAVE TO ADD A FADE OUT SEGMENT ON
DOING THIS IS SHOWN IN THE INSTRUMENT ABOVE WITH REIGMESEDATIHEN OF THE
XTRATORPCODES "LSO NOTE THAT YOU CAN START AND STOP CERTAIN INSTANCES OF A
WITH A FLOATING POINT NUMBER AS P

USING MIDI NOTE-ON EVENTS

$SOUND HAS A PARTICULAR FEATURE WHICH MAKES IT VERY SIMPLE TO TRIGGER INSTI
FROM A .*%* KEYBOARD &ACH .*%* /OTE ON EVENT CAN TRIGGER AN INSTRUMENT AND
RELATED /OTE OFF EVENT OF THE SAME KEY STOPS THE RELATED INSTRUMENT INSTAN
EXPLAINED MORE IN DETAIL IN THigdeHA@TrSRument Instancélsl THE .*%*

SECTION OF THIS MANUAL)ERE JUST A SMALL EXAMPLE IS SHOWN 4IMPLY CONNECT Y
KEYBOARD AND IT SHOULD WORK

EXAMPLE 03F04_Midi_triggered_events.csd

http://www.csounds.com/manual/html/release.html
http://www.csounds.com/manual/html/xtratim.html

<CsoundSynthesizer>
<CsOptions>

-Ma -odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen 0, 0, 2°10, 10,1
massign 0, 1; assigns all midi channels to instr 1

instr 1
iFreq cpsmidi ;gets frequency of a pressed key
iAmp ampmidi 8 ;gets amplitude and scales 0-8
iRatio random .9, 1.1 ;ratio randomly between 0.9 and 1.1
aTone foscili .1, iFreq, 1, iRatio/5, iAmp+1, giSine ;fm
aEnv linenr aTone, 0, .01, .01 ; avoiding clicks at the note-end
outs aEnv, aEnv
endin

</Cslnstruments>
<CsScore>

f 0 36000; play for 10 hours
e

</CsScore>
</CsoundSynthesizer>

USING WIDGETS

*F YOU WANT TO TRIGGER AN INSTRUMENT EVENT IN REALTIME WITH A (RAPHICAL 6SEF
IS USUALLY A #UTTON WIDGET WHICH WILL DO THIS JOB 8E WILL SEE HERE A SIMPLE E
FIRST IMPLEMENTED USING $SOUND S -5, WIDGETS AND THEN USING $SOUND2T S WIDt

FLTK Button

S5HIS IS A VERY SIMPLE EXAMPLE DEMONSTRATING HOW TO TRIGGERAN INSTRUMENT L
BUTTOWMORE EXTENDED EXAMPLE CANIBREOUND

EXAMPLE 03F05_FLTK triggered_events.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

http://www.csounds.com/manual/html/FLbutton.html
http://www.csounds.com/manual/html/FLbutton.html
http://www.csounds.com/manual/html/examples/FLbutton.csd

Odbfs =1

; -- create a FLTK panel --
FLpanel "Trigger By FLTK Button", 300, 100, 100, 100
; -- trigger instr 1 (equivalent to the score line "i 1 0 1")k1, ihl1 FLbutton "Push me!", 0, 0, 1, 1
; -- trigger instr 2
k2,ih2 FLbutton "Quit", 0, O, 1, 80, 40, 200, 25,0, 2,0, 1
FLpanelEnd; end of the FLTK panel section
FLrun ;run FLTK
seed 0; random seed different each time

instr 1
idur random .5, 3; recalculate instrument duration
p3 = idur; reset instrument duration
ioct random 8, 11; random values between 8th and 11th octave
idb random -18, -6; random values between -6 and -18 dB
aSig oscils ampdb(idb), cpsoct(ioct), O
aEnv transeg 1, p3,-10,0

outs aSig*aEnv, aSig*aEnv
endin

instr 2
exithow
endin

</Cslnstruments>
<CsScore>

f 0 36000

e

</CsScore>
</CsoundSynthesizer>

/OTE THAT IN THIS EXAMPLE THE DURATION OF AN INSTRUMENT EVENT IS RECALCULAT
INSTRUMENT IS INITITALIZED 5HIS IS DONE USING THE STATEMENT P | 5HIS CAN BE
TECHNIQUE IF YOU WANT THE DURATION THAT AN INSTRUMENT PLAYS FOR TO BE DIFFE
IS CALLED *N THIS EXAMPLE DURATION IS THE RESULT OF A RANDOM FUNCTION S5HELC
DEFINED BY THE '-5, BUTTON WILL BE OVERWRITEN BY ANY OTHER CALCULATION WITHI
INSTRUMENT ITSELF AT | TIME

CsoundQt Button

*N $SOUND2T A BUTTON CAN BE CREATED EASILY FROM THE SUBMENU IN A WIDGET PA

*N THE 1ROPERTIES %IALOG OF THE BUTTON WIDGET MAKE SURE YOU HAVE SELECTEI
5YPE *NSERT A $HANNEL NAME AND AT THE BOTTOM TYPE IN THE EVENT YOU WANT TC
YOU WOULD IF WRITING A LINE IN THE SCORE

*N YOUR $SOUND CODE YOU NEED NOTHING MORE THAN THE INSTRUMENT YOU WANT

'OR MORE INFORMATION ABOUT $SOUND2T READ THE $SOUND2T CHAPTER IN THE 'ROI
SECTION OF THIS MANUAL

USING A REALTIME SCORE (LIVE EVENT
SHEET)

Command Line With The -L stdin Option

*FYOU USE ANY CSD WITH THE OPTION -STDIN AND THE ODAC OPTION FOR REALTIV
YOU CAN TYPE ANY SCORE LINE IN REALTIME SORRY THIS DOES NOT WORK FOR 8INDC
INSTANCE SAVE THIS CSD ANYWHERE AND RUN IT FROM THE COMMAND LINE

EXAMPLE 03F06_Commandline_rt_events.csd

<CsoundSynthesizer>
<CsOptions>
-L stdin -odac
</CsOptions>

<Cslnstruments>

;Example by Joachim Heintz
sr =44100

ksmps = 32

nchnls = 2

Odbfs =1

seed 0; random seed different each time

instr 1
idur random .5, 3; calculate instrument duration
p3 = idur; reset instrument duration
ioct random 8, 11; random values between 8th and 11th octave
idb random -18, -6; random values between -6 and -18 dB
aSig oscils ampdb(idb), cpsoct(ioct), O
aEnv transeg 1, p3,-10,0

outs aSig*aEnv, aSig*aEnv
endin

</Cslnstruments>
<CsScore>

f 0 36000

e

</CsScore>
</CsoundSynthesizer>

*FYOU RUN IT BY TYPING AND RETURNING A COMMANDLINE LIKE THIS

YOU SHOULD GET A PROMPT AT THE END OF THE $SOUND MESSAGES

*FYOU NOW TYPE THE LINE | AND PRESS RETURN YOU SHOULD HEAR THAT INSTRU
BEEN EXECUTED "FTER THREE TIMES YOUR MESSAGES MAY LOOK LIKE THIS

CsoundQt's Live Event Sheet

*N GENERAL THIS IS THE METHOD THAT $SOUND2T USES AND IT IS MADE AVAILABLE TO
FLEXIBLE ENVIRONMENT CALLED THE -IVE &VENT 4HEET)AVE A LOOK IN THE $SOUND?21
TO SEE MORE OF THE POSSIBILITIES OF FIRING LIVE INSTRUMENT EVENTS USING THE -

AHEET

e-triggering-instrument-events#InsertNoteID_28

BY CONDITIONS

8E HAVE DISCUSSED FIRST THE CLASSICAL METHOD OF TRIGGERING INSTRUMENT EVEI
SCORE SECTION OF A CSD FILE THEN WE WENT ON TO LOOK AT DIFFERENT METHODS ¢
TIME EVENTS USING .*%* BY USING WIDGETS AND BY USING SCORE LINES INSERTED LI
NOW LOOK AT THE $SOUND ORCHESTRA ITSELF AND TO SOME METHODS BY WHICH AN
INTERNALLY TRIGGER ANOTHER INSTRUMENT SHE PATTERN OF TRIGGERING COULD BE
CONDITIONALS OR BY DIFFERENT KINDS OF LOOPS "S THIS MASTER INSTRUMENT CAN
TRIGGERED BY A REALTIME EVENT YOU HAVE UNLIMITED OPTIONS AVAILABLE FOR CON
DIFFERENT METHODS

-ET S START WITH CONDITIONALS *FWE HAVE A REALTIME INPUT WE MAY WANT TO DE|
THRESHOLD AND TRIGGER AN EVENT

IF WE CROSS THE THRESHOLD FROM BELOW TO ABOVE
IF WE CROSS THE THRESHOLD FROM ABOVE TO BELOW

*N $SOUND THIS COULD BE IMPLEMENTED USING AN ORCHESTRA OF THREE INSTRUME
INSTRUMENT IS THE MASTER INSTRUMENT *T RECEIVES THE INPUT SIGNAL AND INVEST

THAT SIGNAL IS CROSSING THE THRESHOLD AND IF IT DOES WHETHER IT IS CROSSING F
OR FROM HIGH TO LOW *F IT CROSSES THE THRESHOLD FROM LOW OT HIGH THE SECO
TRIGGERED IF IT CROSSES FROM HIGH TO LOW THE THIRD INSTRUMENT IS TRIGGERED

EXAMPLE 03F07_Event_by condition.csd

<CsoundSynthesizer>
<CsOptions>

-iadc -odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

seed 0; random seed different each time

instr 1; master instrument

ichoose = p4; 1 = real time audio, 2 = random amplitude movement
ithresh = -12; threshold in dB
kstat init 1;1 =under the threshold, 2 = over the threshold
;;CHOOSE INPUT SIGNAL

if ichoose == 1 then
ain inch 1

else
kdB randomi -18, -6, 1
ain pinkish ampdb(kdB)

endif
;:MEASURE AMPLITUDE AND TRIGGER SUBINSTRUMENTS IF THRESHOLD IS CROSSED
afoll follow ain, .1; measure mean amplitude each 1/10 second
kfoll downsamp afoll

if kstat == 1 && dbamp(kfoll) > ithresh then; transition down->up

event "i",2,0,1;callinstr2
printks "Amplitude = %.3f dB%n", 0, dbamp(kfoll)
kstat = 2; change status to "up”
elseif kstat == 2 && dbamp(kfoll) < ithresh then; transition up->down
event "i",3,0,1;callinstr3
printks "Amplitude = %.3f dB%n", 0, dbamp(kfoll)
kstat = 1; change status to "down"
endif
endin

instr 2; triggered if threshold has been crossed from down to up
asig oscils .2,500,0
aenv transeg 1, p3,-10,0
outs asig*aenv, asig*aenv
endin

instr 3; triggered if threshold has been crossed from up to down
asig oscils .2,400,0
aenv transeg 1, p3,-10,0
outs asig*aenv, asig*aenv

endin

</Cslnstruments>

<CsScore>

i 1 01000 2 ;change p4 to "1" for live input
e

</CsScore>

</CsoundSynthesizer>

USING I-RATE LOOPS FOR CALCULATING A
POOL OF INSTRUMENT EVENTS

:OU CAN PERFORM A NUMBER OF CALCULATIONS AT INIT TIME WHICH LEAD TO A LIST OF
EVENTS *N THIS WAY YOU ARE PRODUCING A SCORE BUT INSIDE AN INSTRUMENT 5HE
ARE THEN EXECUTED LATER

6SING THIS OPPORTUNITY WE CAN INCREEUESEORELINDR@ODE *T IS QUITE
SIMILAR TOENHEN'EVENT@RCODE BUT HAS TWO MAJOR BENEFITS

d :OU CAN WRITE MORE THAN ONE SCORELINE BY USING [[AT THE BEGINNING ANI
THE END

d :OU CAN SEND A STRING TO THE SUBINSTRUMENT WHICH IS NOT POSSIBLE WITF
OPCODE

-ET SLOOK AT A SIMPLE EXAMPLE FOR EXECUTING SCORE EVENTS FROM AN INSTRUME
SCORELINE OPCODE

EXAMPLE 03F08_ Generate_event_pool.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

seed 0; random seed different each time

instr 1 ;master instrument with event pool
scoreline_i{{i202 7.09
i2228.04
i2428.03
i2618.04}}
endin

instr 2 ;plays the notes

http://www.csounds.com/manual/html/scoreline.html
http://www.csounds.com/manual/html/scoreline_i.html
http://www.csounds.com/manual/html/event.html
http://www.csounds.com/manual/html/event_i.html

asig pluck .2, cpspch(p4), cpspch(p4), 0, 1
aenv transeg 1,p3,0,0
outs asig*aenv, asig*aenv
endin

</Cslnstruments>
<CsScore>

i107

e

</CsScore>
</CsoundSynthesizer>

8ITH GOOD RIGHT YOU MIGHT SAY 0, THAT S NICE BUT * CAN ALSO WRITE SCORELINE.
SCORE ITSELF 5HAT S RIGHT BUT THE ADYedWdImé ENATHABIES THAT YOU CAN

render THE SCORE EVENTS IN AN INSTRReEWWEERNDAMREM OUT TO ONE OR MORE
INSTRUMENTS TO EXECUTE THEM 5HIS CAN BERIORECRIDH WAHICH PRODUCES

THE STRING FOR SCORELINE IN AN | TIME LOOP SEE THE CHAPTER ABOUT CONTROL ST

EXAMPLE 03F09_Events_sprintf.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

giPch ftgen 0,0, 4,-2,7.09, 8.04, 8.03, 8.04
seed 0; random seed different each time

instr 1 ; master instrument with event pool

itimes = 7 ;number of events to produce

icnt = 0 ;counter

istart = 0

Slines =

loop: ;start of the i-time loop

idur random 1, 2.9999 ;duration of each note:

idur = int(idur) ;either 1 or 2

itabndx random 0, 3.9999 ;index for the giPch table:
itabndx = int(itabndx) ;0-3

ipch table itabndx, giPch ;random pitch value from the table
Sline sprintf "i 2 %d %d %.2f\n", istart, idur, ipch ;new scoreline
Slines strcat Slines, Sline ;append to previous scorelines
istart = istart + idur ;recalculate start for next scoreline
loop_It icnt, 1, itimes, loop ;end of the i-time loop
puts Slines, 1 ;print the scorelines
scoreline_i Slines ;execute them

istart + idur ;calculate the total duration

iend ;set p3 to the sum of all durations
print p3;printit

iend
p3

http://www.csounds.com/manual/html/sprintf.html

endin

instr 2 ;plays the notes
asig pluck .2, cpspch(p4), cpspch(p4), 0, 1
aenv transeg 1,p3,0,0
outs asig*aenv, asig*aenv
endin

</CslInstruments>

<CsScore>

i 10 1;p3is automatically set to the total duration
e

</CsScore>

</CsoundSynthesizer>

*N THIS EXAMPLE SEVEN EVENTS HAVE BEEN RENDERED IN AN | TIME LOOP IN INSTRUN
RESULT IS STORED IN THE STBIN&GBARARIFENG IS GIVEN AT | TIME TO SCORELINE@I
WHICH EXECUTES THEM THEN ONE BY ONE ACCORDING TO THEIR STARTING TIMES P

P AND OTHER PARAMETERS

*F YOU HAVE MANY SCORELINES WHICH ARE ADDED IN THIS WAY YOU MAY RUN TO $SC
MAXIMAL STRING LENGTH #Y DEFAULT ITIS CHARACTERS *T CAN BE EXTENDED BY £/
OPTION MAX@STR@LEN TO $SOUND S MAXIMUM STRING LENGTH OF CHARACTE
*NSTEAD OF COLLECTING ALL SCORE LINES IN A SINGLE STRING YOU CAN ALSO EXECU
| TIME LOOP "LSO IN THIS WAY ALL THE SINGLE SCORE LINES ARE ADDED TO $SOUND S
SHE NEXT EXAMPLE SHOWS AN ALTERNATIVE VERSION OF THE PREVIOUS ONE BY ADDII
INSTRUMENT EVENTS ONE BY ONE IN THE | TIME LOOP EITHER WITH EVENT@I INSTR ¢
SCORELINE@I INSTR

EXAMPLE 03F10_Events_collected.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

giPch ftgen 0,0, 4,-2,7.09, 8.04, 8.03, 8.04
seed 0; random seed different each time

instr 1; master instrument with event_i

itimes = 7; number of events to produce
icnt = 0; counter

istart = 0

loop: ;start of the i-time loop

idur random 1, 2.9999; duration of each note:
idur = int(idur); either 1 or 2

itabndx random 0, 3.9999; index for the giPch table:

itabndx = int(itabndx); 0-3

ipch table itabndx, giPch; random pitch value from the table
event_i "i", 3, istart, idur, ipch; new instrument event

istart = istart + idur; recalculate start for next scoreline

loop_It icnt, 1, itimes, loop; end of the i-time loop

iend = istart + idur; calculate the total duration
p3 = iend; set p3 to the sum of all durations
print p3; print it
endin

instr 2; master instrument with scoreline_i

itimes = 7; number of events to produce

icnt = 0; counter

istart = 0

loop: ;start of the i-time loop

idur random 1, 2.9999; duration of each note:

idur = int(idur); either 1 or 2

itabndx random 0, 3.9999; index for the giPch table:
itabndx = int(itabndx); 0-3

ipch table itabndx, giPch; random pitch value from the table

Sline sprintf "i 3 %d %d %.2f", istart, idur, ipch; new scoreline
scoreline_i Sline; execute it
puts Sline, 1; print it

istart = istart + idur; recalculate start for next scoreline
loop_It icnt, 1, itimes, loop; end of the i-time loop

iend = istart + idur; calculate the total duration
p3 = iend; set p3 to the sum of all durations
print p3; print it
endin

instr 3; plays the notes
asig pluck .2, cpspch(p4), cpspch(p4), 0, 1
aenv transeg 1,p3,0,0
outs asig*aenv, asig*aenv
endin

</Cslnstruments>
<CsScore>

i101

i2141

e

</CsScore>
</CsoundSynthesizer>

USING TIME LOOPS

"S DISCUSSED ABOVE IN THE CHAPTER ABOUT CONTROL STRUCTURES A TIME LOOP C£
$SOUND EITHER WIMNNIOHEPCODE OR WIMETREPCODE 5HERE WERE ALSO SIMPLE

EXAMPLES FOR TRIGGERING INSTRUMENT EVENTS USING BOTH METHODS)ERE A MOF
EXAMPLE IS GIVEN "MASTER INSTRUMENT PERFORMS A TIME LOOP CHOOSE EITHER It
TIMOUT METHOD OR INSTR FOR THE METRO METHOD AND TRIGGERS ONCE IN A LOOP
SUBINSTRUMENT 5HE SUBINSTRUMENT ITSELF INSTR PERFORMS AN | TIME LOOP AN

http://www.csounds.com/manual/html/timout.html
http://www.csounds.com/manual/html/metro.html

SEVERAL INSTANCES OF A SUB SUBINSTRUMENT INSTR &ACH INSTANCE PERFORMS
WITH AN INDEPENDENT ENVELOPE FOR A BELL LIKE ADDITIVE SYNTHESIS

EXAMPLE 03F11_Events_time_loop.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen 0, 0, 2°10, 10,1
seed O

instr 1; time loop with timout. events are triggered by event_i (i-rate)
loop:
idurloop random 1, 4; duration of each loop
timout 0, idurloop, play

reinit loop
play:
idurins random 1, 5; duration of the triggered instrument
event_i "i", 10, O, idurins; triggers instrument 10
endin

instr 2; time loop with metro. events are triggered by event (k-rate)
kfreq init 1; give a start value for the trigger frequency
kTrig metro kfreq
if kKTrig == 1 then ;if trigger impulse:
kdur random 1, 5; random duration for instr 10

event "i", 10, O, kdur; call instr 10
kfre@ random .25, 1; set new value for trigger frequency
endif
endin

instr 10; triggers 8-13 partials
inumparts random 8, 14

inumparts = int(inumparts); 8-13 as integer
ibasoct random 5, 10; base pitch in octave values
ibasfreq = cpsoct(ibasoct)
ipan random .2, .8; random panning between left (0) and right (1)
icnt = 0; counter
loop:
event_i "i", 100, 0, p3, ibasfreq, icnt+1, inumparts, ipan

loop_It icnt, 1, inumparts, loop
endin

instr 100; plays one partial
ibasfreq = p4; base frequency of sound mixture
ipartnum p5; which partial is this (1 - N)
inumparts p6; total number of partials

ipan = p7; panning

ifreqgen = ibasfreq * iparthum; general frequency of this partial
ifreqdev random -10, 10; frequency deviation between -10% and +10%
; -- real frequency regarding deviation

ifreq = ifreqgen + (ifreqdev*ifreqgen)/100

ixtratim random 0, p3; calculate additional time for this partial

p3 = p3 + ixtratim; new duration of this partial

imaxamp = 1/inumparts; maximum amplitude

idbdev random -6, 0; random deviation in dB for this partial

iamp = imaxamp * ampdb(idbdev-ipartnum); higher partials are softer
ipandev random -.1,.1; panning deviation

ipan = ipan + ipandev

aEnv transeg 0, .005, 0, iamp, p3-.005, -10, 0
aSine poscil aEnv, ifreq, giSine
aL,aR pan2 aSine, ipan
outs al,aR
prints “ibasfreq = %d, ipartial = %d, ifreq = %d%n"\
ibasfreq, ipartnum, ifreq
endin

</Cslnstruments>

<CsScore>

i 1 0 300 ;try this, or the next line (or both)
;120300

</CsScore>

</CsoundSynthesizer>

LINKS AND RELATED OPCODES

Links

" GREAT COLLECTION OF INTERACTIVE EXAMPLES WITH -5, WIDGETS BY *AIN .C$URDY C
FOUNEEREEE PARTICULARILY THE 3EALTIME 4CORE (ENERATION SECTION 3ECENTLY
COLLECTION HAS BEEN PORTED TO 2UTE$SOUND BY 3ENa +OPI AND IS PART OF 2UTE$:
EXAMPLE MENU

"N EXTENDED EXAMPLE FOR CALCULATING SCORE EVENTS AT | 3BME CAN BE FOUND IN
(ENERATION OF 4TOCKHAUSEN BYHOMNEHIM)EINTZ ALSO INCLUDED IN THE
2UTE$SOUND &XAMPLES MENU

Related Opcodes

EVENT@VENENERATE AN INSTRUMENT EVENT AT I TIME EVENT@I| OR AT K TIME EVEN
&ASY TO USE BUT YOU CANNOT SEND A STRING TO THE SUBINSTRUMENT

SCORELINE@DREL(ENERATE AN INSTRUMENT AT | TIME SCORELINE@I OR AT K TIME
SCORELINE -IKE EVENT@I EVENT BUT YOU CAN SEND TO MORE THAN ONE INSTRUMEI

http://iainmccurdy.org/csound.html
http://www.joachimheintz.de/soft/popsoft.html
http://www.joachimheintz.de/soft/popsoft.html
http://www.csounds.com/manual/html/event_i.html
http://www.csounds.com/manual/html/event.html
http://www.csounds.com/manual/html/scoreline_i.html
http://www.csounds.com/manual/html/scoreline.html

EVENT@I EVENT YOU CAN SEND STRINGS ON THE OTHER HAND YOU MUST USUALLY PF
SCORELINE STRING USING SPRINTF

SPRINTSFPRINTEENERATE A FORMATTED STRING AT | TIME SPRINTF OR K TIME SPRINTFI
STORE IT AS A STRING VARIABLE

MAX@STR@LEN OPTION IN THE $SOPTIONS TAG OF A CSD FILE WHICH EXTEND THE
MAXIMUM STRING LENGTH TO CHARACTERS

MASSIGMSIGNS THE INCOMING .*%* EVENTS TO A PARTICULAR INSTRUMENT *T IS ALSO
TO PREVENT ANY ASSIGMENT BY THIS OPCODE

CPSMIDAMPMIDBETURNS THE FREQUENCY VELOCITY OF A PRESSED .*%* KEY

RELEASETURNS IF THE LAST K CYCLE OF AN INSTRUMENT HAS BEGUN
XTRATINADS AN ADDITIONAL TIME TO THE DURATION P OF AN INSTRUMENT

TURNOFBRNOMURNS AN INSTRUMENT OFF EITHER BY THE INSTRUMENT ITSELF TURNC
FROM ANOTHER INSTRUMENT AND WITH SEVERAL OPTIONS TURNOFF

PP "NEGATIVE DURATION P TURNS AN INSTRUMENT ON INDEFINITELY A NEGATI
INSTRUMENT NUMBER P TURNS THIS INSTRUMENT OFF 4EE THE EXAMPLES AT THE BE
THIS CHAPTER

- STDINOPTION IN THE $SOPTIONS TAG OF A CSD FILE WHICH LETS YOU TYPE IN REALTI
EVENTS

TIMOUTLOWS YOU TO PERFORM TIME LOOPS AT | TIME WITH REINITALIZATION PASSES

METRQUTPUTS MOMENTARY S WITH A DEFINABLE AND VARIABLE FREQUENCY $AN BE
PERFORM A TIME LOOP AT K RATE

FOLLOANVELOPE FOLLOWER

5HIS HAS BEEN DESCRIBED INCORRECTLY IN THE FIRST TWO ISSUES OF THIS MA
SHERE ARE ALSO SOME VIDEO TUTORIALS HTTP WWW YOUTUBE COM
WATCH V 0 86 %ZD6M& HTTP WWW YOUTUBE COMWATCHV)SE0OO K

HTTP WWW YOUTUBE COM WATCH V Y6.ZP W

http://www.csounds.com/manual/html/sprintf.html
http://www.csounds.com/manual/html/sprintfk.html
http://www.csounds.com/manual/html/CommandFlags.html
http://www.csounds.com/manual/html/massign.html
http://www.csounds.com/manual/html/cpsmidi.html
http://www.csounds.com/manual/html/ampmidi.html
http://www.csounds.com/manual/html/release.html
http://www.csounds.com/manual/html/xtratim.html
http://www.csounds.com/manual/html/turnoff.html
http://www.csounds.com/manual/html/turnoff2.html
http://www.csounds.com/manual/html/i.html
http://www.csounds.com/manual/html/CommandFlags.html
http://www.csounds.com/manual/html/timout.html
http://www.csounds.com/manual/html/metro.html
http://www.csounds.com/manual/html/follow.html
e-triggering-instrument-events#InsertNoteID_26_marker27
e-triggering-instrument-events#InsertNoteID_28_marker29

USER DEFINED OPCODES

OPCODES ARE THE CORE UNITS OF EVERYTHING THAT $SOUND DOES 5HEY ARE LIKE LI
THAT DO AJOB AND PROGRAMMING IS AKIN TO CONNECTING THESE LITTLE MACHINES®
LARGER JOB "N OPCODE USUALLY HAS SOMETHING WHICH GOES INTO IT THE INPUTS (
AND USUALLY IT HAS SOMETHING WHICH COMES OUT OF IT THE OUTPUT WHICH IS STOI
MORE VARIABLES OPCODES ARE WRITTEN IN THE PROGRAMMING LANGUAGE $ THAT IS
NAME $SOUND COMES FROM *F YOU WANT TO CREATE A NEW OPCODE IN $SOUND Y(
WRITE ITIN$)OW TO DO THIS IS DESC&IBED INNGI ES@HNPTER OF THIS MANUAL

AND IS ALSO DESCRIBED IN TEEHRETERAMENONICAL $SOUND 3EFERENCE .ANUAL

5HERE IS HOWEVER A WAY OF WRITING YOUR OWN OPCODES IN THE $SOUND -ANGUA(
SHE OPCODES WHICH ARE WRITTEN IN THIS WAY ARE CALLED 6SER %EFINED OPCODES
" 6%0 BEHAVES IN THE SAME WAY AS A STANDARD OPCODE IT HAS INPUT ARGUMENTS
USUALLY ONE OR MORE OUTPUT VARIABLES 5HEY RUN AT | TIME OR AT K TIME :OU USE
PART OF THE $SOUND -ANGUAGE AFTER YOU HAVE DEFINED AND LOADED THEM

6SER %EFINED OPCODES HAVE MANY VALUABLE PROPERTIES S5HEY MAKE YOUR INSTRI
CLEARER BECAUSE THEY ALLOW YOU TO CREAIECKESORAODENBNCE A 6%0 HAS

BEEN DEFINED IT CAN BE RECALLED AND REPEATED MANY TIMES WITHIN AN ORCHESTF
REPETITION REQUIRING ONLY A SINGLE LINE OF CODE 6%0S ALLOW YOU TO BUILD UP Y
LIBRARY OF FUNCTIONS YOU NEED AND RETURN TO FREQUENTLY IN YOUR WORK *N Tt
YOUR OWN $SOUND DIALECT WITHIN THE $SOUND -ANGUAGE 6%0S ALSO REPRESENT ¢
FORMAT WITH WHICH TO SHARE YOUR WORK IN $SOUND WITH OTHER USERS

S5HIS CHAPTER EXPLAINS INITIALLY WITH A VERY BASIC EXAMPLE HOW YOU CAN BUILD
6%0S AND WHAT OPTIONS THEY OFFER 'OLLOWING THIS THE PRACTICE OF LOADING 6
CSD FILE IS SHOWN FOLLOWED BY SOME TIPS IN REGARD TO SOME UNIQUE CAPABILIT
#EFORE THE -INKS "ND 3ELATED OPCODES SECTION AT THE END SOME EXAMPLES ARE
FOR DIFFERENT 6SER %EFINED OPCODE DEFINITIONS AND APPLICATIONS

TRANSFORMING CSOUND INSTRUMENT CODE
TO A USER DEFINED OPCODE

8BRITING A 6SER %EFINED OPCODE IS ACTUALLY VERY EASY AND STRAIGHTFORWARD *1
MEANS TO EXTRACT A PORTION OF USUAL $SOUND INSTRUMENT CODE AND PUTITINT
6%0 -ET S START WITH THE INSTRUMENT CODE

EXAMPLE 03G01_Pre_UDO.csd

<CsoundSynthesizer>
<CsOptions>
-odac

http://en.flossmanuals.net/bin/view/Csound/EXTENDINGCSOUND
http://www.csounds.com/manual/html/csound5extending.html
http://www.csounds.com/manual/html/index.html

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr =44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen 0, 0, 2°10, 10,1
seed O

instr 1
aDel init O; initialize delay signal
iFb = .7; feedback multiplier
asnd rand .2; white noise
kdB randomi -18, -6, .4; random movement between -18 and -6
asnd = asSnd * ampdb(kdB); applied as dB to noise
kFiltFg randomi 100, 1000, 1; random movement between 100 and 1000
aFilt reson aSnd, kFiltFq, kFiltFg/5; applied as filter center frequency
aFilt balance aFilt, aSnd; bring aFilt to the volume of aSnd
aDelTm randomi .1, .8, .2; random movement between .1 and .8 as delay time
aDel vdelayx aFilt + iFb*aDel, aDelTm, 1, 128; variable delay
kdbFilt randomi -12, 0, 1; two random movements between -12 and O (dB) ...
kdbDel randomi -12, 0, 1; ... for the filtered and the delayed signal
aOut = aFiltxampdb(kdbFilt) + aDel*ampdb(kdbDel); mix it

outs aOut, aOut
endin

</Cslnstruments>
<CsScore>

i1060

</CsScore>
</CsoundSynthesizer>

SHIS IS A FILTERED NOISE AND ITS DELAY WHICH IS FED BACK AGAIN INTO THE DELAY L
CERTAIN RATIO I'B 5HE FILTER IS MOVING AS K'ILT'Q RANDOMLY BETWEEN AND
VOLUME OF THE FILTERED NOISE IS MOVING AS KD# RANDOMLY BETWEEN D#AND D
DELAY TIME MOVES BETWEEN AND SECONDS AND THEN BOTH SIGNALS ARE MIXED

Basic Example

*F THIS SIGNAL PROCESSING UNIT IS TO BE TRANSFORMED INTO A 6SER %EFINED OPCO
QUESTION IS ABOUT THE EXTEND OF THE CODE THAT WILL BE ENCAPSULATED WHERE
WILL BEGIN AND END 5HE FIRST SOLUTION COULD BE A RADICAL AND POSSIBLY BAD A

TRANSFORM THE WHOLE INSTRUMENT INTO A 6%0

EXAMPLE 03G02_All_to_UDO.csd

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen 0, 0, 2°10, 10,1
seed O

opcode FiltFb, 0, 0
aDel init O; initialize delay signal
iFb = .7; feedback multiplier
asnd rand .2; white noise
kdB randomi -18, -6, .4; random movement between -18 and -6
asnd = asSnd * ampdb(kdB); applied as dB to noise
kFiltFg randomi 100, 1000, 1; random movement between 100 and 1000
aFilt reson aSnd, kFiltFq, kFiltFg/5; applied as filter center frequency
aFilt balance aFilt, aSnd; bring aFilt to the volume of aSnd
aDelTm randomi .1, .8, .2; random movement between .1 and .8 as delay time
aDel vdelayx aFilt + iFb*aDel, aDelTm, 1, 128; variable delay
kdbFilt randomi -12, 0, 1; two random movements between -12 and O (dB) ...
kdbDel randomi -12, 0, 1; ... for the filtered and the delayed signal
aOut = aFiltxampdb(kdbFilt) + aDel*ampdb(kdbDel); mix it

outs aOut, aOut
endop

instr 1
FiltFb
endin

</Cslnstruments>
<CsScore>

i1060

</CsScore>
</CsoundSynthesizer>

#EFORE WE CONTINUE THE DISCUSSION ABOUT THE QUALITY OF THIS TRANSORMATION
A LOOK AT THE SYNTAX FIRST 5HE GENERAL SYNTAX FOR A 6SER %EFINED OPCODE IS

opcode name, outtypes, intypes
endop

)ERE THEmMe OF THE 6%0R#$tFb :OU ARE FREE TO USE ANY NAME BUT IT IS SUGGESTED
THAT YOU BEGIN THE NAME WITH A CAPITAL LETTER #Y DOING THIS YOU AVOID DUPLIC

NAME OF MOST OF THE PRE EXISTINGAORCROEBIALLY START WITH A LOWER CASE LETT
"S WE HAVE NO INPUT ARGUMENTS AND NO OUTPUT ARGUMENTS FOR THIS FIRST VERS
BOTbuttypesANIntypes ARE SET TO ZERO 4IMILABTREMEBLOCK OF A NORMAL
INSTRUMENT DEFINITION FORop&S68 THEdogKEYWORDS BEGIN AND END THE 6%0
DEFINITION BLOCK *N THE INSTRUMENT THE 6%0 IS CALLED LIKE A NORMAL OPCODE B
NAME AND IN THE SAME LINE THE INPUT ARGUMENTS ARE LISTED ON THE RIGHT AND T!

f-user-defined-opcodes#InsertNoteID_6
http://www.csounds.com/manual/html/instr.html
http://www.csounds.com/manual/html/endin.html

ARGUMENTS ON THE LEFT *N THE PREVIOUS A EXAMPLE '‘ILT'B HAS NO INPUT AND OUT
ARGUMENTS SO IT IS CALLED BY JUST USING ITS NAME

instr 1
FiltFb
endin

/OW WHY IS THIS 6%0 MORE OR LESS USELESS *T ACHIEVES NOTHING WHEN COMPAR
ORIGINAL NON 6%0 VERSION AND IN FACT LOOSES SOME OF THE ADVANTAGES OF THE
DEFINED VERSION 'IRSTLY IT IS NOT ADVISABLE TO INCLUDE THIS LINE IN THE 6%0

outs aOut, aOut

SHIS STATEMENT WRITES THE AUDIO SIGNAL AOUT FROM INSIDE THE 6%0 TO THE OUTPL
*MAGINE YOU WANT TO CHANGE THE OUTPUT CHANNELS OR YOU WANT TO ADD ANY SI
AFTER THE OPCODE 5HIS WOULD BE IMPOSSIBLE WITH THIS STATEMENT 40 INSTEAD C
THE OUTS OPCODE WE GIVE THE'ILT'B 6%0 AN AUDIO OUTPUT

xout aOut

SHEXOQUSTATEMENT OF A 6%0 DEFINITION WORKS LIKE THE OUTLETS IN 1% OR .AX SENM
THE RESULT S OF AN OPCODE BACK TO THE CALLER INSTRUMENT

/OW LET US CONSIDER THE 6%0 S INPUT ARGUMENTS CHOOSE WHICH PROCESSES SH(
CARRIED OUT WITHIN THE'ILT'B UNIT AND WHAT ASPECTS WOULD OFFER GREATER FLE
CONTROLLABLE FROM OUTSIDE THE &%sttl RRRAMETEER SHOULD NOT BE RESTRICTED TO
A WHITE NOISE WITH AMPLITUDE BUT SHOULD BE AN INPUT LIKE A SIGNAL INLET IN:
SHIS IS IMPLEMENTED USING THE LINE

asnd Xin

#OTH THE OUTPUT AND THE INPUT TYPE MUST BE DECLARED IN THE FIRST LINE OF THE
DEFINITION WHETHER THEY ARE| K OR A VARIABLES 40 INSTEAD OF OPCODE'ILT'B
STATEMENT HAS CHANGED NOW TO OPCODE'ILT'B A A BECAUSE WE HAVE BOTH INPL
OUTPUT AS A VARIABLE

SHE 6%0 IS NOW MUCH MORE FLEXIBLE AND LOGICAL IT TAKES ANY AUDIO INPUT IT PEI
FILTERED DELAY AND FEEDBACK PROCESSING AND RETURNS THE RESULT AS ANOTHE
THE NEXT EXAMPLE INSTRUMENT DOES EXACTLY THE SAME AS BEFORE *NSTRUMENT
INPUT INSTEAD

EXAMPLE 03G03_UDO_more_flex.csd

<CsoundSynthesizer>
<CsOptions>

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz

http://www.csounds.com/manual/html/xout.html

sr=44100
ksmps = 32
nchnls = 2
Odbfs =1

giSine ftgen 0, 0, 2°10, 10,1
seed O

opcode FiltFb, a, a

asnd xin

aDel init O; initialize delay signal

iFb = .7; feedback multiplier

kdB randomi -18, -6, .4; random movement between -18 and -6
asnd = asSnd * ampdb(kdB); applied as dB to noise

kFiltFg randomi 100, 1000, 1; random movement between 100 and 1000
aFilt reson aSnd, kFiltFq, kFiltFg/5; applied as filter center frequency
aFilt balance aFilt, aSnd; bring aFilt to the volume of aSnd
aDelTm randomi .1, .8, .2; random movement between .1 and .8 as delay time
aDel vdelayx aFilt + iFb*aDel, aDelTm, 1, 128; variable delay
kdbFilt randomi -12, 0, 1; two random movements between -12 and O (dB) ...
kdbDel randomi -12, 0, 1; ... for the filtered and the delayed signal
aOut = aFiltxampdb(kdbFilt) + aDel*ampdb(kdbDel); mix it
xout aOut
endop

instr 1; white noise input
asSnd rand 2
aOut FiltFb aSnd

outs aOut, aOut
endin

instr 2; live audio input
asSnd inch 1;input from channel 1
aOut FiltFb aSnd
outs aOut, aOut
endin

</Cslnstruments>

<CsScore>

i 1 060 ;change to i 2 for live audio input
</CsScore>

</CsoundSynthesizer>

Is There an Optimal Design for a User Defined Opcode?

*S THIS NOW THE OPTIMAL VERSIIBN €FERHEEFINED OPCODE 0BVIOUSLY THERE ARE
OTHER PARTS OF THE OPCODE DEFINITON WHICH COULD BE CONTROLLABLE FROM OU
FEEDBACK MULTHRLIBRE RANDOM MOVEMENT OF THE kB UITHE &XAIDOM

MOVEMENT OF THE FILTER IFREFQUENOYTHE RANDOM MOVEMENTS OF THE OUTPUT MIX
kdbSnd ANxdbDel *S IT BETTER TO PUT THEM OUTSIDE OF THE OPCODE DEFINITION OR

BETTER TO LEAVE THEM INSIDE

SHERE IS NO GENERAL ANSWER *T DEPENDS ON THE DEGREE OF ABSTRACTION YOU D
PREFER TO RELINQUISH *F YOU ARE WORKING ON A PIECE FOR WHICH ALL OF THE PAR
ARE ALREADY DEFINED AS REQUIRED IN THE 6%0 THEN CONTROL FROM THE CALLER IN
NOT BE NECESSARY 5HE ADVANTAGE OF MINIMIZING THE NUMBER OF INPUT AND OUTF
ARGUMENTS IS THE SIMPLIFICATION IN USING THE 6%0 5HE MORE FLEXIBILITY YOU REC
YOUR 6%0 HOWEVER THE GREATER THE NUMBER OF INPUT ARGUMENTS THAT WILL BE
1ROVIDING MORE CONTROL IS BETTER FOR A LATER REUSABILITY BUT MAY BE UNNECE
COMPLICATED

1ERHAPS IT IS THE BEST SOLUTION TO HAVE ONE ABSTRACT DEFINITION WHICH PERFOI
AND TO CREATE A DERIVATIVE ALSO AS 6%0 FINE TUNED FOR THE PARTICULAR PROJI
WORKING ON 5HE FINAL EXAMPLE DEMONSTRATES THE DEFINITION OF A GENERAL ANL
6%0 FiltFb AND ITS VARIOUS APPLICATIONS INSTRUMENT DEFINES THE SPECIFICATIOI
INSTRUMENT ITSELF INSTRUMENT USESOpSHRINItEHOR THIS PURPOSE
INSTRUMENT SETS THEGENBERANEW CONTEXT OF TWO VARYING DELAY LINES WITH A
BUZZ SOUND AS INPUT SIGNAL

EXAMPLE 03G04_UDO_calls_UDO.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen 0, 0, 2°10, 10,1
seed O

opcode FiltFb, aa, akkkia
; -- DELAY AND FEEDBACK OF A BAND FILTERED INPUT SIGNAL --
;input: aSnd = input sound
; KFb = feedback multiplier (0-1)
; KFiltFq: center frequency for the reson band filter (Hz)
; KQ = band width of reson filter as kFiltFq/kQ
; iIMaxDel = maximum delay time in seconds
; aDelTm = delay time
;output: aFilt = filtered and balanced aSnd
; aDel = delay and feedback of aFilt

aSnd, kFb, kFiltFg, kQ, iMaxDel, aDelTm xin
abDel init O
aFilt reson aSnd, kFiltFq, kFiltFq/kQ
aFilt balance aFilt, aSnd
aDel vdelayx aFilt + kFb*aDel, aDelTm, iMaxDel, 128; variable delay
xout aFilt, aDel
endop

opcode Opus123 FiltFb, a, a
;;the udo FiltFb here in my opus 123)

;input = aSnd

;output = filtered and delayed aSnd in different mixtures

asnd xin

kdB randomi -18, -6, .4; random movement between -18 and -6
asnd = asSnd * ampdb(kdB); applied as dB to noise

kFiltFg randomi 100, 1000, 1; random movement between 100 and 1000
iQ = 5
iFb = .7; feedback multiplier
aDelTm randomi .1, .8, .2; random movement between .1 and .8 as delay time
aFilt, aDel FiltFb aSnd, iFb, kFiltFq, iQ, 1, aDelTm
kdbFilt randomi -12, 0, 1; two random movements between -12 and O (dB) ...
kdbDel randomi -12, 0, 1; ... for the noise and the delay signal
aOut = aFiltxampdb(kdbFilt) + aDel*ampdb(kdbDel); mix it
xout aOut
endop

instr 1; well known context as instrument
asnd rand .2
kdB randomi -18, -6, .4; random movement between -18 and -6
asnd = asSnd * ampdb(kdB); applied as dB to noise
kFiltFg randomi 100, 1000, 1; random movement between 100 and 1000
iQ = 5
iFb = .7; feedback multiplier
aDelTm randomi .1, .8, .2; random movement between .1 and .8 as delay time
aFilt, aDel FiltFb aSnd, iFb, kFiltFq, iQ, 1, aDelTm
kdbFilt randomi -12, 0, 1; two random movements between -12 and O (dB) ...
kdbDel randomi -12, 0, 1; ... for the noise and the delay signal
aOut = aFiltxampdb(kdbFilt) + aDel*ampdb(kdbDel); mix it
aOut linen aOut, .1, p3, 3

outs aOut, aOut
endin

instr 2; well known context UDO which embeds another UDO
asSnd rand 2
aOut Opusl23 FiltFb aSnd
aOut linen aOut, .1, p3, 3
outs aOut, aOut
endin

instr 3; other context: two delay lines with buzz
kFreq randomh 200, 400, .08; frequency for buzzer
asSnd buzz .2, kFreq, 100, giSine; buzzer as aSnd
kFiltFg randomi 100, 1000, .2; center frequency
aDelTml randomi .1, .8, .2; time for first delay line
aDelTm2 randomi .1, .8, .2; time for second delay line
kFbl randomi .8, 1, .1; feedback for first delay line
kFb2 randomi .8, 1, .1; feedback for second delay line
a0, aDell FiltFb aSnd, kFb1, kFiltFq, 1, 1, aDelTm1; delay signal 1
a0, aDel2 FiltFb aSnd, kFb2, kFiltFg, 1, 1, aDelTm2; delay signal 2
aDell linen aDell, .1, p3, 3
aDel2 linen aDel2, .1, p3, 3

outs aDell, aDel2
endin

</Cslnstruments>
<CsScore>

i1030

i23130

i362120

</CsScore>
</CsoundSynthesizer>

SHE GOOD THING ABOUT THE DIFFERENT POSSIBILITIES OF WRITING A MORE SPECIFIEC
MORE GENERALIZED :OU NEEDN T DECIDE THIS AT THE BEGINNING OF YOUR WORK +U.
ANY FORMULATION YOU FIND USEFUL IN A CERTAIN SITUATION *F YOU CONTINUE AND ¢
SHOULD HAVE SOME MORE PARAMETERS ACCESSIBLE IT SHOULD BE EASY TO REWRIT
BE CAREFUL NOT TO CONFUSE THE DIFFERENT VERSIONS YOU CREATE 6SE NAMES LIK
'AULTY ETC INSTEAD OF OVERWRITING 'AULTY .AKING USE OF EXTENSIVE COMMENTIN
YOU INITIALLY CREATE THE 6%0 WILL MAKE IT EASIER TO ADAPT THE 6%0 AT A LATER Tl
ARE THE INPUTS INCLUDING THE MEASUREMENT UNITS THEY USE SUCH AS)ERTZOR S
ARE THE OUTPUTS)OW YOU DO THIS IS UP TO YOU AND DEPENDS ON YOUR STYLE AN
PREFERENCE

HOW TO USE THE USER DEFINED OPCODE
FACILITY IN PRACTICE

*N THIS SECTION WE WILL ADDRESS THE MAIN POINTS OF USING 6%0S WHAT YOU MUS
MIND WHEN LOADING THEM WHAT SPECIAL FEATURES THEY OFFER WHAT RESTRICTIO
AWARE OF AND HOW YOU CAN BUILD YOUR OWN LANGUAGE WITH THEM

Loading User Defined Opcodes in the Orchestra Header

"S CAN BE SEEN FROM THE EXAMPLES ABOVE 6SER %EFINED OPCODES MUST BE DEFIN
ORCHESTRA HEADER WHICH IS SOMETIMES CALLED INSTRUMENT

:OU CAN LOAD AS MANY 6SER %EFINED OPCODES INTO A $SOUND ORCHESTRA AS YOU
LONG AS THEY DO NOT DEPEND ON EACH OTHER THEIR ORDER IS ARBITRARILY *F 6%0
Opus123_FiltFWUSES THE 6%itFb FOR ITS DEFINITION SEE THE EXAMPLE ABOVE YOU
MUST FIRST Ei@AD AND THENuUs123_FiltFb*F NOT YOU WILL GET AN ERROR LIKE THIS

orch compiler:

opcode Opusl123_FiltFb a a
error: no legal opcode, line 25:
aFilt, aDel FiltFb aSnd, iFb, kFiltFq, iQ, 1, aDelTm

Loading By An #include File

%EFINITIONS OF 6SER %EFINED OPCODES CAN ALSO BE LOADED INTO A CSD FILE BY AN
STATEMENT 8HAT YOU MUST DO IS THE FOLLOWING

4AVE YOUR OPCODE DEFINITIONS IN A PLAIN TEXT FILE FOR INSTANCE .YOPCOD
*F THIS FILE IS IN THE SAME DIRECTORY AS YOUR CSD FILE YOU CAN JUST CALL
STATEMENT

#include "MyOpcodes.txt"

*F .YOPCODES TXT IS IN ADIFFERENT DIRECTORY YOU MUST CALL IT BY THE FU
NAME FOR INSTANCE

#include "/Users/me/Documents/Csound/UDO/MyOpcodes.txt"

"S ALWAYS MAKE SURE THAT THE INCLUDE STATEMENT IS THE LAST ONE IN THE ORCE
AND THAT THE LOGICAL ORDER IS ACCEPTED IF ONE OPCODE DEPENDS ON ANOTHER

*FYOU WORK WITH 6SER %EFINED OPCODES A LOT AND BUILD UP A COLLECTION OF TH
INCLUDE FEATURE ALLOWS YOU EASILY IMPORT SEVERAL OR ALL OF THEM TO YOUR C

The setksmps Feature

SHEKSMPASSIGNMENT IN THE ORCHESTRA HEADER CANNOT BE CHANGED DURING THE
OF A CSD FILE #UT IN A 6SER %EFINED OPCODE YOU HAVE THE UNIQUE POSSIBILITY OF
THIS VALUE BY A LOCAL ASSIGNMENBEFRSEMPESEEMENT IN YOUR 6%0 YOU CAN

HAVE A LOCALLY SMALLER VALUE FOR THE NUMBER OF SAMPLES PER CONTROL CYCLE
THE FOLLOWING EXAMPLE THE PRINT STATEMENT IN THE 6%0 PRINTS TEN TIMES COMF
TIME IN THE INSTRUMENT BECAUSE KSMPS IN THE 6%0 IS TIMES SMALLER

EXAMPLE 03G06_UDO_setksmps.csd

<CsoundSynthesizer>

<Cslnstruments>

;Example by Joachim Heintz

Sr=44100

ksmps = 44100 ;very high because of printing

opcode Faster, 0, 0
setksmps 4410 ;local ksmps is 1/10 of global ksmps
printks "UDO print!%n", 0

endop

instr 1
printks "Instr print!%n", O ;print each control period (once per second)
Faster ;print 10 times per second because of local ksmps

endin

</Cslnstruments>
<CsScore>

i102

</CsScore>
</CsoundSynthesizer>

http://www.csounds.com/manual/html/ksmps.html
http://www.csounds.com/manual/html/setksmps.html

Default Arguments

'OR | TIME ARGUMENTS YOU CAN USE A SIMPLE FEATURE TO SET DEFAULT VALUES

d O INSTEAD OF | DEFAULTSTO
d P INSTEAD OF | DEFAULTS TO
d J INSTEAD OF | DEFAULTSTO

'OR K TIME ARGUMENTS YOU CAN USE SINCE $SOUND THESE DEFAULT VALUES

d O INSTEAD OF K DEFAULTS TO
d 1 INSTEAD OF K DEFAULTS TO
d 7 INSTEAD OF K DEFAULTS TO

40 YOU CAN OMIT THESE ARGUMENTS IN THIS CASE THE DEFAULT VALUES WILL BE US
AN INPUT ARGUMENT INSTEAD THE DEFAULT VALUE WILL BE OVERWRITTEN

EXAMPLE 03G07_UDO_default_args.csd

<CsoundSynthesizer>
<Cslnstruments>
;Example by Joachim Heintz

opcode Defaults, iii, opj
ia, ib, ic xin
xout ia, ib, ic

endop

instr 1
ia, ib, ic Defaults

print ia, ib, ic
ia, ib, ic Defaults 10

print ia, ib, ic
ia, ib, ic Defaults 10, 100

print ia, ib, ic
ia, ib, ic Defaults 10, 100, 1000

print ia, ib, ic
endin

</Cslnstruments>
<CsScore>

i100

</CsScore>
</CsoundSynthesizer>

Recursive User Defined Opcodes

3ECURSION MEANS THAT A FUNCTION CAN CALL ITSELF 5HIS IS A FEATURE WHICH CAN
MANY SITUATIONS "LSO 6SER %EFINED OPCODES CAN BE RECURSIVE :0U CAN DO MAN
WITH A RECURSIVE 6%0 WHICH YOU CANNOT DO IN ANY OTHER WAY AT LEAST NOT IN A

SIMPLE WAY 5HIS IS AN EXAMPLE OF GENERATING EIGHT PARTIALS BY A RECURSIVE 6%
LAST EXAMPLE IN THE NEXT SECTION FOR A MORE MUSICAL APPLICATION OF A RECURS

EXAMPLE 03G08_Recursive_UDO.csd

<CsoundSynthesizer>
<CsOptions>

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

opcode Recursion, a, iip
;input: frequency, number of partials, first partial (default=1)
ifreq, inparts, istart xin
iamp = l/inparts/istart ;decreasing amplitudes for higher partials
if istart < inparts then ;if inparts have not yet reached
acall Recursion ifreq, inparts, istart+1 ;call another instance of this UDO

endif
aout oscils iamp, ifreg*istart, O ;execute this partial
aout = aout + acall ;add the audio signals
xout aout
endop
instr 1

amix Recursion 400, 8 ;8 partials with a base frequency of 400 Hz
aout linen amix, .01, p3, .1
outs aout, aout
endin

</Cslnstruments>
<CsScore>

i101

</CsScore>
</CsoundSynthesizer>

EXAMPLES

8E WILL FOCUS HERE ON SOME EXAMPLES WHICH WILL HOPEFULLY SHOW THE WIDE RA
%EFINED OPCODES 40ME OF THEM ARE ADAPTIONS OF EXAMPLES FROM PREVIOUS CH
THE $SOUND 4YNTAX .UCH MORE EXAMPLES CAN BEHROMEIE N DHIP CODE
%ATABAEBITIED BY 4TEVEN :I

Play A Mono Or Stereo Soundfile

$SOUND IS OFTEN VERY STRICT AND GIVES ERRORS WHERE OTHER APPLICATIONS MIG
EYE 5HIS IS ALSO THE CASE IF YOU READ A SOUNDFILE USING OSBORBBOUND S OPCC
DISKIDISKIN*F YOUR SOUNDFILE IS MONO YOU MUST USE THE MONO VERSION WHIC

http://www.csounds.com/udo/
http://www.csounds.com/udo/
http://www.csounds.com/manual/html/soundin.html
http://www.csounds.com/manual/html/diskin.html
http://www.csounds.com/manual/html/diskin2.html

ONE AUDIO SIGNAL AS OUTPUT *F YOUR SOUNDFILE IS STEREO YOU MUST USE THE ST
WHICH OUTPUTS TWO AUDIO SIGNALS *F YOU WANT A STEREO OUTPUT BUT YOU HAPF
MONO SOUNDFILE AS INPUT YOU WILL GET THE ERROR MESSAGE

INIT ERROR in ...: number of output args inconsistent with number
of file channels

*T MAY BE MORE USEFUL TO HAVE AN OPCODE WHICH WORKS FOR BOTH MONO AND S
INPUT 5HIS IS A IDEAL JOB FOR A 6%0 SWO VERSIONS ARE POSSIBLE 'ILE1LAY RETURN
ONE AUDIO SIGNAL IF THE FILE IS STEREO IT USES JUST THE FIRST CHANNEL 'ILEILAY
ALWAYS TWO AUDIO SIGNALS IF THE FILE IS MONO IT DUPLICATES THIS TO BOTH CHANI
USE THE DEFAULT ARGUMENTS TO MAKE THIS OPCODE BEHAVE EXACTLY AS DISKIN

EXAMPLE 03G09_UDO_FilePlay.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

opcode FilePlayl, a, Skoooooo
;gives mono output regardless your soundfile is mono or stereo
;(if stereo, just the first channel is used)
;see diskin2 page of the csound manual for information about the input arguments
Sfil, kspeed, iskip, iloop, iformat, iwsize, ibufsize, iskipinit xin
ichn filenchnls Sfil
if ichn == 1 then
aout diskin2 Sfil, kspeed, iskip, iloop, iformat, iwsize,\
ibufsize, iskipinit
else
aout, a0 diskin2 Sfil, kspeed, iskip, iloop, iformat, iwsize,\
ibufsize, iskipinit
endif
xout aout
endop

opcode FilePlay2, aa, Skoooooo

;gives stereo output regardless your soundfile is mono or stereo
;see diskin2 page of the csound manual for information about the input arguments
Sfil, kspeed, iskip, iloop, iformat, iwsize, ibufsize, iskipinit xin
ichn filenchnls Sfil

if ichn == 1 then
aL diskin2 Sfil, kspeed, iskip, iloop, iformat, iwsize,\

ibufsize, iskipinit

aR = aL

else
aL, aR diskin2 Sfil, kspeed, iskip, iloop, iformat, iwsize,\

ibufsize, iskipinit
endif
xout aL, aR
endop

instr 1
aMono FilePlayl "fox.wav", 1
outs aMono, aMono
endin

instr 2
aL,aR FilePlay2 "fox.wav", 1
outs aL, aR
endin

</Cslnstruments>
<CsScore>

i104

i244

</CsScore>
</CsoundSynthesizer>

Change the Content of a Function Table

*N EXAMPQEC11_Table_random_dev.c&dFUNCTION TABLE HAS BEEN CHANGED AT
PERFORMANCE TIME ONCE A SECOND BY RANDOM DEVIATIONS 5HIS CAN BE EASILY T
TO A 6SER %EFINED OPCODE *T TAKES THE FUNCTION TABLE VARIABLE A TRIGGER SIG
RANDOM DEVIATION IN PERCENT AS INPUT *N EACH CONTROL CYCLE WHERE THE TRIG
THE TABLE VALUES ARE READ 5HE RANDOM DEVIATION IS APPLIED AND THE CHANGED
WRITTEN AGAIN INTO THE TABIRBHREMWBDDES ARE USED TO MAKE SURE THAT ALSO
NON POWER OF TWO TABLES CAN BE USED

EXAMPLE 03G10_UDO_rand_dev.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 441

nchnls = 2

Odbfs =1

giSine ftgen 0, 0, 256, 10, 1; sine wave
seed 0; each time different seed

opcode TabDirtk, 0, ikk
;"dirties" a function table by applying random deviations at a k-rate trigger
;input: function table, trigger (1 = perform manipulation),
;deviation as percentage
ift, ktrig, kperc xin

http://www.csounds.com/manual/html/tab.html

if ktrig == 1 then ;just work if you get a trigger signal
kndx = 0
loop:
krand random -kperc/100, kperc/100
kval tab kndx, ift; read old value
knewval = kval + (kval * krand); calculate new value
tabw knewval, kndx, giSine; write new value
loop_It kndx, 1, ftlen(ift), loop; loop construction
endif
endop

instr 1
kTrig metro 1, .00001 ;trigger signal once per second
TabDirtk giSine, kTrig, 10
aSig poscil .2, 400, giSine
outs aSig, aSig
endin

</Cslnstruments>
<CsScore>

i1010

</CsScore>
</CsoundSynthesizer>

OF COURSE YOU CAN ALSO CHANGE THE CONTENT OF A FUNCTION TABLE AT INIT TIME
EXAMPLE PERMUTES A SERIES OF NUMBERS RANDOMLY EACH TIME IT IS CALLED 'OR T
FIRST THE INPUT FUNCIManhTABIBPIEDIG&y 5HIS IS NECESSARY BECAUSE WE DO

NOT WANT TO CHANGE I5ABIN IN ANY WAY /EXT A RANDOM INDEX IN I$OPY IS CREATED
VALUE AT THIS LOCATION IN ISABIN IS WRITTEN AT dbtaBEGINNIRGNIAINS THE
PERMUTED RESULTS "T THE END OF THIS CY @dpyBRBICMAIASEANARGER INDEX

THAN THE ONE WHICH HAS JUST BEEN READ |IS SHIFTED ONE PORIGPPN TO THE LEFT 4(
HAS BECOME ONE POSITION SMALLER NOT IN TABLE SIZE BUT IN THE NUMBER OF VALL
5HIS PROCEDURE IS CONTINUED UNTIL ALapyARBEHSHFREGTED IN ISABOUT

EXAMPLE 03G11 TabPermRnd.csd

<CsoundSynthesizer>
<Cslnstruments>
;Example by Joachim Heintz

givals ftgen 0, 0, -12, -2, 1, 2, 3,4, 5,6, 7, 8, 9, 10, 11, 12
seed 0; each time different seed

opcode TabPermRand_i, i, i
;permuts randomly the values of the input table
;and creates an output table for the result
iTabin xin
itablen = ftlen(iTabin)
iTabout ftgen 0,0, -itablen, 2, O ;create empty output table
iCopy ftgen O, 0, -itablen, 2, 0 ;create empty copy of input table
tableicopy iCopy, iTabin ;write values of iTabin into iCopy
icplen init itablen ;number of values in iCopy
indxwt init O ;index of writing in iTabout

loop:
indxrd random O, icplen - .0001; random read index in iCopy
indxrd = int(indxrd)
ival tab_i indxrd, iCopy; read the value
tabw_i ival, indxwt, iTabout; write it to iTabout
; -- shift values in iCopy larger than indxrd one position to the left
shift:
if indxrd < icplen-1 then ;if indxrd has not been the last table value
ivalshft tab_i indxrd+1, iCopy ;take the value to the right ...
tabw_i ivalshft, indxrd, iCopy ;...and write it to indxrd position
indxrd = indxrd + 1 ;then go to the next position
igoto shift ;return to shift and see if there is anything left to do

endif

indxwt = indxwt + 1 ;increase the index of writing in iTabout

loop_gt icplen, 1, 0, loop ;loop as long as there is ;
;a value in iCopy
ftfree iCopy, O ;delete the copy table
xout iTabout ;return the number of iTabout
endop
instr 1

iPerm TabPermRand_i giVals ;perform permutation
;print the result

indx = 0

Sres = "Result:"

print:

ival tab_i indx, iPerm

Sprint sprintf "%s %d", Sres, ival
Sres = Sprint

loop_It indx, 1, 12, print
puts Sres, 1
endin

instr 2; the same but performed ten times

icnt = 0

loop:

iPerm TabPermRand_i giVals ;perform permutation
;print the result

indx = 0

Sres = "Result:"

print:

ival tab_i indx, iPerm

Sprint sprintf "%s %d", Sres, ival
Sres = Sprint

loop_It indx, 1, 12, print

puts Sres, 1

loop_It icnt, 1, 10, loop
endin

</Cslnstruments>
<CsScore>

i100

i200

</CsScore>
</CsoundSynthesizer>

Print the Content of a Function Table

5HERE IS NO OPCODE IN $SOUND FOR PRINTING THE CONTENTS OF A FUNCTION TABLE

CREATED AS A-6%BAIN A LOOP IS NEEDED FOR CHECKING THE VALUES AND PUTTING TH
A STRING WHICH CAN THEN BE PRINTED *N ADDITION SOME OPTIONS CAN BE GIVEN FC
PRECISION AND FOR THE NUMBER OF ELEMENTS IN A LINE

EXAMPLE 03G12_TableDumpSimp.csd

<CsoundSynthesizer>
<CsOptions>

-ndmO -+max_str_len=10000
</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
gitab ftgen 1,0, -7, -
gisin ftgen 2,0, 128, 1

opcode TableDumpSimp, 0, ijo
;prints the content of a table in a simple way
;input: function table, float precision while printing (default = 3),
;parameters per row (default = 10, maximum = 32)
ifn, iprec, ippr xin

iprec = (iprec == -1 ? 3 : iprec)
ippr = (ippr ==0? 10 : ippr)
iend = ftlen(ifn)

indx = 0

Sformat sprintf "%%.%df\t", iprec
Sdump =

loop:

ival tab_i indx, ifn

Snew sprintf Sformat, ival
Sdump strcat Sdump, Snew
indx = indx + 1
imod = indx % ippr

if imod == 0 then
puts Sdump, 1
Sdump =

endif

if indx < iend igoto loop

puts Sdump, 1

endop
instr 1
TableDumpSimp p4, p5, p6
prints "%n"
endin

</Cslnstruments>
<CsScore>

f-user-defined-opcodes#InsertNoteID_8

;il st dur ftab prec ppr
i1 0 0 1 -1

i1 . . 1 0

i1 . . 2 3 10
i1 . . 2 6 32
</CsScore>

</CsoundSynthesizer>

A Recursive User Defined Opcode for Additive Synthesis

*N THE LAST EXAMPLE OF THE CHRFEFERRABGUNSTRUMENMMNINBH OF

PARTIALS WERE SYNTHESIZED EACH WITH A RANDOM FREQUENCY DEVIATION OF UP T
COMPARED TO PRECISE HARMONIC SPECTRUM FREQUENCIES AND A UNIQUE DURATIOI
PARTIAL 5HIS CAN ALSO BE WRITTEN AS A RECURSIVE 6%0 &ACH 6%0 GENERATES ONE
AND CALLS THE 6%0 AGAIN UNTIL THE LAST PARTIAL IS GENERATED /OW THE CODE CAl
TO TWO INSTRUMENTS INSTRUMENT PERFORMS THE TIME LOOP CALCULATES THE BA
ONE NOTE AND TRIGGERS THE EVENT 5HEN INSTRUMENT IS CALLED WHICH FEEDS Tt
THE VALUES AND PASSES THE AUDIO SIGNALS TO THE OUTPUT

EXAMPLE 03G13_UDO_Recursive_AddSynth.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen 0, 0, 2710, 10,1
seed O

opcode PlayPartials, aa, iiipo
;plays inumparts partials with frequency deviation and own envelopes and
;durations for each partial
;ibasfreq: base frequency of sound mixture
;inumparts: total number of partials
;ipan: panning
;ipartnum: which partial is this (1 - N, default=1)
;ixtratim: extra time in addition to p3 needed for this partial (default=0)

ibasfreq, inumparts, ipan, ipartnum, ixtratim xin

ifreqgen = ibasfreq * ipartnum; general frequency of this partial
ifreqdev random -10, 10; frequency deviation between -10% and +10%
ifreq = ifreqgen + (ifreqdev*ifreqgen)/100; real frequency

ixtratim1 random 0, p3; calculate additional time for this partial

imaxamp = 1/inumparts; maximum amplitude

idbdev random -6, 0; random deviation in dB for this partial

iamp = imaxamp * ampdb(idbdev-ipartnum); higher partials are softer

http://en.flossmanuals.net/bin/view/Csound/TriggeringInstrumentEvents

ipandev random -.1,.1; panning deviation
ipan = ipan + ipandev
aEnv transeg 0, .005, 0, iamp, p3+ixtratim1-.005, -10, O; envelope
aSine poscil aEnv, ifreq, giSine
aLl, aR1 pan2 aSine, ipan
if ixtratiml > ixtratim then
ixtratim = ixtratiml ;set ixtratim to the ixtratim1 if the latter is larger
endif
if ipartnum < inumparts then ;if this is not the last partial
; -- call the next one
aL2, aR2 PlayPartials ibasfreq, inumparts, ipan, ipartnum+1, ixtratim

else ;if this is the last partial
p3 = p3 + ixtratim; reset p3 to the longest ixtratim value
endif

xout alLl+al2, aR1+aR2
endop

instr 1; time loop with metro
kfreq init 1; give a start value for the trigger frequency
kTrig metro kfreq
if kKTrig == 1 then ;if trigger impulse:
kdur random 1, 5; random duration for instr 10
knumparts random 8, 14

knumparts = int(knumparts); 8-13 partials
kbasoct random 5, 10; base pitch in octave values
kbasfreq = cpsoct(kbasoct) ;base frequency
kpan random .2, .8; random panning between left (0) and right (1)
event "i", 11, O, kdur, kbasfreq, knumparts, kpan; call instr 11
kfre@ random .25, 1; set new value for trigger frequency
endif
endin

instr 11; plays one mixture with 8-13 partials
alL, aR PlayPartials p4, p5, p6
outs al,aR
endin

</Cslnstruments>
<CsScore>

i10300

</CsScore>
</CsoundSynthesizer>

Using Strings as Arrays

'OR SOME SITUATIONS IT CAN BE VERY USEFUL TO USE STRINGS IN $SOUND AS A COLLE
STRINGS OR NUMBERS 5HIS IS WHAT PROGRAMMING LANGUAGES CALL ALIST OR AN A
DOES NOT PROVIDE OPCODES FOR THIS PURPOSE BUT YOU CAN DEFINE THESE OPCOI
SET OF THESE 6%0S CAN THEN BE USED LIKE THIS

ilen StrayL,en "abcde"
ilen->5

Sel StrayGetEl "abcde", 0
Sel ->"a"

inum StrayGetNum "12345", 0

inum->1

ipos StrayEIMem "abcde", "c"
ipos -> 2

ipos StrayNumMem "12345", 3
ipos -> 2

Sres StraySetEl "abcde", "go", 0
Sres->"goabcde"

Sres StraySetNum "12345",0,0
Sres->"012345"

Srev StrayRev "abcde"
Srev->"edchba"

Sub StraySub "abcde", 1,3
Sub ->"b c"

Sout StrayRmv "abcde", "bd"
Sout->"ace"

Srem StrayRemDup "abaccdee"
Srem->"abcde"

ift,iftten StrayNumToFt"12345" 1
ift->1(sameasfl10-5-212345)
iftlen -> 5

:OU CAN FIND AN ARTICLE ABOUT DEFINING SUCHERBEDBDIANCURAGEE DATE 6%0
CODHERBR AT T840 REPOSITORY

LINKS AND RELATED OPCODES

Links

5HISS THE PAGE IN THE $ANONICAL $SOUND 3EFERENCE .ANUAL ABOUT THE DEFINITIOI
6%0S

SHE MOST IMPORTANT RESOURCE OF 6SER %EFINSERPAEHIES1DFEEDE
%ATABAEBITIED BY 4TEVEN :I

"LSO BY 4TEVEN :I READ THE SECOND PART OF HIS ARTICLE ABOUT CONTROL FLOW IN
$SOUND +OURUWMIMER

Related Opcodes
OPCOMHE OPCODE USED TO BEGIN A 6SER %EFINED OPCODE DEFINITION

INCLUDESEFUL TO INCLUDE ANY LOADABLE $SOUND CODE IN THIS CASE DEFINITIONS (
%EFINED OPCODES

SETKSMHASTS YOU SET A SMALLER KSMPS VALUE LOCALLY IN A 6SER %EFINED OPCODE

http://www.csounds.com/journal/issue13/index.html
http://joachimheintz.de/soft/Strays.zip
http://www.csounds.com/udo/
http://www.csounds.com/manual/html/opcode.html
http://www.csounds.com/udo/
http://www.csounds.com/udo/
http://www.csounds.com/journal/2006summer/controlFlow_part2.html
http://www.csounds.com/manual/html/opcode.html
http://www.csounds.com/manual/html/include.html
http://www.csounds.com/manual/html/setksmps.html

ONLY THE -5, AND 45, OPCODES BEGIN WITH CAPITAL LETTERS
AEEHTTPS GITHUB COM JOACHIMHEIRTMORE®ND MORE RECERT VERSIONS

f-user-defined-opcodes#InsertNoteID_6_marker7
f-user-defined-opcodes/ https:/github.com/joachimheintz/judo
f-user-defined-opcodes#InsertNoteID_8_marker9

MACROS

ACROS WITHIN $SOUND IS A MECHANISM WHEREBY A LINE OR A BLOCK OF TEXT CAN BI
REFERENCED USING A MACRO CODEWORD 8HENEVER THE CODEWORD IS SUBSEQUEN
ENCOUNTERED IN A $SOUND ORCHESTRA OR SCORE IT WILL BE REPLACED BY THE COL
WITHIN THE MACRO 5HIS MECHANISM CAN BE USEFUL IN SITUATIONS WHERE A LINE OR
CODE WILL BE REPEATED MANY TIMES IF A CHANGE IS REQUIRED IN THE CODE THAT W
REPEATED IT NEED ONLY BE ALTERED ONCE IN THE MACRO DEFINITION RATHER THAN |
EDITED IN EACH OF THE REPETITIONS

$SOUND UTILISES A SUBTLY DIFFERENT MECHANISM FOR ORCHESTRA AND SCORE MAC
BE CONSIDERED IN TURN 5HERE ARE ALSO ADDITIONAL FEATURES OFFERED BY THE M
AS THE ABILITY TO CREATE A MACRO THAT ACCEPTS ARGUMENTS A LITTLE LIKE THE M
CONTAINING SUB MACROS THAT CAN BE REPEATED SEVERAL TIMES WITHIN THE MAIN M
INCLUSION OF A BLOCK OF TEXT CONTAINED WITHIN A COMPLETELY SEPARATE FILE AN
REFINEMENTS

*T IS IMPORTANT TO REALISE THAT A MACRO CAN CONTAIN ANY TEXT INCLUDING CARR
THAT $SOUND WILL BE IGNORANT TO ITS USE OF SYNTAX UNTIL THE MACRO IS ACTUALL
EXPANDED ELSEWHERE IN THE ORCHESTRA OR SCORE

ORCHESTRA MACROS

.ACROS ARE DEFINED USING THE SYNTAX

#define NAME # replacement text #

[".& 1S THE USER DEFINED NAME THAT WILL BE USED TO CALL THE MACRO AT SOME PC
IN THE ORCHESTRA IT MUST BEGIN WITH ALETTER BUT CAN THEN CONTAIN ANY COMBI
NUMBERS AND LETTERS REPLACEMENT TEXT BOUNDED BY HASH SYMBOLS WILL BE T
REPLACE THE MACRO NAME WHEN LATER CALLED 3EMEMBER THAT THE REPLACEMEN
STRETCH OVER SEVERAL LINES ONE SYNTACTICAL ASPECT TO NOTE IS THAT DEFINE I
AT THE BEGINNING OF ALINE | E THE $SOUND PARSER WILL BE INTOLERANT TOWARD T
BEING PRECEDED BY ANY WHITE SPACE WHETHER THAT BE SPACES OR TABS " MACRC
DEFINED ANYWHERE WITHIN THE $S*NSTRUMENTS $S*NSTRUMENTS SECTIONS OF A

8HEN IT IS DESIRED TO USE AND EXPAND THE MACRO LATER IN THE ORCHESTRA THE M.
NEEDS TO BE PRECEDED WITHA SYMBOL THUS

$NAME

SHE FOLLOWING EXAMPLE ILLUSTRATES THE BASIC SYNTAX NEEDED TO EMPLOY MACR
OF A SOUND FILE IS REFERENCED TWICE IN THE SCORE SO IT IS DEFINED AS A MACRO J
HEADER STATEMENTS *NSTRUMENT DERIVES THE DURATION OF THE SOUND FILE ANLC

INSTRUMENT TO PLAY ANOTE FOR THIS DURATION INSTRUMENT PLAYS THE SOUND |
AS DEFINED IN THE $S4CORE $S4CORE SECTION ONLY LASTSFOR SECONDSBUT T
EVENT@I STATEMENT IN INSTRUMENT WILL EXTEND THIS FOR THE REQUIRED DURATIC
FILE IS A MONO FILE SO YOU CAN REPLACE IT WITH ANY OTHER NBOWD EINEOR USE THE

EXAMPLE 03HO01_Macros_basic.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>

<Cslnstruments>

Sr = 44100
ksmps = 16
nchnls = 1
Odbfs = 1

; define the macro
#define SOUNDFILE # "loop.wav" #

instr 1
; use an expansion of the macro in deriving the duration of the sound file
idur filelen $SOUNDFILE
event_i "i",2,0,idur
endin

instr 2
; use another expansion of the macro in playing the sound file
al diskin2 $SOUNDFILE,1
out al
endin

</CslInstruments>

<CsScore>

i100.01

e

</CsScore>
</CsoundSynthesizer>

; example written by lain McCurdy

*N MORE COMPLEX SITUATIONS WHERE WE REQUIRE SLIGHT VARIATIONS SUCH AS DIF!
VALUES OR DIFFERENT SOUND FILES IN EACH REUSE OF THE MACRO WE CAN USE A MA
ARGUMENTS "MACRO S ARGUMENT ARE DEFINED AS A LIST OF SUB MACRO NAMES WIT
AFTER THE NAME OF THE PRIMARY MACRO AND EACH MACRO ARGUMENT IS SEPARATE
APOSTROPHE AS SHOWN BELOW

#define NAME(Argl'Arg2'Arg3...) # replacement text #

http://www.iainmccurdy.org/CsoundRealtimeExamples/SourceMaterials/loop.wav

"RGUMENTS CAN BE ANY TEXT STRING PERMITTED AS $SOUND CODE THEY SHOULD NC
OPCODE ARGUMENTS WHERE EACH MUST CONFORM TO A CERTAIN TYPE SUCHAS | K .
ARGUMENTS ARE SUBSEQUENTLY REFERENCED IN THE MACRO TEXT USING THEIR NAM

SYMBOL 8HEN THE MAIN MACRO IS CALLED LATER IN THE ORCHESTRA ITS ARGUMEN
REPLACED WITH THE VALUES OR STRINGS REQUIRED 5HE $SOUND 3EFERENCE .ANUAL
TO FIVE ARGUMENTS ARE PERMITTED BUT THIS STILL REFERS TO AN EARLIER IMPLEME
FACT MANY MORE ARE ACTUALLY PERMITTED

*N THE FOLLOWING EXAMPLE A PARTIAL ADDITIVE SYNTHESIS ENGINE WITH A PERCUS
IS DEFINED WITHIN A MACRO *TS FUNDAMENTAL FREQUENCY AND THE RATIOS OF ITS S
THIS FUNDAMENTAL FREQUENCY ARE PRESCRIBED AS MACRO ARGUMENTS 5HE MACR
WITHIN THE ORCHESTRA TWICE TO CREATE TWO DIFFERENT TIMBRES IT COULD BE REL
TIMES HOWEVER 5HE FUNDAMENTAL FREQUENCY ARGUMENT IS PASSED TO THE MACF
THE SCORE

EXAMPLE 03HO02_Macro_6partials.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<Cslnstruments>

Sr = 44100
ksmps 16
nchnls 1
Odbfs = 1

gisine ftgen 0,0,2710,10,1

; define the macro
#define ADDITIVE_TONE(Frg'Ratiol'Ratio2'Ratio3'Ratio4'Ratio5'Ratio6) #
iamp= 0.1
aenv expseg 1,p3*(1/$Ratiol1),0.001,1,0.001
al poscil iamp*aenv,$Frg*$Ratiol,gisine
aenv expseg 1,p3*(1/$Ratio2),0.001,1,0.001
a2 poscil iamp*aenv,$Frg*$Ratio2,gisine
aenv expseg 1,p3*(1/$Ratio3),0.001,1,0.001
a3 poscil iamp*aenv,$Frg*$Ratio3,gisine
aenv expseg 1,p3*(1/$Ratio4),0.001,1,0.001
a4 poscil iamp*aenv,$Frgq*$Ratio4,gisine
aenv expseg 1,p3*(1/$Ratio5),0.001,1,0.001
a5 poscil iamp*aenv,$Frg*$Ratio5,gisine
aenv expseg 1,p3*(1/$Ratio6),0.001,1,0.001
a6 poscil iamp*aenv,$Frq*$Ratio6,gisine
a7 sum al,a2,a3,a4,a5,a6

out a7
#

instr 1 ; xylophone

; expand the macro with partial ratios that reflect those of a xylophone
; the fundemental frequency macro argument (the first argument -
; - is passed as p4 from the score
$ADDITIVE_TONE(p4'1'3.932'9.538'16.688'24.566'31.147)

endin

instr 2 ; vibraphone
$ADDITIVE_TONE(p4'1'3.997'9.469'15.566'20.863'29.440)
endin

</Cslnstruments>

<CsScore>

i10 1200

il1l 2150

il12 4100

i23 7800

i24 4700

i25 7600

e

</CsScore>
</CsoundSynthesizer>
; example written by lain McCurdy

SCORE MACROS

4CORE MACROS EMPLOY A SIMILAR SYNTAX .ACROS IN THE SCORE CAN BE USED IN SIT
WHERE A LONG STRING OF P FIELDS ARE LIKELY TO BE REPEATED OR AS IN THE NEXT E
DEFINE A PALETTE OF SCORE PATTERNS THAN REPEAT BUT WITH SOME VARIATION SUC
TRANSPOSITION *N THIS EXAMPLE TWO RIFFS ARE DEFINED WHICH EACH EMPLOY TWi
ARGUMENTS THE FIRST TO DEFINE WHEN THE RIFF WILL BEGIN AND THE SECOND TO DI
TRANSPOSITION FACTOR IN SEMITONES 5HESE RIFFS ARE PLAYED BACK USING A BASS
INSTRUMENT USINGFHECBPCODE 3EMEMBER THAT MATHEMATICAL EXPRESSIONS WIT
THE $SOUND SCORE MUST BE BOUND WITHIN SQUARE BRACKETS <>

EXAMPLE 03H03_Score_macro.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<Cslnstruments>

Sr = 44100
ksmps 16
nchnls 1
Odbfs = 1

http://www.csounds.com/manual/html/wgpluck2.html

instr 1 ; bass guitar
al wgpluck2 0.98, 0.4, cpsmidinn(p4), 0.1, 0.6
aenv linseg 1,p3-0.1,1,0.1,0

out al*aenv

endin

</Cslnstruments>

<CsScore>

; p4 = pitch as a midi note number
#define RIFF_1(Start'Trans)

#

il[$Start] 1 [36+FTrans]

i 1[$Start+1] 0.25 [43+$Trans]

i 1[$Start+1.25] 0.25 [43+$Trans]
i 1[$Start+1.75] 0.25 [41+$Trans]
i 1[$Start+2.5] 1 [46+$Trans]

i 1[$Start+3.25] 1 [48+$Trans]
#

#define RIFF_2(Start'Trans)

#

il[$Start] 1 [34+FTrans]

i 1[$Start+1.25] 0.25 [41+$Trans]
i 1[$Start+1.5] 0.25 [43+$Trans]
i 1[$Start+1.75] 0.25 [46+$Trans]
i 1[$Start+2.25] 0.25 [43+$Trans]
i 1[$Start+2.75] 0.25 [41+$Trans]
i 1[$Start+3] 0.5 [43+$Trans]

i 1[$Start+3.5] 0.25 [46+$Trans]
#

t090

$RIFF_1(0"' 0)

$RIFF_1(4'0)

$RIFF_2(8'0)

$RIFF_2(12"-5)

$RIFF_1(16"-5)

$RIFF_2(20'-7)

$RIFF_2(24'0)

$RIFF_2(28'5)

e

</CsScore>
</CsoundSynthesizer>

; example written by lain McCurdy

4CORE MACROS CAN THEMSELVES CONTAIN MACROS SO THAT FOR EXAMPLE THE ABC
COULD BE FURTHER EXPANDED SO THAT A VERSE CHORUS STRUCTURE COULD BE EMI
VERSES AND CHORUSES DEFINED USING MACROS WERE THEMSELVES CONSTRUCTEL
RIFF MACROS

6%0S AND MACROS CAN BOTH BE USED TO REDUCE CODE REPETITION AND THERE ARE
SITUATIONS WHERE EITHER COULD BE USED BUT EACH OFFERS ITS OWN STRENGTHS ¢
LIES IN THEIR ABILITY TO BE USED JUST LIKE AN OPCODE WITH INPUTS AND OUTPUT TH
WHICH THEY CAN BE SHARED BETWEEN $SOUND PROJECTS AND BETWEEN $SOUND U:

ABILITY TO OPERATE AT A DIFFERENT K RATE TO THE REST OF THE ORCHESTRA AND IN
RECURSION 5HE FACT THAT MACRO ARGUMENTS ARE MERELY BLOCKS OF TEXT HOWE
NEW POSSIBILITIES AND UNLIKE 6%0S MACROS CAN SPAN SEVERAL INSTRUMENTS OF
6%0S HAVE NO USE IN THE $SOUND SCORE UNLIKE MACROS .ACROS CAN ALSO BE USE
SIMPLIFY THE CREATION OF COMPLEX '-5, (6* WHERE PANEL SECTIONS MIGHT BE REPEA
VARIATIONS OF OUTPUT VARIABLE NAMES AND LOCATION

$SOUND S ORCHESTRA AND SCORE MACRO SYSTEM OFFERS MANY ADDITIONAL REFINE
CHAPTER SERVES MERELY AS AN INTRODUCTION TO THEIR BASIC USE 50 LEARN MORE
RECOMMENDED TO REFER TO THE RELEVAISDSROT3E NSRENCHEANUAL

http://www.csounds.com/manual/html/OrchMacros.html

ADDITIVE SYNTHESIS

+EAN #APTISTE +OSEPH 'OURIER DEMONSTRATED AROUND THAT ANY CONTINUOUS F
BE PERFECTLY DESCRIBED AS A SUM OF SINE WAVES 5HIS IN FACT MEANS THAT YOU C
SOUND NO MATTER HOW COMPLEX IF YOU KNOW WHICH SINE WAVES TO ADD TOGETH

S5HIS CONCEPT REALLY EXCITED THE EARLY PIONEERS OF ELECTRONIC MUSIC WHO IM,
WAVES WOULD GIVE THEM THE POWER TO CREATE ANY SOUND IMAGINABLE AND PREV
UNIMAGINED 6NFORTUNATELY THEY SOON REALIZED THAT WHILE ADDING SINE WAVE(
INTERESTING SOUNDS MUST HAVE A LARGE NUMBER OF SINE WAVES WHICH ARE CONS
IN FREQUENCY AND AMPLITUDE WHICH TURNS OUT TO BE A HUGELY IMPRACTICAL TAS

JOWEVER ADDITIVE SYNTHESIS CAN PROVIDE UNUSUAL AND INTERESTING SOUNDS .0
THE POWER OF MODERN COMPUTERS AND THE ABILITY OF MANAGING DATA IN A PROG
LANGUAGE OFFER NEW DIMENSIONS OF WORKING WITH THIS OLD TOOL "S WITH MOST
$SOUND THERE ARE SEVERAL WAYS TO GO ABOUT IT 8E WILL TRY TO SHOW SOME OF T
HOW THEY ARE CONNECTED WITH DIFFERENT PROGRAMMING PARADIGMS

WHAT ARE THE MAIN PARAMETERS OF
ADDITIVE SYNTHESIS?

#EFORE GOING INTO DIFFERENT WAYS OF IMPLEMENTING ADDITIVE SYNTHESIS IN $SOL
THINK ABOUT THE PARAMETERS TO CONSIDER "S ADDITIVE SYNTHESIS IS THE ADDITIOI
SINE GENERATORS THE PARAMETERS ARE ON TWO DIFFERENT LEVELS

d For each sineTHERE IS A FREQUENCY AND AN AMPLITUDE WITH AN ENVELOPE
o 5HErequency IS USUALLY A CONSTANT VALUE #UT IT CAN BE VARIED THOL
/ATURAL SOUNDS USUALLY HAVE VERY SLIGHT CHANGES OF PARTIAL FRE
o0 5HEamplitude MUST AT LEAST HAVE A SIMPLE ENVELOPE LIKE THE WELL KN
"%43 #UT MORE COMPLEX WAYS OF CONTINUOUSLY ALTERING THE AMPLI
WILL MAKE THE SOUND MUCH MORE LIVELY
d For the sound as a wholeTHESE ARE THE RELEVANT PARAMETERS
o0 5HE TO™Mimber of sinusoids" SOUND WHICH CONSISTS OF JUST THREE
SINUSOIDS IS OF COURSE POORER THAN A SOUND WHICH CONSISTS OF
SINUSOIDS
o 5HErequency ratiosOF THE SINE GENERATORS 'OR A CLASSICAL HARMONIC
SPECTRUM THE MULTIPLIERS OF THE SINUSOIDS ARE *F YOUR FIR!
IS)Z THE OTHERS ARE)Z 'OR AN INHARMONIC OR
NOISY SPECTRUM THERE ARE PROBABLY NO SIMPLE INTEGER RATIOS 5H
FREQUENCY RATIO IS MAINLY RESPONSIBLE FOR OUR PERCEPTION OF TIN
o0 5HEbase frequencylS THE FREQUENCY OF THE FIRST PARTIAL *F THE PARTI/
ARE SHOWING AN HARMONIC RATIO THIS FREQUENCY IN THE EXAMPLE G
)Z IS ALSO THE OVERALL PERCEIVED PITCH

o 5HEamplitude ratios OF THE SINUSOIDS 5HIS IS ALSO VERY IMPORTANT FOR
THE RESULTING TIMBRE OF A SOUND *F THE HIGHER PARTIALS ARE RELA
STRONG THE SOUND APPEARS MORE BRILLIANT IF THE HIGHER PARTIALS
THE SOUND APPEARS DARK AND SOFT

o S5HEduration ratios OF THE SINUSOIDS *N SIMPLE ADDITIVE SYNTHESIS ALL
SINGLE SINES HAVE THE SAME DURATION BUT THEY MAY ALSO DIFFER 5F
USUALLY RELATES TO THE ENVELOPES IF THE ENVELOPES OF DIFFERENT
VARY SOME PARTIALS MAY DIE AWAY FASTER THAN OTHERS

*T IS NOT ALWAYS THE AIM OF ADDITIVE SYNTHESIS TO IMITATE NATURAL SOUNDS BUT
DEFINITELYLBERNED A LOT THROUGH THE TASK OF FIRST ANALYZING AND THEN ATTEM
IMITATE A SOUND USING ADDITIVE SYNTHESIS TECHNIQUES 5HIS IS WHAT A GUITAR NO
WHEN SPECTRALLY ANALYZED

Spectral analysis of a guitar tone in time (courtesy of W. Fohl, Hamburg)

&ACH PARTIAL HAS ITS OWN MOVEMENT AND DURATION 8E MAY OR MAY NOT BE ABLE 1
THIS SUCCESSFULLY IN ADDITIVE SYNTHESIS -ET US BEGIN WITH SOME SIMPLE SOUND.
CONSIDER WAYS OF PROGRAMMING THIS WITH $SOUND LATER WE WILL LOOK AT SOME
COMPLEX SOUNDS AND ADVANCED WAYS OF PROGRAMMING THIS

SIMPLE ADDITIONS OF SINUSOIDS INSIDE AN
INSTRUMENT

*F ADDITIVE SYNTHESIS AMOUNTS TO THE ADDING SINE GENERATORS IT IS STRAIGHTF
MULTIPLE OSCILLATORS IN A SINGLE INSTRUMENT AND TO ADD THE RESULTING AUDIO !
*N THE FOLLOWING EXAMPLE INSTRUMENT SHOWS A HARMONIC SPECTRUM AND INST
INHARMONIC ONE #OTH INSTRUMENTS SHARE THE SAME AMPLITUDE MULTIPLIERS

AND RECEIVE THE BASE FREQUENCY IN $SOUND S PITCH NOTATION OCTAVE SEMITO
MAIN AMPLITUDE IN D#

EXAMPLE 04A01_AddSynth_simple.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<Cslnstruments>

:example by AndrZs Cabrera
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen 0, 0, 2°10, 10,1

instr 1 ;harmonic additive synthesis
;receive general pitch and volume from the score
ibasefrqg = cpspch(p4) ;convert pitch values to frequency
ibaseamp = ampdbfs(p5) ;convert dB to amplitude
;create 8 harmonic partials
aOscl poscil ibaseamp, ibasefrq, giSine
aOsc2 poscil ibaseamp/2, ibasefrq*2, giSine
aOsc3 poscil ibaseamp/3, ibasefrg*3, giSine
aOsc4 poscil ibaseamp/4, ibasefrq*4, giSine
aOsc5 poscil ibaseamp/5, ibasefrg*5, giSine
aOsc6 poscil ibaseamp/6, ibasefrq*6, giSine
aOsc7 poscil ibaseamp/7, ibasefrq*7, giSine
aOsc8 poscil ibaseamp/8, ibasefrq*8, giSine
;apply simple envelope
kenv linen 1, p3/4, p3, p3/4
;add partials and write to output
aOut = aOscl + aOsc2 + aOsc3 + aOsc4 + aOsc5 + aOsc6 + aOsc7 + aOsc8
outs aOut*kenv, aOut*kenv
endin

instr 2 ;inharmonic additive synthesis
ibasefrqg = cpspch(p4)
ibaseamp = ampdbfs(p5)
;create 8 inharmonic partials
aOscl poscil ibaseamp, ibasefrq, giSine
aOsc2 poscil ibaseamp/2, ibasefrq*1.02, giSine
aOsc3 poscil ibaseamp/3, ibasefrg*l.1, giSine
aOsc4 poscil ibaseamp/4, ibasefrq*1.23, giSine
aOsc5 poscil ibaseamp/5, ibasefrq*1.26, giSine
aOsc6 poscil ibaseamp/6, ibasefrq*1.31, giSine
aOsc7 poscil ibaseamp/7, ibasefrq*1.39, giSine
aOsc8 poscil ibaseamp/8, ibasefrq*1.41, giSine
kenv linen 1, p3/4, p3, p3/4
aOut = aOscl + aOsc2 + aOsc3 + aOsc4 + aOsc5 + aOsc6 + aOsc7 + aOsc8

outs aOut*kenv, aOut*kenv
endin

</Cslnstruments>
<CsScore>

; pch amp
i105 8.00 -10
i135 9.00 -14
i158 9.02 -12
i169 7.01 -12
i1710 6.00 -10
S

i205 8.00 -10
i235 9.00 -14
i258 9.02 -12
i269 7.01 -12
i2710 6.00 -10
</CsScore>
</CsoundSynthesizer>

SIMPLE ADDITIONS OF SINUSOIDS VIA THE
SCORE

"TYPICAL PARADIGM IN PROGRAMMING *F YOU FIND SOME ALMOST IDENTICAL LINES IN
CONSIDER TO ABSTRACT IT 'OR THE $SOUND -ANGUAGE THIS CAN MEAN TO MOVE PAR
CONTROL TO THE SCORE *N OUR CASE THE LINES

aOscl poscil ibaseamp, ibasefrq, giSine

aOsc2 poscil ibaseamp/2, ibasefrg*2, giSine
aOsc3 poscil ibaseamp/3, ibasefrg*3, giSine
aOsc4 poscil ibaseamp/4, ibasefrq*4, giSine
aOsc5 poscil ibaseamp/5, ibasefrg*5, giSine
aOsc6 poscil ibaseamp/6, ibasefrq*6, giSine
aOsc7 poscil ibaseamp/7, ibasefrq*7, giSine
aOsc8 poscil ibaseamp/8, ibasefrq*8, giSine

CAN BE ABSTRACTED TO THE FORM

aOsc poscil ibaseamp*iampfactor, ibasefrg*ifregfactor, giSine

WITH THE PARAN#ETERS0or THE RELATIVE AMPLITUDE OF Aifrédiactdr AND
FREQUENCY MULTIPLIER TRANSFERRED TO THE SCORE

SHE NEXT VERSION SIMPLIFIES THE INSTRUMENT CODE AND DEFINES THE VARIABLE VA
PARAMETERS

EXAMPLE 04A02_AddSynth_score.csd

<CsoundSynthesizer>

<CsOptions>

-0 dac

</CsOptions>

<Cslnstruments>

:example by AndrZs Cabrera and Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen 0, 0, 2°10, 10,1

instr 1
iBaseFreq = cpspch(p4)
iFregMult = p5 ;frequency multiplier
iBaseAmp = ampdbfs(p6)
IAmpMult = p7 ;amplitude multiplier
iFreq = iBaseFreq * iFreqMult
iAmp = iBaseAmp * iAmpMult

KEnv linen iAmp, p3/4, p3, p3/4
aOsc poscil KEnv, iFreq, giSine
outs aOsc, aOsc
endin

</Cslnstruments>

<CsScore>

; freq fregmult amp ampmult
il107 8.09 1 -10 1
i..6 . 2 . [1/2]
i..5 . 3 [1/3]
i..4 . 4 [1/4]
i..3 . 5 [1/5]
i..3 . 6 [1/6]
i..3 . 7 [1/7]
S

il06 8.09 15 -10 1
i..4 . 3.1 . [1/3]
i..3 . 3.4 . [1/6]
i..4 4.2 . [1/9]
i..5 . 6.1 . [1/12]
i..6 . 6.3 . [1/15]

</CsScore>
</CsoundSynthesizer>

:OU MIGHT SAY OKAY WHERE IS THE SIMPLIFICATION 5HERE ARE EVEN MORE LINES TH

S5HIS IS TRUE AND THIS IS CERTAINLY JUST A STEP ON THE WAY TO ABETTER CODE 5t
NOW Hexibility /OW OUR CODE IS CAPABLE OF REALIZING ANY NUMBER OF PARTIALS WI
AMPLITUDE FREQUENCY AND DURATION RATIOS 6SING THE $SOUND SCORE ABBREVIA
INSTANCE A DOT FOR REPEATING THE PREVIOUS VALUE IN THE SAME P FIELD YOU CAN
COPY AND PASTE AND FOCUS ON WHAT IS CHANGING FROM LINE TO LINE

/OTE ALSO THAT YOU ARE NON¢ @&truliNéht in multiple instancesAT THE SAME

TIME FOR PERFORMING ADDITIVE SYNTHESIS *N FACT EACH INSTANCE OF THE INSTRU
CONTRIBUTES JUST ONE PARTIAL FOR THE ADDITIVE SYNTHESIS 5HIS CALL OF MULTIPL
SIMULTANEOUS INSTANCES OF ONE INSTRUMENT IS ALSO A TYPICAL PROCEDURE FOR
THIS AND FOR WRITING CLEAN AND EFFECTIVE $SOUND CODE 8E WILL DISCUSS LATER
BE DONE IN A MORE ELEGANT WAY THAN IN THE LAST EXAMPLE

CREATING FUNCTION TABLES FOR ADDITIVE
SYNTHESIS

#EFORE WE CONTINUE ON THIS ROAD LET US GO BACK TO THE FIRST EXAMPLE AND DIS
AND ABBREVIATED METHOD OF PLAYING A NUMBER OF PARTIALS "S WE MENTIONED AT
BEGINNING 'OURIER STATED THAT ANY PERIODIC OSCILLATION CAN BE DESCRIBED AS .
SIMPLE SINUSOIDS *F THE SINGLE SINUSOIDS ARE STATIC NO INDIVIDUAL ENVELOPE O
THE RESULTING WAVEFORM WILL ALWAYS BE THE SAME

:OU SEE FOUR SINE GENERATORS EACH WITH FIXED FREQUENCY AND AMPLITUDE REL/
MIXED TOGETHER "T THE BOTTOM OF THE ILLUSTRATION YOU SEE THE COMPOSITE WA
REPEATS ITSELF AT EACH PERIOD 40 WHY NOT JUST CALCULATE THIS COMPOSITE W/
AND THEN READ IT WITH JUST ONE OSCILLATOR

5HIS IS WHAT SOME $SOUND (& ROUTINES DO 5HEY COMPOSE THE RESULTING SHAPE
PERIODIC WAVE AND STORE THE VALUES IN(&FUNCRROBHABHD FOR CREATING A
WAVEFORM CONSISTING OF HARMONICALLY RELATED PARTIALS "FTER THE COMMON (:
FIELDS

<table number>, <creation time>, <size in points>, <GEN number>

YOU HAVE JUST TO DETERMINE THE RELATIVE STREN&TH OB MEREARMONICS
COMPLEX AND ALLOWS YOU TO ALSO CONTROL THE FREQUENCY MULTIPLIER AND THE
OF EACH PARTIAL 8E ARE ABLE TO REPRODUCE THE FIRST EXAMPLE IN A SHORTER AN
FASTER FORM

EXAMPLE 04A03_AddSynth_GEN.csd

<CsoundSynthesizer>

<CsOptions>

-0 dac

</CsOptions>

<Cslnstruments>

:example by AndrZs Cabrera and Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen 0, 0, 2°10, 10,1
giHarm ftgen 1,0, 2"12, 10, 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8
giNois ftgen 2,0, 2712, 9, 100,1,0, 102,1/2,0, 110,1/3,0,\
123,1/4,0, 126,1/5,0, 131,1/6,0, 139,1/7,0, 141,1/8,0

instr 1
iBasFreq = cpspch(p4)
iTabFreq = p7 ;base frequency of the table
iBasFreq = iBasFreq / iTabFreq
iBaseAmp = ampdb(p5)
iIFtNum = p6

aOsc poscil iBaseAmp, iBasFreq, iFtNum
aEnv linen aOsc, p3/4, p3, p3/4
outs aEnv, aEnv
endin

</Cslnstruments>

<CsScore>
; pch amp table table base (Hz)
il105 8.00 -10 1 1

i.35 9.00 -14

i.58 9.02 -12

i.69 7.01 -12

i.710 6.00 -10

S

il05 8.00 -10 2 100
i.35 9.00 -14

i.58 9.02 -12

http://www.csounds.com/manual/html/GEN10.html
http://www.csounds.com/manual/html/GEN09.html

i.69 7.01 -12
i.710 6.00 -10
</CsScore>
</CsoundSynthesizer>

"S YOU CAN SEE FOR NON HARMONICALLY RELATED PARTIALS THE CONSTRUCTION OF
DONE WITH A SPECIAL CARE *F THE FREQUENCY MULTIPLIERS IN OUR FIRST EXAMPLE !
AND THE RESULTING PERIOD IS ACUALLY VERY LONG 'OR A BASE FREQUENCY OF
WILL HAVE THE FREQUENCIES OF)Z AND)Z OVERLAPPING EACH OTHER 40 YOU NE
CYCLES FROM THE MULTIPLIER AND CYCLES FROM THE MULTIPLIER TO COMPLE
PERIOD AND TO START AGAIN BOTH TOGETHER FROM ZERO *N OTHER WORDS WE HAV
TABLE WHICH CONTAINS RESPECTIVELY PERIODS INSTEAD OF AND 5HENTHET
VALUES ARE NOT RELATED TO ASUSUAL BUTTO 5HAT IS THE REASON WE HAVE T
A NEW PARAME3BEReqFOR THIS PURPOSE

S5HIS METHOD OF COMPOSING WAVEFORMS CAN ALSO BE USED FOR GENERATING THE |
HISTORICAL SHAPES USED IN A SY MTHESSINER/ENCAN BE CREATED BY ADDING A
NUMBER OF HARMONICS OF THE SAMaBDREMNMABHTME AMPLITUDE MULTIPLIERS

FOR THE HARMONIG§uareHAS THE SAME MULTIPLIERS BUT JUST FOR THE ODD
HARMONIC&idngle CAN BE CALCULATED AS DIVIDED BY THE SQUARE OF THE ODD PART
WITH SWAPING POSITIVE AND NEGATIVE VALUES 5HE NEXT EXAMPLE CREATES FUNCTI
JUST TEN PARTIALS FOR EACH STANDARD FORM

EXAMPLE 04A04_Standard _waveforms.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<Cslnstruments>

;example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

gilmp ftgen 1,0, 4096,10,1,1,1,1,1,1,1,1,1,1

giSaw ftgen 2, 0, 4096, 10, 1,1/2,1/3,1/4,1/5,1/6,1/7,1/8,1/9,1/10
giSqu ftgen 3, 0, 4096, 10, 1, O, 1/3, 0, 1/5, 0, 1/7, 0, 1/9, 0

QiTri ftgen 4,0, 4096, 10, 1, O, -1/9, 0, 1/25, 0, -1/49, 0, 1/81, O

instr 1

asig poscil .2, 457, p4
outs asig, asig

endin

</Cslnstruments>
<CsScore>
i1031

11432

i1833

i11234
</CsScore>
</CsoundSynthesizer>

TRIGGERING SUB-INSTRUMENTS FOR THE
PARTIALS

1ERFORMING ADDITIVE SYNTHESIS BY DESIGNING PARTIAL STRENGTHS INTO FUNCTIORN
DISADVANTAGE THAT ONCE A NOTE HAS BEGUN THERE IS NO WAY OF VARYING THE REI
OF INDIVIDUAL PARTIALS 5HERE ARE VARIOUS METHODS TO CIRCUMVENT THE INFLEXI!
BASED ADDITIVE SYNTHESIS SUCH AS MORPHING BETWEEN SEVERAL TABLES USING F(
FTMORPCODE /EXT WE WILL CONSIDER ANOTHER APPROACH TRIGGERING ONE INSTA
INSTRUMENT FOR EACH PARTIAL AND EXPLORING THE POSSIBILITIES OF CREATING A S
DYNAMIC SOUND USING THIS TECHNIQUE

-ET US RETURN TO THE SECOND INSTRUMENT " CSD WHICH ALREADY MADE SOME
ABSTRACTIONS AND TRIGGERED ONE INSTRUMENT INSTANCE FOR EACH PARTIAL 5HIS
SCORE BUT NOW WE WILL TRIGGER ONE COMPLETE NOTE IN ONE SCORE LINE NOT JU¢
SHE FIRST STEP IS TO ASSIGN THE DESIRED NUMBER OF PARTIALS VIA A SCORE PARAM
EXAMPLE TRIGGERS ANY NUMBER OF PARTIALS USING THIS ONE VALUE

EXAMPLE 04A05_Flexible_number_of partials.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen 0, 0, 2°10, 10,1

instr 1 ;master instrument

inumparts = p4 ;number of partials
ibasfreq = 200 ;base frequency
ipart = 1 ;count variable for loop

;loop for inumparts over the ipart variable
;and trigger inumpartss instanes of the subinstrument
loop:

ifreq = ibasfreq * ipart
iamp = l/ipart/inumparts
event_i "i", 10, 0O, p3, ifreq, iamp

loop_le ipart, 1, inumparts, loop
endin

instr 10 ;subinstrument for playing one partial

http://www.csounds.com/manual/html/ftmorf.html

ifreq = p4 ;frequency of this partial
iamp = p5 ;amplitude of this partial
aenv transeg O, .01, 0, iamp, p3-0.1, -10, 0
apart poscil aenv, ifreq, giSine

outs apart, apart
endin

</Cslnstruments>
<CsScore>

number of partials
i103 10
i133 20
il163 2
</CsScore>
</CsoundSynthesizer>

SHIS INSTRUMENT CAN EASILY BE TRANSFORMED TO BE PLAYED VIA A MIDI KEYBOARD
EXAMPLE CONNECTS THE NUMBER OF SYNTHESIZED PARTIALS WITH THE MIDI VELOCIT
PLAY SOFTLY THE SOUND WILL HAVE FEWER PARTIALS THAN IF AKEY IS STRUCK WITH

EXAMPLE 04A06_Play it with_Midi.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac -Ma

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen 0, 0, 2°10, 10,1
massign 0, 1 ;all midi channels to instr 1

instr 1 ;master instrument

ibasfreq cpsmidi ;base frequency

iampmid ampmidi 20 ;receive midi-velocity and scale 0-20
inparts = int(iampmid)+1 ;exclude zero

ipart = 1 ;count variable for loop

;loop for inparts over the ipart variable

;and trigger inparts instances of the sub-instrument

loop:
ifreq = ibasfreq * ipart
iamp = l/ipart/inparts
event_i "i", 10, 0, 1, ifreq, iamp
loop_le ipart, 1, inparts, loop
endin

instr 10 ;subinstrument for playing one partial
ifreq = p4 ;frequency of this partial
iamp = p5 ;amplitude of this partial
aenv transeg O, .01, 0, iamp, p3-.01,-3,0

apart poscil aenv, ifreq, giSine
outs apart/3, apart/3
endin

</Cslnstruments>
<CsScore>

f 0 3600

</CsScore>
</CsoundSynthesizer>

"LTHOUGH THIS INSTRUMENT IS RATHER PRIMITIVE IT IS USEFUL TO BE ABLE TO CONTR:
THIS WAY USING KEY VELOCITY -ET US CONTINUE TO EXPLORE SOME OTHER METHODS
PARAMETER VARIATION IN ADDITIVE SYNTHESIS

USER-CONTROLLED RANDOM VARIATIONS IN
ADDITIVE SYNTHESIS

*N NATURAL SOUNDS THERE IS MOVEMENT AND CHANGE ALL THE TIME &VEN THE BES
SINGER WILL NOT BE ABLE TO PLAY ANOTE IN THE EXACT SAME WAY TWICE "ND WITHIN
PARTIALS HAVE SOME UNSTEADINESS ALL THE TIME SLIGHT EXCITATIONS IN THE AMPL
DURATIONS SLIGHT FREQUENCY FLUCTUATIONS *N AN AUDIO PROGRAMMING ENVIROI
$SOUND WE CAN ACHIEVE THESE MOVEMENTS WITH RANDOM DEVIATIONS *T IS NOT S
WHETHER WE USE RANDOMNESS OR NOT RATHER IN WHICH WAY 5HE BOUNDARIES OF
DEVIATIONS MUST BE ADJUSTED AS CAREFULLY AS WITH ANY OTHER PARAMETER IN EL
COMPOSITION *F SOUNDS USING RANDOM DEVIATIONS BEGIN TO SOUND LIKE MISTAKE
PROBABLY LESS TO DO WITH ACTUALLY USING RANDOM FUNCTIONS BUT INSTEAD MOR
SOME POORLY CHOSEN BOUNDARIES

-ET US START WITH SOME RANDOM DEVIATIONS IN OUR SUBINSTRUMENT 5HESE PARAN
AFFECTED

d 5HErequency OF EACH PARTIAL CAN BE SLIGHTLY DETUNED 5HE RANGE OF THIS |
MAXIMUM DETUNING CAN BE SET INCENTS CENT SEMITONE

d S5HEamplitude OF EACH PARTIAL CAN BE ALTERED COMPARED TO ITS STANDARD \
SHE ALTERATION CAN BE MEASURED IN %ECIBEL D#

d S5HEduration OF EACH PARTIAL CAN BE SHORTER OR LONGER THAN THE STANDAR
US DEFINE THIS DEVIATION AS A PERCENTAGE *F THE EXPECTED DURATION IS F
A MAXIMUM DEVIATION OF MEANS GETTING A VALUE BETWEEN HALF THE DUR¢/

SEC AND THE DOUBLE DURATION SEC

SHE FOLLOWING EXAMPLE SHOWS THE EFFECT OF THESE VARIATIONS "S A BASE AND
REFERENCE TO ITS AUTHOR WE TAKE THE BELL LIKE SOUND WHICH +EAN $LAUDE 3IS

HIS 40UND $SATALOGUE

EXAMPLE 04A07_Risset_variations.csd

a-additive-synthesis#InsertNoteID_6

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

;frequency and amplitude multipliers for 11 partials of Risset's bell
giFgs ftgen 0,0, -11,-2,.56,.563,.92, .923,1.19,1.7,2,2.74,\
3,3.74,4.07
giAmps ftgen 0,0, -11,-2,1, 2/3, 1, 1.8, 8/3, 1.46, 4/3, 4/3, 1, 4/3
giSine ftgen 0, 0, 2°10, 10,1
seed O

instr 1 ;master instrument

ibasfreq = 400
ifgdev = p4 ;maximum freq deviation in cents
iampdev = p5 ;maximum amp deviation in dB
idurdev = p6 ;maximum duration deviation in %
indx = 0 ;count variable for loop
loop:
ifgmult tab_i indx, giFgs ;get frequency multiplier from table
ifreq = ibasfreq * ifgmult
iampmult tab_i indx, giAmps ;get amp multiplier
iamp = iampmult / 20 ;scale
event_i "i", 10, O, p3, ifreq, iamp, ifqdev, iampdev, idurdev

loop_It indx, 1, 11, loop
endin

instr 10 ;subinstrument for playing one partial
;receive the parameters from the master instrument

ifregnorm = p4 ;standard frequency of this partial
iampnorm = p5 ;standard amplitude of this partial
ifgdev = p6 ;maximum freq deviation in cents
iampdev = p7 ;maximum amp deviation in dB
idurdev = p8 ;maximum duration deviation in %

;calculate frequency

icent random -ifgdev, ifqdev ;cent deviation

ifreq = ifregnorm * cent(icent)

;calculate amplitude

idb random -iampdev, iampdev ;dB deviation

iamp = iampnorm * ampdb(idb)

;calculate duration

idurperc random -idurdev, idurdev ;duration deviation (%)

iptdur = p3 * 2”\(idurperc/100)
p3 = iptdur ;set p3 to the calculated value
;play partial

aenv transeg O, .01, 0, iamp, p3-.01, -10, 0
apart poscil aenv, ifreq, giSine

outs apart, apart
endin

</Cslnstruments>

<CsScore>
frequency amplitude duration
deviation deviation deviation
incent indB in %

;;unchanged sound (twice)

r2

i105 0 0 0

S

;;slight variations in frequency
ra

i105 25 0 0
;;slight variations in amplitude
ra

i105 0 6 0
;;slight variations in duration
ra

i105 0 0 30
;;slight variations combined
re

i105 25 6 30
;;heavy variations

re

i105 50 9 100
</CsScore>

</CsoundSynthesizer>

'OR A MIDI TRIGGERED DESCENDANT OF THE INSTRUMENT WE CAN AS ONE OF MANY F
CHOICES VARY THE AMOUNT OF POSSIBLE RANDOM VARIATION ON THE KEY VELOCITY
PRESSED SOFTLY PLAYS THE BELL LIKE SOUND AS DESCRIBED BY 3ISSET BUT AS A KEY
INCREASING FORCE THE SOUND PRODUCED WILL BE INCREASINGLY ALTERED

EXAMPLE 04A08 Risset _played by Midi.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac -Ma

</CsOptions>
<Cslnstruments>

;Example by Joachim Heintz
sr=44100

ksmps = 32

nchnls = 2

Odbfs =1

;frequency and amplitude multipliers for 11 partials of Risset's bell
giFgs ftgen 0,0, -11, -2, .56,.563,.92,.923,1.19,1.7,2,2.74,3\

3.74,4.07

giAmps ftgen 0,0, -11,-2,1, 2/3,1, 1.8, 8/3, 1.46, 4/3, 4/3, 1,\
4/3

giSine ftgen 0, 0, 2°10, 10,1

seed O
massign 0, 1 ;all midi channels to instr 1

instr 1 ;master instrument

;;scale desired deviations for maximum velocity
;frequency (cent)

imxfqdv = 100

;amplitude (dB)

imxampdv = 12

;duration (%)

imxdurdv = 100

;;get midi values

ibasfreq cpsmidi ;base frequency

iampmid ampmidi 1 ;receive midi-velocity and scale 0-1
;;calculate maximum deviations depending on midi-velocity

ifgdev = imxfqdv * iampmid
iampdev = imxampdv * iampmid
idurdev = imxdurdv * iampmid
;;trigger subinstruments
indx = 0 ;count variable for loop
loop:
ifgmult tab_i indx, giFgs ;get frequency multiplier from table
ifreq = ibasfreq * ifgmult
iampmult tab_i indx, giAmps ;get amp multiplier
iamp = iampmult / 20 ;scale
event_i "i", 10, 0, 3, ifreq, iamp, ifqdev, iampdev, idurdev

loop_It indx, 1, 11, loop
endin

instr 10 ;subinstrument for playing one partial
;receive the parameters from the master instrument

ifregnorm = p4 ;standard frequency of this partial
iampnorm = p5 ;standard amplitude of this partial
ifgdev = p6 ;maximum freq deviation in cents
iampdev = p7 ;maximum amp deviation in dB
idurdev = p8 ;maximum duration deviation in %

;calculate frequency

icent random -ifgdev, ifqdev ;cent deviation

ifreq = ifregnorm * cent(icent)

;calculate amplitude

idb random -iampdev, iampdev ;dB deviation

iamp = iampnorm * ampdb(idb)

;calculate duration

idurperc random -idurdev, idurdev ;duration deviation (%)

iptdur = p3 * 2”\(idurperc/100)
p3 = iptdur ;set p3 to the calculated value
;play partial

aenv transeg O, .01, 0, iamp, p3-.01, -10, 0
apart poscil aenv, ifreq, giSine

outs apart, apart
endin

</Cslnstruments>
<CsScore>

f 0 3600

</CsScore>
</CsoundSynthesizer>

*T WILL DEPEND ON THE POWER OF YOUR COMPUTER WHETHER YOU CAN PLAY EXAMP
REALTIME)AVE A LOOK AT CHAPTER % -IVE "UDIO FOR TIPS ON GETTING THE BEST PC
PERFORMANCE FROM YOUR $SOUND ORCHESTRA

*N THE LAST EXAMPLE WE WILL USE ADDITIVE SYNTHESIS TO MAKE A KIND OF A WOBBLI
STARTS AS A BASS THEN EVOLVE TO SOMETHING ELSE AND THEN ENDS AS A BASS AG;
GENERATE ALL THE INHARMONIC PARTIALS WITH A LOOP ORDINARY PARTIALS ARE ARIT
THE SAME VALUE TO ONE PARTIAL TO GET TO THE NEXT *N THIS EXAMPLE WE WILL INS
GEOMETRIC PARTIALS WE WILL MULTIPLICATE ONE PARTIAL WITH A CERTAIN NUMBER
GET THE NEXT PARTIAL FREQUENCY 5HIS NUMBER IS NOT CONSTANT BUT IS GENERAT
OSCILATOR 5HIS IS FREQUENCY MODULATION SHEN SOME RANDOMNESS IS ADDED TO
INTERESTING SOUND AND CHORUS EFFECT TO MAKE SHEESXRINEMORE FAT
FUNCTION EXP IS USED BECAUSE IF WE MOVE UPWARDS IN COMMON MUSICAL SCALES
FREQUENGHRSW EXPONENTIALLY

EXAMPLE 04A09 Wobble bass.csd

<CsoundSynthesizer> ; Wobble bass made with additive synthesis

<CsOptions> ; and frequency modulation
-odac
</CsOptions>

<Cslnstruments>

; Example by Bj¢,rn Houdorf, March 2013
sr =44100

ksmps =1

nchnls = 2

Odbfs =1

instr 1

kamp = 24 ; Amplitude

kfreq expseg p4, p3/2, 50*p4, p3/2, p4 ; Base frequency

iloopnum = p5 ; Number of all partials generated

alydl init 0

alyd2 init 0
seed

kfregqmult oscili 1, 2,

kosc oscili 1,21,

ktone randomh 0.5, 2,0.2; A random input

icount = 1

0
1
1

loop: ; Loop to generate partials to additive synthesis

kfreq = kfreqmult * kfreq

atal oscili 1,051

apart oscili 1, icount*exp(atal*ktone) , 1 ; Modulate each partials

anum = apart*kfreq*kosc

asigl oscili kamp, anum, 1

asig2 oscili kamp, 1.5*anum, 1 ; Chorus effect to make the sound more "fat"
asig3 oscili kamp, 2*anum, 1

asig4d oscili kamp, 2.5*anum, 1

alydl = (alydl + asigl+asig4)/icount ;Sum of partials

alyd2 = (alyd2 + asig2+asig3)/icount
loop_It icount, 1, iloopnum, loop ; End of loop

outs alydl, alyd2 ; Output generated sound
endin
</CslInstruments>

<CsScore>
f10128101
i1 06011050
e

</CsScore>

</CsoundSynthesizer>

GBUZZ, BUZZ AND GEN11

GBUZIB USEFUL FOR CREATING ADDITIVE TONES MADE OF OF HARMONICALLY RELATED
3ATHER THAN DEFINE ATTRIBUTES FOR EVERY GBBZZAL OVUSMUSBUAD IDEFINE

GLOBAL ASPECTS FOR THE ADDITIVE TONE SPECIFICALLY THE NUMBER OF PARTIALS Il
PARTIAL NUMBER OF THE LOWEST PARTIAL PRESENT AND AN AMPLITUDE COEFFICIENT
SHIFTS THE PEAK OF SPECTRAL ENERGY IN THE TONE /UMBER OF HARMONICS KNH AN
HAMONIC KLH ALTHOUGH K RATE ARGUMENTS ARE ONLY INTERPRETED AS INTEGERS
THEREFORE CHANGES FROM INTEGER TO INTEGER WILL RESULT IN DISCONTINUITIES IN
SHE AMPLITUDE COEFFICIENT MULTIPLIER ALLOWS SMOOTH MODULATIONS

*N THE FOLLOWING EXAMPLE A)Z TONE IS CREATED IN WHICH THE NUMBER OF PARTI/
CONTAINS RISES FROM TO ACROSSITS SECOND DURATION " SPECTROGRAM SONO
DISPLAYS HOW THIS MANIFESTS SPECTRALLY " LINEAR FREQUENCY SCALE IS EMPLOYI
PARTIALS APPEAR EQUALLY SPACED

EXAMPLE 04A10 gbuzz.csd

<CsoundSynthesizer>

<CsOptions>
-0 dac
</CsOptions>

<Cslnstruments>
sr=44100
ksmps = 32
nchnls = 2

Odbfs =1

; a cosine wave
gicos ftgen 0, 0, 2710, 11, 1

instr 1
knh line 1, p3, 20 ; number of harmonics
kih = 1 ; lowest harmonic

http://www.csounds.com/manual/html/gbuzz.html
http://www.csounds.com/manual/html/gbuzz.html

kmul= 1 ; amplitude coefficient multiplier
asig gbuzz 1, 100, knh, klh, kmul, gicos
outs asig, asig
endin

</Cslnstruments>

<CsScore>
i108

e
</CsScore>

</CsoundSynthesizer>

SHE TOTAL NUMBER OF PARTIALS ONLY REACHESFUBETAMSONHE REACHES AT
THE VERY CONCLUSION OF THE NOTE

*N THE NEXT EXAMPLE THE NUMBER OF PARTIALS CONTAINED WITHIN THE TONE REMAI
THE PARTIAL NUMBER OF THE LOWEST PARTIAL RISES FROM TO

EXAMPLE 04A11 gbuzz_partials_rise.csd

<CsoundSynthesizer>

<CsOptions>
-0 dac
</CsOptions>

<Cslnstruments>
sr=44100
ksmps = 32
nchnls = 2

http://www.csounds.com/manual/html/line.html

Odbfs =1

; a cosine wave
gicos ftgen 0, 0, 2710, 11, 1

instr 1
knh = 20
kih line 1, p3, 20
kmul= 1
asig gbuzz 1, 100, knh, klh, kmul, gicos
outs asig, asig
endin

</Cslnstruments>

<CsScore>
i108

e
</CsScore>

</CsoundSynthesizer>

*N THE SONOGRAM IT CAN BE SEEN HOW AS LOWERMOST PARTIALS ARE REMOVED AD
PARTIALS ARE ADDED AT THE TOP OT THE SPECTRUM 5HIS IS BECAUSE THE TOTAL NUN
REMAINS CONSTANT AT

*N THE FIMBIUZZXAMPLE THE AMPLITUDE COEFFICIENT MULTIPLIER RISES FROM TO *
HEARD AND SEEN IN THE SONOGRAM HOW WHEN THIS VALUE IS ZERO GREATEST EMF
PLACED ON THE LOWERMOST PARTIAL AND WHEN THIS VALUE IS THE UPPERMOST PAF
GREATEST EMPHASIS

EXAMPLE 04A12_gbuzz_amp_coeff rise.csd

http://www.csounds.com/manual/html/gbuzz.html

<CsoundSynthesizer>

<CsOptions>
-0 dac
</CsOptions>

<Cslnstruments>
sr=44100
ksmps = 32
nchnls = 2

Odbfs =1

; a cosine wave
gicos ftgen 0, 0, 2710, 11, 1

instr 1
knh = 20
klhh = 1

kmul line 0, p3, 2
asig gbuzz 1, 100, knh, klh, kmul, gicos
fout "gbuzz3.wav",4,asig

endin

</Cslnstruments>
<CsScore>
i108

e

</CsScore>

</CsoundSynthesizer>

BUZZS A SIMPLIFIED VER&BNAZATH FEWER PARAMETERS h IT DOES NOT PROVIDE FOR
MODULATION OF THE LOWEST PARTIAL NUMBER AND AMPLITUDE COEFFICIENT MULTIPL

http://www.csounds.com/manual/html/buzz.html
http://www.csounds.com/manual/html/gbuzz.html

(&/ CREATES A FUNCTION TABLE WAVEFORM USING THEBAKBHENRAMETERS AS
GBUZFONE IS REQUIRED BUT NO PERFORMANCE TIME MODULATION OF ITS PARAMETER
(&/ MAY PROVIDE A MORE EFFICIHERT OPAICBO OPENS THE POSSIBILITY OF USING

ITS WAVEFORMS IN A VARIETY OF OGBERBBZBNRS MAY PROVE USEFUL AS

A SOURCE IN SUBTRACTIVE SYNTHESIS

"DDITIVE SYNTHESIS CAN STILL BE AN EXCITING WAY OF PRODUCING SOUNDS 5HE NOV
COMPUTATIONAL POWER AND PROGRAMMING STRUCTURES OPEN THE WAY FOR NEW [
IDEAS 5HE LATER EXAMPLES WERE INTENDED TO SHOW SOME OF THESE POTENTIALS ¢
SYNTHESIS IN $SOUND

+EAN $LAUDE 3ISSET *NTRODUCTORY $ATALOGUE OF $OMPUTER 4YNTHESIZED
CITED AFTER %ODGE +ERSE $OMPUTER .USIC /EW :ORK -ONDON

p 2

http://www.csounds.com/manual/html/GEN11.html
http://www.csounds.com/manual/html/gbuzz.html
http://www.csounds.com/manual/html/gbuzz.html
http://www.csounds.com/manual/html/GEN11.html
http://www.csounds.com/manual/html/GEN11.html
http://www.csounds.com/manual/html/gbuzz.html
http://www.csounds.com/manual/html/buzz.html
http://www.csounds.com/manual/html/GEN11.html
a-additive-synthesis#InsertNoteID_6_marker7

SUBTRACTIVE SYNTHESIS

INTRODUCTION

4UBTRACTIVE SYNTHESIS IS AT LEAST CONCEPTUALLY THE INVERSE OF ADDITIVE SYN
INSTEAD OF BUILDING COMPLEX SOUND THROUGH THE ADDITION OF SIMPLE CELLULAR
AS SINE WAVES SUBTRACTIVE SYNTHESIS BEGINS WITH A COMPLEX SOUND SOURCE S
NOISE OR A RECORDED SAMPLE OR A RICH WAVEFORM SUCH AS A SAWTOOTH OR PUL
PROCEEDS TO REFINE THAT SOUND BY REMOVING PARTIALS OR ENTIRE SECTIONS OF 1
SPECTRUM THROUGH THE USE OF AUDIO FILTERS

SHE CREATION OF DYNAMIC SPECTRA AN ARDUOUS TASK IN ADDITIVE SYNTHESIS IS RI
SIMPLE IN SUBTRACTIVE SYNTHESIS AS ALL THAT WILL BE REQUIRED WILL BE TO MODU!
PARAMETERS PERTAINING TO ANY FILTERS BEING USED 80ORKING WITH THE INTRICATE
IS POSSIBLE WITH ADDITIVE SYNTHESIS MAY NOT BE AS EASY WITH SUBTRACTIVE SYNT
SOUNDS CAN BE CREATED MUCH MORE INSTINCTIVELY THAN IS POSSIBLE WITH ADDITI\
SYNTHESIS

A CSOUND TWO-OSCILLATOR SYNTHESIZER

SHE FIRST EXAMPLE REPRESENTS PERHAPS THE CLASSIC IDEA OF SUBTRACTIVE SYNTI
TWO OSCILLATOR SYNTH FILTERED USING A SINGLE RESONANT LOWPASS FILTER .ANY
IN THIS EXAMPLE HAVE BEEN INSPIRED BY THENIMESUES YNFTHHESIZER AND

OTHER SIMILAR INSTRUMENTS

&ACH OSCILLATOR CAN DESCRIBE EITHER A SAWTOOTH 18. WAVEFORM | E SQUARE F
OR WHITE NOISE AND EACH OSCILLATOR CAN BE TRANSPOSED IN OCTAVES OR IN CENT
A FUNDAMENTAL PITCH 5HE TWO OSCILLATORS ARE MIXED AND THEN PASSED THROUC
D# PER OCTAVE RESONANT LOWPASS FILTEEBCBHEADOPERBESEN ON ACCOUNT
OF ITS AUTHENTIC VINTAGE CHARACTER 5HE CUTOFF FREQUENCY OF THE FILTER IS M
"%43 STYLE ATTACK DECAY SUSTAIN RELEASE ENVELOPE FACILITATING THE CREATIO
EVOLVING SPECTRA 'INALLY THE SOUND OUTPUT OF THE FILTER IS SHAPED BY AN "%4:
ENVELOPE

"S THIS INSTRUMENT IS SUGGESTIVE OF A PERFORMANCE INSTRUMENT CONTROLLED V
HAS BEEN PARTIALLY IMPLEMENTED 5HROUGH THE USE OF $SOUND S .*%* INTEROPER
OPCODMIDIDEFAUIHE INSTRUMENT CAN BE OPERATED FROM THE SCORE OR FROM A .*¢
KEYBOARD *F A .*%* NOTE IS RECEIVED SUITABLE DEFAULT P FIELD VALUES ARE SUBS
MISSING P FIELDS .*%* CONTROLLER CAN BE USED TO CONTROL THE GLOBAL CUTOFF
THE FILTER

"SCHEMATIC FOR THIS INSTRUMENT IS SHOWN BELOW

http://en.wikipedia.org/wiki/Minimoog
http://www.csounds.com/manual/html/moogladder.html
http://en.wikipedia.org/wiki/Synthesizer
http://www.csounds.com/manual/html/mididefault.html

EXAMPLE 04B01_Subtractive_Midi.csd

<CsoundSynthesizer>

<CsOptions>
-odac -Ma
</CsOptions>

<Cslnstruments>
sr=44100
ksmps = 4
nchnls = 2

Odbfs =1

initc7 1,1,0.8 ;set initial controller position
prealloc 1, 10

instr 1
iNum notnum ;read in midi note number
iCF ctrl7 1,1,0.1,14 ;read in midi controller 1
; set up default p-field values for midi activated notes

mididefault iNum, p4 ;pitch (note number)
mididefault 0.3, p5 ;amplitude 1

mididefault 2, p6 ;type 1

mididefault 0.5, p7 ;pulse width 1
mididefault 0, p8 ;octave disp. 1
mididefault 0, p9 ;tuning disp. 1
mididefault 0.3, p10 ;amplitude 2
mididefault 1, p11 ;type 2

mididefault 0.5, p12 ;pulse width 2
mididefault -1, p13 ;octave displacement 2
mididefault 20, p14 ;tuning disp. 2
mididefault iCF, p15 filter cutoff freq
mididefault 0.01, p16 ;filter env. attack time
mididefault 1, p17 ;filter env. decay time
mididefault 0.01, p18 ;filter env. sustain level
mididefault 0.1, p19 filter release time
mididefault 0.3, p20 ;filter resonance
mididefault 0.01, p21 ;amp. env. attack
mididefault 0.1, p22 ;amp. env. decay.
mididefault 1, p23 ;amp. env. sustain
mididefault 0.01, p24 ;amp. env. release

; asign p-fields to variables

iCPS = cpsmidinn(p4) ;convert from note number to cps
kAmpl = p5

iTypel = p6

kPW1 = p7

kOctl = octave(p8) ;convert from octave displacement to multiplier
kTunel = cent(p9) ;convert from cents displacement to multiplier
kAmp2 = p1l0

iType2 = pll

kPwW2 = pl2

kOct2 = octave(pl3)

kTune2 = cent(pl4)

iCF = p15

iFAtt = p16

iFDec = pl7

iIFSus = pl18

iFRel = pl19

kRes = p20

IAAtt = p21

iADec = p22

iASus = p23

iARel = p24

;oscillator 1

;if type is sawtooth or square...
if iTypel==1||iTypel==2 then
;...derive vco2 'mode' from waveform type
iModel = (iTypel=1?0:2)
aSigl vco2 kAmpl,iCPS*kOctl*kTunel,iModel kPW1;VCO audio oscillator
else ;otherwise...
aSigl noise kAmpl, 0.5 ;...generate white noise
endif

;oscillator 2 (identical in design to oscillator 1)
if iType2==1||iType2==2 then
iMode2 = (iType2=1?0:2)

aSig2 vco2 kAmp2,iCPS*kOct2*kTune2,iMode2,kPW2
else

aSig2 noise kAmp2,0.5
endif

;mix oscillators

aMix sum aSigl,aSig2

;lowpass filter

KFiltEnv expsegr 0.0001,iFAtt,iCPS*ICF,iFDec,iCPS*ICF*iFSus,iFRel,0.0001
aOut moogladder aMix, KFiltEnv, kRes

;amplitude envelope
aAmpEnv expsegr 0.0001,iAAtt,1,iADec,iASus,iARel,0.0001
aOut = aOut*aAmpEnv
outs aOut,aOut
endin
</CslInstruments>

<CsScore>
;p4 = oscillator frequency
;oscillator 1
;p5 = amplitude
;p6 = type (1=sawtooth,2=square-PWM,3=noise)
;p7 = PWM (square wave only)
;p8 = octave displacement
;p9 = tuning displacement (cents)
;oscillator 2
;p10 = amplitude
;pll = type (1=sawtooth,2=square-PWM,3=noise)
;p12 = pwm (square wave only)
;p13 = octave displacement
;p14 = tuning displacement (cents)
;global filter envelope
;p15 = cutoff
;pl6 = attack time
;pl7 = decay time
;p18 = sustain level (fraction of cutoff)
;p19 = release time
;p20 = resonance
;global amplitude envelope
;p21 = attack time
;p22 = decay time
;p23 = sustain level
;p24 = release time
; Pl p2 p3 p4p5 p6p7 p8p9 plOpllpl2pl3
;p14 p15 pl16 pl7 pl8 pl9 p20 p21 p22 p23 p24
i1l01 500 2.5 0-50 2 050\
512 012 .01 .10 .006.011 .05
il+150.2250-5.22 050\
51 011 .1 .1.5.005.011 .05
il+150.2250-8.22 050\
8 3 011 1 .1.5.005.011 .05
il+150.2250-8.22 05-1\
8 7011 .1 .1.5.005.011 .05
il+3 50215 0-1021 05-2\
10 40 .01 3 .001.1 .5 .005.011 .05

il+ 10501 2 .01-20 .23 050 \
0 405 5 .00115.1 .005.011 .05

f 0 3600
e
</CsScore>

</CsoundSynthesizer>

SIMULATION OF TIMBRES FROM A NOISE
SOURCE

SHE NEXT EXAMPLE MAKES EXTENSIVE USE OF BANDPASS FILTERS ARRANGED IN PARA
WHITE NOISE S5HE BANDPASS FILTER BANDWIDTHS ARE NARROWED TO THE POINT WHE
TONES ARE AUDIBLE 5HE CRUCIAL DIFFERENCE IS THAT THE NOISE SOURCE ALWAYS II
INSTABILITY IN THE AMPLITUDE AND FREQUENCY OF TONES PRODUCED IT IS THIS QUA
THIS SORT OF SUBTRACTIVE SYNTHESIS SOUND MUCH MORE ORGANIC THAN AN ADDITI
EQUIVALENT *F THE BANDWIDTHS ARE WIDENED THEN MORE OF THE CHARACTERISTIC
SOURCE COMES THROUGH AND THE TONE BECOMES AIRIER AND LESS DISTINCT IFTH
NARROWED THE RESONATING TONES BECOME CLEARER AND STEADIER #Y VARYING Tl
INTERESTING METAMORPHOSES OF THE RESULTANT SOUND ARE POSSIBLE

RESGIN.TERS ARE USED FOR THE BANDPASS FILTERS ON ACCOUNT OF THEIR ABILITY
RESONATE AS THEIR BANDWIDTH NARROWS "NOTHER REASON FOR THIS CHOICE IS TH
ECONOMY OF THE RESON FILTER A NOT INCONSIDERABLE CONCERN AS SO MANY OF T
SHE FREQUENCY RATIOS BETWEEN THE PARALLEL FILTERS ARE DERIVED FROM ANAL
BELL THE DATA WAS FOUND IN THE APPENDIX OF THEERESOUND MANUAL

*N ADDITION TO THE WHITE NOISE AS A SOURCE NOISE IMPULSES ARE ALSO USED AS A
VIA THEIPULSE@PCODE S5HE INSTRUMENT WILL AUTOMATICALLY AND RANDOMLY SLOWI
CROSSFADE BETWEEN THESE TWO SOUND SOURCES

"LOWPASS AND HIGHPASS FILTER ARE INSERTED IN SERIES BEFORE THE PARALLEL BAI
SHAPE THE FREQUENCY SPECTRUM OF THE SOURCE SOUND $S8WNMNDBUTTERWORTH
BUTHARE CHOSEN FOR THIS TASK ON ACCOUNT OF THEIR STEEP CUTOFF SLOPES AND
THE CUTOFF POINT

SHE OUTPUTS OF THE RESON FILTERS ARE SENT ALTERNATELY TO THE LEFT AND RIGH
CREATE A BROAD STEREO EFFECT

SHIS EXAMPLE MAKES EXTENSIVERSH OBHEEBDE A GENERATOR OF RANDOM SPLINE
FUNCTIONS TO SLOWLY UNDULATE THE MANY INPUT PARAMETERS 5HE ORCHESTRA I€
IN THAT INSTRUMENT REPEATEDLY TRIGGERS NOTE EVENTS IN INSTRUMENT AND THI
OF RANDOM FUNCTIONS MEANS THAT THE RESULTS WILL CONTINUALLY EVOLVE AS THE
ALLOWED TO PERFORM

http://www.csounds.com/manual/html/reson.html
http://www.csounds.com/manual/html/MiscModalFreq.html
http://www.csounds.com/manual/html/mpulse.html
http://www.csounds.com/manual/html/butterlp.html
http://www.csounds.com/manual/html/butterhp.html
http://www.csounds.com/manual/html/rspline.html

"FLOW DIAGRAM FOR THIS INSTRUMENT IS SHOWN BELOW

EXAMPLE 04B02_Subtractive_timbres.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<Cslnstruments>
;Example written by lain McCurdy

sr=44100
ksmps = 16
nchnls = 2
Odbfs =1

instr 1 ; triggers notes in instrument 2 with randomised p-fields
krate randomi 0.2,0.4,0.1 ;rate of note generation

ktrig metro krate ;triggers used by schedkwhen
koct random 5,12 ;fundemental pitch of synth note
kdur random 15,30 ;duration of note

schedkwhen ktrig,0,0,2,0,kdur,cpsoct(koct) ;trigger a note in instrument 2
endin

instr 2 ; subtractive synthesis instrument

aNoise pinkish 1 ;a noise source sound: pink noise

kGap rspline 0.3,0.05,0.2,2 ;time gap between impulses

aPulse mpulse 15, kGap ;a train of impulses

kCFade rspline 0,1,0.1,1 ;crossfade point between noise and impulses

alnput ntrpol aPulse,aNoise,kCFade;implement crossfade

; cutoff frequencies for low and highpass filters
kKLPF_CF rspline 13,8,0.1,0.4
kHPF_CF rspline 5,10,0.1,0.4

; filter input sound with low and highpass filters in series -
; - done twice per filter in order to sharpen cutoff slopes
alnput butlp alnput, cpsoct(KLPF_CF)

alnput butlp alnput, cpsoct(KLPF_CF)

alnput buthp alnput, cpsoct(kHPF_CF)

alnput buthp alnput, cpsoct(kHPF_CF)

kcf rspline p4*1.05,p4*0.95,0.01,0.1 ; fundemental
; bandwidth for each filter is created individually as a random spline function
kbwl rspline 0.00001,10,0.2,1
kbw2 rspline 0.00001,10,0.2,1
kbw3 rspline 0.00001,10,0.2,1
kbw4 rspline 0.00001,10,0.2,1
kbw5 rspline 0.00001,10,0.2,1
kbw6 rspline 0.00001,10,0.2,1
kbw7 rspline 0.00001,10,0.2,1
kbw8 rspline 0.00001,10,0.2,1
kbw9 rspline 0.00001,10,0.2,1
kbw10 rspline 0.00001,10,0.2,1
kbwll rspline 0.00001,10,0.2,1
kbwl12 rspline 0.00001,10,0.2,1
kbwl3 rspline 0.00001,10,0.2,1
kbwl14 rspline 0.00001,10,0.2,1
kbwl5 rspline 0.00001,10,0.2,1
kbw16 rspline 0.00001,10,0.2,1
kbwl7 rspline 0.00001,10,0.2,1
kbw18 rspline 0.00001,10,0.2,1
kbw19 rspline 0.00001,10,0.2,1
kbw20 rspline 0.00001,10,0.2,1
kbw21 rspline 0.00001,10,0.2,1
kbw22 rspline 0.00001,10,0.2,1

imode = 0 ; amplitude balancing method used by the reson filters
al reson alnput, kcf*1, kbwl, imode

a2 reson alnput, kcf*1.0019054878049, kbw2, imode
a3 reson alnput, kcf*1.7936737804878, kbw3, imode
a4 reson alnput, kcf*1.8009908536585, kbw4, imode
ab reson alnput, kcf*2.5201981707317, kbw5, imode
a6 reson alnput, kcf*2.5224085365854, kbw6, imode
a7 reson alnput, kcf*2.9907012195122, kbw7, imode
a8 reson alnput, kcf*2.9940548780488, kbw8, imode
a9 reson alnput, kcf*3.7855182926829, kbw9, imode
al0 reson alnput, kcf*3.8061737804878, kbw10,imode
all reson alnput, kcf*4.5689024390244, kbw11,imode
al2 reson alnput, kcf*4.5754573170732, kbw12,imode
al3 reson alnput, kcf*5.0296493902439, kbw13,imode
al4d reson alnput, kcf*5.0455030487805, kbw14,imode
al5 reson alnput, kcf*6.0759908536585, kbw15,imode
alé reson alnput, kcf*5.9094512195122, kbw16,imode
al7 reson alnput, kcf*6.4124237804878, kbw17,imode
al8 reson alnput, kcf*6.4430640243902, kbw18,imode
al9 reson alnput, kcf*7.0826219512195, kbw19,imode
a20 reson alnput, kcf*7.0923780487805, kbw20,imode
a2l reson alnput, kcf*7.3188262195122, kbw21,imode
a22 reson alnput, kcf*7.5551829268293, kbw22,imode

; amplitude control for each filter output

kAmpl rspline 0,1,0.3,1
kAmp2 rspline 0,1,0.3,1
kAmp3 rspline 0,1,0.3,1
kAmp4 rspline 0,1,0.3,1
kAmp5 rspline 0,1,0.3,1
kAmp6 rspline 0,1,0.3,1
kAmp7 rspline 0,1,0.3,1
kAmp8 rspline 0,1,0.3,1
kAmp9 rspline 0,1,0.3,1
kAmpl10 rspline 0,1,0.3,1
kAmpl1l rspline 0,1,0.3,1
kAmpl12 rspline 0,1,0.3,1
kAmp13 rspline 0,1,0.3,1
kAmpl14 rspline 0,1,0.3,1
kAmp15 rspline 0,1,0.3,1
kAmpl16 rspline 0,1,0.3,1
kAmpl7 rspline 0,1,0.3,1
kAmp18 rspline 0,1,0.3,1
kAmp19 rspline 0,1,0.3,1
kAmp20 rspline 0,1,0.3,1
kAmp21 rspline 0,1,0.3,1
kAmp22 rspline 0,1,0.3,1

; left and right channel mixes are created using alternate filter outputs.

; This shall create a stereo effect.

aMixL sum al*kAmpl,a3*kAmp3,a5*kAmp5,a7*kAmp7,a9*kAmp9,all*kAmpll,\
al3*kAmpl3,al15*kAmpl5,a17*kAmpl7,a19*kAmpl19,a21*kAmp21

aMixR sum a2*kAmp2,a4*kAmp4,a6*kAmp6,a8*kAmp8,al0*kAmpl0,al2*kAmpl2,\
ald*kAmpl4,a16*kAmpl6,a18*kAmpl8,a20*kAmp20,a22*kAmp22

kKEnv linseg O, p3*0.5, 1,p3*0.5,0,1,0 ; global amplitude envelope
outs (aMixL*kEnv*0.00008), (aMixR*kEnv*0.00008) ; audio sent to outputs
endin

</Cslnstruments>

<CsScore>

i 103600 ;instrument 1 (note generator) plays for 1 hour
e

</CsScore>

</CsoundSynthesizer>

VOWEL-SOUND EMULATION USING BANDPASS
FILTERING

SHE FINAL EXAMPLE IN THIS SECTION USES PRECISELY TUNED BANDPASS FILTERS TO ¢
SOUND OF THE HUMAN VOICE EXPRESSING VOWEL SOUNDS 4PECTRAL RESONANCES |
ARE OFTEN REFERRERNVAMBAE FORMANTS ARE USED TO SIMULATE THE EFFECT OF THI
HUMAN MOUTH AND HEAD AS A RESONATING AND THEREFORE FILTERING BODY 5HE F
SIMULATING THE VOWEL SOUNDS " & * 0 AND 6 AS EXPRESSED BY A BASS TENOR COUN

http://en.wikipedia.org/wiki/Formants

ALTO AND SOPRANO VOICE WERE FOUND IN THE APPENDIX IGEREHE $SOUND MANUAL
#ANDWIDTH AND INTENSITY D# INFORMATION IS ALSO NEEDED TO ACCURATELY SIMUL
VARIOUS VOWEL SOUNDS

RESMN.TERS ARE AGAIN BBEBMBIDTOTHERS COULD BE EQUALLY VALID CHOICES

%ATA IS STORED IN LINEAR BREAK POINT FUNCTION TABLES AS THIS DATA IS READ BY
LINE FUNCTIONS WE CAN INTERPOLATE AND THEREFORE MORPH BETWEEN DIFFERENT
DURING A NOTE

SHE SOURCE SOUND FOR THE FILTERS COMES FROM EITHER A PINK NOISE GENERATOF
WAVEFORM 5HE PINK NOISE SOURCE COULD BE USED IF THE EMULATION IS TO BE THA’
BREATH WHEREAS THE PULSE WAVEFORM PROVIDES A DECENT APPROXIMATION OF Tt
CHORDS BUZZING 5HIS INSTRUMENT CAN HOWEVER MORPH CONTINUOUSLY BETWEEN
SOURCES

"FLOW DIAGRAM FOR THIS INSTRUMENT IS SHOWN BELOW

EXAMPLE 04B03_Subtractive_vowels.csd

<CsoundSynthesizer>

<CsOptions>

http://www.csounds.com/manual/html/MiscFormants.html
http://www.csounds.com/manual/html/reson.html
http://www.csounds.com/manual/html/butterbp.html
http://www.csounds.com/manual/html/GEN07.html

-odac
</CsOptions>

<Cslnstruments>
;example by lain McCurdy

sr=44100
ksmps = 16
nchnls = 2
Odbfs =1

;FUNCTION TABLES STORING DATA FOR VARIOUS VOICE FORMANTS

;BASS

giBF1 ftgen 0, 0, -5, -2, 600, 400, 250, 400, 350
giBF2 ftgen 0, 0, -5, -2, 1040, 1620, 1750, 750, 600
giBF3 ftgen 0, 0, -5, -2, 2250, 2400, 2600, 2400, 2400
giBF4 ftgen 0, 0, -5, -2, 2450, 2800, 3050, 2600, 2675
giBF5 ftgen 0, 0, -5, -2, 2750, 3100, 3340, 2900, 2950
giBDb1 ftgen 0, O, -5, -2, O, 0, 0,0 O
giBDb2 ftgen 0, 0, -5, -2, -7, -12, -30, -11, -20
giBDb3 ftgen 0, 0, -5, -2, -9, -9, -16, -21, -32
giBDb4 ftgen 0, 0, -5, -2, -9, -12,-22, -20, -28
giBDDb5 ftgen 0, 0, -5, -2, -20, -18, -28, -40, -36
giBBW1 ftgen 0, O, -5, -2, 60, 40, 60, 40, 40
giBBW?2 ftgen 0, O, -5, -2, 70, 80, 90, 80, 80
giBBW3 ftgen 0, 0, -5, -2, 110, 100, 100, 100, 100
giBBW4 ftgen 0, 0, -5, -2, 120, 120, 120, 120, 120
giBBWS5 ftgen 0, 0, -5, -2, 130, 120, 120, 120, 120
;TENOR

giTF1 ftgen 0, O, -5, -2, 650, 400, 290, 400, 350
giTF2 ftgen 0, 0O, -5, -2, 1080, 1700, 1870, 800, 600
giTF3 ftgen 0, 0, -5, -2, 2650, 2600, 2800, 2600, 2700
giTF4 ftgen 0, 0, -5, -2, 2900, 3200, 3250, 2800, 2900
giTF5 ftgen 0, 0, -5, -2, 3250, 3580, 3540, 3000, 3300
giTDb1 ftgen 0,0,-5,-2, 0, 0, 0, O, O

giTDb2 ftgen 0, O, -5, -2, -6, -14, -15, -10, -20

giTDb3 ftgen 0, O, -5, -2, -7,-12,-18, -12, -17

giTDb4 ftgen 0, O, -5, -2, -8, -14, -20, -12, -14

giTDb5 ftgen 0, O, -5, -2, -22, -20, -30, -26, -26
giTBWL1 ftgen 0, 0, -5, -2, 80, 70, 40, 40, 40
giTBW?2 ftgen 0, 0, -5, -2, 90, 80, 90, 80, 60
giTBW3 ftgen 0, 0, -5, -2, 120, 100, 100, 100, 100
giTBWA4 ftgen 0, 0, -5, -2, 130, 120, 120, 120, 120
giTBWS5 ftgen 0, 0, -5, -2, 140, 120, 120, 120, 120

;COUNTER TENOR

giCTF1 ftgen O, O, -5, -2, 660, 440, 270, 430, 370
giCTF2 ftgen 0, O, -5, -2, 1120, 1800, 1850, 820, 630
giCTF3 ftgen 0, 0, -5, -2, 2750, 2700, 2900, 2700, 2750
giCTF4 ftgen 0, 0, -5, -2, 3000, 3000, 3350, 3000, 3000

giCTF5 ftgen 0, 0, -5, -2, 3350, 3300, 3590, 3300, 3400

giTBDDb1 ftgen 0,0, -5,-2, 0, 0, 0, O, O

giTBDb2 ftgen 0, O, -5, -2, -6, -14, -24, -10, -20
giTBDb3 ftgen 0, O, -5, -2, -23, -18, -24, -26, -23
giTBDb4 ftgen 0, O, -5, -2, -24, -20, -36, -22, -30
giTBDDb5 ftgen 0, O, -5, -2, -38, -20, -36, -34, -30

giTBWL1 ftgen 0, 0, -5, -2, 80, 70, 40, 40, 40
giTBW?2 ftgen 0, 0, -5, -2, 90, 80, 90, 80, 60
giTBW3 ftgen 0, 0, -5, -2, 120, 100, 100, 100, 100
0,-5,-2,1
0,-5,-2,1

giTBWA4 ftgen 0, 0, -5, -2, 130, 120, 120, 120, 120
giTBWS5 ftgen 0, 0, -5, -2, 140, 120, 120, 120, 120
JALTO

QiAF1 ftgen 0, O, -5, -2, 800, 400, 350, 450, 325
QiAF2 ftgen 0, O, -5, -2, 1150, 1600, 1700, 800, 700
QiAF3 ftgen 0, O, -5, -2, 2800, 2700, 2700, 2830, 2530
QiAF4 ftgen 0, 0, -5, -2, 3500, 3300, 3700, 3500, 2500
QiAF5 ftgen 0, 0, -5, -2, 4950, 4950, 4950, 4950, 4950

giADDb1 ftgen 0,0, -5,-2, 0, 0, 0, 0, O
giADDb2 ftgen 0, 0, -5, -2, -4, -24, -20, -9, -12
giADDb3 ftgen 0, 0, -5, -2, -20, -30, -30, -16, -30
0,-5, -2
0,-5, -2

giADb4 ftgen 0, , -36, -35, -36, -28, -40
QiADDS ftgen 0, , -60, -60, -60, -55, -64

giABW1 ftgen 0, O, -5, -2, 50, 60, 50, 70, 50
giABW?2 ftgen 0, O, -5, -2, 60, 80, 100, 80, 60
giABW3 ftgen 0, 0, -5, -2, 170, 120, 120, 100, 170
0,-5-2,1
0,-5,-2,2

giABW4 ftgen O, 80, 150, 150, 130, 180
giABWS5 ftgen O, 00, 200, 200, 135, 200

;SOPRANO
QiSF1 ftgen 0, O, -5, -2, 800, 350, 270, 450, 325
QiSF2 ftgen 0, O, -5, -2, 1150, 2000, 2140, 800, 700
QiSF3 ftgen 0, O, -5, -2, 2900, 2800, 2950, 2830, 2700
0,-5,-2
0,-5,-2

QiSF4 ftgen 0, , 3900, 3600, 3900, 3800, 3800
QiSF5 ftgen O, , 4950, 4950, 4950, 4950, 4950

giSDb1 ftgen 0,0, -5,-2, 0, 0, 0, 0, O
giSDb2 ftgen 0, 0, -5, -2, -6, -20, -12, -11, -16
giSDb3 ftgen 0, 0, -5, -2, -32, -15, -26, -22, -35
0,-5, -2
0,-5, -2

giSDb4 ftgen 0, , =20, -40, -26, -22, -40
giSDDb5 ftgen 0, , -50, -56, -44, -50, -60

giSBW1 ftgen 0, 0O, -5, -2, 80, 60, 60, 70, 50
giSBW?2 ftgen 0, 0O, -5, -2, 90, 90, 90, 80, 60
giSBW3 ftgen 0, 0, -5, -2, 120, 100, 100, 100, 170
0,-5,-2
0,-5,-2

1
giSBW4 ftgen 0, 0, -5, -2, 130, 150, 120, 130, 180
1

giSBWS5 ftgen 0, 0, -5, -2, 140, 200, 120, 135, 200
instr 1
kFund expon p4,p3,p5 ; fundamental
kVow line p6,p3,p7 ; vowel select

kBW line p8,p3,p9 ; bandwidth factor

iVoice = pl0 ; Voice select
kSrc line pl1,p3,pl2 ; source mix

aNoise pinkish 3 ; pink noise
avCO vco2 1.2,kFund,2,0.02 ; pulse tone
alnput ntrpol aVCO,aNoise,kSrc ; input mix

; read formant cutoff frequenies from tables

kCF1 tablei kVow*5,giBF1+(iVoice*15)

kCF2 tablei kVow*5,giBF1+(iVoice*15)+1

kCF3 tablei kVow*5,giBF1+(iVoice*15)+2

kCF4 tablei kVow*5,giBF1+(iVoice*15)+3

kCF5 tablei kVow*5,giBF1+(iVoice*15)+4

; read formant intensity values from tables

kDB1 tablei kVow*5,giBF1+(iVoice*15)+5

kDB2 tablei kVow*5,giBF1+(iVoice*15)+6

kDB3 tablei kVow*5,giBF1+(iVoice*15)+7

kDB4 tablei kVow*5,giBF1+(iVoice*15)+8

kDB5 tablei kVow*5,giBF1+(iVoice*15)+9

; read formant bandwidths from tables

kBW1 tablei kVow*5,giBF1+(iVoice*15)+10

kBW2 tablei kVow*5,giBF1+(iVoice*15)+11

kBW3 tablei kVow*5,giBF1+(iVoice*15)+12

kBW4 tablei kVow*5,giBF1+(iVoice*15)+13

kBW5 tablei kVow*5,giBF1+(iVoice*15)+14

; create resonant formants byt filtering source sound

aForml reson alnput, kCF1, kBW1*kBW, 1 ; formant 1
aForm2 reson alnput, kCF2, kBW2*kBW, 1 ; formant 2
aForm3 reson alnput, kCF3, kBW3*kBW, 1 ; formant 3
aForm4 reson alnput, kCF4, kBW4*kBW, 1 ; formant 4
aForm5 reson alnput, kCF5, kBW5*kBW, 1 ; formant 5

; formants are mixed and multiplied both by intensity values derived from tables and by the on-scree
aMix sum aForml*ampdbfs(kDB1),aForm2*ampdbfs(kDB2),aForm3*ampdbfs(kDB3),aForm4
kKEnv linseg 0,3,1,p3-6,1,3,0 ;an amplitude envelope
outs aMix*kEnv, aMix*kEnv ; send audio to outputs
endin

</Cslnstruments>

<CsScore>

; p4 = fundemental begin value (c.p.s.)

; p5 = fundemental end value

; p6 = vowel begin value (0-1:aeiou)

; p7 = vowel end value

; p8 = bandwidth factor begin (suggested range 0 - 2)

; P9 = bandwidth factor end

; P10 = voice (O=bass; 1=tenor; 2=counter_tenor; 3=alto; 4=soprano)
; p11 = input source begin (0 - 1 : VCO - noise)

; p12 = input source end

; p4 p5 p6 p7 p8 p9 pl0 pll pl2
i10 1050 1000 1 2 00 O O
i18. 78771 01010 O
i116. 1501180 1 1 02 1
31

1
il124. 2002201 0 0.20 0

i132. 4008000 1 0204 0 1
e
</CsScore>

</CsoundSynthesizer>

CONCLUSION

SHESE EXAMPLES HAVE HOPEFULLY DEMONSTRATED THE STRENGTHS OF SUBTRACTIV
SIMPLICITY INTUITIVE OPERATION AND ITS ABILITY TO CREATE ORGANIC SOUNDING TIV
RESEARCH COULD EXPLORE $SOUND S OTHER FILMEROOBEGDERNGULIIHNG

AND THE MORE ESOIASHRHASERNIRESONY

http://www.csounds.com/manual/html/vcomb.html
http://www.csounds.com/manual/html/wguide1.html
http://www.csounds.com/manual/html/wguide2.html
http://www.csounds.com/manual/html/phaser1.html
http://www.csounds.com/manual/html/phaser2.html
http://www.csounds.com/manual/html/resony.html

AMPLITUDE AND RING
MODULATION

INTRODUCTION

"MPLITUDE MODULATION ". MEANS THAT ONE OSCILLATOR VARIES THE VOLUME AMPLI
AN OTHER *F THIS MODULATION IS DONE VERY SLOWLY)ZTO)Z ITIS RECOGNISED #
TREMOLO 70LUME MODULATION ABOVE)Z LEADS TO THE EFFECT THAT THE SOUND (
TIMBRE 40 CALLED SIDE BANDS APPEAR

Example 04C01_Simple_AM.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<Cslnstruments>

sr =48000

ksmps = 32
nchnls = 1

Odbfs =1

instr 1

aRaise expseg 2, 20, 100

aModSine poscil 0.5, aRaise, 1

aDCOffset = 0.5 ; we want amplitude-modulation
aCarSine poscil 0.3, 440, 1

out aCarSine*(aModSine + aDCOffset)

endin

</Cslnstruments>

<CsScore>

f101024 101

i1025

e

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

THEORY, MATHEMATICS AND SIDEBANDS

5HE SIDE BANDS APPEAR ON BOTH SIDES OF THE MAIN FREQUENCY 5HIS MEANS FREQ
FREQ FREQ APPEAR

5HE SOUNDING RESULT OF THE FOLLOWING EXAMPLE CAN BE CALCULATED AS THIS FR
FREQ)Z 5HE RESULT IS A SOUND WITH < >)Z

5HE AMOUNT OF THE SIDEBANDS CAN BE CONTROLLED BY A %$ OFFSET OF THE MODUL

Example 04C02_Sidebands.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<Cslnstruments>

sr =48000

ksmps = 32
nchnls = 1

Odbfs =1

instr 1

aSinel poscil 0.3,40, 1
aSine2 poscil 0.3, 440, 1

out (aSinel+aOffset)*aSine2
endin

</Cslnstruments>

<CsScore>

f101024 101

i1010

e

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

3ING MODULATION IS A SPECIAL CASE OF ". WITHOUT %$ OFFSET %$ OFFSET 5HAT
MEANS THE MODULATOR VARIES BETWEEN AND LIKE THE CARRIER 5HE SOUNDING [
TO". IS THAT 3. DOESN T CONTAIN THE CARRIER FREQUENCY

*F THE MODULATOR IS UNIPOLAR OSCILLATES BETWEEN AND THE EFFECT IS CALLE

MORE COMPLEX SYNTHESIS USING RING
MODULATION AND AMPLITUDE MODULATION

*F THE MODULATOR ITSELF CONTAINS MORE HARMONICS THE RESULTING RING MODUL
BECOMES MORE COMPLEX

$ARRIER FREQ)Z
.ODULATOR FREQS)ZWITH HARMONICS < >)Z
3ESULTING FREQS >

Example 04C03_RingMod.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<Cslnstruments>

sr =48000

ksmps = 32
nchnls = 1

Odbfs =1

instr 1 ; Ring-Modulation (no DC-Offset)
aSinel poscil 0.3, 200, 2 ; ->[200, 400, 600] Hz
aSine2 poscil 0.3, 600, 1

out aSinel*aSine2

endin

</Cslnstruments>

<CsScore>

f101024 101 ; sine

f201024 101 1 1; 3 harmonics
i105

e

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

6SING AN INHARMONIC MODULATOR FREQUENCY ALSO MAKES THE RESULT SOUND INH
7ARYING THE %$ OFFSET MAKES THE SOUND SPECTRUM EVOLVE OVER TIME
.ODULATOR FREQS < >

3ESULTING FREQS >

NEGATIVE FREQUENCIES BECOME MIRRORED BUT PHASE INVERTED

Example 04C04_Evolving_AM.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<Cslnstruments>

sr =48000

ksmps = 32
nchnls = 1

Odbfs =1

instr 1 ; Amplitude-Modulation

aOffset linseg 0, 1,0,5,1,3,0

aSinel poscil 0.3, 230, 2 ; ->[230, 460, 690] Hz
aSine2 poscil 0.3, 600, 1

out (aSinel+aOffset)*aSine2

endin

</Cslnstruments>

<CsScore>

f101024 101 ; sine

f201024 101 1 1; 3 harmonics
i1010

e

</CsScore>
</CsoundSynthesizer>

FREQUENCY MODULATION

FROM VIBRATO TO THE EMERGENCE OF
SIDEBANDS

"VIBRATO IS A PERIODICAL CHANGE OF PITCH NORMALLY LESS THAN A HALFTONE AND
CHANGING RATE AROUND)Z 'REQUENCY MODULATION IS USUALLY IMPLEMENTED USI
WAVE OSCILLATORS

Example 04D01_Vibrato.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<Cslnstruments>

sr = 48000

ksmps = 32

nchnls = 2

Odbfs =1

instr 1

aMod poscil 10,5, 1 ; 5 Hz vibrato with 10 Hz modulation-width
aCar poscil 0.3, 440+aMod, 1 ; -> vibrato between 430-450 Hz
outs aCar, aCar

endin

</Cslnstruments>

<CsScore>

101024101 ;Sine wave for table 1
i102

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

"S THE DEPTH OF MODULATION IS INCREASED IT BECOMES HARDER TO PERCEIVE THE |
FREQUENCY BUT IT IS STILL VIBRATO

Example 04D02_Vibrato_deep.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<Cslnstruments>

sr = 48000

ksmps = 32

nchnls = 2

Odbfs =1

instr 1

aMod poscil 90, 5, 1 ; modulate 90Hz ->vibrato from 350 to 530 hz
aCar poscil 0.3, 440+aMod, 1

outs aCar, aCar

endin

</Cslnstruments>

<CsScore>

101024101 ;Sine wave for table 1
i102

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

THE SIMPLE MODULATOR->CARRIER PAIRING

*NCREASING THE MODULATION RATE LEADS TO A DIFFERENT EFFECT 'REQUENCY MOD
MORE THAN)Z IS NO LONGER RECOGNIZED AS VIBRATO 5HE MAIN OSCILLATOR FREQL
THE MIDDLE OF THE SOUND AND SIDEBANDS APPEAR ABOVE AND BELOW 5HE NUMBER
IS RELATED TO THE MODULATION AMPLITUDE LATER THIS IS CONTROLLED BY THE SO C
modulation-index

Example 04D03_FM _index.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<Cslnstruments>

sr = 48000

ksmps = 32

nchnls = 2

Odbfs =1

instr 1

aRaise linseg 2, 10, 100 ;increase modulation from 2Hz to 100Hz
aMod poscil 10, aRaise , 1

aCar poscil 0.3, 440+aMod, 1

outs aCar, aCar

endin

</Cslnstruments>

<CsScore>

101024101 ;Sine wave for table 1
i1012

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

)JEREBY THE MAIN OSCILLATO&a8eC ANIEDHE ONE CHANGING THE CARRIERS FREQUENC
IS THEodulator 5SHEmodulation-indexl = mod-amp/mod-freq .AKING CHANGES TO THE

MODULATION INDEX CHANGES THE AMOUNT OF OVERTONES BUT NOT THE OVERALL V¢
GIVES THE POSSIBILITY PRODUCE DRASTIC TIMBRE CHANGES WITHOUT THE RISK OF DI

8HENcarrier ANDnodulatorFREQUENCY HAVE INTEGER RATIOS LIKE THE
SIDEBANDS BUILD A HARMONIC SERIES WHICH LEADS TO A SOUND WITH CLEAR FUNDA

Example 04D04_Harmonic_FM.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<Cslnstruments>

sr = 48000

ksmps = 32

nchnls = 2

Odbfs =1

instr 1

kCarFreq =660 ; 660:440 = 3:2 -> harmonic spectrum
kModFreq = 440

kindex = 15 ; high Index.. try lower values like 1, 2, 3..
kindexM =0

kMaxDev = kindex*kModFreq

kMinDev = kindexM*kModFreq

kVarDev = kMaxDev-kMinDev

kModAmp = kMinDev+kVarDev

aModulator poscil kModAmp, kModFreq, 1

aCarrier poscil 0.3, kCarFreg+aModulator, 1

outs aCarrier, aCarrier

endin

</Cslnstruments>

<CsScore>

101024101 ;Sine wave for table 1
i1015

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

OTHERWISE THE SPECTRUM OF THE SOUND IS INHARMONIC WHICH MAKES IT METALLIC
3AISING TriBdulation-indexSHIFTS THE ENERGY INTO THE SIDE BANDS 5HE SIDE BANDS
DISTANCED®tance in Hz = (carrierFreq)-(k*modFreq) | k ={1, 2, 3,4 ..}

SHIS CALCULATION CAN RESULT IN NEGATIVE FREQUENCIES 5HOSE BECOME REFLECT!
WITH INVERTED PHASE 40 NEGATIVE FREQUENCIES CAN ERASE EXISTING ONES 'REQL
IYQUIST FREQUENCY HALF OF SAMPLINGRATE FOLD OVER ALIASING

THE JOHN CHOWNING FM MODEL OF A
TRUMPET

$OMPOSER AND RESEARCHER +OWN $HOWNING WORKED ON THE FIRST DIGITAL IMPLE
“"INTHE S

6SING ENVELOPES TO CONGdRQitidiHiadeXAND THE OVERALL AMPLITUDE GIVES YOU THE
POSSIBILITY TO CREATE EVOLVING SOUNDS WITH ENORMOUS SPECTRAL VARIATIONS ¢
SHOWED THESE POSSIBILITIES IN HIS PIECES WHERE HE LET THE SOUNDS TRANSFORM
SabelitheA DRUM SOUND MORPHES OVER THE TIME INTO A TRUMPET TONE

Example 04D05_Trumpet_FM.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<Cslnstruments>

sr = 48000

ksmps = 32

nchnls = 2

Odbfs =1

instr 1 ; simple way to generate a trumpet-like sound
kCarFreq = 440

kModFreq = 440

kindex =5

kindexM =0

kMaxDev = kindex*kModFreq

kMinDev = kindexM * kModFreq

kVarDev = kMaxDev-kMinDev

aEnv expseg .001, 0.2, 1, p3-0.3, 1, 0.2, 0.001
aModAmp = kMinDev+kVarDev*aEnv

aModulator poscil aModAmp, kModFreq, 1
aCarrier poscil 0.3*aEnv, kCarFreq+aModulator, 1
outs aCarrier, aCarrier

endin

</Cslnstruments>

<CsScore>

101024101 ;Sine wave for table 1
i102

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

SHE FOLLOWING EXAMPLE USES THE SAME INSTRUMENT WITH DIFFERENT SETTINGS Tt
BELL LIKE SOUND

Example 04D06_Bell_FM.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<Cslnstruments>

sr = 48000

ksmps = 32

nchnls = 2

Odbfs =1

instr 1 ; bell-like sound

kCarFreq = 200 ; 200/280 = 5:7 -> inharmonic spectrum
kModFreq = 280

kindex = 12

kindexM =0

kMaxDev = kindex*kModFreq

kMinDev = kindexM * kModFreq

kVarDev = kMaxDev-kMinDev

aEnv expseg .001, 0.001, 1, 0.3, 0.5, 8.5, .001
aModAmp = kMinDev+kVarDev*aEnv

aModulator poscil aModAmp, kModFreq, 1
aCarrier poscil 0.3*aEnv, kCarFreq+aModulator, 1
outs aCarrier, aCarrier

endin

</Cslnstruments>

<CsScore>

101024101 ;Sine wave for table 1
i109

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

MORE COMPLEX FM ALGORITHMS

$OMBINING MORE THAN TWO OSCILLATORS OPERATORS IS CALLED COMPLEX". SYNTH
OPERATORS CAN BE CONNECTED IN DIFFERENT COMBINATIONS OFTEN OPERATORS £
CARRIER IS ALWAYS THE LAST OPERATOR IN THE ROW $HANGING IT SPITCH SHIFTS Tt
"LL OTHER OPERATORS ARE MODULATORS CHANGING THEIR PITCH ALTERS THE SOUNI

Two into One: M1+M2 -> C

5HE PRINCIPLE HERE IS THAT . $ AND . $ WILL BE SEPARATE MODULATIONS AND LATE
ADDED TOGETHER

Example 04D07_Added_FM.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<Cslnstruments>

sr = 48000

ksmps = 32

nchnls = 2

Odbfs =1

instr 1

aMod1 poscil 200, 700, 1

aMod2 poscil 1800, 290, 1

aSig poscil 0.3, 440+aMod1+aMod2, 1
outs aSig, aSig

endin

</Cslnstruments>

<CsScore>

101024101 ;Sine wave for table 1
i103

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

In series: M1->M2->C

SHIS IS MUCH MORE COMPLICATED TO CALCULATE AND SOUND TIMBRE BECOMES HARL
BECAUSE . . PRODUCES A COMPLEX SPECTRUM 8 WHICH THEN MODULATES THE CAR
8%

Example 04D08_Serial_FM.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<Cslnstruments>

sr = 48000

ksmps = 32

nchnls = 2

Odbfs =1

instr 1

aMod1 poscil 200, 700, 1

aMod2 poscil 1800, 290+aMod1, 1
aSig poscil 0.3, 440+aMod2, 1
outs aSig, aSig

endin

</Cslnstruments>

<CsScore>

101024101 ;Sine wave for table 1
i103

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

PHASE MODULATION - THE YAMAHA DX7 AND
FEEDBACK FM

SHERE IS A STRONG RELATION BETWEEN FREQUENCY MODULATION AND PHASE MODUL
TECHNIQUES INFLUENCE THE OSCILLATOR S PITCH AND THE RESULTING TIMBRE MODIF
SAME

*F YOU D LIKE TO BUILD A FEEDBACKING '. SYSTEM IT WILL HAPPEN THAT THE SELF MOL
COMES TO A ZERO POINT WHICH STOPS THE OSCILLATOR FOREVER 50 AVOID THIS IT
PRACTICAL TO MODULATE THE CARRIERS TABLE LOOKUP PHASE INSTEAD OF ITS PITCF

&VEN THE MOST FAMOUS '. SYNTHESIZER :AMAHA %9 |S BASED ON THE PHASE MODULA
1. TECHNIQUE BECAUSE THIS ALLOWS FEEDBACK 5HE %9 PROVIDES OPERATORS Al
ROUTING COMBINATIONS OF THESE HTTP YALA FREESERVERS COM T SYNTHS HTM ¢

50 BUILD A 1. SYNTH IN $S@bIRIDPCODE NEEDS TO BE USED AS OSCILLATOR *N ORDER
STEP THROUGH THE phasBREIIA. OUTPUT THE NECESSARY STEPS

Example 04D09_PhaseMod.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<Cslnstruments>

sr = 48000

ksmps = 32

nchnls = 2

Odbfs =1

instr 1 ; simple PM-Synth

kCarFreq = 200

kModFreq = 280

kModFactor = kCarFreg/kModFreq

kindex = 12/6.28 ; 12/2pi to convert from radians to norm. table index
aEnv expseg .001, 0.001, 1, 0.3, 0.5, 8.5, .001
aModulator poscil kindex*aEnv, kModFreq, 1
aPhase phasor kCarFreq

aCarrier tablei aPhase+aModulator, 1, 1, 0, 1
outs (aCarrier*aEnv), (aCarrier*aEnv)

endin

</Cslnstruments>

<CsScore>

101024101 ;Sine wave for table 1
i109

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

-ET SUSE THE POSSIBILITIES OF SELF MODULATION FEEDBACK MODULATION OF THE C
IN THE FOLLOWING EXAMPLE THE OS@ibdAB@RASEBDHer 5O CONTROL THE
AMOUNT OF MODULATION AN ENVELOPE SCALES THE FEEDBACK

Example 04D10_Feedback modulation.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<Cslnstruments>

sr = 48000

ksmps = 32

nchnls = 2

Odbfs =1

instr 1 ; feedback PM

kCarFreq = 200

kFeedbackAmountEnv linseg 0, 2, 0.2, 0.1, 0.3,0.8,0.2, 1.5, 0
aAmpEnv expseg .001, 0.001, 1, 0.3, 0.5, 8.5, .001

aPhase phasor kCarFreq

aCarrier init O ; init for feedback

aCarrier tablei aPhase+(aCarrier*kFeedbackAmountEnv), 1, 1, 0, 1
outs aCarrierfaAmpEnv, aCarrierrfaAmpEnv

endin

</Cslnstruments>

<CsScore>

101024101 ;Sine wave for table 1
i109

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

WAVESHAPING

8BAVESHAPING CAN IN SOME WAYS BE THOUGHT OF AS A RELATION TO MODULATION TE¢
AS FREQUENCY OR PHASE MODULATION 8AVESHAPING CAN ACHIEVE QUITE DRAMATIC
TRANFORMATIONS THROUGH THE APPLICATION OF A VERY SIMPLE PROCESS *N'. FREC(
MODULATION SYNTHESIS MODULATION OCCURS BETWEEN TWO OSCILLATORS WAVES
IMPLEMENTED USING A SINGLE OSCILLATOR USUALLY A SIMPLE SINE OSCILLATOR ANL
TRANSFER FUNCTION 5HE TRANSFER FUNCTION TRANSFORMS AND SHAPES THE INCC
VALUES USING A SIMPLE LOOKUP PROCESS IF THE INCOMING VALUE IS X THE OUTGOIN
BECOMES Y 5HIS CAN BE WRITTEN AS A TABLE WITH TWO COLUMNS)ERE IS A SIMPLE E

Incoming (x) Value Outgoing (y) Value
OR LOWER

BETWEEN AND REMAIN UNCHANGED
OR HIGHER

*LLUSTRATING THIS IN AN XY COORDINATE SYSTEM RESULTS IN THE FOLLOWING IMAGI

BASIC IMPLEMENTATION MODEL

*MPLEMENTING THIS AS $SOUND CODE IS PRETTY STRAIGHTFORWARD 5HE X AXIS IS Tt

OF EVERY SINGLE SAMPLE WHICH IS IN THE RAN3E IBMBER HAS TO BE USED AS
INDEX TO A TABLE WHICH STORES THE TRANSFER FUNCTION 50 CREATE A TABLE LIKE

YOU CAN USE $SOUND S SUB ROUTIBHI&RSTATEMENT WILL CREATE A TABLE OF
POINTS IN THE DESIRED SHAPE

giTrnsFnc ftgen 0, 0, 4096, -7, -0.5, 1024, -0.5, 2048, 0.5, 1024, 0.5

e-waveshaping#InsertNoteID_26
e-waveshaping#InsertNoteID_28

/OW TWO PROBLEMS MUST BE SOLVED 'IRST THE INDEX OF THE FUNCTION TABLE IS N(
3ATHER ITISEITHER TO INTHE RAW INDEX MODE OR TO IN THE NORMALIZED MOI
SHE SIMPLEST SOLUTION IS TO USE THE NORMALIZED INDEX AND SCALE THE INCOMING
SO THAT AN AMPLITUDE OF BECOMES AN INDEX OF AND AN AMPLITUDE OF BECOME
INDEX OF

alndx =(aAmp +1)/2

SHE OTHER PROBLEM STEMS FROM THE DIFFERENCE IN THE ACCURACY OF POSSIBLE \
SAMPLE AND IN A FUNCTION TABLE &VERY SINGLE SAMPLE IS ENCODED INA BIT FLOA

NUMBER IN STANDARD AUDIO APPLICATIONS OREVENINA BIT FLOAT IN RECENT $SO
TABLEWITH POINTS RESULTSINA BIT NUMBER SO YOU WILL HAVE A SERIOUS LOSS

ACCURACY SOUND QUALITY IF YOU USE THE TABY)ERRBLTHESSORBETIAY IS TO
USE AN INTERPOLATING TABLE READERB BHESOPADMBLBOES THIS JOB 5HIS
OPCODE THEN NEEDS AN EXTRA POINT IN THE TABLE FOR INTERPOLATING SO IT ISWIS

SIZE INSTEAD OF

S5HIS IS THE CODE FOR THE SIMPLE WAVESHAPING WITH THE TRANSFER FUNCTION WHI(
DISCUSSED SO FAR

EXAMPLE 04EQ01_Simple_waveshaping.csd

e-waveshaping#InsertNoteID_30
e-waveshaping#InsertNoteID_32
http://www.csounds.com/manual/html/tablei.html
http://www.csounds.com/manual/html/table.html
e-waveshaping#InsertNoteID_44

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

sr =44100

ksmps = 32

nchnls = 2

Odbfs =1

giTrnsFnc ftgen 0, 0, 4097, -7, -0.5, 1024, -0.5, 2048, 0.5, 1024, 0.5
giSine ftgen 0, 0, 1024, 10, 1

instr 1
aAmp poscil 1,400, giSine
alndx = (@Amp+1)/2

aWavShp tablei alndx, giTrnsFnc, 1
outs aWavShp, aWavShp
endin

</Cslnstruments>
<CsScore>

i1010

</CsScore>
</CsoundSynthesizer>

CHEBYCHEV POLYNOMIALS AS TRANSFER
FUNCTIONS

$OMING IN A FUTURE RELEASE OF THIS MANUAL

6SE THE STATEMENT DBFS IN THE ORCHESTRA HEADER TO ENSURE THIS
4EE CHAPTER % '6/$5*0/ 5"#-&4 TO FIND MORE INFORMATION ABOUT CREATING

TABLES

e-waveshaping#InsertNoteID_26_marker27
e-waveshaping#InsertNoteID_28_marker29

5HIS IS THE D IN SOME ABBREVIATIONS LIKE $SOUND GNUWIN D EXE D
DOUBLE PRECISION’FLOATS

OF COURSE YOU CAN USE AN EVEN SMALLER TABLE IF YOUR GOAL IS THE DEGRA
INCOMING SOUND DISTORTION 4EE CHAPTER ' FOR’SOME EXAMPLES

" TABLE SIZE OF A POWER OF TWO PLUS ONE INSERTS THE EXTENDED GUARD P(

EXTENSION OF THE LAST TABLE VALUE INSTEAD OF COPYING THE FIRST INDEX T
LOCATION 4EE HTTP WWW CSOUNDS COM MANUAL HTML F HTML FOR MORE

INFORMATFION

e-waveshaping#InsertNoteID_30_marker31
e-waveshaping#InsertNoteID_32_marker33
e-waveshaping#InsertNoteID_44_marker45

GRANULAR SYNTHESIS

CONCEPT BEHIND GRANULAR SYNTHESIS

(RANULAR SYNTHESIS IS A TECHNIQUE IN WHICH A SOURCE SOUND OR WAVEFORM IS B
MANY FRAGMENTS OFTEN OF VERY SHORT DURATION WHICH ARE THEN RESTRUCTUR
ACCORDING TO VARIOUS PATTERNING AND INDETERMINACY FUNCTIONS

*F WE IMAGINE THE SIMPLEST POSSIBLE GRANULAR SYNTHESIS ALGORITHM IN WHICH A
FRAGMENT OF SOUND IS REPEATED WITH REGULARITY THERE ARE TWO PRINCIPLE AT
PROCESS THAT WE ARE MOST CONCERNED WITH 'IRSTLY THE DURATION OF EACH SOU
SIGNIFICANT IF THE GRAIN DURATION IF VERY SMALL TYPICALLY LESS THAN SECONIL
OF THE CHARACTERISTICS OF THE SOURCE SOUND WILL BE EVIDENT *F THE GRAIN DU}
THAN THEN MORE OF THE CHARACTER OF THE SOURCE SOUND OR WAVEFORM WILL
4ECONDLY THE RATE AT WHICH GRAINS ARE GENERATED WILL BE SIGNIFICANT IF GRAI
BELOW HERTZ IE LESS THAN GRAINS PER SECOND THEN THE STREAM OF GRAINS \
PERCEIVED AS A RHYTHMIC PULSATION IF RATE OF GRAIN GENERATION INCREASES BE
INDIVIDUAL GRAINS WILL BE HARDER TO DISTINGUISH AND INSTEAD WE WILL BEGIN TO |
BUZZING TONE THE FUNDAMENTAL OF WHICH WILL CORRESPOND TO THE FREQUENCY
GENERATION "NY PITCH CONTAINED WITHIN THE SOURCE MATERIAL IS NOT NORMALLY
THE FUNDAMENTAL OF THE TONE WHENEVER GRAIN GENERATION IS PERIODIC INSTEAI
SOURCE MATERIAL OR WAVEFORM WILL BE PERCEIVED AS A RESONANCE PEAK SOMET
TO AS AFORMANT THEREFORE TRANSPOSITION OF THE SOURCE MATERIAL WILL RESL
THIS RESONANCE PEAK

GRANULAR SYNTHESIS DEMONSTRATED USING
FIRST PRINCIPLES

5HE FOLLOWING EXAMPLE EXEMPLIFIES THE CONCEPTS DISCUSSED ABOVE /ONE OF $:¢
BUILT IN GRANULAR SYNTHESIS OPCODES QREATFRINMSSERDMENT IS USED

TO PRECISELY CONTROL THE TRIGGERING OF GRAINS IN INSTRUMENT 5HREE NOTES |
ARE CALLED FROM THE SCORE ONE AFTER THE OTHER WHICH IN TURN GENERATE THRI
IN INSTRUMENT 5HE FIRST NOTE DEMONSTRATES THE TRANSITION FROM PULSATION®
PERCEPTION OF A TONE AS THE RATE OF GRAIN GENERATION EXTENDS BEYOND)Z 5t
NOTE DEMONSTRATES THE LOSS OF INFLUENCE OF THE SOURCE MATERIAL AS THE GR.
REDUCED BELOW SECONDS 5HE THIRD NOTE DEMONSTRATES HOW SHIFTING THE P
SOURCE MATERIAL FOR THE GRAINS RESULTS IN THE SHIFTING OF A RESONANCE PEAK
TONE *N EACH CASE INFORMATION REGARDING RATE OF GRAIN GENERATION DURATIC
FUNDAMENTAL SOURCE MATERIAL PITCH IS OUTPUT TO THE TERMINAL EVERY SECO
USER CAN OBSERVE THE CHANGING PARAMETERS

http://www.csounds.com/manual/html/schedkwhen.html

*T SHOULD ALSO BE NOTED HOW THE AMPLITUDE OF EACH GRAIN IS ENVELOPED IN INS
GRAINS WERE LEFT UNENVELOPED THEY WOULD LIKELY PRODUCE CLICKS ON ACCOUN
DISCONTINUITIES IN THE WAVEFORM PRODUCED AT THE BEGINNING AND ENDING OF EA

(RANULAR SYNTHESIS IN WHICH GRAIN GENERATION OCCURS WITH PERCEIVABLE PERI
REFERRED TO AS SYNCHRONOUS GRANULAR SYNTHESIS GRANULAR SYNTHESIS IN WF
IS NOT EVIDENT IS REFERRED TO AS ASYNCHRONOUS GRANULAR SYNTHESIS

EXAMPLE 04F01_GranSynth_basic.csd

<CsoundSynthesizer>

<CsOptions>
-odac -m0
</CsOptions>

<Cslnstruments>
;Example by lain McCurdy

sr=44100
ksmps =1
nchnls = 1
Odbfs =1

giSine ftgen 0,0,4096,10,1

instr 1
kRate expon p4,p3,p5 ; rate of grain generation
kTrig metro kRate ; atrigger to generate grains

kDur expon p6,p3,p7 ; grain duration
kForm expon p8,p3,p9 ;formant (spectral centroid)
; plp2p3 p4
schedkwhen KkTrig,0,0,2, 0, kDur,kForm ;trigger a note(grain) in instr 2
;print data to terminal every 1/2 second
printks "Rate:%5.2F Dur:%5.2F Formant:%5.2F%n", 0.5, kRate , kDur, kForm
endin

instr 2
iForm = p4
aEnv linseg 0,0.005,0.2,p3-0.01,0.2,0.005,0
aSig poscil aEnv, iForm, giSine
out aSig
endin

</CslInstruments>

<CsScore>

;p4 = rate begin

;p5 = rate end

;p6 = duration begin
;p7 = duration end
;p8 = formant begin
;p9 = formant end

,P1p2p3p4p5 p6 p7 p8 p9

il 0 301 1000.020.02 400 400 ;demo of grain generation rate
il 31101010 0.4 0.01 400400 ;demo of grain size

il 42205050 0.020.02 100 5000 ;demo of changing formant

e

</CsScore>

</CsoundSynthesizer>

GRANULAR SYNTHESIS OF VOWELS: FOF

SHE PRINCIPLES OUTLINED IN THE PREVIOUS EXAMPLE CAN BE EXTENDED TO IMITATE \
PRODUCED BY THE HUMAN VOICE 5HIS TYPE OF GRANULAR SYNTHESIS IS REFERRED T
FONCTION D ONDE FORMATIQUE SYNTHESIS AND IS BASED ON WORK BY 9AVIER 30ODE
$)"/5 PROGRAM AT *3%$". 5YPICALLY FIVE SYNCHRONOUS GRANULAR SYNTHESIS STREAI
BE USED TO CREATE FIVE DIFFERENT RESONANT PEAKS IN A FUNDAMENTAL TONE IN Ol
DIFFERENT VOWEL SOUNDS EXPRESSIBLE BY THE HUMAN VOICE 5HE MOST CRUCIAL E
DEFINING A VOWEL IMITATION IS THE DEGREE TO WHICH THE SOURCE MATERIAL WITHII
FIVE GRAIN STREAMS IS TRANSPOSED #ANDWIDTH ESSENTIALLY GRAIN DURATION AN
LOUDNESS OF EACH GRAIN STREAM ARE ALSO IMPORTANT INDICATORS IN DEFINING T
SOUND

$SOUND HAS A NUMBER OF OPCODES THAT MAKE WORKING WITH '0' SYNTHESIS EASIEF
BE USINK®F

*NFORMATION REGARDING FREQUENCY BANDWIDTH AND INTENSITY VALUES THAT WIL
VARIOUS VOWEL SOUNDS FOR DIFFERENT VOICE TYPES CAN BE FOUND IN THE APPEND
$SOUND MANMERREHESE VALUES ARE STORED IN FUNCTION TABLES IN THE '0' SYNTHESI
EXAMPLE (& WHICH PRODUCES LINEAR BREAK POINT ENVELOPES IS CHOSEN AS WE
BE ABLE TO MORPH CONTINUOUSLY BETWEEN VOWELS

EXAMPLE 04F02_Fof vowels.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<Cslnstruments>
;example by lain McCurdy

sr=44100
ksmps = 16
nchnls = 2
Odbfs =1

;FUNCTION TABLES STORING DATA FOR VARIOUS VOICE FORMANTS
;BASS

http://www.csounds.com/manual/html/fof.html
http://www.csounds.com/manual/html/MiscFormants.html

giBF1 ftgen 0, O, -5,

-2, 600, 400, 250, 400, 350
-2, 1040, 1620, 1750, 750, 600

-2, 2450, 2800, 3050, 2600, 2675

0,-5,-2
0,-5,-2
QiBF3 ftgen 0, 0, -5, -2, 2250, 2400, 2600, 2400, 2400
0,-5,-2
0,-5,-2

giBF2 ftgen 0, O, -5,
giBF4 ftgen 0, O, -5,
giBF5 ftgen 0, O, -5,
giBDb1 ftgen 0, O, -5, -2, O,
giBDb2 ftgen O, O, -5, -2, -7,
giBDb3 ftgen 0, O, -5, -2, -9,
giBDb4 ftgen 0, O, -5, -2, -9,
giBDDb5 ftgen 0, 0, -5, -2, -20,

giBBWL1 ftgen 0,
giBBW?2 ftgen 0,

giBBW4 ftgen 0, 0, -5,

-2, 2750, 3100, 3340, 2900, 2950

0, 0,0, 0
-12, -30, -11, -20
-9, -16, -21, -32
-12, -22, -20, -28
-18, -28, -40, -36

-2, 60, 40, 60, 40, 40
-2, 70, 80, 90, 80, 80

-2, 120, 120, 120, 120, 120

0,-5,-2
0,-5,-2
giBBW3 ftgen 0, 0, -5, -2, 110, 100, 100, 100, 100
0,-5,-2
0,-5,-2

giBBWS ftgen 0, 0, -5,

;TENOR

giTF1 ftgen 0, O, -5, -2

giTF2 ftgen 0, 0, -5, -2

giTF3 ftgen 0, 0, -5, -2, 2650,
0,-5,-2
0,-5,-2

giTF4 ftgen 0, O, -5, -2, 2900,

giTF5 ftgen 0, 0, -5, -2, 3250, 3580, 3540, 3000, 3300
giTDb1 ftgen 0,0,-5,-2, 0, 0, 0, O, O

giTDb2 ftgen 0, O, -5, -2, -6, -14, -15, -10, -20
giTDb3 ftgen 0, O, -5, -2, -7,-12,-18, -12, -17
giTDb4 ftgen 0, O, -5, -2, -8, -14, -20, -12, -14
giTDb5 ftgen 0, O, -5, -2, -22, -20, -30, -26, -26
giTBWL1 ftgen 0, 0, -5, -2, 80, 70, 40, 40, 40
giTBW2 ftgen 0, 0, -5, -2, 90, 80, 90, 80, 60
giTBW3 ftgen 0, 0, -5, -2, 120, 100, 100, 100, 100
giTBWA4 ftgen 0, 0, -5, -2, 130, 120, 120, 120, 120
giTBWS5 ftgen 0, 0, -5, -2, 140, 120, 120, 120, 120

;COUNTER TENOR

-2, 130, 120, 120, 120, 120

-2, 650, 400, 290, 400, 350

-2, 1080, 1700, 1870, 800, 600
2600, 2800, 2600, 2700
3200, 3250, 2800, 2900

giCTF1 ftgen O, O, -5, -2, 660, 440, 270, 430, 370
giCTF2 ftgen 0, O, -5, -2, 1120, 1800, 1850, 820, 630
giCTF3 ftgen 0, 0, -5, -2, 2750, 2700, 2900, 2700, 2750
giCTF4 ftgen 0, 0, -5, -2, 3000, 3000, 3350, 3000, 3000
giCTF5 ftgen 0, 0, -5, -2, 3350, 3300, 3590, 3300, 3400

giTBDb1 ftgen 0, O, -5, -2, O,
giTBDb2 ftgen 0, O, -5, -2, -6

giTBDb3 ftgen 0, O, -5, -2, -23,
giTBDb4 ftgen 0, 0, -5, -2, -24,
giTBDb5 ftgen 0, O, -5, -2, -38,

giTBW1 ftgen 0,
giTBW2 ftgen 0,

giTBW4 ftgen 0, O, -5, -2,

0, 0, 0,0

-6, -14, -24, -10, -20
-18, -24, -26, -23
-20, -36, -22, -30
-20, -36, -34, -30

0, 70, 40, 40, 40
0, 80, 90, 80, 60

30, 120, 120, 120, 120

0,-5,-2,8
0,-5,-2,9
giTBW3 ftgen 0, 0, -5, -2, 120, 100, 100, 100, 100
0,-5,-2,1
0,-5,-2,1

giTBWS5 ftgen 0, O, -5, -2,

40, 120, 120, 120, 120

JALTO
QiAF1 ftgen 0, O, -5, -2, 800, 400, 350, 450, 325
QiAF2 ftgen 0, O, -5, -2, 1150, 1600, 1700, 800, 700
QiAF3 ftgen 0, O, -5, -2, 2800, 2700, 2700, 2830, 2530
0,-5,-2
0,-5,-2

QiAF4 ftgen O, , 3500, 3300, 3700, 3500, 2500
QiAF5 ftgen O, , 4950, 4950, 4950, 4950, 4950

giADDb1 ftgen 0,0, -5,-2, 0, 0, 0, 0, O
giADDb2 ftgen 0, 0, -5, -2, -4, -24, -20, -9, -12
giADDb3 ftgen 0, 0, -5, -2, -20, -30, -30, -16, -30
0,-5, -2
0,-5, -2

giADb4 ftgen 0, , -36, -35, -36, -28, -40
QiADDS ftgen 0, , -60, -60, -60, -55, -64

giABW1 ftgen 0, O, -5, -2, 50, 60, 50, 70, 50
giABW?2 ftgen 0, O, -5, -2, 60, 80, 100, 80, 60
giABW3 ftgen 0, 0, -5, -2, 170, 120, 120, 100, 170
0,-5-2,1
0,-5,-2,2

giABW4 ftgen O, 80, 150, 150, 130, 180
giABWS5 ftgen O, 00, 200, 200, 135, 200

;SOPRANO

QiSF1 ftgen 0, O, -5, -2, 800, 350, 270, 450, 325
QiSF2 ftgen 0, O, -5, -2, 1150, 2000, 2140, 800, 700
QiSF3 ftgen 0, 0, -5, -2, 2900, 2800, 2950, 2830, 2700
QiSF4 ftgen 0, 0, -5, -2, 3900, 3600, 3900, 3800, 3800
QiSF5 ftgen 0, 0, -5, -2, 4950, 4950, 4950, 4950, 4950

giSDb1 ftgen 0,0, -5,-2, 0, 0, 0, 0, O
giSDb2 ftgen 0, 0, -5, -2, -6, -20, -12, -11, -16
giSDb3 ftgen 0, 0, -5, -2, -32, -15, -26, -22, -35
0,-5, -2
0,-5, -2

giSDb4 ftgen 0, , =20, -40, -26, -22, -40
giSDDb5 ftgen 0, , -50, -56, -44, -50, -60

giSBW1 ftgen 0,
giSBW?2 ftgen 0, 0, -5,

o, -5,-2, 80, 60, 60, 70, 50
0,-5,-2, 9

giSBW3 ftgen 0, 0, -5, -2
0,-5,-2
0, -5, -2

, 90, 90, 90, 80, 60

, 120, 100, 100, 100, 170

, 130, 150, 120, 130, 180
140, 200, 120, 135, 200

giSBW4 ftgen 0,
giSBWS5 ftgen 0,

gisine ftgen 0, 0, 4096, 10, 1
giexp ftgen 0, 0, 1024, 19, 0.5, 0.5, 270, 0.5

instr 1
kFund expon p4,p3,p5 ; fundemental
kVow line p6,p3,p7 ; vowel select
kBW line p8,p3,p9 ; bandwidth factor
iVoice = pl0 ; Voice select

; read formant cutoff frequenies from tables
kForml tablei kVow*5,giBF1+(iVoice*15)
kForm2 tablei kVow*5,giBF1+(iVoice*15)+1
kForm3 tablei kVow*5,giBF1+(iVoice*15)+2
kForm4 tablei kVow*5,giBF1+(iVoice*15)+3
kForm5 tablei kVow*5,giBF1+(iVoice*15)+4
; read formant intensity values from tables
kDB1 tablei kVow*5,giBF1+(iVoice*15)+5
kDB2 tablei kVow*5,giBF1+(iVoice*15)+6

kDB3 tablei kVow*5,giBF1+(iVoice*15)+7

kDB4 tablei kVow*5,giBF1+(iVoice*15)+8

kDB5 tablei kVow*5,giBF1+(iVoice*15)+9

; read formant bandwidths from tables

kBW1 tablei kVow*5,giBF1+(iVoice*15)+10

kBW2 tablei kVow*5,giBF1+(iVoice*15)+11

kBW3 tablei kVow*5,giBF1+(iVoice*15)+12

kBW4 tablei kVow*5,giBF1+(iVoice*15)+13

kBW5 tablei kVow*5,giBF1+(iVoice*15)+14

; create resonant formants using fof opcode

koct = 1

aForml fof ampdb(kDB1),kFund,kForm1,0,kBW1,0.003,0.02,0.007 \
1000,gisine,giexp,3600

aForm2 fof ampdb(kDB2),kFund,kForm2,0,kBW2,0.003,0.02,0.007 \
1000,gisine,giexp,3600

aForm3 fof ampdb(kDB3),kFund,kForm3,0,kBW3,0.003,0.02,0.007 \
1000,gisine,giexp,3600

aForm4 fof ampdb(kDB4),kFund,kForm4,0,kBW4,0.003,0.02,0.007 \
1000,gisine,giexp,3600

aForm5 fof ampdb(kDB5),kFund,kForm5,0,kBW5,0.003,0.02,0.007 \
1000,gisine,giexp,3600

; formants are mixed
aMix sum aForml,aForm2,aForm3,aForm4,aForm5
kKEnv linseg 0,3,1,p3-6,1,3,0 ;an amplitude envelope
outs aMix*kEnv*0.3, aMix*kEnv*0.3 ; send audio to outputs
endin

</Cslnstruments>

<CsScore>

; p4 = fundamental begin value (c.p.s.)

; p5 = fundamental end value

; p6 = vowel begin value (0-1:aeiou)

; p7 = vowel end value

; p8 = bandwidth factor begin (suggested range 0 - 2)

; P9 = bandwidth factor end

; P10 = voice (O=bass; 1=tenor; 2=counter_tenor; 3=alto; 4=soprano)

yplp2 p3 p4 p5 p6 p7 p8 p9 plo
il0 10 50 1000 1 2 0O
i18 . 78771 0101
il16 . 1501180 1 1 0 2
il24 . 2002201 0 0.20 3

il 32 . 4008000 1 0.20 4

e

</CsScore>

</CsoundSynthesizer>

ASYNCHRONOUS GRANULAR SYNTHESIS

SHE PREVIOUS TWO EXAMPLES HAVE PLAYED PSYCHOACOUSTIC PHENOMENA ASSOCI/
PERCEPTION OF GRANULAR TEXTURES THAT EXHIBIT PERIODICITY AND PATTERNS *F W

INDETERMINACY INTO SOME OF THE PARAMETERS OF GRANULAR SYNTHESIS WE BEGIN
COHERENCE OF SOME OF THESE HARMONIC STRUCTURES

SHE NEXT EXAMPLE IS BASED ON THE DESIGN OF EXAMPLE ' CSD 5WO STREAMS OF G
ARE GENERATED 5HE FIRST STREAM BEGINS AS A SYNCHRONOUS STREAM BUT AS THE
THE PERIODICITY OF GRAIN GENERATION IS ERODED THROUGH THE ADDITION OF AN IN
OFGAUSSINENISET WILL BE HEARD HOW THE TONE METAMORPHOSIZES FROM ONE CHAR.
BY STEADY PURITY TO ONE OF FUZZY AIRINESS 5HE SECOND THE APPLIES A SIMILAR P
INCREASING INDETERMINACY TO THE FORMANT PARAMETER FREQUENCY OF MATERIA
GRAIN

0THER PARAMETERS OF GRANULAR SYNTHESIS SUCH AS THE AMPLITUDE OF EACH GR#
DURATION SPATIAL LOCATION ETC CAN BE SIMILARLY MODULATED WITH RANDOM FUN
THE PSYCHOACOUSTIC EFFECTS OF SYNCHRONICITY WHEN USING CONSTANT VALUES

EXAMPLE 04F03_Asynchronous_GS.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<Cslnstruments>
;Example by lain McCurdy

sr=44100

ksmps =1

nchnls=1

Odbfs =1

giWwave ftgen 0,0,2710,10,1,1/2,1/4,1/8,1/16,1/32,1/64

instr 1 ;grain generating instrument 1

kRate = p4

kTrig metro kRate ; atrigger to generate grains
kDur = p5

kForm = p6

;note delay time (p2) is defined using a random function -
;- beginning with no randomization but then gradually increasing
kDelayRange transeg 0,1,0,0, p3-1,4,0.03
kDelay gauss kDelayRange
; plp2p3 p4
schedkwhen kTrig,0,0,3, abs(kDelay), kDur,kForm ;trigger a note (grain) in instr
endin

instr 2 ;grain generating instrument 2

kRate = p4
kTrig metro kRate ; atrigger to generate grains
kDur = p5

;formant frequency (p4) is multiplied by a random function -

http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution

;- beginning with no randomization but then gradually increasing

kForm = p6

kFormOSRange transeg 0,1,0,0, p3-1,2,12 ;range defined in semitones
kFormOS gauss kFormOSRange

plp2p3 p4
schedkwhen KkTrig,0,0,3, 0, kDur,kForm*semitone(kFormOS)
endin

instr 3 ;grain sounding instrument
iForm = p4
aEnv linseg 0,0.005,0.2,p3-0.01,0.2,0.005,0
aSig poscil aEnv, iForm, giwave
out aSig
endin

</Cslnstruments>

<CsScore>

;p4 = rate

;p5 = duration

;p6 = formant

;P1p2 p3p4 pS p6
il 0 122000.02400
i2 12.512 200 0.02 400
e

</CsScore>

</CsoundSynthesizer>

SYNTHESIS OF DYNAMIC SOUND SPECTRA:
GRAINS

5HE NEXT EXAMPLE INTRODUCES ANOTHER OF $SOUND S BUILT IN GRANULAR SYNTHE!
DEMONSTRATE THE RANGE OF DYNAMIC SOUND SPECTRA THAT ARE POSSIBLE WITH GI

4EVERAL PARAMETERS ARE MODULATED SLOWLY USING $SOUND B&EANMOM SPLINE GE
SHESE PARAMETERS ARE FORMANT FREQUENCY GRAIN DURATION AND GRAIN DENSIT
GENERATION 5HE WAVEFORM USED IN GENERATING THE CONTENT FOR EACH GRAIN I¢
CHOSEN USING ASMRAVE AND IRANDOM FUNCTION A NEW WAVEFORM WILL BE SELECT
EVERY SECONDS 'IVE WAVEFORMS ARE PROVIDED A SAWTOOTH A SQUARE WAVE A
WAVE A PULSE WAVE AND A BAND LIMITED BUZZ LIKE WAVEFORM 40ME OF THESE WA\
PARTICULARLY THE SAWTOOTH SQUARE AND PULSE WAVEFORMS CAN GENERATE VEI
FOR THIS REASON A HIGH SAMPLE RATE IS RECOMMENDED TO REDUCE THE RISK OF AL
CHAPTER "

$URRENT VALUES FOR FORMANT CPS GRAIN DURATION DENSITY AND WAVEFORM AR
TERMINAL EVERY SECOND 5HE KEY FOR WAVEFORMS IS SAWTOOTH SQUARE TRIA
PULSE BUZZ

http://www.csounds.com/manual/html/rspline.html
http://en.wikipedia.org/wiki/Sample_and_hold

EXAMPLE 04F04_grain3.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<Cslnstruments>
;example by lain McCurdy

sr=96000

ksmps = 16
nchnls =1

Odbfs =1

;waveforms used for granulation

giSaw ftgen 1,0,4096,7,0,4096,1

giSq ftgen 2,0,4096,7,0,2046,0,0,1,2046,1
giTri ftgen 3,0,4096,7,0,2046,1,2046,0

giPIs ftgen 4,0,4096,7,1,200,1,0,0,4096-200,0
giBuzz ftgen 5,0,4096,11,20,1,1

;window function - used as an amplitude envelope for each grain
;(hanning window)
giWFn ftgen 7,0,16384,20,2,1

instr 1
;random spline generates formant values in oct format
kOct rspline 4,8,0.1,0.5
;oct format values converted to cps format

kCPS = cpsoct(kOct)
;phase location is left at O (the beginning of the waveform)
kPhs = 0

;frequency (formant) randomization and phase randomization are not used
kFmd = 0

kPmd = 0

;grain duration and density (rate of grain generation)

kGDur rspline 0.01,0.2,0.05,0.2

kDens rspline 10,200,0.05,0.5

;maximum number of grain overlaps allowed. This is used as a CPU brake
iMaxOvr = 1000

;function table for source waveform for content of the grain

;a different waveform chosen once every 10 seconds

kFn randomh 1,5.99,0.1

;print info. to the terminal

printks "CPS:%5.2F%TDur:%5.2F%TDensity:%5.2F%TWaveform:%1.0F%n",1,\

kCPS,kGDur,kDens,kFn
aSig grain3 kCPS, kPhs, kFmd, kPmd, kGDur, kDens, iMaxOvr, kFn, giwFn, \
0,0
out aSig*0.06
endin

</Cslnstruments>

<CsScore>
i10300

e
</CsScore>

</CsoundSynthesizer>

SHE FINAL EXAMPLE INTRODUCES GRAIN S TWO BUILT IN RANDOMIZING FUNCTIONS FO
PITCH 1HASE REFERS TO THE LOCATION IN THE SOURCE WAVEFORM FROM WHICH A Gl
READ PITCH REFERS TO THE PITCH OF THE MATERIAL WITHIN GRAINS *N THIS EXAMPLI
PLAYED INITIALLY NO RANDOMIZATION IS EMPLOYED BUT GRADUALLY PHASE RANDOM
INCREASED AND THEN REDUCED BACK TO ZERO 5HE SAME PROCESS IS APPLIED TO TH
RANDOMIZATION AMOUNT PARAMETER 5HIS TIME GRAIN SIZE IS RELATIVELY LARGE ¢
DENSITY CORRESPONDINGLY LOW)Z

EXAMPLE 04F05_grain3_random.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<Cslnstruments>
;example by lain McCurdy

sr=44100
ksmps = 16
nchnls = 1
Odbfs =1

;waveforms used for granulation
giBuzz ftgen 1,0,4096,11,40,1,0.9

;window function - used as an amplitude envelope for each grain
;(bartlett window)
giWFn ftgen 2,0,16384,20,3,1

instr 1
kCPS = 100
kPhs = 0

kFmd transeg 0,21,0,0, 10,4,15, 10,-4,0
kPmd transeg 0,1,0,0, 10,4,1, 10,-4,0

kGDur = 0.8
kDens = 20
iMaxOvr = 1000
kFn = 1

;print info. to the terminal
printks "Random Phase:%5.2F%TPitch Random:%5.2F%n",1,kPmd,kFmd
aSig grain3 kCPS, kPhs, kFmd, kPmd, kGDur, kDens, iMaxOvr, kFn, giwFn, 0, 0
out aSig*0.06
endin

</Cslnstruments>

<CsScore>
i1051

e
</CsScore>

</CsoundSynthesizer>

CONCLUSION

S5HIS CHAPTER HAS INTRODUCED SOME OF THE CONCEPTS BEHIND THE SYNTHESIS OF
BASED ON SIMPLE WAVEFORMS BY USING GRANULAR SYNTHESIS TECHNIQUES ONLY T\
$SOUND S BUILT IN OPCODES FOR GRANMOIARIBRAMHAMS BEEN USED IT IS

BEYOND THE SCOPE OF THIS WORK TO COVER ALL OF THE MANY OPCODES FOR GRANL
$SOUND PROVIDES 5HIS CHAPTER HAS FOCUSED MAINLY ON SYNCHRONOUS GRANUL/
CHAPTER (WHICH INTRODUCES GRANULATION OF RECORDED SOUND FILES MAKES G
ASYNCHRONOUS GRANULAR SYNTHESIS FOR TIME STRETCHING AND PITCH SHIFTING &
ALSO INTRODUCE SOME OF $SOUND S OTHER OPCODES FOR GRANULAR SYNTHESIS

http://www.csounds.com/manual/html/fof.html
http://www.csounds.com/manual/html/grain3.html

PHYSICAL MODELLING

8ITH PHYSICAL MODELLING WE EMPLOY A COMPLETELY DIFFERENT APPROACH TO SYN'
DO WITH ALL OTHER STANDARD TECHNIQUES 6NUSUALLY THE FOCUS IS NOT PRIMARIL
SOUND BUT TO MODEL A PHYSICAL PROCESS AND IF THIS PROCESS EXHIBITS CERTAIN
PERIODIC OSCILLATION WITHIN A FREQUENCY RANGE OF TO)Z IT WILL PRODUCE S

1HYSICAL MODELLING SYNTHESIS TECHNIQUES DO NOT BUILD SOUND USING WAVE TAE
AND AUDIO SIGNAL GENERATORS INSTEAD THEY ATTEMPT TO ESTABLISH A MODEL AS
ITSELF WHICH WHICH CAN THEN PRODUCE SOUND BECAUSE OF HOW THE FUNCTION IT
VARIES WITH TIME " PHYSICAL MODEL USUALLY DERIVES FROM THE REAL PHYSICAL WC
COULD BE ANY TIME VARYING SYSTEM 1HYSICAL MODELLING IS AN EXCITING AREA FOF
PRODUCTION OF NEW SOUNDS

$OMPARED WITH THE COMPLEXITY OF A REAL WORLD PHYSICALLY DYNAMIC SYSTEM A
MODEL WILL MOST LIKELY REPRESENT A BRUTAL SIMPLIFICATION /EVERTHELESS USIN
TECHNIQUE WILL DEMAND A LOT OF FORMULAE BECAUSE PHYSICAL MODELS ARE DES(
OF MATHEMATICS "LTHOUGH DESIGNING A MODEL MAY REQUIRE SOME CONSIDERABLE
ESTABLISHED THE RESULTS COMMONLY EXHIBIT A LIVELY TONE WITH TIME VARYING PA
NATURAL DIFFERENCE BETWEEN ATTACK AND RELEASE BY THEIR VERY DESIGN FEAT
SYNTHESIS TECHNIQUES WILL DEMAND MORE FROM THE END USER IN ORDER TO ESTAI

$SOUND ALREADY CONTAINS MANY READY MADE PHYSICAL MODELS AS OPCODES BUT
BUILD YOUR OWN FROM SCRATCH 5HIS CHAPTER WILL LOOK AT HOW TO IMPLEMENT T\
MODELS FROM FIRST PRINCIPLES AND THEN INTRODUCE A NUMBER OF $SOUND S REAL
PHYSICAL MODELLING OPCODES

THE MASS-SPRING MODEL 4

ANY OSCILLATING PROCESSES IN NATURE CAN BE MODELLED AS CONNECTIONS OF MA
SPRINGS *MAGINE ONE MASS SPRING UNIT WHICH HAS BEEN SET INTO MOTION 5HIS S
BE DESCRIBED AS A SEQUENCE OF STATES WHERE EVERY NEW STATE RESULTS FROM
PRECEDING ONES "SSUMED THRHFIRSAND AHE SECONBISSATBITHOUT THE
RESTRICTING FORCE OF THE SPRING THE MASS WOULD CONTINUE MOVING UNIMPEDE
CONSTANT VELOCITY

g-physical-modelling#InsertNoteID_6

"S THE VELOCITY BETWEEN THE FIRST TWO STATESGaN BEEDEAIGRIRHD TASE
THIRD SBRWEILL BE

a2=al+(@l-a0)=05+05=1

#UT THE SPRING PULLS THE MASS BACK WITH A FORCE WHICH INCREASES THE FURTHE
MOVES AWAY FROM THE POINT OF EQUILIBRIUM 5HEREFORE THE MASSES MOVEMENT
DESCRIBED AS THE PRODUCT OF A CANSTRHH IEASITRRSITHISI DAMPS THE
CONTINUOUS MOVEMENT OF THE MASS SO THAT FOR AFACTOR OF C THE NEXT POSI

a2=(al+(@l-a0)-c*al=1-0.2=0.8

$SOUND CAN EASILY CALCULATE THE VALUES BY SIMPLY APPLYING THE FORMULAE 'OF

CYCLETHEY ARE SET VM TOREODE "FTER CALCULATING THHE BEEVOSTEST E

AN@22 BECOMBSFOR THE NEXT K CYCLE 5HIS IS A CSD WHICH PRINTS THE NEW VALUES
TIMES PER SECOND 5HE STATES ARE KAMBRINEREATBOMR1/a2 BECAUSE K

RATE VALUES ARE NEEDED HERE FOR PRINTING INSTEAD OF AUDIO SAMPLES

EXAMPLE 04G01_Mass_spring_sine.csd

<CsoundSynthesizer>
<CsOptions>

-n ;no sound

</CsOptions>

<Cslnstruments>

sr=44100

ksmps = 8820 ;5 steps per second

g-physical-modelling#InsertNoteID_18
http://www.csounds.com/manual/html/init.html

instr PrintVals

;initial values

kstep init O

kO init O

k1init 0.5

kc init 0.4

;calculation of the next value

k2 = k1 + (k1 - kO) - ke * k1
printks "Sample=%d: kO = %.3f, k1 = %.3f, k2 = %.3f\n", 0, kstep, kO, k1, k2
;actualize values for the next step
kstep = kstep+1

kO = k1

kl=k2

endin

</Cslnstruments>
<CsScore>

i "PrintVals" 0 10
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

SHE OUTPUT STARTS WITH

State=0: kO = 0.000, k1= 0.500, k2 = 0.800
State=1: kO = 0.500, k1= 0.800, k2 = 0.780
State=2: kO = 0.800, k1= 0.780, k2 = 0.448
State=3: kO = 0.780, k1 = 0.448, k2 =-0.063
State=4: kO = 0.448, k1 =-0.063, k2 =-0.549
State=5: kO =-0.063, k1 =-0.549, k2 =-0.815
State=6: kO =-0.549, k1 =-0.815, k2 =-0.756
State=7: kO =-0.815, k1 =-0.756, k2 =-0.393
State=8: k0 =-0.756, k1 =-0.393, k2 = 0.126
State=9: k0 =-0.393, k1= 0.126, k2 = 0.595
State=10: kO = 0.126, k1 = 0.595, k2 = 0.826
State=11: kO = 0.595, k1= 0.826, k2 = 0.727

State=12: kO = 0.826, k1= 0.727,

k2 = 0.337

40 A SINE WAVE HAS BEEN CREATED WITHOUT THE USE OF ANY OF $SOUND S OSCILLA
)ERE IS THE AUDIBLE PROOF

EXAMPLE 04G02_MS sine_audible.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

sr =44100

ksmps =1

nchnls = 2

Odbfs =1

instr MassSpring

;initial values

a0 int O

al init 0.05

ic = 0.01 ;spring constant
;calculation of the next value

a2 = al+(al-a0) - ic*al

outs a0, a0
;actualize values for the next step

a0 = al
al = a2
endin
</Cslnstruments>
<CsScore>

i "MassSpring" 0 10

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz, after martin neukom

"S THE NEXT SAMPLE IS CALCULATED IN THE NERSMPANTROL BEYSEESIIE

RESULTING FREQUENCY DEPENDS ON THE SPRING CONSTANT THE HIGHER THE CONS’
FREQUENCY 5HE RESULTING AMPLITUDE DEPENDS ON BOTH THE STARTING VALUE AN
CONSTANT

SHIS SIMPLE MODEL SHOWS THE BASIC PRINCIPLE OF A PHYSICAL MODELLING SYNTHES
SYSTEM WHICH PRODUCES SOUND BECAUSE IT VARIES IN TIME $ERTAINLY IT IS NOT TF
PHYSICAL MODELLING SYNTHESIS TO REINVENT THE WHEEL OF A SINE WAVE #UT MOD!
PARAMETERS OF A MODEL MAY LEAD TO INTERESTING RESULTS 5HE NEXT EXAMPLE V/
CONSTANT WHICH IS NOW NO LONGER A CONSTANT

EXAMPLE 04G03_MS variable constant.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

sr =44100

ksmps =1

nchnls = 2

Odbfs =1

instr MassSpring

;initial values

a0 int 0

al init 0.05

kc randomi .001, .05, 8, 3

;calculation of the next value

a2 = al+(al-a0) - kc*al
outs a0, a0

;actualize values for the next step

a0 = al
al = a2
endin
</Cslnstruments>
<CsScore>

i "MassSpring" 0 10
</CsScore>

</CsoundSynthesizer>
;example by joachim heintz

http://www.csounds.com/manual/html/ksmps.html
g-physical-modelling#InsertNoteID_20

8ORKING WITH PHYSICAL MODELLING DEMANDS THOUGHT IN MORE PHYSICAL OR MATH
TERMS EXAMPLES OF THIS MIGHT BE IF YOU WERE TO CHANGE THE FORMULA WHEN A
OF HAD BEEN REACHED OR COMBINE MORE THAN ONE SPRING

THE KARPLUS-STRONG ALGORITHM: PLUCKED
STRING

SHE ,ARPLUS 4TRONG ALGORITHM PROVIDES ANOTHER SIMPLE YET INTERESTING EXAN
PHYSICAL MODELLING CAN BE USED TO SYNTHESIZED SOUND " BUFFER IS FILLED WITH
VALUES OF EITHER OR "T THE END OF THE BUFFER THE MEAN OF THE FIRST AND TH
VALUE TO COME OUT OF THE BUFFER IS CALCULATED 5HIS VALUE IS THEN PUT BACK A’
OF THE BUFFER AND ALL THE VALUES IN THE BUFFER ARE SHIFTED BY ONE POSITION

SHIS IS WHAT HAPPENS FOR A BUFFER OF FIVE VALUES FOR THE FIRST FIVE STEPS

INITIAL STATE
STEP
STEP
STEP
STEP
STEP

5HE NEXT $SOUND EXAMPLE REPRESENTS THE CONTENT OF THE BUFFER IN A FUNCTICO
IMPLEMENTS AND EXECUTES THE ALGORITHM AND PRINTS THE RESULT AFTER EACH FI
HERE IS REFERRED TO AS ONE CYCLE

EXAMPLE 04G04_KarplusStrong.csd

<CsoundSynthesizer>
<CsOptions>

-n

</CsOptions>
<Cslnstruments>

sr =44100

ksmps = 32

nchnls =1

Odbfs =1

opcode KS, 0, ii

;performs the karplus-strong algorithm
iTab, iITbSiz xin
;calculate the mean of the last two values

iUlt tab_i iTbSiz-1, iTab
iPenUlt tab_i iTbSiz-2, iTab

iNewVal = (iUlt + iPenUIt) / 2
;shift values one position to the right
indx = iTbSiz-2

loop:

ival tab_i indx, iTab
tabw_i iVal, indx+1, iTab
loop_ge indx, 1, 0, loop
;fill the new value at the beginning of the table
tabw_i iNewVal, 0O, iTab
endop

opcode PrintTab, 0, iiS
;prints table content, with a starting string
iTab, iTbSiz, Sout xin
indx = 0
loop:
ival tab_i indx, iTab
Snew sprintf "%8.3f", iVal
Sout strcat Sout, Shew
loop_It indx, 1, iTbSiz, loop
puts Sout, 1
endop

instr ShowBuffer
;fill the function table
iTab ftgen 0,0,-5,-2,1,-1,1,1,-1
iTbLen tableng iTab
;loop cycles (five states)
iCycle = 0
cycle:
Scycle sprintf "Cycle %d:", iCycle
PrintTab iTab, iTbLen, Scycle
;loop states
iState = 0
state:
KS iTab, iTbLen
loop_It iState, 1, iTbLen, state
loop_It iCycle, 1, 10, cycle
endin

</Cslnstruments>
<CsScore>

i "ShowBuffer" 0 1
</CsScore>
</CsoundSynthesizer>

SHIS IS THE OUTPUT

Cycle 0: 1.000 -1.000 1.000 1.000 -1.000
Cycle 1: 0.500 0.000 0.000 1.000 0.000
Cycle 2: 0.500 0.250 0.000 0.500 0.500
Cycle 3: 0.500 0.375 0.125 0.250 0.500
Cycle 4: 0.438 0.438 0.250 0.188 0.375

Cycle5: 0.359 0.438 0.344 0.219 0.281
Cycle 6: 0.305 0.398 0.391 0.281 0.250
Cycle 7: 0.285 0.352 0.395 0.336 0.266
Cycle 8: 0.293 0.318 0.373 0.365 0.301
Cycle 9: 0.313 0.306 0.346 0.369 0.333

*T CAN BE SEEN CLEARLY THAT THE VALUES GET SMOOTHED MORE AND MORE FROM C
THE BUFFER SIZE IS VERY SMALL HERE THE VALUES TEND TO COME TO A CONSTANT LE

#UT FOR LARGER BUFFER SIZES AFTER SOME CYCLES THE BUFFER CONTENT HAS T
PERIOD WHICH IS REPEATED WITH A SLIGHT LOSS OF AMPLITUDE S5HIS IS HOW IT SOUNI
BUFFER SIZEIS SECOND OR SAMPLES AT SR

EXAMPLE 04GO05_Plucked.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<Cslnstruments>

sr =44100

ksmps= 1

nchnls = 2

Odbfs =1

instr 1
;delay time
iDelTm = 0.01
;fill the delay line with either -1 or 1 randomly
kDur timeinsts
if kDur < iDelTm then
aFill rand 1, 2,1, 1 values 0-2

aFill = floor(aFill)*2 - 1 ;just -1 or +1
else
aFill = 0
endif
;delay and feedback

ault init O ;last sample in the delay line
aultl init O ;delayed by one sample
aMean = (aUlt+aUlt1)/2 ;mean of these two
ault delay aFill+aMean, iDelTm
aultl delayl aUlt
outs aUlt, aUlt
endin

</CslInstruments>

<CsScore>

i1060

</CsScore>

</CsoundSynthesizer>

;example by joachim heintz, after martin neukom

S5HIS SOUND RESEMBLES A PLUCKED STRING AT THE BEGINNING THE SOUND IS NOISY E
SHORT PERIOD OF TIME IT EXHIBITS PERIODICITY "S CAN BE HEARD UNLESS A NATURA

STEADY STATE IS VIRTUALLY ENDLESS SO FOR PRACTICAL USE IT NEEDS SOME FADE C
FREQUENCY THE LISTENER PERCEIVES IS RELATED TO THE LENGTH OF THE DELAY LINE
IS OF ASECOND THE PERCEIVED FREQUENCY IS)Z $OMPARED WITH A SINE WAVE
SIMILAR FREQUENCY THE INHERENT PERIODICITY CAN BE SEEN AND ALSO THE RICH O
STRUCTURE

$SOUND ALSO CONTAINS OVER FORTY OPCODES WHICH PROVIDE A WIDE VARIETY OF F
PHYSICAL MODELS AND EMULATIONS " SMALL NUMBER OF THEM WILL BE INTRODUCED
A BRIEF OVERVIEW OF THE SORT OF THINGS AVAILABLE

WGBOW - A WAVEGUIDE EMULATION OF A
BOWED STRING BY PERRY COOK

1ERRY $OO0OK IS A PROLIFIC AUTHOR OF PHYSICAL MODELS AND A LOT OF HIS WORK HAS
CONVERTED INTO $SOUND OPCODES " NUMBERWGEEONESEAVONESICE AR
WGBOWEDRBNBRVGBRAME BASED ON WAVEGUIDES " WAVEGUIDE IN ITS BROADEST SEN
IS SOME SORT OF MECHANISM THAT LIMITS THE EXTEND OF OSCILLATIONS SUCH AS A"
FIXED AT BOTH ENDS OR A PIPE *N THESE SORTS OF PHYSICAL MODEL A DELAY IS USEI
THESE LIMITS ONE OFNGIESEMPLEMENTS AN EMULATION OF A BOWED STRING 1ERHAP
THE MOST INTERESTING ASPECT OF MANY PHYSICAL MODELS IN NOT SPECIFICALLY WH
EMULATE THE TARGET INSTRUMENT PLAYED IN A CONVENTIONAL WAY ACCURATELY BL
THEY PROVIDE FOR EXTENDING THE PHYSICAL LIMITS OF THE INSTRUMENT AND HOW IT
THERE ARE ALREADY VAST SAMPLE LIBRARIES AND SOFTWARE SAMPLERS FOR EMULA
INSTRUMENTS PLAYED CONVENBO®RAEERS SEVERAL INTERESTING OPTIONS FOR
EXPERIMENTATION INCLUDING THE ABILITY TO MODULATE THE BOW PRESSURE AND TH
POSITION AT K RATE 7ARYING BOW PRESSURE WILL CHANGE THE TONE OF THE SOUND
CHANGING THE HARMONIC EMPHASIS "S BOW PRESSURE REDUCES THE FUNDAMENTA

http://www.csounds.com/manual/html/wgbow.html
http://www.csounds.com/manual/html/wgflute.html
http://www.csounds.com/manual/html/wgclar.html
http://www.csounds.com/manual/html/wgbowedbar.html
http://www.csounds.com/manual/html/wgbrass.html
http://www.csounds.com/manual/html/wgbow.html
http://www.csounds.com/manual/html/wgbow.html

BECOMES WEAKER AND OVERTONES BECOME MORE PROMINENT *F THE BOW PRESSUI
FURTHER THE ABILTY OF THE SYSTEM TO PRODUCE A RESONANCE AT ALL COLLAPSE 5
BETWEEN TONE PRODUCTION AND THE INABILITY TO PRODUCE A TONE CAN PROVIDE S
NEW SOUND EFFECT 5SHE FOLLOWING EXAMPLE EXPLORES THIS SOUND AREA BY MODL
BOW PRESSURE PARAMETER AROUND THIS THRESHOLD 40ME ADDITIONAL FEATURES
EXAMPLE ARE THAT DIFFERENT NOTES ARE PLAYED SIMULTANEOUSLY THE BOW PRE!
MODULATIONS IN THE RIGHT CHANNEL ARE DELAYED BY A VARYING AMOUNT WITH RES
CHANNEL IN ORDER TO CREATE A STEREO EFFECT AND A REVERB HAS BEEN ADDED

EXAMPLE 04G06_wgbow.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>

<Cslnstruments>

sr = 44100
ksmps = 32
nchnls = 2
Odbfs = 1
seed O

gisine ftgen 0,0,4096,10,1
gaSendL,gaSendR init 0

instr 1 ; wgbow instrument

kamp = 0.3
kfreq = p4
ipresl = p5
ipres2 = p6

; kpres (bow pressure) defined using a random spline
kpres rspline p5,p6,0.5,2

krat = 0.127236
kvibf = 4.5
kvibamp = 0
iminfreq = 20

; call the wgbow opcode

aSigL wgbow kamp,kfreq,kpres,krat,kvibf,kvibamp,gisine,iminfreq

; modulating delay time

kdel rspline 0.01,0.1,0.1,0.5

; bow pressure parameter delayed by a varying time in the right channel

kpres vdel_k Kkpres,kdel,0.2,2

aSigR wgbow kamp,kfreq,kpres,krat,kvibf,kvibamp,gisine,iminfreq
outs aSigL,aSigR

; send some audio to the reverb

gaSendL = gaSendL + aSigL/3

gaSendR = gaSendR + aSigR/3

endin

instr 2 ; reverb
aRvbL,aRVbR reverbsc gaSendL,gaSendR,0.9,7000
outs aRvbL,aRvbR
clear gaSendL,gaSendR
endin

</Cslnstruments>

<CsScore>

;instr. 1

; p4 = pitch (hz.)

; PS5 = minimum bow pressure
; Pp6 = maximum bow pressure
; 7 notes played by the wgbow instrument
il 0480 700.030.1

il 0480 850.030.1

il 0480 100 0.030.09

il 0480 1350.030.09

il 04801700.020.09

il 04802020.040.1

il 04802330.050.11

; reverb instrument

i20480

</CsScore>

</CsoundSynthesizer>

SHIS TIME A STACK OF EIGHT SUSTAINING NOTES EACH SEPARATED BY AN OCTAVE VA|
BOWING POSITION RANDOMLY AND INDEPENDENTLY :OU WILL HEAR HOW DIFFERENT |
POSITIONS ACCENTUATES AND ATTENUATES DIFFERENT PARTIALS OF THE BOWING TOI
SOUND PRODUCED SOME FILTERENERAHESR EMPLOYED AND SOME REVERB IS

ADDED

EXAMPLE 04G07_wgbow_enhanced.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>

<Cslnstruments>

sr = 44100
ksmps = 32
nchnls = 2
Odbfs = 1
seed O

gisine ftgen 0,0,4096,10,1
gaSend init 0

instr 1 ; wgbow instrument

http://www.csounds.com/manual/html/tone.html
http://www.csounds.com/manual/html/pareq.html

kamp = 0.1

kfreq = p4
kpres = 0.2
krat rspline 0.006,0.988,0.1,0.4
kvibf = 4.5
kvibamp = 0
iminfreq = 20

aSig wgbow kamp,kfreq,kpres,krat,kvibf,kvibamp,gisine,iminfreq
aSig butlp aSig,2000
aSig pareq asSig,80,6,0.707
outs aSig,aSig
gaSend = gaSend + aSig/3
endin

instr 2 ; reverb
aRvbL,aRVbR reverbsc gaSend,gaSend,0.9,7000
outs aRvbL,aRvbR
clear gaSend
endin

</Cslnstruments>

<CsScore>

; instr. 1 (wgbow instrument)
; p4 = pitch (hertz)
; wgbow instrument
il 0480 20

il 0480 40

il 0480 80

il 0480 160

il 0480 320

il 0480 640

il 0480 1280

il 0480 2460

; reverb instrument
i20480
</CsScore>

</CsoundSynthesizer>

“LL OF THE WG FAMILY OF OPCODES ARE WORTH EXPLORING AND OFTEN THE APPROA
EXPLORING EACH INPUT PARAMETER IN ISOLATION WHILST THE OTHERS RETAIN CONST
THE PATH TO UNDERSTANDING THE MODEL BETTER SIhHRASSEHRYTNONWITH
DEPENDENT UPON THE RELATIONSHIP BETWEEN INTENDED PITCH AND LIP TENSION RA
EXPERIMENTATION WITH THIS OPCODE IS AS LIKELY TO RESULT IN SILENCE AS ITISIN S
THIS WAY IS PERHAPS A REFLECTION OF THE EXPERIENCE OF LEARNING A BRASS INSTF
STUDENT SPENDS MOST TIME PUSH AIR SILENTLY THROUGH THE INSTRUMENT 8ITH PA
CAPABLE OF SOME INTERESTING SOUNDS HOWEVER *N ITS CASE * WOULD RECOMMEN
REALTIME (6* AND EXPLORING THE INTERACTION OF ITS INPUWABGUMBBAR THAT WAY
LIKE A NUMBER OF PHYSICAL MODELLING ALGORITHMS IS RATHER UNSTABLE SHIS IS N
DESIGN FLAW IN THE ALGORITHM BUT INSTEAD PERHAPS AN INDICATION THAT THE ALG
LEFT QUITE OPEN FOR OUT EXPERIMENTATION OR ABUSE *N THESE SITUATION CAUTI(

http://www.csounds.com/manual/html/wgbrass.html
http://www.csounds.com/manual/html/wgbowedbar.html

ORDER TO PROTECT EARS AND LOUDSPEAKERS 10OSITIVE FEEDBACK WITHIN THE MODI
SIGNALS OF ENORMOUS AMPLITUDE VERY QUICKLY &MIRDOMENASOK NTHENS
OF SOME PROTECTION IS RECOMMENDED WHEN EXPERIMENTING IN REALTIME

BARMODEL - A MODEL OF A STRUCK METAL
BAR BY STEFAN BILBAO

BARMOOEAN ALSO IMITATE WOODEN BARS TUBULAR BELLS CHIMES AND OTHER RESO!
INHARMONIC OBBEAEMODEIA MODEL THAT CAN EASILY BE ABUSED TO PRODUCE EAR
SHREDDINGLY LOUD SOUNDS THEREFORE PRECAUTIONS ARE ADVISED WHEN EXPERIV
REALTIME 8E ARE PRESENTED WITH A WEALTH OF INPUT ARGUMENTS SUCH AS STIFFN
POSITION AND STRIKE VELOCITY WHICH RELATE IN AN EASILY UNDERSTANDABLE WA
PROCESS WE ARE EMULATING 40ME PARAMETERS WILL EVIDENTLY HAVE MORE OF AL
ON THE SOUND PRODUCED THAN OTHER AND AGAIN IT IS RECOMMENDED TO CREATE A
FOR EXPLORATION /ONETHELESS A FIXED EXAMPLE IS PROVIDED BELOW THAT SHOUL
INSIGHT INTO THE KINDS OF SOUNDS POSSIBLE

1ROBABLY THE MOST IMPORTANT PARAMETER FOR US IS THE STIFFNESS OF THE BAR ¢
PROVIDES US WITH OUR PITCH CONTROL AND IS NOT IN CYCLE PER SECOND SO SOME
EXPERIMENTATION WILL BE REQUIRED TO FIND A DESIRED PITCH 5HERE IS A RELATION
STIFFNESS AND THE PARAMETER USED TO DEFINE THE WIDTH OF THE STRIKE WHEN T!
COEFFICIENT IS HIGHER A WIDER STRIKE MAY BE REQUIRED IN ORDER FOR THE NOTE T
WIDTH ALSO IMPACTS UPON THE TONE PRODUCED NARROWER STRIKES GENERATING |
UPPER PARTIALS PROVIDED A TONE IS STILL PRODUCED WHILST WIDER STRIKES TENC
THE FUNDAMENTAL

SHE PARAMETER FOR STRIKE POSITION ALSO HAS SOME IMPACT UPON THE SPECTRAL |
EFFECT MAY BE MORE SUBTLE AND MAY BE DEPENDENT UPON SOME OTHER PARAMETI
EXAMPLE WHEN STRIKE WIDTH IS PARTICULARLY WIDE ITS EFFECT MAY BE IMPERCEP”
GENERAL RULE OF THUMB HERE IS THAT IS THAT IN ORDER TO ACHIEVE THE GREATEST
POSITION STRIKE WIDTH SHOULD BE AS LOW AS WILL STILL PRODUCE A TONE 5HIS KIN
INTERDEPENDENCY BETWEEN INPUT PARAMETERS IS THE ESSENCE OF WORKING WITH
MODEL THAT CAN BE BOTH INTRIGUING AND FRUSTRATING

"N IMPORTANT PARAMETER THAT WILL VARY THE IMPRESSION OF THE BAR FROM METAI
"N INTERESTING FEATURE INCORPORATED INTO THE MODEL IN THE ABILITY TO MODULA
ALONG THE BAR AT WHICH VIBRATIONS ARE READ 5HIS COULD ALSO BE DESCRIBED AS
POSITION .OVING THIS SCANNING LOCATION RESULTS IN TONAL AND AMPLITUDE VARIA
HAVE CONTROL OVER THE FREQUENCY AT WHICH THE SCANNING LOCATION IS MODUL/

EXAMPLE 04G07_barmodel.csd

http://www.csounds.com/manual/html/clip.html
http://www.csounds.com/manual/html/barmodel.html
http://www.csounds.com/manual/html/barmodel.html

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>
<Cslnstruments>
sr =44100
ksmps =32
nchnls = 2

Odbfs =1

instr 1

; boundary conditions 1=fixed 2=pivot 3=free

kbcL
kbcR
; stiffness
iK

1
1

p4

; high freq. loss (damping)

ib = p5

; scanning frequency

kscan rspline p6,p7,0.2,0.8

; time to reach 30db decay

iT30 = p3

; strike position

ipos random 0,1

; strike velocity

ivel = 1000

; width of strike

iwid = 0.1156

aSig barmodel

kPan rspline 0.1,0.9,0.5,2

aL,aR pan2 aSig,kPan
outs aL,aR

endin

</Cslnstruments>

<CsScore>

kbcL,kbcR,iK,ib,kscan,iT30,ipos,ivel,iwid

;t0901302605907 30
; p4 = stiffness (pitch)

#define gliss(dur'Kstrt'Kend'b'scanl'scan2)

#

i10 20 $Kstrt $b
i 1 ~+0.05 $dur >
i 1 ~+0.05 $dur >
i 1 ~+0.05 $dur >
i 1 ~+0.05 $dur >
i 1 ~+0.05 $dur >
i 1 ~+0.05 $dur >
i 1 ~+0.05 $dur >
i 1 ~+0.05 $dur >
i 1 ~+0.05 $dur >
i 1 ~+0.05 $dur >
i 1 ~+0.05 $dur >
i 1 ~+0.05 $dur >
i 1 ~+0.05 $dur >

$scanl $scan2

$b $scanl $scan2
$b $scanl $scan2
$b $scanl $scan2
$b $scanl $scan2
$b $scanl $scan2
$b $scanl $scan2
$b $scanl $scan2
$b $scanl $scan2
$b $scanl $scan2
$b $scanl $scan2
$b $scanl $scan2
$b $scanl $scan2
$b $scanl $scan2

i 17+0.05 $dur > $b $scanl $scan2
i 17+0.05 $dur > $b $scanl $scan2
i 17+0.05 $dur > $b $scanl $scan2
i 1 2+0.05 $dur $Kend $b $scanl $scan2
#

$gliss(15'40'400'0.0755'0.1'2)

b5

$gliss(2'80'800'0.755'0'0.1)

b 10

$gliss(3'10'100'0.1'0'0)

b 15

$gliss(40'40'433'0'0.2'5)

e

</CsScore>

</CsoundSynthesizer>

; example written by lain McCurdy

PHISEM - PHYSICALLY INSPIRED STOCHASTIC

EVENT MODELING

5HE 1HI4&. SET OF MODELS IN $SOUND AGAIN BASED ON THE WORK OF 1ERRY $O0OK IV
INSTRUMENTS THAT RELY ON COLLISIONS BETWEEN SMALLER SOUND PRODUCING OBJ
THEIR SOUNDS 5SHESE MODELBAMBOUDBEMSET BAMBOWINDCHIMES AND
SLEIGHBERHESE MODELS ALGORITHMICALLY MIMIC THESE MULTIPLE COLLISIONS INTER
THAT WE ONLY NEED TO DEFINE ELEMENTS SUCH AS THE NUMBER OF INTERNAL ELEME
BEANS BELLS ETC INTERNAL DAMPING AND RESONANCES ONCE AGAIN THE MOST INTI
OF WORKING WITH A MODEL IS TO STRETCH THE PHYSICAL LIMITS SO THAT WE CAN HE/
FROM FOR EXAMPLE A MARACA WITH AN IMPOSSIBLE NUMBER OF BEANS A TAMBOURI
LITTLE INTERNAL DAMPING THAT IT NEVER DECAYS *N THE FOLLOWING EXAMPLE * EXP
TAMBOURBEMBOANLSLEIGHBHEHAGH IN TURN FIRST IN A STATE THAT MIMICS THE SOURC
INSTRUMENT AND THEN WITH SOME MORE EXTREME CONDITIONS

EXAMPLE 04G08_PhiSEM.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<Cslnstruments>

sr =44100
ksmps =32
nchnls = 1
Odbfs =1

instr 1 ; tambourine
iIAmp p4
iDettack 0.01

http://www.csounds.com/manual/html/tambourine.html
http://www.csounds.com/manual/html/bamboo.html
http://www.csounds.com/manual/html/sleighbells.html
http://www.csounds.com/manual/html/tambourine.html
http://www.csounds.com/manual/html/bamboo.html
http://www.csounds.com/manual/html/sleighbells.html

iNum = p5
iDamp = p6
iMaxShake = 0
iFreq = p7
iFreql = p8
iFreg2 = p9
aSig tambourine iAmp,iDettack,iNum,iDamp,iMaxShake,iFreq,iFreql,iFreq2
out aSig
endin

instr 2 ; bamboo

iAmp = p4

iDettack = 0.01

iNum = p5

iDamp = p6

iMaxShake = 0

iFreq = p7

iFreql = p8

iFreg2 = p9

aSig bamboo iAmp,iDettack,iNum,iDamp,iMaxShake,iFreq,iFreql,iFreq2

out aSig

endin

instr 3 ; sleighbells

iAmp = p4

iDettack = 0.01

iNum = p5

iDamp = p6

iMaxShake = 0

iFreq = p7

iFreql = p8

iFreg2 = p9

aSig sleighbells iAmp,iDettack,iNum,iDamp,iMaxShake,iFreq,iFreql,iFreq2

out aSig

endin

</Cslnstruments>

<CsScore>

; p4 = amp.

; P5 = number of timbrels
; p6 = damping

; p7 = freq (main)

; p8 =freq 1

; p9 =freq 2

; tambourine

i1010.1 320.47 2300 5600 8100
il1+10.1 320.47 2300 5600 8100
il+20.1 320.75 2300 5600 8100
il+20.05 20.75 2300 5600 8100
il1+10.1 16 0.65 2000 4000 8000
il+10.1 16 0.65 1000 2000 3000
i1820.01 10.75 1257 2653 6245
i1820.01 10.75 673 3256 9102
i1820.01 10.75 314 1629 4756

b 10

; bamboo

i2010.41.250.0 2800 2240 3360
i2+10.41.250.0 2800 2240 3360
i2+20.41.250.05 2800 2240 3360
i2+20.2 100.05 2800 2240 3360
i2+10.3 16 0.01 2000 4000 8000
i2+10.3 160.01 1000 2000 3000
i2820.1 10.051257 2653 6245
i2820.1 10.051073 3256 8102
i2820.1 10.05 5146629 9756

b 20

; sleighbells

i3010.71.250.17 2500 5300 6500
i3+10.71.250.17 2500 5300 6500
i3+20.71.25 0.3 2500 5300 6500
i3+20.4 100.3 2500 5300 6500
i3+105 160.2 2000 4000 8000
i3+105 160.2 1000 2000 3000
i3820.3 10.3 1257 2653 6245
i3820.3 10.3 1073 3256 8102
i3820.3 10.3 5146629 9756

e

</CsScore>

</CsoundSynthesizer>
; example written by lain McCurdy

1HYSICAL MODELLING CAN PRODUCE RICH SPECTRALLY DYNAMIC SOUNDS WITH USER
USUALLY ABSTRACTED TO A SMALL NUMBER OF DESCRIPTIVE PARAMETERS $SOUND O
OTHER OPCODES FOR PHYSICAL MODELLING WHICH CANNOT ALL BE INTRODUCED HER
ENCOURAGED TO EXPLORE BASED ON THE APPROACHES EXEMPLIFIED HERE :O0U CAN
CHAPTERBSELS AND &MULAAONSNED 4YNTARNBASVEGUIDE 1HYSICAL .ODELING

OF THE $SOUND .ANUAL

5HE EXPLANATION HERE FOLLOWS CHAPTER OF SMpiEHN &IdtcoMd S

?

Klangsynthese#ERN -
4EE CHAPTER " */*5*"-*"5*0/ "/% 1&3'03."/$& 1"44 FOR MORE

INFORMATION ABOUT $SOUND S PERFORMANCE LOOPS
*F DEFINING THIS AS A 6%0 A LOCAL KSMPS COULD BE SET WITHOUT AFFECTINC
GENERAL KSMPS 4EE CHAPTER ' 64&3 %&"*/&% 01$0%&4 AND THE $SOUND

ANUAL FGETKSMFGR MORE INFORMATION

http://www.csounds.com/manual/html/SiggenModels.html
http://www.csounds.com/manual/html/SiggenScanTop.html
http://www.csounds.com/manual/html/SiggenWavguide.html
g-physical-modelling#InsertNoteID_6_marker7
g-physical-modelling#InsertNoteID_18_marker19
http://www.csounds.com/manual/html/setksmps.html
g-physical-modelling#InsertNoteID_20_marker21

SCANNED SYNTHESIS

ACANNED 4YNTHESIS IS A RELATIVELY NEW SYNTHESIS TECHNIQUE INVENTED BY .AX .A
30B 4HAW AND #ILL 7TERPLANK AT *NTERVAL 3ESEARCH IN 5HIS ALGORITHM USES A
COMBINATION OF A TABLE LOOKUP OSCILLATOR AND 4IR *SSAC /EWTON S MECHANICAL
EQUATION OF A MASS AND SPRING SYSTEM TO DYNAMICALLY CHANGE THE VALUES ST
TABLE 5HE SONIC RESULT IS A TIMBRAL SPECTRUM THAT CHANGES WITH TIME

$SOUND HAS A COUPLE OPCODES DEDICATED TO SCANNED SYNTHESIS AND THESE OF
USED NOT ONLY TO MAKE SOUNDS BUT ALSO TO GENERATE DYNAMIC F TABLES FOR U:
$SOUND OPCODES

A QUICK SCANNED SYNTH

5HE QUICKEST WAY TO START USING SCANNED SYNTHESISd&#anléNGALLS OPCODE

al scantable iamp, kfrg, ipos, imass, istiff, idamp, ivel

5HE ARGUMEATSANXrg SHOULD BE FAMILIAR AMPLITUDE AND FREQUENCY RESPECTI\
5HE OTHER ARGUMENTS ARE F TABLE NUMBERS CONTAINING DATA KNOWN IN THE SCA
WORLDpASfiles

PROFILES

1ROFILES REFER TO VARIABLES IN THE MASS AND SPRING EQUATION /EWTON S MODEL
STRING AS A FINITE SERIES OF MARBLES CONNECTED TO EACH OTHER WITH SPRINGS

*N THIS EXAMPLE WE WILL USE MARBLES IN OUR SYSTEM 50 THE $SOUND USER PRC
SERIES OF F TABLES THAB&ETabIBOMEODE 50 THE OPCODE THESE F TABLES INFLUENC
THE DYNAREHAVIOR THE TABLE READ BY A TABLE LOOKUP OSCILLATOR

gipos ftgen 1,0, 128, 10, 1 ;Initial Shape ;Sine wave range -1to 1
gimass ftgen 2,0, 128,-7,1, 1 :Masses ;Constant value 1

gistiff ftgen 3, 0, 128, -7, 50, 64, 100, O ;Stiffness ;Unipolar triangle range to 100
gidamp ftgen 4,0, 128,-7,1,128,1 ;Damping ;Constant value 1

givel ftgen 5,0, 128, -7,0,128,0 ;Initial Velocity;Constant value 1

5HESE TABLES NEED TO BE THE SAME SIZE AS EACH OTHER OR $SOUND WILL RETURN /

3UN THE FOLLQUING@TICE THAT THE SOUND STARTS OFF SOUNDING LIKE OUR INTIAL St
SINE WAVE BUT EVOLVES AS IF THERE ARE FILTERS OR DISTORTIONS OR -0 S

EXAMPLE 04HO01_scantable.csd

http://www.csounds.com/manual/html/scantable.html
http://www.csounds.com/manual/html/scantable.html

<CsoundSynthesizer>

<CsOptions>

-0 dac

</CsOptions>

<CslInstruments>

nchnls = 2

sr=44100

ksmps = 32

Odbfs =1

gipos ftgen 1,0, 128, 10, 1 ;Initial Shape, sine wave range -1to 1
gimass ftgen 2, 0, 128, -7, 1,128, 1 ;Masses(adj.), constant value 1
gistiff ftgen 3, 0, 128, -7, 50, 64, 100, 64, 0 ;Stiffness; unipolar triangle range 0 to 100
gidamp ftgen 4, 0, 128, -7, 1,128, 1 ;Damping; constant value 1
givel ftgenb5, 0, 128, -7, 0, 128, 0 ;Initial Velocity; constant value 1
instr 1

iamp =.7

kfrq = 440

al scantable iamp, kfrg, gipos, gimass, gistiff, gidamp, givel

al dcblock2 al

outs al, al

endin

</Cslnstruments>

<CsScore>

i1010

e

</CsScore>

</CsoundSynthesizer>

;Example by Christopher Saunders

#UT AS YOU SEE NO EFFECTS OR CONTROLS SIGNALS IN THE CSD JUST A SYNTH

SHIS IS THE POWER OF SCANNED SYNTHESIS *T PRODUCES A DYNAMIC SPECTRUM WIT
OSCILLATOR *MAGINE NOW APPLYING A SCANNED SYNTHESIS OSCILLATOR TO ALL YOLU
TECHNIQUES 4UBTRACTIVE 8AVESHAPING '. (RANULAR AND MORE

3ECALL FROM THE SUBTRACTIVE SYNTHESIS TECHNIQUE THAT THE SHAPE OF THE W£
OSCILLATOR HAS A HUGE EFFECT ON THE WAY THE OSCILLATOR SOUNDS *N SCANNED
SHAPE IS IN MOTION AND THESE F TABLES CONTROL HOW THE SHAPE MOVES

DYNAMIC TABLES

SHEscantableOPCODE MAKES IT EASY TO USE DYNAMIC F TABLES IN OTHER CSOUND OPC
EXAMPLE BELOW SOUNDS EXACTLY LIKE THE ABOVE CSD BUT IT DEMONSTRATES HOW
INTO MOTION BY SCANTABLE CAN BE USED BY OTHER CSOUND OPCODES

EXAMPLE 04H02_Dynamic_tables.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>

http://www.csounds.com/manual/html/scantable.html

<CslInstruments>
nchnls = 2
sr=44100

ksmps = 32
Odbfs =1

gipos ftgen 1,0, 128, 10, 1 ;Initial Shape, sine wave range -1 to 1;

gimass ftgen 2,0, 128, -7, 1, 128, 1 ;Masses(ad;].), constant value 1

gistiff ftgen 3,0, 128, -7, 50, 64, 100, 64, 0 ;Stiffness; unipolar triangle range 0 to 100
gidamp ftgen 4,0, 128, -7, 1, 128, 1 ;Damping; constant value 1

givel ftgen 5,0, 128, -7, 0, 128, O ;Initial Velocity; constant value 1

instr 1

iamp = 7

kfrg = 440

a0 scantable iamp, kfrq, gipos, gimass, gistiff, gidamp, givel ;

al oscil3 iamp, kfrg, gipos
al dcblock2 al
outs al,al
endin
</Cslnstruments>
<CsScore>
i1010
e
</CsScore>
</CsoundSynthesizer>
;Example by Christopher Saunders

"BOVE WE USE A TABLE LOOKUP OSCILLATOR TO PERIODICALLY READ A DYNAMIC TABL!

#ELOW IS AN EXAMPLE OF USING THE VALUES OF AN FstaBiabISEDEROUIED BY
THE AMPLITUDES OF AN FSIG A SIGNAL TYPE IN CSOUND WHICH REPRESENTS A SPECT

EXAMPLE 04HO03_Scantable_pvsmaska.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<CslInstruments>
nchnls = 2

sr=44100

ksmps = 32

Odbfs =1

gipos ftgen 1,0,128,10,1 ;Initial Shape, sine wave range -1 to 1;
gimass ftgen 2,0,128,-7,1,128,1 ;Masses(adj.), constant value 1

gistiff ftgen 3,0, 128, -7, 50, 64, 100, 64, 0 ;Stiffness; unipolar triangle range 0 to 100
gidamp ftgen 4,0,128,-7,1,128,1 ;Damping; constant value 1

givel ftgen 5,0, 128,-7,0,128,0 ;Initial Velocity; constant value 1

gisin ftgen 6,0,8192, 10, 1 ;Sine wave for buzz opcode

instr 1
iamp = 7
kfrg = 110

http://www.csounds.com/manual/html/scantable.html

al buzz iamp, kfrq, 32, gisin
outs al,al

endin

instr 2

iamp = 7

kfrg = 110

a0 scantable 1, 10, gipos, gimass, gistiff, gidamp, givel ;
ifftsize = 128

ioverlap = ifftsize / 4

iwinsize = ifftsize

iwinshape = 1; von-Hann window

al buzz iamp, kfrq, 32, gisin

fitin pvsanal al, ifftsize, ioverlap, iwinsize, iwinshape; fft-analysis of file

fmask pvsmaska fftin, 1, 1

a2 pvsynth fmask; resynthesize
outs a2, a2

endin

</Cslnstruments>

<CsScore>

i103

i2510

e

</CsScore>

</CsoundSynthesizer>

;Example by Christopher Saunders

*N THIS CSD THE SCORE PLAYS INSTRUMENT A NORMAL BUZZ SOUND AND THEN THE
INSTRUMENT THE SAME BUZZ SOUND RE SYNTHESIZED WITH AMPLITUDES OF EACH C
FREQUENCY BANDS CONTROLLED BY A DYNAMIC F TABLE

A MORE FLEXIBLE SCANNED SYNTH

ScantableCAN DO A LOT FOR US IT CAN SYNTHESIZE AN INTERESTING TIME VARYING TIV
TABLE LOOKUP OSCILLATOR OR ANIMATE AN F TABLE FOR USE IN OTHER $SOUND OPC(
THERE ARE OTHER SCANNED SYNTHESIS OPCODES THAT CAN TAKE OUR EXPRESSIVE L
ALGORITHM EVEN FURTHER

5HE OPCOBRE&ESsANBcanuBY 1ARIS 4AMARAGDIS GIVE THE $SOUND USER ONE OF THE MOt
ROBUST AND FLEXIBLE SCANNED SYNTHESIS ENVIRONMENTS 5HESE OPCODES WORK
FIRST SET UP THE DYNAMIC WAVETABLE AND THEN TO SCAN THE DYNAMIC TABLE IN V
LOOKUP OSCILLATOR CANNOT

SHE OPCCO4L2ENUTAKES ARGUMENTS AND SETS A TABLE INTO MOTION

scanu ipos, irate, ifnvel, ifnmass, ifnstif, ifncentr, ifndamp, kmass, kstif, kcentr, kdamp, ileft, iright, kpos, kstrngth, ain, idisp,

'OR A DETAILED DESCRIPTION OF WHAT EACH ARGUMENT DOES SEE THE $SOUND 3EFE
LINK* WILL DISCUSS THE VARIOUS TYPES OF ARGUMENTS IN THE OPCODE

http://www.csounds.com/manual/html/scantable.html
http://www.csounds.com/manual/html/scans.html
http://www.csounds.com/manual/html/scanu.html
http://www.csounds.com/manual/html/scanu.html
http://www.csounds.com/manual/html/scanu.html

S5HE FIRST SET OF ARGPBENAS, ifnvel, ifnmass, ifnstiff, ifncent&NDindamp ARE

F TABLES DESCRIBING THE PROFILES SIMILAR TO THERRQ&HNESARGIUMENTS FOR
TAKES F TABLES INSSd@AIOEs -IKE scantable THESE NEED TO BE F TABLES OF THE
SAME SIZE OR $SOUND WILL RETURN AN ERROR

"N EXCEPTION TO THIS SIZE REQUIRRSMENT BABHE SHIS TABLE IS THE SIZE OF THE
OTHER PROFILES SQUARED *F THE OTHER F TABLES ARE SIZE THEN IFNSTIFF SHOUL
SIZE OR X 50 DISCUSS WHAT THIS TABLE DOES * MUST FIRST INTRODUCE THE
CONCEPT OF A SCANNED MATRIX

THE SCANNED MATRIX

SHE SCANNED MATRIX IS A CONVENTION DESIGNED TO DESCRIBE THE SHAPE OF THE Ct
MASSES IN THE MASSAND SPRING MODEL

(OING BACK TO OUR DISCUSSION ON /EWTON S MECHANIOALAWDCERRINME MASS

MODEL DESCRIBES THE BEHAVIOR OF A STRING AS A FINITE NUMBER OF MASSES CONN
SPRINGS "S YOU CAN IMAGINE THE MASSES ARE CONNECTED SEQUENTIALLY ONE TO
BEADS ON A STRING.. ASSCONNECTED TO CONNECTED TO AND SO ON

JOWEVER THE PIONEERS OF SCANNED SYNTHESIS HAD THE IDEA TO CONNECT THE MA
LINEAR WAY *T S HARD TO IMAGINE BECAUSE AS MUSICIANS WE HAVE EXPERIENCE W
VIOLIN STRINGS ONE DIMENSIONAL STRINGS BUT NOT WITH MULTI DIMENSIONAL STRII
'ORTUNATELY THE COMPUTER HAS NO PROBLEM WORKING WITH THIS THIS IDEA AND T
OF [EWTON S EQUATION ALLOWS US TO USE THE $h6 TBMRGEIONAEETED

WITH SPRINGS NOT ONLY TO BUT ALSO TO ANDWANY THEHHERDIASS

SHE MOST DIRECT AND USEFUL IMPLEMENTATION OF THIS CONCEPT IS TO CONNECT M#

AND MASS FORMING A STRING WITHOUT ENDPOINTS A CIRCULAR STRING -IKE TY
STRING WITH BEADS TO MAKE A NECKLACE 5HE PIONEERS OF SCANNED SYNTHESIS DI
THIS CIRCULAR STRING MODEL IS MORE USEFUL THAN A CONVENTIONAL ONE DIMENSIC
WITH ENDPOINTS *8tEAEBIdUSES A CIRCULAR STRING

5HE MATRIX IS DESCRIBED IN A SIMPLE "4$** FILE IMPORTED INTO $SOUND VIA A (&
GENERATED F TABLE

f3 0 16384 -23 "string-128"

SHIS TEXT Riukt BE LOCATED IN THE SAME DIRECTORY AS YOUR CSD OR CSOUND WILL ¢
THIS ERROR

ftable 3: error opening ASCII file

F CIRCULARSTRING

http://www.csounds.com/manual/html/scantable.html
http://www.csounds.com/manual/html/scantable.html

:OU CAN CONSTRUCT YOUR OWN MATRIX USING 4TEPHEN :I S 4CANNED .ATRIX EDITOR |
THE #LUE FRONTEND FOR $SOUND AND AS A STANDAKONEMERAXRPHEZNTION
ATRIX &DITOR

50 SWAP OUT MATRICES SIMPLY TYPE THE NAME OF A DIFFERENT MATRIX FILE INTO Tk
QUOTES

f3 0 16384 -23 "circularstring-128";

%IFFERENT MATRICES HAVE UNIQUE EFFECTS ON THE BEHAVIOR OF THE SYSTEM 40M
MAKE THE SYNTH EXTREMELY LOUD OTHERS EXTREMELY QUIET &XPERIMENT WITH US
MATRICES

/OW WOULD BE A GOOD TIME TO POINT OUT THAT $SOUND HAS OTHER SCANNED SYNT}
PRECEDED WITH Alcahsxscanu THAT USE A DIFFERENT MATRIX FORMAT THAN THE ONE
BYscansscanu AND 4TEPHEN :1 S 4CANNED .ATRIX &DITOR 5HE $SOUND 3EFERENCE .ANL
HAS MORE INFORMATION ON THIS

THE HAMMER

*F THE INITIAL SHAPE AN F TABLE SPECIFIED BY THE IPOS ARGUMENT DETERMINES THE
INITIAL CONTENTS IN OUR DYNAMIC TABLE *F YOU USE AUTOCONIIARTE IN $SOUND25 1
OPCODE LINE HIGHLIGHTS THE FIRST P FIELD OF SCANU AS THE INIT OPCODE *N MY E;
IPOS TO AVOID P OF SCANU BEING SYNTAX HIGHLIGHTED #UT WHAT IF WE WANT TO F
PLUCK THE TABLE PERHAPS WITH A SHAPE OF A SQUARE WAVE INSTEAD OF A SINE W,
INSTRUMENT IS PLAYING

8ITHscantableTHERE IS AN EASY WAY TO TO THIS SEND A SCORE EVENT CHANGING THE
OF THE DYNAMIC F TABLE :OU CAN DO THIS WITH THE $SOUND SCORE BY ADJUSTING TI
OF THE F EVENTS IN THE SCORE

EXAMPLE 04H04_ Hammer.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<CslInstruments>
sr=44100

kr=4410

ksmps=10

nchnls=2

Odbfs=1

instr 1
ipos ftgen 1,0, 128, 10, 1; Initial Shape, sine wave range -1 to 1,
imass ftgen 2,0, 128, -7, 1, 128, 1 ;Masses(adj.), constant value 1

http://www.csounds.com/stevenyi/scanned/
http://www.csounds.com/stevenyi/scanned/
http://www.csounds.com/manual/html/xscans.html
http://www.csounds.com/manual/html/xscanu.html
http://www.csounds.com/manual/html/scans.html
http://www.csounds.com/manual/html/scanu.html
http://www.csounds.com/manual/html/scanu.html
http://www.csounds.com/manual/html/scantable.html

istiff ftgen 3,0, 128, -7, 50, 64, 100, 64, 0 ;Stiffness; unipolar triangle range 0 to 100
idamp ftgen 4,0, 128, -7, 1, 128, 1; ;Damping; constant value 1
ivel ftgen 5,0, 128, -7, 0, 128, 0 ;Initial Velocity; constant value 0

iamp = 0.5

al scantable iamp, 60, ipos, imass, istiff, idamp, ivel
outs al,al

endin

</Cslnstruments>

<CsScore>

i1014

f111281011111111111
f121281011000000011
131281011111
f14128101000000000000001
151281011
f161281311000-10.30-50.70-9010-10
f171282165.745

</CsScore>

</CsoundSynthesizer>

;Example by Christopher Saunders

:OU LL GET THE WARNING
WARNING: replacing previous ftable 1

SHIS IS NOT A BAD THING IT MEANS THIS METHOD OF HAMMERING THE STRING IS WORK
YOU COULD USE THIS METHOD TO EXPLORE AND HAMMER EVERY POSSIBLE (& ROUTIN
(&/ SINES(&/ NOISE AN BREAKPOINT FUNCTIONS COULD KEEP YOU
OCCUPIED FOR A WHILE

6NIPOLAR WAVES HAVE A DIFFERENT SOUND BUT A LOSS IN VOLUME CAN OCCUR

SHERE IS A WAY TO DO Tsti&WAHTH * DO NOT USE THIS FEATURE AND JUST USE THESE
VALUES INSTEAD

ileft = 0.
iright = 1.
kpos = 0.
kstrngth = 0.

MORE ON PROFILES

ONE OF THE BIGGEST CHALLENGES IN UNDERSTANDING SCANNED SYNTHESIS IS THE C(
PROFILES

4ETTING UP THE ORGAIEQUIRES PROFILES $ENTERING .ASS %AMPING 5HE
PIONEERS OF SCANNED SYNTHESIS DISCOVERED EARLY ON THAT THE RESULTANT TIMI
INTERESTING IF MARBLE HAD A DIFFERENT CENTERING FORCE THAN MASS

http://www.csounds.com/manual/html/GEN10.html
http://www.csounds.com/manual/html/GEN21.html
http://www.csounds.com/manual/html/GEN27.html
http://www.csounds.com/manual/html/scanu.html
http://www.csounds.com/manual/html/scanu.html

SHE FARTHER OUR MODEL GETS AWAY FROM A PHYSICAL REAL WORLD STRING THAT W
PLUCK ON OUR GUITARS AND PIANOS THE MORE INTERESTING THE SOUNDS FOR SYNT
INSTEAD OF ONE MASS AND DAMPING AND CENTERING VALUE FOR ALL OF THE MARE
MARBLE SHOULD HAVE ITS OWN CONDITIONS)OW THE CENTERING MASS AND DAMPIN
MAKE THE SYSTEM BEHAVE IS UP TO THE USER TO DISCOVER THROUGH EXPERIMENTA
HOW TO EXPERIMENT SAFELY LATER IN THIS CHAPTER

CONTROL RATE PROFILE SCALARS

1ROFILES ARE A DETAILED WAY TO CONTROL THE BEHAVIOR OF THE STRING BUT WHAT
INFLUENCE THE MASS OR CENTERING OR DAMPI&ifeeOfk HOER Y13 BEEN
ACTIVATED AND WHILE ITS PLAYING

ScanuGIVES US K RATE ARGuNES KStif, kcentr, kdampO SCALE THESE FORCES ONE
COULD SCALE MASS TO VOLUME OR HAVE AN ENVELOPE CONTROLLING CENTERING

Caution! 5SHESE PARAMETERS CAN MAKE THE SCANNED SYSTEM UNSTABLE IN WAYS TH/
MAKExtremely LOUD SOUNDS COME OUT OF YOUR COMPUTER *T IS BEST TO EXPERIME?
SMALL CHANGES IN RANGE AND KEEP YOUR HEADPHONES OFF " GOOD PLACE TO STAF
EXPERIMENTING IS WITH DIFFEREKdew#t\ABHEISEACEE Pwass kstiff ANDxdamp

CONSTANT

:OU COULD ALSO SCALE MASS AND STIFFNESS TO .*%* VELOCITY

AUDIO INJECTION

*NSTEAD OF USING THE HAMMER METHOD TO MOVE THE MARBLES AROUND WE COULD
ADD MOTION TO THE MASS AND SRRINELEMDBBIS DO THIS WITH A SIMPLE AUDIO RATE
ARGUMENT 8HEN THE 3EFERENCE MANUAL SAYS AMPLITUDE SHOWeANSIOT BE TOO GR
it.

" GOOD PLACE TO START IS BY SCALING DOWN THE AUDIO IN THE OPCODE LINE

ain/2000

*T IS ALWAYS A GOOD IDEA TO TAKE INTO ACCOUNT THE DBFS STATEMENT IN THE HEAI
IF DBFS AND YOU SEBMSAN AUDIO SIGNAL WITH A VALUE OF YOU AND YOUR IMMEDIA
NEIGHBORS ARE IN FOR A VERY LOUBnuBILdSERINID not be too great”

TO BYPASS AUDIO INJECTION ALL TOGETHER SIMPLY ASSIGN TO AN A RATE VARIABLE

ain=0

http://www.csounds.com/manual/html/scanu.html

AND USE THIS VARIABLE AS THE ARGUMENT

CONNECTING TO SCANS

SHE P FIELD ID IS AN ARBITRARY INTEGER LABEL THAT TELLSSERBEUSOANEADPCODE WHI(
#Y MAKING THE VALUE OF ID NEGATIVE THE ARBITRARY NUMERICAL LABEL BECOMES T
AN F TABLE THAT CAN BE USED BY ANY OTHER OPCODE IN $SsydhiabldKE WE DID WITH
EARLIER IN THIS CHAPTER

8E COULD THENESHO PERFORM A TABLE LOOKUP ALGORITHM TOddaiE SOUND OUT O
AS LONG AS ID IS NEGATU&EhUBBE A COMPANION OfG@OHMMHICH HAS MORE

ARGUMENT o8tANbHIS ARGUMENT IS THE NUMBER OF AN F TABLE CONTAINING THE SCAI
TRAJECTORY

SCAN TRAJECTORIES

ONE THING WE HAVE TAKE FOR GRANTEDIIS® FARIWHE WAVE TABLE IS READ FRONT TO
BACK *F YOU REGARD OSCIL AS A PHASOR AND TABLE PAIR THE FIRST INDEX OF THE T/
READ FIRST AND THE LAST INDEX IS ALWAYS READ LAST AS IN THE EXAMPLE BELOW

EXAMPLE 04HO5_Scan_trajectories.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<Cslnstruments>

sr=44100
kr=4410
ksmps=10
nchnls=2
0dbfs=1

instr 1

andx phasor 440

al table andx*8192, 1
outs al*.2, al*.2
endin

</Csinstruments>

<CsScore>

108192101

i104

</CsScore>
</CsoundSynthesizer>

http://www.csounds.com/manual/html/scanu.html
http://www.csounds.com/manual/html/scantable.html
http://www.csounds.com/manual/html/oscil.html
http://www.csounds.com/manual/html/scanu.html
http://www.csounds.com/manual/html/scanu.html
http://www.csounds.com/manual/html/scans.html
http://www.csounds.com/manual/html/oscil.html
http://www.csounds.com/manual/html/oscil.html

#UT WHAT IF WE WANTED TO READ THE TABLE INDICES BACK TO FRONT OR EVEN OUT
8ELL WE COULD DO SOMETHING LIKE THIS

EXAMPLE 04HO0O6_Scan_trajectories2.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<CslInstruments>
sr=44100

kr=4410

ksmps=10

nchnls=2 ; STEREO
0dbfs=1

instr 1

andx phasor 440

andx table andx*8192, 1 ; read the table out of order!
al table andx*8192, 1
outs al*.2, al*.2

endin

</Csinstruments>

<CsScore>

108192101

f2 08192 -5.001 8192 1;
i104

</CsScore>
</CsoundSynthesizer>

8E ARE STILL DEALING WITH DIMENSIONAL ARRAYS OR F TABLES AS WE KNOW THEM ¢
REMEMBER BACK TO THE OUR CONVERSATION ABOUT THE SCANNED MATRIX MATRICE
DIMENSIONAL IT WOULD BE A SHAME TO ONLY READ THEM IN %

SHE OPCO42ENnsGIVES US THE FLEXIBILITY OF SPECIFYING A SCAN TRAJECTORY ANALOC
TELLING THE PHASOR TABLE COMBINATION TO READ VALUES NON CONSECUTIVELY 8E
THESE VALUES NOT LEFT TO RIGHT BUT IN A SPIRAL ORDER BY HRE&ES}IFYING A TABLE T
ARGUMENScaiis

a3 scans iamp, kpch, ifntraj ,id , interp

"N F TABLE FOR THE SPIRAL METHOD CAN GENERATED BY READING THE "4$** FILE
SPIRAL OVER BY (&

f2 0 128 -23 "spiral-8,16,128,2,1over2"

SHE FOLLOWING CSD REQUIRES THAT THE FILES CIRCULARSTRING AND SPIRAL
OVER BE LOCATED IN THE SAME DIRECTORY AS THE CSD

http://www.csounds.com/manual/html/scans.html
http://www.csounds.com/manual/html/scans.html

EXAMPLE 04HO7_Scan_matrices.csd

<CsoundSynthesizer>

<CsOptions>

-0 dac

</CsOptions>

<CslInstruments>

nchnls = 2

sr = 44100

ksmps = 10

Odbfs =1

instr 1

ipos ftgen 1, 0, 128, 10, 1

irate = .005

ifnvel ftgen 6, 0, 128, -7, 0, 128, 0
ifnmass ftgen 2, 0, 128, -7, 1, 128, 1
ifnstif ftgen 3, 0, 16384,-23,"circularstring-128"
ifncentr ftgen 4, 0, 128, -7, 0, 128, 2
ifndamp ftgen 5, 0, 128, -7, 1, 128, 1
imass = 2

istif = 1.1

icentr = .1

idamp =-0.01

ileft = 0.

right=.5

ipos = 0.

istrngth = 0.

ain=0

idisp=0

id=8

scanu 1, irate, ifnvel, ifnmass, ifnstif, ifncentr, ifndamp, imass, istif, icentr, idamp, ileft, iright, ipos, istrngth, ain, idisp, id
scanu 1,.007,6,2,3,4,5, 2,1.10,.10,0,.1,.5, 0, 0,ain,1,2;
iamp = .2

ifreq = 200

al scans iamp, ifreq, 7, id

al dcblock al

outs al, al

endin

</Csinstruments>

<CsScore>

f7 0128 -7 0128 128

il05

f7 5128 -23 "spiral-8,16,128,2,1over2"
il55

f7 10 128 -7 127 64 1 63 127
i1105

</CsScore>

</CsoundSynthesizer>

/OTICE THAT THE SCAN TRAJECTORY HAS AN . LIKE EFFECT ON THE SOUND

TABLE SIZE AND INTERPOLATION

SABLES USED FOR SCAN TRAJECTORY MUST BE THE SAME SIZE HAVE THE SAME NUMBI
AS THE MASS CENTERING DAMPING TABLES AND MUST ALSO HAVE THE SAME RANGE ;
THESE TABLES 'OR EXAMPLE IN OUR CSD S WE VE BEEN USING POINT TABLES FOR II
POSITION MASS CENTERING DAMPING OUR STIFFNESS TABLES HAVE BEEN SQUARE
TRAJECTORY TABLES MUST BE OF SIZE AND CONTAIN VALUES FROM TO

ONE CAN USE LARGER OR SMALLER TABLES BUT THEIR SIZES MUST AGREE IN THIS WAY
GIVE YOU AN ERROR -ARGER TABLES OF COURSE SIGNIFICANTLY INCREASE $16 USAGI
DOWN REAL TIME PERFORMANCE

*F ALL THE SIZES ARE MULTIPLES OF A NUMBER WE CAN USE $SOUND S .ACRO LANC
EXTENSION TO DEFINE THE TABLE SIZE AS A MACRO AND THEN CHANGE THE DEFINITIO
FOR THE ORC AND ONCE FOR THE SCORE INSTEAD OF TIMES

EXAMPLE 04HO08_Scan_tablesize.csd

<CsoundSynthesizer>

<CsOptions>

-0 dac

</CsOptions>

<CslInstruments>

nchnls = 2

sr = 44100

ksmps = 10

Odbfs =1

#define SIZE #128#

instr 1

ipos ftgen 1, 0, $SIZE., 10, 1

irate = .005

ifnvel ftgen 6, 0, $SIZE., -7, 0, $SIZE., O
ifnmass ftgen 2, 0, $SIZE., -7, 1, $SIZE., 1
ifnstif ftgen 3, 0, $SIZE.*$SIZE.,-23, "circularstring-$SIZE."
ifncentr ftgen 4, 0, $SIZE., -7, 0, $SIZE., 2
ifndamp ftgen 5, 0, $SIZE., -7, 1, $SIZE., 1
imass = 2

istif = 1.1

icentr = .1

idamp =-0.01

ileft = 0.

iright=.5

ipos = 0.

istrngth = 0.

ain=0

idisp=0

id=8

scanu 1, irate, ifnvel, ifnmass, ifnstif, ifncentr, ifndamp, imass, istif, icentr, idamp, ileft, iright, ipos, istrngth, ain, idisp, id
scanu 1,.007,6,2,3,4,5, 2,1.10,.10,0,.1,.5, 0, 0,ain,1,2;
iamp = .2

ifreq = 200

al scans iamp, ifreq, 7, id, 4

al dcblock al

outs al, al

endin

</Csinstruments>

<CsScore>

#define SIZE #128#

f7 0 $SIZE. -7 0 $SIZE. $SIZE.

il105

7 5 $SIZE. -7 0 63 [$SIZE.-1] 63 0

il55

7 10 $SIZE. -7 [$SIZE.-1] 64 1 63 [$SIZE.-1]

i1105

</CsScore>

</CsoundSynthesizer>

ACROS EVEN WORK IN OUR STRING (Q&TERAE TMBIUR #UT IF YOU DEFINE SIZE AS

AND THERE ISN T A FILE IN YOUR DIRECTORY NAMED CIRCULARSTRING $SOUND WILL
SCORE AND GIVE YOU AN ERRQRIBERED®WNLOAD POWER OF TWO SIZE "4$** FILES
THAT CREATE CIRCULAR MATRICES FOR USE IN THIS WAY AND OF COURSE YOU CAN D
STIFFNESS MATRIX FEESMINTHS SCANNED MATRIX EDITOR

8HEN USING SMALLER SIZE TABLES IT MAY BE NECESSARY TO USE INTERPOLATION TO /
ARTIFACTS OF A SMACRASSBVES US THIS OPTION AS A FIFTH OPT k&, ARGUMENT
DETAILED IN THE REFERENCE MANUAL AND WORTH EXPERIMENTING WITH

6SING THE OPCODES SCANU AND SCANS REQUIRE THAT WE FILL IN ARGUMENTS AND |
F TABLES INCLUDING AT LEAST ONE EXTERNAL "4$** FILE BECAUSE NO ONE WANTS T(
ARGUMENTS TO AN F STATEMENT 5HIS A VERY CHALLENGING PAIR OF OPCODES 5

OF SCANNED SYNTHESIS IS THAT THERE IS NO ONE SCANNED SYNTHESIS SOUND

USING BALANCE TO TAME AMPLITUDES

JOWEVER LIKE THIS FRONTIER CAN BE A LAWLESS DANGEROUS PLACE 8HEN EXPERIM
SCANNED SYNTHESIS PARAMETERS ONE CAN ILLICIT EXTRAORDINARILY LOUD SOUNDS
OFTEN BY SOMETHING AS SIMPLE AS A MISPLACED DECIMAL POINT

Warning the following .csd is hot, it produces massively loud amplitude values. Be
very cautious about rendering this .csd, | highly recommend rendering to a file
instead of real-time, if you must run it.

EXAMPLE 04H09 Scan_extreme_amplitude.csd

<CsoundSynthesizer>
<CsOptions>

http://www.csounds.com/manual/html/GEN23.html
http://csounds.com/scanned/scanned_synthesis_matricies.zip
http://www.csounds.com/stevenyi/scanned/

-0 dac
</CsOptions>
<Cslnstruments>

nchnls = 2

sr = 44100

ksmps = 256

Odbfs =1

;NOTE THIS CSD WILL NOT RUN UNLESS
;IT IS IN THE SAME FOLDER AS THE FILE "STRING-128"
instr 1

ipos ftgen 1, 0, 128 , 10, 1

irate = .007

ifnvel ftgen 6, 0, 128 , -7, 0, 128, 0.1
ifnmass ftgen 2, 0, 128, -7, 1, 128, 1
ifnstif ftgen 3, 0, 16384, -23, "string-128"
ifncentr ftgen 4, 0, 128, -7, 1, 128, 2
ifndamp ftgen 5, 0, 128, -7, 1, 128, 1
kmass = 1

kstif = 0.1

kcentr = .01

kdamp =1

ileft=0

iright=1

kpos =0

kstrngth = 0.

ain=0

idisp=1

id =22

scanu ipos, irate, ifnvel, ifnmass, \
ifnstif, ifncentr, ifndamp, kmass, \
kstif, kcentr, kdamp, ileft, iright,\
kpos, kstrngth, ain, idisp, id

kamp = 0dbfs*.2

kfreq = 200

ifn ftgen 7, 0, 128, -5, .001, 128, 128.
al scans kamp, kfreq, ifn, id

1 dcblock2 al

jatt = .005

idec=1

islev=1

irel=2

aenv adsr iatt, idec, islev, irel

;outs al*aenv,al*aenv; Uncomment for speaker destruction;
endin

</Cslnstruments>

<CsScore>

f8 0 8192 10 1;

il105

</CsScore>

</CsoundSynthesizer>

SHE EXTREME VOLUME OF THIS CSD COMES FROM FROM A VALUE GIVEN TO SCANU

kdamp =.1

IS NOT EXACTLY A SAFE VALUE FOR THIS ARGUMENT IN FACT ANY VALUE ABOVE FOl
ARGUMENT CAN CAUSE CHAOS

*T WOULD TAKE A SKILLED MATHEMATICIAN TO MAP OUT SAFE POSSIBLE RANGES FOR /
ARGUMENTS OF SCANU * FIGURED OUT THESE VALUES THROUGH A MIX OF TRIAL AND E
studying other .csd's

8E CAN USE THE OBB2QBNTE LISTEN TO SINE WAVE A SIGNAL WITH CONSISTENT SAFE
AMPLITUDE AND SQUASH DOWN OUR EXTREMELY LOUD SCANNED SYNTH OUTPUT WHI
ONLY BECAUSE OF OUR INTENTIONAL CARELESSNESS

EXAMPLE 04H10_ Scan_balanced_amplitudes.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<CslInstruments>

nchnls = 2

sr = 44100

ksmps = 256

Odbfs =1

;NOTE THIS CSD WILL NOT RUN UNLESS

;IT IS IN THE SAME FOLDER AS THE FILE "STRING-128"

instr 1

ipos ftgen 1, 0, 128 , 10, 1

irate = .007

ifnvel ftgen 6, 0, 128, -7, 0, 128, 0.1
ifnmass ftgen 2, 0, 128, -7, 1, 128, 1
ifnstif ftgen 3, 0, 16384, -23, "string-128"
ifncentr ftgen 4, 0, 128, -7, 1, 128, 2
ifndamp ftgen 5,0, 128, -7, 1, 128, 1
kmass =1

kstif = 0.1

kcentr = .01

kdamp =-0.01

ileft=0

iright=1

kpos =0

kstrngth = 0.

ain=0

idisp=1

id =22

scanu ipos, irate, ifnvel, ifnmass, \
ifnstif, ifncentr, ifndamp, kmass, \
kstif, kcentr, kdamp, ileft, iright,\
kpos, kstrngth, ain, idisp, id

kamp = 0dbfs*.2

kfreq = 200

ifn ftgen 7, 0, 128, -5, .001, 128, 128.
al scans kamp, kfreq, ifn, id

http://www.csounds.com/manual/html/balance.html

al dcblock2 al

ifnsine ftgen 8, 0, 8192, 10, 1
a2 oscil kamp, kfreq, ifnsine
al balance al, a2

jatt = .005

idec=1

islev=1

irel=2

aenv adsr iatt, idec, islev, irel
outs al*aenv,al*aenv

endin

</Cslnstruments>

<CsScore>

f8 08192 10 1;

il105

</CsScore>
</CsoundSynthesizer>

*T MUST BE EMPHASIZED THAT THIS IS MERELY A SAFEGUARD 8E STILL GET SAMPLES C
WHEN WE RUN THIS CSD BUT MANY LESS THAN IF WE HAD NOT USED BALANCE *T IS RI
TO USE BALANCE IF YOU ARE DOING REAL TIME MAPPING OF K RATE PROFILE SCALAR A
scansMASS STIFFNESS DAMPING AND CENTERING

REFERENCES AND FURTHER READING

AX . ATTHEWS #ILL 7TERPLANK 30B 4HAW 1ARIS 4AMARAGDIS 3ICHARD #OULANGER +Ol
FFITCH .ATTHEW (ILLIARD .ATT *NGALLS AND 4TEVEN :I ALL WORKED TO MAKE SCANNE
SYNTHESIS USABLE STABLE AND OPENLY AVAILABLE TO THE OPEN SOURCE $SOUND C
SHEIR CONTRIBUTIONS ARE IN THE REFERENCE MANUAL SEVERAL ACADEMIC PAPERS ¢
SYNTHESIS AND JOURNAL ARTICLES AND THE SOFTWARE THAT SUPPORTS THE $SOUN

$SOUNDS COM PAGE ON 4CANNED 4YNTHESIS

HTTP_ WWW CSOUNDS COM SCANNED

%R 3ICHARD #OULANGER S TUTORIAL ON 4CANNED 4YNTHESIS

HTTP_WWW CSOUNDS COM SCANNED TOOT INDEX HTML

ATEVEN :I S 1AGE ON EXPERIMENTING WITH 4CANNED 4YNTHESIS

HTTP_ WWW CSOUNDS COM STEVENYI SCANNED YI@QSCANNED4YNTHESIS HTML

http://www.csounds.com/manual/html/scans.html
http://www.csounds.com/scanned/
http://www.csounds.com/scanned/toot/index.html%20
http://www.csounds.com/stevenyi/scanned/yi_scannedSynthesis.html%20

ENVELOPES

&NVELOPES ARE USED TO DEFINE HOW A VALUE CHANGES OVER TIME *N EARLY SYNTFE
ENVELOPES WERE USED TO DEFINE THE CHANGES IN AMPLITUDE IN A SOUND ACROSS |
THEREBY IMBUING SOUNDS CHARACTERISTICS SUCH AS PERCUSSIVE OR SUSTAININC
ENVELOPES CAN BE APPLIED TO ANY PARAMETER AND NOT JUST AMPLITUDE

$SOUND OFFERS A WIDE ARRAY OF OPCODES FOR GENERATING ENVELOPES INCLUDIN
EMULATE THE CLASSIC "%43 ATTACK DECAY SUSTAIN RELEASE ENVELOPES FOUND OR
AND COMMERCIAL SOFTWARE SYNTHESIZERS " SELECTION OF THESE OPCODES WHIC
BASIC TYPES SHALL BE INTRODUCED HERE

5HE SIMPLEST OPCODE FOR DEFINING ANNHMEBEIEHRIRISBES A SINGLE ENVELOPE
SEGMENT AS A STRAIGHT LINE BETWEEN A START VALUE AND AN END VALUE WHICH HA
DURATION

ares line ia, idur, ib
kres line ia, idur, ib

*N THE FOLLOWING BX@NSPUSED TO CREATE A SIMPLE ENVELOPE WHICH IS THEN USED
THE AMPLITUDE CONPBR&I OFAILLATOR 5HIS ENVELOPE STARTS WITH A VALUE OF TH
OVER THE COURSE OF SECONDS DESCENDS IN LINEAR FASHION TO ZERO

EXAMPLE 05A01_line.csd

<CsoundSynthesizer>

<CsOptions>
-odac ; activates real time sound output
</CsOptions>

<Cslnstruments>
; Example by lain McCurdy

sr=44100

ksmps = 32

nchnls =1

Odbfs = 1

giSine ftgen 0, 0,202, 10, 1 ; a sine wave
instr 1

aEnv line 05,2,0 ; amplitude envelope

aSig poscil aEnv, 500, giSine ; audio oscillator

out aSig ; audio sent to output

endin

</Cslnstruments>
<CsScore>
i 10 2;instrument 1 plays a note for 2 seconds

http://www.csounds.com/manual/html/line.html

e
</CsScore>
</CsoundSynthesizer>

SHE ENVELOPE IN THE ABOVE EXAMPLE ASSUMES THAT ALL NOTES PLAYED BY THIS INS
BE SECONDS LONG *N PRACTICE IT IS OFTEN BENEFICIAL TO RELATE THE DURATION C
TO THE DURATION OF THE NOTE P IN SOME WAY *N THE NEXT EXAMPLE THE DURATIO
ENVELOPE IS REPLACED WITH THE VALUE OF P RETRIEVED FROM THE SCORE WHATEV
SHE ENVELOPE WILL BE STRETCHED OR CONTRACTED ACCORDINGLY

EXAMPLE 05A02_line_p3.csd

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<Cslnstruments>
;Example by lain McCurdy

sr=44100

ksmps = 32

nchnls =1

Odbfs =1

giSine ftgen 0, 0, 2712, 10, 1 ; a sine wave
instr 1

; A single segment envelope. Time value defined by note duration.

aEnv line 0.5,p3,0

aSig poscil aEnv, 500, giSine ; an audio oscillator

out aSig ; audio sent to output

endin

</CslInstruments>

<CsScore>

; p1 p2 p3

il 0 1

il 2 02

il 3 4

e
</CsScore>
</CsoundSynthesizer>

*T MAY NOT BE DISASTROUS IF A ENVELOPE S DURATION DOES NOT MATCH P AND INDE
MANY OCCASIONS WHEN WE WANT AN ENVELOPE DURATION TO BE INDEPENDENT OF P
TO REMAIN AWARE THAT IF P IS SHORTER THAN AN ENVELOPE S DURATION THEN THAT
BE TRUNCATED BEFORE IT IS ALLOWED TO COMPLETE AND IF P IS LONGER THAN AN EN
DURATION THEN THE ENVELOPE WILL COMPLETE BEFORE THE NOTE ENDS THE CONSE
LATTER SITUATION WILL BE LOOKED AT IN MORE DETAIL LATER ON IN THIS SECTION

line AND MOST OF $SOUND S ENVELOPE GENERATORS CAN OUTPUT EITHER K OR A RA
RATE ENVELOPES ARE COMPUTATIONALLY CHEAPER THAN A RATE ENVELOPES BUT IN |
FAST MOVING SEGMENTS QUANTIZATION CAN OCCUR IF THEY OUTPUT A K RATE VARIAE
WHEN THE CONTROL RATE IS LOW WHICH IN THE CASE OF AMPLITUDE ENVELOPES CAN
CLICKING ARTEFACTS OR DISTORTION

LINSHS AN ELABORATIGNADID ALLOWS US TO ADD AN ARBITRARY NUMBER OF SEGMENT
ADDING FURTHER PAIRS OF TIME DURATIONS FOLLOWED ENVELOPE VALUES 1ROVIDEI
WITH A VALUE AND NOT A DURATION WE CAN MAKE THIS ENVELOPE AS LONG AS WE LIK

*N THE NEXT EXAMPLE A MORE COMPLEX AMPLITUDE ENVELOPE ISiE$4gLOYED BY USIN
OPCODE 5HIS ENVELOPE IS ALSO NOTE DURATION P DEPENDENT BUT IN A MORE ELAE
"ATTACK DECAY STAGE IS DEFINED USING EXPLICITLY DECLARED TIME DURATIONS " Rl
IS ALSO DEFINED WITH AN EXPLICITLY DECLARED DURATION 5HE SUSTAIN STAGE IS TH
STAGE BUT TO ENSURE THAT THE DURATION OF THE ENTIRE ENVELOPE STILL ADDS UP
EXPLICITLY DEFINED DURATIONS OF THE ATTACK DECAY AND RELEASE STAGES ARE Sl
P DEPENDENT SUSTAIN STAGE DURATION 'OR THIS ENVELOPE TO FUNCTION CORRECT
THAT P IS NOT LESS THAN THE SUM OF ALL EXPLICITLY DEFINED ENVELOPE SEGMENT [
NECESSARY ADDITIONAL CODE COULD BE EMPLOYED TO CIRCUMVENT THIS FROM HAP

EXAMPLE 05A03_linseg.csd

<CsoundSynthesizer>

<CsOptions>
-odac ; activates real time sound output
</CsOptions>

<Cslnstruments>
; Example by lain McCurdy

sr=44100

ksmps = 32
nchnls = 1

Odbfs =1

giSine ftgen 0, 0, 2712, 10, 1 ; a sine wave

instr 1
; @ more complex amplitude envelope:
; |-attack-|-decay--|---sustain---|-release-|
aEnv linseg 0,0.01,1,0.1,0.1, p3-0.21,0.1,0.1,0

aSig poscil aEnv, 500, giSine
out aSig

endin
</Cslnstruments>
<CsScore>

i101
i125

http://www.csounds.com/manual/html/linseg.html

e
</CsScore>

</CsoundSynthesizer>

SHE NEXT EXAMPLE ILLUSTRATES AN APPROACH THAT CAN BE TAKEN WHENEVER IT IS |
MORE THAN ONE ENVELOPE SEGMENT DURATION BE P DEPENDENT 5HIS TIME EACH S
FRACTION OF P 5HE SUM OF ALL SEGMENTS STILL ADDS UP TO P SO THE ENVELOPE W
ACROSS THE DURATION OF EACH EACH NOTE REGARDLESS OF DURATION

EXAMPLE 05A04 linseg_p3_fractions.csd

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<Cslnstruments>
;Example by lain McCurdy

sr=44100

ksmps = 32
nchnls = 1

Odbfs =1

giSine ftgen 0, 0, 2712, 10, 1; a sine wave

instr 1
aEnv linseg O, p3*0.5, 1, p3*0.5, 0; rising then falling envelope
aSig poscil aEnv, 500, giSine
out aSig
endin

</Cslnstruments>

<CsScore>

; 3 notes of different durations are played
i10 1

i120.1

il13 5

e

</CsScore>

</CsoundSynthesizer>

SHE NEXT EXAMPLE HIGHLIGHTS AN IMPORTANT DIFFERENUEdRNBIESBEHAVIOURS OF
WHEN P EXCEEDS THE DURATION OF AN ENVELOPE

8HEN A NOTE CONTINUES BEYOND THE END OF THEsSEtNDERAMEDERYEL OPE THE
FINAL VALUE OF THAT ENVELOR&elSEFHNED ENVELOPE BEHAVES DIFFERENTLY IN THAT
INSTEAD OF HOLDING ITS FINAL VALUE IT CONTINUES IN A TRAJECTORY DEFINED BY THI

5HIS DIFFERENCE IS ILLUSTRATED IN THE FOLLOMABEARRAR PNYEHEPES OF
INSTRUMENTS AND APPEAR TO BE THE SAME BUT THE DIFFERENCE IN THEIR BEHAVIC
DESCRIBED ABOVE WHEN THEY CONTINUE BEYOND THE END OF THEIR FINAL SEGMENT
LISTENING TO THE EXAMPLE

/OTE THAT INFORMATION GIVEN IN THE $SOUND .ANUAL IN REGARD TO THIS MATTER IS |
THE TIME OF WRITING

EXAMPLE 05A05_line_vs_linseg.csd

<CsoundSynthesizer>

<CsOptions>
-odac ; activates real time sound output
</CsOptions>

<Cslnstruments>
; Example by lain McCurdy

sr = 44100
ksmps = 32
nchnis =1
Odbfs =1
giSine ftgen 0, 0,272, 10, 1 ; a sine wave

instr 1 ; linseg envelope
aCps linseg 300, 1, 600 ; linseg holds its last value
aSig poscil 0.2, aCps, giSine

out aSig
endin

instr 2 ; line envelope

aCps line 300, 1, 600 ; line continues its trajectory
aSig poscil 0.2, aCps, giSine
out aSig
endin

</Cslnstruments>

<CsScore>

i 105; linseg envelope
i265; line envelope

e

</CsScore>

</CsoundSynthesizer>

EXPOANEXPSEARE VERSION&@RDinsegTHAT INSTEAD PRODUCE ENVELOPE SEGMENTS
WITH CONCAVE EXPONENTIAL RATHER THXNANAKRRRISERMRSOFTEN BE MORE
MUSICALLY USEFUL FOR ENVELOPES THAT DEFINE AMPLITUDE OR FREQUENCY AS THE

http://www.csounds.com/manual/html/expon.html
http://www.csounds.com/manual/html/expseg.html

LOGARITHMIC NATURE OF HOW THESE PARAMETERS ARE PERCEIVED ON ACCOUNT OF
THAT IS USED TO DEFINE THESE CURVES WE CANNOT DEFINE A VALUE OF ZERO AT AN
ENVELOPE AND AN ENVELOPE CANNOT CROSS THE ZERO AXIS *F WE REQUIRE A VALUE
INSTEAD PROVIDE A VALUE VERY CLOSE TO ZERO *F WE STILL REALLY NEED ZERO WE |
SUBTRACT THE OFFSET VALUE FROM THE ENTIRE ENVELOPE IN A SUBSEQUENT LINE OF

SHE FOLLOWING EXAMPLE ILLUSTRATES THE Dir¢-EREXQGIHBEBNEENPLIED AS
AMPLITUDE ENVELOPES

EXAMPLE 05A06 line_vs_expon.csd

<CsoundSynthesizer>

<CsOptions>
-odac ; activates real time sound output
</CsOptions>

<Cslnstruments>
; Example by lain McCurdy

sr=44100
ksmps = 32
nchnls =1
Odbfs =1
giSine ftgen 0, 0, 2712, 10, 1 ; a sine wave
instr 1 ; line envelope
aEnv line 1,p3,0
aSig poscil aEnv, 500, giSine
out aSig
endin

instr 2 ; expon envelope

aEnv expon 1, p3, 0.0001
aSig poscil aEnv, 500, giSine
out aSig

endin

</Cslnstruments>

<CsScore>

i102; line envelope

i 221 ;expon envelope
e

</CsScore>

</CsoundSynthesizer>

SHE NEARER OUR NEAR ZERO VALUES ARE TO ZERO THE QUICKER THE CURVE WILL AF
ZERO *N THE NEXT EXAMPLE SMALLER AND SMALLER ENVELOPE END VALUES ARE PA!

EXPON OPCODE USING P VALUES IN THE SCORE 5HE PERCUSSIVE PING SOUNDS ARE
BE INCREASINGLY SHORT

EXAMPLE 05A07_expon_pings.csd

<CsoundSynthesizer>

<CsOptions>
-odac ; activates real time sound output
</CsOptions>

<Cslnstruments>
; Example by lain McCurdy

sr=44100

ksmps = 32
nchnls = 1

Odbfs =1

giSine ftgen 0, 0, 2712, 10, 1 ; a sine wave

instr 1; expon envelope
iIEndVal = p4 ; variable 'iEndVal' retrieved from score
aEnv expon 1, p3,iEndVal
aSig poscil aEnv, 500, giSine
out aSig
endin

</Cslnstruments>

<CsScore>

:p1 p2 p3 p4

il 01 0.001

il 1 1 0.000001

il 2 1 0.000000000000001
e

</CsScore>

</CsoundSynthesizer>

/IOTE TH&ApsedPOES NOT BEHAVE LIKE LINSEG IN THAT IT WILL NOT HOLD ITS LAST FINAL
P EXCEEDS ITS ENTIRE DURATION INSTEAD IT CONTINUES ITS CURVING TRAJECTORY |
SIMILARI® ANExpon 5HIS COULD HAVE DANGEROUS RESULTS IF USED AS AN AMPLITU
ENVELOPE

8HEN DEALING WITH NOTES WITH AN INDEFINITE DURATION AT THE TIME OF INITIATION
ACTIVATED NOTES OR SCORE ACTIVATED NOTES WITH A NEGATIVE P VALUE WE DO N(
OPTION OF USING P IN A MEANINGFUL WAY *NSTEAD WE CAN USE ONE OF $SOUND S El
THAT SENSE THE ENDING OF A NOTE WHEN IT ARRIVES AND ADJUST THEIR BEHAVIOUR
THIS 5HE OPCODES IN QUHBEIDNiAdRIGr, expsegr, madsr, mxadsd@nvipxr.

5HESE OPCODES WAIT UNTIL A HELD NOTE IS TURNED OFF BEFORE EXECUTING THEIR F

SEGMENT 50 FACILITATE THIS MECHANISM THEY EXTEND THE DURATION OF THE NOTE
FINAL ENVELOPE SEGMENT CAN COMPLETE

SHE FOLLOWING EXAMPLE USES MIDI INPUT EITMER HARODWARH ORTE NOTES SHE
USE OF TinéegrENVELOPE MEANS THAT AFTER THE SHORT ATTACK STAGE LASTING SE
PENULTIMATE VALUE OF WILL BE HELD AS LONG AS THE NOTE IS SUSTAINED BUT AS S(
IS RELEASED THE NOTE WILL BE EXTENDED BY SECONDS IN ORDER TO ALLOW THE FII
SEGMENT TO DECAY TO ZERO

EXAMPLE 05A08_linsegr.csd

<CsoundSynthesizer>

<CsOptions>

-odac -+rtmidi=virtual -MO

; activate real time audio and MIDI (virtual midi device)
</CsOptions>

<Cslnstruments>
; Example by lain McCurdy

sr=44100

ksmps = 32
nchnls = 1

Odbfs =1

giSine ftgen 0,0, 2*12, 10,1 ; a sine wave

instr 1
icps cpsmidi
; attack-|sustain-|-release
aEnv linsegr 0, 0.01, 0.1, 0.5,0; envelope that senses note releases
aSig poscil aEnv, icps, giSine ; audio oscillator
out aSig ; audio sent to output
endin

</Cslnstruments>

<CsScore>

f 0 240 ; csound performance for 4 minutes
e

</CsScore>

</CsoundSynthesizer>

40METIMES DESIGNING OUR ENVELOPE SHAPE IN A FUNCTION TABLE CAN PROVIDE US
THAT ARE NOT POSSIBLE USING $SOUND S ENVELOPE GENERATING OPCODES *N THIS
ENVELOPE CAN BE READ FROM THE FUNCTION TABLE USING AN OSCILLATOR AND IF TH
GIVEN A FREQUENCY OF P THEN IT WILL READ THOUGH THE ENVELOPE JUST ONCE AC
DURATION OF THE NOTE

SHE FOLLOWING EXAMPLE GENERATES AN AMPLITUDE ENVELOPE WHICH IS THE SHAPE
HALF OF A SINE WAVE

EXAMPLE 05A09 sine_env.csd

<CsoundSynthesizer>

<CsOptions>
-odac ; activate real time sound output
</CsOptions>

<Cslnstruments>
; Example by lain McCurdy

sr=44100

ksmps = 32
nchnls = 1

Odbfs =1

giSine ftgen 0,0, 2*12, 10,1 ; a sine wave
giEnv ftgen 0,0, 2*12, 9, 0.5, 1, 0 ; envelope shape: a half sine

instr 1
; read the envelope once during the note's duration:
aEnv poscil 1, 1/p3, giEnv
aSig poscil aEnv, 500, giSine ; audio oscillator
out aSig ; audio sent to output
endin

</Cslnstruments>

<CsScore>

; 7 notes, increasingly short
i102

i121
i130.5
i140.25
i150.125
i160.0625
i170.03125
fo7.1

e
</CsScore>

</CsoundSynthesizer>

LPSHOLD, LOOPSEG AND LOOPTSEG - A
CSOUND TB303

5HE NEXT EXAMPLE INTRODUCES THREE OF $SOUNDLB3$9OHINF SREDODES
LOOPTSEG

http://www.csounds.com/manual/html/lpshold.html
http://www.csounds.com/manual/html/loopseg.html
http://www.csounds.com/manual/html/looptseg.html

SHESE OPCODES GENERATE ENVELOPES WHICH ARE LOOPED AT A RATE CORRESPONL
FREQUENCY 8HAT THEY EACH DO COULD ALSO BE ACCOMPLISHED USING THE ENVELC
TECHNIQUE OUTLINED IN AN EARLIER EXAMPLE BUT THESE OPCODES PROVIDES THE Al
CONVENIENCE OF ENCAPSULATING ALL THE REQUIRED CODE IN ONE LINE WITHOUT THI
FUNCTION TABLES 'URTHERMORE ALL OF THE INPUT ARGUMENTS FOR THESE OPCODE
MODULATED AT K RATE

IpsholdGENERATES AN ENVELOPE WITH IN WHICH EACH BREAK POINT IS HELD CONSTAN
BREAK POINT IS ENCOUNTERED 5HE RESULTING ENVELOPE WILL CONTAIN HORIZONTA
*N OUR EXAMPLE THIS OPCODE WILL BE USED TO GENERATE A LOOPING BASSLINE IN Tt
30OLAND 5# #ECAUSE THE DURATION OF THE ENTIRE ENVELOPE IS WHOLLY DEPENDET
FREQUENCY WITH WHICH THE ENVELOPE REPEATS IN FACT IT IS THE RECIPROCAL h V/
DURATIONS OF INDIVIDUAL ENVELOPE SEGMENTS ARE DEFINING TIMES IN SECONDS BU
PROPORTIONS OF THE ENTIRE ENVELOPE DURATION 5HE VALUES GIVEN FOR ALL THES
NOT NEED TO ADD UP TO ANY SPECIFIC VALUE AS $SOUND RESCALES THE PROPORTIOI
TO THE SUM OF ALL SEGMENT DURATIONS :0OU MIGHT FIND IT CONVENIENT TO CONTRI\
THEM ALLADDUPTO ORTO hEITHER IS EQUALLY VALID 5HE OTHER LOOPING ENVE
OPCODES DISCUSSED HERE USE THE SAME METHOD FOR DEFINING SEGMENT DURATIC

loopsegALLOWS US TO DEFINE A LOOPING ENVELOPE WITH LINEAR SEGEMENTS *N THIS
IS USED TO DEFINE THE AMPLITUDE ENVELOPE OF EACH INDIVIDUAL NOTE 5AKE NOTE"
THEpsholdENVELOPE USED TO DEFINE THE PITCHES OF THE MELODY REPEATS ONCE PE
AMPLITUDE ENVELOPE REPEATS ONCE FOR EACH NOTE OF THE MELODY THEREFORE I
TIMES THAT OF THE MELODY ENVELOPE THERE ARE NOTES IN OUR MELODIC PHRASE

looptsegS AN ELABORATIHONSBHN THAT IS ALLOWS US TO DEFINE THE SHAPE OF EACH
SEGMENT INDIVIDUALLY WHETHER THAT BE CONVEX LINEAR OF CONCAVE 5HIS ASPEC
USING THE TYPE PARAMETERS " TYPE VALUE OF DENOTES A LINEAR SEGEMENT AF
DENOTES A CONVEX SEGMENT WITH HIGHER POSITIVE VALUES RESULTING IN INCREASI
CURVES /EGATIVE VALUES DENOTE CONCAVE SEGMENTS WITH INCREASING NEGATIVE
RESULTING IN INCREASINGLY CONCAVE CURVIESptsediSIS EXBWOLEEFINE A

FILTER ENVELOPE WHICH LIKE THE AMPLITUDE ENVELOPE REPEATS FOR EVERY NOTE
THE TYPE PARAMETER ALLOWS US TO MODULATE THE SHARPNESS OF THE DECAY