CSOUND

Copyright: The Contributors
License: CC BY

1I

CONTENTS

INTRODUCTION
PREFACE

HOW TO USE THIS MANUAL
ON THIS (6th) RELEASE
License

01 BASICS

DIGITAL AUDIO
FREQUENCIES
INTENSITIES

RANDOM

02 QUICK START
MAKE CSOUND RUN
CSOUND SYNTAX
CONFIGURING MIDI
LIVE AUDIO
RENDERING TO FILE

03 CSOUND LANGUAGE

INITIALIZATION AND PERFORMANCE PASS

LOCAL AND GLOBAL VARIABLES

11

21

31

37

47

83

93

99

105

111

115

143

111

CONTROL STRUCTURES

FUNCTION TABLES

ARRAYS

LIVE EVENTS

USER DEFINED OPCODES

MACROS

FUNCTIONAL SYNTAX

04 SOUND SYNTHESIS

ADDITIVE SYNTHESIS

SUBTRACTIVE SYNTHESIS

AMPLITUDE AND RING MODULATION

FREQUENCY MODULATION

WAVESHAPING

GRANULAR SYNTHESIS

PHYSICAL MODELLING

SCANNED SYNTHESIS

05 SOUND MODIFICATION

ENVELOPES

PANNING AND SPATIALIZATION

FILTERS

DELAY AND FEEDBACK

v

159

181

207

239

267

287

293

301

325

339

343

351

363

375

401

419

437

485

493

REVERBERATION

AM /RM / WAVESHAPING

GRANULAR SYNTHESIS

CONVOLUTION

FOURIER TRANSFORMATION / SPECTRAL PROCESSING
K. ANALYSIS TRANSFORMATION SYNTHESIS
AMPLITUDE AND PITCH TRACKING

Dynamic Gating and Amplitude Triggering

Pitch Tracking

06 SAMPLES

RECORD AND PLAY SOUNDFILES

RECORD AND PLAY BUFFERS

07 MIDI

RECEIVING EVENTS BY MIDIIN

TRIGGERING INSTRUMENT INSTANCES

WORKING WITH CONTROLLERS

READING MIDI FILES

MIDI OUTPUT

08 OTHER COMMUNICATION

OPEN SOUND CONTROL - NETWORK COMMUNICATION

CSOUND AND ARDUINO

501

511

519

531

539

551

575

581

585

591

595

611

615

623

633

637

643

645

09 CSOUND IN OTHER APPLICATIONS

CSOUND IN PD 661
CSOUND IN MAXMSP 673
CSOUND IN ABLETON LIVE 685
D. CSOUND AS A VST PLUGIN 687

10 CSOUND FRONTENDS

CsoundQt 689
BLUE 721
WinXound 729
CSOUND VIA TERMINAL 737
WEB BASED CSOUND 741

11 CSOUND UTILITIES

CSOUND UTILITIES 755

12 CSOUND AND OTHER PROGRAMMING LANGUAGES

THE CSOUND API 759
PYTHON INSIDE CSOUND 785
C.PYTHON IN CSOUNDQT! 799
D. LUA IN CSOUND 831
E. CSOUND IN iOS 833
Introduction 835

The imports (discussed in detail in section 3.2.1) are declared:

839

VI

Every method needs at least an empty function shell. Some methods, such
as updateValuesFromCsound are left empty, because - for the tutorial
example - there is no need to get values from Csound. Other protocol
methods have functionality added. These are discussed below.

843

The first lines of code in the instrument set up some important values for
the .csd to use when processing audio. These are described in Table 2.4,
and are discussed in more detail in the Reference section of the Csound
Manual

845

The instrument then takes values from Csound using the chnget opcode:
847

The third parameter of the poscil opcode in this case is 1. This means ‘use
f-table 1'. Section 3.3 explains f-tables in more depth.

849
3 Using the Mobile Csound API in an Xcode Project 851

As mentioned previously, Csound instruments are defined in the orchestra section of the .csd file.
The example project provided by the authors uses a simple oscillator that has two parameters:
amplitude and frequency, both of which are controlled by UT sliders.

861

Figure 3.10 shows a block diagram of the synthesizer we are using in the example project. 863

F. CSOUND ON ANDROID 869
CSOUND AND HASKELL 885
H. CSOUND AND HTML 891
Introduction 893
13 EXTENDING CSOUND

EXTENDING CSOUND 905
OPCODE GUIDE

OPCODE GUIDE: OVERVIEW 915
OPCODE GUIDE: BASIC SIGNAL PROCESSING 967
OPCODE GUIDE: ADVANCED SIGNAL PROCESSING 997

viI

OPCODE GUIDE: DATA

OPCODE GUIDE: REALTIME INTERACTION

OPCODE GUIDE: INSTRUMENT CONTROL

OPCODE GUIDE: MATH, PYTHON/ SYSTEM, PLUGINS

APPENDIX

METHODS OF WRITING CSOUND SCORES

GLOSSARY

LINKS

VIII

1013

1037

1049

1065

1081

1101

1107

PREFACE

PREFACE

Read the Read the
Online Version EPUB Version
Read the Read in

PDF Version Open Office

Csound is one of the most well known and longest established
programs in the field of audio programming. It was developed in the
mid-1980s at the Massachusetts Institute of Technology (MIT) by
Barry Vercoe.

Csound's history lies deep in the roots of computer music. It is a
direct descendant of the oldest computer program for sound synthesis,
'MusicN', by Max Mathews. Csound is free and open source,
distributed under the LGPL licence, and is maintained and expanded
by a core of developers with support from a wider global community.

Csound has been growing for about 30 years. There is rarely anything
related to audio you cannot do with Csound. You can work by
rendering offline, or in real-time by processing live audio and
synthesizing sound on the fly. You can control Csound via MIDI,
OSC, or via the Csound API (Application Programming Interface). In
Csound, you will find the widest collection of tools for sound
synthesis and sound modification, including special filters and tools
for spectral processing.

PREFACE

Csound is simultaneously both 'old school' and 'new school'.

Is Csound difficult to learn? Generally speaking, graphical audio

programming languages like Pure Data,! Max or Reaktor are easier
to learn than text-coded audio programming languages like Csound or
SuperCollider. In Pd, Max or Reaktor you cannot make a typo which
produces an error that you do not understand. You program without
being aware that you are programming. The user experience mirrors
that of patching together various devices in a studio. This is a
fantastically intuitive approach but when you deal with more
complex projects, a text-based programming language is often easier
to use and debug, and many people prefer to program by typing words
and sentences rather than by wiring symbols together using the
mouse.

It is also very easy to use Csound as an audio engine inside Pd or
Max. Have a look at the chapter Csound in Other Applications for
further information.

Amongst text-based audio programming languages, Csound is
arguably the simplest. You do not need to know any specific
programming techniques or be a computer scientist. The basics of the
Csound language are a straightforward transfer of the signal flow
paradigm to text.

For example, to create a 400 Hz sine oscillator with an amplitude of
0.2, this is the signal flow:

Frequency Amplitude
400 Hz 0.2

Out

PREFACE

Here is a possible transformation of the signal graph into Csound
code:

instr Sine

aSig poscil 0.2, 400
out aSig

endin
The oscillator is represented by the opcode poscil and receives its
input arguments on the right-hand side. These are amplitude (0.2) and
frequency (400). It produces an audio signal called aSig at the left
side which is in turn the input of the second opcode out. The first and

last lines encase these connections inside an instrument called Sine.

Since Csound version 6, you can also write the same code in a more

condensed way as shown below:?

out poscil(0.2, 400)

endin
It is often difficult to find up to date resources that show and explain
what is possible with Csound. Documentation and tutorials produced
by developers and experienced users tend to be scattered across many
different locations. This issue was one of the main motivations for
producing this manual; to facilitate a flow between the knowledge of
contemporary Csound users and those wishing to learn more about
Csound.

Fifteen years after the milestone of Richard Boulanger's Csound
Book, the Csound FLOSS Manual is intended to offer an easy-to-
understand introduction and to provide a centre of up to date
information about the many features of Csound, not as detailed and as
in depth as the Csound Book, but including new information and
sharing this knowledge with the wider Csound community.

Throughout this manual we will attempt a difficult balancing act:
providing users with knowledge of most of the important aspects of
Csound but also remaining concise and simple enough to save you
from drowning within the ocean of possibilities offered by Csound.

PREFACE

Frequently this manual will link to other more detailed resources such
as the Canonical Csound Reference Manual, the primary
documentation provided by the Csound developers and associated
community over the years, and the Csound Journal (edited by Steven
Yi and James Hearon), a quarterly online publication with many great
Csound-related articles.

We hope you enjoy reading this textbook and wish you happy
Csounding!

1. more commonly known as Pd - see the Pure Data FLOSS
Manual for further information”
2. See chapter 03I about Functional Syntax”

HOW TO USE THIS MANUAL

HOW TO USE THIS MANUAL

The goal of this manual is to provide a readable introduction to
Csound. In no way is it meant as a replacement for the Canonical
Csound Reference Manual. It is intended as an introduction-tutorial-
reference hybrid, gathering together the most important information
you will need to work with Csound in a variety of situations. In many
places links are provided to other resources such as The Canonical
Csound Reference Manual, the Csound Journal, example collections
and more.

It is not necessary to read each chapter in sequence, feel free to jump
to any chapter that interests you although bear in mind that
occasionally a chapter will make reference to a previous one.

If you are new to Csound, the QUICK START chapter will be the best
place to go to help you get started. BASICS provides a general
introduction to key concepts about digital sound, vital to
understanding how Csound deals with audio. The CSOUND
LANGUAGE chapter provides greater detail about how Csound
works and how to work with Csound.

SOUND SYNTHESIS introduces various methods of creating sound
from scratch and SOUND MODIFICATION describes various
methods of transforming sounds that already exist. SAMPLES
outlines various ways you can record and playback audio samples in
Csound; an area that might be of particular interest to those intent on
using Csound as a real-time performance instrument. The MIDI and
OPEN SOUND CONTROL chapters focus on different methods of
controlling Csound using external software or hardware. The final
chapters introduce various front-ends that can be used to interface
with the Csound engine and Csound's communication with other
applications.

If you would like to know more about a topic, and in particular about

HOW TO USE THIS MANUAL

the use of any opcode, please refer first to the Canonical Csound
Reference Manual.

All files - examples and audio files - can be downloaded at
www.csound-tutorial.net . If you use CsoundQt, you can find all the
examples in CsoundQt's examples menu under "Floss Manual
Examples". When learning Csound (or any other programming
language), you may find it beneficial to type the examples out
yourself as it will help you to memorise Csound's syntax as well as
how to use its opcodes. The more you get used to typing out Csound
code, the more proficient you will become at integrating new
techniques as your concentration will shift from the code to the idea
behind the code and the easier it will become for you to design your
own instruments and compositions.

Like other audio tools, Csound can produce an extreme dynamic
range. Be careful when you run the examples! Set the volume on your
amplifier low to start with and take special care when using
headphones.

You can help to improve this manual either by reporting bugs or by
sending requests for new topics or by joining as a writer. Just contact
one of the maintainers (see ON THIS RELEASE).

Some issues of this textbook can be ordered as a print-on-demand
hard copy at www.lulu.com. Just use Lulu's search utility and look for
"Csound".

ON THIS (6th) RELEASE

ON THIS (6TH) RELEASE

A year on from the 5th release, this release adds some exciting new
sections as well as a number of chapter augmentations and necessary
updates. Notable are Michael Gogins' Chapter on running Csound
within a browser using HTML5 technology, Victor Lazarrini's and Ed
Costello's explanations about Web based Csound, and a new chapter
describing the use pairing Csound with the Haskell programming
language.

Thanks to all contributors to this release.

WHAT'S NEW IN THIS RELEASE

¢ Added a section about the necessity of explicit initialization of
k-variables for multiple calls of an instrument or UDO in
chapter 03A Initialization and Performance Pass (examples
8-10).

e Added a section about the while/until loop in chapter 03C
Control Structures.

¢ Expanded chapter 03D Function Tables, adding descriptions
of GEN 08, 16, 19 and 30.

e Small additions in chapter O3E Arrays.

e Some additions and a new section to help using the different
opcodes (schedule, event, scoreline etc) in 03F Live Events.

e Added a chapter 03I about Functional Syntax.

o Added examples and descriptions for the powershape and
distort opcodes in the chapter 04 Sound Synthesis:
Waveshaping.

e Expanded chapter 05A Envelopes, principally to incorporate
descriptions of transeg and cosseg.

¢ Added chapter O5L about methods of amplitude and pitch
tracking in Csound.

e Added example to illustrate the recording of controller
data to the chapter 07C Working with Controllers at the
request of Menno Knevel.

ON THIS (6th) RELEASE

e Chapter 10B Cabbage has been updated and attention drawn to
some of its newest features.

e Chapter 10F Web Based Csound has now a description about
how to use Csound via UDP and about pNaCl Csound (written
by Victor Lazzarini). The section about Csound as a Javascript
Library (using Emscripten) in the same chapter has been
updated by Ed Costello.

e Refactored chapter 12A about The Csound API for Csound6
and added a section about the use of Foreign Function
Interfaces (FFI) (written by Frangois Pinot).

e Added chapter 12G about Csound and Haskell (written by
Anton Kholomiov).

e Added chapter 12H about Csound and HMTL, also
explaining the usage of HTML5 Widgets (written by Michael
Gogins).

The examples in this book are included in CsoundQt (Examples >
FLOSS Manual Examples). Even the examples which require
external files should now work out of the box.

If you would like to refer to previous releases, you can find them at
http://files.csound-tutorial.net/floss_manual. Also here are all the
current csd files and audio samples.

Berlin, March 2015

Iain McCurdy and Joachim Heintz

ON THIS (6th) RELEASE

ON THIS (6th) RELEASE

10

License

LICENSE

All chapters copyright of the authors (see below). Unless otherwise
stated all chapters in this manual licensed with GNU General Public
License version 2

This documentation is free documentation; you can redistribute it
and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This documentation is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License
along with this documentation; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-
1301, USA.

AUTHORS

Note that this book is a collective effort, so some of the contributors
may not have been quoted correctly. If you are one of them, please
contact us, or simply put your name at the right place.

INTRODUCTION
PREFACE

Joachim Heintz, Andres Cabrera, Alex Hofmann, Iain McCurdy,
Alexandre Abrioux

11

License

HOW TO USE THIS MANUAL
Joachim Heintz, Andres Cabrera, Iain McCurdy, Alexandre Abrioux

01 BASICS

A. DIGITAL AUDIO

Alex Hofmann, Rory Walsh, Iain McCurdy, Joachim Heintz

B. PITCH AND FREQUENCY

Rory Walsh, Iain McCurdy, Joachim Heintz

C. INTENSITIES
Joachim Heintz

D. RANDOM
Joachim Heintz, Martin Neukom, Iain McCurdy

02 QUICK START

A. MAKE CSOUND RUN
Alex Hofmann, Joachim Heintz, Andres Cabrera, Iain McCurdy, Jim
Aikin, Jacques Laplat, Alexandre Abrioux, Menno Knevel

B. CSOUND SYNTAX
Alex Hofmann, Joachim Heintz, Andres Cabrera, lain McCurdy

C. CONFIGURING MIDI
Andres Cabrera, Joachim Heintz, Iain McCurdy

D. LIVE AUDIO
Alex Hofmann, Andres Cabrera, Iain McCurdy, Joachim Heintz

E. RENDERING TO FILE
Joachim Heintz, Alex Hofmann, Andres Cabrera, Iain McCurdy

12

03 CSOUND LANGUAGE

A. INITIALIZATION AND PERFORMANCE PASS
Joachim Heintz

B. LOCAL AND GLOBAL VARIABLES
Joachim Heintz, Andres Cabrera, Iain McCurdy

C. CONTROL STRUCTURES
Joachim Heintz

D. FUNCTION TABLES
Joachim Heintz, Tain McCurdy

E. ARRAYS
Joachim Heintz

F. LIVE CSOUND
Joachim Heintz, lain McCurdy

G. USER DEFINED OPCODES
Joachim Heintz

H. MACROS
[ain McCurdy

I. FUNCTIONAL SYNTAX
Joachim Heintz

04 SOUND SYNTHESIS

A. ADDITIVE SYNTHESIS
Andres Cabrera, Joachim Heintz, Bjorn Houdorf

B. SUBTRACTIVE SYNTHESIS
lain McCurdy

License

13

License

C. AMPLITUDE AND RINGMODULATION
Alex Hofman

D. FREQUENCY MODULATION

Alex Hofmann, Bjorn Houdorf

E. WAVESHAPING
Joachim Heintz, Iain McCurdy

F. GRANULAR SYNTHESIS
[ain McCurdy

G. PHYSICAL MODELLING
Joachim Heintz, Tain McCurdy, Martin Neukom

H. SCANNED SYNTHESIS
Christopher Saunders

05 SOUND MODIFICATION

A. ENVELOPES
[ain McCurdy

B. PANNING AND SPATIALIZATION
Iain McCurdy, Joachim Heintz

C. FILTERS
[ain McCurdy

D. DELAY AND FEEDBACK
[ain McCurdy

E. REVERBERATION
[ain McCurdy

F.AM / RM / WAVESHAPING

14

License

Alex Hofmann, Joachim Heintz

G. GRANULAR SYNTHESIS
[ain McCurdy, Oeyvind Brandtsegg, Bjorn Houdorf

H. CONVOLUTION
[ain McCurdy

I. FOURIER ANALYSIS / SPECTRAL PROCESSING
Joachim Heintz

K. ANALYSIS TRANSFORMATION SYNTHESIS
Oscar Pablo di Liscia

L. AMPLITUDE AND PITCH TRACKING
[ain McCurdy

06 SAMPLES

A. RECORD AND PLAY SOUNDFILES
Iain McCurdy, Joachim Heintz

B. RECORD AND PLAY BUFFERS
lain McCurdy, Joachim Heintz, Andres Cabrera

07 MIDI

A. RECEIVING EVENTS BY MIDIIN
[ain McCurdy

B. TRIGGERING INSTRUMENT INSTANCES
Joachim Heintz, Tain McCurdy

C. WORKING WITH CONTROLLERS
[ain McCurdy

D. READING MIDI FILES
lain McCurdy

15

License

E. MIDI OUTPUT
[ain McCurdy

08 OTHER COMMUNICATION

A. OPEN SOUND CONTROL
Alex Hofmann

B. CSOUND AND ARDUINO
[ain McCurdy

09 CSOUND IN OTHER APPLICATIONS

A. CSOUND IN PD
Joachim Heintz, Jim Aikin

B. CSOUND IN MAXMSP
Davis Pyon

C. CSOUND IN ABLETON LIVE
Rory Walsh

D. CSOUND AS A VST PLUGIN
Rory Walsh

10 CSOUND FRONTENDS

CSOUNDQT
Andrés Cabrera, Joachim Heintz, Peiman Khosravi

CABBAGE
Rory Walsh, Menno Knevel, Iain McCurdy

BLUE
Steven Yi, Jan Jacob Hofmann

16

License

WINXOUND
Stefano Bonetti, Menno Knevel

CSOUND VIA TERMINAL
[ain McCurdy

WEB BASED CSOUND
Victor Lazzarini, Iain McCurdy, Ed Costello

11 CSOUND UTILITIES

CSOUND UTILITIES
[ain McCurdy

12 CSOUND AND OTHER PROGRAMMING
LANGUAGES

A. THE CSOUND API
Francois Pinot, Rory Walsh

B. PYTHON INSIDE CSOUND
Andrés Cabrera, Joachim Heintz

C. PYTHON IN CSOUNDQT
Tarmo Johannes, Joachim Heintz

D. LUA IN CSOUND

E. CSOUND IN IOS
Nicholas Arner

F. CSOUND ON ANDROID
Michael Gogins

G. CSOUND AND HASKELL
Anton Kholomiov

H. CSOUND AND HTML

17

License

Michael Gogins

13 EXTENDING CSOUND

EXTENDING CSOUND
Victor Lazzarini

OPCODE GUIDE

OVERVIEW
Joachim Heintz, Iain McCurdy

SIGNAL PROCESSING 1
Joachim Heintz, lain McCurdy

SIGNAL PROCESSING 11
Joachim Heintz, Iain McCurdy

DATA
Joachim Heintz, Iain McCurdy

REALTIME INTERACTION
Joachim Heintz, Iain McCurdy

INSTRUMENT CONTROL
Joachim Heintz, Iain McCurdy

MATH, PYTHON/SYSTEM, PLUGINS
Joachim Heintz, lain McCurdy

APPENDIX

GLOSSARY
Joachim Heintz, Iain McCurdy

LINKS
Joachim Heintz, Stefano Bonetti

18

License

METHODS OF WRITING CSOUND SCORES

Iain McCurdy, Joachim Heintz, Jacob Joaquin, Menno Knevel
V.1 - Final Editing Team in March 2011:

Joachim Heintz, Alex Hofmann, Iain McCurdy

V.2 - Final Editing Team in March 2012:

Joachim Heintz, lain McCurdy

V.3 - Final Editing Team in March 2013:
Joachim Heintz, Iain McCurdy

V.4 - Final Editing Team in September 2013:
Joachim Heintz, Alexandre Abrioux

V.5 - Final Editing Team in March 2014:
Joachim Heintz, Iain McCurdy

V.6 - Final Editing Team March-June 2015:

Joachim Heintz, Tain McCurdy

[rLoss

S ANUALS

Free manuals for free software

19

License

20

DIGITAL AUDIO

DIGITAL AUDIO

At a purely physical level, sound is simply a mechanical disturbance
of a medium. The medium in question may be air, solid, liquid, gas or
a mixture of several of these. This disturbance to the medium causes
molecules to move to and fro in a spring-like manner. As one
molecule hits the next, the disturbance moves through the medium
causing sound to travel. These so called compressions and
rarefactions in the medium can be described as sound waves. The
simplest type of waveform, describing what is referred to as 'simple
harmonic motion', is a sine wave.

VU

pariod = T = 1/} ——a=

ZSignal Strength
[]

(&) Sine Wave

Each time the waveform signal goes above 0 the molecules are in a
state of compression meaning they are pushing towards each other.
Every time the waveform signal drops below O the molecules are in a
state of rarefaction meaning they are pulling away from each other.
When a waveform shows a clear repeating pattern, as in the case
above, it is said to be periodic. Periodic sounds give rise to the
sensation of pitch.

ELEMENTS OF A SOUND WAVE

Periodic waves have four common parameters, and each of the four
parameters affects the way we perceive sound.

21

DIGITAL AUDIO

e Period: This is the length of time it takes for a waveform to
complete one cycle. This amount of time is referred to as t

¢ Wavelength(): the distance it takes for a wave to complete one
full period. This is usually measured in meters.

¢ Frequency: the number of cycles or periods per second.
Frequency is measured in Hertz. If a sound has a frequency of
440Hz it completes 440 cycles every second. Given a
frequency, one can easily calculate the period of any sound.
Mathematically, the period is the reciprocal of the frequency
(and vice versa). In equation form, this is expressed as follows.

Frequency = 1/Period Period = 1/Frequency

Therefore the frequency is the inverse of the period, so a wave of
100 Hz frequency has a period of 1/100 or 0.01 secs, likewise a
frequency of 256Hz has a period of 1/256, or 0.004 secs. To
calculate the wavelength of a sound in any given medium we
can use the following equation:

Wavelength = Velocity/Frequency

Humans can hear frequencies from 20Hz to 20000Hz (although this
can differ dramatically from individual to individual). You can read
more about frequency in the next chapter.

22

e Phase: This is the starting point of a waveform. The starting
point along the Y-axis of our plotted waveform is not always O.
This can be expressed in degrees or in radians. A complete
cycle of a waveform will cover 360 degrees or (2 x pi) radians.

DIGITAL AUDIO

e Amplitude: Amplitude is represented by the y-axis of a plotted
pressure wave. The strength at which the molecules pull or
push away from each other will determine how far above and
below 0 the wave fluctuates. The greater the y-value the
greater the amplitude of our wave. The greater the
compressions and rarefactions the greater the amplitude.

TRANSDUCTION

The analogue sound waves we hear in the world around us need to be
converted into an electrical signal in order to be amplified or sent to a
soundcard for recording. The process of converting acoustical energy
in the form of pressure waves into an electrical signal is carried out
by a device known as a a transducer.

A transducer, which is usually found in microphones, produces a
changing electrical voltage that mirrors the changing compression
and rarefaction of the air molecules caused by the sound wave. The
continuous variation of pressure is therefore 'transduced' into
continuous variation of voltage. The greater the variation of pressure
the greater the variation of voltage that is sent to the computer.

Ideally, the transduction process should be as transparent and clean as
possible: i.e., whatever goes in comes out as a perfect voltage
representation. In the real world however this is never the case. Noise
and distortion are always incorporated into the signal. Every time
sound passes through a transducer or is transmitted electrically a
change in signal quality will result. When we talk of 'noise' we are
talking specifically about any unwanted signal captured during the
transduction process. This normally manifests itself as an unwanted
'hiss'.

SAMPLING

23

DIGITAL AUDIO

The analogue voltage that corresponds to an acoustic signal changes
continuously so that at each instant in time it will have a different
value. It is not possible for a computer to receive the value of the
voltage for every instant because of the physical limitations of both
the computer and the data converters (remember also that there are an
infinite number of instances between every two instances!).

What the soundcard can do however is to measure the power of the
analogue voltage at intervals of equal duration. This is how all digital
recording works and is known as 'sampling'. The result of this
sampling process is a discrete or digital signal which is no more than
a sequence of numbers corresponding to the voltage at each
successive sample time.

Below left is a diagram showing a sinusoidal waveform. The vertical
lines that run through the diagram represents the points in time when
a snapshot is taken of the signal. After the sampling has taken place
we are left with what is known as a discrete signal consisting of a
collection of audio samples, as illustrated in the diagram on the right
hand side below. If one is recording using a typical audio editor the
incoming samples will be stored in the computer RAM (Random
Access Memory). In Csound one can process the incoming audio
samples in real time and output a new stream of samples, or write
them to disk in the form of a sound file.

It is important to remember that each sample represents the amount
of voltage, positive or negative, that was present in the signal at the
point in time the sample or snapshot was taken.

24

DIGITAL AUDIO

The same principle applies to recording of live video. A video camera
takes a sequence of pictures of something in motion for example.
Most video cameras will take between 30 and 60 still pictures a
second. Each picture is called a frame. When these frames are played
we no longer perceive them as individual pictures. We perceive them
instead as a continuous moving image.

ANALOGUE VERSUS DIGITAL

In general, analogue systems can be quite unreliable when it comes to
noise and distortion. Each time something is copied or transmitted,
some noise and distortion is introduced into the process. If this is
done many times, the cumulative effect can deteriorate a signal quite
considerably. It is because of this, the music industry has turned to
digital technology, which so far offers the best solution to this
problem. As we saw above, in digital systems sound is stored as
numbers, so a signal can be effectively "cloned". Mathematical
routines can be applied to prevent errors in transmission, which could
otherwise introduce noise into the signal.

SAMPLE RATE AND THE SAMPLING
THEOREM

The sample rate describes the number of samples (pictures/snapshots)
taken each second. To sample an audio signal correctly it is important
to pay attention to the sampling theorem:

"To represent digitally a signal containing frequencies up to X Hz, it is necessary
to use a sampling rate of at least 2X samples per second"

According to this theorem, a soundcard or any other digital recording
device will not be able to represent any frequency above 1/2 the
sampling rate. Half the sampling rate is also referred to as the Nyquist
frequency, after the Swedish physicist Harry Nyquist who formalized
the theory in the 1920s. What it all means is that any signal with
frequencies above the Nyquist frequency will be misrepresented.

25

DIGITAL AUDIO

Furthermore it will result in a frequency lower than the one being
sampled. When this happens it results in what is known as aliasing or
foldover.

ALIASING

Here is a graphical representation of aliasing.

AVANAYS

4 @ L S A &

The sinusoidal wave form in blue is being sampled at each arrow.
The line that joins the red circles together is the captured waveform.
As you can see the captured wave form and the original waveform
have different frequencies. Here is another example:

SR = 40,000 samples/sec
armp

p-

4
10 KHz ; i
Sinle wive "
tirme

s VAAAAN

SIIE wive

We can see that if the sample rate is 40,000 there is no problem
sampling a signal that is 10KHz. On the other hand, in the second
example it can be seen that a 30kHz waveform is not going to be
correctly sampled. In fact we end up with a waveform that is 10kHz,
rather than 30kHz.

The following Csound instrument plays a 1000 Hz tone first directly,

26

DIGITAL AUDIO

and then because the frequency is 1000 Hz lower than the sample rate
of 44100 Hz:

EXAMPLE 01A01_Aliasing.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;example by Joachim Heintz

sr = 44100

ksmps = 32

nchnls = 2

0dbfs =1

instr 1

asig oscils .2, p4, O
outs asig, asig

endin

</CsInstruments>

<CsScore>

i1 0 2 1000 ;1000 Hz tone

i 1 3 2 43100 ;43100 Hz tone sounds like 1000 Hz because of aliasing
</CsScore>

</CsoundSynthesizer>

The same phenomenon takes places in film and video too. You may
recall having seen wagon wheels apparently move backwards in old
Westerns. Let us say for example that a camera is taking 60 frames
per second of a wheel moving. If the wheel is completing one rotation
in exactly 1/60th of a second, then every picture looks the same. - as a
result the wheel appears to stand still. If the wheel speeds up, i.e.,
increases frequency, it will appear as if the wheel is slowly turning
backwards. This is because the wheel will complete more than a full
rotation between each snapshot. This is the most ugly side-effect of
aliasing - wrong information.

As an aside, it is worth observing that a lot of modern 'glitch’ music
intentionally makes a feature of the spectral distortion that aliasing
induces in digital audio.

Audio-CD Quality uses a sample rate of 44100Kz (44.1 kHz). This
means that CD quality can only represent frequencies up to 22050Hz.
Humans typically have an absolute upper limit of hearing of about

27

DIGITAL AUDIO

20Khz thus making 44.1KHz a reasonable standard sampling rate.

BITS, BYTES AND WORDS.
UNDERSTANDING BINARY.

All digital computers represent data as a collection of bits (short for
binary digit). A bit is the smallest possible unit of information. One
bit can only be one of two states - off or on, 0 or 1. The meaning of
the bit, which can represent almost anything, is unimportant at this
point. The thing to remember is that all computer data - a text file on
disk, a program in memory, a packet on a network - is ultimately a
collection of bits.

Bits in groups of eight are called bytes, and one byte usually
represents a single character of data in the computer. It's a little used
term, but you might be interested in knowing that a nibble is half a
byte (usually 4 bits).

THE BINARY SYSTEM

All digital computers work in a environment that has only two
variables, 0 and 1. All numbers in our decimal system therefore must
be translated into 0's and 1's in the binary system. If you think of

binary numbers in terms of switches. With one switch you can
represent up to two different numbers.

0 (OFF) = Decimal 0

1 (ON) = Decimal 1

Thus, a single bit represents 2 numbers, two bits can represent 4
numbers, three bits represent 8 numbers, four bits represent 16

28

DIGITAL AUDIO

numbers, and so on up to a byte, or eight bits, which represents 256
numbers. Therefore each added bit doubles the amount of possible
numbers that can be represented. Put simply, the more bits you have
at your disposal the more information you can store.

BIT-DEPTH RESOLUTION

Apart from the sample rate, another important parameter which can
affect the fidelity of a digital signal is the accuracy with which each
sample is known, in other words knowing how strong each voltage is.
Every sample obtained is set to a specific amplitude (the measure of
strength for each voltage) level. The number of levels depends on the
precision of the measurement in bits, i.e., how many binary digits are
used to store the samples. The number of bits that a system can use is
normally referred to as the bit-depth resolution.

If the bit-depth resolution is 3 then there are 8 possible levels of
amplitude that we can use for each sample. We can see this in the
diagram below. At each sampling period the soundcard plots an
amplitude. As we are only using a 3-bit system the resolution is not
good enough to plot the correct amplitude of each sample. We can
see in the diagram that some vertical lines stop above or below the
real signal. This is because our bit-depth is not high enough to plot
the amplitude levels with sufficient accuracy at each sampling period.

0]
'\
\
e

example here for 4, 6, 8, 12, 16 bit of a sine signal ...
. coming in the next release

The standard resolution for CDs is 16 bit, which allows for 65536
different possible amplitude levels, 32767 either side of the zero axis.

29

DIGITAL AUDIO

Using bit rates lower than 16 is not a good idea as it will result in
noise being added to the signal. This is referred to as quantization
noise and is a result of amplitude values being excessively rounded
up or down when being digitized. Quantization noise becomes most
apparent when trying to represent low amplitude (quiet) sounds.
Frequently a tiny amount of noise, known as a dither signal, will be
added to digital audio before conversion back into an analogue signal.
Adding this dither signal will actually reduce the more noticeable
noise created by quantization. As higher bit depth resolutions are
employed in the digitizing process the need for dithering is reduced.
A general rule is to use the highest bit rate available.

Many electronic musicians make use of deliberately low bit depth
quantization in order to add noise to a signal. The effect is commonly
known as 'bit-crunching' and is relatively easy to do in Csound.

ADC /DAC

The entire process, as described above, of taking an analogue signal
and converting it into a digital signal is referred to as analogue to
digital conversion or ADC. Of course digital to analogue conversion,
DAQC, is also possible. This is how we get to hear our music through
our PC's headphones or speakers. For example, if one plays a sound
from Media Player or iTunes the software will send a series of
numbers to the computer soundcard. In fact it will most likely send
44100 numbers a second. If the audio that is playing is 16 bit then
these numbers will range from -32768 to +32767.

When the sound card receives these numbers from the audio stream it
will output corresponding voltages to a loudspeaker. When the
voltages reach the loudspeaker they cause the loudspeakers magnet to
move inwards and outwards. This causes a disturbance in the air
around the speaker resulting in what we perceive as sound.

30

FREQUENCIES

FREQUENCIES

As mentioned in the previous section frequency is defined as the
number of cycles or periods per second. Frequency is measured in
Hertz. If a tone has a frequency of 440Hz it completes 440 cycles
every second. Given a tone's frequency, one can easily calculate the
period of any sound. Mathematically, the period is the reciprocal of
the frequency and vice versa. In equation form, this is expressed as
follows.

Frequency = 1/Period Period = 1/Frequency

Therefore the frequency is the inverse of the period, so a wave of 100
Hz frequency has a period of 1/100 or 0.01 seconds, likewise a
frequency of 256Hz has a period of 1/256, or 0.004 seconds. To
calculate the wavelength of a sound in any given medium we can use
the following equation:

A = Velocity/Frequency

For instance, a wave of 1000 Hz in air (velocity of diffusion about
340 m/s) has a length of approximately 340/1000 m = 34 cm.

LOWER AND HIGHER BORDERS FOR
HEARING

The human ear can generally hear sounds in the range 20 Hz to
20,000 Hz (20 kHz). This upper limit tends to decrease with age due
to a condition known as presbyacusis, or age related hearing loss.
Most adults can hear to about 16 kHz while most children can hear
beyond this. At the lower end of the spectrum the human ear does not
respond to frequencies below 20 Hz, with 40 of 50 Hz being the
lowest most people can perceive.

So, in the following example, you will not hear the first (10 Hz) tone,
and probably not the last (20 kHz) one, but hopefully the other ones

31

FREQUENCIES

(100 Hz, 1000 Hz, 10000 Hz):

EXAMPLE 01B01_BordersForHearing.csd

<CsoundSynthesizer>
<CsOptions>
-odac -m0
</CsOptions>
<CsInstruments>
;example by joachim heintz
sr = 44100
ksmps = 32
nchnls = 2
Odbfs = 1
instr 1
prints "Playing %d Hertz!\n", p4
asig oscils .2, p4, O
outs asig, asig
endin
</CsInstruments>
<CsScore>
i10 210
i .+ . 100
i . + . 1000
i . + . 10000
i . + . 20000
</CsScore>
</CsoundSynthesizer>

LOGARITHMS, FREQUENCY RATIOS AND
INTERVALS

A lot of basic maths is about simplification of complex equations.
Shortcuts are taken all the time to make things easier to read and
equate. Multiplication can be seen as a shorthand of addition, for
example, 5x10 = 5+5+5+5+5+5+5+5+5+5. Exponents are shorthand

for multiplication, 3% = 3x3x3x3x3. Logarithms are shorthand for
exponents and are used in many areas of science and engineering in
which quantities vary over a large range. Examples of logarithmic
scales include the decibel scale, the Richter scale for measuring
earthquake magnitudes and the astronomical scale of stellar
brightnesses. Musical frequencies also work on a logarithmic scale,
more on this later.

Intervals in music describe the distance between two notes. When

32

FREQUENCIES

dealing with standard musical notation it is easy to determine an
interval between two adjacent notes. For example a perfect 5th is
always made up of 7 semitones. When dealing with Hz values things
are different. A difference of say 100Hz does not always equate to the
same musical interval. This is because musical intervals as we hear
them are represented in Hz as frequency ratios. An octave for
example is always 2:1. That is to say every time you double a Hz
value you will jump up by a musical interval of an octave.

Consider the following. A flute can play the note A at 440 Hz. If the
player plays another A an octave above it at 880 Hz the difference in
Hz is 440. Now consider the piccolo, the highest pitched instrument
of the orchestra. It can play a frequency of 2000 Hz but it can also
play an octave above this at 4000 Hz (2 x 2000 Hz). While the
difference in Hertz between the two notes on the flute is only 440 Hz,
the difference between the two high pitched notes on a piccolo is
1000 Hz yet they are both only playing notes one octave apart.

What all this demonstrates is that the higher two pitches become the
greater the difference in Hertz needs to be for us to recognize the
difference as the same musical interval. The most common ratios
found in the equal temperament scale are the unison: (1:1), the
octave: (2:1), the perfect fifth (3:2), the perfect fourth (4:3), the major
third (5:4) and the minor third (6:5).

The following example shows the difference between adding a
certain frequency and applying a ratio. First, the frequencies of 100,
400 and 800 Hz all get an addition of 100 Hz. This sounds very
different, though the added frequency is the same. Second, the ratio
3/2 (perfect fifth) is applied to the same frequencies. This sounds
always the same, though the frequency displacement is different each
time.

EXAMPLE 01B02_Adding_vs_ratio.csd

<CsoundSynthesizer>

33

FREQUENCIES

<CsOptions>

-odac -m0

</CsOptions>
<CsInstruments>

;example by joachim heintz

sr = 44100
ksmps = 32
nchnls = 2
Odbfs = 1
instr 1
prints "Playing %d Hertz!\n", p4
asig oscils .2, p4, O
outs asig, asig
endin
instr 2
prints "Adding %d Hertz to %d Hertz!\n", p5, p4
asig oscils .2, p4+p5, O
outs asig, asig
endin
instr 3

prints "Applying the ratio of %f (adding %d Hertz)
to %d Hertz!\n", p5, pé4*p5, p4

asig oscils .2, p4*p5, O
outs asig, asig
endin
</CsInstruments>
<CsScore>
;adding a certain frequency (instr 2)
i1 01 100
i 211 100 100
i1 31 400
i 241 400 100
i1 6 1 800
i 2 7 1 800 100
;applying a certain ratio (instr 3)
i 110 1 100
i 311 1 100 [3/2]
i1 13 1 400
i 3 14 1 400 [3/2]
i1 16 1 800
i 317 1 800 [3/2]
</CsScore>

</CsoundSynthesizer>

So what of the algorithms mentioned above. As some readers will

know the current preferred method of tuning western instruments is
based on equal temperament. Essentially this means that all octaves
are split into 12 equal intervals. Therefore a semitone has a ratio of

2(112) "\which is approximately 1.059463.

So what about the reference to logarithms in the heading above? As

stated previously, logarithms are shorthand for exponents. 2(1/12)=
1.059463 can also be written as log2(1.059463)= 1/12. Therefore
musical frequency works on a logarithmic scale.

34

FREQUENCIES

MIDI NOTES

Csound can easily deal with MIDI notes and comes with functions
that will convert MIDI notes to Hertz values and back again. In MIDI
speak A440 is equal to A4 and is MIDI note 69. You can think of A4
as being the fourth A from the lowest A we can hear, well almost
hear.

Caution: like many 'standards' there is occasional disagreement

about the mapping between frequency and octave number. You may
occasionally encounter A440 being described as A3.

35

FREQUENCIES

36

INTENSITIES

INTENSITIES

REAL WORLD INTENSITIES AND
AMPLITUDES

There are many ways to describe a sound physically. One of the most
common is the Sound Intensity Level (SIL). It describes the amount
of power on a certain surface, so its unit is Watt per square meter (

W /m?2). The range of human hearing is about 10-12W /m2 at the
threshold of hearing to 10°W /m? at the threshold of pain. For
ordering this immense range, and to facilitate the measurement of one
sound intensity based upon its ratio with another, a logarithmic scale
is used. The unit Bel describes the relation of one intensity I to a
reference intensity I0 as follows:

loglofio Sound Intensity Level in Bel

If, for instance, the ratio ILO is 10, this is 1 Bel. If the ratio is 100,

this is 2 Bel.

For real world sounds, it makes sense to set the reference value I to
the threshold of hearing which has been fixed as 1012w /m?2 at 1000
Hertz. So the range of hearing covers about 12 Bel. Usually 1 Bel is
divided into 10 deci Bel, so the common formula for measuring a
sound intensity is:

IU-IngILO Sound Intensity Level (SIL) in Decibel (dB) with
Iy=10"12W /m?2

While the sound intensity level is useful to describe the way in which
the human hearing works, the measurement of sound is more closely

37

INTENSITIES

related to the sound pressure deviations. Sound waves compress and
expand the air particles and by this they increase and decrease the
localized air pressure. These deviations are measured and
transformed by a microphone. So the question arises: what is the
relationship between the sound pressure deviations and the sound
intensity? The answer is: sound intensity changes 7 are proportional
to the square of the sound pressure changes P . As a formula:

I~y P2 Relation between Sound Intensity and Sound Pressure

Let us take an example to see what this means. The sound pressure at
the threshold of hearing can be fixed at 9.79-5 p, . This value is the
reference value of the Sound Pressure Level (SPL). If we have now a
value of 9.190-4p4 , the corresponding sound intensity relation can be
calculated as:

2
104
(22—_11g5) ~102=100

So, a factor of 10 at the pressure relation yields a factor of 100 at the
intensity relation. In general, the dB scale for the pressure P related to
the pressure PO is:

2
P P P
10-10g10(P0) = 2-10-10g1015.0 = 20-10g101;.0

Sound Pressure Level (SPL) in Decibel (dB) with Py=2-10"°Pa

Working with Digital Audio basically means working with
amplitudes. What we are dealing with microphones are amplitudes.
Any audio file is a sequence of amplitudes. What you generate in

38

INTENSITIES

Csound and write either to the DAC in realtime or to a sound file, are
again nothing but a sequence of amplitudes. As amplitudes are
directly related to the sound pressure deviations, all the relations
between sound intensity and sound pressure can be transferred to
relations between sound intensity and amplitudes:

Ty A2 Relation between Intensity and Ampltitudes

20-log10f0 Decibel (dB) Scale of Amplitudes with any amplitude 4

related to an other amplitude A4,

If you drive an oscillator with the amplitude 1, and another oscillator
with the amplitude 0.5, and you want to know the difference in dB,
you calculate:

1 _ _ —
QU'IDglgﬂ = 20-10g102 =20-0.30103 =6.02064 8

So, the most useful thing to keep in mind is: when you double the
amplitude, you get +6 dB; when you have half of the amplitude as
before, you get -6 dB.

WHAT IS 0 DB?

As described in the last section, any dB scale - for intensities,
pressures or amplitudes - is just a way to describe a relationship. To
have any sort of quantitative measurement you will need to know the
reference value referred to as "0 dB". For real world sounds, it makes
sense to set this level to the threshold of hearing. This is done, as we
saw, by setting the SIL to 10~121W /m?2and the SPL to 5.10-5 pg.

39

INTENSITIES

But for working with digital sound in the computer, this does not
make any sense. What you will hear from the sound you produce in
the computer, just depends on the amplification, the speakers, and so
on. It has nothing, per se, to do with the level in your audio editor or
in Csound. Nevertheless, there is a rational reference level for the
amplitudes. In a digital system, there is a strict limit for the maximum
number you can store as amplitude. This maximum possible level is
called 0 dB.

Each program connects this maximum possible amplitude with a
number. Usually it is '1' which is a good choice, because you know
that everything above 1 is clipping, and you have a handy relation for
lower values. But actually this value is nothing but a setting, and in
Csound you are free to set it to any value you like via the 0dbfs
opcode. Usually you should use this statement in the orchestra
header:

Odbfs = 1

This means: "Set the level for zero dB as full scale to 1 as reference
value." Note that because of historical reasons the default value in
Csound is not 1 but 32768. So you must have this Odbfs=1 statement
in your header if you want to set Csound to the value probably all
other audio applications have.

DB SCALE VERSUS LINEAR AMPLITUDE

Let's see some practical consequences now of what we have discussed
so far. One major point is: for getting smooth transitions between
intensity levels you must not use a simple linear transition of the
amplitudes, but a linear transition of the dB equivalent. The following
example shows a linear rise of the amplitudes from 0 to 1, and then a
linear rise of the dB's from -80 to 0 dB, both over 10 seconds.

40

INTENSITIES

EXAMPLE 01C01_db_vs_linear.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;example by joachim heintz
sr = 44100

ksmps = 32

nchnls = 2

Odbfs =1

instr 1 ;linear amplitude rise

kamp line 0, p3, 1 ;amp rise 0->1
asig oscils 1, 1000, O ;1000 Hz sine
aout = asig * kamp

outs aout, aout
endin

instr 2 ;linear rise of dB
kdb line -80, p3, 0 ;dB rise -60 -> 0
asig oscils 1, 1000, 0 ;1000 Hz sine
kamp = ampdb (kdb) ;transformation db -> amp
aout = asig * kamp
outs aout, aout
endin
</CsInstruments>
<CsScore>
i1 0 10
i 2 11 10
</CsScore>
</CsoundSynthesizer>

You will hear how fast the sound intensity increases at the first note
with direct amplitude rise, and then stays nearly constant. At the

second note you should hear a very smooth and constant increment of
intensity.

RMS MEASUREMENT

Sound intensity depends on many factors. One of the most important
is the effective mean of the amplitudes in a certain time span. This is
called the Root Mean Square (RMS) value. To calculate it, you have
(1) to calculate the squared amplitudes of number N samples. Then
you (2) divide the result by N to calculate the mean of it. Finally (3)
take the square root.

Let's see a simple example, and then have a look how getting the rms
value works in Csound. Assumeing we have a sine wave which

41

INTENSITIES

consists of 16 samples, we get these amplitudes:

These are the squared amplitudes:

The mean of these values is:

(0+0.146+0.5+0.854+1+0.854+0.5+0.146+0+0.146+0.5+0.854+1+0.
854+0.5+0.146)/16=8/16=0.5

And the resulting RMS value is 0.5=0.707 .

The rms opcode in Csound calculates the RMS power in a certain
time span, and smoothes the values in time according to the ihp
parameter: the higher this value (the default is 10 Hz), the snappier
the measurement, and vice versa. This opcode can be used to
implement a self-regulating system, in which the rms opcode prevents
the system from exploding. Each time the rms value exceeds a certain

value, the amount of feedback is reduced. This is an example! :

42

EXAMPLE 01C02_rms_feedback_system.csd

<CsoundSyn
<CsOptions
-odac
</CsOption
<CsInstrum
;example b
sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1

giSine

instr 1
a3
kamp
asnd

if p4 ==
adell
adel2
else ;or
adell
adel2
endif
a0
al
a2
krms

a3
aout

endin

</CsInstru
<CsScore>
i10601
i1e61 .2
</CsScore>
</CsoundSy

thesizer>
>

s>
ents>
y Martin Neukom, adapted by Joachim Heintz

ftgen 0o, 0, 27210, 10, 1 ;table with a sine wave
init 0

linseg 0, 1.5, 0.2, 1.5, 0 ;envelope for initial input
poscil kamp, 440, giSine ;initial input

1 then ;choose between two sines ...

poscil 0.0523, 0.023, giSine

poscil 0.073, 0.023, giSine, .5

a random movement for the delay lines

randi 0.05, 0.1, 2

randi 0.08, 0.2, 2

delayr 1 ;delay line of 1 second

deltapi adell + 0.1 ;first reading
deltapi adel2 + 0.1 ;second reading

rms a3 ;rms measurement

delayw asnd + exp(-krms) * a3 ;feedback depending on rms
reson -(al+a2), 3000, 7000, 2 ;calculate a3

linen al/3, 1, p3, 1 ;apply fade in and fade out

outs aout, aout

ments>

;two sine movements of delay with feedback
;two random movements of delay with feedback

nthesizer>

FLETCHER-MUNSON CURVES

INTENSITIES

Human hearing is roughly in a range between 20 and 20000 Hz. But
inside this range, the hearing is not equally sensitive. The most
sensitive region is around 3000 Hz. If you come to the upper or lower
border of the range, you need more intensity to perceive a sound as
"equally loud".

These curves of equal loudness are mostly called "Fletcher-Munson

43

INTENSITIES

Curves" because of the paper of H. Fletcher and W. A. Munson in
1933. They look like this:

130
120
110
100
90
80
70
60
50
40
30
20
10
0
-10

(estimated) E

100 phon

Sound Pressure Level (dB SPL)

10 100 1000 10k 100k
Equal-loudness contours (red) (from ISO 226:2003 revision)
Fletcher—-Munson curves shown (blue) for comparison

Try the following test. In the first 5 seconds you will hear a tone of
3000 Hz. Adjust the level of your amplifier to the lowest possible
point at which you still can hear the tone. - Then you hear a tone
whose frequency starts at 20 Hertz and ends at 20000 Hertz, over 20
seconds. Try to move the fader or knob of your amplification exactly
in a way that you still can hear anything, but as soft as possible. The
movement of your fader should roughly be similar to the lowest
Fletcher-Munson-Curve: starting relatively high, going down and
down until 3000 Hertz, and then up again. (As always, this test
depends on your speaker hardware. If your speaker do not provide
proper lower frequencies, you will not hear anything in the bass
region.)

EXAMPLE 01C03_FletcherMunson.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

sr = 44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen 0o, 0, 2710, 10, 1 ;table with a sine wave

instr 1
kfreqg expseg p4, p3, pS

44

printk 1, kfreq ;prints the frequencies once a second

asin poscil .2, kfreq, giSine

aout linen asin, .01, p3, .01
outs aout, aout

endin

</CsInstruments>

<CsScore>

i1 05 1000 1000
i1l 6 20 20 20000
</CsScore>
</CsoundSynthesizer>

INTENSITIES

It is very important to bear in mind that the perceived loudness
depends much on the frequencies. You must know that putting out a
sine of 30 Hz with a certain amplitude is totally different from a sine
of 3000 Hz with the same amplitude - the latter will sound much

louder.

1. cf Martin Neukom, Signale Systeme Klangsynthese, Ziirich

2003, p. 383"

45

INTENSITIES

46

RANDOM

RANDOM

This chapter is in three parts. Part I provides a general introduction to
the concepts behind random numbers and how to work with them in
Csound. Part II focusses on a more mathematical approach. Part II1
introduces a number of opcodes for generating random numbers,
functions and distributions and demonstrates their use in musical
examples.

I. GENERAL INTRODUCTION

RANDOM IS DIFFERENT

The term random derives from the idea of a horse that is running so

fast it becomes 'out of control' or 'beyond predictability'.! Yet there
are different ways in which to run fast and to be out of control;
therefore there are different types of randomness.

We can divide types of randomness into two classes. The first
contains random events that are independent of previous events. The
most common example for this is throwing a die. Even if you have
just thrown three '1's in a row, when thrown again, a '1' has the same
probability as before (and as any other number). The second class of
random number involves random events which depend in some way
upon previous numbers or states. Examples here are Markov chains
and random walks.

47

RANDOM

RANDOM
every event isolated; one event depends on
no history the previous one;

process / history

PN /T

uniformly dissimilarly Random Walk Markov Chain
distributed distributed

AN

S0, dleg, linear triangular exponential Gauss efc. ...
white noise

The use of randomness in electronic music is widespread. In this
chapter, we shall try to explain how the different random horses are
moving, and how you can create and modify them on your own.
Moreover, there are many pre-built random opcodes in Csound which
can be used out of the box (see the overview in the Csound Manual).
The final section of this chapter introduces some musically
interesting applications of them.

RANDOM WITHOUT HISTORY

A computer is typically only capable of computation. Computations
are deterministic processes: one input will always generate the same
output, but a random event is not predictable. To generate something
which looks like a random event, the computer uses a pseudo-random
generator.

The pseudo-random generator takes one number as input, and
generates another number as output. This output is then the input for
the next generation. For a huge amount of numbers, they look as if
they are randomly distributed, although everything depends on the
first input: the seed. For one given seed, the next values can be
predicted.

48

RANDOM

UNIFORM DISTRIBUTION

The output of a classical pseudo-random generator is uniformly
distributed: each value in a given range has the same likelihood of
occurence. The first example shows the influence of a fixed seed
(using the same chain of numbers and beginning from the same
location in the chain each time) in contrast to a seed being taken from
the system clock (the usual way of imitating unpredictability). The
first three groups of four notes will always be the same because of the
use of the same seed whereas the last three groups should always have
a different pitch.

EXAMPLE 01D01_different_seed.csd

<CsoundSynthesizer>
<CsOptions>

-d -odac -mO
</CsOptions>
<CsInstruments>

sr = 44100

ksmps = 32

nchnls = 2

Odbfs =1

instr generate

;get seed: 0 = seeding from system clock

; otherwise = fixed seed
seed p4
;generate four notes to be played from subinstrument
iNoteCount = 0
until iNoteCount == 4 do
iFreq random 400, 800
event 1 "i", "play", iNoteCount, 2, iFreq
iNoteCount += 1 ;increase note count
enduntil
endin
instr play
iFreq = p4
print iFreq
almp mpulse .5, p3
aMode mode aImp, iFreq, 1000
akEnv linen aMode, 0.01, p3, p3-0.01
outs akEnv, akEnv
endin
</CsInstruments>
<CsScore>
;repeat three times with fixed seed
r 3

i "generate" 0 2 1

;repeat three times with seed from the system clock
r 3

i "generate" 0 1 0

</CsScore>

</CsoundSynthesizer>

;example by joachim heintz

49

RANDOM

Note that a pseudo-random generator will repeat its series of numbers
after as many steps as are given by the size of the generator. If a 16-
bit number is generated, the series will be repeated after 65536 steps.
If you listen carefully to the following example, you will hear a
repetition in the structure of the white noise (which is the result of
uniformly distributed amplitudes) after about 1.5 seconds in the first

note.? In the second note, there is no perceivable repetition as the
random generator now works with a 31-bit number.

EXAMPLE 01D02_white_noises.csd

<CsoundSynthesizer>
<CsOptions>

-d -odac
</CsOptions>
<CsInstruments>

sr = 44100

ksmps = 32

nchnls = 2

Odbfs =1

instr white noise

iBit = p4 ;0 = 16 bit, 1 = 31 bit
;input of rand: amplitude, fixed seed (0.5), bit size
aNoise rand .1, 0.5, iBit
outs aNoise, aNoise
endin
</CsInstruments>

<CsScore>

i "white noise"™ 0 10 0

i "white noise" 11 10 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Two more general notes about this:

50

RANDOM

1. The way to set the seed differs from opcode to opcode. There
are several opcodes such as rand featured above, which offer
the choice of setting a seed as input parameter. For others, such
as the frequently used random family, the seed can only be set
globally via the seed statement. This is usually done in the
header so a typical statement would be:

<CsInstruments>
sr = 44100

ksmps = 32
nchnls = 2
Odbfs =1
seed = 0 ;seeding from current time

2. Random number generation in Csound can be done at any rate.
The type of the output variable tells you whether you are
generating random values at i-, k- or a-rate. Many random
opcodes can work at all these rates, for instance random:

1) ires random imin, imax
2) kres random kmin, kmax
3) ares random kmin, kmax

In the first case, a random value is generated only once, when
an instrument is called, at initialisation. The generated value is
then stored in the variable ires. In the second case, a random
value is generated at each k-cycle, and stored in kres. In the
third case, in each k-cycle as many random values are stored as
the audio vector has in size, and stored in the variable ares.
Have a look at example 03A12_Random_at_ika.csd to see this
at work. Chapter 03A tries to explain the background of the
different rates in depth, and how to work with them.

OTHER DISTRIBUTIONS

The uniform distribution is the one each computer can output via its
pseudo-random generator. But there are many situations you will not
want a uniformly distributed random, but any other shape. Some of
these shapes are quite common, but you can actually build your own
shapes quite easily in Csound. The next examples demonstrate how to

51

RANDOM

do this. They are based on the chapter in Dodge/Jerse® which also
served as a model for many random number generator opcodes in

Csound.?

Linear
A linear distribution means that either lower or higher values in a
given range are more likely:

probability
A

} | »

-
minimum maximum values

probability
A

>
minimum maximum values

52

RANDOM

To get this behaviour, two uniform random numbers are generated,
and the lower is taken for the first shape. If the second shape with the
precedence of higher values is needed, the higher one of the two
generated numbers is taken. The next example implements these
random generators as User Defined Opcodes. First we hear a uniform
distribution, then a linear distribution with precedence of lower
pitches (but longer durations), at least a linear distribution with
precedence of higher pitches (but shorter durations).

EXAMPLE 01D03_linrand.csd

<CsoundSynthesizer>
<CsOptions>

-d -odac -m0
</CsOptions>
<CsInstruments>

sr = 44100

ksmps = 32

nchnls = 2

Odbfs =1

seed 0

; ****DEFINE OPCODES FOR LINEAR DISTRIBUTION****

opcode linrnd low, i, ii

;linear random with precedence of lower values
iMin, iMax xin

;generate two random values with the random opcode

iOne random
iTwo random
;compare and get the
iRnd =
xout
endop

opcode linrnd high, i,

iMin, iMax

iMin, iMax

lower one

iOne < iTwo ? iOne :
iRnd

iTwo

ii

;linear random with precedence of higher values

iMin, iMax xin

;generate two random values with the random opcode

iOne random iMin, iMax
iTwo random iMin, iMax
;compare and get the higher one
iRnd = iOne > iTwo ? iOne : iTwo
xout iRnd
endop

; ****INSTRUMENTS FOR THE DIFFERENT DISTRIBUTIONS****

instr notes uniform

prints . instr notes_uniform playing:\n"
prints "EQUAL LIKELINESS OF ALL PITCHES AND DURATIONS\n"
;how many notes to be played
iHowMany = p4
;trigger as many instances of instr play as needed
iThisNote = 0
iStart = 0
until iThisNote == iHowMany do

53

RANDOM

iMidiPch random 36, 84 ;midi note
iDur random .5, 1 ;duration
event i "i", "play", iStart, iDur, int (iMidiPch)
iStart += iDur ;increase start
iThisNote += 1 ;increase counter
enduntil
;jreset the duration of this instr to make all events happen
p3 = iStart + 2
;trigger next instrument two seconds after the last note
event i "i", "notes_ linrnd low", p3, 1, iHowMany
endin

instr notes linrnd low

prints "... instr notes linrnd low playing:\n"
prints "LOWER NOTES AND LONGER DURATIONS PREFERRED\n"
iHowMany = p4
iThisNote = 0
iStart = 0
until iThisNote == iHowMany do
iMidiPch linrnd low 36, 84 ;lower pitches preferred
iDur linrnd high .5, 1 ;longer durations preferred
event i "i", "play", iStart, iDur, int (iMidiPch)
iStart += iDur
iThisNote += 1
enduntil
;reset the duration of this instr to make all events happen
r3 = iStart + 2
;trigger next instrument two seconds after the last note
event i "i", "notes_linrnd_high", p3, 1, iHowMany
endin

instr notes linrnd high

prints "... instr notes_linrnd high playing:\n"
prints "HIGHER NOTES AND SHORTER DURATIONS PREFERRED\n"
iHowMany = joX
iThisNote = 0
iStart = 0
until iThisNote == iHowMany do
iMidiPch linrnd high 36, 84 ;higher pitches preferred
iDur linrnd low .3, 1.2 ;shorter durations preferred
event i "i", "play", iStart, iDur, int (iMidiPch)
iStart += iDur
iThisNote += 1
enduntil
;reset the duration of this instr to make all events happen
p3 = iStart + 2
;call instr to exit csound
event i "i", "exit", p3+1, 1
endin

; ****INSTRUMENTS TO PLAY THE SOUNDS AND TO EXIT CSOUND****

instr play
;increase duration in random range

iDur random p3, p3*1.5
p3 = iDur
;get midi note and convert to frequency
iMidiNote = p4
iFreq cpsmidinn iMidiNote
;generate note with karplus-strong algorithm
aPluck pluck .2, iFreq, iFreq, 0, 1
aPluck linen abPluck, 0, p3, p3
;filter
aFilter mode abPluck, iFreq, .1

;mix aPluck and aFilter according to MidiNote
; (high notes will be filtered more)
aMix ntrpol aPluck, aFilter, iMidiNote, 36, 84
;panning also according to MidiNote
; (low = left, high = right)

iPan = (iMidiNote-36) / 48
alL, aR pan2 aMix, iPan
outs aL, aR

54

RANDOM

endin

instr exit
exitnow
endin

</CsInstruments>

<CsScore>

i "notes_uniform" 0 1 23 ;set number of notes per instr here
;instruments linrnd low and linrnd high are triggered automatically
e 99999 ;make possible to perform long (exit will be automatically)
</CsScore>

</CsoundSynthesizer>

;example by joachim heintz

Triangular
In a triangular distribution the values in the middle of the given range

are more likely than those at the borders. The probability transition
between the middle and the extrema are linear:

A probability

| »
] -
minimum maximum values

The algorithm for getting this distribution is very simple as well.
Generate two uniform random numbers and take the mean of them.
The next example shows the difference between uniform and
triangular distribution in the same environment as the previous
example.

EXAMPLE 01D04_trirand.csd

<CsoundSynthesizer>
<CsOptions>

-d -odac -mO
</CsOptions>
<CsInstruments>

sr = 44100

ksmps = 32

55

RANDOM

nchnls = 2
Odbfs =1
seed 0

; ****UDO FOR TRIANGULAR DISTRIBUTION****
opcode trirnd, i, ii
iMin, iMax xin
;generate two random values with the random opcode

iOne random iMin, iMax
iTwo random iMin, iMax
;get the mean and output
iRnd = (iOne+iTwo) / 2
xout iRnd
endop

; ****INSTRUMENTS FOR UNIFORM AND TRIANGULAR DISTRIBUTION****

instr notes uniform

prints "... instr notes uniform playing:\n"
prints "EQUAL LIKELINESS OF ALL PITCHES AND DURATIONS\n"
;how many notes to be played
iHowMany = p4
;trigger as many instances of instr play as needed
iThisNote = 0
iStart = 0
until iThisNote == iHowMany do
iMidiPch random 36, 84 ;midi note
iDur random .25, 1.75 ;duration
event i "i", "play", iStart, iDur, int (iMidiPch)
iStart += iDur ;increase start
iThisNote += 1 ;increase counter
enduntil
;jreset the duration of this instr to make all events happen
r3 = iStart + 2
;trigger next instrument two seconds after the last note
event i "i", "notes trirnd", p3, 1, iHowMany
endin

instr notes_trirnd

prints "... instr notes_trirnd playing:\n"
prints "MEDIUM NOTES AND DURATIONS PREFERRED\n"
iHowMany = p4
iThisNote = 0
iStart = 0
until iThisNote == iHowMany do
iMidiPch trirnd 36, 84 ;medium pitches preferred
iDur trirnd .25, 1.75 ;medium durations preferred
event i "i", "play", iStart, iDur, int (iMidiPch)
iStart += iDur
iThisNote += 1
enduntil
;reset the duration of this instr to make all events happen
p3 = iStart + 2
;call instr to exit csound
event i "iv, "exit", p3+1, 1
endin

; ****INSTRUMENTS TO PLAY THE SOUNDS AND EXIT CSOUND****

instr play
;increase duration in random range

iDur random p3, p3*1.5
p3 = iDur
;get midi note and convert to frequency
iMidiNote = r4
iFreq cpsmidinn iMidiNote
;generate note with karplus-strong algorithm
aPluck pluck .2, iFreq, iFreq, 0, 1
aPluck linen abPluck, 0, p3, p3
;filter
aFilter mode abPluck, iFreq, .1

;mix aPluck and aFilter according to MidiNote

56

RANDOM

; (high notes will be filtered more)

aMix ntrpol aPluck, aFilter, iMidiNote, 36, 84
;panning also according to MidiNote
; (low = left, high = right)

iPan = (iMidiNote-36) / 48
aL, aR pan2 aMix, iPan

outs aL, aR
endin

instr exit
exitnow
endin
</CsInstruments>
<CsScore>
i "notes_uniform" 0 1 23 ;set number of notes per instr here
;instr trirnd will be triggered automatically
e 99999 ;make possible to perform long (exit will be automatically)
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

More Linear and Triangular

Having written this with some very simple UDQOs, it is easy to
emphasise the probability peaks of the distributions by generating
more than two random numbers. If you generate three numbers and
choose the smallest of them, you will get many more numbers near
the minimum in total for the linear distribution. If you generate three
random numbers and take the mean of them, you will end up with
more numbers near the middle in total for the triangular distribution.

If we want to write UDOs with a flexible number of sub-generated
numbers, we have to write the code in a slightly different way.
Instead of having one line of code for each random generator, we will
use a loop, which calls the generator as many times as we wish to
have units. A variable will store the results of the accumulation. Re-
writing the above code for the UDO trirnd would lead to this
formulation:

opcode trirnd, i, ii

iMin, iMax xin
;set a counter and a maximum count

iCount = 0
iMaxCount = 2

;set the accumulator to zero as initial value
iAccum = 0

;perform loop and accumulate

until iCount == iMaxCount do
iUniRnd random iMin, iMax
iAccum += iUniRnd
iCount += 1

enduntil

;get the mean and output

57

RANDOM

iRnd = iAccum / 2
xout iRnd
endop

To get this completely flexible, you only have to get iMaxCount as
input argument. The code for the linear distribution UDOs is quite
similar. -- The next example shows these steps:

1. Uniform distribution.

2. Linear distribution with the precedence of lower pitches and

longer durations, generated with two units.

The same but with four units.

4. Linear distribution with the precedence of higher pitches and

shorter durations, generated with two units.

The same but with four units.

6. Triangular distribution with the precedence of both medium
pitches and durations, generated with two units.

7. The same but with six units.

W

vt

Rather than using different instruments for the different distributions,
the next example combines all possibilities in one single instrument.
Inside the loop which generates as many notes as desired by the
iHowMany argument, an if-branch calculates the pitch and duration
of one note depending on the distribution type and the number of sub-
units used. The whole sequence (which type first, which next, etc) is
stored in the global array giSequence. Each instance of instrument
"notes" increases the pointer giSeqlndx, so that for the next run the
next element in the array is being read. If the pointer has reached the
end of the array, the instrument which exits Csound is called instead
of a new instance of "notes".

EXAMPLE 01D05_more_lin_tri_units.csd

<CsoundSynthesizer>
<CsOptions>

-d -odac -m0
</CsOptions>
<CsInstruments>

sr = 44100

ksmps = 32

nchnls = 2

58

RANDOM

Odbfs =1
seed 0

; ****SEQUENCE OF UNITS AS ARRAY****/
giSequence[] array 0, 1.2, 1.4, 2.2, 2.4, 3.2, 3.6
giSegIndx = 0 ;startindex

;****UDO DEFINITIONS****
opcode linrnd low, i, iii

;linear random with precedence of lower values
iMin, iMax, iMaxCount xin

;set counter and initial (absurd) result

iCount = 0
iRnd = iMax
;loop and reset iRnd

until iCount == iMaxCount do

1iUniRnd random iMin, iMax

iRnd = iUniRnd < iRnd ? iUniRnd : iRnd

iCount += 1

enduntil
xout iRnd

endop

opcode linrnd high, i, iii

;linear random with precedence of higher values
iMin, iMax, iMaxCount xin

;set counter and initial (absurd) result

iCount = 0
iRnd = iMin
;loop and reset iRnd

until iCount == iMaxCount do

1iUniRnd random iMin, iMax

iRnd = iUniRnd > iRnd ? iUniRnd : iRnd

iCount += 1

enduntil
xout iRnd

endop

opcode trirnd, i, iii
iMin, iMax, iMaxCount xin
;set a counter and accumulator

iCount = 0
iAccum = 0

;perform loop and accumulate
until iCount == iMaxCount do
iUniRnd random iMin, iMax
iAccum += iUniRnd
iCount += 1

enduntil

;get the mean and output
iRnd = iAccum / iMaxCount

xout iRnd

endop

; ****ONE INSTRUMENT TO PERFORM ALL DISTRIBUTIONS****

;0 = uniform, 1 = linrnd low, 2 = linrnd high, 3 = trirnd
;the fractional part denotes the number of units, e.g.
;3.4 = triangular distribution with four sub-units

instr notes
;how many notes to be played

iHowMany = p4
;by which distribution with how many units
iwhich = giSequence[giSeqIndx]
iDistrib = int (iWhich)
iUnits = round (frac (iWhich) * 10)
;set min and max duration
iMinDur = .1
iMaxDur = 2
;set min and max pitch
iMinPch = 36
iMaxPch = 84

59

RANDOM

;trigger as many instances of instr play as needed

iThisNote = 0
iStart = 0
iPrint = 1

;for each note to be played
until iThisNote == iHowMany do

;calculate iMidiPch and iDur depending on type

if iDistrib == 0 then
printf i "$s", iPrint, "... uniform distribution:\n"
printf i "$s", 1Print, "EQUAL LIKELIHOOD OF ALL PITCHES AND DURATIONS\n"
iMidiPch random iMinPch, iMaxPch ;midi note
iDur random iMinDur, iMaxDur ;duration
elseif iDistrib == 1 then
printf i "... linear low distribution with %d units:\n", iPrint, iUnits
printf_i "$s", iPrint, "LOWER NOTES AND LONGER DURATIONS PREFERRED\n"
iMidiPch linrnd low iMinPch, iMaxPch, iUnits
iDur linrnd high iMinDur, iMaxDur, iUnits
elseif iDistrib == 2 then
printf i "... linear high distribution with %d units:\n", iPrint,
iUnits
printf_i "$s", iPrint, "HIGHER NOTES AND SHORTER DURATIONS PREFERRED\n"
iMidiPch linrnd high iMinPch, iMaxPch, iUnits
iDur linrnd low iMinDur, iMaxDur, iUnits
else
printf i "... triangular distribution with %d units:\n", iPrint, iUnits
printf_i "$s", iPrint, "MEDIUM NOTES AND DURATIONS PREFERRED\n"
iMidiPch trirnd iMinPch, iMaxPch, iUnits
iDur trirnd iMinDur, iMaxDur, iUnits
endif

;call subinstrument to play note
event i "i", "play", iStart, iDur, int (iMidiPch)

;increase start tim and counter

iStart += iDur

iThisNote += 1
;avoid continuous printing

iPrint = 0
enduntil

;jreset the duration of this instr to make all events happen
r3 = iStart + 2

;increase index for sequence

giSeqgIndx += 1
;call instr again if sequence has not been ended
if giSegIndx < lenarray(giSequence) then

event i "i", "notes", p3, 1, iHowMany
;or exit
else
event i "iT, "exit", p3, 1
endif
endin

; ****INSTRUMENTS TO PLAY THE SOUNDS AND EXIT CSOUND****
instr play
;increase duration in random range

iDur random p3, p3*1.5
r3 = iDur
;get midi note and convert to frequency
iMidiNote = joX
iFreq cpsmidinn iMidiNote
;generate note with karplus-strong algorithm
aPluck pluck .2, iFreq, iFreq, 0, 1
aPluck linen abPluck, 0, p3, p3
;filter
aFilter mode abPluck, iFreq, .1

;mix aPluck and aFilter according to MidiNote
; (high notes will be filtered more)
aMix ntrpol aPluck, aFilter, iMidiNote, 36, 84

60

RANDOM

;panning also according to MidiNote

; (low = left, high = right)
iPan = (iMidiNote-36) / 48
aL, aR pan2 aMix, iPan

outs alL, aR
endin
instr exit
exitnow
endin
</CsInstruments>

<CsScore>

i "notes"™ 0 1 23 ;set number of notes per instr here

e 99999 ;make possible to perform long (exit will be automatically)
</CsScore>

</CsoundSynthesizer>

;example by joachim heintz

With this method we can build probability distributions which are

very similar to exponential or gaussian distributions.” Their shape
can easily be formed by the number of sub-units used.

Scalings

Random is a complex and sensible context. There are so many ways
to let the horse go, run, or dance -- the conditions you set for this 'way
of moving' are much more important than the fact that one single
move is not predictable. What are the conditions of this randomness?

e Which Way. This is what has already been described: random
with or without history, which probability distribution, etc.

e Which Range. This is a decision which comes from the
composer/programmer. In the example above I have chosen
pitches from Midi Note 36 to 84 (C2 to C6), and durations
between 0.1 and 2 seconds. Imagine how it would have been
sounded with pitches from 60 to 67, and durations from 0.9 to
1.1 seconds, or from 0.1 to 0.2 seconds. There is no range
which is 'correct’, everything depends on the musical idea.

e Which Development. Usually the boundaries will change in the
run of a piece. The pitch range may move from low to high, or
from narrow to wide; the durations may become shorter, etc.

e Which Scalings. Let us think about this more in detail.

In the example above we used two implicit scalings. The pitches have
been scaled to the keys of a piano or keyboard. Why? We do not play

61

RANDOM

piano here obviously ... -- What other possibilities might have been
instead? One would be: no scaling at all. This is the easiest way to go
-- whether it is really the best, or simple laziness, can only be decided
by the composer or the listener.

Instead of using the equal tempered chromatic scale, or no scale at
all, you can use any other ways of selecting or quantising pitches. Be
it any which has been, or is still, used in any part of the world, or be it
your own invention, by whatever fantasy or invention or system.

As regards the durations, the example above has shown no scaling at
all. This was definitely laziness...

The next example is essentially the same as the previous one, but it
uses a pitch scale which represents the overtone scale, starting at the
second partial extending upwards to the 32nd partial. This scale is
written into an array by a statement in instrument 0. The durations
have fixed possible values which are written into an array (from the
longest to the shortest) by hand. The values in both arrays are then
called according to their position in the array.

EXAMPLE 01D06_scalings.csd

<CsoundSynthesizer>
<CsOptions>

-d -odac -m0
</CsOptions>
<CsInstruments>

sr = 44100

ksmps = 32

nchnls = 2

Odbfs = 1

seed 0

; ****POSSIBLE DURATIONS AS ARRAY****
giDurs([] array 3/2, 1, 2/3, 1/2, 1/3, 1/4
gilenDurs lenarray giDurs

; ****POSSIBLE PITCHES AS ARRAY***x*
;initialize array with 31 steps
giScale[] init 31
gilenScale lenarray giScale

;iterate to fill from 65 hz onwards
iStart 65
iDenom 3 ;start with 3/2
iCnt 0

until iCnt = gilenScale do
giScale[iCnt] = iStart

62

RANDOM

iStart = iStart * iDenom / (iDenom-1)
iDenom += 1 ;next proportion is 4/3 etc
iCnt += 1

enduntil

; ****SEQUENCE OF UNITS AS ARRAY****
giSequence([] array 0o, 1.2, 1.4, 2.2, 2.4, 3.2, 3.6
giSeqgIndx = 0 ;startindex

; ****UDO DEFINITIONS****
opcode linrnd low, i, iii

;linear random with precedence of lower values
iMin, iMax, iMaxCount xin

;set counter and initial (absurd) result

iCount = 0
iRnd = iMax
;loop and reset iRnd
until iCount == iMaxCount do
iUniRnd random iMin, iMax
iRnd = iUniRnd < iRnd ? iUniRnd : iRnd
iCount += 1
enduntil
xout iRnd
endop

opcode linrnd high, i, iii

;linear random with precedence of higher values
iMin, iMax, iMaxCount xin

;set counter and initial (absurd) result

iCount = 0
iRnd = iMin
;loop and reset iRnd
until iCount == iMaxCount do
iUniRnd random iMin, iMax
iRnd = iUniRnd > iRnd ? iUniRnd : iRnd
iCount += 1
enduntil
xout iRnd
endop

opcode trirnd, i, iii
iMin, iMax, iMaxCount xin

;set a counter and accumulator
iCount = 0
iAccum = 0

;perform loop and accumulate
until iCount == iMaxCount do
iUniRnd random iMin, iMax
iAccum += iUniRnd
iCount += 1

enduntil
;get the mean and output
iRnd = iAccum / iMaxCount
xout iRnd
endop

; ****ONE INSTRUMENT TO PERFORM ALL DISTRIBUTIONS****

;0 = uniform, 1 = linrnd low, 2 = linrnd high, 3 = trirnd
;the fractional part denotes the number of units, e.g.
;3.4 = triangular distribution with four sub-units

instr notes
;how many notes to be played

iHowMany = p4

;by which distribution with how many units
iWhich = giSequence[giSeqgIndx]
iDistrib = int (iWhich)
iUnits = round (frac (iWhich) * 10)

;trigger as many instances of instr play as needed

iThisNote = 0
iStart = 0
iPrint = 1

63

RANDOM

;for each note to be played
until iThisNote == iHowMany do

;calculate iMidiPch and iDur depending on type

if iDistrib == 0 then
printf i "$s", iPrint, "... uniform distribution:\n"
printf i "%$s", iPrint, "EQUAL LIKELINESS OF ALL PITCHES AND DURATIONS\n"
iScaleIndx random 0, gilLenScale-.0001 ;midi note
iDurIndx random 0, giLenDurs-.0001 ;duration
elseif iDistrib == 1 then
printf i "... linear low distribution with %d units:\n", iPrint, iUnits
printf i "$s", 1Print, "LOWER NOTES AND LONGER DURATIONS PREFERRED\n"
iScaleIndx linrnd low 0, giLenScale-.0001, iUnits
iDurIndx linrnd low 0, giLenDurs-.0001, iUnits
elseif iDistrib == 2 then
printf i "... linear high distribution with %d units:\n", iPrint, iUnits
printf i "$s", 1Print, "HIGHER NOTES AND SHORTER DURATIONS PREFERRED\n"

iScaleIndx linrnd high 0, giLenScale-.0001, iUnits
iDurIndx linrnd high 0, giLenDurs-.0001, iUnits

else
printf i "... triangular distribution with %d units:\n", iPrint, iUnits
printf_i "%$s", iPrint, "MEDIUM NOTES AND DURATIONS PREFERRED\n"
iScalelIndx trirnd 0, giLenScale-.0001, iUnits
iDurIndx trirnd 0, giLenDurs-.0001, iUnits

endif

;call subinstrument to play note
iDur = giDurs[int (iDurIndx)]
iPch = giScale[int (iScaleIndx)]
event i "i", "play", iStart, iDur, iPch

;increase start time and counter

iStart += iDur
iThisNote += 1

;avoid continuous printing
iPrint = 0
enduntil

;reset the duration of this instr to make all events happen
p3 = istart + 2

;increase index for sequence
giSegIndx += 1

;call instr again if sequence has not been ended
if giSeqIndx < lenarray(giSequence) then

event i "i", "notes", p3, 1, iHowMany
;or exit
else
event i "iv, "exit", p3, 1
endif
endin

; ****INSTRUMENTS TO PLAY THE SOUNDS AND EXIT CSOUND****
instr play
;increase duration in random range

iDur random p3*2, p3*5
p3 = iDur
;get frequency
iFreq = p4
;generate note with karplus-strong algorithm
aPluck pluck .2, iFreq, iFreq, 0, 1
aPluck linen abPluck, 0, p3, p3
;filter
aFilter mode abPluck, iFreq, .1

;mix aPluck and aFilter according to freqg
; (high notes will be filtered more)
aMix ntrpol aPluck, aFilter, iFreq, 65, 65*16
;panning also according to freqg
; (low = left, high = right)
iPan = (iFreg-65) / (65*16
alL, aR pan?2 aMix, iPan

64

RANDOM

outs alL, aR
endin

instr exit
exitnow
endin
</CsInstruments>
<CsScore>
i "notes" 0 1 23 ;set number of notes per instr here
e 99999 ;make possible to perform long (exit will be automatically)
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

RANDOM WITH HISTORY

There are many ways a current value in a random number progression
can influence the next. Two of them are used frequently. A Markov
chain is based on a number of possible states, and defines a different
probability for each of these states. A random walk looks at the last
state as a position in a range or field, and allows only certain
deviations from this position.

MARKOYV CHAINS

A typical case for a Markov chain in music is a sequence of certain
pitches or notes. For each note, the probability of the following note
is written in a table like this:

next
element
a b ¢

a |0.2/0.5|0.3
0.5]0.0 0.5
c 0.1/0.8|0.1

previous
element

This means: the probability that element a is repeated, is 0.2; the
probability that b follows a is 0.5; the probability that c follows a is
0.3. The sum of all probabilities must, by convention, add up to 1.
The following example shows the basic algorithm which evaluates
the first line of the Markov table above, in the case, the previous
element has been 'a'.

65

RANDOM

EXAMPLE 01D07_markov_basics.csd

<CsoundSynthesizer>
<CsOptions>

-ndm0

</CsOptions>
<CsInstruments>

sr = 44100

ksmps = 32

Odbfs =1

nchnls = 1

seed 0

instr 1
iLine[] array .2, .5, .3
ival random 0, 1
iAccum = iLine[0]
iIndex = 0
until iAccum >= iVal do
iIndex += 1
iAccum += iLine[iIndex]
enduntil
printf i "Random number = %.3f, next element = %c!\n", 1, ival,
iIndex+97
endin
</CsInstruments>
<CsScore>
r 10
i100
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The probabilities are 0.2 0.5 0.3. First a uniformly distributed random
number between 0 and 1 is generated. An acculumator is set to the
first element of the line (here 0.2). It is interrogated as to whether it is
larger than the random number. If so then the index is returned, if not,
the second element is added (0.2+0.5=0.7), and the process is

repeated, until the accumulator is greater or equal the random value.
The output of the example should show something like this:

Random number = 0.850, next element = c!
Random number = 0.010, next element = a!
Random number = 0.805, next element = c!
Random number = 0.696, next element = Db!

66

RANDOM

Random number = 0.626, next element = b!
Random number = 0.476, next element = b!
Random number = 0.420, next element = b!
Random number = 0.627, next element = Db!
Random number = 0.065, next element = a!
Random number = 0.782, next element = c!

The next example puts this algorithm in an User Defined Opcode. Its
input is a Markov table as a two-dimensional array, and the previous
line as index (starting with 0). Its output is the next element, also as
index. -- There are two Markov chains in this example: seven pitches,
and three durations. Both are defined in two-dimensional arrays:
giProbNotes and giProbDurs. Both Markov chains are running
independently from each other.

EXAMPLE 01D08_markov_music.csd

<CsoundSynthesizer>
<CsOptions>

-dnml28 -odac
</CsOptions>
<CsInstruments>

sr = 44100

ksmps = 32

0dbfs =1

nchnls = 2

seed 0

; ****JSER DEFINED OPCODES FOR MARKOV CHAINS****

opcode Markov, i, i[][]i
iMarkovTable[][], iPrevEl xin
iRandom random 0, 1
iNextEl = 0
iAccum = iMarkovTable [iPrevEl] [iNextE1]
until iAccum >= iRandom do
iNextELl += 1
iAccum += iMarkovTable[iPrevEl] [iNextEl]
enduntil

xout iNextELl

endop

opcode Markovk, k, k[][]k
kMarkovTable[][], kPrevEl xin
kRandom random 0, 1
kNextEL = 0

67

RANDOM

kAccum = kMarkovTable [kPrevEl] [kNextE1l]
until kAccum >= kRandom do
kNextE1L += 1
kAccum += kMarkovTable [kPrevEl] [kNextEl]
enduntil
xout kNextElL
endop

;****DEFINITIONS FOR NOTES****

;notes as proportions and a base frequency
giNotes[] array 1, 9/8, /5, 5/4, 4/3, 3/2, 5/3
giBasFreq = 330

;probability of notes as markov matrix:

;first -> only to third and fourth

;second -> anywhere without self

;third -> strong probability for repetitions
;fourth -> idem

;fifth -> anywhere without third and fourth
;sixth -> mostly to seventh

;seventh -> mostly to sixth

giProbNotes[][] init 7, 7

giProbNotes array 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0,
0.2, 0.0, 0.2, 0.2, 0.2, 0.1, 0.1,
0.1, 0.1, 0.5, 0.1, 0.1, 0.1, 0.0,
0.0, 0.1, 0.1, 0.5, 0.1, 0.1, 0.1,
0.2, 0.2, 0.0, 0.0, 0.2, 0.2, 0.2,
0.1, 0.1, 0.0, 0.0, 0.1, 0.1, 0.6,
0.1, 0.1, 0.0, 0.0, 0.1, 0.6, 0.1

’ ’

;****DEFINITIONS FOR DURATIONS***x*
;possible durations
gkDurs|[] array 1, 1/2, 1/3
;probability of durations as markov matrix:
;first -> anything
;second -> mostly self
;third -> mostly second
gkProbDurs([] [] init 3, 3
gkProbDurs array 1/3, 1/3, 1/3,
0.2, 0.6, 0.3,
0.1, 0.5, 0.4

;****SET FIRST NOTE AND DURATION FOR MARKOV PROCESS****
giPrevNote init 1
gkPrevDur init 1

; ****INSTRUMENT FOR DURATIONS****
instr trigger note

kTrig metro 1/gkDurs[gkPrevDur]
if kTrig == 1 then
event "i", "select note", 0, 1
gkPrevDur Markovk gkProbDurs, gkPrevDur
endif
endin

; ****INSTRUMENT FOR PITCHES***x*
instr select note
;choose next note according to markov matrix and previous note
;and write it to the global variable for (next) previous note
giPrevNote Markov giProbNotes, giPrevNote
;call instr to play this note
event i "i", "play note", 0, 2, giPrevNote
;turn off this instrument
turnoff
endin

;****INSTRUMENT TO PERFORM ONE NOTE***x*
instr play note
;get note as index in ginotes array and calculate frequency

iNote = p4é

iFreq = giBasFreqg * giNotes[iNote]
;random choice for mode filter quality and panning

iQ random 10, 200

iPan random 0.1, .9

68

RANDOM

;generate tone and put out

almp mpulse 1, p3
aout mode almp, iFreq, 10Q
aL, aR pan2 aOut, iPan

outs alL, aR

endin
</CsInstruments>
<CsScore>
i "trigger note" 0 100
</CsScore>

</CsoundSynthesizer>
;example by joachim heintz

RANDOM WALK

In the context of movement between random values, 'walk' can be
thought of as the opposite of 'jump'. If you jump within the
boundaries A and B, you can end up anywhere between these
boundaries, but if you walk between A and B you will be limited by
the extent of your step - each step applies a deviation to the previous
one. If the deviation range is slightly more positive (say from -0.1 to
+0.2), the general trajectory of your walk will be in the positive
direction (but individual steps will not necessarily be in the positive
direction). If the deviation range is weighted negative (say from -0.2
to 0.1), then the walk will express a generally negative trajectory.

One way of implementing a random walk will be to take the current

state, derive a random deviation, and derive the next state by adding
this deviation to the current state. The next example shows two ways
of doing this.

The pitch random walk starts at pitch 8 in octave notation. The
general pitch deviation gkPitchDev is set to 0.2, so that the next pitch
could be between 7.8 and 8.2. But there is also a pitch direction
gkPitchDir which is set to 0.1 as initial value. This means that the
upper limit of the next random pitch is 8.3 instead of 8.2, so that the
pitch will move upwards in a greater number of steps. When the
upper limit giHighestPitch has been crossed, the gkPitchDir variable
changes from +0.1 to -0.1, so after a number of steps, the pitch will
have become lower. Whenever such a direction change happens, the

69

RANDOM

console reports this with a message printed to the terminal.

The density of the notes is defined as notes per second, and is applied
as frequency to the metro opcode in instrument 'walk'. The lowest
possible density giLowestDens is set to 1, the highest to 8 notes per
second, and the first density giStartDens is set to 3. The possible
random deviation for the next density is defined in a range from zero
to one: zero means no deviation at all, one means that the next
density can alter the current density in a range from half the current
value to twice the current value. For instance, if the current density is
4, for gkDensDev=1 you would get a density between 2 and 8. The
direction of the densities gkDensDir in this random walk follows the
same range 0..1. Assumed you have no deviation of densities at all
(gkDensDev=0), gkDensDir=0 will produce ticks in always the same
speed, whilst gkDensDir=1 will produce a very rapid increase in
speed. Similar to the pitch walk, the direction parameter changes
from plus to minus if the upper border has crossed, and vice versa.

EXAMPLE 01D09 _random_walk.csd

<CsoundSynthesizer>

<CsOptions>

-dnml28 -odac

</CsOptions>

<CsInstruments>

sr = 44100

ksmps = 32

Odbfs = 1

nchnls = 2

seed 1 ;change to zero for always changing results

;****SETTINGS FOR PITCHES****
;define the pitch street in octave notation

gilowestPitch = 7
giHighestPitch = 9
;set pitch startpoint, deviation range and the first direction
giStartPitch = 8
gkPitchDev init 0.2 ;random range for next pitch
gkPitchDir init 0.1 ;positive = upwards

; ****SETTINGS FOR DENSITY***x*
;define the maximum and minimum density (notes per second)
gilowestDens = 1
giHighestDens = 8
;set first density
giStartDens = 3
;set possible deviation in range 0..1
;0 = no deviation at all
;1 = possible deviation is between half and twice the current density

70

gkDensDev init 0.5

;set direction in the same range 0..1

; (positive = more dense, shorter notes)
gkDensDir init 0.1

; ****INSTRUMENT FOR RANDOM WALK****
instr walk
;set initial values

kPitch init giStartPitch
kDens init giStartDens

;trigger impulses according to density
kTrig metro kDens

;1f the metro ticks

if kTrig == 1 then

;1) play current note

event "i", "play", 0, 1.5/kDens, kPitch

;2) calculate next pitch
;define boundaries according to direction

kLowPchBound = gkPitchDir < 0 ? -gkPitchDev+gkPitchDir -gkPitchDev
kHighPchBound = gkPitchDir > 0 ? gkPitchDev+gkPitchDir gkPitchDev
;get random value in these boundaries
kPchRnd random kLowPchBound, kHighPchBound
;add to current pitch
kPitch += kPchRnd
;change direction if maxima are crossed, and report
if kPitch > giHighestPitch && gkPitchDir > 0 then
gkPitchDir = -gkPitchDir
printks " Pitch touched maximum - now moving down.\n", 0
elseif kPitch < giLowestPitch && gkPitchDir < 0 then
gkPitchDir = -gkPitchDir
printks "Pitch touched minimum - now moving up.\n", 0
endif
;3) calculate next density (= metro frequency)
;define boundaries according to direction
kLowDensBound = gkDensDir < 0 ? -gkDensDev+gkDensDir -gkDensDev
kHighDensBound = gkDensDir > 0 ? gkDensDev+gkDensDir : gkDensDev
;get random value in these boundaries
kDensRnd random kLowDensBound, kHighDensBound
;get multiplier (so that kDensRnd=1 yields to 2, and kDens=-1 to 1/2)
kDensMult = 2 ~ kDensRnd

;multiply with current duration
kDens *= kDensMult
;avoid too high values and too low values

RANDOM

kDens = kDens > giHighestDens*1.5 ? giHighestDens*1.5 : kDens
kDens = kDens < gilLowestDens/1.5 ? gilLowestDens/1.5 : kDens
;change direction if maxima are crossed
if (kDens > giHighestDens && gkDensDir > 0) || (kDens < giLowestDens && gkDensDir <
0) then
gkDensDir = -gkDensDir
if kDens > giHighestDens then
printks " Density touched upper border - now becoming less dense.\n", 0
else
printks " Density touched lower border - now becoming more dense.\n", 0
endif
endif
endif
endin

; ****INSTRUMENT TO PLAY ONE NOTE***x*

instr play

;get note as octave and calculate frequency and panning
iOct = p4

iFreq = cpsoct (1i0ct)
iPan ntrpol 0, 1, iOct, giLowestPitch, giHighestP
;calculate mode filter quality according to duration
iQ ntrpol 10, 400, p3, .15, 1.5
;generate tone and throw out
almp mpulse 1, p3
aMode mode aImp, iFreq, iQ
aout linen aMode, 0, p3, p3/4
aL, aR pan2 aOut, iPan
outs aL, aR
endin

itch

71

RANDOM

</CsInstruments>

<CsScore>

i "walk" 0 999

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

II. SOME MATHS PERSPECTIVES ON
RANDOM

RANDOM PROCESSES

The relative frequency of occurrence of a random variable can be described by a probability function (for discrete
random variables) or by density functions (for continuous random variables).

When two dice are thrown simultaneously, the sum x of
their numbers can be 2, 3, ...12. The following figure
shows the probability function p(x) of these possible
outcomes. p(x) is always less than or equal to 1. The
sum of the probabilities of all possible outcomes is 1.

p(x)

123435678 9101112

For continuous random variables the probability of
getting a specific value x is 0. But the probability of
getting a value within a certain interval can be indicated
by an area that corresponds to this probability. The
function f(x) over these areas is called the density
function. With the following density the chance of
getting a number smaller than 0 is 0, to get a number
between 0 and 0.5 is 0.5, to get a number between 0.5
and 1 is 0.5 etc. Density functions f(x) can reach values
greater than 1 but the area under the function is 1.

72

RANDOM

PO=X=1=1

0.5 1

Generating Random Numbers With a Given Probability or Density

Csound provides opcodes for some specific densities
but no means to produce random number with user
defined probability or density functions. The opcodes
rand_density and rand_probability (see below) generate
random numbers with probabilities or densities given by
tables. They are realized by using the so-called rejection
sampling method.

Rejection Sampling:

The principle of rejection sampling is to first generate uniformly distributed random numbers in the range required
and to then accept these values corresponding to a given density function (or otherwise to reject them). Let us
demonstrate this method using the density function shown in the next figure. (Since the rejection sampling
method uses only the "shape" of the function, the area under the function need not be 1). We first generate
uniformly distributed random numbers rnd1 over the interval [0, 1]. Of these we accept a proportion
corresponding to f(rnd1). For example, the value 0.32 will only be accepted in the proportion of {0.32) = 0.82.
We do this by generating a new random number rand2 between 0 and 1 and accept rnd1 only if rand2 < f(rnd1);
otherwise we reject it. (see Signals, Systems and Sound Synthesis chapter 10.1.4.4)

f(x)
1

082 /

032 1
rejection sampling

EXAMPLE 01D10_Rejection_Sampling.csd

<CsoundSynthesizer>
<CsOptions>
-odac

73

RANDOM

</CsOptions>
<CsInstruments>
;example by martin neukom

sr = 44100
ksmps = 10
nchnls = 1
Odbfs =1

; random number generator to a given density function
; kout random number; k minimum,k maximum,i fn for a density function

opcode rand density, k, kki

kmin, kmax,ifn xin

loop:

krndl random 0,1

krnd?2 random 0,1

k2 table krndl,ifn,1
if krnd2 > k2 kgoto loop
xout kmin+krndl* (kmax-kmin)

endop

; random number generator to a given probability function

; kout random number

; in: i1 nr number of possible values

; i _fnl function for random values

; 1 fn2 probability functionExponential: Generate a uniformly distributed number
between 0 and 1 and take its natural logarithm.

opcode rand probability, k, iii

inr,ifnl, ifn2 xin

loop:

krndl random 0,inr

krnd?2 random 0,1

k2 table int (krndl),ifn2,0
if krnd2 > k2 kgoto loop

kout table krndl,ifnl,0
xout kout

endop

instr 1

krnd rand _density 400,800, 2

aout poscil .1,krnd, 1
out aout

endin

instr 2

krnd rand_probability p4,p5,p6

aout poscil .1,krnd, 1
out aout

endin

</CsInstruments>

<CsScore>

;sine

f1 0 32768 10 1

;density function

£f2 0 1024 6 1 112 0 800 0 112 1

;random values and their relative probability (two dice)
f3 0 16 -2 2 3456 78 910 11 12

f4 016 212345654 3 2 1

;random values and their relative probability

£5 0 8 -2 400 500 600 800

f6 08 2 .3 .8 .3 .1

i1 0 10

;i2 0 10 4 5 6

74

RANDOM

</CsScore>
</CsoundSynthesizer>

Random Walk

In a series of random numbers the single numbers are
independent upon each other. Parameter (left figure) or
paths in the room (two-dimensional trajectory in the
right figure) created by random numbers wildly jump
around.

Example 1

Table[RandomReal[{-1, 1}], {100}];

1

-1

We get a smoother path, a so-called random walk, by
adding at every time step a random number r to the
actual position x (x += r).

Example 2

x = 0; walk = Table[x += RandomReal[{-.2, .2}],
{300}1];

1
100 300 %

The path becomes even smoother by adding a random
number r to the actual velocity v.

v +=1r
X +=v

The path can by bounded to an area (figure to the right) by inverting the velocity if the path exceeds the limits
(min, max):

75

RANDOM

vif(x < min || x > max) v *= -1

The movement can be damped by decreasing the velocity at every time step by a small factor d
v *= (1-d)
Example 3

x =0; v =0; walk = Table[x += v +=
RandomReal[{-.01, .01}], {300}];

! /

& r 100 2 300

The path becomes again smoother by adding a random number r to the actual acelleration a, the change of the
aceleration, etc.

a+=r
v += a
X +=v

Example 4

Table[x += v += a += RandomReal[{-.0001,
.0001}]1, {300}1;

4' 100 200 \\Cm

(see Martin Neukom, Signals, Systems and Sound
Synthesis chapter 10.2.3.2)

EXAMPLE 01D11_Random_Walk2.csd

<CsoundSynthesizer>
<CsInstruments>
;example by martin neukom

sr = 44100
ksmps = 128
nchnls =1

76

RANDOM

Odbfs =1

; random frequency

instr 1

kx random -p6, p6
kfreq = p5*27°kx

aout oscil p4, kfreq, 1
out aout

endin

; random change of frequency

instr 2

kx init .5

kfreq = p5*27°kx

kv random -p6, p6

kv = kv* (1 - p7)
kx = kx + kv

aout oscil p4, kfreq, 1
out aout

endin

; random change of change of frequency

instr 3

kv init 0

kx init .5

kfreq = p5*27°kx

ka random -p7, p7

kv = kv + ka

kv = kv* (1 - p8)
kx = kx + kv

kv = (kx < -p6 || kx > p62-kv : kv)
aout oscili p4, kfreq, 1
out aout

endin

</CsInstruments>

<CsScore>

£f1 0 32768 10 1

; il p4 p5 P6

; i2 X p5 pé p7

; amp c fr rand damp

; 12 0 20 .1 600 0.01 0.001

H amp c fr d fr rand damp

; amp c fr rand

; i1 0 20 .1 600 0.5

; 13 p4 p5 p6 p7 P8

i3 0 20 .1 600 1 0.001 0.001
</CsScore>

</CsoundSynthesizer>

III. MISCELLANEOUS EXAMPLES

Csound has a range of opcodes and GEN routine for the creation of

various random functions and distributions. Perhaps the simplest of

these is random which simply generates a random value within user
defined minimum and maximum limit and at i-time, k-rate or a-rate
accroding to the variable type of its output:

77

RANDOM

ires random imin, imax

kres random kmin, kmax

ares random kmin, kmax

Values are generated according to a uniform random distribution,
meaning that any value within the limits has equal chance of
occurence. Non-uniform distributions in which certain values have
greater chance of occurence over others are often more useful and
musical. For these purposes, Csound includes the betarand, bexprand,
cauchy, exprand, gauss, linrand, pcauchy, poisson, trirand, unirand
and weibull random number generator opcodes. The distributions
generated by several of these opcodes are illustrated below.

Options linrand

Options trirand

Options

Options exprand

.

78

RANDOM

Options bexprand

betarand

In addition to these so called 'x-class noise generators' Csound
provides random function generators, providing values that change
over time a various ways.

randomh generates new random numbers at a user defined rate. The
previous value is held until a new value is generated, and then the
output immediately assumes that value.

The instruction:

kmin -1
kmax 1
kfreq 2

kout randomh kmin, kmax, kfreq

will produce and output something like:

4& 1.0 2.0 3o 4.0 5.0 6.0 7.0 8.0 9.0 10.0
h i G i B i ; h o f i i G i n i b h . !

1.0

0.5

[[:
-1.0

randomi is an interpolating version of randomh. Rather than jump to
new values when they are generated, randomi interpolates linearly to

the new value, reaching it just as a new random value is generated.
Replacing randomh with randomi in the above code snippet would

79

RANDOM

result in the following output:

0 1.0 2.0 30 4.0 5.0 6.0 7.0 8.0 9.0 100
G f o i h i o f B i ‘ i o !

In practice randomi's angular changes in direction as new random
values are generated might be audible depending on the how it is
used. rsplsine allows us to specify not just a single frequency but a
minimum and a maximum frequency, and the resulting function is a
smooth spline between the minimum and maximum values and these
minimum and maximum frequencies. The following input:

kmin = -0.95

kmax = 0.95

kminfrq = 1

kmaxfrq = 4

asig Jjspline kmin, kmax, kminfrqg, kmaxfrqg

would generate an output something like:

0 ;l] 4.'[' 5‘.0

\/\\/\ AN AN /\
4 VS NS\~

We need to be careful with what we do with rspline's output as it can
exceed the limits set by kmin and kmax. Minimum and maximum
values can be set conservatively or the limit opcode could be used to
prevent out of range values that could cause problems.

The following example uses rspline to 'humanise' a simple
synthesiser. A short melody is played, first without any humanising
and then with humanising. rspline random variation is added to the
amplitude and pitch of each note in addition to an i-time random
offset.

80

EXAMPLE 01D12_humanising.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1

seed 0

giwave ftgen 0, 0, 2710, 10, 1,0,1/4,0,1/16,0,1/64,0,1/256,0,1/1024

instr 1 ; an instrument with no 'humanising'
inote = p4
aEnv linen 0.1,0.01,p3,0.01
aSig poscil aEnv,cpsmidinn(inote),giWave

outs aSig,aSig
endin
instr 2 ; an instrument with 'humanising'
inote = p4d

; generate some i-time 'static' random paramters
iRndAmp random -3,3 ; amp. will be offset by a random number of decibels
iRndNte random -5,5 ; note will be offset by a random number of cents

; generate some k-rate random functions

kAmpWob rspline -1,1,1,10 ; amplitude 'wobble' (in decibels)

kNteWob rspline -5,5,0.3,10 ; note 'wobble' (in cents)

;

calculate final note function (in CPS)

kcps

7

cpsmidinn (inote+ (iRndNte*0.01) + (kNteWob*0.01))

amplitude envelope (randomisation of attack time)

akEnv linen 0.l*ampdb (iRndAmp+kAmpWob) ,0.01+rnd (0.03),p3,0.01
aSig poscil aEnv, kcps,giWave
outs aSig,aSig
endin

</CsInstruments>

<CsScore>

t 0 80

#define SCORE (i) #
i$io1 60

i + 2.5 69

i + 0.5 67

i + 0.5 65

i + 0.5 64

i + 3 62

i + 1 62

i + 2.5 70

i + 0.5 69

i + 0.5 67

i + 0.5 65

i . +3 64 #
$SSCORE (1) ; play melody without humanising
b 17

SSCORE (2) ; play melody with humanising
e

</CsScore>

</CsoundSynthesizer>

;example by Iain McCurdy

RANDOM

The final example implements a simple algorithmic note generator. It

makes use of GEN17 to generate histograms which define the

81

RANDOM

probabilities of certain notes and certain rhythmic gaps occuring.

EXAMPLE 01D13_simple_algorithmic_note_generator.csd

<CsoundSynthesizer>
<CsOptions>

-odac -dmO
</CsOptions>
<CsInstruments>

sr = 44100

ksmps = 32

nchnls =1

Odbfs =1

giNotes ftgen 0,0,-100,-17,0,48, 15,53, 30,55, 40,60, 50,63, 60,65, 79,67, 85,70,
90,72, 96,75
gibDurs ftgen 0,0,-100,-17,0,2, 30,0.5, 75,1, 90,1.5

instr 1
kDur 1init 0.5 ; initial rhythmic duration
kTrig metro 2/kDur ; metronome freq. 2 times inverse of duration
kNdx trandom kTrig,0,1 ; create a random index upon each metro 'click'
kDur table kNdx,giDurs, 1 ; read a note duration value

schedkwhen kTrig,0,0,2,0,1 ; trigger a note!

endin

instr 2
iNote table rnd(l),giNotes, 1 ; read a random value from the

function table
aEnv linsegr 0, 0.005, 1, p3-0.105, 1, 0.1, O ; amplitude envelope

iPlk random 0.1, 0.3 ; point at which to pluck the string
iDtn random -0.05, 0.05 ; random detune
aSig wgpluck2 0.98, 0.2, cpsmidinn (iNote+iDtn), iPlk, 0.06
out aSig * aEnv

endin
</CsInstruments>
<CsScore>
i10 300 ; start 3 long notes close after one another

i1 0.01 300

i1 0.02 300

e

</CsScore>
</CsoundSynthesizer>
;example by Iain McCurdy

1. cf http://www.etymonline.com/index.php?term=random”
2. Because the sample rate is 44100 samples per second. So a
repetition after 65536 samples will lead to a repetition after

65536/44100 = 1.486 seconds.”
3. Charles Dodge and Thomas A. Jerse, Computer Music, New

York 1985, Chapter 8.1, in particular page 269-278."

4. Most of them have been written by Paris Smaragdis in 1995:
betarnd, bexprnd, cauchy, exprnd, gauss, linrand, pcauchy,
poisson, trirand, unirand and weibull.”

5. According to Dodge/Jerse, the usual algorithms for exponential
and gaussian are:

Exponential: Generate a uniformly distributed number between
0 and 1 and take its natural logarithm.
82

Gauss: Take the mean of uniformly distributed numbers and

MAKE CSOUND RUN

MAKE CSOUND RUN
CSOUND AND FRONTENDS

The core element of Csound is an audio engine for the Csound
language. It has no graphical interface and it is designed to take
Csound text files (called ".csd" files) and produce audio, either in
realtime, or by writing to a file. It can still be used in this way, but
most users nowadays prefer to use Csound via a frontend. A frontend
is an application which assists you in writing code and running
Csound. Beyond the functions of a simple text editor, a frontend
environment will offer colour coded highlighting of language specific
keywords and quick access to an integrated help system. A frontend
can also expand possibilities by providing tools to build interactive
interfaces as well, sometimes, as advanced compositional tools.

In 2009 the Csound developers decided to include CsoundQt as the
standard frontend to be included with the Csound distribution, so you
will already have this frontend if you have installed any of the recent
pre-built versions of Csound. Conversely if you install a frontend you
will require a separate installation of Csound in order for it to
function. If you experience any problems with CsoundQt, or simply
prefer another frontend design, try WinXound, Cabbage or Blue as
alternative.

ABOUT CSOUNDES6...

Csound6 has been released in spring 2013. It has a lot of new features
like on-the-fly recompilation of Csound code (enabling forms of live-
coding), arrays, new syntax for using opcodes, a redesigned C/C++
API, better threading for usage with multi-core processors, better
real-time performance, etc.

HOW TO DOWNLOAD AND INSTALL

83

MAKE CSOUND RUN

CSOUND

To get Csound you first need to download the package for your
system from the SourceForge page:
http://sourceforge.net/projects/csound/files/csound6

There are many files here, so here are some guidelines to help you
choose the appropriate version.

WINDOWS

Windows installers are the ones ending in .exe. Look for the latest
version of Csound, and find a file which should be called something
like: Setup_Csound6_6.02.0.exe. One important thing to note is the
final letter of the installer name, which can be "d" or "f". This
specifies the computation precision of the Csound engine. Float
precision (32-bit float) is marked with "f" and double precision (64-
bit float) is marked "d". This is important to bear in mind, as a
frontend which works with the "floats" version will not run if you
have the "doubles" version installed. More recent versions of the pre-
built Windows installer have only been released in the "doubles"
version.

After you have downloaded the installer, you might find it easiest just
to launch the executable installer and follow the instructions
accepting the defaults. You can, however, modify the components
that will be installed during the installation process (utilities, front-
ends, documentation etc.) creating either a fully-featured installation
or a super-light installation with just the bare bones.

84

& Csound Setup

Choose Components
Choose which features of Csound you want to install.

MAKE CSOUND RUN

Check the components you want to install and uncheck the components you don't want to

install. Click Install to start the installation.

Select the type of install: IDefauIt

Or, select the optional Utilities
components you wish to
install:

Front ends

Space required: 163.8MB

Documentation

Tullsaft Install System w2, 46

j
|

-[] CsoundQt {requires Python 2.7, user-definec
-[¥] Cabbage (front end with user-defined widge:
-[] telesound {requires TCL/TK)

-[] esoundapi~ {requires Pure Data)

Csound interfaces

< Back I Install I

Cancel

You may also find it useful to install the Python opcodes at the this
stage - selected under "Csound interfaces". If you choose to do this
however you will have to separately install Python itself. You will
need to install Python in any case if you plan to use the CsoundQt
front end, as the current version of CsoundQt requires Python. (As of
March 2013, Version 2.7 of Python is the correct choice.)

Csound will, by default, install into your Program Files folder, but
you may prefer to install directly into a folder in the root directory of

your C: drive.

Once installation has completed, you can find a Csound folder in your
Start Menu containing short-cuts to various items of documentation

and Csound front-ends.

85

MAKE CSOUND RUN

Accessories ﬂ
ASIO4ALL w2

AutoHotkey

avast! Free Antivirus

CodeMeter

Csound

|&| API Reference oS
4% cabbage

BN Csound

i CsoundAcTutorial

jimaikin

Pictures

csoundgt

0 Music
m] uajit

& Manual
BN pa_devs

Games

| README Computer
"i Tutorial
(5 uninszal Control Panel
Dropbox
elicenser Devices and Printers
EPSOM
EPSON Software LI Default Programs

4 Back Help and Suppart

I Search programs and files L’/Lqi Shut down bl

The Windows installer will not create any desktop shortcuts but you
can easily do this yourself by right-clicking the CsoundQt executable
(for example) and selecting "create shortcut". Drag the newly created
shortcut onto your desktop.

MAC OS X

The Mac OS X installers are the files ending in .dmg. Look for the
latest version of Csound for your particular system, for example a
Universal binary for 10.9 will be called something like:
Csound6.02.0-OSX10.9-x86_64.dmg. When you double click the
downloaded file, you will have a disk image on your desktop, with
the Csound installer, CsoundQt and a readme file. Double-click the
installer and follow the instructions. Csound and the basic Csound
utilities will be installed. To install the CsoundQt frontend, you only
need to move it to your Applications folder.

LINUX AND OTHERS

Csound is available from the official package repositories for many
distributions like OpenSuse, Debian, Ubuntu, Fedora, Archlinux and
Gentoo. If there are no binary packages for your platform, or you
need a more recent version, you can get the source package from the

86

MAKE CSOUND RUN

SourceForge page and build from source. You will find the most
recent build instructions in the Build.md file in the Csound sources or
in the Github Csound Wiki.

After installing git, you can use this command to clone the Csound6
repository, if you like to have access to the latest (perhaps unstable)
sources:

git clone git://github.com/csound/csound.git

The develop sources can be found on the develop branch:
https://github.com/csound/csound/tree/develop. There you will find a
button Download Snapshot, that will allow you to download the latest
sources.

In the develop branch you will find a file called "BUILD.md". This
file contains the latest instructions on how to build Csound6 for

Debian/Ubuntu Linux

Mac OS X using Homebrew

General Instructions for Linux without Root access

Raspberry PI standard OS

Fedora 18

10S

If you would just like to run Csound on your iPad, there is an app for
that called CsoundPad:

87

MAKE CSOUND RUN

http://itunes.apple.com/app/csoundpad/id861008380?mt=8#

If you are a developer, Csound can be run in an iOS app that you're
programming by including the Csound-for-iOS files in your Xcode
project. The zip archive for these files is included in the same
directory that other releases are available in, for example for version
6.05 of Csound, the files are here:

http://sourceforge.net/projects/csound/files/csound6/Csound6.05/

The "csound-i0S-6.05.0.zip" file contains an archive of an example
project and PDF manual.

Some sample projects:

e AudioKit (http://audiokit.io) is an Objective-C and Swift
framework for building iOS and OSX apps using Csound as the
audio engine.

e csGrain, developed by the Boulanger Labs
(http://www.boulangerlabs.com), is a complex audio effects
app that works with audio files or live audio input.

e Portable Dandy, an innovative sampler synthesiser for iOS (see
http://www.barefoot-coders.com).

e iPulsaret, an impressive synthesizer app (see
http://www.densitytigs.com).

ANDROID

The Android files for Csound are found in a subfolder of the Csound
files on SourceForge. You will find the Android files in the version
folder in http://sourceforge.net/projects/csound/files/csound6/.

Two files are of interest here (in the Csound6 folder). One is a CSD
player which executes Csound files on an Android device (the CSD
player app is called Csound6.apk).

88

MAKE CSOUND RUN

The other file of possible interest to is csound-android-X.XX.XX.zip
(where X.XX.XX is the version number), this file contains an Android
port of the Csound programming library and sample Android projects.
The source code for the CSD player mentioned above, is one of the
sample projects. This file should not be installed on an Android
device.

To install the CsoundApp-XXX.apk on an Android device the
following steps are taken:

1. The CsoundApp-XXX.apk file is copied onto the Android
device, for example /mnt/sdcard/download or something
similar.

2. One or more CSD files (not included in the distribution) should
be copied to the device's shared storage location: this is
usually anywhere in or below /mnt/sdcard

3. Launch a file explorer app on the device and navigate to the
folder containing the file CsoundApp-XXX.apk (copied in step
1). Select the apk file and when prompted, select to install
it. The app is installed as "CSD Player".

4. In the device's app browser (the screen which is used to launch
all the apps on the device) run the "CSD Player" app.

5. CSD Player displays its initial screen. Tap the "Browse" button
to find a CSD file to play on your device: CSD Player displays
a file browser starting at the device's shared storage location
(usually /mnt/sdcard). Select a csd file that you have copied to
the device (step 2).

6. Tap the play toggle to play the selected CSD.

If you want to use Csound6 on Android, have a look at chapter 12F in
this manual, which describes everything in detail.

On Google's Play Store there are some apps that use Csound. Below is
a small sample of such apps:

89

MAKE CSOUND RUN

e DIY Sound Salad, developed by Zatchu
(http://zatchu.com/category/story/), is a multi sample record
and playback app. Quite enjoyable to use.

e Chime Pad, developed by Arthur B. Hunkins
(http://www.arthunkins.com), is a soothing chime player app.

e Mono Dot Micro, developed by Acoustic Orchard
(http://acousticorchard.com/microsynth/market), this app is a 2
oscillator synthesiser, with effects.

e Psycho Flute developed by Brian Redfern (source code
available at http://github.com/bredfern/PsychoFlute), it is a
"physical modelling flute synth". Both fun and interesting.

INSTALL PROBLEMS?

If, for any reason, you can't find the CsoundQt (formerly
QuteCsound) frontend on your system after install, or if you want to
install the most recent version of CsoundQt, or if you prefer another
frontend altogether: see the CSOUND FRONTENDS section of this
manual for further information. If you have any install problems,
consider joining the Csound Mailing List to report your issues, or
write a mail to one of the maintainers (see ON THIS RELEASE).

THE CSOUND REFERENCE MANUAL

The Csound Reference Manual is an indispensable companion to
Csound. It is available in various formats from the same place as the
Csound installers, and it is installed with the packages for OS X and
Windows. It can also be browsed online at
http://csound.github.io/docs/manual/index.html. Many frontends will
provide you with direct and easy access to it.

HOW TO EXECUTE A SIMPLE EXAMPLE

90

MAKE CSOUND RUN

USING CSOUNDQT

Run CsoundQt. Go into the CsoundQt menubar and choose:
Examples->Getting started...-> Basics-> HelloWorld

You will see a very basic Csound file (.csd) with a lot of comments in
green.

Click on the "RUN" icon in the CsoundQt control bar to start the
realtime Csound engine. You should hear a 440 Hz sine wave.

You can also run the Csound engine in the terminal from within
QuteCsound. Just click on "Run in Term". A console will pop up and
Csound will be executed as an independent process. The result should
be the same - the 440 Hz "beep".

USING THE TERMINAL / CONSOLE
1. Save the following code in any plain text editor as HelloWorld.csd.

EXAMPLE 02A01_HelloWorld.csd

<CsoundSynthesizer>

<CsOptions>

-odac

</CsOptions>

<CsInstruments>

;Example by Alex Hofmann

instr 1

aSin poscil 0dbfs/4, 440
out aSin

endin

</CsInstruments>

<CsScore>

i101

</CsScore>

</CsoundSynthesizer>

2. Open the Terminal / Prompt / Console
3. Type: csound /full/path/HelloWorld.csd

where /full/path/HelloWorld.csd is the complete path to your file.
You also execute this file by just typing csound then dragging the file
into the terminal window and then hitting return.

You should hear a 440 Hz tone. ot

MAKE CSOUND RUN

92

CSOUND SYNTAX

CSOUND SYNTAX
ORCHESTRA AND SCORE

In Csound, you must define "instruments", which are units which "do
things", for instance playing a sine wave. These instruments must be
called or "turned on" by a "score". The Csound "score" is a list of
events which describe how the instruments are to be played in time. It
can be thought of as a timeline in text.

A Csound instrument is contained within an Instrument Block, which
starts with the keyword instr and ends with the keyword endin. All
instruments are given a number (or a name) to identify them.

instr 1
. instrument instructions come here...
endin

Score events in Csound are individual text lines, which can turn on
instruments for a certain time. For example, to turn on instrument 1,
at time 0, for 2 seconds you will use:

THE CSOUND DOCUMENT STRUCTURE

A Csound document is structured into three main sections:

e CsOptions: Contains the configuration options for Csound. For
example using "-o dac" in this section will make Csound run in

real-time instead of writing a sound file.!

e CsInstruments: Contains the instrument definitions and
optionally some global settings and definitions like sample

rate, etc. 2

93

CSOUND SYNTAX

e CsScore: Contains the score events which trigger the
instruments.

Each of these sections is opened with a <xyz> tag and closed with a
</xyz> tag. Every Csound file starts with the <CsoundSynthesizer>
tag, and ends with </CsoundSynthesizer>. Only the text in-between
will be used by Csound.

EXAMPLE 02B01_DocStruct.csd

<CsoundSynthesizer>; START OF A CSOUND FILE
<CsOptions> ; CSOUND CONFIGURATION

-odac

</CsOptions>

<CsInstruments> ; INSTRUMENT DEFINITIONS GO HERE

; Set the audio sample rate to 44100 Hz

sr = 44100

instr 1

; a 440 Hz Sine Wave

aSin oscils 0dbfs/4, 440, 0
out aSin

endin

</CsInstruments>

<CsScore> ; SCORE EVENTS GO HERE

i101

</CsScore>

</CsoundSynthesizer> ; END OF THE CSOUND FILE

; Anything after a semicolon is ignored by Csound

Comments, which are lines of text that Csound will ignore, are started
with the ";" character. Multi-line comments can be made by encasing

them between "/*" and "*/".

OPCODES

"Opcodes" or "Unit generators" are the basic building blocks of
Csound. Opcodes can do many things like produce oscillating signals,
filter signals, perform mathematical functions or even turn on and off
instruments. Opcodes, depending on their function, will take inputs
and outputs. Each input or output is called, in programming terms, an
"argument". Opcodes always take input arguments on the right and

94

CSOUND SYNTAX

output their results on the left, like this:

output OPCODE inputl, input2, input3, .., inputN

For example the poscil opcode has two mandatory inputs: amplitude
and frequency, and produces a sine wave signal:

aSin poscil 0dbfs/4, 440

In this case, a 440 Hertz oscillation with an amplitude of Odbfs/4 (a
quarter of 0 dB as full scale) will be created and its output will be
stored in a container called aSin. The order of the arguments is
important: the first input to poscil will always be amplitude and the
second input will always be read by Csound as frequency.

Many opcodes include optional input arguments and occasionally
optional output arguments. These will always be placed after the
essential arguments. In the Csound Manual documentation they are
indicated using square brackets "[]". If optional input arguments are
omitted they are replaced with the default values indicated in the
Csound Manual. The addition of optional output arguments normally
initiates a different mode of that opcode: for example, a stereo as
opposed to mono version of the opcode.

VARIABLES

A "variable" is a named container. It is a place to store things like
signals or values from where they can be recalled by using their
name. In Csound there are various types of variables. The easiest way
to deal with variables when getting to know Csound is to imagine
them as cables.

If you want to patch this together: Sound Generator -> Filter ->
Output,

you need two cables, one going out from the generator into the filter

95

CSOUND SYNTAX

and one from the filter to the output. The cables carry audio signals,
which are variables beginning with the letter "a".

aSource buzz 0.8, 200, 10, 1
aFiltered moogladder aSource, 400, 0.8

out aFiltered
In the example above, the buzz opcode produces a complex
waveform as signal aSource. This signal is fed into the moogladder
opcode, which in turn produces the signal aFiltered. The out opcode
takes this signal, and sends it to the output whether that be to the
speakers or to a rendered file.

Other common variable types are "k" variables which store control
signals, which are updated less frequently than audio signals, and "i"
variables which are constants within each instrument note.

You can find more information about variable types here in this
manual, or here in the Csound Journal.

USING THE MANUAL

The Csound Reference Manual is a comprehensive source regarding
Csound's syntax and opcodes. All opcodes have their own manual
entry describing their syntax and behavior, and the manual contains a
detailed reference on the Csound language and options.

In CsoundQt you can find the Csound Manual in the Help Menu. You
can quickly go to a particular opcode entry in the manual by putting
the cursor on the opcode and pressing Shift+F1. WinXsound ,
Cabbage and Blue also provide easy access to the manual.

96

CSOUND SYNTAX

1. Find all options ("flags") in alphabetical order at

www.csounds.com/manual/html/CommandFlags.html or sorted
by category at
www.csounds.com/manual/html/CommandFlagsCategory.html
A

. It is not obligatory to include Orchestra Header Statements (sr,
kr, ksmps, nchnls, etc.) in the section. If they are omitted, then
the default value will be used:

sr (audio sampling rate, default value is 44100)

kr (control rate, default value is 4410, but overwritten if ksmps
is specified, as kr=sr/ksmps)

ksmps (number of samples in a control period, default value is
10)

nchnls (number of channels of audio output, default value is 1
(mono))

0dbfs (value of 0 decibels using full scale amplitude, default is
32767)

Modern audio software normal uses 0dbfs = 1

Read chapter 01 to know more about these terms from a
general perspective. Read chapter 03A to know more in detail
about ksmps and friends. "

. The third and fourth input are a table containing the waveform,
and the starting phase. They are optional. If not specified, they

. AN
use default values: a sine wave, and phase zero.

97

CSOUND SYNTAX

98

CONFIGURING MIDI

CONFIGURING MIDI

Csound can receive MIDI events (like MIDI notes and MIDI control
changes) from an external MIDI interface or from another program
via a virtual MIDI cable. This information can be used to control any
aspect of synthesis or performance.

Csound receives MIDI data through MIDI Realtime Modules. These
are special Csound plugins which enable MIDI input using different
methods according to platform. They are enabled using the -+rtmidi
command line flag in the <CsOptions> section of your .csd file, but
can also be set interactively on some front-ends via the configure
dialog setups.

There is the universal "portmidi" module. PortMidi is a cross-
platform module for MIDI I/O and should be available on all
platforms. To enable the "portmidi" module, you can use the flag:

-+rtmidi=portmidi

After selecting the RT MIDI module from a front-end or the
command line, you need to select the MIDI devices for input and
output. These are set using the flags -M and -Q respectively followed
by the number of the interface. You can usually use:

-M999

To get a performance error with a listing of available interfaces.

For the PortMidi module (and others like ALLSA), you can specify no
number to use the default MIDI interface or the 'a' character to use all
devices. This will even work when no MIDI devices are present.

-Ma

So if you want MIDI input using the portmidi module, using device 2
for input and device 1 for output, your <CsOptions> section should

99

CONFIGURING MIDI

contain:

-t+rtmidi=portmidi -M2 -Q1

There is a special "virtual" RT MIDI module which enables MIDI
input from a virtual keyboard. To enable it, you can use:

—+rtmidi=virtual -MO

PLATFORM SPECIFIC MODULES

If the "portmidi" module is not working properly for some reason,
you can try other platform specific modules.

LINUX

On Linux systems, you might also have an "alsa" module to use the
alsa raw MIDI interface. This is different from the more common alsa
sequencer interface and will typically require the snd-virmidi module
to be loaded.

OS X

On OS X you may have a "coremidi" module available.
WINDOWS

On Windows, you may have a "winmme" MIDI module.

MIDI I/O IN CSOUNDQT

As with Audio I/0, you can set the MIDI preferences in the
configuration dialog. In it you will find a selection box for the RT
MIDI module, and text boxes for MIDI input and output devices.

100

CONFIGURING MIDI

" QuteCsound Configuration =

Run " General | Widgets | Editor | Environment | External programs | Template |

Buffersize(b) [1024 |
HW BufferSize (8) [4006 | [J Dither

Additional command line flags |—old—parser

File (offline render)

Use QuteCsound options [1gnore CsOptions
O Ask for Filename every time File type WAVE v
™| .

Sample format 24 Bit R4
O Input Filename | | E
Output Filename | /home/linux/Desktop/test.wav I E’

Realtime Play

Use QuteCsound options [J Ignore CsOptions

RT Audio Module | alsa |v| RT MIDI Module
Input device (-i) |adc]E Input device (-M) |a @
output device (-0) |dac | E’ output device (-Q) E’

Jack client name (use * For current filename) [+ |

| oK | | Cancel |

HOW TO USE A MIDI KEYBOARD

Once you've set up the hardware, you are ready to receive MIDI
information and interpret it in Csound. By default, when a MIDI note
is received, it turns on the Csound instrument corresponding to its
channel number, so if a note is received on channel 3, it will turn on
instrument 3, if it is received on channel 10, it will turn on instrument
10 and so on.

If you want to change this routing of MIDI channels to instruments,
you can use the massign opcode. For instance, this statement lets you
route your MIDI channel 1 to instrument 10:

massign 1, 10

On the following example, a simple instrument, which plays a sine
wave, is defined in instrument 1. There are no score note events, so
no sound will be produced unless a MIDI note is received on channel

101

CONFIGURING MIDI

EXAMPLE 02C01_Midi_Keybd_in.csd

<CsoundSynthesizer>
<CsOptions>
-+rtmidi=portmidi -Ma -odac
</CsOptions>
<CsInstruments>

;Example by Andrés Cabrera

sr = 44100
ksmps = 32
nchnls = 2
Odbfs = 1

massign 0, 1 ;assign all MIDI channels to instrument 1
instr 1
iCps cpsmidi ;get the frequency from the key pressed
1Amp ampmidi 0dbfs * 0.3 ;get the amplitude
alut poscil iAmp, iCps ;generate a sine tone

outs aOut, alOut ;write it to the output
endin

</CsInstruments>
<CsScore>

e 3600

</CsScore>
</CsoundSynthesizer>

Note that Csound has an unlimited polyphony in this way: each key

pressed starts a new instance of instrument 1, and you can have any
number of instrument instances at the same time.

HOW TO USE A MIDI CONTROLLER

To receive MIDI controller events, opcodes like ctrl7 can be used. In
the following example instrument 1 is turned on for 60 seconds. It
will receive controller #1 (modulation wheel) on channel 1 and
convert MIDI range (0-127) to a range between 220 and 440. This
value is used to set the frequency of a simple sine oscillator.

EXAMPLE 02C02_Midi_Ctl_in.csd

<CsoundSynthesizer>
<CsOptions>
—-+rtmidi=virtual -M1 -odac
</CsOptions>
<CsInstruments>

;Example by Andrés Cabrera

102

CONFIGURING MIDI

sr = 44100
ksmps = 32
nchnls = 2
O0dbfs =1

instr 1

; ——-—- receive controller number 1 on channel 1 and scale from 220 to 440
kFreq ctrl?7 1, 1, 220, 440

; —-—- use this value as varying frequency for a sine wave

aOut poscil 0.2, kFreqg

outs aOut, alOut
endin
</CsInstruments>
<CsScore>
i 10 60
e
</CsScore>

</CsoundSynthesizer>

OTHER TYPE OF MIDI DATA

Csound can receive other type of MIDI, like pitch bend, and
aftertouch through the usage of specific opcodes. Generic MIDI Data
can be received using the midiin opcode. The example below prints
to the console the data received via MIDI.

EXAMPLE 02C03_Midi_all_in.csd

<CsoundSynthesizer>
<CsOptions>
-+rtmidi=portmidi -Ma -odac
</CsOptions>
<CsInstruments>

;Example by Andrés Cabrera

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1

instr 1
kStatus, kChan, kDatal, kData2 midiin

if kStatus != 0 then ;print if any new MIDI message has been received

!
printk 0, kStatus
printk 0, kChan
printk 0, kDatal
printk 0, kData2

endif

endin

</CsInstruments>

<CsScore>

il 0 3600

e

</CsScore>

</CsoundSynthesizer>

103

CONFIGURING MIDI

104

LIVE AUDIO

LIVE AUDIO

CONFIGURING AUDIO & TUNING AUDIO
PERFORMANCE

SELECTING AUDIO DEVICES AND DRIVERS

Csound relates to the various inputs and outputs of sound devices
installed on your computer as a numbered list. If you wish to send or
receive audio to or from a specific audio connection you will need to
know the number by which Csound knows it. If you are not sure of
what that is you can trick Csound into providing you with a list of
available devices by trying to run Csound using an obviously out of
range device number, like this:

EXAMPLE 02D01_GetDeviceList.csd

<CsoundSynthesizer>
<CsOptions>

-iadc999 -odac999
</CsOptions>
<CsInstruments>
;Example by Andrés Cabrera
instr 1

endin
</CsInstruments>
<CsScore>

e

</CsScore>
</CsoundSynthesizer>

The input and output devices will be listed seperately.! Specify your
input device with the -iadc flag and the number of your input device,
and your output device with the -odac flag and the number of your

output device. For instance, if you select one of the devices from the
list above both, for input and output, you may include something like

-iadc2 -odac3

in the <CsOptions> section of you .csd file.

The RT (= real-time) output module can be set with the -+rtaudio

105

LIVE AUDIO

flag. If you don't use this flag, the PortAudio driver will be used.
Other possible drivers are jack and alsa (Linux), mme (Windows) or
CoreAudio (Mac). So, this sets your audio driver to mme instead of
Port Audio:

-+rtaudio=mme

TUNING PERFORMANCE AND LATENCY

Live performance and latency depend mainly on the sizes of the
software and the hardware buffers. They can be set in the
<CsOptions> using the -B flag for the hardware buffer, and the -b flag

for the software buffer.? For instance, this statement sets the
hardware buffer size to 512 samples and the software buffer size to
128 sample:

-B512 -b128

The other factor which affects Csound's live performance is the
ksmps value which is set in the header of the <CsInstruments>
section. By this value, you define how many samples are processed
every Csound control cycle.

Try your realtime performance with -B512, -b128 and ksmps=32.3
With a software buffer of 128 samples, a hardware buffer of 512 and
a sample rate of 44100 you will have around 12ms latency, which is
usable for live keyboard playing. If you have problems with either the
latency or the performance, tweak the values as described here.

THE "--REALTIME" OPTION

When you have instruments that have substantial sections that could
block out execution, for instance with code that loads buffers from
files or creates big tables, you can try the option --realtime.

106

LIVE AUDIO

This option will give your audio processing the priority over other
tasks to be done. It places all initialisation code on a separate thread,
and does not block the audio thread. Instruments start performing
only after all the initialisation is done. That can have a side-effect on
scheduling if your audio input and output buffers are not small
enough, because the audio processing thread may “run ahead” of the
initialisation one, taking advantage of any slack in the buffering.

Given that this option is intrinsically linked to low-latency, realtime
audio performance, and also to reduce the effect on scheduling these
other tasks, it is recommended that small ksmps and buffer sizes, for
example ksmps=16, 32, or 64, -b32 or 64, and -B256 or 512.

CSOUNDQT

To define the audio hardware used for realtime performance, open
the configuration dialog. In the "Run" Tab, you can choose your
audio interface, and the preferred driver. You can select input and
output devices from a list if you press the buttons to the right of the
text boxes for input and output names. Software and hardware buffer
sizes can be set at the top of this dialogue box.

107

LIVE AUDIO

Run General Widgets Editor Environment Extemnal programs Template

& Buffer Size (-b) 512

& HW Buffer Size (-B) |2048 Dither
Additional command line flags

File (offline render)

& Use QuteCsound options Ignore CsOptions
Ask for filename every time File type WAVE v
Sample format 16 Bit (short) v

Input Filename
Output Filename

Realtime Play

& Use QuteCsound options Ignore CsOptions

RT Audio Module portaudiob v RT MIDI Module none v
Input device (-i) adc .| Input device (-M)

output device (-0) | dac ... | output device (-Q)

Jack client name (use * for current filename) |*

oK | Cancel

CSOUND CAN PRODUCE EXTREME
DYNAMIC RANGE!

Csound can produce extreme dynamic range, so keep an eye on the
level you are sending to your output. The number which describes the
level of 0 dB, can be set in Csound by the 0dbfs assignment in the
<Cslnstruments> header. There is no limitation, if you set Odbfs = 1
and send a value of 32000, this can damage your ears and speakers!

USING LIVE AUDIO INPUT AND OUTPUT

To process audio from an external source (for example a
microphone), use the inch opcode to access any of the inputs of your
audio input device. For the output, outch gives you all necessary
flexibility. The following example takes a live audio input and
transforms its sound using ring modulation. The Csound Console

108

LIVE AUDIO

should output five times per second the input amplitude level.

EXAMPLE 02D02_LiveInput.csd

<CsoundSynthesizer>

<CsOptions>

; CHANGE YOUR INPUT AND OUTPUT DEVICE NUMBER HERE IF NECESSARY!
-iadc0O0 -odacO -B512 -bl28

</CsOptions>

<CsInstruments>

;Example by Joachim Heintz

sr = 44100 ;set sample rate to 44100 Hz

ksmps = 32 ;number of samples per control cycle

nchnls = 2 ;use two audio channels

Odbfs = 1 ;set maximum level as 1

instr 1

aln inch 1 ;take input from channel 1

kInLev downsamp aln ;convert audio input to control signal
printk .2, abs(kInLev)

;make modulator frequency oscillate 200 to 1000 Hz

kModFreq poscil 400, 1/2

kModFreq = kModFreqg+600

aMod poscil 1, kModFreq ;modulator signal

aRM = aIn * aMod ;ring modulation
outch 1, aRM, 2, aRM ;output to channel 1 and 2

endin

</CsInstruments>

<CsScore>

i1 0 3600

</CsScore>

</CsoundSynthesizer>

Live Audio is frequently used with live devices like widgets or MIDI.
In CsoundQYt, you can find several examples in Examples -> Getting
Started -> Realtime Interaction.

1. You may have to run -iadc999 and -odac999 seperately.”

109

LIVE AUDIO

110

2. As Victor Lazzarini explains (mail to Joachim Heintz, 19

march 2013), the role of -b and -B varies between the Audio
Modules:

"1. For portaudio, -B is only used to suggest a latency to the
backend, whereas -b is used to set the actual buffersize.

2. For coreaudio, -B is used as the size of the internal circular
buffer, and -b is used for the actual 1O buffer size.

3. For jack, -B is used to determine the number of buffers used
in conjunction with -b , num = (N + M + 1) / M. -b is the size
of each buffer.

4. For alsa, -B is the size of the buffer size, -b is the period size
(a buffer is divided into periods).

5. For pulse, -b is the actual buffersize passed to the device, -B
is not used.

In other words, -B is not too significant in 1), not used in 5),
but has a part to play in 2), 3) and 4), which is functionally

. . A
similar."

. It is always preferable to use power-of-two values for ksmps

(which is the same as "block size" in PureData or "vector size"
in Max). Just with ksmps = 1, 2, 4, 8, 16 ... you will take
advantage of the "full duplex" audio, which provides best real
time audio. Make sure your ksmps divides your buffer size
with no remainder. So, for -b 128, you can use ksmps = 128,

64,32, 16,8, 4,2 or 1."

RENDERING TO FILE

RENDERING TO FILE
WHEN TO RENDER TO FILE

Csound can also render audio straight to a sound file stored on your
hard drive instead of as live audio sent to the audio hardware. This
gives you the possibility to hear the results of very complex processes
which your computer can't produce in realtime. Or you want to render

something in Csound to import it in an audio editor, or as the final
1

result of a 'tape’' piece.
Csound can render to formats like wav, aiff or ogg (and other less
popular ones), but not mp3 due to its patent and licencing problems.

RENDERING TO FILE

Save the following code as Render.csd:

EXAMPLE 02E01_Render.csd

<CsoundSynthesizer>
<CsOptions>

-o Render.wav
</CsOptions>
<CsInstruments>

;Example by Alex Hofmann

instr 1

asSin poscil Odbfs/4, 440
out aSin

endin

</CsInstruments>

<CsScore>

i 101

e

</CsScore>

</CsoundSynthesizer>

Open the Terminal / Prompt / Console and type:

csound /path/to/Render.csd

Now, because you changed the -o flag in the <CsOptions> from "-o
dac" to "-o filename", the audio output is no longer written in
realtime to your audio device, but instead to a file. The file will be

111

RENDERING TO FILE

rendered to the default directory (usually the user home directory).
This file can be opened and played in any audio player or editor, e.g.
Audacity. (By default, csound is a non-realtime program. So if no
command line options are given, it will always render the csd to a file
called test.wav, and you will hear nothing in realtime.)

The -o flag can also be used to write the output file to a certain
directory. Something like this for Windows ...

<CsOptions>
-0 c:/music/samples/Render.wav
</CsOptions>

... and this for Linux or Mac OSX:

<CsOptions>
-o /Users/JSB/organ/tatata.wav
</CsOptions>

RENDERING OPTIONS

The internal rendering of audio data in Csound is done with 64-bit
floating point numbers. Depending on your needs, you should decide
the precision of your rendered output file:

e If you want to render 32-bit floats, use the option flag -f.

¢ If you want to render 24-bit, use the flag -3.

¢ If you want to render 16-bit, use the flag -s (or nothing,
because this is also the default in Csound).

For making sure that the header of your soundfile will be written
correctly, you should use the -W flag for a WAYV file, or the -A flag
for a AIFF file. So these options will render the file "Wow.wav" as
WAV file with 24-bit accuracy:

<CsOptions>
-0 Wow.wav -W -3
</CsOptions>

REALTIME AND RENDER-TO-FILE AT THE SAME

112

RENDERING TO FILE

TIME

Sometimes you may want to simultaneously have realtime output and
file rendering to disk, like recording your live performance. This can
be achieved by using the fout opcode. You just have to specify your
output file name. File type and format are given by a number, for
instance 18 specifies "wav 24 bit" (see the manual page for more
information). The following example creates a random frequency and
panning movement of a sine wave, and writes it to the file
"live_record.wav" (in the same directory as your .csd file):

EXAMPLE 02E02_RecordRT.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1
seed 0 ;each time different seed for random
instr 1
kFreq randomi 400, 800, 1 ;random sliding frequency
aSig poscil .2, kFreq ;sine with this frequency
kPan randomi 0, 1, 1 ;random panning
al, aR pan?2 aSig, kPan ;stereo output signal
outs al, aR ;live output
fout "live record.wav", 18, alL, aR ;write to soundfile
endin
</CsInstruments>
<CsScore>
i 10 10
e
</CsScore>

</CsoundSynthesizer>

CSOUNDQT

All the options which are described in this chapter can be handled
very easily in CsoundQt:

¢ Rendering to file is simply done by clicking the "Render"
button, or choosing "Control->Render to File" in the Menu.

113

RENDERING TO FILE

e To set file-destination and file-type, you can make your own
settings in "CsoundQt Configuration" under the tab "Run ->
File (offline render)". The default is a 16-Bit .wav-file.

e To record a live performance, just click the "Record" button.
You will find a file with the same name as your .csd file, and a
number appended for each record task, in the same folder as
your .csd file.

1. or bit-depth, see the section about Bit-depth Resolution in
chapter 01A (Digital Audio)”

114

INITIALIZATION AND PERFORMANCE PASS

INITTIALIZATION AND PERFORMANCE
PASS

Not only for beginners, but also for experienced Csound users, many
problems result from the misunderstanding of the so-called i-rate and
k-rate. You want Csound to do something just once, but Csound does
it continuously. You want Csound to do something continuously, but
Csound does it just once. If you experience such a case, you will most
probably have confused i- and k-rate-variables.

The concept behind this is actually not complicated. But it is
something which is more implicitly mentioned when we think of a
program flow, whereas Csound wants to know it explicitely. So we
tend to forget it when we use Csound, and we do not notice that we
ordered a stone to become a wave, and a wave to become a stone.
This chapter tries to explicate very carefully the difference between
stones and waves, and how you can profit from them, after you
understood and accepted both qualities.

THE INIT PASS

Whenever a Csound instrument is called, all variables are set to
initial values. This is called the initialization pass.

There are certain variables, which stay in the state in which they have
been put by the init-pass. These variables start with an i if they are
local (= only considered inside an instrument), or with a gi if they are
global (= considered overall in the orchestra). This is a simple
example:

EXAMPLE 03A01_Init-pass.csd

<CsoundSynthesizer>
<CsInstruments>

giGlobal = 1/2

115

INITIALIZATION AND PERFORMANCE PASS

instr 1
ilLocal = 1/4
print giGlobal, iLocal
endin
instr 2
iLocal = 1/5
print giGlobal, iLocal
endin
</CsInstruments>
<CsScore>
i100
i200
</CsScore>

</CsoundSynthesizer>
;example by joachim heintz

The output should include these lines:

SECTION 1:
new alloc for instr 1:
instr 1: giGlobal = 0.500 iLocal = 0.250

new alloc for instr 2:

instr 2: giGlobal = 0.500 iLocal = 0.200

As you see, the local variables iLocal do have different meanings in
the context of their instrument, whereas giGlobal is known
everywhere and in the same way. It is also worth mentioning that the
performance time of the instruments (p3) is zero. This makes sense,

as the instruments are called, but only the init-pass is performed.!

THE PERFORMANCE PASS

After having assigned initial values to all variables, Csound starts the

actual performance. As music is a variation of values in time,? audio
signals are producing values which vary in time. In all digital audio,
the time unit is given by the sample rate, and one sample is the

smallest possible time atom. For a sample rate of 44100 Hz,> one
sample comes up to the duration of 1/44100 = 0.0000227 seconds.

116

INITIALIZATION AND PERFORMANCE PASS

So, performance for an audio application means basically: calculate
all the samples which are finally being written to the output. You can
imagine this as the cooperation of a clock and a calculator. For each
sample, the clock ticks, and for each tick, the next sample is
calculated.

Most audio applications do not perform this calculation sample by
sample. It is much more efficient to collect some amount of samples
in a "block" or "vector", and calculate them all together. This means
in fact, to introduce another internal clock in your application; a
clock which ticks less frequently than the sample clock. For instance,
if (always assumed your sample rate is 44100 Hz) your block size
consists of 10 samples, your internal calculation time clock ticks
every 1/4410 (0.000227) seconds. If your block size consists of 441
samples, the clock ticks every 1/100 (0.01) seconds.

The following illustration shows an example for a block size of 10
samples. The samples are shown at the bottom line. Above are the
control ticks, one for each ten samples. The top two lines show the
times for both clocks in seconds. In the upmost line you see that the
first control cycle has been finished at 0.000227 seconds, the second

one at 0.000454 seconds, and so on.*

Time for Control 0.0 0.000227 0.000454 0.000680 0.000907

| | | | | -

Cycles (sec) I | I T |

: 0.0 0.000113 0.000227 0.00034 0.000454 0.000567 0.000680 0.000794 0.000907
Time for : : i] i i : i :

g B B L e L I e S T o

(sr=44100)
0.000023

Control Cycles 1‘ 2| :Ii T f =

(Block Size = 10) | | | | | -
‘ Block / Vector T Block / Vector Y Block / Vector Ll Block / Vector !

Samples R
1 5 10 15 20 25 30 35 40

The rate (frequency) of these ticks is called the control rate in

Csound. By historical reason,” it is called "kontrol rate" instead of

control rate, and abbreviated as "kr" instead of cr. Each of the
calculation cycles is called a "k-cycle". The block size or vector size

117

INITIALIZATION AND PERFORMANCE PASS

is given by the ksmps parameter, which means: how many samples

(smps) are collected for one k-cycle.®

Let us see some code examples to illustrate these basic contexts.

IMPLICIT INCREMENTATION

EXAMPLE 03A02_Perf-pass_incr.csd

<CsoundSynthesizer>
<CsInstruments>

sr = 44100

ksmps = 4410

instr 1

kCount init 0; set kcount to 0 first

kCount = kCount + 1; increase at each k-pass
printk 0, kCount; print the value

endin

</CsInstruments>

<CsScore>

i101

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Your output should contain the lines:

i 1 time 0.10000: 1.00000
i 1 time 0.20000: 2.00000
i 1 time 0.30000: 3.00000
i 1 time 0.40000: 4.00000
i 1 time 0.50000: 5.00000
i 1 time 0.60000: 6.00000
i 1 time 0.70000: 7.00000

118

INITIALIZATION AND PERFORMANCE PASS

i 1 time 0.80000: 8.00000

i 1 time 0.90000: 9.00000

i 1 time 1.00000: 10.00000

A counter (kCount) is set here to zero as initial value. Then, in each
control cycle, the counter is increased by one. What we see here, is
the typical behaviour of a loop. The loop has not been set explicitely,
but works implicitely because of the continuous recalculation of all k-
variables. So we can also speak about the k-cycles as an implicit (and

time-triggered) k-loop.” Try changing the ksmps value from 4410 to
8820 and to 2205 and observe the difference.

The next example reads the incrementation of kCount as rising
frequency. The first instrument, called Rise, sets the k-rate frequency
kFreq to the initial value of 100 Hz, and then adds 10 Hz in every
new k-cycle. As ksmps=441, one k-cycle takes 1/100 second to
perform. So in 3 seconds, the frequency rises from 100 to 3100 Hz. At

the last k-cycle, the final frequency value is printed out.® - The
second instrument, Partials, increments the counter by one for each k-
cycle, but only sets this as new frequency for every 100 steps. So the
frequency stays at 100 Hz for one second, then at 200 Hz for one
second, and so on. As the resulting frequencies are in the ratio 1 : 2 :
3 ..., we hear partials based on a 100 Hz fundamental, from the first
partial up to the 31st. The opcode printk?2 prints out the frequency
value whenever it has changed.

EXAMPLE 03A03_Perf-pass_incr_listen.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

sr = 44100

ksmps = 441

Odbfs =1

119

INITIALIZATION AND PERFORMANCE PASS

nchnls = 2

;build a table containing a sine wave
giSine ftgen o, 0, 2~10, 10, 1

instr Rise

kFreq init 100
aSine poscil .2, kFreq, giSine
outs aSine, aSine
;increment frequency by 10 Hz for each k-cycle
kFreq = kFreq + 10
;print out the frequency for the last k-cycle
kLast release
if kLast == 1 then
printk 0, kFreq
endif
endin

instr Partials
;initialize kCount

kCount init 100
;get new frequency if kCount equals 100, 200, ...
if kCount % 100 == 0 then
kFreq = kCount
endif
aSine poscil .2, kFreq, giSine
outs aSine, aSine
;increment kCount
kCount = kCount + 1
;print out kFreq whenever it has changed
printk2 kFreq
endin
</CsInstruments>
<CsScore>

i "Rise" 0 3

i "Partials" 4 31
</CsScore>
</CsoundSynthesizer>

;example by joachim heintz

INIT VERSUS EQUALS

A frequently occuring error is that instead of setting the k-variable as
kCount init 0, it is set as kCount = 0. The meaning of both statements
has one significant difference. kCount init 0 sets the value for kCount
to zero only in the init pass, without affecting it during the
performance pass. kCount = 1 sets the value for kCount to zero again
and again, in each performance cycle. So the increment always starts
from the same point, and nothing really happens:

EXAMPLE 03A04_Perf-pass_no_incr.csd

<CsoundSynthesizer>
<CsInstruments>

120

INITIALIZATION AND PERFORMANCE PASS

sr = 44100
ksmps = 4410

instr 1
kcount
kcount

0; sets kcount to 0 at each k-cycle

kcount + 1; does not really increase ...
printk 0, kcount; print the value

endin

</CsInstruments>

<CsScore>

i 101

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Outputs:

i 1 time 0.10000: 1.00000
i 1 time 0.20000: 1.00000
i 1 time 0.30000: 1.00000
i 1 time 0.40000: 1.00000
i 1 time 0.50000: 1.00000
i 1 time 0.60000: 1.00000
i 1 time 0.70000: 1.00000
i 1 time 0.80000: 1.00000
i 1 time 0.90000: 1.00000
i 1 time 1.00000: 1.00000

A LOOK AT THE AUDIO VECTOR

There are different opcodes to print out k-variables.? There is no
opcode in Csound to print out the audio vector directly, but you can
use the vaget opcode to see what is happening inside one control

121

INITIALIZATION AND PERFORMANCE PASS

cycle with the audio samples.

EXAMPLE 03A05_Audio_vector.csd

<CsoundSynthesizer>

<CsInstruments>

sr = 44100

ksmps = 5

Odbfs =1

instr 1

aSine oscils

kVecl vaget

kVec2 vaget

kVec3 vaget

kVec4 vaget

kVecb vaget
printks

f\n",\

endin

</CsInstruments>

<CsScore>

i1 0 [1/2205]

</CsScore>

0,

</CsoundSynthesizer>
;example by joachim heintz

Vecl = %

2205, 0
aSine
aSine
aSine
aSine
aSine

£,

kVecl, kVec2,

The output shows these lines:

kVecl = 0.000000,

0.951057

kvecl =

1.000000,

0.309017

kvecl =

-0.000000,

-0.951057

kVecl = -1.000000,

-0.309017

kVec?2

kVec?2

kVec?2

kVec?2

= 0.309017,

= 0.951057,

= -0.309017,

= -0.951057,

kVec2 =

o
S

kvVec3,

kVec3

kVec3

kVec3

kVec3

£,

kvVecd,

kvec3 =

.587785,

.809017,

.587785,

.809017,

% £,

kVec5

kVec4d

kVec4

kVec4

kVec4

kVec4

-
=%

£,

809017,

.587785,

.809017,

.587785,

kVech

kVec5

kVec5

kVec5

kVec5

o

S

In this example, the number of audio samples in one k-cycle is set to

five by the statement ksmps=>5. The first argument to vaget specifies

which sample of the block you get. For instance,

122

INITIALIZATION AND PERFORMANCE PASS

kvecl vaget 0, aSine

gets the first value of the audio vector and writes it into the variable
kVecl. For a frequency of 2205 Hz at a sample rate of 44100 Hz, you
need 20 samples to write one complete cycle of the sine. So we call
the instrument for 1/2205 seconds, and we get 4 k-cycles. The
printout shows exactly one period of the sine wave.

A SUMMARIZING EXAMPLE

After having put so much attention to the different single aspects of
initialization, performance and audio vectors, the next example tries
to summarize and illustrate all the aspects in their practical mixture.

EXAMPLE 03A06_Init_perf_audio.csd

<CsoundSynthesizer>

<CsOptions>

-o dac

</CsOptions>

<CsInstruments>

sr = 44100

ksmps = 441

nchnls = 2

Odbfs =1

instr 1

iAmp p4 ;amplitude taken from the 4th parameter of the score line

iFreq p5 ;frequency taken from the 5th parameter

; ——-— move from 0 to 1 in the duration of this instrument call (p3)

kPan line 0, p3, 1

aNote oscils iAmp, iFreq, 0 ;create an audio signal

al, aR pan?2 aNote, kPan ;let the signal move from left to right
outs al, aR ;write it to the output

endin

</CsInstruments>

<CsScore>

i 10 3 0.2 443

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

As ksmps=441, each control cycle is 0.01 seconds long (441/44100).
So this happens when the instrument call is performed:

123

INITIALIZATION AND PERFORMANCE PASS

InitAndPerfPass3

ACCESSING THE INITIALIZATION VALUE
OF A K-VARIABLE

It has been said that the init pass sets initial values to all variables. It
must be emphasized that this indeed concerns all variables, not only
the i-variables. It is only the matter that i-variables are not affected
by anything which happens later, in the performance. But also k- and
a-variables get their initial values.

As we saw, the init opcode is used to set initial values for k- or a-
variables explicitely. On the other hand, you can get the initial value
of a k-variable which has not been set explicitely, by the i() facility.

124

INITIALIZATION AND PERFORMANCE PASS

This is a simple example:

EXAMPLE 03A07_Init-values_of_k-variables.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

instr 1

gkLine line 0, p3, 1

endin

instr 2

iInstr2LineValue = 1i(gkLine)
print iInstr2LineValue
endin

instr 3

iInstr3LineValue = i (gkLine)
print iInstr3LineValue
endin

</CsInstruments>

<CsScore>

i105

i220

i 340

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Outputs:

new alloc for instr 1:

B 0.000 .. 2.000 T 2.000 TT 2.000 M: 0.0
new alloc for instr 2:

instr 2: iInstr2LineValue = 0.400

B 2.000 .. 4.000 T 4.000 TT 4.000 M: 0.0
new alloc for instr 3:

instr 3: iInstr3LineValue = 0.800

B 4.000 .. 5.000 T 5.000 TT 5.000 M: 0.0

125

INITIALIZATION AND PERFORMANCE PASS

Instrument 1 produces a rising k-signal, starting at zero and ending at
one, over a time of five seconds. The values of this line rise are
written to the global variable gkLine. After two seconds, instrument 2
is called, and examines the value of gkLine at its init-pass via
i(gkLine). The value at this time (0.4), is printed out at init-time as
iInstr2LineValue. The same happens for instrument 3, which prints
out iInstr3LineValue = 0.800, as it has been started at 4 seconds.

The i() feature is particularily useful if you need to examine the value
of any control signal from a widget or from midi, at the time when an
instrument starts.

K-VALUES AND INITIALIZATION IN
MULTIPLE TRIGGERED INSTRUMENTS

What happens on a k-variable if an instrument is called multiple
times? What is the initialization value of this variable on the first
call, and on the subsequent calls?

If this variable is not set explicitely, the init value in the first call of
an instrument is zero, as usual. But, for the next calls, the k-variable
is initialized to the value which was left when the previous instance
of the same instrument turned off.

The following example shows this behaviour. Instrument "Call"
simply calls the instrument "Called" once a second, and sends the
number of the call to it. Instrument "Called" generates the variable
kRndVal by a random generator, and reports both:

- the value of kRndVal at initialization, and

- the value of kRndVal at performance time, i.e. the first control
cycle.

(After the first k-cycle, the instrument is turned off immediately.)

126

INITIALIZATION AND PERFORMANCE PASS

EXAMPLE 03A08_k-inits_in_multiple_calls_1.csd

<CsoundSynthesizer>
<CsOptions>

-nm0

</CsOptions>
<CsInstruments>
ksmps = 32

instr Call
kNumCall init 1
kTrig metro 1
if kTrig == 1 then
event "i", "Called", 0, 1, kNumCall
kNumCall += 1
endif
endin
instr Called
iNumCall = p4
kRndval random 0, 10
prints "Initialization value of kRnd in call %d = %.3f\n", iNumCall, i (kRndval)
printks " New random value of kRnd generated in call %d = %$.3f\n", 0, iNumCall,
kRndVval
turnoff
endin
</CsInstruments>
<CsScore>
i "Call" 0 3
</CsScore>

</CsoundSynthesizer>
;example by joachim heintz

The output should show this:

Initialization value of kRnd in call 1 = 0.000

New random value of kRnd generated in call 1 = 8.829
Initialization value of kRnd in call 2 = 8.829

New random value of kRnd generated in call 2 = 2.913

Initialization value of kRnd in call 3 = 2.913

New random value of kRnd generated in call 3 = 9.257

The printout shows what was stated before: If there is no previous
value of a k-variable, this variable is initialized to zero. If there is a
previous value, it serves as initialization value.

127

INITIALIZATION AND PERFORMANCE PASS

But is this init-value of a k-variable of any relevance? Actually, we
choose a k-value because we want to use it at performance-time, not
at init-time. — Well, the problem is that Csound *will* perform the
init-pass for all k- (and a-) variables, unless you prevent it from doing
this explicitely. And if you, for example, generate an array index in
the previous instance of the same instrument, which is out of range at
initialization, Csound will report an error, or even crash:

EXAMPLE 03A09 _Init_no_incr.csd

<CsoundSynthesizer>
<CsOptions>

-nm0

</CsOptions>
<CsInstruments>
ksmps = 32

gkArray([] fillarray 1, 2, 3, 5, 8
instr Call

kNumCall init 1
kTrig metro 1

if kTrig == 1 then
event "i", "Called", 0, 1, kNumCall
kNumCall += 1

endif

endin

instr Called
;get the number of the instrument instance

iNumCall = p4
;set the start index for the while-loop

kIndex = 0
;get the init value of kIndex

prints "Initialization value of kIndx in call %d = %d\n", iNumCall, i (kIndex)
;perform the while-loop until kIndex equals five

while kIndex < lenarray(gkArray) do
printf "Index %d of gkArray has value %d\n", kIndex+l, kIndex, gkArray[kIndex]
kIndex += 1

od
;last value of kIndex is 5 because of increment

printks " Last value of kIndex in call %d = %d\n", 0, iNumCall, kIndex
;turn this instance off after first k-cycle

turnoff

endin

</CsInstruments>

<CsScore>

i "Call" 0 1 ;change performance time to 2 to get an error!

</CsScore>

</CsoundSynthesizer>

;example by joachim heintz

When you change the performance time to 2 instead of 1, you will get
an error, because the array will be asked for index=>5. (But, as the
length of this array is 5, the last index is 4.) This will be the output in
this case:

128

INITIALIZATION AND PERFORMANCE PASS

Initialization value of kIndx in call 1 = 0

Index 0 of gkArray has value 1

Index 1 of gkArray has value 2

Index 2 of gkArray has value 3

Index 3 of gkArray has value 5

Index 4 of gkArray has value 8

Last value of kIndex in call 1 =5
Initialization value of kIndx in call 2 = 5
PERF ERROR in instr 2: Array index 5 out of range (0,4) for dimension 1

note aborted

The problem is that the expression gkArray[kIndex] is performed *at
init-time*. And, that the expression kIndex=0 has no effect at all to
the value of kIndex *at init-time*. If we want to be sure that kIndex
is zero also at init-time, we must write this explicitely by

kIndex init O

Note that this is *exactly* the same for User-Defined Opcodes! If
you call a UDO twice, it will have the current value of a k-Variable
of the first call as init-value of the second call, unless you initialize
the k-variable explicitely by an init statement.

The final example shows both possibilities, using explicit
initialization or not, and the resulting effect.

129

INITIALIZATION AND PERFORMANCE PASS

EXAMPLE 03A10_k-inits_in_multiple_calls_3.csd

<CsoundSynthesizer>
<CsOptions>

-nm0

</CsOptions>
<CsInstruments>
ksmps = 32

instr without init

prints "instr without_init, call %d:\n", p4

kval = 1

prints " Value of kvVal at initialization = %d\n", 1i(kval)
printks " Value of kVal at first k-cycle = %d\n", 0, kval
kval = 2

turnoff

endin

instr with init

prints "instr with init, call %d:\n", p4

kval init 1

kval = 1

prints " Value of kVal at initialization %d\n", 1i(kVal)
printks " Value of kval at first k-cycle = %d\n", 0, kval
kval = 2

turnoff

endin

</CsInstruments>
<CsScore>

i "without init" 0

i "without init" +

i "with_init" 1 .1 1
i "with_init" + .1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

=
N

This is the output:

instr without init, call 1:
Value of kVal at initialization = 0
Value of kvVal at first k-cycle = 1
instr without init, call 2:
Value of kvVal at initialization = 2
Value of kvVal at first k-cycle = 1

instr with init, call 1:

130

INITIALIZATION AND PERFORMANCE PASS

Value of kVal at initialization =1
Value of kval at first k-cycle =1
instr with init, call 2:

Value of kVal at initialization =1

Value of kvVal at first k-cycle =1

REINITIALIZATION

As we saw above, an i-value is not affected by the performance loop.
So you cannot expect this to work as an incrementation:

EXAMPLE 03A11_Init_no_incr.csd

<CsoundSynthesizer>
<CsInstruments>

sr = 44100

ksmps = 4410

instr 1
iCount init 0 ;set iCount to 0 first
iCount = iCount + 1 ;increase
print iCount ;print the value
endin

</CsInstruments>
<CsScore>
i101
</CsScore>

</CsoundSynthesizer>
;example by joachim heintz

The output is nothing but:
instr 1: iCount = 1.000

But you can advise Csound to repeat the initialization of an i-
variable. This is done with the reinit opcode. You must mark a

131

INITIALIZATION AND PERFORMANCE PASS

section by a label (any name followed by a colon). Then the reinit
statement will cause the i-variable to refresh. Use rireturn to end the
reinit section.

EXAMPLE 03A12_Re-init.csd

<CsoundSynthesizer>
<CsInstruments>

sr = 44100

ksmps = 4410

instr 1
iCount init 0 ; set icount to 0 first
reinit new ; reinit the section each k-pass
new:
iCount = iCount + 1 ; increase
print iCount ; print the value
rireturn
endin

</CsInstruments>

<CsScore>

i101

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Outputs:

instr 1: iCount = 1.000
instr 1: iCount = 2.000
instr 1: iCount = 3.000
instr 1: iCount = 4.000
instr 1: iCount = 5.000
instr 1: iCount = 6.000
instr 1: iCount = 7.000

instr 1: iCount = 8.000

132

INITIALIZATION AND PERFORMANCE PASS

instr 1: iCount = 9.000

instr 1: iCount = 10.000

instr 1: iCount = 11.000

What happens here more in detail, is the following. In the actual init-
pass, iCount is set to zero via iCount init 0. Still in this init-pass, it is
incremented by one (iCount = iCount+1) and the value is printed out
as iCount = 1.000. Now starts the first performance pass. The
statement reinit new advices Csound to initialise again the section
labeled as "new". So the statement iCount = iCount + 1 is executed
again. As the current value of iCount at this time is 1, the result is 2.
So the printout at this first performance pass is iCount = 2.000. The
same happens in the next nine performance cycles, so the final count
is 11.

ORDER OF CALCULATION

In this context, it can be very important to observe the order in which
the instruments of a Csound orchestra are evaluated. This order is
determined by the instrument numbers. So, if you want to use during
the same performance pass a value in instrument 10 which is
generated by another instrument, you must not give this instrument
the number 11 or higher. In the following example, first instrument
10 uses a value of instrument 1, then a value of instrument 100.

EXAMPLE 03A13_Order_of calc.csd

<CsoundSynthesizer>
<CsInstruments>

sr = 44100

ksmps = 4410

instr 1

133

INITIALIZATION AND PERFORMANCE PASS

gkcount init 0 ;set gkcount to 0 first

gkcount = gkcount + 1 ;increase
endin

instr 10

printk 0, gkcount ;print the value

endin

instr 100

gkcount init 0 ;set gkcount to 0 first

gkcount = gkcount + 1 ;increase
endin

</CsInstruments>
<CsScore>

;first 11 and 110
i101

i 10 01

;then 1100 and 110

i 100 11

i 1011

</CsScore>
</CsoundSynthesizer>
;Example by Joachim Heintz

The output shows the difference:

new alloc for instr 1:

new alloc for instr 10:

i 10 time 0.10000: 1.00000
i 10 time 0.20000: 2.00000
i 10 time 0.30000: 3.00000
i 10 time 0.40000: 4.00000
i 10 time 0.50000: 5.00000
i 10 time 0.60000: 6.00000
i 10 time 0.70000: 7.00000
i 10 time 0.80000: 8.00000

134

i 10 time
i 10 time
B 0.000 ..

0.90000:

1.00000:

1.000 T 1

9

10

.000 TT

new alloc for instr 100:

i 10 time
i 10 time
i 10 time
i 10 time
i 10 time
i 10 time
i 10 time
i 10 time
i 10 time
i 10 time
B 1.000 ..

1.10000:

1.20000:

1.30000:

1.40000:

1.50000:

1.60000:

1.70000:

1.80000:

1.90000:

2.00000:

2.000T 2

.000 TT

.00000

.00000

1.000 M:

.00000

.00000

.00000

.00000

.00000

.00000

.00000

.00000

.00000

.00000

2.000 M:

INITIALIZATION AND PERFORMANCE PASS

0.0

0.0

Instrument 10 can use the values which instrument 1 has produced in
the same control cycle, but it can only refer to values of instrument
100 which are produced in the previous control cycle. By this reason,
the printout shows values which are one less in the latter case.

135

INITIALIZATION AND PERFORMANCE PASS

NAMED INSTRUMENTS

It has been said in chapter 02B (Quick Start) that instead of a number
you can also use a name for an instrument. This is mostly preferable,
because you can give meaningful names, leading to a better readable
code. But what about the order of calculation in named instruments?

The answer is simple: Csound calculates them in the same order as
they are written in the orchestra. So if your instrument collection is
like this ...

EXAMPLE 03A14_Order_of _calc_named.csd

<CsoundSynthesizer>
<CsOptions>

-nd

</CsOptions>
<CsInstruments>

instr Grain_machine
prints " Grain machine\n"
endin

instr Fantastic_ FM
prints " Fantastic_FM\n"
endin

instr Random Filter
prints " Random_Filter\n"

endin

instr Final Reverb

prints " Final Reverb\n"
endin

</CsInstruments>

<CsScore>

i "Final Reverb" 0 1
i "Random Filter" 0 1

i "Grain machine" 0 1

i "Fantastic FM" 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

... you can count on this output:

new alloc for instr Grain machine:

Grain _machine

136

INITIALIZATION AND PERFORMANCE PASS

new alloc for instr Fantastic_ FM:
Fantastic_FM

new alloc for instr Random Filter:
Random Filter

new alloc for instr Final Reverb:

Final Reverb

Note that the score has not the same order. But internally, Csound
transforms all names to numbers, in the order they are written from
top to bottom. The numbers are reported on the top of Csound's

output:1?

instr Grain_machine uses instrument number 1
instr Fantastic_FM uses instrument number 2

instr Random Filter uses instrument number 3

instr Final Reverb uses instrument number 4

ABOUT "I-TIME" AND "K-RATE" OPCODES

It is often confusing for the beginner that there are some opcodes
which only work at "i-time" or "i-rate", and others which only work at
"k-rate" or "k-time". For instance, if the user wants to print the value
of any variable, (s)he thinks: "OK - print it out." But Csound replies:
"Please, tell me first if you want to print an i- or a k-variable".!1

The print opcode just prints variables which are updated at each

137

INITIALIZATION AND PERFORMANCE PASS

initialization pass ("i-time" or "i-rate"). If you want to print a variable
which is updated at each control cycle ("k-rate" or "k-time"), you
need its counterpart printk. (As the performance pass is usually
updated some thousands times per second, you have an additional
parameter in printk, telling Csound how often you want to print out
the k-values.)

So, some opcodes are just for i-rate variables, like filelen or ftgen.
Others are just for k-rate variables like metro or max_k. Many
opcodes have variants for either i-rate-variables or k-rate-variables,
like printf_i and printf, sprintf and sprintfk, strindex and strindexk.

Most of the Csound opcodes are able to work either at i-time or at k-
time or at audio-rate, but you have to think carefully what you need,
as the behaviour will be very different if you choose the i-, k- or a-
variante of an opcode. For example, the random opcode can work at
all three rates:

ires random imin, imax : works at "i-time"
kres random kmin, kmax : works at "k-rate"
ares random kmin, kmax : works at "audio-rate"

If you use the i-rate random generator, you will get one value for each
note. For instance, if you want to have a different pitch for each note
you are generating, you will use this one.

If you use the k-rate random generator, you will get one new value on
every control cycle. If your sample rate is 44100 and your ksmps=10,
you will get 4410 new values per second! If you take this as pitch
value for a note, you will hear nothing but a noisy jumping. If you
want to have a moving pitch, you can use the randomi variant of the
k-rate random generator, which can reduce the number of new values
per second, and interpolate between them.

If you use the a-rate random generator, you will get as many new
values per second as your sample rate is. If you use it in the range of
your 0 dB amplitude, you produce white noise.

138

INITIALIZATION AND PERFORMANCE PASS

EXAMPLE 03A15_Random_at_ika.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr 44100
ksmps = 32
O0dbfs =1
nchnls = 2
seed 0 ;each time different seed
giSine ftgen 0o, 0, 2710, 10, 1 ;sine table

instr 1 ;i-rate random

iPch random 300, 600

aAmp linseg .5, p3, 0

aSine poscil aAmp, iPch, giSine
outs aSine, aSine

endin

instr 2 ;k-rate random: noisy

kPch random 300, 600

aAmp linseg .5, p3, 0

aSine poscil aAmp, kPch, giSine
outs aSine, aSine

endin

instr 3 ;k-rate random with interpolation: sliding pitch

kPch randomi 300, 600, 3

aAmp linseg .5, p3, 0

aSine poscil aAmp, kPch, giSine
outs aSine, aSine

endin

instr 4 ;a-rate random: white noise
aNoise random -.1, .1

outs aNoise, aNoise

endin

</CsInstruments>
<CsScore>

i

e e

i

1

W wWwwN e

4

0
.25
.5

.5
.5
.5
.75 .5

NN DN

2
4
5
6

9 1

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

POSSIBLE PROBLEMS WITH K-RATE TICK
SIZE

It has been said that usually the k-rate clock ticks much slower than
the sample (a-rate) clock. For a common size of ksmps=32, one k-
value remains the same for 32 samples. This can lead to problems, for
instance if you use k-rate envelopes. Let us assume that you want to

139

INITIALIZATION AND PERFORMANCE PASS

produce a very short fade-in of 3 milliseconds, and you do it with the
following line of code:

kFadeIn linseg 0, .003, 1

Your envelope will look like this:

1,00
0,95

0,90-
0.85
0,80-
0,75
0,70
0,65
0,60-
0,55
0,50-
0,45
0,40-
0,35
0,30
0.25
0,20-
015
0,10-
0,05
0,00

Such a "staircase-envelope" is what you hear in the next example as
zipper noise. The transeg opcode produces a non-linear envelope with
a sharp peak:

The rise and the decay are each 1/100 seconds long. If this envelope
is produced at k-rate with a blocksize of 128 (instr 1), the noise is
clearly audible. Try changing ksmps to 64, 32 or 16 and compare the
amount of zipper noise. - Instrument 2 uses an envelope at audio-rate
instead. Regardless the blocksize, each sample is calculated
seperately, so the envelope will always be smooth.

140

INITIALIZATION AND PERFORMANCE PASS

EXAMPLE 03A16_Zipper.csd

<CsoundSynthesizer>

<CsOptions>

-o dac

</CsOptions>

<CsInstruments>

sr = 44100

;——- increase or decrease to hear the difference more or less evident
ksmps = 128

nchnls = 2

Odbfs = 1

instr 1 ;envelope at k-time

aSine oscils .5, 800, O
kEnv transeg o, .1, 5, 1, .1, =5, O
alut = aSine * kEnv
outs aOut, alOut
endin

instr 2 ;envelope at a-time
aSine oscils .5, 800, O
aEnv transeg o, .1, 5, 1, .1, -5, 0
aOut = aSine * aEnv
outs aOut, alOut
endin

</CsInstruments>

<CsScore>

r 5 ;repeat the following line 5 times
101

;end of section

5

201

PR o0 b

e
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

TIME IMPOSSIBLE

There are two internal clocks in Csound. The sample rate (sr)
determines the audio-rate, whereas the control rate (kr) determines
the rate, in which a new control cycle can be started and a new block
of samples can be performed. In general, Csound can not start any
event in between two control cycles, nor end.

The next example chooses an extreme small control rate (only 10 k-
cycles per second) to illustrate this.

EXAMPLE 03A17_Time_Impossible.csd

<CsoundSynthesizer>

<CsOptions>

-o test.wav -d

</CsOptions>

<CsInstruments>

sr = 44100 141
ksmps = 4410

nchnls =1

INITIALIZATION AND PERFORMANCE PASS

142

LOCAL AND GLOBAL VARIABLES

LOCAL AND GLOBAL VARIABLES
VARIABLE TYPES

In Csound, there are several types of variables. It is important to
understand the differences between these types. There are

e initialization variables, which are updated at each
initialization pass, i.e. at the beginning of each note or score
event. They start with the character i. To this group count also
the score parameter fields, which always starts with a p,
followed by any number: p1 refers to the first parameter field
in the score, p2 to the second one, and so on.

e control variables, which are updated at each control cycle
during the performance of an instrument. They start with the
character k.

¢ audio variables, which are also updated at each control cycle,
but instead of a single number (like control variables) they
consist of a vector (a collection of numbers), having in this
way one number for each sample. They start with the character
a.

e string variables, which are updated either at i-time or at k-time
(depending on the opcode which produces a string). They start
with the character S.

Except these four standard types, there are two other variable types
which are used for spectral processing:

e f-variables are used for the streaming phase vocoder opcodes
(all starting with the characters pvs), which are very important
for doing realtime FFT (Fast Fourier Transform) in Csound.
They are updated at k-time, but their values depend also on the
FFT parameters like frame size and overlap.

e w-variables are used in some older spectral processing
opcodes.

The following example exemplifies all the variable types (except the

143

LOCAL AND GLOBAL VARIABLES

w-type):

EXAMPLE 03B01_Variable_types.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz

sr = 44100
ksmps = 32
Odbfs = 1
nchnls = 2
seed 0; random seed each time different

instr 1; i-time variables

ivarl = p2; second parameter in the score
ivar?2 random 0, 10; random value between 0 and 10
ivVar = iVarl + iVar2; do any math at i-rate
print ivarl, iVar2, iVar
endin

instr 2; k-time variables

kVarl line 0, p3, 10; moves from O to 10 in p3

kvar?2 random 0, 10; new random value each control-cycle

kVar = kVarl + kVar2; do any math at k-rate

; —-—-—- print each 0.1 seconds

printks "kvarl = %.3f, kvar2 = %.3f, kvar = %.3f%n", 0.1, kVarl, kVar2,

endin

instr 3; a-variables

aVarl oscils .2, 400, 0; first audio signal: sine
avVar2 rand 1; second audio signal: noise
avar3 butbp avVar2, 1200, 12; third audio signal: noise filtered
aVar = aVarl + aVar3; audio variables can also be added
outs aVar, aVar; write to sound card
endin

instr 4; S-variables

iMyVar random 0, 10; one random value per note

kMyVar random 0, 10; one random value per each control-cycle
;S-variable updated just at init-time

SMyVarl sprintf "This string is updated just at init-time:

kMyVar = %d\n", iMyVar
printf i "%s", 1, SMyVarl
;S-variable updates at each control-cycle
printks "This string is updated at k-time:
kMyVar = %.3f\n", .1, kMyVar
endin

instr 5; f-variables

aSig rand .2; audio signal (noise)
; f-signal by FFT-analyzing the audio-signal
fSigl pvsanal aSig, 1024, 256, 1024, 1
; second f-signal (spectral bandpass filter)
fSig2 pvsbandp fSigl, 350, 400, 400, 450
alut pvsynth £fSig2; change back to audio signal
outs aOut*20, aOut*20

endin
</CsInstruments>
<CsScore>
; pl p2 p3
i1 0 0.1
i1 0.1 0.1
i2 1 1

144

kVar

LOCAL AND GLOBAL VARIABLES

i3 2 1
i 4 3 1
i5 4 1
</CsScore>

</CsoundSynthesizer>

You can think of variables as named connectors between opcodes.
You can connect the output from an opcode to the input of another.
The type of connector (audio, control, etc.) is determined by the first
letter of its name.

For a more detailed discussion, see the article An overview Of Csound
Variable Types by Andrés Cabrera in the Csound Journal, and the
page about Types, Constants and Variables in the Canonical Csound
Manual.

LOCAL SCOPE

The scope of these variables is usually the instrument in which they
are defined. They are local variables. In the following example, the
variables in instrument 1 and instrument 2 have the same names, but
different values.

EXAMPLE 03B02_Local_scope.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz

sr = 44100
ksmps = 4410; very high because of printing
nchnls = 2
0dbfs =1
instr 1
;i-variable
iMyVar init 0
iMyVar = iMyVar + 1
print iMyVar
;k-variable
kMyVar init 0
kMyVar = kMyVar + 1
printk 0, kMyVar
;a-variable
aMyVar oscils .2, 400, O
outs aMyVar, aMyVar
;S-variable updated just at init-time
SMyVarl sprintf "This string is updated just at init-time:

145

LOCAL AND GLOBAL VARIABLES

kMyVar = %d\n", 1i(kMyVar)
printf "$s", kMyVar, SMyVarl
;S-variable updated at each control-cycle
SMyVar2 sprintfk "This string is updated at k-time:
kMyVar = %d\n", kMyVar

printf "%s", kMyVar, SMyVar2
endin
instr 2
;i-variable
iMyVar init 100
iMyVar = iMyVar + 1
print iMyVar
;k-variable
kMyVar init 100
kMyVar = kMyVar + 1
printk 0, kMyVar
;a-variable
aMyVar oscils .3, 600, O
outs aMyVar, aMyVar
;S-variable updated just at init-time
SMyVarl sprintf "This string is updated just at init-time:
kMyVar = %d\n", i (kMyVar)
printf "%s", kMyVar, SMyVarl

;S-variable updated at each control-cycle
SMyVar?2 sprintfk "This string is updated at k-time:
kMyVar = %d\n", kMyVar
printf "%s", kMyVar, SMyVar2

endin

</CsInstruments>

<CsScore>

i10.3

i21.3

</CsScore>

</CsoundSynthesizer>

This is the output (first the output at init-time by the print opcode,
then at each k-cycle the output of printk and the two printf opcodes):

new alloc for instr 1:
instr 1: iMyVar = 1.000
i 1 time 0.10000: 1.00000
This string is updated just at init-time: kMyVar = 0
This string is updated at k-time: kMyVar = 1
i 1 time 0.20000: 2.00000

This string is updated just at init-time: kMyVar = 0

146

This string is updated at k-time: kMyVar

i 1 time 0.30000: 3.00000

This string is updated just at init-time:

This string is updated at k-time: kMyVar

B 0.000 .. 1.000T 1.000 TT 1.000 M:

new alloc for instr 2:

instr 2: iMyVar = 101.000

i 2 time 1.10000: 101.00000

This string is updated just at init-time:

This string is updated at k-time: kMyVar

i 2 time 1.20000: 102.00000

This string is updated just at init-time:

This string is updated at k-time: kMyVar

i 2 time 1.30000: 103.00000

This string is updated just at init-time:

This string is updated at k-time: kMyVar

B 1.000 .. 1.300 T 1.300 TT 1.300 M:

LOCAL AND GLOBAL VARIABLES

=0

0.20000 0.20000

= 100

= 100

kMyVar = 100

0.29998

147

LOCAL AND GLOBAL VARIABLES

GLOBAL SCOPE

If you need variables which are recognized beyond the scope of an
instrument, you must define them as global. This is done by prefixing
the character g before the types i, k, a or S. See the following
example:

EXAMPLE 03B03_Global_scope.csd

<CsoundSynthesizer>

<CsInstruments>

;Example by Joachim Heintz

sr = 44100

ksmps = 4410; very high because of printing
nchnls = 2

Odbfs =1

;global scalar variables should be inititalized in the header

giMyVar init 0
gkMyVar init 0
instr 1
;global i-variable
giMyVar = giMyvVar + 1
print giMyVar
;global k-variable
gkMyVar = gkMyVar + 1
printk 0, gkMyVar
;global S-variable updated just at init-time
gSMyVarl sprintf "This string is updated just at init-time:
gkMyVar = %d\n", i (gkMyVar)
printf "$s", gkMyVar, gSMyVarl

;global S-variable updated at each control-cycle
gSMyVar2 sprintfk "This string is updated at k-time:
gkMyVar = %d\n", gkMyVar

printf "%s", gkMyVar, gSMyVar2
endin
instr 2
;global i-variable, gets value from instr 1
giMyVar = giMyVar + 1
print giMyVar
;global k-variable, gets value from instr 1
gkMyVar = gkMyVar + 1
printk 0, gkMyVar
;global S-variable updated just at init-time, gets value from instr 1
printf "Instr 1 tells: '$s'\n", gkMyVar, gSMyVarl
;global S-variable updated at each control-cycle, gets value from instr 1
printf "Instr 1 tells: '%s'\n\n", gkMyVar, gSMyVar2
endin
</CsInstruments>
<CsScore>
i10.3
i20 .3
</CsScore>

</CsoundSynthesizer>

The output shows the global scope, as instrument 2 uses the values
which have been changed by instrument 1 in the same control

148

cycle:new alloc for instr 1:
instr 1: giMyVar = 1.000
new alloc for instr 2:

instr 2: giMyVar = 2.000

i 1 time 0.10000: 1.00000

This string is updated just at init-time:

This string is updated at k-time: gkMyVar

i 2 time 0.10000: 2.00000

LOCAL AND GLOBAL VARIABLES

0

Instr 1 tells: 'This string is updated just at init-time: gkMyVar = 0'

Instr 1 tells: 'This string is updated at k-time:

i 1 time 0.20000: 3.00000

This string is updated just at init-time:

This string is updated at k-time: gkMyVar

i 2 time 0.20000: 4.00000

gkMyVar = 1'

0

Instr 1 tells: 'This string is updated just at init-time: gkMyVar = 0'

Instr 1 tells: 'This string is updated at k-time:

i 1 time 0.30000: 5.00000

gkMyVar = 3'

149

LOCAL AND GLOBAL VARIABLES

This string is updated just at init-time: gkMyVar = 0
This string is updated at k-time: gkMyVar = 5
i 2 time 0.30000: 6.00000

Instr 1 tells: 'This string is updated just at init-time: gkMyVar = 0'

Instr 1 tells: 'This string is updated at k-time: gkMyVar = 5'

HOW TO WORK WITH GLOBAL AUDIO
VARIABLES

Some special considerations must be taken if you work with global
audio variables. Actually, Csound behaves basically the same
whether you work with a local or a global audio variable. But usually
you work with global audio variables if you want to add several audio
signals to a global signal, and that makes a difference.

The next few examples are going into a bit more detail. If you just
want to see the result (= global audio usually must be cleared), you
can skip the next examples and just go to the last one of this section.

It should be understood first that a global audio variable is treated the
same by Csound if it is applied like a local audio signal:

EXAMPLE 03B04_Global_audio_intro.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

150

LOCAL AND GLOBAL VARIABLES

Odbfs =1

instr 1; produces a 400 Hz sine
gaSig oscils .1, 400, O
endin

instr 2; outputs gaSig
outs gaSig, gaSig
endin

</CsInstruments>
<CsScore>

i 103

i203

</CsScore>
</CsoundSynthesizer>

Of course there is no need to use a global variable in this case. If you
do it, you risk your audio will be overwritten by an instrument with a
higher number using the same variable name. In the following
example, you will just hear a 600 Hz sine tone, because the 400 Hz
sine of instrument 1 is overwritten by the 600 Hz sine of instrument 2:

EXAMPLE 03B05_Global _audio_overwritten.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

instr 1; produces a 400 Hz sine
gaSig oscils .1, 400, O
endin

instr 2; overwrites gaSig with 600 Hz sine
gaSig oscils .1, 600, O
endin

instr 3; outputs gaSig
outs gaSig, gaSig
endin

</CsInstruments>
<CsScore>

i 103

i203

i303

</CsScore>
</CsoundSynthesizer>

In general, you will use a global audio variable like a bus to which
several local audio signal can be added. It's this addition of a global
audio signal to its previous state which can cause some trouble. Let's

151

LOCAL AND GLOBAL VARIABLES

first see a simple example of a control signal to understand what is
happening:

EXAMPLE 03B06_Global_audio_added.csd

<CsoundSynthesizer>

<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 4410; very high because of printing
nchnls = 2
Odbfs =1
instr 1
kSum init 0; sum is zero at init pass
kAdd = 1; control signal to add
kSum = kSum + kAdd; new sum in each k-cycle
printk 0, kSum; print the sum
endin

</CsInstruments>
<CsScore>

i101

</CsScore>
</CsoundSynthesizer>

In this case, the "sum bus" kSum increases at each control cycle by 1,
because it adds the kAdd signal (which is always 1) in each k-pass to
its previous state. It is no different if this is done by a local k-signal,
like here, or by a global k-signal, like in the next example:

EXAMPLE 03B07_Global_control_added.csd

<CsoundSynthesizer>

<CsInstruments>

;Example by Joachim Heintz

sr = 44100

ksmps = 4410; very high because of printing
nchnls = 2

Odbfs =1

gkSum init 0; sum is zero at init

instr 1
gkAdd = 1; control signal to add
endin

instr 2
gkSum = gkSum + gkAdd; new sum in each k-cycle
printk 0, gkSum; print the sum
endin

</CsInstruments>
<CsScore>

i101

i201

</CsScore>
</CsoundSynthesizer>

152

LOCAL AND GLOBAL VARIABLES

What happens when working with audio signals instead of control
signals in this way, repeatedly adding a signal to its previous state?
Audio signals in Csound are a collection of numbers (a vector). The
size of this vector is given by the ksmps constant. If your sample rate
is 44100, and ksmps=100, you will calculate 441 times in one second
a vector which consists of 100 numbers, indicating the amplitude of
each sample.

So, if you add an audio signal to its previous state, different things
can happen, depending on the vector's present and previous states. If
both previous and present states (with ksmps=9) are [0 0.1 0.2 0.1 0
-0.1-0.2 -0.1 0] you will get a signal which is twice as strong: [0 0.2
0.40.2 0-0.2 -0.4 -0.2 0]. But if the present state is opposite [0 -0.1
-0.2-0.100.1 0.2 0.1 0], you will only get zeros when you add them.
This is shown in the next example with a local audio variable, and
then in the following example with a global audio variable.

EXAMPLE 03B08 Local _audio_add.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 4410; very high because of printing
; (change to 441 to see the difference)

nchnls = 2
Odbfs =1

instr 1

;initialize a general audio variable
asSum init 0

;produce a sine signal (change frequency to 401 to see the difference)
aAdd oscils .1, 400, O

;add it to the general audio (= the previous vector)
asum = aSum + aAdd
kmax max_k aSum, 1, 1; calculate maximum
printk 0, kmax; print it out
outs aSum, aSum
endin
</CsInstruments>
<CsScore>
i101
</CsScore>

</CsoundSynthesizer>

prints:

153

LOCAL AND GLOBAL VARIABLES

i 1 time 0.10000: 0.10000
i 1 time 0.20000: 0.20000
i 1 time 0.30000: 0.30000
i 1 time 0.40000: 0.40000
i 1 time 0.50000: 0.50000
i 1 time 0.60000: 0.60000
i 1 time 0.70000: 0.70000
i 1 time 0.80000: 0.79999
i 1 time 0.90000: 0.89999
i 1 time 1.00000: 0.99999

EXAMPLE 03B09_Global_audio_add.csd

<CsoundSynthesizer>

<CsOptions>

-o dac

</CsOptions>

<CsInstruments>

;Example by Joachim Heintz

sr = 44100

ksmps = 4410; very high because of printing
; (change to 441 to see the difference)

nchnls = 2

Odbfs =1

;initialize a general audio variable
gaSum init 0

instr 1
;jproduce a sine signal (change frequency to 401 to see the difference)
aAdd oscils .1, 400, O

;add it to the general audio (= the previous vector)
gaSum = gaSum + aAdd

endin

instr 2
kmax max_k gaSum, 1, 1; calculate maximum

154

LOCAL AND GLOBAL VARIABLES

printk 0, kmax; print it out
outs gaSum, gaSum
endin

</CsInstruments>

<CsScore>

i 101

i201

</CsScore>

</CsoundSynthesizer>

In both cases, you get a signal which increases each 1/10 second,
because you have 10 control cycles per second (ksmps=4410), and the
frequency of 400 Hz can be evenly divided by this. If you change the
ksmps value to 441, you will get a signal which increases much faster
and is out of range after 1/10 second. If you change the frequency to
401 Hz, you will get a signal which increases first, and then
decreases, because each audio vector has 40.1 cycles of the sine
wave. So the phases are shifting; first getting stronger and then
weaker. If you change the frequency to 10 Hz, and then to 15 Hz (at
ksmps=44100), you cannot hear anything, but if you render to file,
you can see the whole process of either enforcing or erasing quite
clear:

x[Freq=10Hz [1.0

=N
VVVVVY

-1.0

1.0

1 A AANAN
SACAVAVAVAVAVRY

-1.0

Self-reinforcing global audio signal on account of its state in one
control cycle being the same as in the previous one

155

LOCAL AND GLOBAL VARIABLES

x[Freq=15Hz *[1.0
Stereo, 44100Hz
32-bit float 0.5
Stumm [Solo
= L | 00

2
|E O R)-0.5

=10
1.0

0.5

0.0

-0.5

=10

Partly self-erasing global audio signal because of phase inversions in
two subsequent control cycles

So the result of all is: If you work with global audio variables in a
way that you add several local audio signals to a global audio
variable (which works like a bus), you must clear this global bus at
each control cycle. As in Csound all the instruments are calculated in
ascending order, it should be done either at the beginning of the first,
or at the end of the last instrument. Perhaps it is the best idea to
declare all global audio variables in the orchestra header first, and
then clear them in an "always on" instrument with the highest number
of all the instruments used. This is an example of a typical situation:

EXAMPLE 03B10_Global_with_clear.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

Odbfs = 1

;initialize the global audio variables

gaBusL init 0
gaBusR init 0

;make the seed for random values each time different
seed 0

instr 1; produces short signals

loop:

iDur random .3, 1.5
timout 0, iDur, makenote
reinit loop

156

LOCAL AND GLOBAL VARIABLES

makenote:
iFreq random 300, 1000
ivol random -12, -3; dB
iPan random 0, 1; random panning for each signal
aSin oscil3 ampdb (iVol), iFreq, 1
akEnv transeg 1, ibur, -10, 0; env in a-rate is cleaner
aAdd = aSin * aEnv
alL, aR pan?2 aAdd, iPan
gaBusL = gaBusL + al; add to the global audio signals
gaBusR = gaBusR + aR
endin

instr 2; produces short filtered noise signals (4 partials)

loop:

iDur random .1, .7
timout 0, iDur, makenote
reinit loop

makenote:

iFreq random 100, 500

ivVol random -24, -12; dB

iPan random 0, 1

aNois rand ampdb (iVol)

arFilt reson aNois, iFreq, iFreq/10

aRes balance aFilt, aNois

akEnv transeg 1, iDur, -10, O

aAdd = aRes * aEnv

aL, aR pan?2 aAdd, iPan

gaBusL = gaBusL + aL; add to the global audio signals

gaBusR = gaBusR + aR

endin

instr 3; reverb of gaBus and output
aL, aR freeverb gaBusL, gaBusR, .8, .5
outs al, aR
endin
instr 100; clear global audios at the end
clear gaBusL, gaBusR
endin
</CsInstruments>
<CsScore>
£ 10 1024 10 1 .5 .3 .1
i 10 20
i 20 20
i 30 20
i 100 0 20
</CsScore>
</CsoundSynthesizer>

THE CHN OPCODES FOR GLOBAL
VARIABLES

Instead of using the traditional g-variables for any values or signals
which are to transfer between several instruments, it is also possible
to use the chn opcodes. An i-, k-, a- or S-value or signal can be set by
chnset and received by chnget. One advantage is to have strings as
names, so that you can choose intuitive names.

For audio variables, instead of performing an addition, you can use
the chnmix opcode. For clearing an audio variable, the chnclear
opcode can be used.

EXAMPLE 03B11_Chn_demo.csd 157

LOCAL AND GLOBAL VARIABLES

158

CONTROL STRUCTURES

CONTROL STRUCTURES

In a way, control structures are the core of a programming language.
The fundamental element in each language is the conditional if
branch. Actually all other control structures like for-, until- or while-
loops can be traced back to if-statements.

So, Csound provides mainly the if-statement; either in the usual if-
then-else form, or in the older way of an if-goto statement. These will
be covered first. Though all necessary loops can be built just by if-
statements, Csound's while, until and loop facility offer a more
comfortable way of performing loops. They will be introduced later,
in the Loop and the While / Until section of this chapter. Finally, time
loops are shown, which are particulary important in audio
programming languages.

IF I-TIME THEN NOT K-TIME!

The fundamental difference in Csound between i-time and k-time
which has been explained in chapter 03A, must be regarded very
carefully when you work with control structures. If you make a
conditional branch at i-time, the condition will be tested just once
for each note, at the initialization pass. If you make a conditional
branch at k-time, the condition will be tested again and again in
each control-cycle.

For instance, if you test a soundfile whether it is mono or stereo, this
is done at init-time. If you test an amplitude value to be below a
certain threshold, it is done at performance time (k-time). If you get
user-input by a scroll number, this is also a k-value, so you need a k-
condition.

159

CONTROL STRUCTURES

Thus, all if and loop opcodes have an "i" and a "k" descendant. In the
next few sections, a general introduction into the different control
tools is given, followed by examples both at i-time and at k-time for
each tool.

IF - THEN - [ELSEIF - THEN -] ELSE

The use of the if-then-else statement is very similar to other
programming languages. Note that in Csound, "then" must be written
in the same line as "if" and the expression to be tested, and that you
must close the if-block with an "endif" statement on a new line:

if <condition> then
else

endif
It is also possible to have no "else" statement:

if <condition> then

endif
Or you can have one or more "elseif-then" statements in between:

if <conditionl> then
elseif <condition2> then
else

endif

If statements can also be nested. Each level must be closed with an
"endif". This is an example with three levels:
if <conditionl> then; first condition opened

if <condition2> then; second condition openend

if <condition3> then; third condition openend

else

éééif; third condition closed

elseif <condition2a> then

endif; second condition closed
else

endif; first condition closed

I-RATE EXAMPLES

160

CONTROL STRUCTURES

A typical problem in Csound: You have either mono or stereo files,
and want to read both with a stereo output. For the real stereo ones
that means: use soundin (diskin / diskin2) with two output arguments.
For the mono ones it means: use soundin / diskin / diskin2 with one
output argument, and throw it to both output channels:

EXAMPLE 03C01_IfThen_i.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz

sr = 44100
ksmps = 32
nchnls = 2
O0dbfs =1
instr 1
Sfile = "/my/file.wav" ;your soundfile path here
ifilchnls filenchnls Sfile
if ifilchnls == 1 then ;mono
al soundin Sfile
aR = aL
else ;stereo
alL, aR soundin Sfile
endif
outs alL, aR
endin
</CsInstruments>
<CsScore>
i105
</CsScore>

</CsoundSynthesizer>

If you use CsoundQt, you can browse in the widget panel for the
soundfile. See the corresponding example in the CsoundQt Example
menu.

K-RATE EXAMPLES

The following example establishes a moving gate between 0 and 1. If
the gate is above 0.5, the gate opens and you hear a tone. If the gate
is equal or below 0.5, the gate closes, and you hear nothing.

EXAMPLE 03C02_IfThen_k.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

161

CONTROL STRUCTURES

;Example by Joachim Heintz

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1
seed 0; random values each time different
giTone ftgen o, 0, 2~10, 10, 1, .5, .3, .1
instr 1

; move between 0 and 1 (3 new values per second)

kGate randomi o, 1, 3
; move between 300 and 800 hz (1 new value per sec)
kFreq randomi 300, 800, 1
; move between -12 and 0 dB (5 new values per sec)
kdB randomi -12, 0, 5
aSig oscil3 1, kFreq, giTone
kVol init 0
if kGate > 0.5 then; if kGate is larger than 0.5
kVol = ampdb (kdB) ; open gate
else
kvol = 0; otherwise close gate
endif
kVol port kVol, .02; smooth volume curve to avoid clicks
alut = aSig * kVol
outs aOut, alOut
endin
</CsInstruments>
<CsScore>
i1 0 30
</CsScore>

</CsoundSynthesizer>

SHORT FORM: (AVB? X :Y)

If you need an if-statement to give a value to an (i- or k-) variable,
you can also use a traditional short form in parentheses: (avb ? x :

y).! It asks whether the condition a or b is true. If a, the value is set to
x; if b, to y. For instance, the last example could be written in this
way:

EXAMPLE 03C03_IfThen_short_form.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

Odbfs =1

seed 0
giTone ftgen o, 0, 2~10, 10, 1, .5, .3, .1

instr 1
kGate randomi 0, 1, 3; moves between 0 and 1 (3 new values per second)
kFreqg randomi 300, 800, 1; moves between 300 and 800 hz
; (1 new value per sec)

162

CONTROL STRUCTURES

kdB randomi -12, 0, 5; moves between -12 and 0 dB
; (5 new values per sec)
asSig oscil3 1, kFreq, giTone
kvol init 0
kvol = (kGate > 0.5 ? ampdb(kdB) : 0); short form of condition
kvol port kvol, .02; smooth volume curve to avoid clicks
aOut = aSig * kvol
outs alOut, alOut

endin
</CsInstruments>
<CsScore>
i1 0 20
</CsScore>

</CsoundSynthesizer>

IF - GOTO

An older way of performing a conditional branch - but still useful in
certain cases - is an "if" statement which is not followed by a "then",
but by a label name. The "else" construction follows (or doesn't
follow) in the next line. Like the if-then-else statement, the if-goto
works either at i-time or at k-time. You should declare the type by
either using igoto or kgoto. Usually you need an additional
igoto/kgoto statement for omitting the "else" block if the first
condition is true. This is the general syntax:

i-time

if <condition> igoto this; same as if-then
igoto that; same as else
this: ;the label "this" ...

igoto continue ;skip the "that" block

that: ; ... and the label "that" must be found
continue: ;go on after the conditional branch
k-time

if <condition> kgoto this; same as if-then
kgoto that; same as else
this: ;the label "this" ...

kgoto continue ;skip the "that" block
that: ; ... and the label "that" must be found

continue: ;go on after the conditional branch

I-RATE EXAMPLES

This is the same example as above in the if-then-else syntax for a

163

CONTROL STRUCTURES

branch depending on a mono or stereo file. If you just want to know
whether a file is mono or stereo, you can use the "pure" if-igoto
statement:

EXAMPLE 03C04_IfGoto_i.csd

<CsoundSynthesizer>

<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1
instr 1
Sfile = "/Joachim/Materialien/SamplesKlangbearbeitung/Kontrabass.aif"
ifilchnls filenchnls Sfile
if ifilchnls == 1 igoto mono; condition if true
igoto stereo; else condition
mono:
prints "The file is mono!%n"
igoto continue
stereo:
prints "The file is stereo!%n"
continue:
endin
</CsInstruments>
<CsScore>
i100
</CsScore>

</CsoundSynthesizer>

But if you want to play the file, you must also use a k-rate if-kgoto,
because, not only do you have an event at i-time (initializing the
soundin opcode) but also at k-time (producing an audio signal). So
the code in this case is much more cumbersome, or obfuscated, than
the previous if-then-else example.

EXAMPLE 03C05_IfGoto_ik.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

Odbfs =1

instr 1
Sfile = "my/file.wav"
ifilchnls filenchnls Sfile
if ifilchnls == 1 kgoto mono
kgoto stereo
if ifilchnls == 1 igoto mono; condition if true
igoto stereo; else condition
mono:

164

CONTROL STRUCTURES

alL soundin Sfile
aR = aL
igoto continue
kgoto continue
stereo:
aL, aR soundin Sfile
continue:
outs alL, aR
endin
</CsInstruments>
<CsScore>
i105
</CsScore>

</CsoundSynthesizer>

K-RATE EXAMPLES

This is the same example as above (03C02) in the if-then-else syntax
for a moving gate between 0 and 1:

EXAMPLE 03C06_IfGoto_k.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz

sr = 44100
ksmps = 32
nchnls = 2
Odbfs = 1
seed 0
giTone ftgen o, 0, 2~10, 10, 1, .5, .3, .1
instr 1
kGate randomi 0, 1, 3; moves between 0 and 1 (3 new values per second)
kFreq randomi 300, 800, 1; moves between 300 and 800 hz
; (1 new value per sec)
kdB randomi -12, 0, 5; moves between -12 and 0 dB
; (5 new values per sec)
asSig oscil3 1, kFreq, giTone
kvol init 0

if kGate > 0.5 kgoto open; if condition is true
kgoto close; "else" condition
open:
kVol = ampdb (kdB)
kgoto continue
close:
kvol = 0
continue:
kvol port kVol, .02; smooth volume curve to avoid clicks
alut = aSig * kvol
outs aOut, alOut
endin

</CsInstruments>
<CsScore>

i1 0 30

</CsScore>
</CsoundSynthesizer>

165

CONTROL STRUCTURES

LOOPS

Loops can be built either at i-time or at k-time just with the "if"
facility. The following example shows an i-rate and a k-rate loop
created using the if-i/kgoto facility:

EXAMPLE 03C07_Loops_with_if.csd

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz

instr 1 ;i-time loop: counts from 1 until 10 has been reached

icount = 1
count:
print icount
icount = icount + 1
if icount < 11 igoto count
prints "i-END!%n"
endin

instr 2 ;k-rate loop: counts in the 100th k-cycle from 1 to 11

kcount init 0
ktimek timeinstk ;counts k-cycle from the start of this instrument
if ktimek == 100 kgoto loop
kgoto noloop
loop:
printks "k-cycle %d reached!%n", 0, ktimek
kcount = kcount + 1

printk2 kcount
if kcount < 11 kgoto loop
printks "k-END!%n", O
noloop:
endin
</CsInstruments>
<CsScore>
i100
i201
</CsScore>
</CsoundSynthesizer>

But Csound offers a slightly simpler syntax for this kind of i-rate or k-
rate loops. There are four variants of the loop opcode. All four refer
to a label as the starting point of the loop, an index variable as a
counter, an increment or decrement, and finally a reference value
(maximum or minimum) as comparision:

e loop_lIt counts upwards and looks if the index variable is lower
than the reference value;

e loop_le also counts upwards and looks if the index is lower
than or equal to the reference value;

¢ loop_gt counts downwards and looks if the index is greater
than the reference value;

166

CONTROL STRUCTURES

e loop_ge also counts downwards and looks if the index is
greater than or equal to the reference value.

As always, all four opcodes can be applied either at i-time or at k-
time. Here are some examples, first for i-time loops, and then for k-
time loops.

I-RATE EXAMPLES

The following .csd provides a simple example for all four loop
opcodes:

EXAMPLE 03C08_Loop_opcodes_i.csd

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz

instr 1 ;loop_lt: counts from 1 upwards and checks if < 10

icount = 1
loop:
print icount
loop_ 1t icount, 1, 10, loop
prints "Instr 1 terminated!%n"
endin

instr 2 ;loop_ le: counts from 1 upwards and checks if <= 10

icount = 1
loop:
print icount
loop le icount, 1, 10, loop
prints "Instr 2 terminated!%n"
endin

instr 3 ;loop gt: counts from 10 downwards and checks if > 0

icount = 10
loop:
print icount
loop_ gt icount, 1, 0, loop
prints "Instr 3 terminated!%n"
endin

instr 4 ;loop ge: counts from 10 downwards and checks if >= 0
icount = 10

loop:
print icount
loop_ge icount, 1, 0, loop
prints "Instr 4 terminated!%n"

endin

</CsInstruments>

<CsScore>

i100

i200

i 300

i400

</CsScore>

</CsoundSynthesizer>

The next example produces a random string of 10 characters and

167

CONTROL STRUCTURES

prints it out:

EXAMPLE 03C09_Random_string.csd

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz

instr 1
icount = 0
Sname = ""; starts with an empty string
loop:
ichar random 65, 90.999
Schar sprintf "%c", int(ichar); new character
Sname strcat Sname, Schar; append to Sname
loop_ 1t icount, 1, 10, loop; loop construction
printf_i "My name is '$s'!\n", 1, Sname; print result
endin
</CsInstruments>
<CsScore>
; call instr 1 ten times
r 10
i100
</CsScore>

</CsoundSynthesizer>

You can also use an i-rate loop to fill a function table (= buffer) with
any kind of values. This table can then be read, or manipulated and
then be read again. In the next example, a function table with 20
positions (indices) is filled with random integers between 0 and 10 by
instrument 1. Nearly the same loop construction is used afterwards to
read these values by instrument 2.

EXAMPLE 03C10_Random_ftable_fill.csd

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz

giTable ftgen 0, 0, -20, -2, 0; empty function table with 20 points
seed 0; each time different seed
instr 1 ; writes in the table
icount = 0
loop:
ival random 0, 10.999 ;random value
; ——— write in giTable at first, second, third ... position
tableiw int(ival), icount, giTable
loop_ 1t icount, 1, 20, loop; loop construction
endin

instr 2; reads from the table

icount = 0

loop:

; ——-—- read from giTable at first, second, third ... position
ival tablei icount, giTable

168

CONTROL STRUCTURES

print ival; prints the content
loop 1t icount, 1, 20, loop; loop construction
endin
</CsInstruments>
<CsScore>
i100
i200
</CsScore>
</CsoundSynthesizer>

K-RATE EXAMPLES

The next example performs a loop at k-time. Once per second, every
value of an existing function table is changed by a random deviation
of 10%. Though there are some vectorial opcodes for this task (and in
Csound 6 probably array), it can also be done by a k-rate loop like the
one shown here:

EXAMPLE 03C11_Table_random_dev.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 441
nchnls = 2
0dbfs =1
giSine ftgen 0, 0, 256, 10, 1; sine wave
seed 0; each time different seed
instr 1
ktiminstk timeinstk ;time in control-cycles
kcount init 1
if ktiminstk == kcount * kr then; once per second table values manipulation:
kndx = 0
loop:
krand random -.1, .l;random factor for deviations
kval table kndx, giSine; read old value
knewval = kval + (kval * krand); calculate new value
tablew knewval, kndx, giSine; write new value
loop_1t kndx, 1, 256, loop; loop construction
kcount = kcount + 1; increase counter
endif
asig poscil .2, 400, giSine
outs asig, asig
endin
</CsInstruments>
<CsScore>
i 1010
</CsScore>

</CsoundSynthesizer>

WHILE / UNTIL

169

CONTROL STRUCTURES

Since Csound6, it is possible to write loops in a way which is very

similar to many other programming languages, using the keywords

while or until. The general syntax is:?

while <condition> do

od
until <condition> do

od

The body of the while loop will be performed again and again, as
long as <condition> is true. The body of the until loop will be
performed, as long as <condition> is false (not true). This is a simple
example at i-rate:

EXAMPLE 03C12_while_until_i-rate.csd

<CsoundSynthesizer>
<CsOptions>

-nm0

</CsOptions>
<CsInstruments>
ksmps = 32

instr 1

iCounter = 0

while iCounter < 5 do
print iCounter

iCounter += 1

od

prints "\n"

endin

instr 2

iCounter = 0

until iCounter >= 5 do
print iCounter

iCounter +=1

od

endin

</CsInstruments>

<CsScore>

i10.1

i2 .1 .1

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Prints:

instr 1: iprint = 0.000

170

CONTROL STRUCTURES

instr 1: iprint = 1.000
instr 1: iprint = 2.000
instr 1: iprint = 3.000

instr 1: iprint = 4.000

instr 2: iprint = 0.000
instr 2: iprint = 1.000
instr 2: iprint = 2.000
instr 2: iprint = 3.000

instr 2: iprint = 4.000

The most important thing in using the while/until loop is to
increment the variable you are using in the loop (here: iCounter).
This is done by the statement

iCounter += 1

which is equivalent to the "old" way of writing as

iCounter = iCounter + 1

If you miss this increment, Csound will perform an endless loop, and
you will have to terminate it by the operating system.

The next example shows a similar process at k-rate. It uses a while
loop to print the values of an array, and also set new values. As this
procedure is repeated in each control cycle, the instrument is being
turned off after the third cycle.

171

CONTROL STRUCTURES

EXAMPLE 03C13_while_until_k-rate.csd

<CsoundSynthesizer>
<CsOptions>

-nm0

</CsOptions>
<CsInstruments>
ksmps = 32

;create and fill an array
gkArray[] fillarray 1, 2, 3, 4, 5

instr 1
;count performance cycles and print it
kCycle timeinstk
printks "kCycle = %d\n", 0, kCycle
;set index to zero
kIndex = 0
;perform the loop
while kIndex < lenarray(gkArray) do
;print array value
printf " gkArray[%d] = %d\n", kIndex+l, kIndex,
;square array value

gkArray[kIndex]

gkArray[kIndex] = gkArray[kIndex] * gkArray[kIndex]

;increment index
kIndex += 1
od
;stop after third control cycle
if kCycle == 3 then
turnoff
endif
endin

</CsInstruments>

<CsScore>

i 101

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Prints:

kCycle =1
gkArray[0] =1
gkArray[l] = 2
gkArray[2] = 3
gkArray[3] = 4

172

gkArrayl[4]

kCycle = 2

gkArrayl[0]

gkArray([1l]

gkArray[2]

gkArray|[3]

gkArray[4]

kCycle = 3

gkArray[0]

gkArray([1l]

gkArray[2]

gkArray([3]

gkArray[4]

TIME LOOPS

16

25

16

81

256

625

CONTROL STRUCTURES

Until now, we have just discussed loops which are executed "as fast
as possible", either at i-time or at k-time. But, in an audio
programming language, time loops are of particular interest and
importance. A time loop means, repeating any action after a certain
amount of time. This amount of time can be equal to or different to
the previous time loop. The action can be, for instance: playing a

173

CONTROL STRUCTURES

tone, or triggering an instrument, or calculating a new value for the
movement of an envelope.

In Csound, the usual way of performing time loops, is the timout
facility. The use of timout is a bit intricate, so some examples are
given, starting from very simple to more complex ones.

Another way of performing time loops is by using a measurement of
time or k-cycles. This method is also discussed and similar examples
to those used for the timout opcode are given so that both methods
can be compared.

TIMOUT BASICS

The timout opcode refers to the fact that in the traditional way of
working with Csound, each "note" (an "i" score event) has its own
time. This is the duration of the note, given in the score by the
duration parameter, abbreviated as "p3". A timout statement says: "I
am now jumping out of this p3 duration and establishing my own
time." This time will be repeated as long as the duration of the note
allows it.

Let's see an example. This is a sine tone with a moving frequency,
starting at 400 Hz and ending at 600 Hz. The duration of this
movement is 3 seconds for the first note, and 5 seconds for the second
note:

EXAMPLE 03C14_Timout_pre.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

Odbfs = 1

giSine ftgen o, 0, 2~10, 10, 1
instr 1

kFreqg expseqg 400, p3, 600
aTone poscil .2, kFreq, giSine

174

CONTROL STRUCTURES

outs aTone, aTone
endin

</CsInstruments>
<CsScore>

i1l103

i 145

</CsScore>
</CsoundSynthesizer>

Now we perform a time loop with timout which is 1 second long. So,
for the first note, it will be repeated three times, and five times for the
second note:

EXAMPLE 03C15_Timout_basics.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

Odbfs = 1

giSine ftgen o, 0, 2~10, 10, 1

instr 1
loop:
timout 0, 1, play
reinit loop
play:
kFreq expseg 400, 1, 600
aTone poscil .2, kFreq, giSine
outs aTone, aTone
endin

</CsInstruments>
<CsScore>

i103

i 145

</CsScore>
</CsoundSynthesizer>

This is the general syntax of timout:

first label:

timout istart, idur, second label

reinit first label
second_label: B

. <any action you want to have here>

The first_label is an arbitrary word (followed by a colon) to mark the
beginning of the time loop section. The istart argument for timout
tells Csound, when the second_label section is to be executed.
Usually istart is zero, telling Csound: execute the second_label

section immediately, without any delay. The idur argument for

175

CONTROL STRUCTURES

timout defines for how many seconds the second_label section is to
be executed before the time loop begins again. Note that the reinit
first_label is necessary to start the second loop after idur seconds
with a resetting of all the values. (See the explanations about
reinitialization in the chapter Initilalization And Performance Pass.)

As usual when you work with the reinit opcode, you can use a rireturn
statement to constrain the reinit-pass. In this way you can have both,
the timeloop section and the non-timeloop section in the body of an
instrument:

EXAMPLE 03C16_Timeloop_and_not.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz

sr = 44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen o, 0, 2~10, 10, 1

instr 1

loop:
timout 0, 1, play
reinit loop

play:

kFreqgl expseqg 400, 1, 600

aTonel oscil3 .2, kFreqgl, giSine
rireturn ;end of the time loop

kFreg2 expseg 400, p3, 600

aTone?2 poscil .2, kFreqg2, giSine
outs aTonel+aTone2, aTonel+aTone2

endin

</CsInstruments>

<CsScore>

i103

i145

</CsScore>

</CsoundSynthesizer>

TIMOUT APPLICATIONS

In a time loop, it is very important to change the duration of the loop.
This can be done either by referring to the duration of this note (p3) ...

EXAMPLE 03C17_Timout_different_durations.csd

176

CONTROL STRUCTURES

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

O0dbfs =1

giSine ftgen o, o0, 2~10, 10, 1

instr 1
loop:
timout 0, p3/5, play
reinit loop
play:
kFreq expseq 400, p3/5, 600
aTone poscil .2, kFreq, giSine
outs aTone, aTone
endin

</CsInstruments>
<CsScore>

i 103

i 145

</CsScore>
</CsoundSynthesizer>

... or by calculating new values for the loop duration on each reinit
pass, for instance by random values:

EXAMPLE 03C18_Timout_random_durations.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

O0dbfs =1

giSine ftgen o, 0, 2~10, 10, 1

instr 1
loop:
idur random .5, 3 ;new value between 0.5 and 3 seconds each time
timout 0, idur, play
reinit loop
play:
kFreq expseg 400, idur, 600
aTone poscil .2, kFreq, giSine
outs aTone, aTone
endin

</CsInstruments>
<CsScore>

i10 20

</CsScore>
</CsoundSynthesizer>

The applications discussed so far have the disadvantage that all the

177

CONTROL STRUCTURES

signals inside the time loop must definitely be finished or interrupted,
when the next loop begins. In this way it is not possible to have any
overlapping of events. To achieve this, the time loop can be used to
simply trigger an event. This can be done with event_i or
scoreline_i. In the following example, the time loop in instrument 1
triggers a new instance of instrument 2 with a duration of 1 to 5
seconds, every 0.5 to 2 seconds. So in most cases, the previous
instance of instrument 2 will still be playing when the new instance is
triggered. Random calculations are executed in instrument 2 so that
each note will have a different pitch,creating a glissando effect:

EXAMPLE 03C19_Timout_trigger_events.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1
giSine ftgen o, 0, 2~10, 10, 1
instr 1
loop:
idurloop random .5, 2 ;duration of each loop
timout 0, idurloop, play
reinit loop
play:
idurins random 1, 5 ;duration of the triggered instrument
event i "i", 2, 0, idurins ;triggers instrument 2
endin
instr 2
ifreqgl random 600, 1000 ;starting frequency
idiff random 100, 300 ;difference to final frequency
ifreqg2 = ifregl - idiff ;final frequency
kFreq expseqg ifreql, p3, ifreqg2 ;glissando
iMaxdb random -12, 0 ;peak randomly between -12 and 0 dB
kAmp transeg ampdb (iMaxdb), p3, -10, 0 ;envelope
aTone poscil kAmp, kFreq, giSine
outs aTone, aTone
endin
</CsInstruments>
<CsScore>
i1 0 30
</CsScore>

</CsoundSynthesizer>

The last application of a time loop with the timout opcode which is
shown here, is a randomly moving envelope. If you want to create an
envelope in Csound which moves between a lower and an upper limit,

178

CONTROL STRUCTURES

and has one new random value in a certain time span (for instance,
once a second), the time loop with timout is one way to achieve it. A
line movement must be performed in each time loop, from a given
starting value to a new evaluated final value. Then, in the next loop,
the previous final value must be set as the new starting value, and so
on. Here is a possible solution:

EXAMPLE 03C20_Timout_random_envelope.csd

<CsoundSynthesizer>

<CsOptions>

-odac

</CsOptions>

<CsInstruments>

;Example by Joachim Heintz

sr = 44100

ksmps = 32

nchnls = 2

O0dbfs =1

giSine ftgen o, o0, 2~10, 10, 1
seed 0

instr 1

iupper = 0; upper and ...

ilower = -24; ... lower limit in dB

ivall random ilower, iupper; starting value

loop:

idurloop random .5, 2; duration of each loop
timout 0, idurloop, play
reinit loop

play:

ival2 random ilower, iupper; final value

kdb linseg ivall, idurloop, ival2

ivall = ival2; let ival2 be ivall for next loop
rireturn ;end reinit section

aTone poscil ampdb (kdb), 400, giSine
outs aTone, aTone

endin

</CsInstruments>

<CsScore>

i1 0 30

</CsScore>

</CsoundSynthesizer>

Note that in this case the oscillator has been put after the time loop
section (which is terminated by the rireturn statement. Otherwise the
oscillator would start afresh with zero phase in each time loop, thus

producing clicks.

TIME LOOPS BY USING THE METRO OPCODE

The metro opcode outputs a "1" at distinct times, otherwise it outputs
a "0". The frequency of this "banging" (which is in some way similar

179

CONTROL STRUCTURES

to the metro objects in PD or Max) is given by the kfreq input
argument. So the output of metro offers a simple and intuitive method
for controlling time loops, if you use it to trigger a separate
instrument which then carries out another job. Below is a simple
example for calling a subinstrument twice per second:

EXAMPLE 03C21_Timeloop_metro.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1

instr 1; triggering instrument

kTrig metro 2; outputs "1" twice a second
if kTrig == 1 then
event "i", 2, 0, 1
endif
endin

instr 2; triggered instrument

asSig oscils .2, 400, O
akEnv transeg 1, p3, -10, O
outs aSig*aEnv, aSig*aEnwv
endin
</CsInstruments>
<CsScore>
i1 0 10
</CsScore>

</CsoundSynthesizer>

The example which is given above
(03C17_Timout_trigger_events.csd) as a flexible time loop by
timout, can be done with the metro opcode in this way:

EXAMPLE 03C22_Metro_trigger_events.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1
giSine ftgen 0o, 0, 2~10, 10, 1
seed 0
instr 1
kfreq init 1; give a start value for the trigger frequency
kTrig metro kfreq
if kTrig == 1 then ;if trigger impulse:
kdur random 1, 5; random duration for instr 2
event "i", 2, 0, kdur; call instr 2
180eq random .5, 2; set new value for trigger frequency
endif

endin

FUNCTION TABLES

FUNCTION TABLES

Note: This chapter has been written before arrays have been
introduced in Csound. Now the usage of arrays is in many cases
preferable to using function tables. Have a look in chapter O3E to see
how you can use arrays.

A function table is essentially the same as what other audio
programming languages might call a buffer, a table, a list or an array.
It is a place where data can be stored in an ordered way. Each
function table has a size: how much data (in Csound, just numbers) it
can store. Each value in the table can be accessed by an index,
counting from O to size-1. For instance, if you have a function table
with a size of 10, and the numbers [1.1 2.2 3.3 5.58.8 13.13 21.21
34.34 55.55 89.89] in it, this is the relation of value and index:

VALUE| 1.1| 2.2| 3.3|| 5.5/ 8.8| 13.13 21.21| 34.34]| 55.55| 89.89
INDEX |0 |1 |2 |3 [[4 |5 6 7 8 9

So, if you want to retrieve the value 13.13, you must point to the
value stored under index 5.

The use of function tables is manifold. A function table can contain
pitch values to which you may refer using the input of a MIDI
keyboard. A function table can contain a model of a waveform which
is read periodically by an oscillator. You can record live audio input
in a function table, and then play it back. There are many more
applications, all using the fast access (because function tables are
stored in RAM) and flexible use of function tables.

HOW TO GENERATE A FUNCTION TABLE

Each function table must be created before it can be used. Even if
you want to write values later, you must first create an empty table,
because you must initially reserve some space in memory for it.

181

FUNCTION TABLES

Each creation of a function table in Csound is performed by one of
the GEN Routines. Each GEN Routine generates a function table in a
particular way: GENO1 transfers audio samples from a soundfile into
a table, GENO2 stores values we define explicitly one by one, GEN10
calculates a waveform using user-defined weightings of harmonically
related sinusoids, GEN20 generates window functions typically used
for granular synthesis, and so on. There is a good overview in the
Csound Manual of all existing GEN Routines. Here we will explain
their general use and provide some simple examples using commonly
used GEN routines.

GEN02 AND GENERAL PARAMETERS FOR GEN
ROUTINES

Let's start with our example described above and write the 10
numbers into a function table with 10 storage locations. For this task
use of a GENO2 function table is required. A short description of
GENO2 from the manual reads as follows:

f # time size 2 vl v2 v3 ...

This is the traditional way of creating a function table by use of an "f
statement" or an "f score event" (in a manner similar to the use of "i
score events" to call instrument instances). The input parameters after
the "f" are as follows:

e #: a number (as positive integer) for this function table;

e time: at what time, in relation to the passage of the score, the
function table is created (usually O: from the beginning);

e size: the size of the function table. A little care is required: in
the early days of Csound only power-of-two sizes were
possible for function tables (2, 4, 8, 16, ...); nowadays almost
all GEN Routines accepts other sizes, but these non-power-of-
two sizes must be declared as negative numbers!

182

FUNCTION TABLES

e 2: the number of the GEN Routine which is used to generate
the table, and here is another important point which must be
borne in mind: by default, Csound normalizes the table
values. This means that the maximum is scaled to +1 if
positive, and to -1 if negative. All other values in the table are
then scaled by the same factor that was required to scale the
maximum to +1 or -1. To prevent Csound from normalizing, a
negative number can be given as GEN number (in this
example, the GEN routine number will be given as -2 instead
of 2).

e v1v2v3...: the values which are written into the function
table.

The example below demonstrates how the values [1.1 2.2 3.3 5.5 8.8
13.13 21.21 34.34 55.55 89.89] can be stored in a function table using
an f-statement in the score. Two versions are created: an
unnormalised version (table number 1) and an normalised version
(table number 2). The difference in their contents will be
demonstrated.

EXAMPLE 03D01_Table_norm_notNorm.csd

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz
instr 1 ;prints the values of table 1 or 2

prints "$nFunction Table %d:%n", p4

indx init 0

loop:

ival table indx, p4
prints "Index %d = %f%n", indx, ival
loop_ 1t indx, 1, 10, loop

endin
</CsInstruments>

<CsScore>

£10-10 -2 1.1 2.2 3.3 5.5 8.8 13.13 21.21 34.34 55.55 89.89; not normalized
£20-102 1.1 2.2 3.3 5.5 8.8 13.13 21.21 34.34 55.55 89.89; normalized

i1 0 0 1; prints function table 1

i1 0 0 2; prints function table 2

</CsScore>

</CsoundSynthesizer>

Instrument 1 simply reads and prints (to the terminal) the values of
the table. Notice the difference in values read, whether the table is
normalized (positive GEN number) or not normalized (negative GEN
number).

183

FUNCTION TABLES

Using the ftgen opcode is a more modern way of creating a function
table, which is generally preferable to the old way of writing an f-

statement in the score.! The syntax is explained below:

givar ftgen ifn, itime, isize, igen, iargl [, iarg2 [, ...]]

e giVar: a variable name. Each function is stored in an i-
variable. Usually you want to have access to it from every
instrument, so a gi-variable (global initialization variable) is
given.

e ifn: a number for the function table. If you type in 0, you give
Csound the job to choose a number, which is mostly preferable.

The other parameters (size, GEN number, individual arguments) are
the same as in the f-statement in the score. As this GEN call is now a
part of the orchestra, each argument is separated from the next by a
comma (not by a space or tab like in the score).

So this is the same example as above, but now with the function
tables being generated in the orchestra header:

EXAMPLE 03D02_Table_ftgen.csd

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz

gifFtl ftgen 1, 0, -10, -2, 1.1, 2.2, 3.3, 5.5, 8.8, 13.13, 21.21, 34.34, 55.55, 89.89
giFt2 ftgen 2, 0, -10, 2, 1.1, 2.2, 3.3, 5.5, 8.8, 13.13, 21.21, 34.34, 55.55, 89.89

instr 1; prints the values of table 1 or 2

prints "$nFunction Table %d:%n", p4

indx init 0

loop:

ival table indx, p4
prints "Index %d = %$f%n", indx, ival
loop 1t indx, 1, 10, loop

endin
</CsInstruments>
<CsScore>

i1 0 0 1; prints function table 1
i1 0 0 2; prints function table 2
</CsScore>

</CsoundSynthesizer>

GENO01: IMPORTING A SOUNDFILE

184

FUNCTION TABLES

GENO1 is used for importing soundfiles stored on disk into the
computer's RAM, ready for for use by a number of Csound's opcodes
in the orchestra. A typical ftgen statement for this import might be
the following:

varname ifn itime isize igen Sfilnam iskip iformat ichn
giFile ftgen 0, 0, 0, 1, "myfile.wav", O, 0, 0

e varname, ifn, itime: These arguments have the same meaning
as explained above in reference to GENO2. Note that on this
occasion the function table number (ifn) has been defined
using a zero. This means that Csound will automatically assign
a unique function table number. This number will also be held
by the variable giFile which we will normally use to reference
the function table anyway so its actual value will not be
important to us. If you are interested you can print the value of
giFile (ifn) out. If no other tables are defined, it will be 101 and
subsequent tables, also using automatically assigned table
numbers, will follow accordingly: 102, 103 etc.

e isize: Usually you won't know the length of your soundfile in
samples, and want to have a table length which includes
exactly all the samples. This is done by setting isize=0. (Note
that some opcodes may need a power-of-two table. In this case
you can not use this option, but must calculate the next larger
power-of-two value as size for the function table.)

e igen: As explained in the previous subchapter, this is always
the place for indicating the number of the GEN Routine which
must be used. As always, a positive number means
normalizing, which is often convenient for audio samples.

e Sfilnam: The name of the soundfile in double quotes. Similar
to other audio programming languages, Csound recognizes just
the name if your .csd and the soundfile are in the same folder.
Otherwise, give the full path. (You can also include the folder
via the "SSDIR" variable, or add the folder via the "--
env:NAME+=VALUE" option.)

e iskip: The time in seconds you want to skip at the beginning of
the soundfile. 0 means reading from the beginning of the file.

185

FUNCTION TABLES

e iformat: The format of the amplitude samples in the soundfile,
e.g. 16 bit, 24 bit etc. Usually providing 0 here is sufficient, in
which case Csound will read the sample format form the
soundfile header.

e ichn: 1 = read the first channel of the soundfile into the table, 2
= read the second channel, etc. 0 means that all channels are
read. Note that only certain opcodes are able to properly make
use of multichannel audio stored in function tables.

The following example loads a short sample into RAM via a function
table and then plays it. You can download the sample here (or replace
it with one of your own). Copy the text below, save it to the same
location as the "fox.wav" soundfile (or add the folder via the "--

env:NAME+=VALUE" option),? and it should work. Reading the
function table here is done using the poscil3 opcode which can deal
with non-power-of-two tables.

EXAMPLE 03D03_Sample_to_table.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz

sr = 44100
ksmps = 32
nchnls = 2
Odbfs = 1
giSample ftgen o, o0, 0, 1, "fox.wav", 0, 0, 1

instr 1
itablen = ftlen(giSample) ;length of the table
idur = itablen / sr ;duration
aSamp poscil3 .5, 1/idur, giSample

outs aSamp, aSamp

endin
</CsInstruments>
<CsScore>
i 10 2.757

</CsScore>
</CsoundSynthesizer>

GEN10: CREATING A WAVEFORM

The third example for generating a function table covers a classic

186

FUNCTION TABLES

case: building a function table which stores one cycle of a waveform.
This waveform will then be read by an oscillator to produce a sound.

There are many GEN Routines which can be used to achieve this. The
simplest one is GEN10. It produces a waveform by adding sine waves
which have the "harmonic" frequency relationship 1:2:3 : 4 ...
After the usual arguments for function table number, start, size and
gen routine number, which are the first four arguments in ftgen for all
GEN Routines, with GEN10 you must specify the relative strengths of
the harmonics. So, if you just provide one argument, you will end up
with a sine wave (1st harmonic). The next argument is the strength of
the 2nd harmonic, then the 3rd, and so on. In this way, you can build
approximations of the standard harmonic waveforms by the addition
of sinusoids. This is done in the next example by instruments 1-5.
Instrument 6 uses the sine wavetable twice: for generating both the
sound and the envelope.

EXAMPLE 03D04_Standard_waveforms_with_GEN10.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
44100

sSr =

ksmps = 32
nchnls = 2
Odbfs =1
giSine ftgen o, 0, 2710, 10, 1
giSaw ftgen o, 0, 2~10, 10, 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9
giSquare ftgen o, 0, 2~10, 10, 1, O, 1/3, 0, 1/5, 0, 1/7, 0, 1/9
giTri ftgen o, o0, 2~10, 10, 1, O, -1/9, 0O, 1/25, 0, -1/49, 0, 1/81
giImp ftgen o, o, 2~10, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1
instr 1 ;plays the sine wavetable
aSine poscil .2, 400, giSine
aEnv linen aSine, .01, p3, .05
outs akEnv, akEnv
endin
instr 2 ;plays the saw wavetable
aSaw poscil .2, 400, giSaw
aEnv linen aSaw, .01, p3, .05
outs akEnv, akEnv
endin
instr 3 ;plays the square wavetable
asSqu poscil .2, 400, giSquare
aEnv linen aSqu, .01, p3, .05
outs akEnv, akEnv
endin

187

FUNCTION TABLES

instr 4 ;plays the triangular wavetable

aTri poscil .2, 400, giTri
akEnv linen aTri, .01, p3, .05
outs akEnv, aEnv
endin

instr 5 ;plays the impulse wavetable

almp poscil .2, 400, giImp
akEnv linen almp, .01, p3, .05
outs akEnv, aEnv
endin

instr 6 ;plays a sine and uses the first half of its shape as envelope

aEnv poscil .2, 1/6, giSine
aSine poscil akEnv, 400, giSine
outs aSine, aSine
endin

</CsInstruments>
<CsScore>

i 10 3

2 43

383

4 12 3

516 3

i 6 20 3

</CsScore>
</CsoundSynthesizer>

HOW TO WRITE VALUES TO A FUNCTION
TABLE

i
i
i
i

As we have seen, GEN Routines generate function tables, and by
doing this, they write values into them according to various methods,
but in certain cases you might first want to create an empty table, and
then write the values into it later or you might want to alter the
default values held in a function table. The following section
demonstrates how to do this.

To be precise, it is not actually correct to talk about an "empty table".
If Csound creates an "empty" table, in fact it writes zeros to the
indices which are not specified. Perhaps the easiest method of
creating an "empty" table for 100 values is shown below:

giEmpty ftgen o, 0, -100, 2, O

The simplest to use opcode that writes values to existing function
tables during a note's performance is tablew and its i-time equivalent
is tableiw. Note that you may have problems with some features if
your table is not a power-of-two size. In this case, you can also use
tabw / tabw_i, but they don't have the offset- and the wraparound-

188

FUNCTION TABLES

feature. As usual, you must differentiate if your signal (variable) is i-
rate, k-rate or a-rate. The usage is simple and differs just in the class
of values you want to write to the table (i-, k- or a-variables):

tableiw isig, indx, ifn [, ixmode] [, ixoff] [, iwgmode]
tablew ksig, kndx, ifn [, ixmode] [, ixoff] [, iwgmode]
tablew asig, andx, ifn [, ixmode] [, ixoff] [, iwgmode]

o isig, ksig, asig is the value (variable) you want to write into a
specified location of the table;

¢ indx, kndx, andx is the location (index) where you will write
the value;

e ifn is the function table you want to write to;

¢ ixmode gives the choice to write by raw indices (counting
from O to size-1), or by a normalized writing mode in which
the start and end of each table are always referred as 0 and 1
(not depending on the length of the table). The default is
ixmode=0 which means the raw index mode. A value not equal
to zero for ixmode changes to the normalized index mode.

o ixoff (default=0) gives an index offset. So, if indx=0 and
ixoff=5, you will write at index 5.

¢ iwgmode tells what you want to do if your index is larger than
the size of the table. If iwgmode=0 (default), any index larger
than possible is written at the last possible index. If
iwgmode=1, the indices are wrapped around. For instance, if
your table size is 8, and your index is 10, in the wraparound
mode the value will be written at index 2.

Here are some examples for i-, k- and a-rate values.

I-RATE EXAMPLE

The following example calculates the first 12 values of a Fibonacci
series and writes them to a table. An empty table has first been
created in the header (filled with zeros), then instrument 1 calculates
the values in an i-time loop and writes them to the table using
tableiw. Instrument 2 simply prints all the values in a list to the
terminal.

EXAMPLE 03D05_Write_Fibo_to_table.csd

189

FUNCTION TABLES

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz

giFt ftgen o, 0, -12, -2, O

instr 1; calculates first 12 fibonacci values and writes them to giFt
istart = 1

inext = 2
indx = 0
loop:
tableiw istart, indx, giFt ;writes istart to table
istartold = istart ;keep previous value of istart
istart = inext ;reset istart for next loop
inext = istartold + inext ;reset inext for next loop

loop 1t indx, 1, 12, loop
endin

instr 2; prints the values of the table

prints "$nContent of Function Table:%n"
indx init 0
loop:
ival table indx, gifFt
prints "Index %d = %f%n", indx, ival
loop_ 1t indx, 1, ftlen(giFt), loop
endin
</CsInstruments>
<CsScore>
i100
i200
</CsScore>

</CsoundSynthesizer>

K-RATE EXAMPLE

The next example writes a k-signal continuously into a table. This
can be used to record any kind of user input, for instance by MIDI or
widgets. It can also be used to record random movements of k-
signals, like here:

EXAMPLE 03D06_Record_ksig_to_table.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

Odbfs =1

giFt ftgen 0, 0, -5*kr, 2, 0; size for 5 seconds of recording

giWave ftgen o, 0, 2~10, 10, 1, .5, .3, .1; waveform for oscillator
seed 0

190

FUNCTION TABLES

; — recording of a random frequency movement for 5 seconds, and playing it
instr 1

kFreq randomi 400, 1000, 1 ;random frequency
asSnd poscil .2, kFreq, giWave ;play it
outs aSnd, aSnd
;;record the k-signal
prints "RECORDING! %n"

;create a writing pointer in the table,
;moving in 5 seconds from index 0 to the end

kindx linseg 0, 5, ftlen(giFt)
;write the k-signal
tablew kFreq, kindx, giFt
endin

instr 2; read the values of the table and play it again
;;read the k-signal
prints "PLAYING!%n"
;create a reading pointer in the table,
;moving in 5 seconds from index 0 to the end

kindx linseg 0, 5, ftlen(giFt)
;read the k-signal

kFreq table kindx, giFt

asSnd oscil3 .2, kFreq, giWave; play it

outs asnd, aSnd

endin

</CsInstruments>

<CsScore>

i105

i265

</CsScore>

</CsoundSynthesizer>

As you see, this typical case of writing k-values to a table requires a
changing value for the index, otherwise tablew will continually
overwrite at the same table location. This changing value can be
created using the line or linseg opcodes - as was done here - or by
using a phasor. A phasor moves continuously from 0 to 1 at a user-
defined frequency. For example, if you want a phasor to move from 0
to 1 in 5 seconds, you must set the frequency to 1/5. Upon reaching 1,
the phasor will wrap-around to zero and begin again. Note that phasor
can also be given a negative frequency in which case it moves in
reverse from 1 to zero then wrapping around to 1. By setting the
ixmode argument of tablew to 1, you can use the phasor output
directly as writing pointer. Below is an alternative version of
instrument 1 from the previous example, this time using phasor to
generate the index values:

instr 1; recording of a random frequency movement for 5 seconds, and playing it

kFreq randomi 400, 1000, 1; random frequency

asSnd oscil3 .2, kFreq, giWave; play it
outs aSnd, aSnd

;;record the k-signal with a phasor as index
prints "RECORDING!%n"

;create a writing pointer in the table,
;moving in 5 seconds from index 0 to the end
kindx phasor 1/5

191

FUNCTION TABLES

;write the k-signal
tablew kFreq, kindx, gifFt, 1
endin

A-RATE EXAMPLE

Recording an audio signal is quite similar to recording a control
signal. You just need an a-signal to provide input values and also an
index that changes at a-rate. The next example first records a
randomly generated audio signal and then plays it back. It then
records the live audio input for 5 seconds and subsequently plays it
back.

EXAMPLE 03D07_Record_audio_to_table.csd

<CsoundSynthesizer>
<CsOptions>

-iadc -odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz

sr = 44100

ksmps = 32

nchnls = 2

0dbfs =1

gifFt ftgen 0, 0, -5*sr, 2, 0; size for 5 seconds of recording audio
seed 0

instr 1 ;generating a band filtered noise for 5 seconds, and recording it
aNois rand .2
kCfreq randomi 200, 2000, 3; random center frequency

aFilt butbp aNois, kCfreq, kCfreq/10; filtered noise
aBal balance aFilt, aNois, 1; balance amplitude

outs aBal, aBal
;;record the audiosignal with a phasor as index

prints "RECORDING FILTERED NOISE!%n"

;create a writing pointer in the table,
;moving in 5 seconds from index 0 to the end

aindx phasor 1/5
;write the k-signal
tablew aBal, aindx, gifFt, 1
endin

instr 2 ;read the values of the table and play it

prints "PLAYING FILTERED NOISE!S%n"
aindx phasor 1/5
aSnd table3 aindx, gifFt, 1

outs asSnd, aSnd

endin

instr 3 ;record live input

ktim timeinsts ; playing time of the instrument in seconds
prints "PLEASE GIVE YOUR LIVE INPUT AFTER THE BEEP!%n"
kBeepEnv linseg o, 1, o, .01, 1, .5, 1, .01, O
aBeep oscils .2, 600, O
outs aBeep*kBeepEnv, aBeep*kBeepEnv

;;record the audiosignal after 2 seconds
if ktim > 2 then
ain inch 1

192

FUNCTION TABLES

printks "RECORDING LIVE INPUT!%n", 10
;create a writing pointer in the table,
;moving in 5 seconds from index 0 to the end

aindx phasor 1/5
;write the k-signal
tablew ain, aindx, gifFt, 1
endif
endin

instr 4 ;read the values from the table and play it

prints "PLAYING LIVE INPUT!%n"
aindx phasor 1/5
asSnd table3 aindx, gifFt, 1

outs aSnd, aSnd

endin

</CsInstruments>
<CsScore>
il 05 ; record 5 seconds of generated audio to a table
i 2 6 5 ; play back the recording of generated audio
i 3 12 7 ; record 5 seconds of live audio to a table
i 4 20 5 ; play back the recording of live audio
</CsScore>

</CsoundSynthesizer>

HOW TO RETRIEVE VALUES FROM A
FUNCTION TABLE

There are two methods of reading table values. You can either use the
table / tab opcodes, which are universally usable, but need an index;
or you can use an oscillator for reading a table at k-rate or a-rate.

THE TABLE OPCODE

The table opcode is quite similar in syntax to the tableiw/tablew
opcodes (which are explained above). It is simply its counterpart for
reading values from a function table instead of writing them. Its
output can be either an i-, k- or a-rate signal and the value type of the
output automatically selects either the a- k- or a-rate version of the
opcode. The first input is an index at the appropriate rate (i-index for
i-output, k-index for k-output, a-index for a-output). The other
arguments are as explained above for tableiw/tablew:

ires table indx, ifn [, ixmode] [, ixoff] [, iwrap]
kres table kndx, ifn [, ixmode] [, ixoff] [, iwrap]
ares table andx, ifn [, ixmode] [, ixoff] [, iwrap]

As table reading often requires interpolation between the table values

193

FUNCTION TABLES

- for instance if you read k- or a-values faster or slower than they
have been written in the table - Csound offers two descendants of
table for interpolation: tablei interpolates linearly, whilst table3
performs cubic interpolation (which is generally preferable but is
computationally slightly more expensive) and when CPU cycles are

no object, tablexkt can be used for ultimate interpolating quality.>

Another variant is the tab_i / tab opcode which misses some features
but may be preferable in some situations. If you have any problems in
reading non-power-of-two tables, give them a try. They should also
be faster than the table (and variants thereof) opcode, but you must
take care: they include fewer built-in protection measures than table,
tablei and table3 and if they are given index values that exceed the
table size Csound will stop and report a performance error.

Examples of the use of the table opcodes can be found in the earlier
examples in the How-To-Write-Values... section.

OSCILLATORS

It is normal to read tables that contain a single cycle of an audio
waveform using an oscillator but you can actually read any table
using an oscillator, either at a- or at k-rate. The advantage is that you
needn't create an index signal. You can simply specify the frequency
of the oscillator (the opcode creates the required index internally
based on the asked for frequency).

You should bear in mind that many of the oscillators in Csound will
work only with power-of-two table sizes. The poscil/poscil3 opcodes
do not have this restriction and offer a high precision, because they
work with floating point indices, so in general it is recommended to
use them. Below is an example that demonstrates both reading a k-
rate and an a-rate signal from a buffer with poscil3 (an oscillator with
a cubic interpolation):

194

FUNCTION TABLES

EXAMPLE 03D08_RecPlay_ak_signals.csd

<CsoundSynthesizer>

<CsOptions>
-iadc -odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1
; —-- size for 5 seconds of recording control data
giControl ftgen 0, 0, -5*kr, 2, O
; —-- size for 5 seconds of recording audio data
giAudio ftgen 0, 0, -5*sr, 2, 0
giWave ftgen o, o, 2~10, 10, 1, .5, .3, .1; waveform for oscillator
seed 0
; —— j;recording of a random frequency movement for 5 seconds, and playing it
instr 1
kFreq randomi 400, 1000, 1; random frequency
asSnd poscil .2, kFreq, giWave; play it
outs aSnd, aSnd
;;record the k-signal with a phasor as index
prints "RECORDING RANDOM CONTROL SIGNAL!S%n"

;create a writing pointer in the table,
;moving in 5 seconds from index 0 to the end

kindx phasor 1/5
;write the k-signal
tablew kFreq, kindx, giControl, 1
endin

instr 2; read the values of the table and play it with poscil

prints "PLAYING CONTROL SIGNAL!S%n"
kFreq poscil 1, 1/5, giControl
asSnd poscil .2, kFreq, giWave; play it
outs aSnd, aSnd

endin

instr 3; record live input

ktim timeinsts ; playing time of the instrument in seconds
prints "PLEASE GIVE YOUR LIVE INPUT AFTER THE BEEP!%n"
kBeepEnv linseg o, 1, o0, .01, 1, .5, 1, .01, O
aBeep oscils .2, 600, O
outs aBeep*kBeepEnv, aBeep*kBeepEnv

;;record the audiosignal after 2 seconds
if ktim > 2 then
ain inch 1
printks "RECORDING LIVE INPUT!%n", 10
;create a writing pointer in the table,
;moving in 5 seconds from index 0 to the end

aindx phasor 1/5
;write the k-signal
tablew ain, aindx, giAudio, 1
endif
endin

instr 4; read the values from the table and play it with poscil
prints "PLAYING LIVE INPUT!%n"
asnd poscil .5, 1/5, giAudio
outs aSnd, aSnd
endin

</CsInstruments>
<CsScore>

i 105

i265

i 312 7

i 4 20 5

</CsScore>
</CsoundSynthesizer>

195

FUNCTION TABLES

SAVING THE CONTENTS OF A FUNCTION
TABLE TO A FILE

A function table exists only as long as you run the Csound instance
which has created it. If Csound terminates, all the data is lost. If you
want to save the data for later use, you must write them to a file.
There are several cases, depending firstly on whether you write at i-
time or at k-time and secondly on what kind of file you want to write
to.

WRITING A FILE IN CSOUND'S FTSAVE FORMAT
AT I-TIME OR K-TIME

Any function table in Csound can be easily written to a file using the
ftsave (i-time) or ftsavek (k-time) opcode. Their use is very simple.
The first argument specifies the filename (in double quotes), the
second argument selects between a text format (non zero) or a binary
format (zero) output. Finally you just provide the number of the
function table(s) to save.

With the following example, you should end up with two textfiles in
the same folder as your .csd: "i-time_save.txt" saves function table 1
(a sine wave) at i-time; "k-time_save.txt" saves function table 2 (a
linear increment produced during the performance) at k-time.

EXAMPLE 03D09_ftsave.csd

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz

sr = 44100

ksmps = 32

nchnls = 2

Odbfs = 1

giWave ftgen 1, 0, 277, 10, 1; sine with 128 points

giControl ftgen 2, 0, -kr, 2, 0; size for 1 second of recording control data
seed 0

instr 1; saving giWave at i-time
ftsave "i-time save.txt", 1, 1
endin

instr 2; recording of a line transition between 0 and 1 for one second

196

FUNCTION TABLES

kline linseg o, 1, 1
tabw kline, kline, giControl, 1
endin
instr 3; saving giWave at k-time
ftsave "k-time save.txt", 1, 2
endin
</CsInstruments>
<CsScore>
i100
i201
i31.1
</CsScore>
</CsoundSynthesizer>

The counterpart to ftsave/ftsavek are the ftload/ftloadk opcodes. You
can use them to load the saved files into function tables.

WRITING A SOUNDFILE FROM A RECORDED
FUNCTION TABLE

If you have recorded your live-input to a buffer, you may want to
save your buffer as a soundfile. There is no opcode in Csound which
does that, but it can be done by using a k-rate loop and the fout
opcode. This is shown in the next example in instrument 2. First
instrument 1 records your live input. Then instrument 2 creates a
soundfile "testwrite.wav" containing this audio in the same folder as
your .csd. This is done at the first k-cycle of instrument 2, by
repeatedly reading the table values and writing them as an audio
signal to disk. After this is done, the instrument is turned off by
executing the turnoff statement.

EXAMPLE 03D10_Table_to_soundfile.csd

<CsoundSynthesizer>
<CsOptions>

-i adc

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz

sr = 44100

ksmps = 32

nchnls = 2

Odbfs =1

; —-—- size for 5 seconds of recording audio data
giAudio ftgen 0, 0, -5*sr, 2, O

instr 1 ;record live input
ktim timeinsts ; playing time of the instrument in seconds

197

FUNCTION TABLES

prints "PLEASE GIVE YOUR LIVE INPUT AFTER THE BEEP!&%n"
kBeepEnv linseg o, 1, o, .01, 1, .5, 1, .01, O
aBeep oscils .2, 600, 0

outs aBeep*kBeepEnv, aBeep*kBeepEnv

;;record the audiosignal after 2 seconds
if ktim > 2 then
ain inch 1
printks "RECORDING LIVE INPUT!%n", 10
;jcreate a writing pointer in the table,
;moving in 5 seconds from index 0 to the end

aindx phasor 1/5
;write the k-signal
tablew ain, aindx, giAudio, 1
endif
endin

instr 2; write the giAudio table to a soundfile
Soutname = "testwrite.wav"; name of the output file
iformat = 14; write as 16 bit wav file

itablen ftlen(giAudio); length of the table in samples
kent init 0; set the counter to 0 at start
loop:
kent = kcnt+ksmps; next value (e.g. 10 if ksmps=10)
andx interp kcnt-1; calculate audio index (e.g. from 0 to 9)
asig tab andx, giAudio; read the table values as audio signal
fout Soutname, iformat, asig; write asig to a file
if kcnt <= itablen-ksmps kgoto loop; go back as long there is something to do
turnoff ; terminate the instrument
endin
</CsInstruments>
<CsScore>
i107
i27 .1
</CsScore>

</CsoundSynthesizer>

This code can also be used in the form of a User Defined Opcode. It
can be found here.

OTHER GEN ROUTINE HIGHLIGHTS

GENO05, GEN07, GEN25, GEN27 and GEN16 are useful for creating
envelopes. GENO7 and GEN27 create functions table in the manner
of the linseg opcode - with GENO7 the user defines segment duration
whereas in GEN27 the user defines the absolute time for each
breakpoint from the beginning of the envelope. GENO5 and GEN25
operate similarly to GENO7 and GEN27 except that envelope
segments are exponential in shape. GEN16 also create an envelope in
breakpoint fashion but it allows the user to specify the curvature of
each segment individually (concave - straight - convex).

GEN17, GEN41 and GEN42 are used the generate histogram-type
functions which may prove useful in algorithmic composition and

198

FUNCTION TABLES

work with probabilities.

GENO09 and GEN19 are developments of GEN10 and are useful in
additive synthesis.

GENT11 is a GEN routine version of the gbuzz opcode and as it is a
fixed waveform (unlike gbuzz) it can be a useful and efficient sound
source in subtractive synthesis.

GENO08

f # time size 8 a nl b n2 ¢ n3 d ...

GENO8 creates a curved function that forms the smoothest possible
line between a sequence of user defined break-points. This GEN
routine can be useful for the creation of window functions for use as
envelope shapes or in granular synthesis. In forming a smooth curve,
GENO08 may create apexes that extend well above or below any of the
defined values. For this reason GENOS8 is mostly used with post-
normalisation turned on, i.e. a minus sign is not added to the GEN
number when the function table is defined. Here are some examples
of GENOS tables:

£ 10 1024 8 0 1 1 1023 0

£ 20 1024 8 0 97 1 170 0.583 757 0

199

FUNCTION TABLES

£ 3 0 1024 8 0 1 0.145 166 0.724 857 0

£ 40 1024 8 01 0.079 96 0.645 927 0

GEN16

f # time size 16 vall durl typel val2 [dur2 type2 val3 ... typeX valN]

GEN16 allows the creation of envelope functions using a sequence of
user defined breakpoints. Additionally for each segment of the
envelope we can define a curvature. The nature of the curvature —
concave or convex — will also depend upon the direction of the
segment: rising or falling. For example, positive curvature values will
result in concave curves in rising segments and convex curves in
falling segments. The opposite applies if the curvature value is
negative. Below are some examples of GEN16 function tables:

£ 1 0 1024 16 0 512 20 1 512 20 0

200

£ 2 0 1024 16 0 512 4 1 512 4 0

£ 3 0 1024 16 0 512 0 1 512 0 O

£ 4 0 1024 16 0 512 -4 1 512 -4 0

£ 50 1024 16 0 512 -20 1 512 -20 O

GEN19

FUNCTION TABLES

201

FUNCTION TABLES

f # time size 19 pna stra phsa dcoa pnb strb phsb dcob

GEN19 follows on from GEN10 and GENO09 in complexity and
control options. It shares the basic concept of generating a harmonic
waveform from stacked sinusoids but in addition to control over the
strength of each partial (GEN10) and the partial number and phase
(GENOQ9) it offers control over the DC offset of each partial. In
addition to the creation of waveforms for use by audio oscillators
other applications might be the creation of functions for LFOs and
window functions for envelopes in granular synthesis. Below are
some examples of GEN19:

£ 10 1024191100 200.1200

v

£ 2 0 1024 -19 0.5 1 180 1

GEN30

f # time size 30 src minh maxh [ref sr] [interp]

GENB30 uses FFT to create a band-limited version of a source
waveform without band-limiting. We can create a sawtooth

202

FUNCTION TABLES

waveform by drawing one explicitly using GENO7 by used as an
audio waveform this will create problems as it contains frequencies
beyond the Nyquist frequency therefore will cause aliasing,
particularly when higher notes are played. GEN30 can analyse this
waveform and create a new one with a user defined lowest and
highest partial. If we know what note we are going to play we can
predict what the highest partial below the Nyquist frequency will be.
For a given frequency, freq, the maximum number of harmonics that
can be represented without aliasing can be derived using sr/ (2 *
freq).

Here are some examples of GEN30 function tables (the first table is
actually a GENO7 generated sawtooth, the second two are GEN30
band-limited versions of the first):

£ 1 0 1024 7 1 1024 -1

£ 20 1024 30 1 1 20

203

FUNCTION TABLES

£ 3 0 1024 30 1 2 20

RELATED OPCODES

ftgen: Creates a function table in the orchestra using any GEN
Routine.

table / tablei / table3: Read values from a function table at any rate,
either by direct indexing (table), or by linear (tablei) or cubic (table3)
interpolation. These opcodes provide many options and are safe
because of boundary check, but you may have problems with non-
power-of-two tables.

tab_i / tab: Read values from a function table at i-rate (tab_i), k-rate
or a-rate (tab). Offer no interpolation and less options than the table
opcodes, but they work also for non-power-of-two tables. They do not
provide a boundary check, which makes them fast but also give the
user the resposability not reading any value off the table boundaries.

tableiw / tablew: Write values to a function table at i-rate (tableiw),
k-rate and a-rate (tablew). These opcodes provide many options and
are safe because of boundary check, but you may have problems with
non-power-of-two tables.

tabw_i / tabw: Write values to a function table at i-rate (tabw_i), k-
rate or a-rate (tabw). Offer less options than the tableiw/tablew
opcodes, but work also for non-power-of-two tables. They do not
provide a boundary check, which makes them fast but also give the
user the resposability not writing any value off the table boundaries.

poscil / poscil3: Precise oscillators for reading function tables at k- or
a-rate, with linear (poscil) or cubic (poscil3) interpolation. They
support also non-power-of-two tables, so it's usually recommended to
use them instead of the older oscili/oscil3 opcodes. Poscil has also a-
rate input for amplitude and frequency, while poscil3 has just k-rate
input.

204

FUNCTION TABLES

oscili / oscil3: The standard oscillators in Csound for reading function
tables at k- or a-rate, with linear (oscili) or cubic (oscil3)
interpolation. They support all rates for the amplitude and frequency
input, but are restricted to power-of-two tables. Particularily for long
tables and low frequencies they are not as precise as the
poscil/poscil3 oscillators.

ftsave / ftsavek: Save a function table as a file, at i-time (ftsave) or k-
time (ftsavek). This can be a text file or a binary file, but not a
soundfile. If you want to save a soundfile, use the User Defined
Opcode TableToSF.

ftload / ftloadk: Load a function table which has been written by
ftsave/ftsavek.

line / linseg / phasor: Can be used to create index values which are
needed to read/write k- or a-signals with the table/tablew or tab/tabw
opcodes.

1. ftgen is preferred mainly because you can refer to the function
table by a variable name and must not deal with constant tables
numbers. This will enhance the portability of orchestras and
better facilitate the combining of multiple orchestras. It can
also enhance the readability of an orchestra if a function table
is located in the code nearer the instrument that uses it."

2. If your .csd file is, for instance, in the directory
/home/jh/csound, and your sound file in the directory
/home/jh/samples, you should add this inside the <CsOptions>
tag:

--env:SSDIR+=/home/jh/samples. This means: 'Look also in
/home/jh/sample as Sound Sample Directory (SSDIR)'

A

3. For a general introduction about interpolation, see for instance
http://en.wikipedia.org/wiki/Interpolation”

205

FUNCTION TABLES

206

ARRAYS

ARRAYS

One of the principal new features of Csound 6 is the support of arrays.
This chapter aims to demonstrate how to use arrays using the methods
currently implemented.

The outline of this chapter is as follows:

e Types of Arrays
o Dimensions
i- or k-rate
Local or Global
Arrays of Strings
Arrays of Audio Signals

o O O O

e Naming Conventions
e Creating an Array
o init
o array / fillarray
o genarray

¢ Basic Operations: len / slice
e Copy Arrays from/to Tables
e Copy Arrays from/to FFT Data

e Math Operations
o +,-,* /ona Number
o +,-,% /ona Second Array
o min/max / sum / scale

o Function Mapping on an Array: maparray
e Arrays in UDOs

TYPES OF ARRAYS

DIMENSIONS

One-dimensional arrays - also called vectors - are the most

207

ARRAYS

commonly used type of array, but in Csound6 you can also use arrays
with two or more dimensions. The way in which the number of
dimensions is designated is very similar to how it is done in other
programming languages.

The code below denotes the second element of a one-dimensional
array (as usual, indexing an element starts at zero, so kArr[0] would
be the first element):

kArr[1]

The following denotes the second column in the third row of a two-
dimensional array:

kArr[2][1]

Note that the square brackets are not used everywhere. This is
explained in more detail below under 'Naming Conventions'.

I- OR K-RATE

Like most other variables in Csound, arrays can be either i-rate or k-
rate. An i-array can only be modified at init-time, and any operation
on it is only performed once, at init-time. A k-array can be modified
during the performance, and any (k-) operation on it will be
performed in every k-cycle (!). Here is a very simple example:

EXAMPLE 03E01_i_k_arrays.csd

<CsoundSynthesizer>

<CsOptions>

-nml28 ;no sound and reduced messages
</CsOptions>

<CsInstruments>

sr = 44100

ksmps = 4410 ;10 k-cycles per second

instr 1

iArr[] array 1, 2, 3

iArr[0] = iArr[0] + 10

prints " iArr[0] = %d\n\n", iArr[0]
endin

instr 2

kArr[] array 1, 2, 3

kArr[0] = kArr[0] + 10

208

ARRAYS

printks " kArr[0] = %d\n", 0, kArr[0]
endin

</CsInstruments>

<CsScore>

i 101

i211

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The output shows this:

iArr[0] = 11
kArr[0] = 11
kArr[0] = 21
kArr[0] = 31
kArr[0] = 41
kArr[0] = 51
kArr[0] = 61
kArr[0] = 71
kArr[0] = 81
kArr[0] = 91
kArr[0] = 101

Although both instruments run for one second, the operation to
increment the first array value by ten is executed only once in the i-
rate version of the array. But in the k-rate version, the incrementation

209

ARRAYS

is repeated in each k-cycle - in this case every 1/10 second, but
usually something around every 1/1000 second. A good opportunity
to throw off rendering power for useless repetitions, or to produce
errors if you intentionally wanted to operate something only once ...

LOCAL OR GLOBAL

Like any other variable in Csound, an array usually has a local scope
- this means that it is only recognized within the scope of the
instrument in which it has been defined. If you want to use arrays in a
globally (across instruments), then you have to prefix the variable
name with the character g, (as is done with other types of global
variable in Csound). The next example demonstrates local and global
arrays at both i- and k-rate.

EXAMPLE 03E02_Local_vs_global_arrays.csd

<CsoundSynthesizer>

<CsOptions>

-nml28 ;no sound and reduced messages
</CsOptions>

<CsInstruments>

ksmps = 32

instr i local
iArr[] array 1, 2, 3
prints " iArr[0] = %d iArr[1l] = %d iArr[2] = %d\n",
iArr[0], iArr([l], iArr[2]
endin

instr i local diff ;same name, different content
iArr[] array 4, 5, 6
prints " iArr[0] = %d iArr[l] = %d iArr[2] = %d\n",
iArr[0], iArr([l], iArr[2]
endin

instr i_global
giArr[] array 11, 12, 13
endin

instr i global read ;understands giArr though not defined here
prints " giArr[0] = %d giArr[l] = %d giArr[2] = %d\n",
giArr[0], giArr([l], giArr[2]
endin

instr k local
kArr[] array -1, -2, -3
printks " kArr[0] = %d kArr[1l] = %d kArr([2] = %d\n",
0, kArr[0], kArr[l], kArr([2]
turnoff
endin

instr k local diff

kArr[] array -4, -5, -6
printks " kArr[0] = %d kArr[l] = %d kArr[2] = %d\n",

210

ARRAYS

0, kArr[0], kArr[l], kArr[2]
turnoff
endin

instr k_global

gkArr[] array -11, -12, -13
turnoff

endin

instr k_global read

printks " gkArr[0] = %d gkArr[l] = %d gkArr[2] = %d\n",
0, gkArr[0], gkArr([l], gkArr[2]
turnoff
endin
</CsInstruments>
<CsScore>

i "i local" 0 O

"i local diff" 0 O
"i global"™ 0 O

"i global read" 0 O
"k _local"™ 0 1
"k_local diff" 0 1
"k_global"™ 0 1

i "k _global read" 0 1
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

e S S A

ARRAYS OF STRINGS

So far we have discussed only arrays of numbers. It is also possible to
have arrays of strings, which can be very useful in many situations,

for instance while working with file paths.! Here is a very simple
example first, followed by a more extended one.

EXAMPLE 03E03_String_arrays.csd

<CsoundSynthesizer>

<CsOptions>

-nml28 ;no sound and reduced messages
</CsOptions>

<CsInstruments>

ksmps = 32

instr 1

String = "onetwothree"

S Arr([] init 3

S Arr[0] strsub String, 3

(o 0,
S Arr([l] strsub String, 3, 6
S_Arr[2] strsub String, 6
printf i "S Arr[0] = '%s'\nS_Arr[l] = '$s'\nS_Arr([2] = '$s'\n", 1,
S_Arr[0], S_Arr[l], S_Arr([2]
endin

</CsInstruments>

<CsScore>

i101

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

EXAMPLE 03E04_Anagram.csd

211

ARRAYS

<CsoundSynthesizer
<CsOptions>

—dnmO

</CsOptions>
<CsInstruments>
ksmps 32

giArrLen

gSArr|[] init

opcode StrAgrm,

;changes the elements in Sin randomly,

>

5
9

S,

iArrLen

S3

Sin, iLen xin
if ilen == -1 then
iLen strlen Sin
endif
Sout = "
;for all elements in Sin
iCnt = 0
iRange = ilen
loop:
;get one randomly
iRnd rnd31 iRange-.0001, O
iRnd = int (abs (iRnd))
Sel strsub Sin, iRnd, iRnd+
Sout strcat Sout, Sel
;take it out from Sin
Ssubl strsub Sin, 0, iRnd
Ssub2 strsub Sin, iRnd+1
Sin strcat Ssubl, Ssub2
;adapt range (new length)
iRange = iRange-1
loop_1t iCnt, 1, iLen, 1
xout Sout
endop
instr 1
prints "Filling gSArr[]
iCounter = 0
until (iCounter == giArrLen) do
S new StrAgrm "csound"
gSArr[iCounter] = S_new
iCounter += 1
od
endin
instr 2
prints "Printing gSArr([
iCounter = 0
until (iCounter == giArrLen) do
printf i "%s ", iCounter+
iCounter += 1
od
prints "J\n"
endin
instr 3
printks "Printing gSArr([]
kcounter = 0
until (kcounter == giArrLen) do
printf "%s ", kcounter+l,
kcounter += 1
od
printks "J\n", 0
turnoff
endin
instr 4
prints "Modifying gSArr
iCounter = 0
until (iCounter == giArrLen) do
S_new StrAgrm "csound"

212

like in an anagram

1

oop

in instr %d at init-time!\n",

] in instr %d at init-time:\n

1, gSArr[iCounter]

in instr %d at perf-time:\n

y

gSArr[kcounter]

[1]

in instr %d at init-time!\n",

pl

"y

0,

pl

pl

pl

ARRAYS

gSArr[iCounter] = S_new
iCounter += 1
od
endin
instr 5
prints "Printing gSArr[] in instr %d at init-time:\n [", pl
iCounter = 0
until (iCounter == giArrLen) do
printf i "%s ", iCounter+l, gSArr[iCounter]
iCounter += 1
od
prints "I\n"
endin
instr 6
kCycle timeinstk
printks "Modifying gSArr[] in instr %d at k-cycle %d!\n", 0,
pl, kCycle
kCounter = 0
until (kCounter == giArrLen) do
kChar random 33, 127
S_new sprintfk "%c ", int (kChar)
gSArr[kCounter] strcpyk S new ;'=' should work but does not
kCounter += 1
od
if kCycle == 3 then
turnoff
endif
endin
instr 7
kCycle timeinstk
printks "Printing gSArr[] in instr %d at k-cycle %d:\n [",
0, pl, kCycle
kCounter = 0
until (kCounter == giArrLen) do
printf "%s ", kCounter+l, gSArr[kCounter]
kCounter += 1
od
printks "I\n", O
if kCycle == 3 then
turnoff
endif
endin
</CsInstruments>
<CsScore>
i101
i201
i 301
i411
i 511
i611
i711
</CsScore>

</CsoundSynthesizer>
;example by joachim heintz

Prints:
Filling gSArr([] in instr 1 at init-time!
Printing gSArr([] in instr 2 at init-time:

[nudosc coudns dsocun ocsund osncdu]

213

ARRAYS

Printing gSArr([] in instr 3 at perf-time:
[nudosc coudns dsocun ocsund osncdu]
Modifying gSArr[] in instr 4 at init-time!
Printing gSArr([] in instr 5 at init-time:
[ousndc uocdns sudocn usnocd ouncds
Modifying gSArr[] in instr 6 at k-cycle 1!
Printing gSArr[] in instr 7 at k-cycle 1:
[s < x + !]

Modifying gSArr[] in instr 6 at k-cycle 2!
Printing gSArr[] in instr 7 at k-cycle 2:
[P Z ruU]

Modifying gSArr[] in instr 6 at k-cycle 3!

Printing gSArr[] in instr 7 at k-cycle 3:

[b Kc " h]

ARRAYS OF AUDIO SIGNALS

Collecting audio signals in an array simplifies working with multiple
channels, as one of many possible cases of use. Here are two simple
examples, one for local audio arrays and the other for global audio

214

ARRAYS

arrays.

EXAMPLE 03E05_Local_audio_array.csd

<CsoundSynthesizer>
<CsOptions>

-odac -d
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1

instr 1
aArr([] init 2
al oscils .2, 400, O
az2 oscils .2, 500, 0
kEnv transeg 1, p3, -3, 0
aArr[0] = al * kEnv
aArr[1] = a2 * kEnv
outch 1, aArr[0], 2, aArr[1l]
endin

instr 2 ;to test identical names

aArr|[] init 2
al oscils .2, 600, O
az oscils .2, 700, O
kEnv transeg 0, p3-p3/10, 3, 1, p3/10, -6, O
aArr[0] = al * kEnv
aArr[1] = a2 * kEnv
outch 1, aArr[0], 2, aArr[l]
endin
</CsInstruments>
<CsScore>
i103
i203
</CsScore>

</CsoundSynthesizer>
;example by joachim heintz

EXAMPLE 03E06_Global_audio_array.csd

<CsoundSynthesizer>

<CsOptions>
-odac -d
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1
gaArr|[] init 2
instr 1 ; left channel
kEnv loopseg 0.5, 0, 0, 1,0.003, 1,0.0001, 0,0.9969
aSig pinkish kEnv
gaArr[0] = aSig
endin
instr 2 ; right channel
kEnv loopseg 0.5, 0, 0.5, 1,0.003, 1,0.0001, 0,0.9969
aSig pinkish kEnv

215

ARRAYS

gaArr[1l] = aSig
endin
instr 3 ; reverb
aInSigL gaArr[0] / 3

aInSigR gaArr[l] / 2
aRvbL,aRvbR reverbsc aInSigL, aInSigR, 0.88, 8000
gaArr[0] gaArr[0] + aRvbL
gaArr[1l] gaArr[1l] + aRvbR
outs gaArr[0]/4, gaArr([l]/4
0
0

gaArr[0]

gaArr[1l]
endin

</CsInstruments>

<CsScore>

i1l 010

i 2010

i 3012

</CsScore>

</CsoundSynthesizer>

;example by joachim heintz, using code by iain mccurdy

NAMING CONVENTIONS

An array must be created (via init or array / fillarray?) as
kMyArrayName plus ending brackets. The brackets determine the
dimensions of the array. So

kArr[] init 10

creates a one-dimensional array of length 10, whereas

kArr[][] init 10, 10

creates a two-dimensional array with 10 rows and 10 columns.

After the initialization of the array, referring to the array as a whole is
done without any brackets. Brackets are only used if an element is
indexed:

kArr([] init 10 ;with brackets because of initialization
kLen = lenarray (kArr) ;without brackets
kFirstEl = kArr[0] ;with brackets because of indexing

The same syntax is used for a simple copy via the '=' operator:

kArrl([] array 1, 2, 3, 4, 5 j;creates kArrl
kArr2[] = kArrl ;creates kArr2 as copy of kArrl

CREATING AN ARRAY

An array can currently be created by four methods: with the init

216

ARRAYS

opcode, with array/fillarray, with genarray, or as a copy of an already
existing array with the '=' operator.

INIT

The most general method, which works for arrays of any number of
dimensions, is to use the init opcode. Here you define a specified
space for the array:

kArr([] init 10 ;creates a one-dimensional array with length 10
kArr[][] init 10, 10 ;creates a two-dimensional array

If you want to fill an array with distinct values, you can use the
fillarray opcode. This line creates a vector with length 4 and puts in
the numbers [1, 2, 3, 4]:

kArr[] fillarray 1, 2, 3, 4

You can also use this opcode for filling two-dimensional arrays:>

EXAMPLE 03E07_Fill_multidim_array.csd

<CsoundSynthesizer>
<CsOptions>

-nm0

</CsOptions>
<CsInstruments>
ksmps = 32

instr 1
iArr[][] init 2
iArr array 1
iRow = 0
until iRow == 2 do
iColumn = 0
until iColumn =
prints "iArr[%d
iColumn += 1
enduntil
iRow += 1
od
endin

= %d\n", iRow, iColumn, iArr[iRow] [iColumn]

</CsInstruments>
<CsScore>

217

ARRAYS

i100

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

GENARRAY

This opcode creates an array which is filled by a series of numbers
from a starting value to an (included) ending value. Here are some
examples:

iArr[] genarray 1, 5 ; creates i-array with [1, 2, 3, 4, 5]

kArr[] genarray i 1, 5 ; creates k-array at init-time with [1, 2, 3, 4, 5]
iArr[] genarray -1, 1, 0.5 ; i-array with [-1, -0.5, 0, 0.5, 1]

iArr[] genarray 1, -1, -0.5; [1, 0.5, 0, -0.5, -1]

iArr[] genarray -1, 1, 0.6 ; [-1, -0.4, 0.2, 0.8]

BASIC OPERATIONS: LEN, SLICE

The opcode lenarray reports the length of an i- or k-array. As with
many opcodes now in Csound 6, it can be used either in the
traditional way (Left-hand-side <- Opcode <- Right-hand-side), or as
a function. The next example shows both usages, for i- and k-arrays.
For multidimensional arrays, lenarray returns the length of the first
dimension (instr 5).

EXAMPLE 03E08_lenarray.csd

<CsoundSynthesizer>
<CsOptions>

-nm0

</CsOptions>
<CsInstruments>
ksmps = 32

instr 1 ;simple i-rate example

iArr([] fillarray 1, 3, 5, 7, 9
iLen lenarray iArr

prints "Length of iArr = %d\n", iLen
endin

instr 2 ;simple k-rate example

kArr([] fillarray 2, 4, 6, 8

kLen lenarray KkArr
printks "Length of kArr = %d\n", 0, kLen
turnoff

endin

instr 3 ;i-rate with functional syntax

iArr([] genarray 1, 9, 2
iIndx = 0
until iIndx == lenarray(iArr) do
prints "iArr[%d] = %d\n", iIndx, iArr[iIndx]

218

iIndx += 1
od
endin

instr 4 ;k-rate with functional syntax

kArr([] genarray i -2, -8, -2
kIndx = 0
until kIndx == lenarray (kArr) do
printf "kArr[%d] = %d\n", kIndx+1l, kIndx, kArr[kIndx]
kIndx += 1
od
turnoff
endin

instr 5 ;multi-dimensional arrays

kArr[][] init 9, 5

kArrr[][]I[] init 7, 9, 5

printks "lenarray(kArr) (2-dim) = %d\n", 0, lenarray(kArr)
printks "lenarray(kArrr) (3-dim) = %d\n", 0, lenarray(kArrr)
endin

</CsInstruments>
<CsScore>
i100

i2 .1 .1

i3 .20

i4 .3 .1

i5 .4 .1

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Prints:

Length of iArr = 5
Length of kArr = 4

iArr[0] =1

iArr[1l] = 3
iArr[2] =5
iArr[3] = 7
iArr[4] = 9
kArr[0] = -2
kArr[1l] = -4

ARRAYS

219

ARRAYS

kArr[2] = -6
kArr[3] = -8
lenarray (kArr) (2-dim) = 9
lenarray (kArrr) (3-dim) = 7

The opcode slicearray takes a slice of a (one-dimensional) array:

slicearray kArr, iStart, 1iEnd

returns a slice of kArr from index iStart to index iEnd (included).

The array for receiving the slice must have been created in advance:

kArr([] fillarray 1, 2, 3, 4, 5, 6, 7, 8, 9

kArrl[] init 5

kArr2[] init 4

kArrl slicearray kArr, 0, 4 ; (1, 2, 3, 4, 5]
kArr2 slicearray kArr, 5, 8 ;[6, 7, 8, 9]

EXAMPLE 03E09_slicearray.csd

<CsoundSynthesizer>
<CsOptions>

-n

</CsOptions>
<CsInstruments>
ksmps = 32

instr 1

;create and fill an array
kArr[] genarray i 1, 9

;print the content

printf "%s", 1, "kArr = whole array\n"
kndx = 0
until kndx == lenarray(kArr) do
printf "kArr[%d] = %f\n", kndx+1l, kndx, kArr[kndx]
kndx += 1

od

;build new arrays for the slices
kArrl[] init 5
kArr2[] init 4

;put in first five and last four elements
kArrl slicearray kArr, 0, 4
kArr2 slicearray kArr, 5, 8

;print the content

printf "%s", 1, "\nkArrl = slice from index 0 to index 4\n"
kndx = 0

220

ARRAYS

until kndx == lenarray(kArrl) do
printf "kArrl[%d] = $f\n", kndx+l, kndx, kArrl[kndx]
kndx += 1
od
printf "%$s", 1, "\nkArr2 = slice from index 5 to index 8\n"
kndx = 0
until kndx == lenarray (kArr2) do
printf "kArr2[%d] = $f\n", kndx+l, kndx, kArr2[kndx]
kndx += 1
od

turnoff
endin

</CsInstruments>

<CsScore>

i 101

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

COPY ARRAYS FROM/TO TABLES

As function tables have been the classical way of working with
arrays in Csound, switching between them and the new array facility
in Csound is a basic operation. Copying data from a function table to
a vector is done by copyf2array, whereas copya2ftab copies data from
a vector to a function table:

copyf2array kArr, kfn ;from a function table to an array
copya2ftab kArr, kfn ;from an array to a function table

The following presents a simple example of each operation.

EXAMPLE 03E10_copyf2array.csd

<CsoundSynthesizer>
<CsOptions>

-nm0

</CsOptions>
<CsInstruments>
ksmps = 32

;8 points sine wave function table
giSine ftgen 0o, o0, 8, 10, 1

instr 1
;create array
kArr([] init 8

;copy table values in it
copyf2array kArr, giSine

;print values
kndx = 0
until kndx == lenarray(kArr) do
printf "kArr[%d] = %$f\n", kndx+l, kndx, kArr[kndx]

221

ARRAYS

kndx += 1
enduntil

;turn instrument off
turnoff
endin

</CsInstruments>

<CsScore>

i100.1

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

EXAMPLE 03E11_copyaZ2ftab.csd

<CsoundSynthesizer>
<CsOptions>

-nm0

</CsOptions>
<CsInstruments>
ksmps = 32

;an 'empty' function table with 10 points
giTable ftgen o, 0, -10, 2, O
instr 1

;print inital values of giTable

puts "\nInitial table content:", 1
indx = 0
until indx == ftlen(giTable) do
ival table indx, giTable

printf i "Table index %d = %$f\n", 1, indx, ival
indx += 1
od

;create array with values 1..10
kArr[] genarray i 1, 10

;print array values

printf "%s", 1, "\nArray content:\n"
kndx = 0
until kndx == lenarray(kArr) do
printf "kArr[%d] = $f\n", kndx+l, kndx, kArr[kndx]
kndx += 1

od

;copy array values to table
copya2ftab kArr, giTable

;print modified values of giTable
printf "%s", 1, "\nModified table content after copya2ftab:\n"
kndx = 0
until kndx == ftlen(giTable) do
kval table kndx, giTable
printf "Table index %d = %f\n", kndx+1l, kndx, kval
kndx += 1
od

;turn instrument off
turnoff
endin

</CsInstruments>
<CsScore>
i100.1
</CsScore>

222

ARRAYS

</CsoundSynthesizer>
;example by joachim heintz

COPY ARRAYS FROM/TO FFT DATA

You can copy the data of an f-signal - which contains the results of a
Fast Fourier Transform - into an array with the opcode pvs2array. The
counterpart pvsfromarray copies the content of an array to a f-signal.

kFrame pvs2array kArr, £fSigIn ;from f-signal f£Sig to array kArr
£SigOut pvsfromarray kArr [,ihopsize, iwinsize, iwintype]

Some care is needed to use these opcodes correctly:

e The array kArr must be declared in advance to its usage in
these opcodes, usually with init.

e The size of this array depends on the FFT size of the f-signal
fSigln. If the FFT size is N, the f-signal will contain N/2+1
amplitude-frequency pairs. For instance, if the FFT size is
1024, the FFT will write out 513 bins, each bin containing one
value for amplitude and one value for frequency. So to store all
these values, the array must have a size of 1026. In general, the
size of kArr equals FFT-size plus two.

e The indices 0, 2, 4, ... of kArr will contain the amplitudes; the
indices 1, 3, 5, ... will contain the frequencies of the bins of a
specific frame.

e The number of this frame is reported in the kFrame output of
pvs2array. By this parameter you know when pvs2array writes
new values to the array kAur.

e On the way back, the FFT size of fSigOut, which is written by
pvsfromarray, depends on the size of kArr. If the size of kArr is
1026, the FFT size will be 1024.

e The default value for ihopsize is 4 (= fftsize/4); the default
value for inwinsize is the fftsize; and the default value for
iwintype is 1, which means a hanning window.

Here is an example that implements a spectral high-pass filter. The f-
signal is written to an array and the amplitudes of the first 40 bins are

223

ARRAYS

then zeroed.* This is only done when a new frame writes its values to
the array so as not to waste rendering power.

EXAMPLE 03E12_pvs_to_from_array.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

sr = 44100

ksmps = 32

nchnls = 2

Odbfs =1

gifil ftgen o, o, 0, 1, "fox.wav", 0, 0, 1

instr 1

ifftsize = 2048 ;fft size set to pvstanal default

fsrc pvstanal 1, 1, 1, gifil ;create fsig stream from function table
kArr[] init ifftsize+2 ;create array for bin data

kflag pvs2array kArr, fsrc ;export data to array

;if kflag has reported a new write action ...
knewflag changed kflag

if knewflag == 1 then

; . set amplitude of first 40 bins to zero:
kndx

= 0 ;even array index = bin amplitude
kstep = 2 ;change only even indices
kmax = 80
loop:
kArr[kndx] = 0
loop_ le kndx, kstep, kmax, loop
endif
fres pvsfromarray kArr ;read modified data back to fres
aout pvsynth fres ;and resynth
outs aout, aout
endin
</CsInstruments>
<CsScore>
i102.7
</CsScore>

</CsoundSynthesizer>

;example by joachim heintz

Basically, with the opcodes pvs2array and pvsfromarray, you have
complete access to every operation in the spectral domain. You could
re-write the existing pvs transformations, you could change them, but
you can also simply use the spectral data to do anything with it. The
next example looks for the most prominent amplitudes in a frame,
and then triggers another instrument.

EXAMPLE 03E13_fft_peaks_arpegg.csd

224

ARRAYS

<CsoundSynthesizer>
<CsOptions>

-odac -d -ml28

; Example by Tarmo Johannes

</CsOptions>

<CsInstruments>

sr = 44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen 0, 0, 4096, 10, 1

instr getPeaks

;generate signal to analyze

kfrcoef jspline 60, 0.1, 1 ; change the signal in time a bit for better testing
kharmcoef Jjspline 4, 0.1, 1
kmodcoef jspline 1, 0.1, 1
kenv linen 0.5, 0.05, p3, 0.05
asig foscil kenv, 300+kfrcoef, 1, l+kmodcoef, 10, giSine
outs asig*0.05, asig*0.05 ; original sound in backround

;FFT analysis

ifftsize = 1024

ioverlap = ifftsize / 4

iwinsize = ifftsize

iwinshape = 1

fsig pvsanal asig, ifftsize, ioverlap, iwinsize, iwinshape
ithresh = 0.001 ; detect only peaks over this value

;FFT values to array
kFrames/[] init iwinsize+2 ; declare array
kframe pvs2array kFrames, fsig ; even member = amp of one bin, odd = frequency

;detect peaks

kindex = 2 ; start checking from second bin
kcounter = 0
iMaxPeaks = 13 ; track up to iMaxPeaks peaks
ktrigger metro 1/2 ; check after every 2 seconds
if ktrigger == 1 then
loop:
; check with neigbouring amps - if higher or equal than previous amp

; and more than the coming one, must be peak.
if (kFrames|[kindex-2]<=kFrames[kindex] &&
kFrames [kindex]>kFrames[kindex+2] &&
kFrames [kindex]>ithresh &&
kcounter<iMaxPeaks) then

kamp = kFrames [kindex]

kfreq = kFrames [kindex+1]

; play sounds with the amplitude and frequency of the peak as in arpeggio
event "i", "sound", kcounter*0.1, 1, kamp, kfreq

kcounter = kcounter+1l

endif
loop_ 1t kindex, 2, 1fftsize, loop
endif
endin

instr sound

iamp = pé

ifreq = r5

kenv adsr 0.1,0.1,0.5,p3/2

kndx line 5,p3,1

asig foscil iamp*kenv, ifreq,1,0.75,kndx,giSine
outs asig, asig

endin

</CsInstruments>

<CsScore>

i "getPeaks" 0 60

</CsScore>

</CsoundSynthesizer>

225

ARRAYS

MATH OPERATIONS

+, -, ¥,/ ON A NUMBER

If the four basic math operators are used between an array and a
scalar (number), the operation is applied to each element. The safest
way to do this is to store the result in a new array:

kArrl([] fillarray 1, 2, 3
kArr2[] = kArrl + 10 ; (kArr2 is now [11, 12, 13]

Here is an example of array-scalar operations.

EXAMPLE 03E14_array_scalar_math.csd

<CsoundSynthesizer>
<CsOptions>

-n -ml28
</CsOptions>
<CsInstruments>
ksmps = 32

instr 1

;create array and fill with numbers 1..10
kArrl[] genarray i 1, 10

;print content

printf "%s", 1, "\nInitial content:\n"
kndx = 0
until kndx == lenarray (kArrl) do
printf "kArr([%d] = %f\n", kndx+1l, kndx, kArrl[kndx]
kndx += 1
od
;add 10
kArr2[] = kArrl + 10

;print content
printf "%s", 1, "\nAfter adding 10:\n"

kndx = 0
until kndx == lenarray (kArr2) do
printf "kArr[%d] = %f\n", kndx+1l, kndx, kArr2[kndx]
kndx += 1
od
;subtract 5
kArr3[] = kArr2 - 5

;print content
printf "%s", 1, "\nAfter subtracting 5:\n"

kndx = 0
until kndx == lenarray (kArr3) do
printf "kArr([%d] = %$f\n", kndx+l, kndx, kArr3[kndx]
kndx += 1
od

226

;multiply by -1.

kArrd[] =

;print content

printf
kndx =
until kndx ==
printf
kndx +=
od

;divide by -3/2
kArr5[] =

;print content
printf
kndx =
until kndx ==
printf
kndx +=
od

;turnoff
turnoff
endin

</CsInstruments>

<CsScore>
i10 .1
</CsScore>

kArr3 * -1.5

"$s", 1, "\nAfter multiplying by -1.5:\n"

0

lenarray (kArr4) do

"kArr[%d] = %f\n", kndx+1l, kndx, kArr4[kndx]
1

kArrd / -(3/2)

"$s", 1, "\nAfter dividing by -3/2:\n"

lenarray (kArr5) do
"kArr[%d] = %$f\n", kndx+l, kndx, kArr5[kndx]
1

</CsoundSynthesizer>
;example by joachim heintz

Prints:

Initial content:

kArr[0] = 1.000000
kArr[1l] = 2.000000
kArr[2] = 3.000000
kArr[3] = 4.000000
kArr[4] = 5.000000
kArr[5] = 6.000000
kArr[6] = 7.000000

ARRAYS

227

ARRAYS

kArr[7] =

kArr[8] =

kArr[9] =

8.000000

9.000000

10

After adding

kArr[0] =

kArr[l] =

kArr[2] =

kArr[3] =

kArr[4] =

kArr[5] =

kArr[6] =

kArr[7] =

kArr[8] =

kArr[9] =

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

.000000

10:

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

After subtracting 5:

kArr[0] =

kArr[l] =

228

6.000000

7.000000

kArr[2]

kArr[3]

kArr[4]

kArr[5]

kArr[6]

kArr[7]

kArr[8]

kArr[9]

After multiplying by -1.5:

kArr[0]

kArr[1l]

kArr[2]

kArr[3]

kArr[4]

kArr[5]

kArr[6]

kArr[7]

8.0

9.0

10.

11.

12

13.

14

15.

-9.

-10.

-12.

-13.

-15.

-16.

-18.

-19.

00000

00000

000000

000000

.000000

000000

.000000

000000

000000

500000

000000

500000

000000

500000

000000

500000

ARRAYS

229

ARRAYS

kArr[8] = -21.000000

kArr[9] = -22.500000

After dividing by -3/2:

kArr[0] = 6.000000
kArr[1] = 7.000000
kArr[2] = 8.000000
kArr[3] = 9.000000
kArr[4] = 10.000000
kArr[5] = 11.000000
kArr[6] = 12.000000
kArr[7] = 13.000000
kArr[8] = 14.000000
kArr[9] = 15.000000

+, -, *,/ ON A SECOND ARRAY

If the four basic math operators are used between two arrays, their
operation is applied element by element. The result can be easily
stored in a new array:

kArrl[] fillarray 1, 2, 3
kArr2[] fillarray 10, 20, 30

230

kArr3[] = kArrl + kArr2 ; (kArr3 is now [11, 22, 33]

Here is an example of array-array operations.

EXAMPLE 03E15_array_array_math.csd

<CsoundSynthesizer>
<CsOptions>

-n -ml28
</CsOptions>
<CsInstruments>
ksmps = 32

instr 1
;create array and fill with numbers 1..10 resp .1..1
kArrly[] fillarray 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
kArr2[] fillarray 1, 2, 3, 5, 8, 13, 21, 34, 55, 89

;print contents
printf "%s", 1, "\nkArrl:\n"

kndx = 0
until kndx == lenarray(kArrl) do
printf "kArrl[%d] = $f\n", kndx+l, kndx, kArrl[kndx]
kndx += 1
od
printf "%s", 1, "\nkArr2:\n"
kndx = 0
until kndx == lenarray(kArr2) do
printf "kArr2[%d] = $f\n", kndx+l, kndx, kArr2[kndx]
kndx += 1
od

;add arrays
kArr3[] = kArrl + KkArr2

;print content
printf "%s", 1, "\nkArrl + kArr2:\n"
kndx = 0

until kndx == lenarray(kArr3) do
printf "kArr3[%d] = $f\n", kndx+l, kndx, kArr3[kndx]
kndx += 1
od

;subtract arrays
kArrd[] = kArrl - kArr2

;print content
printf "%$s", 1, "\nkArrl - kArr2:\n"
kndx = 0

until kndx == lenarray(kArr4) do
printf "kArr4[%d] = $f\n", kndx+1l, kndx, kArr4d[kndx]
kndx += 1
od

;multiply arrays
kArr5[] = kArrl * kArr2

;print content
printf "%s", 1, "\nkArrl * kArr2:\n"
kndx = 0

until kndx == lenarray(kArr5) do
printf "kArr5[%d] = %$f\n", kndx+1l, kndx, kArr5[kndx]
kndx += 1
od

;divide arrays
kArr6[] = kArrl / kArr2

ARRAYS

231

ARRAYS

;print content
printf "%s", 1, "\nkArrl / kArr2:\n"
kndx = 0
until kndx == lenarray(kArr6) do
printf "kArr5([%d] = $f\n", kndx+l, kndx, kArr6[kndx]
kndx += 1
od

;turnoff
turnoff

endin
</CsInstruments>
<CsScore>
i10 .1
</CsScore>

</CsoundSynthesizer>
;example by joachim heintz

MIN, MAX, SUM, SCALE

minarray and maxarray return the smallest / largest value in an array,
and optionally its index:

kMin [,kMinIndx] minarray kArr
kMax [, kMaxIndx] maxarray kArr

Here is a simple example of these operations:

EXAMPLE 03E16_min_max_array.csd

<CsoundSynthesizer>

<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
ksmps = 32
seed 0
instr 1
;create an array with 10 elements
kArr([] init 10
;£ill in random numbers and print them out
kIndx = 0
until kIndx == 10 do
kNum random -100, 100
kArr[kIndx] = kNum
printf "kArr[%d] = %$10f\n", kIndx+1l, kIndx, kNum
kIndx += 1
od

;investigate minimum and maximum number and print them out
kMin, kMinIndx minarray kArr
kMax, kMaxIndx maxarray KkKArr

printf "Minimum of kArr = %f at index %d\n", kIndx+1l, kMin, kMinIndx
printf "Maximum of kArr = $f at index %d\n\n", kIndx+l, kMax, kMaxIndx
turnoff

endin

</CsInstruments>

<CsScore>

i1 0 0.1

</CsScore>

</CsoundSynthesizer>

232

ARRAYS

;example by joachim heintz

This would create a different output each time you run it; for
instance:

kArr[0] = -2.071383
kArr([1] = 97.150272
kArr[2] = 21.187835
kArr[3] = 72.199983
kArr[4] = -64.908241
kArr[5] = -7.276434
kArr[6] = -51.368650
kArr[7] = 41.324552
kArr[8] = -8.483235
kArr[9] = 77.560219
Minimum of kArr = -64.908241 at index 4

Maximum of kArr = 97.150272 at index 1

sumarray simply returns the sum of all values in an (numerical) array.
Here is a simple example:

EXAMPLE 03E17_sumarray.csd

<CsoundSynthesizer>
<CsOptions>

233

ARRAYS

-nm0
</CsOptions>
<CsInstruments>
ksmps = 32
seed 0
instr 1
;create an array with 10 elements
kArr([] init 10
;£i11 in random numbers and print them out
kIndx = 0
until kIndx == 10 do
kNum random 0, 10
kArr[kIndx] = kNum
printf "kArr[%d] = %10f\n", kIndx+l, kIndx, kNum
kIndx += 1
od
;calculate sum of all values and print it out
kSum sumarray kArr
printf "Sum of all values in kArr = %f\n", kIndx+1l, kSum
turnoff
endin
</CsInstruments>
<CsScore>
il 0 0.1
</CsScore>

</CsoundSynthesizer>
;example by joachim heintz

Finally, scalearray scales the values of a given numerical array
between a minimum and a maximum value. These lines ...

kArr[] fillarray 1, 3, 9, 5, 6
scalearray kArr, 1, 3

... change kArr from [1, 3,9, 5, 6] to [1, 1.5, 3, 2, 2.25]. Here is a
simple example:

EXAMPLE 03E18_scalearray.csd

<CsoundSynthesizer>

<CsOptions>

-nm0

</CsOptions>

<CsInstruments>

ksmps = 32
seed 0

instr 1

;create an array with 10 elements

kArr([] init 10

;£i11 in random numbers and print them out
printks "kArr in maximum range 0..100:\n", 0

kIndx = 0

until kIndx == 10 do

kNum random 0, 100

kArr[kIndx] = kNum
printf "kArr[%d] = %$10f\n", kIndx+1l, kIndx, kNum

kIndx += 1

od

;scale numbers 0...1 and print them out again
scalearray kArr, 0, 1

kIndx = 0

234

printks
until kIndx == 10
printf
kIndx +=
od
turnoff
endin
</CsInstruments>
<CsScore>
il 0 0.1
</CsScore>

</CsoundSynthesizer>

;example by joachim heintz
One possible output:

kArr in maximum range 0..100:

kArr[0] =

kArr[1l] =

kArr[2] =

kArr[3] =

kArr[4] =

kArr[5] =

kArr[6] =

kArr[7] =

kArr[8] =

kArr[9] =

93.

98.

37.

58.

71.

11.

13.

24.

52.

kArr in range

kArr[0] =

898027

554934

244273

581820

195263

948356

.4937717

688537

875835

205258

.951011

"kArr in range 0..1\n",

ARRAYS

235

ARRAYS

kArr[1l] = 1.000000
kArr[2] = 0.355040
kArr[3] = 0.579501
kArr[4] = 0.712189
kArr[5] = 0.088938
kArr[6] = 0.000000
kArr([7] = 0.107244
kArr([(8] = 0.224929
kArr[9] = 0.512423

FUNCTION MAPPING ON AN ARRAY: MAPARRAY

maparray applies the function "fun" (which needs to have one input
and one output argument) to each element of the vector kArrSrc and
stores the result in kArrRes (which needs to have been created
previously):

kArrRes maparray kArrSrc, "fun"

Possible functions are for instance abs, ceil, exp, floor, frac, int, log,
log10, round, sqrt. The following example applies different functions
sequentially to the source array:

EXAMPLE 03E19_maparray.csd

<CsoundSynthesizer>
<CsOptions>

-nm0

</CsOptions>
<CsInstruments>
ksmps = 32

236

instr 1

;create an array and fill with numbers
kArrSrc[] array 1.01, 2.02, 3.03, 4.05, 5.08, 6.13, 7.21

;print source array
printf "%s", 1, "\nSource array:\n"
kndx = 0
until kndx == lenarray(kArrSrc) do
printf "kArrSrc[%d] = %$f\n", kndx+1l, kndx, kArrSrc[kndx]
kndx += 1
od

;create an empty array for the results
kArrRes[] init 7

;apply the sqgrt() function to each element
kArrRes maparray kArrSrc, "sqrt"

;print the result

printf "%$s", 1, "\nResult after applying sqgrt() to source array\n"
kndx = 0
until kndx == lenarray (kArrRes) do
printf "kArrRes[%d] = $f\n", kndx+l, kndx, kArrRes[kndx]
kndx += 1

od

;apply the log() function to each element
kArrRes maparray kArrSrc, "log"

;print the result

printf "%$s", 1, "\nResult after applying log() to source array\n"
kndx = 0
until kndx == lenarray(kArrRes) do
printf "kArrRes[%d] = $f\n", kndx+l, kndx, kArrRes[kndx]
kndx += 1

od

;apply the int () function to each element
kArrRes maparray kArrSrc, "int"

;print the result

printf "%$s", 1, "\nResult after applying int() to source array\n"
kndx = 0
until kndx == lenarray(kArrRes) do
printf "kArrRes[%d] = $f\n", kndx+l, kndx, kArrRes[kndx]
kndx += 1
od
;apply the frac() function to each element

kArrRes maparray kArrSrc, "frac"

;print the result

printf "%s", 1, "\nResult after applying frac() to source array\n"
kndx = 0
until kndx == lenarray(kArrRes) do
printf "kArrRes[%d] = $f\n", kndx+l, kndx, kArrRes[kndx]
kndx += 1

od

;turn instrument instance off
turnoff

endin

</CsInstruments>

<CsScore>

i100.1

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

ARRAYS

237

ARRAYS

Prints:

Source array:

kArrSrc[0] = 1.010000
kArrSrc[1l] = 2.020000
kArrSrc[2] = 3.030000
kArrSrc[3] = 4.050000
kArrSrc[4] = 5.080000
kArrSrc[5] = 6.130000
kArrSrc[6] = 7.210000
Result after applying sgrt() to source array
kArrRes[0] = 1.004988
kArrRes[1] = 1.421267
kArrRes[2] = 1.740690
kArrRes[3] = 2.012461
kArrRes[4] = 2.253886
kArrRes[5] = 2.475884
kArrRes[6] = 2.685144

Result after applying log() to source array

238

kArrRes 01 = 0.009950

LIVE EVENTS

LIVE EVENTS

The basic concept of Csound from the early days of the program is
still valid and fertile because it is a familiar musical one. You create
a set of instruments and instruct them to play at various times. These
calls of instrument instances, and their execution, are called
"instrument events".

Whenever any Csound code is executed, it has to be compiled first.
Since Csound6, you can change the code of any running Csound
instance, and recompile it on the fly. There are basically two opcodes
for this "live coding": compileorc re-compiles any existing orc file,
whereas compilestr compiles any string. At the end of this chapter,
we will present some simple examples for both methods, followed by
a description how to re-compile code on the fly in CsoundQt.

The scheme of instruments and events can be instigated in a number
of ways. In the classical approach you think of an "orchestra" with a
number of musicians playing from a "score", but you can also trigger
instruments using any kind of live input: from MIDI, from OSC, from
the command line, from a GUI (such as Csound's FLTK widgets or
CsoundQt's widgets), from the API (also used in CsoundQt's Live
Event Sheet). Or you can create a kind of "master instrument", which
is always on, and triggers other instruments using opcodes designed
for this task, perhaps under certain conditions: if the live audio input
from a singer has been detected to have a base frequency greater than
1043 Hz, then start an instrument which plays a soundfile of broken
glass...

ORDER OF EXECUTION REVISITED

Whatever you do in Csound with instrument events, you must bear in
mind the order of execution that has been explained in the first
chapter of this section about the Initialization and Performance Pass:

239

LIVE EVENTS

instruments are executed one by one, both in the initialization pass
and in each control cycle, and the order is determined by the
instrument number.

It is worth to have a closer look to what is happening exactly in time
if you trigger an instrument from inside another instrument. The first
example shows the result when instrument 2 triggers instrument 1 and
instrument 3 at init-time.

EXAMPLE 03F01_OrderOfExc_event_i.csd

<CsoundSynthesizer>
<CsOptions>

-nm0

</CsOptions>
<CsInstruments>

sr = 44100

ksmps = 441

instr 1

kCycle timek

prints "Instrument 1 is here at initialization.\n"
printks "Instrument 1: kCycle = %d\n", 0, kCycle
endin

instr 2

kCycle timek

prints " Instrument 2 is here at initialization.\n"
printks " Instrument 2: kCycle = %d\n", 0, kCycle
event i "i", 3, 0, .02

event i "i", 1, 0, .02

endin

instr 3

kCycle timek

prints " Instrument 3 is here at initialization.\n"
printks " Instrument 3: kCycle = %d\n", 0, kCycle
endin

</CsInstruments>

<CsScore>

i 20 .02

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

This is the output:

Instrument 2 is here at initialization.
Instrument 3 is here at initialization.

Instrument 1 is here at initialization.

240

Instrument 1: kCycle =1

Instrument 2: kCycle =1

Instrument 3: kCycle =1

Instrument 1: kCycle = 2

Instrument 2: kCycle = 2

Instrument 3: kCycle = 2

LIVE EVENTS

Instrument 2 is the first one to initialize, because it is the only one
which is called by the score. Then instrument 3 is initialized, because
it is called first by instrument 2. The last one is instrument 1. All this
is done before the actual performance begins. In the performance
itself, starting from the first control cycle, all instruments are

executed by their order.

Let us compare now what is happening when instrument 2 calls

instrument 1 and 3 during the performance (= at k-time):

EXAMPLE 03F02_OrderOfExc_event_k.csd

<CsoundSynthesizer>
<CsOptions>

-nm0

</CsOptions>
<CsInstruments>

sr = 44100

ksmps = 441

O0dbfs =1

nchnls =1

instr 1

kCycle timek

prints "Instrument 1 is here at initialization.\n"
printks "Instrument 1: kCycle = %d\n", 0, kCycle
endin

instr 2

kCycle timek

prints " Instrument 2 is here at initialization.\n"

printks " Instrument 2: kCycle = %d\n", 0, kCycle
if kCycle == 1 then

241

LIVE EVENTS

event "i", 3, 0, .02
event "i", 1, 0, .02
endif

printks " Instrument 2: still in kCycle = %d\n", 0, kCycle

endin

instr 3

kCycle timek

prints " Instrument 3 is here at initialization.\n"
printks " Instrument 3: kCycle = %d\n", 0, kCycle
endin

instr 4

kCycle timek

prints " Instrument 4 is here at initialization.\n"
printks " Instrument 4: kCycle = %d\n", 0, kCycle
endin

</CsInstruments>

<CsScore>

i 40 .02

i 20 .02

</CsScore>

</CsoundSynthesizer>

;example by joachim heintz

This is the output:

Instrument 2 is here at initialization.
Instrument 4 is here at initialization.
Instrument 2: kCycle = 1
Instrument 2: still in kCycle = 1
Instrument 4: kCycle =1
Instrument 3 is here at initialization.
Instrument 1 is here at initialization.
Instrument 1: kCycle = 2
Instrument 2: kCycle = 2

Instrument 2: still in kCycle = 2

242

LIVE EVENTS

Instrument 3: kCycle = 2

Instrument 4: kCycle = 2

Instrument 2 starts with its init-pass, and then instrument 4 is
initialized. As you see, the reverse order of the scorelines has no
effect; the instruments which start at the same time are executed in
ascending order, depending on their numbers.

In this first cycle, instrument 2 calls instrument 3 and 1. As you see
by the output of instrument 4, the whole control cycle is finished first,

before instrument 3 and 1 (in this order) are initialized.! These both
instruments start their performance in cycle number two, where they
find themselves in the usual order: instrument 1 before instrument 2,
then instrument 3 before instrument 4.

Usually you will not need to know all of this with such precise
timing. But in case you experience any problems, a clearer awareness
of the process may help.

INSTRUMENT EVENTS FROM THE SCORE

This is the classical way of triggering instrument events: you write a
list in the score section of a .csd file. Each line which begins with an
"i", is an instrument event. As this is very simple, and examples can
be found easily, let us focus instead on some additional features
which can be useful when you work in this way. Documentation for
these features can be found in the Score Statements section of the
Canonical Csound Reference Manual. Here are some examples:

EXAMPLE 03F03_Score._tricks.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

243

LIVE EVENTS

;Example by Joachim Heintz

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1
giWav ftgen o, 0, 2~10, 10, 1, .5, .3, .1

instr 1
kFadout init 1
krel release ;returns "1" if last k-cycle

if krel == 1 && p3 < 0 then ;if so, and negative p3:

xXtratim .5 ;give 0.5 extra seconds

kFadout linseg 1, .5, 0 ;and make fade out

endif
kEnv linseg 0, .01, p4, abs(p3)-.1, p4, .09, 0; normal fade out
aSig poscil kEnv*kFadout, p5, giWav

outs aSig, aSig

endin
</CsInstruments>
<CsScore>
t 0 120 ;set tempo to 120 beats per minute
i 1 0 1 .2 400 ;play instr 1 for one second
i 1 2 -10 .5 500 ;play instr 1 indefinetely (negative p3)
i -1 5 0 ;turn it off (negative pl)
; —— turn on instance 1 of instr 1 one sec after the previous start
i 1.1 ~+1 -10 .2 600
i 1.2 ~+2 =10 .2 700 ;another instance of instr 1
i -1.2 ~+2 0 ;turn off 1.2
; —— turn off 1.1 (dot = same as the same p-field above)
i -1.1 ~+1
s ;end of a section, so time begins from new at zero
i 1 1 1 .2 800
r 5 ;repeats the following line (until the next "s"
i 1 .25 .25 .2 900
s
v 2 ;lets time be double as long
i 1 0 2 .2 1000
i 1 1 1 .2 1100
s
v 0.5 ;lets time be half as long
i 1 0 2 .2 1200
i 1 1 1 .2 1300
s ;time is normal now again
i 1 0 2 .2 1000
i 1 1 1 .2 900
s
; —— make a score loop (4 times) with the variable "LOOP"
{4 LOOP
i 1 [0 + 4 * SLOOP.] 3 .2 [1200 - $LOOP. * 100]
i 1 [l + 4 * SLOOP.] 2 . [1200 - $LOOP. * 200]
i 1 [2 + 4 * $SLOOP.] 1 . [1200 - SLOOP. * 300]
}
e
</CsScore>

</CsoundSynthesizer>

Triggering an instrument with an indefinite duration by setting p3 to
any negative value, and stopping it by a negative p1 value, can be an
important feature for live events. If you turn instruments off in this
way you may have to add a fade out segment. One method of doing
this is shown in the instrument above with a combination of the
release and the xtratim opcodes. Also note that you can start and stop
certain instances of an instrument with a floating point number as p1.

244

LIVE EVENTS

USING MIDI NOTE-ON EVENTS

Csound has a particular feature which makes it very simple to trigger
instrument events from a MIDI keyboard. Each MIDI Note-On event
can trigger an instrument, and the related Note-Off event of the same
key stops the related instrument instance. This is explained more in
detail in the chapter Triggering Instrument Instances in the MIDI
section of this manual. Here, just a small example is shown. Simply
connect your MIDI keyboard and it should work.

EXAMPLE 03F04_Midi_triggered_events.csd

<CsoundSynthesizer>
<CsOptions>

-Ma -odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1
giSine ftgen o, 0, 2~10, 10, 1
massign 0, 1; assigns all midi channels to instr 1
instr 1
iFreq cpsmidi ;gets frequency of a pressed key
iAmp ampmidi 8 ;gets amplitude and scales 0-8
iRatio random .9, 1.1 ;ratio randomly between 0.9 and 1.1
aTone foscili .1, iFreq, 1, iRatio/5, iAmp+1l, giSine ;fm
aEnv linenr aTone, 0, .01, .01 ; avoiding clicks at the note-end
outs akEnv, akEnv
endin
</CsInstruments>
<CsScore>

f 0 36000; play for 10 hours
e

</CsScore>
</CsoundSynthesizer>

USING WIDGETS

If you want to trigger an instrument event in realtime with a
Graphical User Interface, it is usually a "Button" widget which will
do this job. We will see here a simple example; first implemented
using Csound's FLTK widgets, and then using CsoundQt's widgets.

FLTK BUTTON

245

LIVE EVENTS

This is a very simple example demonstrating how to trigger an

instrument using an FLTK button. A more extended example can be

found here.

EXAMPLE 03F05_FLTK_triggered_events.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1

; —— create a FLTK panel --

Flpanel "Trigger By FLTK Button", 300, 100, 100, 100
; —-- trigger instr 1 (equivalent to the score line "i 1 0 1")k1l, ihl
"Push me!", 0, 0, 1, 150, 40, 10, 25, 0, 1, 0, 1

; —— trigger instr 2
k2, ih2 FlLbutton "Quit", 0, 0, 1, 80, 40, 200, 25, 0, 2, 0, 1
FLpanelEnd; end of the FLTK panel section

FLrun ; run FLTK
seed 0; random seed different each time
instr 1
idur random .5, 3; recalculate instrument duration
r3 = idur; reset instrument duration
ioct random 8, 11; random values between 8th and 1lth octave
idb random -18, -6; random values between -6 and -18 dB
aSig poscil ampdb (idb), cpsoct (ioct)
akEnv transeg 1, p3, -10, O
outs aSig*aEnv, aSig*akEnv
endin
instr 2
exitnow
endin
</CsInstruments>
<CsScore>
£ 0 36000
e
</CsScore>

</CsoundSynthesizer>

Note that in this example the duration of an instrument event is

FLbutton

recalculated when the instrument is initialised. This is done using the
statement "p3 = i...". This can be a useful technique if you want the
duration that an instrument plays for to be different each time it is
called. In this example duration is the result of a random function'.
The duration defined by the FLTK button will be overwritten by any

other calculation within the instrument itself at i-time.

CSOUNDQT BUTTON

246

LIVE EVENTS

In CsoundQt, a button can be created easily from the submenu in a

widget panel:

2] Widgets

Create Slider
Create Label

1 Create Display

| Create ScrollNumber
Create LineEdit |

i Create SpinBox

¢

Create Knob

= Create Checkbox pr—
Create Menu

ate instrul Create Controller

nstrument | Create Console

values be| (Create Graph th octave
‘om values | Create Scope 18 dB
psoct(ioct

Cut
ig*aEnv Copy

Paste

Select all widgets
Duplicate Selected
Delete Selected
Clear all widgets

Properties

Store Preset
Recall Preset
New Preset

In the Properties Dialog of the button widget, make sure you have
selected "event" as Type. Insert a Channel name, and at the bottom
type in the event you want to trigger - as you would if writing a line

in the score.

Button
X= 108 [2) v- 3 [
width = 100 [3] Height= 30 2]
| Channel name = button1
Tyoe [event 8] Value 1,000000 8]
Push me!
Text:
| Image: /
Event: |i101 |
Apply Cancel

In your Csound code, you need nothing more than the instrument you

want to trigger:

<CsoundSynthesizer>

<csoptions>
</Csoptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
seed 0; random seed different each time
instr 1
idur random .5, 3; calculate instrument duration
p3 = idur; reset instrument duration
ioct random 8, 11; random values between 8th and 1lth octave
idb random -18, -6; random values between -6 and -18 dB
asig oscils ampdb(idb), cpsect(ioct),
aEnv transeg 1, p3, -10, 0
outs aSig*aEnv, aSig*aEnv |© T

endin
</CsInstruments>
<Csscore>

0 36000
e
</csscore>

</Csoundsynthesizer>

247

LIVE EVENTS

For more information about CsoundQt, read the CsoundQt chapter in
the 'Frontends' section of this manual.

USING A REALTIME SCORE

COMMAND LINE WITH THE -L STDIN OPTION

If you use any .csd with the option "-L stdin" (and the -odac option
for realtime output), you can type any score line in realtime (sorry,
this does not work for Windows). For instance, save this .csd
anywhere and run it from the command line:

EXAMPLE 03F06_Commandline_rt_events.csd

<CsoundSynthesizer>
<CsOptions>

-L stdin -odac
</CsOptions>
<CsInstruments>

;Example by Joachim Heintz

sr = 44100
ksmps = 32
nchnls = 2
Odbfs = 1
seed 0; random seed different each time
instr 1
idur random .5, 3; calculate instrument duration
p3 = idur; reset instrument duration
ioct random 8, 11; random values between 8th and 1lth octave
idb random -18, -6; random values between -6 and -18 dB
aSig oscils ampdb (idb), cpsoct (ioct), O
akEnv transeg 1, p3, -10, O
outs aSig*aEnv, aSig*aEnv
endin
</CsInstruments>
<CsScore>
£ 0 36000
e
</CsScore>

</CsoundSynthesizer>

If you run it by typing and returning a command line like this ...

a0n00o Terminal — bash — 80x24
Last login: Wed Jul 28 06:48:03 on console
g226025047:~ jh$ csound /Joachim/Csound/FLOSS/Kapitel@3/events@s.csd I

... you should get a prompt at the end of the Csound messages:

248

LIVE EVENTS

®00 Terminal — csound — 80x24
orchname: /var/folders/mk/mkpuhjKkEj@EgPnNHAD3wW0++++T1/-Tmp-//csound-y4a0li.orc
scorename: Svar/folders/mk/mkpuhjKkEj@EgPnHAD3w0++++TI/-Tmp-//csound-1nb®ha.sco
rtaudio: PortAudio module enabled ... using callback interface
rtmidi: PortMIDI module enabled
orch compiler:

instr 1
Elapsed time at end of orchestra compile: real: ©.003s, (PU: 0.002s
sorting score ...

. done
Elapsed time at end of score sort: real: ©.120s, CPU: @.024s
Csound version 5.1Z2 {float samples) Jun 4 2010
AdBFS level = 1.0
Seeding from current time 500726401
orch now loaded
stdmode = @@OOOGO2 Linefd = 0
audio buffered in 1924 sample-frame blocks
PortAudio ¥19-devel (built Feb 12 2010 09:42:54)
PortAudio: available output devices:
@: Built-in Output
1: Gerd

PortAudio: selected output device 'Built-in Output”
writing 4096-byte blks of shorts to dac
SECTION 1:

If you now type the line "i 1 0 1" and press return, you should hear

that instrument 1 has been executed. After three times your messages

may look like this:

& 00 Terminal — csound — 80x24
sorting score ...
. done

Elapsed time at end of score sort: real: ©.120s, (PU: ©.024s
Csound version 5.12 {float samples) Jun 4 2010
0dBFS level = 1.0
Seeding from current time 500726491
orch now loaded
stdmode = @@OOOBOZ Linefd = &
audio buffered in 1024 sample-frame blocks
PortAudio v19-devel (built Feb 12 2010 ©9:42:54)
PortAudio: available output devices:

©@: Built-in Output

1: Gerd
PortAudio: selected output device "Built-in Output”
writing 4996-byte blks of shorts to dac
SECTION 1:
il1e1

rtevent: T 35.318 TT 35.318 M: ©.00000 0.00000
new alloc for instr 1:
ile1l

rtevent: T 39.776 TT 39.776 M: 0.20663 0.20663
ile1

rtevent: T 48.437 TT 48.437 M: ©.24186 ©.24186

CSOUNDQT'S LIVE EVENT SHEET

In general, this is the method that CsoundQt uses and it is made

249

LIVE EVENTS

available to the user in a flexible environment called the Live Event
Sheet. Have a look in the CsoundQt frontend to see more of the
possibilities of "firing" live instrument events using the Live Event

Sheet.?

Ttevent:

BY CONDITIONS

We have discussed first the classical method of triggering instrument
events from the score section of a .csd file, then we went on to look at
different methods of triggering real time events using MIDI, by using
widgets, and by using score lines inserted live. We will now look at
the Csound orchestra itself and to some methods by which an
instrument can internally trigger another instrument. The pattern of
triggering could be governed by conditionals, or by different kinds of
loops. As this "master"” instrument can itself be triggered by a
realtime event, you have unlimited options available for combining
the different methods.

Let's start with conditionals. If we have a realtime input, we may
want to define a threshold, and trigger an event

1. if we cross the threshold from below to above;
2. if we cross the threshold from above to below.

In Csound, this could be implemented using an orchestra of three
instruments. The first instrument is the master instrument. It receives
the input signal and investigates whether that signal is crossing the

250

LIVE EVENTS

threshold and if it does whether it is crossing from low to high or
from high to low. If it crosses the threshold from low ot high the
second instrument is triggered, if it crosses from high to low the third
instrument is triggered.

EXAMPLE 03F07_Event_by_condition.csd

<CsoundSynthesizer>
<CsOptions>

-iadc -odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs =1

seed 0; random seed different each time

instr 1; master instrument

ichoose = p4; 1 = real time audio, 2 = random amplitude movement

ithresh = -12; threshold in dB

kstat init 1; 1 = under the threshold, 2 = over the threshold

; ;CHOOSE INPUT SIGNAL

if ichoose == 1 then

ain inch 1

else

kdB randomi -18, -6, 1

ain pinkish ampdb (kdB)

endif

; sMEASURE AMPLITUDE AND TRIGGER SUBINSTRUMENTS IF THRESHOLD IS CROSSED

afoll follow ain, .l1; measure mean amplitude each 1/10 second

kfoll downsamp afoll

if kstat == 1 && dbamp(kfoll) > ithresh then; transition down->up
event "i", 2, 0, 1; call instr 2
printks "Amplitude = %.3f dB%n", 0, dbamp (kfoll)

kstat = 2; change status to "up"

elseif kstat == 2 && dbamp(kfoll) < ithresh then; transition up->down
event "i", 3, 0, 1; call instr 3
printks "Amplitude = %$.3f dB%n", 0, dbamp(kfoll)

kstat = 1; change status to "down"

endif

endin

instr 2; triggered if threshold has been crossed from down to up
asig poscil .2, 500
aenv transeg 1, p3, -10, O
outs asig*aenv, asig*aenv
endin

instr 3; triggered if threshold has been crossed from up to down
asig poscil .2, 400

aenv transeg 1, p3, -10, O
outs asig*aenv, asig*aenv
endin
</CsInstruments>
<CsScore>
i1 0 1000 2 ;change p4 to "1" for live input
e
</CsScore>

</CsoundSynthesizer>

USING I-RATE LOOPS FOR CALCULATING

251

LIVE EVENTS

A POOL OF INSTRUMENT EVENTS

You can perform a number of calculations at init-time which lead to a
list of instrument events. In this way you are producing a score, but
inside an instrument. The score events are then executed later.

Using this opportunity we can introduce the scoreline / scoreline_i
opcode. It is quite similar to the event / event_i opcode but has two
major benefits:

e You can write more than one scoreline by using "{{" at the
beginning and "} }" at the end.

e You can send a string to the subinstrument (which is not
possible with the event opcode).

Let's look at a simple example for executing score events from an
instrument using the scoreline opcode:

EXAMPLE 03F08_Generate_event_pool.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

Odbfs = 1

seed 0; random seed different each time
instr 1 ;master instrument with event pool
02 7.
i 222 8.04
i 242 8.
i 261 8.
endin

instr 2 ;plays the notes

asig pluck .2, cpspch(p4), cpspch(p4), 0, 1
aenv transeg 1, p3, 0, O
outs asig*aenv, asig*aenv

endin
</CsInstruments>
<CsScore>
i107
e
</CsScore>

</CsoundSynthesizer>

252

LIVE EVENTS

With good right, you might say: "OK, that's nice, but I can also write
scorelines in the score itself!" That's right, but the advantage with the
scoreline_i method is that you can render the score events in an
instrument, and then send them out to one or more instruments to
execute them. This can be done with the sprintf opcode, which
produces the string for scoreline in an i-time loop (see the chapter
about control structures).

EXAMPLE 03F09_Events_sprintf.csd

<CsoundSynthesizer>

<CsOptions>

-odac

</CsOptions>

<CsInstruments>

;Example by Joachim Heintz

sr = 44100

ksmps = 32

nchnls = 2

O0dbfs =1

giPch ftgen o, o, 4, -2, 7.09, 8.04, 8.03, 8.04
seed 0; random seed different each time

instr 1 ; master instrument with event pool

itimes = 7 ;number of events to produce

icnt = 0 ;counter

istart = 0

Slines = "

loop: ;start of the i-time loop

idur random 1, 2.9999 ;duration of each note:

idur = int (idur) j;either 1 or 2

itabndx random 0, 3.9999 ;index for the giPch table:

itabndx = int (itabndx) ;0-3

ipch table itabndx, giPch ;random pitch value from the table

Sline sprintf "i 2 %d %d %.2f\n", istart, idur, ipch ;new scoreline

Slines strcat Slines, Sline ;append to previous scorelines

istart = istart + idur ;recalculate start for next scoreline
loop_ 1t icnt, 1, itimes, loop ;end of the i-time loop
puts Slines, 1 ;print the scorelines
scoreline i Slines ;execute them

iend = istart + idur ;calculate the total duration

p3 = iend ;set p3 to the sum of all durations
print p3 ;print it

endin

instr 2 ;plays the notes

asig pluck .2, cpspch(p4), cpspch(p4), 0, 1
aenv transeg 1, p3, 0, O
outs asig*aenv, asig*aenv

endin
</CsInstruments>
<CsScore>
i1 01 ;p3 is automatically set to the total duration
e
</CsScore>

</CsoundSynthesizer>

In this example, seven events have been rendered in an i-time loop in
instrument 1. The result is stored in the string variable Slines. This

253

LIVE EVENTS

string is given at i-time to scoreline_i, which executes them then one
by one according to their starting times (p2), durations (p3) and other
parameters.

Instead of collecting all score lines in a single string, you can also
execute them inside the i-time loop. Also in this way all the single
score lines are added to Csound's event pool. The next example shows
an alternative version of the previous one by adding the instrument
events one by one in the i-time loop, either with event_i (instr 1) or
with scoreline_i (instr 2):

EXAMPLE 03F10_Events_collected.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

Odbfs =1

giPch ftgen o, o, 4, -2, 7.09, 8.04, 8.03, 8.04
seed 0; random seed different each time

instr 1; master instrument with event i

itimes = 7; number of events to produce

icnt = 0; counter

istart = 0

loop: ;start of the i-time loop

idur random 1, 2.9999; duration of each note:

idur = int (idur); either 1 or 2

itabndx random 0, 3.9999; index for the giPch table:

itabndx = int (itabndx); 0-3

ipch table itabndx, giPch; random pitch value from the table
event i "i", 3, istart, idur, ipch; new instrument event

istart = istart + idur; recalculate start for next scoreline
loop_ 1t icnt, 1, itimes, loop; end of the i-time loop

iend = istart + idur; calculate the total duration

p3 = iend; set p3 to the sum of all durations
print p3; print it

endin

instr 2; master instrument with scoreline i

itimes = 7; number of events to produce

icnt = 0; counter

istart = 0

loop: ;start of the i-time loop

idur random 1, 2.9999; duration of each note:

idur = int (idur); either 1 or 2

itabndx random 0, 3.9999; index for the giPch table:

itabndx = int (itabndx); 0-3

ipch table itabndx, giPch; random pitch value from the table

Sline sprintf "i 3 %d %d %$.2f", istart, idur, ipch; new scoreline
scoreline i Sline; execute it
puts Sline, 1; print it

istart = istart + idur; recalculate start for next scoreline

254

LIVE EVENTS

loop 1t icnt, 1, itimes, loop; end of the i-time loop
iend = istart + idur; calculate the total duration
p3 = iend; set p3 to the sum of all durations
print p3; print it
endin

instr 3; plays the notes

asig pluck .2, cpspch(p4), cpspch(p4), 0, 1
aenv transeg 1, p3, 0, O
outs asig*aenv, asig*aenv
endin

</CsInstruments>
<CsScore>

il101

i 214 1

e

</CsScore>
</CsoundSynthesizer>

USING TIME LOOPS

As discussed above in the chapter about control structures, a time
loop can be built in Csound either with the timout opcode or with the
metro opcode. There were also simple examples for triggering
instrument events using both methods. Here, a more complex
example is given: A master instrument performs a time loop (choose
either instr 1 for the timout method or instr 2 for the metro method)
and triggers once in a loop a subinstrument. The subinstrument itself
(instr 10) performs an i-time loop and triggers several instances of a
sub-subinstrument (instr 100). Each instance performs a partial with
an independent envelope for a bell-like additive synthesis.

EXAMPLE 03F11_Events_time_loop.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1
seed 0

instr 1; time loop with timout. events are triggered by event i (i-rate)

loop:

idurloop random 1, 4; duration of each loop
timout 0, idurloop, play
reinit loop

play:

idurins random 1, 5; duration of the triggered instrument
event i "i", 10, 0, idurins; triggers instrument 10

endin

255

LIVE EVENTS

instr 2; time loop with metro. events are triggered by event (k-rate)

kfreq init 1; give a start value for the trigger frequency
kTrig metro kfreq

if kTrig == 1 then ;if trigger impulse:
kdur random 1, 5; random duration for instr 10

event "i", 10, 0, kdur; call instr 10

kfreq random .25, 1; set new value for trigger frequency
endif

endin

instr 10; triggers 8-13 partials

inumparts random 8, 14

inumparts = int (inumparts); 8-13 as integer

ibasoct random 5, 10; base pitch in octave values

ibasfreq = cpsoct (ibasoct)

ipan random .2, .8; random panning between left (0) and right (1)

icnt = 0; counter

loop:
event i "i", 100, 0, p3, ibasfreq, icnt+l, inumparts, ipan
loop_ 1t icnt, 1, inumparts, loop

endin

instr 100; plays one partial

ibasfreq = p4; base frequency of sound mixture
ipartnum = p5; which partial is this (1 - N)
inumparts = p6; total number of partials
ipan = p7; panning
ifreqgen = ibasfreq * ipartnum; general frequency of this partial
ifregdev random -10, 10; frequency deviation between -10% and +10%
; —-—- real frequency regarding deviation
ifreq = ifreqgen + (ifregdev*ifreqgen) /100
ixtratim random 0, p3; calculate additional time for this partial
p3 = p3 + ixtratim; new duration of this partial
imaxamp = 1/inumparts; maximum amplitude
idbdev random -6, 0; random deviation in dB for this partial
iamp = imaxamp * ampdb (idbdev-ipartnum); higher partials are softer
ipandev random -.1, .1; panning deviation
ipan = ipan + ipandev
akEnv transeg 0, .005, 0, iamp, p3-.005, -10, O
aSine poscil aknv, ifreq
alL, aR pan2 aSine, ipan
outs aL, aR
prints "ibasfreq = %d, ipartial = %d, ifreq = %d%n",\

ibasfreq, ipartnum, ifreq
endin

</CsInstruments>

<CsScore>

i 1 0 300 ;try this, or the next line (or both)
;12 0 300

</CsScore>

</CsoundSynthesizer>

WHICH OPCODE SHOULD I USE?

Csound users are often confused about the variety of opcodes
available to trigger instrument events. Should I use event, scoreline,
schedule or schedkwhen? Should I use event or event_i?

Let us start with the latter, which actually leads to the general

question about "i-rate" and "k-rate" opcodes.? In short: Using event_i
(the i-rate version) will only trigger an event once, when the

256

LIVE EVENTS

instrument in which this opcode works is initiated. Using event (the
k-rate version) will trigger an event potentially again and again, as
long as the instrument runs, in each control cycle. This is a very
simple example:

EXAMPLE 03F12 _event_i_vs_event.csd

<CsoundSynthesizer>
<CsOptions>

-nm0

</CsOptions>
<CsInstruments>
sr=44100

ksmps = 32

;set counters for the instances of Called i and Called k
giInstCi init 1
giInstCk init 1

instr Call i

;call another instrument at i-rate
event i "i", "Called i", 0, 1
endin

instr Call k

;call another instrument at k-rate
event "i", "Called k", 0, 1

endin

instr Called i

;report that instrument starts and which instance

prints "Instance #%d of Called i is starting!\n", giInstCi
;increment number of instance for next instance

giInstCi += 1

endin

instr Called k

;report that instrument starts and which instance

prints " Instance #%d of Called k is starting!\n", giInstCk
;increment number of instance for next instance

giInstCk += 1

endin

</CsInstruments>

<CsScore>

;run "Call i" for one second

i "Call i™ 0 1

;run "Call_ k" for 1/100 seconds
i "Call k" 0 0.01

</CsScore>

</CsoundSynthesizer>

;example by joachim heintz

Although instrument "Call_i" runs for one second, the call to
instrument "Called_i" is only performed once, because it is done with
event_i: at initialization only. But instrument "Call_k" calls one

instance of "Called_k" in each control cycle; so for the duration of
0.01 seconds of running instrument "Call_k", fourteen instances of

257

LIVE EVENTS

instrument "Called_k" are being started.* So this is the output:

Instance #1 of Called i is starting!
Instance #1 of Called k is starting!
Instance #2 of Called k is starting!
Instance #3 of Called k is starting!
Instance #4 of Called k is starting!
Instance #5 of Called k is starting!
Instance #6 of Called k is starting!
Instance #7 of Called k is starting!
Instance #8 of Called k is starting!
Instance #9 of Called k is starting!
Instance #10 of Called k is starting!
Instance #11 of Called k is starting!
Instance #12 of Called k is starting!

Instance #13 of Called k is starting!

Instance #14 of Called k is starting!

So the first (and probably most important) decision in asking "which
opcode should I use", is the answer to the question: "Do I need an i-

258

LIVE EVENTS

rate or a k-rate opcode?"

I-RATE VERSIONS: SCHEDULE, EVENT_],
SCORELINE_I

If you need an i-rate opcode to trigger an instrument event, schedule
is the most basic choice. You use it actually exactly the same as
writing any score event; just separting the parameter fields by
commas rather by spaces:

schedule iInstrNum (or "InstrName"), iStart, iDur [, ip4] [, ip5] [...]
event_i is very similar:

event_i "i", iInstrNum (or "InstrName"), iStart, iDur [, ip4] [, ip5] [...]

The only difference between schedule and event_i is this: schedule
can only trigger instruments, whereas event_i can also trigger "f"
events (= build function tables).

Both, schedule and event_i have a restriction: they are not able to
send strings in the parameter fields p4, p5, ... So, if you execute this
code ...

schedule "bla", 0, 1, "blu"
... you will get this error message in the console:

ERROR: Unable to find opcode entry for 'schedule' with matching argument types:

Found: (null) schedule SccS

scoreline_i is designed to make this possible. It takes one or more
lines of score statements which follow the same conventions as if

written in the score section itself.? If you enclose the line(s) by {{ and
}}, you can include as many strings in it as you wish:

scoreline i {{
i "bla" 0 1 "blu" "sound"

259

LIVE EVENTS

i "bla" 1 1 "brown" "earth"

13

K-RATE VERSIONS: EVENT, SCORELINE,
SCHEDKWHEN

If you need a k-rate opcode to trigger an instrument event, event is
the basic choice. Its syntax is very similar to event_i, but as described
above, it works at k-rate and you can also change all its arguments at
k-rate:

event "i", kInstrNum (or "InstrName"), kStart, kDur [, kp4] [, kp5] [...]

Usually, you will not want to trigger another instrument each control
cycle, but based on certain conditions. A very common case is a
"ticking" periodic signal, whichs ticks are being used as trigger
impulses. The typical code snippel using a metro and the event
opcode would be:

kTrigger metro 1 ;"ticks" once a second
if kTrigger == 1 then ;if it ticks
event "i", "my instr", 0, 1 ;call the instrument

endif

In other words: This code would only use one control-cycle per
second to call my_instr, and would do nothing in the other control
cycles. The schedkwhen opcode simplifies such typical use cases, and
adds some other useful arguments. This is the syntax:

schedkwhen kTrigger, kMinTim, kMaxNum, kInsrNum (or "InstrName"), kStart, kDur [,
kp4] [, kp5] [...]

The kMinTim parameter specifies the time which has to be spent
between two subsequent calls of the subinstrument. This is often quite
useful as you may want to state: "Do not call the next instance of the
subinstrument unless 0.1 seconds have been passed." If you set this
parameter to zero, there will be no time limit for calling the
subinstrument.

The kMaxNum parameter specifies the maximum number of
instances which run simultaneously. Say, kMaxNum = 2 and there are

260

LIVE EVENTS

indeed two instances of the subinstrument running, no other instance
will be initiated. if you set this parameter to zero, there will be no
limit for calling new instances.

So, with schedkwhen, we can write the above code snippet in two
lines instead of four:

kTrigger metro 1 ;"ticks" once a second
schedkwhen kTrigger, 0, O, "my_instr", 0, 1

Only, you cannot pass strings as p-fields via schedkwhen (and event).
So, very much similar as described above for i-rate opcodes, scoreline
fills this gap. Usually we will use it with a condition, as we did for
the event opcode:

kTrigger metro 1 ;"ticks" once a second
if kTrigger == 1 then
;if it ticks, call two instruments and pass strings as p-fields
scoreline {{
i "bla" 0 1 "blu" "sound"
i "bla" 1 1 "brown" "earth"

H}

endif

RECOMPILATION

As it has been mentioned at the start of this chapter, since Csound6
you can re-compile any code in an already running Csound instance.
Let us first see some simple examples for the general use, and then a
more practical approach in CsoundQt.

COMPILEORC / COMPILESTR

The opcode compileorc refers to a definition of instruments which
has been saved as an .orc ("orchestra") file. To see how it works, save
this text in a simple text (ASCII) format as "to_recompile.orc":

instr 1

iAmp = .2

iFreq = 465

aSig oscils iAmp, iFreq, O
outs aSig, aSig

endin

Then save this csd in the same directory:

261

LIVE EVENTS

EXAMPLE 03F13_compileorc.csd

<CsoundSynthesizer>
<CsOptions>

-o dac -d -L stdin -Ma
</CsOptions>
<CsInstruments>

sr = 44100

nchnls = 2

ksmps 32

Odbfs =1

massign 0, 9999

instr 9999

ires compileorc "to_recompile.orc"
print ires ; 0 if compiled successfully
event i "i", 1, 0, 3 ;send event

endin

</CsInstruments>
<CsScore>

i 9999 0 1
</CsScore>
</CsoundSynthesizer>

If you run this csd in the terminal, you should hear a three seconds
beep, and the output should be like this:

SECTION 1:

new alloc for instr 9999:

instr 9999: ires = 0.000

new alloc for instr 1:

B 0.000 .. 1.000 T 1.000 TT 1.000 M: 0.20000 0.20000
B 1.000 .. 3.000 T 3.000 TT 3.000 M: 0.20000 0.20000
Score finished in csoundPerform() .

inactive allocs returned to freespace

end of score. overall amps: 0.20000 0.20000

overall samples out of range: 0 0

262

LIVE EVENTS

0 errors in performance

Having understood this, it is easy to do the next step. Remove (or
comment out) the score line "i 9999 0 1" so that the score is empty. If
you start the csd now, Csound will run indefinitely. Now call instr
9999 by typing "i 9999 0 1" in the terminal window (if the option -L
stdin works for your setup), or by pressing any MIDI key (if you have
connected a keyboard). You should hear the same beep as before. But
as the recompile.csd keeps running, you can change now the
to_recompile.orc instrument. Try, for instance, another value for
kFreq. Whenever this is done (do not forget to save the file) and you
call again instr 9999 in recompile.csd, the new version of this
instrument is compiled and then called immediately.

The other possibility to recompile code by using an opcode is
compilestr. It will compile any instrument definition which is
contained in a string. As this will be a string with several lines, you
will usually use the '{{' delimiter for the start and '} }' for the end of
the string. This is a basic example:

EXAMPLE 03F14_compilestr.csd

<CsoundSynthesizer>
<CsOptions>

-o dac -d
</CsOptions>
<CsInstruments>

sr = 44100

nchnls = 1

ksmps 32

O0dbfs 1

instr 1

;will fail because of wrong code
ires compilestr {{
instr 2

al oscilb p4, p5, 0

out al

endin

+}

print ires ; returns -1 because not successfull

;will compile ...
ires compilestr {{

263

LIVE EVENTS

instr 2

al oscils p4, p5, O

out al

endin

}}

print ires ; ... and returns 0

;call the new instrument
; (note that the overall performance is extended)
scoreline i "1 2 0 3 .2 415"
endin
</CsInstruments>
<CsScore>
il 0 1
</CsScore>
</CsoundSynthesizer>

As you see, instrument 2 is defined inside instrument 1, and compiled
via compilestr. in case you can change this string in real-time (for
instance in receiving it via OSC), you can add any new definition of

instruments on the fly. But much more elegant is to use the related
method of the Csound API, as CsoundQt does.

RE-COMPILATION IN CSOUNDQT

(The following description is only valid if you have CsoundQt with
PythonQt support. If so, your CsoundQt application should be called
CsoundQt-d-py-cs6 or similar. If the "-py" is missing, you will
probably not have PythonQt support.)

To see how easy it is to re-compile code of a running Csound
instance, load this csd in CsoundQt:

EXAMPLE 03F15_Recompile_in_CsoundQt.csd

<CsoundSynthesizer>
<CsInstruments>

sr = 44100

nchnls = 1

ksmps 32

Odbfs 1

instr 1

al poscil .2, 500
out al

endin

</CsInstruments>
<CsScore>

r 1000

i101

264

LIVE EVENTS

</CsScore>

</CsoundSynthesizer>

The r-statement repeats the call to instr 1 for 1000 times. Now change
the frequency of 500 in instr 1 to say 800. You will hear no change,
because this has not been compiled yet. But when you now select the
instrument definition (including the instr ... endin) and then choose
Edit -> Evaluate selection, you will hear that in the next call of
instrument 1 the frequency has changed. (Instead of selecting code
and evaluation the selection, you can also place the cursor inside an
instrument and then choose Edit -> Evaluate section.)

You can also insert new instrument definitions, and then call it with
CsoundQt's Live event sheet. You even need not save it - instead you
can save several results of your live coding without stopping Csound.
Have fun ...

LINKS AND RELATED OPCODES

LINKS

A great collection of interactive examples with FLTK widgets by Iain
McCurdy can be found here. See particularily the "Realtime Score
Generation" section. Recently, the collection has been ported to
QuteCsound by René Jopi, and is part of QuteCsound's example
menu.

An extended example for calculating score events at i-time can be
found in the Re-Generation of Stockhausen's "Studie II" by Joachim
Heintz (also included in the QuteCsound Examples menu).

RELATED OPCODES

265

LIVE EVENTS

event_i / event: Generate an instrument event at i-time (event_i) or at
k-time (event). Easy to use, but you cannot send a string to the
subinstrument.

scoreline_i / scoreline: Generate an instrument at i-time (scoreline_i)
or at k-time (scoreline). Like event_i/event, but you can send to more
than one instrument but unlike event_i/event you can send strings. On
the other hand, you must usually preformat your scoreline-string
using sprintf.

sprintf / sprintfk: Generate a formatted string at i-time (sprintf) or k-
time (sprintfk), and store it as a string-variable.

-+max_str_len=10000: Option in the "CsOptions" tag of a .csd file
which extend the maximum string length to 9999 characters.

massign: Assigns the incoming MIDI events to a particular
instrument. It is also possible to prevent any assigment by this
opcode.

cpsmidi / ampmidi: Returns the frequency / velocity of a pressed
MIDI key.

release: Returns "1" if the last k-cycle of an instrument has begun.

xtratim: Adds an additional time to the duration (p3) of an
instrument.

turnoff / turnoff2: Turns an instrument off; either by the instrument
itself (turnoff), or from another instrument and with several options
(turnoff2).

-p3 / -pl: A negative duration (p3) turns an instrument on
"indefinitely"; a negative instrument number (p1) turns this
instrument off. See the examples at the beginning of this chapter.

-L stdin: Option in the "CsOptions" tag of a .csd file which lets you
type in realtime score events.

timout: Allows you to perform time loops at i-time with
téinitalization passes.

USER DEFINED OPCODES

USER DEFINED OPCODES

Opcodes are the core units of everything that Csound does. They are
like little machines that do a job, and programming is akin to
connecting these little machines to perform a larger job. An opcode
usually has something which goes into it: the inputs or arguments,
and usually it has something which comes out of it: the output which
is stored in one or more variables. Opcodes are written in the
programming language C (that is where the name "Csound" comes
from). If you want to create a new opcode in Csound, you must write
it in C. How to do this is described in the Extending Csound chapter
of this manual, and is also described in the relevant chapter of the
Canonical Csound Reference Manual.

There is, however, a way of writing your own opcodes in the Csound
Language itself. The opcodes which are written in this way, are called
User Defined Opcodes or "UDQ"s. A UDO behaves in the same way
as a standard opcode: it has input arguments, and usually one or more
output variables. They run at i-time or at k-time. You use them as part
of the Csound Language after you have defined and loaded them.

User Defined Opcodes have many valuable properties. They make
your instrument code clearer because they allow you to create
abstractions of blocks of code. Once a UDO has been defined it can
be recalled and repeated many times within an orchestra, each
repetition requiring only a single line of code. UDOs allow you to
build up your own library of functions you need and return to
frequently in your work. In this way, you build your own Csound
dialect within the Csound Language. UDOs also represent a
convenient format with which to share your work in Csound with
other users.

This chapter explains, initially with a very basic example, how you
can build your own UDOs, and what options they offer. Following
this, the practice of loading UDOs in your .csd file is shown, followed

267

USER DEFINED OPCODES

by some tips in regard to some unique capabilities of UDOs. Before
the "Links And Related Opcodes" section at the end, some examples
are shown for different User Defined Opcode definitions and
applications.

If you want to write a User Defined Opcode in Csound6 which uses
arrays, have a look at the end of chapter O3E to see their usage and
naming conventions.

TRANSFORMING CSOUND INSTRUMENT
CODE TO A USER DEFINED OPCODE

Writing a User Defined Opcode is actually very easy and
straightforward. It mainly means to extract a portion of usual Csound
instrument code, and put it in the frame of a UDO. Let's start with the
instrument code:

EXAMPLE 03G01_Pre_UDO.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz

sr = 44100
ksmps = 32
nchnls = 2
Odbfs = 1
giSine ftgen 0o, 0, 2~10, 10, 1
seed 0

instr 1
aDel init 0; initialize delay signal
iFb = .7; feedback multiplier
asnd rand .2; white noise
kdB randomi -18, -6, .4; random movement between -18 and -6
asnd = asSnd * ampdb (kdB); applied as dB to noise
kFiltFq randomi 100, 1000, 1; random movement between 100 and 1000
aFilt reson aSnd, kFiltFqg, kFiltFq/5; applied as filter center frequency
arFilt balance aFilt, aSnd; bring aFilt to the volume of aSnd
aDelTm randomi .1, .8, .2; random movement between .1 and .8 as delay time
aDel vdelayx aFilt + iFb*aDel, aDelTm, 1, 128; variable delay
kdbFilt randomi -12, 0, 1; two random movements between -12 and 0 (dB) ...
kdbDel randomi -12, 0, 1; ... for the filtered and the delayed signal
alut = aFilt*ampdb (kdbFilt) + aDel*ampdb (kdbDel); mix it

outs aOut, alOut
endin

268

USER DEFINED OPCODES

</CsInstruments>
<CsScore>

i10 60

</CsScore>
</CsoundSynthesizer>

This is a filtered noise, and its delay, which is fed back again into the
delay line at a certain ratio iFb. The filter is moving as kFiltFq
randomly between 100 and 1000 Hz. The volume of the filtered noise
is moving as kdB randomly between -18 dB and -6 dB. The delay
time moves between 0.1 and 0.8 seconds, and then both signals are
mixed together.

BASIC EXAMPLE

If this signal processing unit is to be transformed into a User Defined
Opcode, the first question is about the extend of the code that will be
encapsulated: where the UDO code will begin and end? The first
solution could be a radical, and possibly bad, approach: to transform
the whole instrument into a UDO.

EXAMPLE 03G02_All_to_UDO.csd

<CsoundSynthesizer>
<CsOptions>

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

Odbfs =1

o
o
N

>
e
o
[
o
-

giSine ftgen '
seed 0

opcode FiltFb, 0, 0

aDel init 0; initialize delay signal
iFb = .7; feedback multiplier
asSnd rand .2; white noise
kdB randomi -18, -6, .4; random movement between -18 and -6
asSnd = asSnd * ampdb (kdB); applied as dB to noise
kFiltFq randomi 100, 1000, 1; random movement between 100 and 1000
aFilt reson asSnd, kFiltFqg, kFiltFqg/5; applied as filter center frequency
aFilt balance aFilt, aSnd; bring aFilt to the volume of aSnd
aDelTm randomi .1, .8, .2; random movement between .1 and .8 as delay time
abDel vdelayx aFilt + iFb*aDel, aDelTm, 1, 128; variable delay
kdbFilt randomi -12, 0, 1; two random movements between -12 and 0 (dB) ...
kdbDel randomi -12, 0, 1; ... for the filtered and the delayed signal
alOut = aFilt*ampdb (kdbFilt) + aDel*ampdb (kdbDel); mix it
outs aOut, alOut

endop

instr 1

269

USER DEFINED OPCODES

FiltFb
endin

</CsInstruments>

<CsScore>

i1 0 60

</CsScore>

</CsoundSynthesizer>

Before we continue the discussion about the quality of this
transormation, we should have a look at the syntax first. The general

syntax for a User Defined Opcode is:

opcode name, outtypes, intypes
endop
Here, the name of the UDO is FiltFb. You are free to use any name,

but it is suggested that you begin the name with a capital letter. By
doing this, you avoid duplicating the name of most of the pre-existing

opcodes' which normally start with a lower case letter. As we have
no input arguments and no output arguments for this first version of
FiltFb, both outtypes and intypes are set to zero. Similar to the instr
... endin block of a normal instrument definition, for a UDO the
opcode ... endop keywords begin and end the UDO definition block.
In the instrument, the UDO is called like a normal opcode by using its
name, and in the same line the input arguments are listed on the right
and the output arguments on the left. In the previous a example,
'FiltFb' has no input and output arguments so it is called by just using
its name:

instr 1
FiltFb
endin

Now - why is this UDO more or less useless? It achieves nothing,
when compared to the original non UDO version, and in fact looses
some of the advantages of the instrument defined version. Firstly, it is
not advisable to include this line in the UDO:

outs aOut, alOut

This statement writes the audio signal aOut from inside the UDO to

270

USER DEFINED OPCODES

the output device. Imagine you want to change the output channels,
or you want to add any signal modifier after the opcode. This would
be impossible with this statement. So instead of including the 'outs'

opcode, we give the FiltFb UDO an audio output:

xout alOut

The xout statement of a UDO definition works like the "outlets" in
PD or Max, sending the result(s) of an opcode back to the caller
instrument.

Now let us consider the UDQO's input arguments, choose which
processes should be carried out within the FiltFb unit, and what
aspects would offer greater flexibility if controllable from outside the
UDQO. First, the aSnd parameter should not be restricted to a white
noise with amplitude 0.2, but should be an input (like a "signal inlet"
in PD/Max). This is implemented using the line:

asnd xin

Both the output and the input type must be declared in the first line of
the UDO definition, whether they are i-, k- or a-variables. So instead
of "opcode FiltFb, 0, 0" the statement has changed now to "opcode
FiltFb, a, a", because we have both input and output as a-variable.

The UDO is now much more flexible and logical: it takes any audio
input, it performs the filtered delay and feedback processing, and
returns the result as another audio signal. In the next example,
instrument 1 does exactly the same as before. Instrument 2 has live
input instead.

EXAMPLE 03G03_UDO_more_flex.csd

<CsoundSynthesizer>
<CsOptions>

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

Odbfs =1

271

USER DEFINED OPCODES

giSine ftgen o, 0, 2~10, 10, 1
seed 0

opcode FiltFb, a, a

asnd xin
aDel init 0; initialize delay signal
iFb = .7; feedback multiplier
kdB randomi -18, -6, .4; random movement between -18 and -6
aSnd = asSnd * ampdb (kdB); applied as dB to noise
kFiltFq randomi 100, 1000, 1; random movement between 100 and 1000
aFilt reson aSnd, kFiltFq, kFiltFqg/5; applied as filter center frequency
aFilt balance aFilt, aSnd; bring aFilt to the volume of aSnd
aDelTm randomi .1, .8, .2; random movement between .1 and .8 as delay time
aDel vdelayx aFilt + iFb*aDel, aDelTm, 1, 128; variable delay
kdbFilt randomi -12, 0, 1; two random movements between -12 and 0 (dB) ...
kdbDel randomi -12, 0, 1; ... for the filtered and the delayed signal
alut = aFilt*ampdb (kdbFilt) + aDel*ampdb (kdbDel); mix it
xout alut
endop

instr 1; white noise input

asnd rand .2
alut FiltFb asSnd
outs aOut, alOut
endin

instr 2; live audio input

asnd inch 1; input from channel 1
alut FiltFb asSnd
outs aOut, alOut

endin
</CsInstruments>
<CsScore>
i1 0 60 ;change to i 2 for live audio input
</CsScore>

</CsoundSynthesizer>

IS THERE AN OPTIMAL DESIGN FOR A USER
DEFINED OPCODE?

Is this now the optimal version of the FiltFb User Defined Opcode?
Obviously there are other parts of the opcode definiton which could
be controllable from outside: the feedback multiplier iFb, the random
movement of the input signal kdB, the random movement of the filter
frequency kFiltFq, and the random movements of the output mix
kdbSnd and kdbDel. Is it better to put them outside of the opcode
definition, or is it better to leave them inside?

There is no general answer. It depends on the degree of abstraction
you desire or you prefer to relinquish. If you are working on a piece
for which all of the parameters settings are already defined as
required in the UDO, then control from the caller instrument may not
be necessary . The advantage of minimizing the number of input and

272

USER DEFINED OPCODES

output arguments is the simplification in using the UDO. The more
flexibility you require from your UDO however, the greater the
number of input arguments that will be required. Providing more
control is better for a later reusability, but may be unnecessarily
complicated.

Perhaps it is the best solution to have one abstract definition which
performs one task, and to create a derivative - also as UDO - fine
tuned for the particular project you are working on. The final
example demonstrates the definition of a general and more abstract
UDO FiltFb, and its various applications: instrument 1 defines the
specifications in the instrument itself; instrument 2 uses a second
UDO Opus123_FiltFb for this purpose; instrument 3 sets the general
FiltFb in a new context of two varying delay lines with a buzz sound
as input signal.

EXAMPLE 03G04_UDO_calls_UDO.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen o, 0, 2710, 10, 1
seed 0

opcode FiltFb, aa, akkkia
; —— DELAY AND FEEDBACK OF A BAND FILTERED INPUT SIGNAL --
;input: aSnd = input sound
; kFb = feedback multiplier (0-1)
; kFiltFqg: center frequency for the reson band filter (Hz)
; kQ = band width of reson filter as kFiltFqg/kQ
; iMaxDel = maximum delay time in seconds
; aDelTm = delay time
;output: aFilt = filtered and balanced aSnd
; aDel = delay and feedback of aFilt

aSnd, kFb, kFiltFqg, kQ, iMaxDel, aDelTm xin

aDel init 0
aFilt reson asSnd, kFiltFq, kFiltFq/kQ
aFilt balance aFilt, aSnd
abDel vdelayx aFilt + kFb*aDel, aDelTm, iMaxDel, 128; variable delay
xout aFilt, abDel
endop

opcode Opusl23 FiltFb, a, a
;7the udo FiltFb here in my opus 123 :)
;input = aSnd
;output = filtered and delayed aSnd in different mixtures

273

USER DEFINED OPCODES

asSnd xin
kdB randomi -18, -6, .4; random movement between -18 and -6
asSnd = asnd * ampdb (kdB); applied as dB to noise
kFiltFqgq randomi 100, 1000, 1; random movement between 100 and 1000
iQ = 5
iFb = .7; feedback multiplier
aDelTm randomi .1, .8, .2; random movement between .1 and .8 as delay time
aFilt, aDel FiltFb asSnd, iFb, kFiltFg, iQ, 1, aDelTm
kdbFilt randomi -12, 0, 1; two random movements between -12 and 0 (dB)
kdbDel randomi -12, 0, 1; for the noise and the delay signal
alut = aFilt*ampdb (kdbFilt) + aDel*ampdb (kdbDel); mix it
xout alut
endop
instr 1; well known context as instrument
asnd rand .2
kdB randomi -18, -6, .4; random movement between -18 and -6
asSnd = asSnd * ampdb (kdB); applied as dB to noise
kFiltFq randomi 100, 1000, 1; random movement between 100 and 1000
iQ = 5
iFb = .7; feedback multiplier
aDelTm randomi .1, .8, .2; random movement between .1 and .8 as delay time
aFilt, aDel FiltFb asnd, iFb, kFiltFg, iQ, 1, aDelTm
kdbFilt randomi -12, 0, 1; two random movements between -12 and 0 (dB)
kdbDel randomi -12, 0, 1; for the noise and the delay signal
alut = aFilt*ampdb (kdbFilt) + aDel*ampdb (kdbDel); mix it
alOut linen aOut, .1, p3, 3
outs aOut, alOut
endin
instr 2; well known context UDO which embeds another UDO
asnd rand .2
alOut Opusl23_FiltFb aSnd
aout linen aOut, .1, p3, 3
outs aOut, alOut
endin
instr 3; other context: two delay lines with buzz
kFreq randomh 200, 400, .08; frequency for buzzer
asSnd buzz .2, kFreq, 100, giSine; buzzer as aSnd
kFiltFq randomi 100, 1000, .2; center frequency
aDelTml randomi .1, .8, .2; time for first delay line
aDelTm2 randomi .1, .8, .2; time for second delay line
kFbl randomi .8, 1, .1; feedback for first delay line
kFb2 randomi .8, 1, .1; feedback for second delay line
a0, aDell FiltFb asnd, kFbl, kFiltFqgq, 1, 1, aDelTml; delay signal 1
a0, abDel2 FiltFb asSnd, kFb2, kFiltFqgq, 1, 1, aDelTm2; delay signal 2
abDell linen aDell, .1, p3, 3
aDel2 linen abel2, .1, p3, 3
outs aDell, aDel2
endin
</CsInstruments>
<CsScore>
i1 0 30
i 2 31 30
i 3 62 120
</CsScore>

</CsoundSynthesizer>

The good thing about the different possibilities of writing a more
specified UDO, or a more generalized: You needn't decide this at the
beginning of your work. Just start with any formulation you find
useful in a certain situation. If you continue and see that you should
have some more parameters accessible, it should be easy to rewrite
the UDQO. Just be careful not to confuse the different versions you

274

USER DEFINED OPCODES

create. Use names like Faulty1, Faulty2 etc. instead of overwriting
Faulty. Making use of extensive commenting when you initially
create the UDO will make it easier to adapt the UDO at a later time.
What are the inputs (including the measurement units they use such
as Hertz or seconds)? What are the outputs? - How you do this, is up
to you and depends on your style and your preference.

HOW TO USE THE USER DEFINED OPCODE
FACILITY IN PRACTICE

In this section, we will address the main points of using UDOs: what
you must bear in mind when loading them, what special features they
offer, what restrictions you must be aware of and how you can build
your own language with them.

LOADING USER DEFINED OPCODES IN THE
ORCHESTRA HEADER

As can be seen from the examples above, User Defined Opcodes must
be defined in the orchestra header (which is sometimes called
"instrument 0").

You can load as many User Defined Opcodes into a Csound orchestra
as you wish. As long as they do not depend on each other, their order
is arbitrarily. If UDO Opus123_FiltFb uses the UDO FiltFb for its
definition (see the example above), you must first load FiltFb, and
then Opus123_FiltFb. If not, you will get an error like this:

orch compiler:
opcode Opusl23 FiltFb a a
error: no legal opcode, line 25:
arilt, aDel FiltFb asSnd, iFb, kFiltFqg, iQ, 1, aDelTm

LOADING BY AN #INCLUDE FILE

275

USER DEFINED OPCODES

Definitions of User Defined Opcodes can also be loaded into a .csd
file by an "#include" statement. What you must do is the following:

1. Save your opcode definitions in a plain text file, for instance
"MyOpcodes.txt".

2. If this file is in the same directory as your .csd file, you can just
call it by the statement:

#include "MyOpcodes.txt"

3. If "MyOpcodes.txt" is in a different directory, you must call it
by the full path name, for instance:

#include "/Users/me/Documents/Csound/UDO/MyOpcodes.txt"

As always, make sure that the "#include" statement is the last one in
the orchestra header, and that the logical order is accepted if one
opcode depends on another.

If you work with User Defined Opcodes a lot, and build up a
collection of them, the #include feature allows you easily import
several or all of them to your .csd file.

THE SETKSMPS FEATURE

The ksmps assignment in the orchestra header cannot be changed
during the performance of a .csd file. But in a User Defined Opcode
you have the unique possibility of changing this value by a local
assignment. If you use a setksmps statement in your UDO, you can
have a locally smaller value for the number of samples per control
cycle in the UDO. In the following example, the print statement in
the UDO prints ten times compared to one time in the instrument,
because ksmps in the UDO is 10 times smaller:

EXAMPLE 03G06_UDO_setksmps.csd

<CsoundSynthesizer>

276

USER DEFINED OPCODES

<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 44100 ;very high because of printing
opcode Faster, 0, O
setksmps 4410 ;local ksmps is 1/10 of global ksmps
printks "UDO print!%n", O
endop
instr 1
printks "Instr print!%n", 0 ;print each control period (once per second)
Faster ;print 10 times per second because of local ksmps
endin
</CsInstruments>
<CsScore>
i102
</CsScore>
</CsoundSynthesizer>

DEFAULT ARGUMENTS

For i-time arguments, you can use a simple feature to set default
values:

e "0" (instead of "i") defaults to 0
"p" (instead of "i") defaults to 1
e "j" (instead of "i") defaults to -1

For k-time arguments, you can use since Csound 5.18 these default
values:

e "O" (instead of "k") defaults to 0
e "P" (instead of "k") defaults to 1
e "V" (instead of "k") defaults to 0.5

So you can omit these arguments - in this case the default values will
be used. If you give an input argument instead, the default value will
be overwritten:

EXAMPLE 03G07_UDO_default_args.csd

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz

opcode Defaults, iii, opj

277

USER DEFINED OPCODES

ia, ib, ic xin
xout ia, ib, ic

endop
instr 1
ia, ib, ic Defaults
print ia, ib, ic
ia, ib, ic Defaults 10
print ia, 1ib, ic
ia, ib, ic Defaults 10, 100
print ia, 1ib, ic
ia, ib, ic Defaults 10, 100, 1000
print ia, ib, ic
endin
</CsInstruments>
<CsScore>
i100
</CsScore>

</CsoundSynthesizer>

RECURSIVE USER DEFINED OPCODES

Recursion means that a function can call itself. This is a feature
which can be useful in many situations. Also User Defined Opcodes
can be recursive. You can do many things with a recursive UDO
which you cannot do in any other way; at least not in a simliarly
simple way. This is an example of generating eight partials by a
recursive UDO. See the last example in the next section for a more
musical application of a recursive UDO.

EXAMPLE 03G08_Recursive_UDO.csd

<CsoundSynthesizer>
<CsOptions>

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

Odbfs =1

opcode Recursion, a, iip
;input: frequency, number of partials, first partial (default=1l)
ifreq, inparts, istart xin

iamp = 1/inparts/istart ;decreasing amplitudes for higher partials
if istart < inparts then ;if inparts have not yet reached
acall Recursion ifreq, inparts, istart+l ;call another instance of this UDO
endif
aout oscils iamp, ifreg*istart, 0 ;execute this partial
aout = aout + acall ;add the audio signals
xout aout
endop
instr 1
amix Recursion 400, 8 ;8 partials with a base frequency of 400 Hz
aout linen amix, .01, p3, .1
outs aout, aout

278

USER DEFINED OPCODES

endin
</CsInstruments>
<CsScore>
i 101
</CsScore>
</CsoundSynthesizer>

EXAMPLES

We will focus here on some examples which will hopefully show the
wide range of User Defined Opcodes. Some of them are adaptions of
examples from previous chapters about the Csound Syntax. Much
more examples can be found in the User-Defined Opcode Database,
editied by Steven Yi.

PLAY A MONO OR STEREO SOUNDFILE

Csound is often very strict and gives errors where other applications
might 'turn a blind eye'. This is also the case if you read a soundfile
using one of Csound's opcodes: soundin, diskin or diskin2. If your
soundfile is mono, you must use the mono version, which has one
audio signal as output. If your soundfile is stereo, you must use the
stereo version, which outputs two audio signals. If you want a stereo
output, but you happen to have a mono soundfile as input, you will
get the error message:

i?lgi?ERgiaiiei;': number of output args inconsistent with number

It may be more useful to have an opcode which works for both, mono
and stereo files as input. This is a ideal job for a UDO. Two versions
are possible: FilePlay1 returns always one audio signal (if the file is
stereo it uses just the first channel), FilePlay2 returns always two
audio signals (if the file is mono it duplicates this to both channels).
We can use the default arguments to make this opcode behave
exactly as diskin2:

EXAMPLE 03G09_UDO_FilePlay.csd

<CsoundSynthesizer>

279

USER DEFINED OPCODES

<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

Odbfs =1

opcode FilePlayl, a, Skoooooo
;gives mono output regardless your soundfile is mono or stereo
; (1f stereo, just the first channel is used)
;see diskin2 page of the csound manual for information about the

input arguments

Sfil, kspeed, iskip, iloop, iformat, iwsize, ibufsize, iskipinit xin

ichn filenchnls Sfil
if ichn == 1 then
aout diskin2 Sfil, kspeed, iskip, iloop, iformat, iwsize,\
ibufsize, iskipinit
else
aout, a0 diskin2 Sfil, kspeed, iskip, iloop, iformat, iwsize,\
ibufsize, iskipinit
endif
xout aout
endop

opcode FilePlay2, aa, Skoooooo
;gives stereo output regardless your soundfile is mono or stereo
;see diskin2 page of the csound manual for information about the
Sfil, kspeed, iskip, iloop, iformat, iwsize, ibufsize, iskipinit
ichn filenchnls Sfil

if ichn == 1 then
aL diskin2 Sfil, kspeed, iskip, iloop, iformat, iwsize,
ibufsize, iskipinit
aR = aL
else
alL, aR diskin2 Sfil, kspeed, iskip, iloop, iformat, iwsiz
ibufsize, iskipinit
endif
xout aL, aR
endop
instr 1
aMono FilePlayl "fox.wav", 1
outs aMono, aMono
endin
instr 2
al, aR FilePlay2 "fox.wav", 1
outs al, aR
endin
</CsInstruments>
<CsScore>
i104
i 244
</CsScore>

</CsoundSynthesizer>

CHANGE THE CONTENT OF A FUNCTIO

In example 03C11_Table_random_dev.csd, a function table has been

input arguments
xin

\

e, \

N TABLE

changed at performance time, once a second, by random deviations.

This can be easily transformed to a User Defined Opcode. It takes the
function table variable, a trigger signal, and the random deviation in

280

USER DEFINED OPCODES

percent as input. In each control cycle where the trigger signal is "1",
the table values are read. The random deviation is applied, and the
changed values are written again into the table. Here, the tab/tabw
opcodes are used to make sure that also non-power-of-two tables can
be used.

EXAMPLE 03G10_UDO_rand_dev.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 441

nchnls = 2

O0dbfs =1

giSine ftgen 0, 0, 256, 10, 1; sine wave
seed 0; each time different seed

opcode TabDirtk, 0, ikk
;"dirties" a function table by applying random deviations at a k-rate trigger
;input: function table, trigger (1 = perform manipulation),
;deviation as percentage
ift, ktrig, kperc xin

if ktrig == 1 then ;just work if you get a trigger signal
kndx = 0
loop:
krand random -kperc/100, kperc/100
kval tab kndx, ift; read old value
knewval = kval + (kval * krand); calculate new value
tabw knewval, kndx, giSine; write new value
loop 1t kndx, 1, ftlen(ift), loop; loop construction
endif
endop
instr 1
kTrig metro 1, .00001 ;trigger signal once per second
TabDirtk giSine, kTrig, 10
aSig poscil .2, 400, giSine
outs aSig, aSig
endin

</CsInstruments>
<CsScore>

i10 10

</CsScore>
</CsoundSynthesizer>

Of course you can also change the content of a function table at init-
time. The next example permutes a series of numbers randomly each
time it is called. For this purpose, first the input function table iTabin
is copied as iCopy. This is necessary because we do not want to
change iTabin in any way. Next a random index in iCopy is created
and the value at this location in iTabin is written at the beginning of

281

USER DEFINED OPCODES

iTabout, which contains the permuted results. At the end of this cycle,
each value in iCopy which has a larger index than the one which has
just been read, is shifted one position to the left. So now iCopy has
become one position smaller - not in table size but in the number of
values to read. This procedure is continued until all values from
iCopy are reflected in iTabout:

EXAMPLE 03G11_TabPermRnd.csd

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz

givals ftgen O, O, -12, -2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
seed 0; each time different seed

opcode TabPermRand_i, i, i
;permuts randomly the values of the input table
;and creates an output table for the result

iTabin xin
itablen = ftlen (iTabin)
iTabout ftgen 0, 0, -itablen, 2, 0 ;create empty output table
iCopy ftgen 0, 0, -itablen, 2, 0 ;create empty copy of input table
tableicopy iCopy, iTabin ;write values of iTabin into iCopy
icplen init itablen ;number of values in iCopy
indxwt init 0 ;index of writing in iTabout
loop:
indxrd random 0, icplen - .0001; random read index in iCopy
indxrd = int (indxrd)
ival tab i indxrd, iCopy; read the value
tabw_ i ival, indxwt, iTabout; write it to iTabout
; —— shift values in iCopy larger than indxrd one position to the left
shift:
if indxrd < icplen-1 then ;if indxrd has not been the last table value
ivalshft tab i indxrd+1l, iCopy ;take the value to the right
tabw i ivalshft, indxrd, iCopy ;...and write it to indxrd position
indxrd = indxrd + 1 ;then go to the next position
igoto shift ;return to shift and see if there is anything left to do
endif
indxwt = indxwt + 1 ;increase the index of writing in iTabout

loop gt icplen, 1, 0, loop ;loop as long as there is ;
;a value in iCopy

ftfree iCopy, 0 ;delete the copy table
xout iTabout ;return the number of iTabout
endop
instr 1
iPerm TabPermRand i giVals ;perform permutation
;print the result
indx = 0
Sres = "Result:"
print:
ival tab i indx, iPerm
Sprint sprintf "%$s %d", Sres, ival
Sres = Sprint
loop_ 1t indx, 1, 12, print
puts Sres, 1
endin

instr 2; the same but performed ten times

icnt = 0

loop:

iPerm TabPermRand_ i giVals ;perform permutation
;print the result

indx = 0

282

USER DEFINED OPCODES

Sres = "Result:"
print:
ival tab i indx, iPerm
Sprint sprintf "%s %d", Sres, ival
Sres = Sprint
loop 1t indx, 1, 12, print
puts Sres, 1
loop 1t icnt, 1, 10, loop
endin
</CsInstruments>
<CsScore>
i100
i200
</CsScore>

</CsoundSynthesizer>

PRINT THE CONTENT OF A FUNCTION TABLE

There is no opcode in Csound for printing the contents of a function

table, but one can be created as a UDO.?> Again a loop is needed for

checking the values and putting them into a string which can then be
printed. In addition, some options can be given for the print precision
and for the number of elements in a line.

EXAMPLE 03G12_TableDumpSimp.csd

<CsoundSynthesizer>
<CsOptions>

-ndm0 -+max_str_ 1en=10000
</CsOptions>
<CsInstruments>

;Example by Joachim Heintz

gitab ftgen i, o, -7, -2, 0, 1, 2, 3, 4, 5, 6
gisin ftgen 2, 0, 128, 10, 1

opcode TableDumpSimp, 0, ijo
;prints the content of a table in a simple way

;input: function table, float precision while printing (default = 3),
;parameters per row (default = 10, maximum = 32)
ifn, iprec, ippr xin
iprec = (iprec == -1 ? 3 : iprec)
ippr = (ippr == 0 ? 10 : ippr)
iend = ftlen(ifn)
indx = 0
Sformat sprintf "$%.%df\t", iprec
Sdump = "
loop:
ival tab_ i indx, ifn
Snew sprintf Sformat, ival
Sdump strcat Sdump, Snew
indx = indx + 1
imod = indx % ippr
if imod == 0 then
puts Sdump, 1
Sdump = "
endif
if indx < iend igoto loop
puts Sdump, 1

283

USER DEFINED OPCODES

endop
instr 1
TableDumpSimp p4, p5, p6
prints "sn"
endin
</CsInstruments>
<CsScore>
;i1 st dur ftab prec ppr
il 0 0 1 -1
il . 1 0
il . . 2 3 10
il . 2 6 32
</CsScore>

</CsoundSynthesizer>

A RECURSIVE USER DEFINED OPCODE FOR
ADDITIVE SYNTHESIS

In the last example of the chapter about Triggering Instrument Events
a number of partials were synthesized, each with a random frequency
deviation of up to 10% compared to precise harmonic spectrum
frequencies and a unique duration for each partial. This can also be
written as a recursive UDO. Each UDO generates one partial, and
calls the UDO again until the last partial is generated. Now the code
can be reduced to two instruments: instrument 1 performs the time
loop, calculates the basic values for one note, and triggers the event.
Then instrument 11 is called which feeds the UDO with the values
and passes the audio signals to the output.

EXAMPLE 03G13_UDO_Recursive_AddSynth.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

Odbfs = 1

giSine ftgen o, 0, 2~10, 10, 1
seed 0

opcode PlayPartials, aa, iiipo
;plays inumparts partials with frequency deviation and own envelopes and
;durations for each partial
;ibasfreq: base frequency of sound mixture
;inumparts: total number of partials
;ipan: panning
;ipartnum: which partial is this (1 - N, default=1)

284

USER DEFINED OPCODES

;ixtratim: extra time in addition to p3 needed for this partial (default=0)

ibasfreq, inumparts, ipan, ipartnum, ixtratim xin

ifreggen = ibasfreq * ipartnum; general frequency of this partial
ifregdev random -10, 10; frequency deviation between -10% and +10%
ifreq = ifreqgen + (ifreqgdev*ifreqgen)/100; real frequency
ixtratiml random 0, p3; calculate additional time for this partial
imaxamp = 1/inumparts; maximum amplitude
idbdev random -6, 0; random deviation in dB for this partial
iamp = imaxamp * ampdb (idbdev-ipartnum); higher partials are softer
ipandev random -.1, .1; panning deviation
ipan = ipan + ipandev
akEnv transeg 0, .005, 0, iamp, p3+ixtratiml-.005, -10, 0; envelope
aSine poscil akEnv, ifreq, giSine
alLl, aRl pan2 aSine, ipan
if ixtratiml > ixtratim then
ixtratim = ixtratiml ;set ixtratim to the ixtratiml if the latter is larger
endif
if ipartnum < inumparts then ;if this is not the last partial
; —- call the next one
al2, aR2 PlayPartials ibasfreq, inumparts, ipan, ipartnum+l, ixtratim
else ;if this is the last partial
p3 = p3 + ixtratim; reset p3 to the longest ixtratim value
endif
xout aLl+alL2, aRl+aR2
endop

instr 1; time loop with metro

kfreq init 1; give a start value for the trigger frequency
kTrig metro kfreq
if kTrig == 1 then ;if trigger impulse:
kdur random 1, 5; random duration for instr 10
knumparts random 8, 14
knumparts = int (knumparts); 8-13 partials
kbasoct random 5, 10; base pitch in octave values
kbasfreq = cpsoct (kbasoct) ;base frequency
kpan random .2, .8; random panning between left (0) and right (1)
event "i", 11, 0, kdur, kbasfreq, knumparts, kpan; call instr 11
kfreq random .25, 1; set new value for trigger frequency
endif
endin

instr 11; plays one mixture with 8-13 partials

aL, aR PlayPartials p4, p5, p6
outs al, aR

endin
</CsInstruments>
<CsScore>
i1 0 300
</CsScore>
</CsoundSynthesizer>

USING STRINGS AS ARRAYS

For some situations it can be very useful to use strings in Csound as a
collection of single strings or numbers. This is what programming
languages call a list or an array. Csound does not provide opcodes for
this purpose, but you can define these opcodes as UDOs. A set of
these UDOs can then be used like this:

ilen StrayLen "a b cde"
ilen -> 5
Sel StrayGetEl "abcde", 0

Sel -> "a"

285

USER DEFINED OPCODES

inum StrayGetNum "1 2 3 4 5", O
inum -> 1

ipos StrayElMem "abcde", "c"
ipos -> 2

ipos StrayNumMem "1 2 3 4 5", 3
ipos -> 2

Sres StraySetEl "a bcde", "go", O
Sres -> "go a b c d e"

Sres StraySetNum "1 2 3 4 5", 0, O
Sres -> "0 1 2 3 4 5"

Srev StrayRev "a b cde"

Srev -> "e d ¢ b a"

Sub StraySub "abcde", 1, 3
Sub -> "b c"

Sout StrayRmv "a bcde", "bd"
Sout -> "a c e"

Srem StrayRemDup "a b a c c d e e"

Srem -> "a b c d e"

ift,iftlen StrayNumToFt "1 2 3 4
ift -=> 1 (same as £ 1 0 -5 -2 1
iftlen -> 5

N O

You can find an article about defining such a sub-language here, and
the up to date UDO code here (or at the UDO repository).

LINKS AND RELATED OPCODES

LINKS

This is the page in the Canonical Csound Reference Manual about the
definition of UDOs.

The most important resource of User Defined Opcodes is the User-
Defined Opcode Database, editied by Steven Yi.

Also by Steven Yi, read the second part of his article about control
flow in Csound in the Csound Journal (summer 2006).

RELATED OPCODES

opcode: The opcode used to begin a User Defined Opcode definition.

#include: Useful to include any loadable Csound code, in this case
definitions of User Defined Opcodes.

setksmps: Lets you set a smaller ksmps value locally in a User

Defined Opcode.
286

MACROS

MACROS

Macros within Csound provide a mechanism whereby a line or a
block of code can be referenced using a macro codeword. Whenever
the user-defined macro codeword for that block of code is
subsequently encountered in a Csound orchestra or score it will be
replaced by the code text contained within the macro. This
mechanism can be extremely useful in situations where a line or a
block of code will be repeated many times - if a change is required in
the code that will be repeated, it need only be altered once in the
macro definition rather than having to be edited in each of the
repetitions.

Csound utilises a subtly different mechanism for orchestra and score
macros so each will be considered in turn. There are also additional
features offered by the macro system such as the ability to create a
macro that accepts arguments - which can be thought of as the main
macro containing sub-macros that can be repeated multiple times
within the main macro - the inclusion of a block of text contained
within a completely separate file and other macro refinements.

It is important to realise that a macro can contain any text, including
carriage returns, and that Csound will be ignorant to its use of syntax
until the macro is actually used and expanded elsewhere in the
orchestra or score. Macro expansion is a feature of the orchestra and
score parser and is not part of the orchestra performance time.

ORCHESTRA MACROS

Macros are defined using the syntax:

#define NAME # replacement text #

'NAME' is the user-defined name that will be used to call the macro
at some point later in the orchestra; it must begin with a letter but can
then contain any combination of numbers and letters. A limited range

287

MACROS

of special characters can be employed in the name. Apostrophes, hash
symbols and dollar signs should be avoided. replacement text',
bounded by hash symbols will be the text that will replace the macro
name when later called. Remember that the replacement text can
stretch over several lines. A macro can be defined anywhere within
the <CsInstruments> </CsInstruments> sections of a .csd file. A
macro can be redefined or overwritten by reusing the same macro
name in another macro definition. Subsequent expansions of the
macro will then use the new version.

To expand the macro later in the orchestra the macro name needs to
be preceded with a '$' symbol thus:

SNAME

The following example illustrates the basic syntax needed to employ
macros. The name of a sound file is referenced twice in the score so it
is defined as a macro just after the header statements. Instrument 1
derives the duration of the sound file and instructs instrument 2 to
play a note for this duration. instrument 2 plays the sound file. The
score as defined in the <CsScore> </CsScore> section only lasts for
0.01 seconds but the event_i statement in instrument 1 will extend
this for the required duration. The sound file is a mono file so you can
replace it with any other mono file or use the original one.

EXAMPLE 03H01_Macros_basic.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>
sr
ksmps
nchnls
0dbfs

44100
16

1

1

; define the macro
#define SOUNDFILE # "loop.wav" #

instr 1
; use an expansion of the macro in deriving the duration of the sound file
idur filelen SSOUNDFILE
event 1 "i",2,0,1idur
endin

288

MACROS

instr 2
; use another expansion of the macro in playing the sound file
al diskin2 $SOUNDFILE,1
out al
endin
</CsInstruments>
<CsScore>
i 10 0.01
e
</CsScore>

</CsoundSynthesizer>
; example written by Iain McCurdy

In more complex situations where we require slight variations, such
as different constant values or different sound files in each reuse of
the macro, we can use a macro with arguments. A macro's arguments
are defined as a list of sub-macro names within brackets after the

name of the primary macro with each macro argument being
separated using an apostrophe as shown below.

#define NAME (Argl'Arg2'Arg3...) # replacement text #

Arguments can be any text string permitted as Csound code, they
should not be likened to opcode arguments where each must conform
to a certain type such as i, k, a etc. Macro arguments are subsequently
referenced in the macro text using their names preceded by a '$'
symbol. When the main macro is called later in the orchestra its
arguments are then replaced with the values or strings required. The
Csound Reference Manual states that up to five arguments are
permitted but this still refers to an earlier implementation and in fact
many more are actually permitted.

In the following example a 6 partial additive synthesis engine with a
percussive character is defined within a macro. Its fundamental
frequency and the ratios of its six partials to this fundamental
frequency are prescribed as macro arguments. The macro is reused
within the orchestra twice to create two different timbres, it could be
reused many more times however. The fundamental frequency
argument is passed to the macro as p4 from the score.

289

MACROS

EXAMPLE 03H02_Macro_6partials.csd

<CsoundSynthesizer>

<CsOptions>

-odac

</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 16
nchnls = 1
Odbfs = 1

gisine ftgen 0,0,2710,10,1

; define the macro

#define ADDITIVE TONE (Frg'Ratiol'Ratio2'Ratio3'Ratio4'Ratio5'Ratio6) #
iamp = 0.1

aenv expseg 1,p3*(1/$Ratiol),0.001,1,0.001
al poscil iamp*aenv,$Frg*$Ratiol,gisine
aenv expseg 1,p3*(l1/$Ratio2),0.001,1,0.001
a2 poscil iamp*aenv,$Frg*$Ratio2,gisine
aenv expseg 1,p3*(1/$Ratio3),0.001,1,0.001
a3 poscil iamp*aenv,$Frg*$Ratio3,gisine
aenv expseg 1,p3*(1/$Ratio4),0.001,1,0.001
a4 poscil iamp*aenv, $Frg*$Ratiod,gisine
aenv expseg 1,p3*(1/$Ratio5),0.001,1,0.001
a5 poscil iamp*aenv,$Frg*$Ratio5,gisine
aenv expseg 1,p3*(1/$Ratio6),0.001,1,0.001
a6 poscil iamp*aenv,$Frg*$Ratio6,gisine

a7 sum al,a2,a3,a4,a5,a6
out a’7
#
instr 1 ; xylophone

; expand the macro with partial ratios that reflect those of a xylophone
; the fundemental frequency macro argument (the first argument -

; — 1s passed as p4 from the score

SADDITIVE TONE(p4'1'3.932'9.538'16.688"'24.566'31.147)

endin

instr 2 ; vibraphone
SADDITIVE TONE(p4'1'3.997'9.469'15.566'20.863'29.440)
endin

</CsInstruments>

<CsScore>

i 1 0 1 200
150
100
800
700
600

[e R S
NN NP
s W N
~N s I BN

e

</CsScore>

</CsoundSynthesizer>

; example written by Iain McCurdy

SCORE MACROS

Score macros employ a similar syntax. Macros in the score can be
used in situations where a long string of p-fields are likely to be

290

MACROS

repeated or, as in the next example, to define a palette of score
patterns than repeat but with some variation such as transposition. In
this example two 'riffs' are defined which each employ two macro
arguments: the first to define when the riff will begin and the second
to define a transposition factor in semitones. These riffs are played
back using a bass guitar-like instrument using the wgpluck?2 opcode.
Remember that mathematical expressions within the Csound score
must be bound within square brackets [].

EXAMPLE 03H03_Score_macro.csd

<CsoundSynthesizer>

<CsOptions>

-odac

</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 16
nchnls = 1

Odbfs = 1

instr 1 ; bass guitar

al wgpluck2 0.98, 0.4, cpsmidinn(p4), 0.1, 0.6
aenv linseg 1,p3-0.1,1,0.1,0

out al*aenv

endin

</CsInstruments>
<CsScore>

; p4 = pitch as a midi note number
#define RIFF 1(Start'Trans)

#

i 1 [$Start 11 [36+$Trans]
i 1 [$Start+l] 0.25 [43+S$Trans]
i 1 [$Start+1.25] 0.25 [43+$Trans]
i 1 [$Start+1.75] 0.25 [41+$Trans]
i 1 [$Start+2.5] 1 [46+$Trans]
i1 [$Start+3.25] 1 [48+$Trans]
#

#define RIFF 2 (Start'Trans)

#

i 1 [$Start] 1 [34+$Trans]
i 1 [$Start+1.25] 0.25 [41+$Trans]
i 1 [$Start+1l.5] 0.25 [43+$Trans]
i 1 [$Start+1.75] 0.25 [46+$Trans]
i 1 [$Start+2.25] 0.25 [43+$Trans]
i 1 [$Start+2.75] 0.25 [41+$Trans]
i 1 [$Start+3] 0.5 [43+$Trans]
i 1 [$Start+3.5] 0.25 [46+$Trans]
#

t 0 90

$RIFF 1(0 ' 0)

SRIFF 1(4 ' 0)

SRIFF 2(8 ' 0)

SRIFF _2(12'-5)

SRIFF 1(16'-5)

291

MACROS

SRIFF 2(20'-7)

SRIFF 2(24' 0)

SRIFF _2(28' 5)

e

</CsScore>

</CsoundSynthesizer>

; example written by Iain McCurdy

Score macros can themselves contain macros so that, for example, the
above example could be further expanded so that a verse, chorus
structure could be employed where verses and choruses, defined using
macros, were themselves constructed from a series of riff macros.

UDOs and macros can both be used to reduce code repetition and
there are many situations where either could be used with equal
justification but each offers its own strengths. UDOs strengths lies in
their ability to be used just like an opcode with inputs and outputs, the
ease with which they can be shared - between Csound projects and
between Csound users - their ability to operate at a different k-rate to
the rest of the orchestra and in how they facilitate recursion. The fact
that macro arguments are merely blocks of text, however, offers up
new possibilities and unlike UDOs, macros can span several
instruments. Of course UDOs have no use in the Csound score unlike
macros. Macros can also be used to simplify the creation of complex
FLTK GUI where panel sections might be repeated with variations of
output variable names and location.

Csound's orchestra and score macro system offers many additional
refinements and this chapter serves merely as an introduction to their
basic use. To learn more it is recommended to refer to the relevant
sections of the Csound Reference Manual.

292

FUNCTIONAL SYNTAX

FUNCTIONAL SYNTAX

Functional syntax is very common in many programming languages.
It takes the form of fun(), where fun is any function which encloses its
arguments in parentheses. Even in "old" Csound, there existed some
rudiments of this functional syntax in some mathematical functions,
such as sqrt(), log(), int(), frac(). For instance, the following code

iNum = 1.234
print int (iNum)
print frac (iNum)

would print:

instr 1: #i0 1.000

instr 1: #il 0.230

Here the integer part and the fractional part of the number 1.234 are
passed directly as an argument to the print opcode, without needing
to be stored at any point as a variable.

This alternative way of formulating code can now be used with many

opcodes in Csound6!. In the future many more opcodes will be
incorporated into this system. First we shall look at some examples.

The traditional way of applying a fade and a sliding pitch (glissando)
to a tone is something like this:

EXAMPLE 03101_traditional_syntax.csd

<CsoundSynthesizer>

<CsOptions>

-odac

</CsOptions>

<CsInstruments>

sr = 44100

nchnls = 1

ksmps = 32

Odbfs =1

instr 1

kFade linseg 0, p3/2, 1, p3/2, 0
kSlide expseg 400, p3/2, 800, p3/2, 600
aTone poscil kFade, kSlide

293

FUNCTIONAL SYNTAX

out aTone
endin

</CsInstruments>
<CsScore>

i 105
</CsScore>

</CsoundSynthesizer>
;example by joachim heintz

In plain English what is happening is:

1. We create a line signal with the opcode linseg. It starts at zero,
moves to one in half of the instrument's duration (p3/2), and
moves back to zero for the second half of the instrument's
duration. We store this signal in the variable kFade.

2. We create an exponential? signal with the opcode expseg. It
starts at 400, moves to 800 in half the instrument's duration,
and moves to 600 for the second half of the instrument's
duration. We store this signal in the variable kSlide.

3. We create a sine audio signal with the opcode poscil. We feed
in the signal stored in the variable kFade as amplitude, and the
signal stored in the variable kSlide as frequency input. We
store the audio signal in the variable aTone.

4. Finally, we write the audio signal to the output with the opcode
out.

Each of these four lines can be considered as a "function call", as we
call the opcodes (functions) linseg, expseg, poscil and out with certain
arguments (input parameters). If we now transform this example to
functional syntax, we will avoid storing the result of a function call in
a variable. Rather we will feed the function and its arguments directly
into the appropriate slot, by means of the fun() syntax.

If we write the first line in functional syntax, it will look like this:
linseg (0, p3/2, 1, p3/2, 0)

And the second line will look like this:

expseqg (400, p3/2, 800, p3/2, 600)

So we can reduce our code from four lines to two lines:

294

FUNCTIONAL SYNTAX

EXAMPLE 03102_functional_syntax_1.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

sr = 44100

nchnls =1

32

1

instr 1

aTone poscil linseg (0, p3/2, 1, p3/2, 0), expseg (400, p3/2, 800, p3/2, 600)
out aTone

endin

</CsInstruments>

<CsScore>

i105

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

Or would you prefer the "all-in-one" solution?

EXAMPLE 03103_functional_syntax_2.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

sr = 44100

nchnls =1

ksmps 32

O0dbfs 1

instr 1
out poscil(linseg (0, p3/2, 1, p3/2, 0), expseg (400, p3/2, 800, p3/2, 600))
endin

</CsInstruments>

<CsScore>

i105

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

DECLARE YOUR COLOR: I, KOR A?

Most of the Csound opcodes work not only at one rate. You can, for

instance, produce random numbers at i-, k- or a-rate:>

ires random imin, imax
kres random kmin, kmax
ares random kmin, kmax

Let us assume we want to change the highest frequency in our

295

FUNCTIONAL SYNTAX

example from 800 to a random value between 700 and 1400 Hz, so
that we hear a different movement for each tone. In this case, we can

simply write random(700, 1400), because the context demands an i-

rate result of the random operation here:*

EXAMPLE 03104 _functional_syntax_rate_1.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

sr = 44100

nchnls = 1

ksmps 32

Odbfs 1

instr 1

out poscil (linseg (0, p3/2, 1, p3/2, 0), expseg (400, p3/2, random(700, 1400), p3/2,
600))

endin

</CsInstruments>

<CsScore>

r 5

i103

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

But it is much clearer both, for the Csound parser and for the Csound
user, if you explicitly declare at which rate a function is to be
performed. This code claims that poscil runs at a-rate, linseg and
expseg run at k-rate, and random runs at i-rate here:

EXAMPLE 03105_functional_syntax_rate_2.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

sr = 44100

nchnls =1

ksmps 32

Odbfs 1

instr 1

out poscil:a(linseg:k (0, p3/2, 1, p3/2, 0), expseg:k (400, p3/2, random:i (700, 1400),
p3/2, 600))

endin

</CsInstruments>

<CsScore>

r 5

i103

</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

296

FUNCTIONAL SYNTAX

As you can see, rate declaration is done with simply :a, :k or :i after
the function. It would represent good practice to include it all the
time, to be clear about what is happening.

ONLY ONE OUTPUT

Currently, there is a limitation in that only opcodes which have one or
no outputs can be written using functional syntax. For instance,
reading a stereo file using soundin

al, aR soundin "my_ file.wav"

cannot be written using functional syntax. This limitation is likely to
be removed in the future.

FUN() WITH UDOS

It should be mentioned that you can use the functional style also with
self created opcodes ("User Defined Opcodes"):

EXAMPLE 03106_functional_syntax_udo.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

sr = 44100

nchnls =1

ksmps 32

0dbfs 1

opcode FourModes, a, akk[]
;kFQ[] contains four frequency-quality pairs
aln, kBasFreq, kFQ[] xin
aOutl mode alIn, kBasFreg*kFQ[O], kFQI[1
aOut2 mode aln, kBasFreg*kFQ[2], kFQI[3
aOut3 mode aln, kBasFreg*kFQ[4], kFQI[5
aOut4 mode aIn, kBasFreg*kFQ[6], kFQ[7
xout (aOutl+aOut2+aOut3+alOutd) / 4
endop

]
]
]
1

instr 1
kArr[] fillarray 1, 2000, 2.8, 2000, 5.2, 2000, 8.2, 2000
almp mpulse .3, 1
out FourModes (aImp, 200, kArr)
endin

</CsInstruments>

<CsScore>

i1 0 10

</CsScore>

</CsoundSynthesizer>

;example by joachim heintz, based on an example of iain mccurdy

297

FUNCTIONAL SYNTAX

HOW MUCH FUN() IS GOOD FOR YOU?

Only you, and perhaps your spiritual consultant, can know ...

But seriously, this is mostly a matter of style. Some people consider it
most elegant if all is written in one single expression, whilst others
prefer to see the signal flow from line to line. Certainly excessive
numbers of parentheses may not result in the best looking code ...

At least the functional syntax allows the user to emphasize his or her
own personal style and to avoid some awkwardness:

"If i new value of kIn has been received, do this and that", can be
written:

if changed (kIn)==1 then
<do this and that>
endif

"If you understand what happens here, you will have been moved to
the next level", can be written:

EXAMPLE 03107_functional_syntax_you_win.csd

<CsoundSynthesizer>
<CsOptions>

-odac -ml128
</CsOptions>
<CsInstruments>

sr = 44100

nchnls =1

opcode FourModes, a, akk[]
;kFQ[] contains four frequency-quality pairs
aln, kBasFreq, kFQ[] xin
aOutl mode alIn, kBasFreg*kFQ[O0], kFQ[1]
aOut2 mode alIn, kBasFreg*kFQ[2], kFQ[3]
aOut3 mode aln, kBasFreg*kFQ[4], kFQ[5]
aOut4 mode alIn, kBasFreg*kFQ[6], kFQ[7]
xout (aOutl+aOut2+aOut3+alut4d) / 4
endop

instr ham

gkPchMovement = randomi:k (50, 1000, (random:i (.2, .4)), 3)
schedule ("hum", 0, p3)
endin

instr hum
if metro(randomh:k (1, 10, random:k (1, 4), 3)) == 1 then
event ("i", "play", 0, 5, gkPchMovement)

298

FUNCTIONAL SYNTAX

endif
endin

instr play
iQl = random (100, 1000)

kArr[] fillarray l*random:i (.9, 1.1), iQ1,
2.8*random:1 (.8, 1.2), iQl*random:1i (.5, 2)
5.2*random:i (.7, 1.4), iQl*random:i (.5, 2),
8.2*random:i (.6, 1.8), iQl*random:i (.5, 2)

almp mpulse ampdb (random:k (=30, 0)), p3

out FourModes (aImp, p4, kArr)*linseg(l, p3/2, 1, p3/2, 0)

endin

</CsInstruments>

<CsScore>

i "ham" 0 60

</CsScore>

</CsoundSynthesizer>
;example by joachim heintz, with thanks to steven and iain

So enjoy, and stay in contact with the spirit ...

1. thanks to the huge work of John ffitch, Steven Yi and others on

a new parser’
2. which in simple words means that the signal moves like a
curve which coincidents with the way we perceive frequency

relations”
3. See chapter 03A Initialization and Performance Pass for a

more thorough explanation.”
4. because all inputs for expseg must be i-rate”

299

FUNCTIONAL SYNTAX

300

ADDITIVE SYNTHESIS

ADDITIVE SYNTHESIS

Jean Baptiste Joseph Fourier demonstrated in around 1800 that any
continuous function can be described perfectly as a sum of sine
waves. This means that you can create any sound, no matter how
complex, if you know how many sine waves, and at what frequencies,
to add together.

This concept really excited the early pioneers of electronic music,
who imagined that sine waves would give them the power to create
any sound imaginable and previously unimagined sounds.
Unfortunately, they soon realised that while adding sine waves is
easy, interesting sounds require a large number of sine waves that are
varying constantly in frequency and amplitude and this turns out to be
a hugely impractical task.

Nonetheless, additive synthesis can provide unusual and interesting
sounds and the power of modern computers and their ability to
manage data in a programming language offers new dimensions of
working with this old technique. As with most things in Csound there
are several ways to go about implementing additive synthesis. We
shall endeavour to introduce some of them and to allude to how they
relate to different programming paradigms.

WHAT ARE THE MAIN PARAMETERS OF
ADDITIVE SYNTHESIS?

Before examining various methods of implementing additive
synthesis in Csound, we shall first consider what parameters might be
required. As additive synthesis involves the addition of multiple sine
generators, the parameters we use will operate on one of two different
levels:

301

ADDITIVE SYNTHESIS

302

¢ For each sine, there will be a frequency and an amplitude with
an envelope.
o The frequency will usually be a constant value, but it can

be varied and in fact natural sounds typically exhibit slight
modulations of partial frequencies.

o The amplitude must have at least a simple envelope such

as the well-known ADSR but more complex methods of
continuously altering the amplitude will result in a livelier
sound.

e For the sound as an entirety, the relevant parameters are:
o The total number of sinusoids. A sound which consists of

just three sinusoids will most likely sound poorer than one
which employs 100.

The frequency ratios of the sine generators. For a classic
harmonic spectrum, the multipliers of the sinusoids are 1,
2, 3, ... (If your first sine is 100 Hz, the others will be 200,
300, 400, ... Hz.) An inharmonic or noisy spectrum will
probably have no simple integer ratios. These frequency
ratios are chiefly responsible for our perception of timbre.
The base frequency is the frequency of the first partial. If
the partials are exhibiting a harmonic ratio, this frequency
(in the example given 100 Hz) is also the overall perceived
pitch.

The amplitude ratios of the sinusoids. This is also very
important in determining the resulting timbre of a sound. If
the higher partials are relatively strong, the sound will be
perceived as being more 'brilliant’; if the higher partials are
soft, then the sound will be perceived as being dark and
soft.

The duration ratios of the sinusoids. In simple additive
synthesis, all single sines have the same duration, but it
will be more interesting if they differ - this will usually
relate to the durations of the envelopes: if the envelopes of
different partials vary, some partials will die away faster
than others.

ADDITIVE SYNTHESIS

It is not always the aim of additive synthesis to imitate natural
sounds, but the task of first analysing and then attempting to imitate a
sound can prove to be very useful when studying additive synthesis.
This is what a guitar note looks like when spectrally analysed:

Amplitude / rel.

Time /5

& 2000

Spectral analysis of a guitar tone in time (courtesy of W. Fohl,
Hamburg)

Each partial possesses its own frequency movement and duration. We
may or may not be able to achieve this successfully using additive
synthesis. Let us begin with some simple sounds and consider how to
go about programming this in Csound. Later we will look at some
more complex sounds and the more advanced techniques required to
synthesize them.

SIMPLE ADDITIONS OF SINUSOIDS INSIDE
AN INSTRUMENT

If additive synthesis amounts to simply adding together sine

303

ADDITIVE SYNTHESIS

generators, it is therefore straightforward to implement this by
creating multiple oscillators in a single instrument and adding their
outputs together. In the following example, instrument 1
demonstrates the creation of a harmonic spectrum, and instrument 2
an inharmonic one. Both instruments share the same amplitude
multipliers: 1, 1/2, 1/3, 1/4, ... and receive the base frequency in
Csound's pitch notation (octave.semitone) and the main amplitude in
dB.

EXAMPLE 04A01_AddSynth_simple.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

;example by Andrés Cabrera

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1
giSine ftgen o, 0, 2~10, 10, 1

instr 1 ;harmonic additive synthesis
;receive general pitch and volume from the score

ibasefrg = cpspch (p4) ;convert pitch values to frequency
ibaseamp = ampdbfs (p5) ;convert dB to amplitude
;create 8 harmonic partials

alOscl poscil ibaseamp, ibasefrq, giSine

aOsc2 poscil ibaseamp/2, ibasefrg*2, giSine

aOsc3 poscil ibaseamp/3, ibasefrg*3, giSine

aOsc4 poscil ibaseamp/4, ibasefrg*4, giSine

aOsc5 poscil ibaseamp/5, ibasefrg*5, giSine

aOsc6 poscil ibaseamp/6, ibasefrg*6, giSine

alsc7 poscil ibaseamp/7, ibasefrqg*7, giSine

aOsc8 poscil ibaseamp/8, ibasefrg*8, giSine
;apply simple envelope

kenv linen 1, p3/4, p3, p3/4

;add partials and write to output
aOut = aOscl + aOsc2 + aOsc3 + aOsc4 + aOsc5 + aOsc6 + aOsc7 + aOsc8
outs aOut*kenv, aOut*kenv
endin

instr 2 ;inharmonic additive synthesis

ibasefrqg = cpspch (p4)

ibaseamp = ampdbfs (p5)

;create 8 inharmonic partials

aOscl poscil ibaseamp, ibasefrq, giSine

aOsc2 poscil ibaseamp/2, ibasefrg*1.02, giSine
a0sc3 poscil ibaseamp/3, ibasefrg*l.1l, giSine
aOsc4 poscil ibaseamp/4, ibasefrg*1.23, giSine
aOscbh poscil ibaseamp/5, ibasefrqg*1.26, giSine
aOsc6 poscil ibaseamp/6, ibasefrg*1.31, giSine
aOsc7 poscil ibaseamp/7, ibasefrg*1.39, giSine
aOsc8 poscil ibaseamp/8, ibasefrg*1.41, giSine
kenv linen 1, p3/4, p3, p3/4

aOut = aOscl + aOsc2 + aOsc3 + aOsc4 + aOsc5 + aOsc6 + aOsc7 + aOsc8
outs aOut*kenv, aOut*kenv
endin

304

ADDITIVE SYNTHESIS

</CsInstruments>

<CsScore>

; pch amp
i105 8.00 -13
i135 9.00 -17
i158 9.02 -15
i169 7.01 -15
i1 710 6.00 -13
s

i205 8.00 -13
i235 9.00 -17
i258 9.02 -15
i269 7.01 -15
i 2710 6.00 -13
</CsScore>

</CsoundSynthesizer>

SIMPLE ADDITIONS OF SINUSOIDS VIA
THE SCORE

A typical paradigm in programming: if you are repeating lines of
code with just minor variations, consider abstracting it in some way.
In the Csound language this could mean moving parameter control to
the score. In our case, the lines

alOscl poscil ibaseamp, ibasefrq, giSine

aOsc2 poscil ibaseamp/2, ibasefrg*2, giSine
aOsc3 poscil ibaseamp/3, ibasefrg*3, giSine
aOsc4 poscil ibaseamp/4, ibasefrqg*4, giSine
aOscb poscil ibaseamp/5, ibasefrg*5, giSine
alsc6 poscil ibaseamp/6, ibasefrg*6, giSine
aOsc?7 poscil ibaseamp/7, ibasefrg*7, giSine
aOsc8 poscil ibaseamp/8, ibasefrg*8, giSine

could be abstracted to the form

alsc poscil ibaseamp*iampfactor, ibasefrg*ifreqgfactor, giSine

with the parameters iampfactor (the relative amplitude of a partial)
and ifreqfactor (the frequency multiplier) being transferred to the
score as p-fields.

The next version of the previous instrument, simplifies the instrument

code and defines the variable values as score parameters:

EXAMPLE 04A02_AddSynth_score.csd

305

ADDITIVE SYNTHESIS

<CsoundSynthesizer>

<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
;example by Andrés Cabrera and Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1
giSine ftgen o, 0, 2~10, 10, 1

instr 1
iBaseFreq = cpspch (p4)
iFregMult = p5 ;frequency multiplier
iBaseAmp = ampdbfs (p6)
iAmpMult = p7 ;amplitude multiplier
iFreq = iBaseFreq * iFregMult
1iAmp = iBaseAmp * iAmpMult
kEnv linen iAmp, p3/4, p3, p3/4
alsc poscil kEnv, iFreq, giSine

outs aOsc, aOsc

endin
</CsInstruments>
<CsScore>
; freq fregmult amp ampmult
i107 8.09 1 -10 1
i 6 2 [1/2]
i 5 3 [1/3]
i .4 4 [1/4]
i .3 5 [1/5]
i .3 6 [1/6]
i .3 7 [1/7]
s
i106 8.09 1.5 -10 1
i . .4 3.1 [1/3]
i .3 3.4 [1/6]
i .4 4.2 [1/9]
i. .5 6.1 [1/12]
i. .6 . 6.3 [1/15]
</CsScore>

</CsoundSynthesizer>

You might ask: "Okay, where is the simplification? There are even
more lines than before!" This is true, but this still represents better
coding practice. The main benefit now is flexibility. Now we are able
to realise any number of partials using the same instrument, with any
amplitude, frequency and duration ratios. Using the Csound score
abbreviations (for instance a dot for repeating the previous value in
the same p-field), you can make great use of copy-and-paste, and
focus just on what is changing from line to line.

Note that you are now calling one instrument multiple times in the
creation of a single additive synthesis note, in fact, each instance of
the instrument contributes just one partial to the additive tone.

306

ADDITIVE SYNTHESIS

Calling multiple instances of one instrument in this way also
represents good practice in Csound coding. We will discuss later how
this end can be achieved in a more elegant way.

CREATING FUNCTION TABLES FOR
ADDITIVE SYNTHESIS

Before we continue, let us return to the first example and discuss a
classic and abbreviated method for playing a number of partials. As
we mentioned at the beginning, Fourier stated that any periodic
oscillation can be described using a sum of simple sinusoids. If the
single sinusoids are static (with no individual envelopes, durations or
frequency fluctuations), the resulting waveform will be similarly
static.

Partial 1
Partial 2
Partial 3

Partial 4

307

ADDITIVE SYNTHESIS

Above you see four sine waves, each with fixed frequency and
amplitude relationships. These are then mixed together with the
resulting waveform illustrated at the bottom (Sum). This then begs
the question: why not simply calculate this composite waveform first,
and then read it with just a single oscillator?

This is what some Csound GEN routines do. They compose the
resulting shape of the periodic waveform, and store the values in a
function table. GEN10 can be used for creating a waveform
consisting of harmonically related partials. It form begins with the
common GEN routine p-fields

<table number>, <creation time>, <size in points>, <GEN number>

following which you just have to define the relative strengths of the
harmonics. GENQ9 is more complex and allows you to also control
the frequency multiplier and the phase (0-360°) of each partial. Thus
we are able to reproduce the first example in a shorter (and
computationally faster) form:

EXAMPLE 04A03_AddSynth_GEN.csd

<CsoundSynthesizer>

<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
;jexample by Andrés Cabrera and Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1
giSine ftgen o, 0, 2~10, 10, 1
giHarm ftgen i, o0, 2~12, 10, 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8
giNois ftgen 2, 0, 2~12, 9, 100,1,0, 102,1/2,0, 110,1/3,0, \
123,1/4,0, 126,1/5,0, 131,1/6,0, 139,1/7,0, 141,1/8,0

instr 1
iBasFreq = cpspch (p4)
iTabFreq = p7 ;base frequency of the table
iBasFreq = iBasFreq / iTabFreqg
iBaseAmp = ampdb (p5)
1FtNum = po6
alsc poscil iBaseAmp, iBasFreq, iFtNum
aEnv linen aOsc, p3/4, p3, p3/4

outs akEnv, aEnv

endin

</CsInstruments>

308

ADDITIVE SYNTHESIS

<CsScore>

pch amp table table base (Hz)
.00 -10 1 1
.00 -14

-12

.01 -12

.00 -10

Ce
g o0 0 wo
= © © u U
o -V ®
o
N

.00 -10 2 100
.00 -14
-12
.01 -12
.00 -10

e e S e S s
ce

o U1 W O
© 01 U

. 9
i . 7 10
</CsScore>
</CsoundSynthesizer>

oy - O W ®
o
N

You maybe noticed that to store a waveform in which the partials are
not harmonically related, the table must be constructed in a slightly
special way (see table 'giNois"). If the frequency multipliers in our
first example started with 1 and 1.02, the resulting period is actually
very long. If the oscillator was playing at 100 Hz, the tone it would
produce would actually contain partials at 100 Hz and 102 Hz. So you
need 100 cycles from the 1.00 multiplier and 102 cycles from the
1.02 multiplier to complete one period of the composite waveform. In
other words, we have to create a table which contains respectively
100 and 102 periods, instead of 1 and 1.02. Therefore the table
frequencies will not be related to 1 as usual but instead to 100. This is
the reason that we have to introduce a new parameter, iTabFreq, for
this purpose. (N.B. In this simple example we could actually reduce
the ratios to 50 and 51 as 100 and 102 share a common denominator
of 2.)

This method of composing waveforms can also be used for generating
four standard waveform shapes typically encountered in vintage
synthesizers. An impulse wave can be created by adding a number of
harmonics of the same strength. A sawtooth wave has the amplitude
multipliers 1, 1/2, 1/3, ... for the harmonics. A square wave has the
same multipliers, but just for the odd harmonics. A triangle can be
calculated as 1 divided by the square of the odd partials, with
swapping positive and negative values. The next example creates
function tables with just the first ten partials for each of these
waveforms.

309

ADDITIVE SYNTHESIS

EXAMPLE 04A04_Standard_waveforms.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

;example by Joachim Heintz

sr = 44100
ksmps = 32
nchnls = 2
Odbfs = 1
giImp ftgen 1, O, 4096, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
gisaw ftgen 2, 0, 4096, 10, 1,1/2,1/3,1/4,1/5,1/6,1/7,1/8,1/9,1/10
gisqu ftgen 3, 0, 4096, 10, 1, O, 1/3, O, 1/5, 0, 1/7, 0, 1/9, O
giTri ftgen 4, 0, 4096, 10, 1, O, -1/9, 0, 1/25, 0, -1/49, 0, 1/81, O
instr 1
asig poscil .2, 457, p4
outs asig, asig

endin
</CsInstruments>
<CsScore>

i1031

i1432

i1833

i1 12 3 4
</CsScore>
</CsoundSynthesizer>

TRIGGERING INSTRUMENT EVENTS FOR
THE PARTIALS

Performing additive synthesis by designing partial strengths into
function tables has the disadvantage that once a note has begun there
is no way of varying the relative strengths of individual partials.
There are various methods to circumvent the inflexibility of table-
based additive synthesis such as morphing between several tables (for
example by using the ftmorf opcode) or by filtering the result. Next
we shall consider another approach: triggering one instance of a sub-

instrument! for each partial, and exploring the possibilities of
creating a spectrally dynamic sound using this technique.

Let us return to the second instrument (05A02.csd) which had already
made use of some abstractions and triggered one instrument instance
for each partial. This was done in the score, but now we will trigger
one complete note in one score line, not just one partial. The first step

310

ADDITIVE SYNTHESIS

is to assign the desired number of partials via a score parameter. The
next example triggers any number of partials using this one value:

EXAMPLE 04A05_Flexible_number_of _partials.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

Odbfs =1

giSine ftgen o, 0, 2~10, 10, 1

instr 1 ;master instrument

inumparts p4 ;number of partials

ibasfreq 200 ;base frequency

ipart = 1 ;count variable for loop

;loop for inumparts over the ipart variable

;and trigger inumpartss instanes of the subinstrument

loop:
ifreq = ibasfreq * ipart
iamp = 1/ipart/inumparts
event i "i", 10, 0, p3, ifreq, iamp
loop_le ipart, 1, inumparts, loop
endin

instr 10 ;subinstrument for playing one partial

ifreq = p4 ;frequency of this partial
iamp = p5 ;amplitude of this partial
aenv transeg o, .01, 0, iamp, p3-0.1, -10, O
apart poscil aenv, ifreq, giSine
outs apart, apart
endin
</CsInstruments>
<CsScore>
; number of partials
i103 10
i133 20
ile63 2
</CsScore>

</CsoundSynthesizer>

This instrument can easily be transformed to be played via a midi
keyboard. In the next the midi key velocity will map to the number of
synthesized partials played to implement a brightness control.

EXAMPLE 04A06_Play_it_with_Midi.csd

<CsoundSynthesizer>
<CsOptions>

-o dac -Ma
</CsOptions>
<CsInstruments>

311

ADDITIVE SYNTHESIS

;Example by Joachim Heintz

sr = 44100
ksmps = 32
nchnls = 2
Odbfs = 1
giSine ftgen o, 0, 2~10, 10, 1
massign 0, 1 ;all midi channels to instr 1

instr 1 ;master instrument

ibasfreq cpsmidi ;base frequency

iampmid ampmidi 20 ;receive midi-velocity and scale 0-20
inparts = int (iampmid) +1 ;exclude zero

ipart = 1 ;count variable for loop

;loop for inparts over the ipart variable
;and trigger inparts instances of the sub-instrument

loop:
ifreq = ibasfreq * ipart
iamp = 1/ipart/inparts
event i "i", 10, 0, 1, ifreq, iamp
loop_le ipart, 1, inparts, loop
endin

instr 10 ;subinstrument for playing one partial

ifreq = p4 ;frequency of this partial
iamp = p5 ;amplitude of this partial
aenv transeg 0, .01, 0, iamp, p3-.01, -3, O
apart poscil aenv, ifreq, giSine

outs apart/3, apart/3
endin
</CsInstruments>
<CsScore>
£ 0 3600
</CsScore>

</CsoundSynthesizer>

Although this instrument is rather primitive it is useful to be able to
control the timbre in this way using key velocity. Let us continue to
explore some other methods of creating parameter variation in
additive synthesis.

USER-CONTROLLED RANDOM
VARIATIONS IN ADDITIVE SYNTHESIS

Natural sounds exhibit constant movement and change in the
parameters we have so far discussed. Even the best player or singer
will not be able to play a note in the exact same way twice and within
a tone, the partials will have some unsteadiness: slight waverings in
the amplitudes and slight frequency fluctuations. In an audio
programming environment like Csound, we can imitate these
movements by employing random deviations. The boundaries of
random deviations must be adjusted as carefully. Exaggerate them
and the result will be unnatural or like a bad player. The rates or

312

ADDITIVE SYNTHESIS

speeds of these fluctuations will also need to be chosen carefully and
sometimes we need to modulate the rate of modulation in order to
achieve naturalness.

Let us start with some random deviations in our subinstrument. The
following parameters can be affected:

e The frequency of each partial can be slightly detuned. The
range of this possible maximum detuning can be set in cents
(100 cent = 1 semitone).

e The amplitude of each partial can be altered relative to its
default value. This alteration can be measured in decibels (dB).

e The duration of each partial can be made to be longer or
shorter than the default value. Let us define this deviation as a
percentage. If the expected duration is five seconds, a
maximum deviation of 100% will mean a resultant value of
between half the duration (2.5 sec) and double the duration (10
sec).

The following example demonstrates the effect of these variations. As
a base - and as a reference to its author - we take as our starting point,
the 'bell-like' sound created by Jean-Claude Risset in his 'Sound

Catalogue'.?

EXAMPLE 04A07_Risset_variations.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

Odbfs =1

;frequency and amplitude multipliers for 11 partials of Risset's bell

giFgs ftgen o, 0, -11,-2,.56,.563,.92, .923,1.19,1.7,2,2.74, \
3,3.74,4.07
giAmps ftgen o, o, -11, -2, 1, 2/3, 1, 1.8, 8/3, 1.46, 4/3, 4/3, 1, 4/3
giSine ftgen o, o0, 2~10, 10, 1
seed 0

instr 1 ;master instrument

ibasfreqg = 400

ifgdev = p4 ;maximum freq deviation in cents
iampdev = p5 ;maximum amp deviation in dB
idurdev = p6 ;maximum duration deviation in %

indx 0 ;count variable for loop

313

ADDITIVE SYNTHESIS

loop:

ifgmult tab i indx, giFgs ;get frequency multiplier from table

ifreq = ibasfreq * ifgmult

iampmult tab_ i indx, giAmps ;get amp multiplier

iamp = iampmult / 20 ;scale
event i "i", 10, 0, p3, ifreq, iamp, ifgdev, iampdev, idurdev
loop 1t indx, 1, 11, loop

endin

instr 10 ;subinstrument for playing one partial
;receive the parameters from the master instrument

ifregnorm = p4 ;standard frequency of this partial
iampnorm = p5 ;standard amplitude of this partial
ifgdev = p6 ;maximum freq deviation in cents
iampdev = p7 ;maximum amp deviation in dB
idurdev = p8 ;maximum duration deviation in %
;calculate frequency
icent random -ifgdev, ifgdev ;cent deviation
ifreq = ifregnorm * cent (icent)
;jcalculate amplitude
idb random -iampdev, iampdev ;dB deviation
iamp = iampnorm * ampdb (idb)
;calculate duration
idurperc random -idurdev, idurdev ;duration deviation (%)
iptdur = p3 * 27 (idurperc/100)
p3 = iptdur ;set p3 to the calculated value
;play partial
aenv transeg 0, .01, 0, iamp, p3-.01, -10, O
apart poscil aenv, ifreq, giSine
outs apart, apart
endin
</CsInstruments>
<CsScore>
; frequency amplitude duration
; deviation deviation deviation
; in cent in dB in %
; ;unchanged sound (twice)
r 2
i105 0 0 0

s
;7slight variations in frequency

r 4

i105 25 0 0
;7slight variations in amplitude

r 4

i105 0 6 0
;7slight variations in duration

r 4

i105 0 0 30
;;slight variations combined

r 6

i 105 25 6 30
; sheavy variations

r 6

i105 50 9 100
</CsScore>

</CsoundSynthesizer>

In midi-triggered descendant of this instrument, we could - as one of
many possible options - vary the amount of possible random variation
according to the key velocity so that a key pressed softly plays the
bell-like sound as described by Risset but as a key is struck with
increasing force the sound produced will be increasingly altered.

EXAMPLE 04A08_Risset_played_by_Midi.csd

314

ADDITIVE SYNTHESIS

<CsoundSynthesizer>
<CsOptions>

-o dac -Ma

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

O0dbfs =1

;frequency and amplitude multipliers for 11 partials of Risset's bell

giFgs ftgen o, 0, -11, -2, .56,.563,.92,.923,1.19,1.7,2,2.74,3,\
3.74,4.07
giAmps ftgen o, o0, -11, -2, 1, 2/3, 1, 1.8, 8/3, 1.46, 4/3, 4/3, 1,\
4/3
giSine ftgen o, 0, 2~10, 10, 1
seed 0
massign 0, 1 ;all midi channels to instr 1

instr 1 ;master instrument
;iscale desired deviations for maximum velocity
; frequency (cent)

imxfqgdv = 100
;amplitude (dB)
imxampdv = 12
;duration (%)
imxdurdv = 100
;;get midi values
ibasfreqg cpsmidi ;base frequency
iampmid ampmidi 1 ;receive midi-velocity and scale 0-1
;;calculate maximum deviations depending on midi-velocity
ifgdev = imxfgdv * iampmid
iampdev = imxampdv * iampmid
idurdev = imxdurdv * iampmid
;;trigger subinstruments
indx = 0 ;count variable for loop
loop:
ifgmult tab_1i indx, giFgs ;get frequency multiplier from table
ifreq = ibasfreq * ifgmult
iampmult tab i indx, giAmps ;get amp multiplier
iamp = iampmult / 20 ;scale
event i "i", 10, 0, 3, ifreq, iamp, ifgdev, iampdev, idurdev

loop_ 1t indx, 1, 11, loop
endin

instr 10 ;subinstrument for playing one partial
;jreceive the parameters from the master instrument

ifregnorm = p4 ;standard frequency of this partial
iampnorm = p5 ;standard amplitude of this partial
ifgdev = p6 ;maximum freq deviation in cents
iampdev = p7 ;maximum amp deviation in dB
idurdev = p8 ;maximum duration deviation in %
;calculate frequency
icent random -ifgdev, ifgdev ;cent deviation
ifreq = ifregnorm * cent (icent)
;calculate amplitude
idb random -iampdev, iampdev ;dB deviation
iamp = iampnorm * ampdb (idb)
;calculate duration
idurperc random -idurdev, idurdev ;duration deviation (%)
iptdur = p3 * 2~ (idurperc/100)
p3 = iptdur ;set p3 to the calculated value
;play partial
aenv transeg o, .01, 0, iamp, p3-.01, -10, O
apart poscil aenv, ifreq, giSine

outs apart, apart
endin
</CsInstruments>
<CsScore>
£ 0 3600
</CsScore>

315

ADDITIVE SYNTHESIS

</CsoundSynthesizer>

Whether you can play examples like this in realtime will depend on
the power of your computer. Have a look at chapter 2D (Live Audio)
for tips on getting the best possible performance from your Csound
orchestra.

In the next example we shall use additive synthesis to make a kind of
a wobble bass. It starts as a bass sound, then evolves into something
else, and then returns to being a bass sound again. We will first
generate all the inharmonic partials with a loop. Harmonic partials
are arithmetic, we add the same value to one partial to get the next. In
this example we will instead use geometric partials, we will multiply
one partial with a certain number (kfreqmult) to derive the next
partial frequency and so on. This number will not be constant, but
will be generated by a sine oscillator. This is frequency modulation.
Finally some randomness is added to create a more interesting sound,
and a chorus effect is also added to make the sound more 'fat'. The
exponential function, exp, is used when deriving frequencies because
if we move upwards in common musical scales, then the frequencies
grow exponentially.

EXAMPLE 04A09_Wobble_bass.csd

<CsoundSynthesizer> ; Wobble bass made using additive synthesis

<CsOptions> ; and frequency modulation
-odac
</CsOptions>

<CsInstruments>
; Example by Bjgrn Houdorf, March 2013

sr = 44100
ksmps = 1
nchnls = 2
Odbfs =1
instr 1
kamp = 24 ; Amplitude
kfreq expseqg p4, p3/2, 50*p4, p3/2, p4 ; Base frequency
iloopnum = p5 ; Number of all partials generated
alydl init 0
alyd2 init 0
seed 0
kfregmult oscili 1, 2, 1
kosc oscili 1, 2.1, 1
ktone randomh 0.5, 2, 0.2 ; A random input

316

ADDITIVE SYNTHESIS

icount = 1
loop: ; Loop to generate partials to additive synthesis
kfreq = kfregmult * kfreq
atal oscili 1, 0.5, 1
apart oscili 1, icount*exp(atal*ktone) , 1 ; Modulate each partials
anum = apart*kfreg*kosc
asigl oscili kamp, anum, 1
asig2 oscili kamp, 1.5%*anum, 1 ; Chorus effect to make the sound more "fat"
asig3 oscili kamp, 2*anum, 1
asig4 oscili kamp, 2.5%*anum, 1
alydl = (alydl + asigl+asig4d)/icount ;Sum of partials
alyd2 = (alyd2 + asig2+asig3)/icount
loop 1t icount, 1, iloopnum, loop ; End of loop
outs alydl, alyd2 ; Output generated sound
endin
</CsInstruments>

<CsScore>

£f1 0 128 10 1
il 0 60 110 50
e

</CsScore>

</CsoundSynthesizer>

GBUZZ, BUZZ AND GEN11

gbuzz is useful for creating additive tones made of of harmonically
related cosine waves. Rather than define attributes for every partial
individually gbuzz allows us to define parameters that describe the
entire additive tone in a more general way, specifically, the number
of partials in the tone, the partial number of the lowest partial present
and an amplitude coefficient multipler which shifts the peak of
spectral energy in the tone. Although number of harmonics (knh) and
lowest hamonic (klh) are k-rate arguments, they only interpreted as
integers by the opcode therefore changes from integer to integer will
result in discontinuities in the output signal. The amplitude
coefficient multiplier allows for smooth spectral modulations
however. Although we lose some control of individual partials using
gbuzz, we gain by being able to nimbly sculpt the spectrum of the
tone it produces.

In the following example a 100Hz tone is created in which the
number of partials it contains rises from 1 to 20 across its 8 second
duration. A spectrogram/sonogram displays how this manifests

317

ADDITIVE SYNTHESIS

spectrally. A linear frequency scale is employed in the spectrogram
so that harmonic partials appear equally spaced.

EXAMPLE 04A10_gbuzz.csd

<CsoundSynthesizer>

<CsOptions>
-o dac
</CsOptions>

<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1

; a cosine wave
gicos ftgen 0, 0, 2710, 11, 1

instr 1

knh line 1, p3, 20 ; number of harmonics

klh = 1 ; lowest harmonic

kmul = 1 ; amplitude coefficient multiplier

asig gbuzz 1, 100, knh, klh, kmul, gicos
outs asig, asig
endin

</CsInstruments>
<CsScore>

i 10 8

e

</CsScore>

</CsoundSynthesizer>

1920Hz + + + + + + + +

1280 Hz + + + B £ + + +

640 Hz + i X =+ 3 £ + +
_: 1 sec 2 sec 3 sec 4 sec 5 sec 6 sec 7 sec 8 sec

The total number of partials only reaches 19 because the line function

318

ADDITIVE SYNTHESIS

only reaches 20 at the very conclusion of the note.

In the next example the number of partials contained within the tone
remains constant but the partial number of the lowest partial rises
from 1 to 20.

EXAMPLE 04A11_gbuzz_partials_rise.csd

<CsoundSynthesizer>

<CsOptions>
-o dac
</CsOptions>

<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
O0dbfs =1

; a cosine wave
gicos ftgen 0, 0, 2710, 11, 1

instr 1

knh = 20

klh 1line 1, p3, 20
kmul = 1

asig gbuzz 1, 100, knh, klh, kmul, gicos
outs asig, asig
endin

</CsInstruments>
<CsScore>
i108

e

</CsScore>

</CsoundSynthesizer>

3840 Hz + g o + + 4 + +
2560 Hz + +h + I + + + +
1280 Hz + + o G = + + +

1 sec 2 sec 3 sec 4 sec 5 sec 6 sec 7 sec 8 sec

319

ADDITIVE SYNTHESIS

In the sonogram it can be seen how, as lowermost partials are
removed, additional partials are added at the top of the spectrum.
This is because the total number of partials remains constant at 20.

In the final gbuzz example the amplitude coefficient multiplier rises
from O to 2. It can be heard (and seen in the sonogram) how, when
this value is zero, emphasis is on the lowermost partial and when this
value is 2, emphasis is on the uppermost partial.

EXAMPLE 04A12_gbuzz_amp_coeff_rise.csd

<CsoundSynthesizer>

<CsOptions>
-o dac
</CsOptions>

<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
Odbfs = 1

; a cosine wave
gicos ftgen 0, 0, 2710, 11, 1

instr 1
knh = 20
klh = 1

kmul line 0, p3, 2

asig gbuzz 1, 100, knh, klh, kmul, gicos
outs asig, asig

endin

</CsInstruments>
<CsScore>

i 108

e

</CsScore>

</CsoundSynthesizer>

320

ADDITIVE SYNTHESIS

1920Hz + + + + + + + +
1260Hz + + + + + + + +
640Hz + + + + + + + +

1 sec 2 sec 3 sec 4 sec 5 sec 6 sec 7 sec 8 sec

buzz is a simplified version of gbuzz with fewer parameters — it does
not provide for modulation of the lowest partial number and
amplitude coefficient multiplier.

GEN11 creates a function table waveform using the same parameters
as gbuzz. If a gbuzz tone is required but no performance time
modulation of its parameters is needed, GEN11 may provide a more
efficient option. GEN11 also opens the possibility of using its
waveforms in a variety of other opcodes. gbuzz, buzz and GEN11
may also prove useful as a source for subtractive synthesis.

ADDITIONAL INTERESTING OPCODES FOR
ADDITIVE SYNTHESIS

HSBOSCIL

The opcode hsboscil offers an interesting method of additive
synthesis in which all partials are spaced an octave apart. Whilst this
may at first seems limiting, it does offer simple means for morphing
the precise make up if its spectrum. It can be thought of as producing
a sound spectrum that extends infinitely above and below the base
frequency. Rather than sounding all of the resultant partials
simultaneously, a window (typically a Hanning window) is placed

321

ADDITIVE SYNTHESIS

over the spectrum, masking it so that only one or several of these
partials sound at any one time. The user can shift the position of this
window up or down the spectrum at k-rate and this introduces the
possibility of spectral morphing. hsbosil refers to this control as
'kbrite'. The width of the window can be specified (but only at i-time)
using its 'iOctCnt' parameter. The entire spectrum can also be shifted
up or down, independent of the location of the masking window using
the 'ktone' parameter, which can be used to create a 'Risset glissando'-
type effect. The sense of the interval of an octave between partials
tends to dominate but this can be undermined through the use of
frequency shifting or by using a waveform other than a sine wave as
the source waveform for each partial.

In the next example, instrument 1 demonstrates the basic sound
produced by hsboscil whilst randomly modulating the location of the
masking window (kbrite) and the transposition control (ktone).
Instrument 2 introduces frequency shifting (through the use of the
hilbert opcode) which adds a frequency value to all partials thereby
warping the interval between partials. Instrument 3 employs a more
complex waveform (pseudo-inharmonic) as the source waveform for
the partials.

EXAMPLE 04A13_hsboscil.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>
Odbfs = 1

giSine ftgen 0, 0, 2710, 10, 1

; hanning window

giWwindow ftgen 0, 0, 1024, -19, 1, 0.5, 270, 0.5

; a complex pseudo inharmonic waveform (partials scaled up X 100

giWave ftgen 0, 0, 262144, 9, 100,1.000,0, 278,0.500,0, 518,0.250,0, \
816,0.125,0, 1166,0.062,0, 1564,0.031,0, 1910,0.016,0

instr 1 ; demonstration of hsboscil
kAmp = 0.3
kTone rspline -1,1,0.05,0.2 ; randomly shift spectrum up and down
kBrite rspline -1,3,0.4,2 ; randomly shift masking window up and down
iBasFreq = 200 ; base frequency
iOctCnt = 3 ; width of masking window
aSig hsboscil kAmp, kTone, kBrite, iBasFreq, giSine, giWindow, iOctCnt

out asSig

322

ADDITIVE SYNTHESIS

endin

instr 2 ; frequency shifting added

kAmp = 0.3
kTone = 0 ; spectrum remains static this time
kBrite rspline -2,5,0.4,2 ; randomly shift masking window up and down
iBasFreq = 75 ; base frequency
iOctCnt = 6 ; width of masking window
asSig hsboscil kAmp, kTone, kBrite, iBasFreq, giSine, giWindow, iOctCnt
; frequency shift the sound
kfshift = -357 ; amount to shift the frequency
areal,aimag hilbert aSig ; hilbert filtering
asin poscil 1, kfshift, giSine, O ; modulating signals
acos poscil 1, kfshift, giSine, 0.25
asSig = (areal*acos) - (aimag*asin) ; frequency shifted signal
out asSig
endin
instr 3 ; hsboscil using a complex waveform
kAmp = 0.3
kTone rspline -1,1,0.05,0.2 ; randomly shift spectrum up and down
kBrite rspline -3,3,0.1,1 ; randomly shift masking window
iBasFreq = 200
aSig hsboscil kAmp, kTone, kBrite, iBasFreq/100, giWave, giWindow
aSig2 hsboscil kAmp, kTone, kBrite, (iBasFreg*1.001)/100, giWave, giWindow
out aSig+aSig2 ; mix signal with 'detuned' version
endin
</CsInstruments>
<CsScore>
i 10 14
i 2 15 14
i 3 30 14
e
</CsScore>

</CsoundSynthesizer>

Additive synthesis can still be an exciting way of producing sounds. It
offers the user a level of control that other methods of synthesis
simply cannot match. It also provides an essential workbench for
learning about acoustics and spectral theory as related to sound.

1. This term is used here in a general manner. There is also a
Csound opcode "subinstr" which has some more specific
meanings. "

2. Jean-Claude Risset, Introductory Catalogue of Computer
Synthesized Sounds (1969), cited after Dodge/Jerse, Computer

Music, New York / London 1985, p.94"

323

ADDITIVE SYNTHESIS

324

SUBTRACTIVE SYNTHESIS

SUBTRACTIVE SYNTHESIS

INTRODUCTION

Subtractive synthesis is, at least conceptually, the inverse of additive
synthesis in that instead of building complex sound through the
addition of simple cellular materials such as sine waves, subtractive
synthesis begins with a complex sound source, such as white noise or
a recorded sample, or a rich waveform, such as a sawtooth or pulse,
and proceeds to refine that sound by removing partials or entire
sections of the frequency spectrum through the use of audio filters.

The creation of dynamic spectra (an arduous task in additive
synthesis) is relatively simple in subtractive synthesis as all that will
be required will be to modulate a few parameters pertaining to any
filters being used. Working with the intricate precision that is
possible with additive synthesis may not be as easy with subtractive
synthesis but sounds can be created much more instinctively than is
possible with additive or FM synthesis.

A CSOUND TWO-OSCILLATOR
SYNTHESIZER

The first example represents perhaps the classic idea of subtractive
synthesis: a simple two oscillator synth filtered using a single
resonant lowpass filter. Many of the ideas used in this example have
been inspired by the design of the Minimoog synthesizer (1970) and
other similar instruments.

Each oscillator can describe either a sawtooth, PWM waveform (i.e.
square - pulse etc.) or white noise and each oscillator can be
transposed in octaves or in cents with respect to a fundamental pitch.
The two oscillators are mixed and then passed through a 4-pole /

325

SUBTRACTIVE SYNTHESIS

24dB per octave resonant lowpass filter. The opcode 'moogladder’ is
chosen on account of its authentic vintage character. The cutoff
frequency of the filter is modulated using an ADSR-style (attack-
decay-sustain-release) envelope facilitating the creation of dynamic,
evolving spectra. Finally the sound output of the filter is shaped by an
ADSR amplitude envelope. Waveforms such as sawtooths and square
waves offer rich sources for subtractive synthesis as they contains a
lot of sound energy across a wide range of frequencies - it could be
said that white noise offers the richest sound source containing, as it
does, energy at every frequency. A sine wave would offer a very poor
source for subtractive synthesis as it contains energy at only one
frequency. Other Csound opcodes that might provide rich sources are
the buzz and gbuzz opcodes and the GEN09, GEN10, GEN11 and
GEN19 GEN routines.

As this instrument is suggestive of a performance instrument
controlled via MIDI, this has been partially implemented. Through
the use of Csound's MIDI interoperability opcode, mididefault, the
instrument can be operated from the score or from a MIDI keyboard.
If a MIDI note is received, suitable default p-field values are
substituted for the missing p-fields. MIDI controller 1 can be used to
control the global cutoff frequency for the filter.

A schematic for this instrument is shown below:

326

— dWY
—0D3u4
— NHOJIAVM

Oscillator 1

[— dWV
le—D3Hd
[—WHOJIAYM

Oscillator 1

lq

SUBTRACTIVE SYNTHESIS

Hsav
Hsav

l— 4401ND

l— NIYD

Lowpass Amplitude
Filter Envelope

JoXI
y

EXAMPLE 04B01_Subtractive_Midi.csd

<CsoundSynthesizer>

<CsOptions>
-odac -Ma
</CsOptions>

<CsInstruments>
sr = 44100
ksmps = 4
nchnls = 2
Odbfs = 1

initec7 1,1,0.8

prealloc 1, 10

instr 1
iNum notnum
iCF ctrl?

;set initial controller position

;read in midi note number
1,1,0.1,14 ;read in midi controller 1

; set up default p-field values for midi activated notes

mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault

iNum, p4 ;pitch (note number)
0.3, p5 ;amplitude 1

2, pb ;type 1

0.5, p7 ;pulse width 1

0, p8 ;octave disp. 1

0, p9 ;tuning disp. 1

0.3, plo0 ;amplitude 2

1, pll ;type 2

0.5, pl2 ;pulse width 2

-1, pl3 ;octave displacement 2
20, pl4 ;tuning disp. 2

iCF, pl5 ;filter cutoff freqg
0.01, ple6 ;filter env. attack time
1, pl7 ;filter env. decay time
0.01, pl8 ;filter env. sustain level
0.1, pl9 ;filter release time
0.3, p20 ;filter resonance

0.01, p21 ;amp. env. attack

0.1, p22 ;jamp. env. decay.

1, p23 ;jamp. env. sustain
0.01, p24 ;amp. env. release

327

SUBTRACTIVE SYNTHESIS

; asign p-fields to variables

iCPS = cpsmidinn (p4) ;convert from note number to cps
kAmpl = p5

iTypel = p6

kPWl = p7

kOctl = octave (p8) ;convert from octave displacement to multiplier
kTunel = cent (p9) ;convert from cents displacement to multiplier
kAmp2 = pl0

iType2 = pll

kPW2 = pl2

kOct2 = octave (pl3)

kTune2 = cent (pl4)

iCF = pl5

iFAtt = plé

iFDec = pl7

iFSus = pl8

iFRel = plo

kRes = p20

iAAtt = p21

iADec = P22

iASus = p23

iARel = p24

;oscillator 1
;if type is sawtooth or square...
if iTypel==1||iTypel==2 then

;...derive vco2 'mode' from waveform type

iModel = (iTypel=120:2)

aSigl wvco2 kAmpl, iCPS*kOctl*kTunel, iModel, kPW1;VCO audio oscillator
else ;otherwise. ..

aSigl noise kAmpl, 0.5 ;...generate white noise
endif

;oscillator 2 (identical in design to oscillator 1)
if iType2==1|]|iType2==2 then

iMode2 = (iType2=120:2)

aSig2 wvco2 kAmp2, iCPS*kOct2*kTune2, iMode2, kPW2
else

aSig2 noise kAmp2,0.5
endif

;mix oscillators

aMix sum aSigl,aSig2

;lowpass filter

kFiltEnv expsegr 0.0001,iFAtt, iCPS*iCF,iFDec,iCPS*iCF*iFSus, iFRel, 0.0001
alOut moogladder aMix, kFiltEnv, kRes

;amplitude envelope

aAmpEnv expsegr 0.0001,iAAtt,1,iADec,iASus,iARel,0.0001
alut = aOut*aAmpEnv
outs alOut, alut
endin
</CsInstruments>
<CsScore>
;p4 = oscillator frequency
;oscillator 1
;p5 = amplitude
;p6 = type (l=sawtooth,2=square-PWM, 3=noise)
;p7 = PWM (square wave only)
;P8 = octave displacement
;P9 = tuning displacement (cents)

;oscillator 2
;pl0 = amplitude
;pll = type (l=sawtooth,2=square-PWM,3=noise)

;pl2 = pwm (square wave only)
;pl3 = octave displacement
;pl4d = tuning displacement (cents)

;global filter envelope

;pl5 = cutoff

;pl6 = attack time

;pl7 = decay time

;pl8 = sustain level (fraction of cutoff)

328

SUBTRACTIVE SYNTHESIS

;pl9 release time

;p20 = resonance

;global amplitude envelope
;P21 = attack time

;P22 = decay time
;p23 = sustain level
;p24 = release time

; pl p2 p3 p4 p5 p6 p7 p8 p9 pl0 pll pl2 pl3
;pld pl5 ple pl7 pl8 pl9 p20 p2l p22 p23 p24
i1 o0 1 50 0 2 .5 0 -5 0 2 0.5 0 \

5 12 .01 2 .01 .1 0 .005 .01 1 .05
i1 + 1 50 .2 2 .5 0 -5 .2 2 0.5 0 \
5 1 .01 1 .1 .1 .5 .005 .01 1 .05
i1l + 1 50 .2 2 .5 0o -8 .2 2 0.5 0 \
8 3 .01 1 .1 .1 .5 .005 .01 1 .05
i1 + 1 50 .2 2 .5 0o -8 .2 2 0.5 -1 \
8 7 01 1 .1 .1 .5 .005 .01 1 .05
i1 + 3 50 .2 1 .5 0 -10 .2 1 0.5 -2 \
10 40 .01 3 .001 .1 .5 .005 .01 1 .05
il + 10 501 2 .01 -20 .2 3 0.5 0 \
0 40 5 5 .001 1.5 .1 .005 .01 1 .05

£ 0 3600

e

</CsScore>

</CsoundSynthesizer>

SIMULATION OF TIMBRES FROM A NOISE
SOURCE

The next example makes extensive use of bandpass filters arranged in
parallel to filter white noise. The bandpass filter bandwidths are
narrowed to the point where almost pure tones are audible. The
crucial difference is that the noise source always induces instability in
the amplitude and frequency of tones produced - it is this quality that
makes this sort of subtractive synthesis sound much more organic
than an additive synthesis equivalent. If the bandwidths are widened,
then more of the characteristic of the noise source comes through and
the tone becomes 'airier' and less distinct; if the bandwidths are
narrowed, the resonating tones become clearer and steadier. By
varying the bandwidths interesting metamorphoses of the resultant
sound are possible.

22 reson filters are used for the bandpass filters on account of their
ability to ring and resonate as their bandwidth narrows. Another
reason for this choice is the relative CPU economy of the reson filter,
a not insignificant concern as so many of them are used. The

329

SUBTRACTIVE SYNTHESIS

frequency ratios between the 22 parallel filters are derived from
analysis of a hand bell, the data was found in the appendix of the
Csound manual here. Obviously with so much repetition of similar
code, some sort of abstraction would be a good idea (perhaps through
a UDO or by using a macro), but here, and for the sake of clarity, it is
left unabstracted.

In addition to the white noise as a source, noise impulses are also
used as a sound source (via the 'mpulse' opcode). The instrument will
automatically and randomly slowly crossfade between these two
sound sources.

A lowpass and highpass filter are inserted in series before the parallel
bandpass filters to shape the frequency spectrum of the source sound.
Csound's butterworth filters butlp and buthp are chosen for this task
on account of their steep cutoff slopes and minimal ripple at the
cutoff frequency.

The outputs of the reson filters are sent alternately to the left and
right outputs in order to create a broad stereo effect.

This example makes extensive use of the rspline’ opcode, a generator
of random spline functions, to slowly undulate the many input
parameters. The orchestra is self generative in that instrument 1
repeatedly triggers note events in instrument 2 and the extensive use
of random functions means that the results will continually evolve as
the orchestra is allowed to perform.

A flow diagram for this instrument is shown below:

330

SUBTRACTIVE SYNTHESIS

:
v .
(o] o g
White 5 3 5 %
Noise I I I i
§ | ,| Lowpass | ,| Highpass | ,| Bandpass | |
o Filter Filter Filter
£
Lo
‘ ‘ x 22 - b
Pulse
Generator
EXAMPLE 04B02_Subtractive_timbres.csd
<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example written by Iain McCurdy
sr = 44100
ksmps = 16
nchnls = 2
Odbfs =1
instr 1 ; triggers notes in instrument 2 with randomised p-fields
krate randomi 0.2,0.4,0.1 ;rate of note generation
ktrig metro krate ;triggers used by schedkwhen
koct random 5,12 ; fundemental pitch of synth note
kdur random 15,30 ;duration of note
schedkwhen ktrig,0,0,2,0,kdur,cpsoct (koct) ;trigger a note in instrument 2
endin
instr 2 ; subtractive synthesis instrument
aNoise pinkish 1 ;a noise source sound: pink noise
kGap rspline 0.3,0.05,0.2,2 ;time gap between impulses
aPulse mpulse 15, kGap ;a train of impulses
kCFade rspline 0,1,0.1,1 ;crossfade point between noise and impulses
alnput ntrpol aPulse,aNoise, kCFade; implement crossfade
; cutoff frequencies for low and highpass filters
kLPF_CF rspline 13,8,0.1,0.4
kHPF CF rspline 5,10,0.1,0.4
; filter input sound with low and highpass filters in series -
; — done twice per filter in order to sharpen cutoff slopes
alnput butlp alnput, cpsoct (kLPF_CF)
alnput butlp alnput, cpsoct (kLPF_CF)
alnput buthp aInput, cpsoct (kHPF CF)
alnput buthp alnput, cpsoct (kHPF CF)
kcf rspline p4*1.05,p4*0.95,0.01,0.1 ; fundemental
; bandwidth for each filter is created individually as a random spline function
kbwl rspline 0.00001,10,0.2,1
kbw2 rspline 0.00001,10,0.2,1
kbw3 rspline 0.00001,10,0.2,1
kbw4 rspline 0.00001,10,0.2,1
kbw5 rspline 0.00001,10,0.2,1
kbwo6 rspline 0.00001,10,0.2,1
kbw7 rspline 0.00001,10,0.2,1
kbw8 rspline 0.00001,10,0.2,1
kbw9 rspline 0.00001,10,0.2,1
kbwl0 rspline 0.00001,10,0.2,1
kbwll rspline 0.00001,10,0.2,1

331

SUBTRACTIVE SYNTHESIS

kbwl?2 rspline 0.00001,10,0.2,1

kbwl3 rspline 0.00001,10,0.2,1

kbwl4 rspline 0.00001,10,0.2,1

kbwlb rspline 0.00001,10,0.2,1

kbwl6 rspline 0.00001,10,0.2,1

kbwl7 rspline 0.00001,10,0.2,1

kbwl8 rspline 0.00001,10,0.2,1

kbwl9 rspline 0.00001,10,0.2,1

kbw20 rspline 0.00001,10,0.2,1

kbw21 rspline 0.00001,10,0.2,1

kbw22 rspline 0.00001,10,0.2,1

imode = 0 ; amplitude balancing method used by the reson filters
al reson alnput, kcf*l, kbwl, imode
a2 reson alnput, kcf*1.0019054878049, kbw2, imode
a3 reson alnput, kcf*1.7936737804878, kbw3, imode
ad reson alnput, kcf*1.8009908536585, kbw4, imode
ab reson aInput, kcf*2.5201981707317, kbw5, imode
ao reson aInput, kcf*2.5224085365854, kbw6, imode
a7 reson alInput, kcf*2.9907012195122, kbw7, imode
a8 reson alnput, kcf*2.9940548780488, kbw8, imode
ag reson alnput, kcf*3.7855182926829, kbw9, imode
alo reson alnput, kcf*3.8061737804878, kbwl0,imode
all reson aInput, kcf*4.5689024390244, kbwll,imode
al2 reson aInput, kcf*4.5754573170732, kbwl2,imode
al3 reson alInput, kcf*5.0296493902439, kbwl3,imode
al4d reson alnput, kcf*5.0455030487805, kbwl4, imode
als reson alnput, kcf*6.0759908536585, kbwl5, imode
ale reson aInput, kcf*5.9094512195122, kbwl6, imode
al7 reson aInput, kcf*6.4124237804878, kbwl7,imode
als reson aInput, kcf*6.4430640243902, kbwl8, imode
al9 reson alnput, kcf*7.0826219512195, kbwl9, imode
az0 reson alnput, kcf*7.0923780487805, kbw20,imode
azl reson alnput, kcf*7.3188262195122, kbw2l,imode
azz reson aInput, kcf*7.5551829268293, kbw22,imode

; amplitude control for each filter output

kAmpl rspline 0, 1, 0.3,
kAmp2 rspline , , ,
kAmp3 rspline , , ,
kAmp4 rspline s 1, ’
kAmp5 rspline , , ,
kAmp6 rspline , , ,
kAmp7 rspline , 1, ’
kAmp8 rspline ’ , ,
kAmp9 rspline , , ,

kAmp1l0 rspline
kAmpll rspline
kAmpl2 rspline
kAmpl3 rspline
kAmpl4 rspline
kAmpl5 rspline
kAmpl6 rspline
kAmpl7 rspline
kAmpl8 rspline
kAmpl9 rspline
kAmp20 rspline
kAmp21 rspline
kAmp22 rspline

~

~

<

WWWWWWWWWWwWwwWwwWwwwwwwwww
PR R EPERRERRERRBEPRRRERR B PP

[eReNeoNeNoNeNoNeoNoNoNoNe oo N ool ool ool o)
~

PR RPRPRRRRRRRRRRRRRRRRERP &

[eReNeNeNeNsNeNcNeNcNeoNeNoNc oo oo N e i e}

; left and right channel mixes are created using alternate filter outputs.
; This shall create a stereo effect.

aMixL sum al*kAmpl, a3*kAmp3, a5*kAmp5,a7*kAmp7,a9*kAmp9,all*kAmpll, \
al3*kAmpl3,al5*kAmpl5,al7*kAmpl7,al9*kAmpl9,a2l*kAmp21l
aMixR sum a2*kAmp2,ad4*kAmp4, a6*kAmp6, a8*kAmp8,al0*kAmpl0, al2*kAmpl2, \

ald4*kAmpl4, al6*kAmpl6,al8*kAmpl8,a20*kAmp20, a22*kAmp22

kEnv linseg 0, p3*0.5, 1,p3*0.5,0,1,0 ; global amplitude envelope
outs (aMixL*kEnv*0.00008), (aMixR*kEnv*0.00008) ; audio sent to outputs
endin

</CsInstruments>

332

SUBTRACTIVE SYNTHESIS

<CsScore>

i 1 0 3600 ; instrument 1 (note generator) plays for 1 hour
e

</CsScore>

</CsoundSynthesizer>

VOWEL-SOUND EMULATION USING
BANDPASS FILTERING

The final example in this section uses precisely tuned bandpass
filters, to simulate the sound of the human voice expressing vowel
sounds. Spectral resonances in this context are often referred to as
'formants'. Five formants are used to simulate the effect of the human
mouth and head as a resonating (and therefore filtering) body. The
filter data for simulating the vowel sounds A,E,I,O and U as
expressed by a bass, tenor, counter-tenor, alto and soprano voice were
found in the appendix of the Csound manual here. Bandwidth and
intensity (dB) information is also needed to accurately simulate the
various vowel sounds.

reson filters are again used but butbp and others could be equally
valid choices.

Data is stored in GENO7 linear break point function tables, as this
data is read by k-rate line functions we can interpolate and therefore
morph between different vowel sounds during a note.

The source sound for the filters comes from either a pink noise
generator or a pulse waveform. The pink noise source could be used if
the emulation is to be that of just the breath whereas the pulse
waveform provides a decent approximation of the human vocal
chords buzzing. This instrument can however morph continuously
between these two sources.

A flow diagram for this instrument is shown below:

333

SUBTRACTIVE SYNTHESIS

[dAY

Pink Noise

[— dNY
le—0D34d

JaXIN

Pulse
Waveform

h 4

o=

2 5

=
§
m I

Bandpass >
Filters
x5

J9XIN

EXAMPLE 04B03_Subtractive_vowels.csd

<CsoundSynthesizer>

<CsOpt
-odac
</CsOp

<CsInstruments>

ions>

tions>

;example by Iain McCurdy

sr = 4
ksmps
nchnls
Odbfs

4100

= 16

=2

=1

; FUNCTION TABLES STORING DATA FOR VARIOUS VOICE FORMANTS

; BASS
giBF1
giBF2
giBF3
giBF4
giBF5

giBDbl
giBDb2
giBDb3
giBDb4
giBDb5

giBBW1
giBBW2
giBBW3
giBBW4
giBBW5

; TENOR
giTF1
giTF2
giTF3
giTF4
giTF5

giTbbl ftgen O,
giTDb2 ftgen O,

334

ftgen
ftgen
ftgen
ftgen
ftgen

ftgen
ftgen
ftgen
ftgen
ftgen

ftgen
ftgen
ftgen
ftgen
ftgen

ftgen
ftgen
ftgen
ftgen
ftgen

0, -5, -2, 600,

0, -5, -2, 1040,
0, -5, -2, 2250,
0, -5, -2, 2450,
0, -5, -2, 2750,

0, =5, -2, 0,
0, =5, -2, -7,
0, -5, -2, -9,
0, =5, -2, -9,
0, -5, -2, -20,

0, -5, -2, 60,
0, -5, -2, 70,
0, -5, -2, 110,
0, -5, -2, 120,
0, -5, -2, 130,

0, -5, -2, 650,
0, -5, -2, 1080,
0, -5, -2, 2650,
0, -5, -2, 2900,
0, -5, -2, 3250,

0, -5, -2, 0,
0, -5, -2, -6,

400,
1620,
2400,
2800,
3100,

0,
-12,
,9’
-12,
-18,

40,

80,
100,
120,
120,

400,
1700,
2600,
3200,
3580,

0,
-14,

250,

1750,
2600,
3050,
3340,

90,
100,
120,
120,

290,
1870,
2800,
3250,
3540,

0,
-15,

400,

0,

-40,

40,

80,
100,
120,
120,

0,
-10,

750,
2400,
2600,
2900,

-20
-32
-28
-36

40
100

120
120

400,
800,
2600,
2800,
3000,

0
-20

350
600
2400
2675
2950

350
600
2700
2900
3300

giTDb3
giTDb4
giTDb5

giTBW1
giTBW2
giTBW3
giTBW4
giTBW5

ftgen 0, O,
ftgen 0, O,
ftgen 0, O,

ftgen 0, 0
ftgen 0, 0
ftgen 0, O,
ftgen 0, 0
ftgen 0, O

; COUNTER TENOR

giCTF1
giCTF2
giCTF3
giCTF4
giCTF5

giTBDb1
giTBDb2
giTBDb3
giTBDb4
giTBDb5

giTBW1
giTBW2
giTBW3
giTBW4
giTBW5

;ALTO

giAFl £
giAF2 £
giAF3 £
giAF4 £
giAF5 £

giADbl
giADb2
giADb3
giADb4
giADb5

giABW1
giABW2
giABW3
giABW4
giABWS

ftgen O,
ftgen O,
ftgen O,
ftgen O,
ftgen O,

ftgen 0, O
ftgen 0, O
ftgen 0, O
ftgen 0, O
ftgen 0, O

ftgen 0, 0
ftgen 0, 0
ftgen 0, O,
ftgen 0, O
ftgen 0, 0

tgen
tgen
tgen
tgen
tgen

oo ooo
o O O oo

ftgen 0, 0
ftgen 0, O
ftgen 0, O,
ftgen 0, 0
ftgen 0, 0

ftgen 0, O
ftgen 0, O
ftgen 0, O,
ftgen 0, 0
ftgen 0, 0

; SOPRANO

gisSFl £
gisF2 £
gisSF3 £
gisF4 £
giSF5 f

gisSDbl
giSDb2
giSDb3
giSDb4
giSDb5

gisBW1
giSBW2
giSBW3
gisSBW4
giSBWS

instr 1

kFund

kVow
kBW

tgen
tgen
tgen
tgen
tgen

[eNeNeNeNeol
o O O oo

ftgen
ftgen
ftgen
ftgen
ftgen

o O O oo
o oo oo

ftgen
ftgen
ftgen
ftgen
ftgen

o O O oo
o oo oo

expon
line
line

iVoice =

kSrc

line

-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
, -5, -2
, -5, -2
, -5, -2
, -5, -2
, -5, -2
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
-5, -2,
p4,p3
p6,p3
p8,p3
pl0
pll,p

120,
130,
140,

660,
1120,
2750,
3000,
3350,

Y
; =23,
, =24,
, =38,

80,
920,
120,
130,
140,

50,

170,
180,
200,

80,
90,
120,
130,
140,

/PS5
1 p7
/P9

3,pl2

-12, -18, -12, -17
-14, -20, -12, -14
-20, -30, -26, -26
70, 40, 40, 40
80, 90, 80, 60
100, 100, 100, 100
120, 120, 120, 120
120, 120, 120, 120
440, 270, 430,
1800, 1850, 820,
2700, 2900, 2700,
3000, 3350, 3000,
3300, 3590, 3300,
o, 0, 0, O
-14, -24, -10, -20
-18, -24, -26, -23
-20, -36, -22, -30
-20, -36, -34, -30
70, 40, 40, 40
80, 90, 80, 60
100, 100, 100, 100
120, 120, 120, 120
120, 120, 120, 120
400, 350, 450,
1600, 1700, 800,
2700, 2700, 2830, 2
3300, 3700, 3500, 2
4950, 4950, 4950, 4
o, 0, 0, O
-24, -20, -9, -12
-30, -30, -16, -30
-35, -36, -28, -40
-60, -60, -55, -64
60, 50, 70, 50
80, 100, 80, 60
120, 120, 100, 170
150, 150, 130, 180
200, 200, 135, 200
350, 270, 450,
2000, 2140, 800,
2800, 2950, 2830, 2
3600, 3900, 3800, 3
4950, 4950, 4950, 4
o, 0, 0, ©
-20, -12, -11, -16
-15, -26, -22, -35
-40, -26, -22, -40
-56, -44, -50, -60
60, 60, 70, 50
90, 90, 80, 60
100, 100, 100, 170
150, 120, 130, 180
200, 120, 135, 200

; fundamental
; vowel select

370
630
2750
3000
3400

325
700
530
500
950

325
700
700
800
950

SUBTRACTIVE SYNTHESIS

; bandwidth factor

; voice select
; source mix

335

SUBTRACTIVE SYNTHESIS

aNoise pinkish 3 ; pink noise
avCco vco2 1.2,kFund,2,0.02 ; pulse tone
alnput ntrpol avCo,aNoise, kSrc ; input mix

; read formant cutoff frequenies from tables

kCF1 tablei kVow*5, giBF1l+ (iVoice*15)

kCE2 tablei kVow*5, giBF1l+ (iVoice*15) +1

kCF3 tablei kVow*5,giBF1l+ (iVoice*15) +2

kCF4 tablei kVow*5, giBF1l+ (iVoice*15) +3

kCF5 tablei kVow*5,giBF1l+ (iVoice*15) +4

; read formant intensity values from tables

kDB1 tablei kVow*5, giBF1l+ (iVoice*15) +5

kDB2 tablei kVow*5, giBF1l+ (iVoice*15) +6

kDB3 tablei kVow*5,giBF1l+ (iVoice*15) +7

kDB4 tablei kVow*5,giBF1l+ (iVoice*15) +8

kDB5 tablei kVow*5,giBF1+ (iVoice*15)+9

; read formant bandwidths from tables

kBW1 tablei kVow*5, giBF1l+ (iVoice*15)+10

kBW2 tablei kVow*5,giBF1+ (iVoice*15)+11

kBW3 tablei kVow*5,giBF1l+ (iVoice*15)+12

kBW4 tablei kVow*5,giBF1l+ (iVoice*15)+13

kBW5S tablei kVow*5,giBF1l+ (iVoice*15)+14

; create resonant formants byt filtering source sound

aForml reson aInput, kCFl, kBW1*kBwW, 1 ; formant 1
aForm2 reson alnput, kCF2, kBW2*kBW, 1 ; formant 2
aForm3 reson alnput, kCF3, kBW3*kBW, 1 ; formant 3
aForm4 reson alnput, kCF4, kBW4*kBW, 1 ; formant 4
aForm5 reson aInput, kCF5, kBW5*kBW, 1 ; formant 5

; formants are mixed and multiplied both by intensity values derived from tables
and by the on-screen gain controls for each formant

aMix sum
aForml*ampdbfs (kDB1l),aForm2*ampdbfs (kDB2) ,aForm3*ampdbfs (kDB3) ,aForm4*ampdbfs (kDB4) , a
Formb5*ampdbfs (kDB5)

kEnv linseg 0,3,1,p3-6,1,3,0 ; an amplitude envelope
outs aMix*kEnv, aMix*kEnv ; send audio to outputs
endin
</CsInstruments>

<CsScore>

; p4 = fundemental begin value (c.p.s.)

; p5 = fundemental end wvalue

; p6 = vowel begin value (0 - 1 : a e 1 o u)
; p7 = vowel end value

; p8 = bandwidth factor begin (suggested range 0 - 2)
; P9 = bandwidth factor end
; pl0 = voice (0O=bass; l=tenor; 2=counter_ tenor; 3=alto; 4=soprano)

; pll = input source begin (0 - 1 : VCO - noise)
; pl2 = input source end

; p4d p5 p6 p7 p8 pY pl0 pll pl2
i1 0 10 50 100 O 1 2 0 0 0 0
i18 . 78 77 1 0 1 0 1 0 0

i 116 . 150 118 O 1 1 0 2 1 1

i 124 . 2002201 0 0.2 0 3 1 0

i1 32 . 400 800 O 1 0.2 0 4 0 1

e

</CsScore>

</CsoundSynthesizer>

CONCLUSION

These examples have hopefully demonstrated the strengths of
subtractive synthesis in its simplicity, intuitive operation and its

336

SUBTRACTIVE SYNTHESIS

ability to create organic sounding timbres. Further research could
explore Csound's other filter opcodes including vcomb, wguidel,
wguide2, mode and the more esoteric phaserl, phaser2 and resony.

337

SUBTRACTIVE SYNTHESIS

338

AMPLITUDE AND RING MODULATION

AMPLITUDE AND RING MODULATION

INTRODUCTION

Amplitude-modulation (AM) means, that one oscillator varies the
volume/amplitude of an other. If this modulation is done very slowly
(1 Hz to 10 Hz) it is recognised as tremolo. Volume-modulation
above 10 Hz leads to the effect, that the sound changes its timbre. So
called side-bands appear.

Example 04C01_Simple_AM.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

sr = 48000
ksmps = 32
nchnls =1
Odbfs =1

instr 1

aRaise expseg 2, 20, 100

aModSine poscil 0.5, aRaise, 1
aDCOffset = 0.5 ; we want amplitude-modulation
aCarSine poscil 0.3, 440, 1

out aCarSine* (aModSine + aDCOffset)
endin

</CsInstruments>

<CsScore>

£ 1 0 1024 10 1

i1 0 25

e

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

THEORY, MATHEMATICS AND SIDEBANDS

The side-bands appear on both sides of the main frequency. This
means (freq1l-freq2) and (freql+freq2) appear.

The sounding result of the following example can be calculated as
this: freql = 440Hz, freq2 = 40 Hz -> The result is a sound with [400,
440, 480] Hz.

339

AMPLITUDE AND RING MODULATION

The amount of the sidebands can be controlled by a DC-offset of the
modulator.

Example 04C02_Sidebands.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

sr = 48000
ksmps = 32
nchnls = 1
Odbfs = 1

instr 1

aOffset linseg 0, 1, 0, 5, 0.6, 3, O
aSinel poscil 0.3, 40 , 1

aSine2 poscil 0.3, 440, 1

out (aSinel+aOffset)*aSine2
endin

</CsInstruments>

<CsScore>

£ 10 1024 10 1

i1 0 10

e

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

Ring-modulation is a special-case of AM, without DC-offset (DC-
Offset = 0). That means the modulator varies between -1 and +1 like
the carrier. The sounding difference to AM is, that RM doesn't

contain the carrier frequency.

(If the modulator is unipolar (oscillates between 0 and +1) the effect
is called AM.)

MORE COMPLEX SYNTHESIS USING RING
MODULATION AND AMPLITUDE
MODULATION

If the modulator itself contains more harmonics, the resulting ring
modulated sound becomes more complex.

340

AMPLITUDE AND RING MODULATION

Carrier freq: 600 Hz
Modulator freqs: 200Hz with 3 harmonics = [200, 400, 600] Hz

Resulting fregs: [0, 200, 400, <-600->, 800, 1000, 1200]

Example 04C03_RingMod.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

sr = 48000
ksmps = 32
nchnls =1
O0dbfs =1

instr 1 ; Ring-Modulation (no DC-Offset)

aSinel poscil 0.3, 200, 2 ; -> [200, 400, 600] Hz
aSine2 poscil 0.3, 600, 1

out aSinel*aSine2

endin

</CsInstruments>

<CsScore>

£ 1 0 1024 10 1 ; sine

£f 2 0 1024 10 1 1 1; 3 harmonics
i105

e

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

Using an inharmonic modulator frequency also makes the result
sound inharmonic. Varying the DC-offset makes the sound-spectrum
evolve over time.

Modulator fregs: [230, 460, 690]
Resulting fregs: [(-)90, 140, 370, <-600->, 830, 1060, 1290]

(negative frequencies become mirrored, but phase inverted)

Example 04C04_Evolving_AM.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

341

AMPLITUDE AND RING MODULATION

sr = 48000
ksmps = 32
nchnls =1
Odbfs =1

instr 1 ; Amplitude-Modulation

aOffset linseg 0, 1, 0, 5, 1, 3, 0

aSinel poscil 0.3, 230, 2 ; -> [230, 460, 690] Hz
aSine2 poscil 0.3, 600, 1

out (aSinel+aOffset)*aSine2

endin

</CsInstruments>

<CsScore>

£ 1 0 1024 10 1 ; sine

f 2 0 1024 10 1 1 1; 3 harmonics
i 10 10

e

</CsScore>

</CsoundSynthesizer>

342

FREQUENCY MODULATION

FREQUENCY MODULATION

FROM VIBRATO TO THE EMERGENCE OF
SIDEBANDS

A vibrato is a periodical change of pitch, normally less than a
halftone and with a slow changing-rate (around 5Hz). Frequency
modulation is usually implemented using sine-wave oscillators.

Example 04D01_Vibrato.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

sr = 48000

ksmps = 32

nchnls = 2

Odbfs =1

instr 1

aMod poscil 10, 5, 1 ; 5 Hz vibrato with 10 Hz modulation-width
aCar poscil 0.3, 440+aMod, 1 ; -> vibrato between 430-450 Hz
outs aCar, aCar

endin

</CsInstruments>

<CsScore>

£ 10 1024 10 1 ;Sine wave for table 1
i102

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

As the depth of modulation is increased, it becomes harder to
perceive the base-frequency, but it is still vibrato.

Example 04D02_Vibrato_deep.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

sr = 48000

ksmps = 32

nchnls = 2

Odbfs =1

343

FREQUENCY MODULATION

instr 1

aMod poscil 90, 5 , 1 ; modulate 90Hz ->vibrato from 350 to 530 hz
aCar poscil 0.3, 440+aMod, 1

outs aCar, aCar

endin

</CsInstruments>

<CsScore>

£ 10 1024 10 1 ;Sine wave for table 1
i102

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

THE SIMPLE MODULATOR->CARRIER
PAIRING

Increasing the modulation-rate leads to a different effect. Frequency-
modulation with more than 20Hz is no longer recognized as vibrato.
The main-oscillator frequency lays in the middle of the sound and
sidebands appear above and below. The number of sidebands is
related to the modulation amplitude, later this is controlled by the so
called modulation-index.

Example 04D03_FM_index.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

sr = 48000

ksmps = 32

nchnls = 2

Odbfs = 1

instr 1

aRaise linseg 2, 10, 100 ;increase modulation from 2Hz to 100Hz
aMod poscil 10, aRaise , 1

aCar poscil 0.3, 440+aMod, 1

outs aCar, aCar

endin

</CsInstruments>

<CsScore>

£ 10 1024 10 1 ;Sine wave for table 1
i10 12

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

Hereby the main-oscillator is called carrier and the one changing the

344

FREQUENCY MODULATION

carriers frequency is the modulator. The modulation-index: I = mod-
amp/mod-freq. Making changes to the modulation-index, changes
the amount of overtones, but not the overall volume. That gives the
possibility produce drastic timbre-changes without the risk of
distortion.

When carrier and modulator frequency have integer ratios like 1:1,
2:1, 3:2, 5:4.. the sidebands build a harmonic series, which leads to a
sound with clear fundamental pitch.

Example 04D04_Harmonic_FM.csd

<CsoundSynthesizer>

<CsOptions>

-o dac

</CsOptions>

<CsInstruments>

sr = 48000

ksmps = 32

nchnls = 2

O0dbfs =1

instr 1

kCarFreq = 660 ; 660:440 = 3:2 -> harmonic spectrum
kModFreq = 440

kIndex = 15 ; high Index.. try lower values like 1, 2, 3..
kIndexM = 0

kMaxDev = kIndex*kModFreq

kMinDev = kIndexM*kModFreq

kVarDev = kMaxDev-kMinDev

kModAmp = kMinDev+kVarDev

aModulator poscil kModAmp, kModFreq, 1
aCarrier poscil 0.3, kCarFreg+aModulator, 1
outs aCarrier, aCarrier

endin

</CsInstruments>

<CsScore>

£ 10 1024 10 1 ;Sine wave for table 1
i 10 15

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

Otherwise the spectrum of the sound is inharmonic, which makes it
metallic or noisy.

Raising the modulation-index, shifts the energy into the side-bands.

The side-bands distance is: Distance in Hz = (carrierFreq)-
(k*modFreq) | k=1{1,2,3,4..}

345

FREQUENCY MODULATION

This calculation can result in negative frequencies. Those become
reflected at zero, but with inverted phase! So negative frequencies
can erase existing ones. Frequencies over Nyquist-frequency (half of
samplingrate) "fold over" (aliasing).

THE JOHN CHOWNING FM MODEL OF A
TRUMPET

Composer and researcher Jown Chowning worked on the first digital
implementation of FM in the 1970's.

Using envelopes to control the modulation index and the overall
amplitude gives you the possibility to create evolving sounds with
enormous spectral variations. Chowning showed these possibilities in
his pieces, where he let the sounds transform. In the piece Sabelithe a
drum sound morphes over the time into a trumpet tone.

Example 04D05_Trumpet_FM.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

sr = 48000

ksmps = 32

nchnls = 2

Odbfs =1

instr 1 ; simple way to generate a trumpet-like sound
kCarFreq 440

kModFreq 440

kIndex =
kIndexM
kMaxDev kIndex*kModFreq

kMinDev kIndexM * kModFreqg

kVarDev = kMaxDev-kMinDev

aEnv expseg .001, 0.2, 1, p3-0.3, 1, 0.2, 0.001
aModAmp = kMinDev+kVarDev*aEnv

aModulator poscil aModAmp, kModFreq, 1

aCarrier poscil 0.3*aEnv, kCarFreg+aModulator, 1
outs aCarrier, aCarrier

endin

ol

0

</CsInstruments>
<CsScore>
£ 10 1024 10 1 ;Sine wave for table 1

346

FREQUENCY MODULATION

i10 2

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

The following example uses the same instrument, with different
settings to generate a bell-like sound:

Example 04D06_Bell_FM.csd

<CsoundSynthesizer>

<CsOptions>

-o dac

</CsOptions>

<CsInstruments>

sr = 48000

ksmps = 32

nchnls = 2

O0dbfs =1

instr 1 ; bell-like sound
kCarFreq = 200 ; 200/280 = 5:7 -> inharmonic spectrum
kModFreq = 280

kIndex = 12

kIndexM = 0

kMaxDev = kIndex*kModFreq
kMinDev = kIndexM * kModFreq

kVarDev kMaxDev-kMinDev

aEnv expseg .001, 0.001, 1, 0.3, 0.5, 8.5, .001
aModAmp = kMinDev+kVarDev*aEnv

aModulator poscil aModAmp, kModFreq, 1

aCarrier poscil 0.3*akEnv, kCarFreg+aModulator, 1
outs aCarrier, aCarrier

endin

</CsInstruments>

<CsScore>

£ 10 1024 10 1 ;Sine wave for table 1
i109

</CsScore>

</CsoundSynthesizer>
; written by Alex Hofmann (Mar. 2011)

MORE COMPLEX FM ALGORITHMS

Combining more than two oscillators (operators) is called complex
FM synthesis. Operators can be connected in different combinations
often 4-6 operators are used. The carrier is always the last operator in
the row. Changing it's pitch, shifts the whole sound. All other
operators are modulators, changing their pitch alters the sound-
spectrum.

347

FREQUENCY MODULATION

Two into One: M1+M2 -> C

The principle here is, that (M1:C) and (M2:C) will be separate
modulations and later added together.

Example 04D07_Added_FM.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

sr = 48000

ksmps = 32

nchnls = 2

O0dbfs =1

instr 1

aModl poscil 200, 700, 1

aMod2 poscil 1800, 290, 1

aSig poscil 0.3, 440+aModl+aMod2, 1
outs aSig, aSig

endin

</CsInstruments>

<CsScore>

f 1 0 1024 10 1 ;Sine wave for table 1
i103

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

In series: M1->M2->C

This is much more complicated to calculate and sound-timbre
becomes harder to predict, because M1:M2 produces a complex
spectrum (W), which then modulates the carrier (W:C).

Example 04D08_Serial_FM.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

sr = 48000

ksmps = 32

nchnls = 2

Odbfs =1

instr 1

348

FREQUENCY MODULATION

aModl poscil 200, 700, 1

aMod2 poscil 1800, 290+aModl, 1

aSig poscil 0.3, 440+aMod2, 1

outs aSig, aSig

endin

</CsInstruments>

<CsScore>

£ 10 1024 10 1 ;Sine wave for table 1
i103

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

PHASE MODULATION - THE YAMAHA DX7
AND FEEDBACK FM

There is a strong relation between frequency modulation and phase
modulation, as both techniques influence the oscillator's pitch, and
the resulting timbre modifications are the same.

If you'd like to build a feedbacking FM system, it will happen that the
self-modulation comes to a zero point, which stops the oscillator
forever. To avoid this, it is more practical to modulate the carriers
table-lookup phase, instead of its pitch.

Even the most famous FM-synthesizer Yamaha DX?7 is based on the
phase-modulation (PM) technique, because this allows feedback. The
DX?7 provides 7 operators, and offers 32 routing combinations of
these. (http://yala.freeservers.com/t2synths.htm#DX?7)

To build a PM-synth in Csound tablei opcode needs to be used as
oscillator. In order to step through the f-table, a phasor will ou