
I

CSOUND

II

Copyright:	The	Contributors
License:	CC	BY

III

1

5

7

11

21

31

37

47

83

93

99

105

111

115

143

CONTENTS

INTRODUCTION

PREFACE

HOW	TO	USE	THIS	MANUAL

ON	THIS	(6th)	RELEASE

License

01	BASICS

DIGITAL	AUDIO

FREQUENCIES

INTENSITIES

RANDOM

02	QUICK	START

MAKE	CSOUND	RUN

CSOUND	SYNTAX

CONFIGURING	MIDI

LIVE	AUDIO

RENDERING	TO	FILE

03	CSOUND	LANGUAGE

INITIALIZATION	AND	PERFORMANCE	PASS

LOCAL	AND	GLOBAL	VARIABLES

IV

159

181

207

239

267

287

293

301

325

339

343

351

363
375

401

419

437

485

493

CONTROL	STRUCTURES

FUNCTION	TABLES

ARRAYS

LIVE	EVENTS

USER	DEFINED	OPCODES

MACROS

FUNCTIONAL	SYNTAX

04	SOUND	SYNTHESIS

ADDITIVE	SYNTHESIS

SUBTRACTIVE	SYNTHESIS

AMPLITUDE	AND	RING	MODULATION

FREQUENCY	MODULATION

WAVESHAPING

GRANULAR	SYNTHESIS	

PHYSICAL	MODELLING

SCANNED	SYNTHESIS

05	SOUND	MODIFICATION

ENVELOPES

PANNING	AND	SPATIALIZATION

FILTERS

DELAY	AND	FEEDBACK

V

501

511

519

531

539

551

575

581

585

591

595

611

615

623

633

637

643

645

REVERBERATION

AM	/	RM	/	WAVESHAPING

GRANULAR	SYNTHESIS

CONVOLUTION

FOURIER	TRANSFORMATION	/	SPECTRAL	PROCESSING

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS

AMPLITUDE	AND	PITCH	TRACKING

Dynamic	Gating	and	Amplitude	Triggering

Pitch	Tracking

06	SAMPLES

RECORD	AND	PLAY	SOUNDFILES

RECORD	AND	PLAY	BUFFERS

07	MIDI

RECEIVING	EVENTS	BY	MIDIIN

TRIGGERING	INSTRUMENT	INSTANCES

WORKING	WITH	CONTROLLERS

READING	MIDI	FILES

MIDI	OUTPUT

08	OTHER	COMMUNICATION

OPEN	SOUND	CONTROL	-	NETWORK	COMMUNICATION

CSOUND	AND	ARDUINO

VI

661

673

685

687

689

721

729

737

741

755

759

785

799

831

833

835

839

09	CSOUND	IN	OTHER	APPLICATIONS

CSOUND	IN	PD

CSOUND	IN	MAXMSP

CSOUND	IN	ABLETON	LIVE

D.	CSOUND	AS	A	VST	PLUGIN

10	CSOUND	FRONTENDS

CsoundQt

BLUE

WinXound

CSOUND	VIA	TERMINAL

WEB	BASED	CSOUND

11	CSOUND	UTILITIES

CSOUND	UTILITIES

12	CSOUND	AND	OTHER	PROGRAMMING	LANGUAGES

THE	CSOUND	API

PYTHON	INSIDE	CSOUND

C.	PYTHON	IN	CSOUNDQT1	

D.	LUA	IN	CSOUND

E.	CSOUND	IN	iOS

Introduction

The	imports	(discussed	in	detail	in	section	3.2.1)	are	declared:

VII

843

845

847

849
851

861
863

869

885

891

893

905

915

967

997

Every	method	needs	at	least	an	empty	function	shell.	Some	methods,	such
as	updateValuesFromCsound	are	left	empty,	because	–	for	the	tutorial
example	–	there	is	no	need	to	get	values	from	Csound.	Other	protocol
methods	have	functionality	added.	These	are	discussed	below.

The	first	lines	of	code	in	the	instrument	set	up	some	important	values	for
the	.csd	to	use	when	processing	audio.	These	are	described	in	Table	2.4,
and	are	discussed	in	more	detail	in	the	Reference	section	of	the	Csound
Manual

The	instrument	then	takes	values	from	Csound	using	the	chnget		opcode:

The	third	parameter	of	the	poscil	opcode	in	this	case	is	1.	This	means	‘use
f-table	1’.	Section	3.3	explains	f-tables	in	more	depth.

3	Using	the	Mobile	Csound	API	in	an	Xcode	Project

As	mentioned	previously,	Csound	instruments	are	defined	in	the	orchestra	section	of	the	.csd	file.
The	example	project	provided	by	the	authors	uses	a	simple	oscillator	that	has	two	parameters:
amplitude	and	frequency,	both	of	which	are	controlled	by	UI	sliders.

Figure	3.10	shows	a	block	diagram	of	the	synthesizer	we	are	using	in	the	example	project.

F.	CSOUND	ON	ANDROID

CSOUND	AND	HASKELL

H.	CSOUND	AND	HTML

Introduction	

13	EXTENDING	CSOUND

EXTENDING	CSOUND

OPCODE	GUIDE

OPCODE	GUIDE:	OVERVIEW

OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

OPCODE	GUIDE:	ADVANCED	SIGNAL	PROCESSING

VIII

1013

1037

1049

1065

1081

1101

1107

OPCODE	GUIDE:	DATA

OPCODE	GUIDE:	REALTIME	INTERACTION

OPCODE	GUIDE:	INSTRUMENT	CONTROL

OPCODE	GUIDE:	MATH,	PYTHON/	SYSTEM,	PLUGINS

APPENDIX

METHODS	OF	WRITING	CSOUND	SCORES

GLOSSARY

LINKS

PREFACE

1

PREFACE

	

Read	the
Online	Version

Read	the
EPUB	Version

Read	the
PDF	Version

Read	in
Open	Office

Csound	is	one	of	the	most	well	known	and	longest	established	
programs	in	the	field	of	audio	programming.	It	was	developed	in	the	
mid-1980s	at	the	Massachusetts	Institute	of	Technology	(MIT)	by	
Barry	Vercoe.

Csound's	history	lies	deep	in	the	roots	of	computer	music.	It	is	a	
direct	descendant	of	the	oldest	computer	program	for	sound	synthesis,	
'MusicN',	by	Max	Mathews.	Csound	is	free	and	open	source,	
distributed	under	the	LGPL	licence,	and	is	maintained	and	expanded	
by	a	core	of	developers	with	support	from	a	wider	global	community.	

Csound	has	been	growing	for	about	30	years.	There	is	rarely	anything	
related	to	audio	you	cannot	do	with	Csound.	You	can	work	by	
rendering	offline,	or	in	real-time	by	processing	live	audio	and	
synthesizing	sound	on	the	fly.	You	can	control	Csound	via	MIDI,	
OSC,	or	via	the	Csound	API	(Application	Programming	Interface).	In	
Csound,	you	will	find	the	widest	collection	of	tools	for	sound	
synthesis	and	sound	modification,	including	special	filters	and	tools	
for	spectral	processing.	

PREFACE

2

Csound	is	simultaneously	both	'old	school'	and	'new	school'.

Is	Csound	difficult	to	learn?	Generally	speaking,	graphical	audio	
programming	languages	like	Pure	Data,1		Max	or	Reaktor	are	easier	
to	learn	than	text-coded	audio	programming	languages	like	Csound	or	
SuperCollider.	In	Pd,	Max	or	Reaktor	you	cannot	make	a	typo	which	
produces	an	error	that	you	do	not	understand.	You	program	without	
being	aware	that	you	are	programming.	The	user	experience	mirrors	
that	of	patching	together	various	devices	in	a	studio.	This	is	a	
fantastically	intuitive	approach	but	when	you	deal	with	more	
complex	projects,	a	text-based	programming	language	is	often	easier	
to	use	and	debug,	and	many	people	prefer	to	program	by	typing	words	
and	sentences	rather	than	by	wiring	symbols	together	using	the	
mouse.	

It	is	also	very	easy	to	use	Csound	as	an	audio	engine	inside	Pd	or	
Max.	Have	a	look	at	the	chapter	Csound	in	Other	Applications	for	
further	information.

Amongst	text-based	audio	programming	languages,	Csound	is	
arguably	the	simplest.	You	do	not	need	to	know	any	specific	
programming	techniques	or	be	a	computer	scientist.	The	basics	of	the	
Csound	language	are	a	straightforward	transfer	of	the	signal	flow	
paradigm	to	text.	

For	example,	to	create	a	400	Hz	sine	oscillator	with	an	amplitude	of	
0.2,	this	is	the	signal	flow:

	

PREFACE

3

		Here	is	a	possible	transformation	of	the	signal	graph	into	Csound	
code:

				instr	Sine
aSig						poscil				0.2,	400
										out							aSig
				endin

The	oscillator	is	represented	by	the	opcode	poscil	and	receives	its	
input	arguments	on	the	right-hand	side.	These	are	amplitude	(0.2)	and	
frequency	(400).	It	produces	an	audio	signal	called	aSig	at	the	left	
side	which	is	in	turn	the	input	of	the	second	opcode	out.	The	first	and	
last	lines	encase	these	connections	inside	an	instrument	called	Sine.

Since	Csound	version	6,	you	can	also	write	the	same	code	in	a	more	
condensed	way	as	shown	below:2	

				instr	Sine
out	poscil(0.2,	400)
				endin

It	is	often	difficult	to	find	up	to	date	resources	that	show	and	explain	
what	is	possible	with	Csound.	Documentation	and	tutorials	produced	
by	developers	and	experienced	users	tend	to	be	scattered	across	many	
different	locations.	This	issue	was	one	of	the	main	motivations	for	
producing	this	manual;	to	facilitate	a	flow	between	the	knowledge	of	
contemporary	Csound	users	and	those	wishing	to	learn	more	about	
Csound.

Fifteen	years	after	the	milestone	of	Richard	Boulanger's	Csound	
Book,	the	Csound	FLOSS	Manual	is	intended	to	offer	an	easy-to-
understand	introduction	and	to	provide	a	centre	of	up	to	date	
information	about	the	many	features	of	Csound,	not	as	detailed	and	as	
in	depth	as	the	Csound	Book,	but	including	new	information	and	
sharing	this	knowledge	with	the	wider	Csound	community.

Throughout	this	manual	we	will	attempt	a	difficult	balancing	act:	
providing	users	with	knowledge	of	most	of	the	important	aspects	of	
Csound	but	also	remaining	concise	and	simple	enough	to	save	you	
from	drowning	within	the	ocean	of	possibilities	offered	by	Csound.	

PREFACE

4

Frequently	this	manual	will	link	to	other	more	detailed	resources	such	
as	the	Canonical	Csound	Reference	Manual,	the	primary	
documentation	provided	by	the	Csound	developers	and	associated	
community	over	the	years,	and	the	Csound	Journal	(edited	by	Steven	
Yi	and	James	Hearon),	a	quarterly	online	publication	with	many	great	
Csound-related	articles.

We	hope	you	enjoy	reading	this	textbook	and	wish	you	happy	
Csounding!

1.	 more	commonly	known	as	Pd	-	see	the	Pure	Data	FLOSS	
Manual	for	further	information^

2.	 See	chapter	03I	about	Functional	Syntax^

HOW	TO	USE	THIS	MANUAL

5

HOW	TO	USE	THIS	MANUAL

The	goal	of	this	manual	is	to	provide	a	readable	introduction	to	
Csound.	In	no	way	is	it	meant	as	a	replacement	for	the	Canonical	
Csound	Reference	Manual.	It	is	intended	as	an	introduction-tutorial-
reference	hybrid,	gathering	together	the	most	important	information	
you	will	need	to	work	with	Csound	in	a	variety	of	situations.	In	many	
places	links	are	provided	to	other	resources	such	as	The	Canonical	
Csound	Reference	Manual,	the	Csound	Journal,	example	collections	
and	more.

It	is	not	necessary	to	read	each	chapter	in	sequence,	feel	free	to	jump	
to	any	chapter	that	interests	you	although	bear	in	mind	that	
occasionally	a	chapter	will	make	reference	to	a	previous	one.

If	you	are	new	to	Csound,	the	QUICK	START	chapter	will	be	the	best
place	to	go	to	help	you	get	started.	BASICS	provides	a	general	
introduction	to	key	concepts	about	digital	sound,	vital	to	
understanding	how	Csound	deals	with	audio.	The	CSOUND	
LANGUAGE	chapter	provides	greater	detail	about	how	Csound	
works	and	how	to	work	with	Csound.

SOUND	SYNTHESIS	introduces	various	methods	of	creating	sound	
from	scratch	and	SOUND	MODIFICATION	describes	various	
methods	of	transforming	sounds	that	already	exist.	SAMPLES	
outlines	various	ways	you	can	record	and	playback	audio	samples	in	
Csound;	an	area	that	might	be	of	particular	interest	to	those	intent	on	
using	Csound	as	a	real-time	performance	instrument.	The	MIDI	and	
OPEN	SOUND	CONTROL	chapters	focus	on	different	methods	of	
controlling	Csound	using	external	software	or	hardware.	The	final	
chapters	introduce	various	front-ends	that	can	be	used	to	interface	
with	the	Csound	engine	and	Csound's	communication	with	other	
applications.

If	you	would	like	to	know	more	about	a	topic,	and	in	particular	about	

HOW	TO	USE	THIS	MANUAL

6

the	use	of	any	opcode,	please	refer	first	to	the	Canonical	Csound	
Reference	Manual.

All	files	-	examples	and	audio	files	-	can	be	downloaded	at	
www.csound-tutorial.net	.	If	you	use	CsoundQt,	you	can	find	all	the	
examples	in	CsoundQt's	examples	menu	under	"Floss	Manual	
Examples".	When	learning	Csound	(or	any	other	programming	
language),	you	may	find	it	beneficial	to	type	the	examples	out	
yourself	as	it	will	help	you	to	memorise	Csound's	syntax	as	well	as	
how	to	use	its	opcodes.	The	more	you	get	used	to	typing	out	Csound	
code,	the	more	proficient	you	will	become	at	integrating	new	
techniques	as	your	concentration	will	shift	from	the	code	to	the	idea	
behind	the	code	and	the	easier	it	will	become	for	you	to	design	your	
own	instruments	and	compositions.
		

Like	other	audio	tools,	Csound	can	produce	an	extreme	dynamic	
range.	Be	careful	when	you	run	the	examples!	Set	the	volume	on	your	
amplifier	low	to	start	with	and	take	special	care	when	using	
headphones.

You	can	help	to	improve	this	manual	either	by	reporting	bugs	or	by	
sending	requests	for	new	topics	or	by	joining	as	a	writer.	Just	contact	
one	of	the	maintainers	(see	ON	THIS	RELEASE).

Some	issues	of	this	textbook	can	be	ordered	as	a	print-on-demand	
hard	copy	at	www.lulu.com.	Just	use	Lulu's	search	utility	and	look	for	
"Csound".
		

ON	THIS	(6th)	RELEASE

7

ON	THIS	(6TH)	RELEASE

A	year	on	from	the	5th	release,	this	release	adds	some	exciting	new	
sections	as	well	as	a	number	of	chapter	augmentations	and	necessary	
updates.	Notable	are	Michael	Gogins'	Chapter	on	running	Csound	
within	a	browser	using	HTML5	technology,	Victor	Lazarrini's	and	Ed	
Costello's	explanations	about	Web	based	Csound,	and	a	new	chapter	
describing	the	use	pairing	Csound	with	the	Haskell	programming	
language.

Thanks	to	all	contributors	to	this	release.	

WHAT'S	NEW	IN	THIS	RELEASE

Added	a	section	about	the	necessity	of	explicit	initialization	of	
k-variables	for	multiple	calls	of	an	instrument	or	UDO	in	
chapter	03A	Initialization	and	Performance	Pass	(examples	
8-10).
Added	a	section	about	the	while/until	loop	in	chapter	03C	
Control	Structures.
Expanded	chapter	03D	Function	Tables,	adding	descriptions	
of	GEN	08,	16,	19	and	30.
Small	additions	in	chapter	03E	Arrays.
Some	additions	and	a	new	section	to	help	using	the	different	
opcodes	(schedule,	event,	scoreline	etc)	in	03F	Live	Events.
		
Added	a	chapter	03I	about	Functional	Syntax.	
Added	examples	and	descriptions	for	the	powershape	and	
distort	opcodes	in	the	chapter	04	Sound	Synthesis:	
Waveshaping.

Expanded	chapter	05A	Envelopes,	principally	to	incorporate	
descriptions	of	transeg	and	cosseg.
Added	chapter	05L	about	methods	of	amplitude	and	pitch	
tracking	in	Csound.
Added	example	to	illustrate	the	recording	of	controller	
data	to	the	chapter	07C	Working	with	Controllers	at	the	
request	of	Menno	Knevel.

ON	THIS	(6th)	RELEASE

8

Chapter	10B	Cabbage	has	been	updated	and	attention	drawn	to	
some	of	its	newest	features.	
		
Chapter	10F	Web	Based	Csound	has	now	a	description	about	
how	to	use	Csound	via	UDP	and	about	pNaCl	Csound	(written	
by	Victor	Lazzarini).	The	section	about	Csound	as	a	Javascript	
Library	(using	Emscripten)	in	the	same	chapter	has	been	
updated	by	Ed	Costello.
		
Refactored	chapter	12A	about	The	Csound	API	for	Csound6	
and	added	a	section	about	the	use	of	Foreign	Function	
Interfaces	(FFI)	(written	by	François	Pinot).
		
Added	chapter	12G	about	Csound	and	Haskell	(written	by	
Anton	Kholomiov).	
	Added	chapter	12H	about	Csound	and	HMTL,	also	
explaining	the	usage	of	HTML5	Widgets	(written	by	Michael	
Gogins).
		

The	examples	in	this	book	are	included	in	CsoundQt	(Examples	>	
FLOSS	Manual	Examples).	Even	the	examples	which	require	
external	files	should	now	work	out	of	the	box.	

If	you	would	like	to	refer	to	previous	releases,	you	can	find	them	at	
http://files.csound-tutorial.net/floss_manual.	Also	here	are	all	the	
current	csd	files	and	audio	samples.

			Berlin,	March	2015	
		
			Iain	McCurdy	and	Joachim	Heintz
		

	

	

ON	THIS	(6th)	RELEASE

9

	

	

ON	THIS	(6th)	RELEASE

10

License

11

LICENSE

All	chapters	copyright	of	the	authors	(see	below).	Unless	otherwise	
stated	all	chapters	in	this	manual	licensed	with	GNU	General	Public	
License	version	2

This	documentation	is	free	documentation;	you	can	redistribute	it
and/or	modify	it	under	the	terms	of	the	GNU	General	Public	License
as	published	by	the	Free	Software	Foundation;	either	version	2	of	the
License,	or	(at	your	option)	any	later	version.

This	documentation	is	distributed	in	the	hope	that	it	will	be	useful,	
but	WITHOUT	ANY	WARRANTY;	without	even	the	implied	
warranty	of	MERCHANTABILITY	or	FITNESS	FOR	A	
PARTICULAR	PURPOSE.	See	the	GNU	General	Public	License	for	
more	details.

You	should	have	received	a	copy	of	the	GNU	General	Public	License	
along	with	this	documentation;	if	not,	write	to	the	Free	Software	
Foundation,	Inc.,	51	Franklin	Street,	Fifth	Floor,	Boston,	MA	02110-
1301,	USA.

AUTHORS

Note	that	this	book	is	a	collective	effort,	so	some	of	the	contributors	
may	not	have	been	quoted	correctly.	If	you	are	one	of	them,	please	
contact	us,	or	simply	put	your	name	at	the	right	place.
		

INTRODUCTION

PREFACE	
Joachim	Heintz,	Andres	Cabrera,	Alex	Hofmann,	Iain	McCurdy,
Alexandre	Abrioux	

License

12

HOW	TO	USE	THIS	MANUAL	
Joachim	Heintz,	Andres	Cabrera,	Iain	McCurdy,	Alexandre	Abrioux

01	BASICS

A.	DIGITAL	AUDIO
		
	Alex	Hofmann,	Rory	Walsh,	Iain	McCurdy,	Joachim	Heintz

B.	PITCH	AND	FREQUENCY
		
	Rory	Walsh,	Iain	McCurdy,	Joachim	Heintz

C.	INTENSITIES	
Joachim	Heintz

D.	RANDOM	
Joachim	Heintz,	Martin	Neukom,	Iain	McCurdy

02	QUICK	START

A.	MAKE	CSOUND	RUN	
Alex	Hofmann,	Joachim	Heintz,	Andres	Cabrera,	Iain	McCurdy,	Jim
Aikin,	Jacques	Laplat,	Alexandre	Abrioux,	Menno	Knevel

B.	CSOUND	SYNTAX	
Alex	Hofmann,	Joachim	Heintz,	Andres	Cabrera,	Iain	McCurdy	

C.	CONFIGURING	MIDI	
Andres	Cabrera,	Joachim	Heintz,	Iain	McCurdy	

D.	LIVE	AUDIO	
Alex	Hofmann,	Andres	Cabrera,	Iain	McCurdy,	Joachim	Heintz	

E.	RENDERING	TO	FILE	
Joachim	Heintz,	Alex	Hofmann,	Andres	Cabrera,	Iain	McCurdy	

License

13

03	CSOUND	LANGUAGE

A.	INITIALIZATION	AND	PERFORMANCE	PASS	
Joachim	Heintz	

B.	LOCAL	AND	GLOBAL	VARIABLES	
Joachim	Heintz,	Andres	Cabrera,	Iain	McCurdy	

C.	CONTROL	STRUCTURES	
Joachim	Heintz	

D.	FUNCTION	TABLES	
Joachim	Heintz,	Iain	McCurdy	

E.	ARRAYS	
Joachim	Heintz

F.	LIVE	CSOUND	
Joachim	Heintz,	Iain	McCurdy	

G.	USER	DEFINED	OPCODES	
Joachim	Heintz	

H.	MACROS	
Iain	McCurdy	

I.	FUNCTIONAL	SYNTAX	
Joachim	Heintz

04	SOUND	SYNTHESIS

A.	ADDITIVE	SYNTHESIS	
Andres	Cabrera,	Joachim	Heintz,	Bjorn	Houdorf

B.	SUBTRACTIVE	SYNTHESIS	
Iain	McCurdy	

License

14

C.	AMPLITUDE	AND	RINGMODULATION	
Alex	Hofman

D.	FREQUENCY	MODULATION
		
	Alex	Hofmann,	Bjorn	Houdorf
		

E.	WAVESHAPING	
Joachim	Heintz,	Iain	McCurdy	

F.	GRANULAR	SYNTHESIS	
Iain	McCurdy	

G.	PHYSICAL	MODELLING	
Joachim	Heintz,	Iain	McCurdy,	Martin	Neukom	

H.	SCANNED	SYNTHESIS	
Christopher	Saunders	

05	SOUND	MODIFICATION

A.	ENVELOPES	
Iain	McCurdy	

B.	PANNING	AND	SPATIALIZATION	
Iain	McCurdy,	Joachim	Heintz	

C.	FILTERS	
Iain	McCurdy	

D.	DELAY	AND	FEEDBACK	
Iain	McCurdy	

E.	REVERBERATION	
Iain	McCurdy	

F.	AM	/	RM	/	WAVESHAPING	

License

15

Alex	Hofmann,	Joachim	Heintz	

G.	GRANULAR	SYNTHESIS	
Iain	McCurdy,	Oeyvind	Brandtsegg,	Bjorn	Houdorf	

H.	CONVOLUTION	
Iain	McCurdy	

I.	FOURIER	ANALYSIS	/	SPECTRAL	PROCESSING	
Joachim	Heintz	

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS	
Oscar	Pablo	di	Liscia	

L.	AMPLITUDE	AND	PITCH	TRACKING	
Iain	McCurdy

06	SAMPLES

A.	RECORD	AND	PLAY	SOUNDFILES	
Iain	McCurdy,	Joachim	Heintz	

B.	RECORD	AND	PLAY	BUFFERS	
Iain	McCurdy,	Joachim	Heintz,	Andres	Cabrera	

07	MIDI

A.	RECEIVING	EVENTS	BY	MIDIIN	
Iain	McCurdy	

B.	TRIGGERING	INSTRUMENT	INSTANCES	
Joachim	Heintz,	Iain	McCurdy	

C.	WORKING	WITH	CONTROLLERS	
Iain	McCurdy	

D.	READING	MIDI	FILES	
Iain	McCurdy	

License

16

E.	MIDI	OUTPUT	
Iain	McCurdy	

08	OTHER	COMMUNICATION	

A.	OPEN	SOUND	CONTROL	
Alex	Hofmann	

B.	CSOUND	AND	ARDUINO	
Iain	McCurdy

09	CSOUND	IN	OTHER	APPLICATIONS

A.	CSOUND	IN	PD	
Joachim	Heintz,	Jim	Aikin	

B.	CSOUND	IN	MAXMSP	
Davis	Pyon	

C.	CSOUND	IN	ABLETON	LIVE	
Rory	Walsh	

D.	CSOUND	AS	A	VST	PLUGIN	
Rory	Walsh

10	CSOUND	FRONTENDS

CSOUNDQT	
Andrés	Cabrera,	Joachim	Heintz,	Peiman	Khosravi

CABBAGE	
Rory	Walsh,	Menno	Knevel,	Iain	McCurdy	

BLUE	
Steven	Yi,	Jan	Jacob	Hofmann	

License

17

WINXOUND	
Stefano	Bonetti,	Menno	Knevel	

CSOUND	VIA	TERMINAL	
Iain	McCurdy	

WEB	BASED	CSOUND		
Victor	Lazzarini,	Iain	McCurdy,	Ed	Costello

11	CSOUND	UTILITIES

CSOUND	UTILITIES	
Iain	McCurdy

12	CSOUND	AND	OTHER	PROGRAMMING
LANGUAGES

A.	THE	CSOUND	API	
François	Pinot,	Rory	Walsh	

B.	PYTHON	INSIDE	CSOUND	
Andrés	Cabrera,	Joachim	Heintz	

C.	PYTHON	IN	CSOUNDQT	
Tarmo	Johannes,	Joachim	Heintz

D.	LUA	IN	CSOUND	

E.	CSOUND	IN	IOS	
Nicholas	Arner	

F.	CSOUND	ON	ANDROID	
Michael	Gogins	

G.	CSOUND	AND	HASKELL	
Anton	Kholomiov	

H.	CSOUND	AND	HTML	

License

18

Michael	Gogins

13	EXTENDING	CSOUND

EXTENDING	CSOUND	
Victor	Lazzarini	

OPCODE	GUIDE

OVERVIEW	
Joachim	Heintz,	Iain	McCurdy

SIGNAL	PROCESSING	I	
Joachim	Heintz,	Iain	McCurdy

SIGNAL	PROCESSING	II	
Joachim	Heintz,	Iain	McCurdy

DATA	
Joachim	Heintz,	Iain	McCurdy

REALTIME	INTERACTION	
Joachim	Heintz,	Iain	McCurdy

INSTRUMENT	CONTROL	
Joachim	Heintz,	Iain	McCurdy

MATH,	PYTHON/SYSTEM,	PLUGINS	
Joachim	Heintz,	Iain	McCurdy

APPENDIX

GLOSSARY	
Joachim	Heintz,	Iain	McCurdy

LINKS	
Joachim	Heintz,	Stefano	Bonetti	

License

19

METHODS	OF	WRITING	CSOUND	SCORES	
Iain	McCurdy,	Joachim	Heintz,	Jacob	Joaquin,	Menno	Knevel	

V.1	-	Final	Editing	Team	in	March	2011:

Joachim	Heintz,	Alex	Hofmann,	Iain	McCurdy

V.2	-	Final	Editing	Team	in	March	2012:

	Joachim	Heintz,	Iain	McCurdy
		

V.3	-	Final	Editing	Team	in	March	2013:

	Joachim	Heintz,	Iain	McCurdy

V.4	-	Final	Editing	Team	in	September	2013:

Joachim	Heintz,	Alexandre	Abrioux

V.5	-	Final	Editing	Team	in	March	2014:

Joachim	Heintz,	Iain	McCurdy

V.6	-	Final	Editing	Team	March-June	2015:

Joachim	Heintz,	Iain	McCurdy

		

Free	manuals	for	free	software

License

20

DIGITAL	AUDIO

21

DIGITAL	AUDIO

At	a	purely	physical	level,	sound	is	simply	a	mechanical	disturbance	
of	a	medium.	The	medium	in	question	may	be	air,	solid,	liquid,	gas	or	
a	mixture	of	several	of	these.	This	disturbance	to	the	medium	causes	
molecules	to	move	to	and	fro	in	a	spring-like	manner.	As	one	
molecule	hits	the	next,	the	disturbance	moves	through	the	medium	
causing	sound	to	travel.	These	so	called	compressions	and	
rarefactions	in	the	medium	can	be	described	as	sound	waves.	The	
simplest	type	of	waveform,	describing	what	is	referred	to	as	'simple	
harmonic	motion',	is	a	sine	wave.

Each	time	the	waveform	signal	goes	above	0	the	molecules	are	in	a	
state	of	compression	meaning	they	are	pushing	towards	each	other.	
Every	time	the	waveform	signal	drops	below	0	the	molecules	are	in	a	
state	of	rarefaction	meaning	they	are	pulling	away	from	each	other.	
When	a	waveform	shows	a	clear	repeating	pattern,	as	in	the	case	
above,	it	is	said	to	be	periodic.	Periodic	sounds	give	rise	to	the	
sensation	of	pitch.

ELEMENTS	OF	A	SOUND	WAVE	

Periodic	waves	have	four	common	parameters,	and	each	of	the	four	
parameters	affects	the	way	we	perceive	sound.

DIGITAL	AUDIO

22

Period:	This	is	the	length	of	time	it	takes	for	a	waveform	to	
complete	one	cycle.	This	amount	of	time	is	referred	to	as	t
		

Wavelength():	the	distance	it	takes	for	a	wave	to	complete	one	
full	period.	This	is	usually	measured	in	meters.
		

Frequency:	the	number	of	cycles	or	periods	per	second.	
Frequency	is	measured	in	Hertz.	If	a	sound	has	a	frequency	of	
440Hz	it	completes	440	cycles	every	second.	Given	a	
frequency,	one	can	easily	calculate	the	period	of	any	sound.	
Mathematically,	the	period	is	the	reciprocal	of	the	frequency	
(and	vice	versa).	In	equation	form,	this	is	expressed	as	follows.
		

	Frequency	=	1/Period									Period	=	1/Frequency

Therefore	the	frequency	is	the	inverse	of	the	period,	so	a	wave	of	
100	Hz	frequency	has	a	period	of	1/100	or	0.01	secs,	likewise	a	
frequency	of	256Hz	has	a	period	of	1/256,	or	0.004	secs.	To	
calculate	the	wavelength	of	a	sound	in	any	given	medium	we	
can	use	the	following	equation:
		

	Wavelength	=	Velocity/Frequency

Humans	can	hear	frequencies	from	20Hz	to	20000Hz	(although	this	
can	differ	dramatically	from	individual	to	individual).	You	can	read	
more	about	frequency	in	the	next	chapter.

Phase:	This	is	the	starting	point	of	a	waveform.	The	starting	
point	along	the	Y-axis	of	our	plotted	waveform	is	not	always	0.	
This	can	be	expressed	in	degrees	or	in	radians.	A	complete	
cycle	of	a	waveform	will	cover	360	degrees	or	(2	x	pi)	radians.
		

DIGITAL	AUDIO

23

Amplitude:	Amplitude	is	represented	by	the	y-axis	of	a	plotted	
pressure	wave.	The	strength	at	which	the	molecules	pull	or	
push	away	from	each	other	will	determine	how	far	above	and	
below	0	the	wave	fluctuates.	The	greater	the	y-value	the	
greater	the	amplitude	of	our	wave.	The	greater	the	
compressions	and	rarefactions	the	greater	the	amplitude.
		

TRANSDUCTION

The	analogue	sound	waves	we	hear	in	the	world	around	us	need	to	be	
converted	into	an	electrical	signal	in	order	to	be	amplified	or	sent	to	a	
soundcard	for	recording.	The	process	of	converting	acoustical	energy	
in	the	form	of	pressure	waves	into	an	electrical	signal	is	carried	out	
by	a	device	known	as	a	a	transducer.

A	transducer,	which	is	usually	found	in	microphones,	produces	a	
changing	electrical	voltage	that	mirrors	the	changing	compression	
and	rarefaction	of	the	air	molecules	caused	by	the	sound	wave.	The	
continuous	variation	of	pressure	is	therefore	'transduced'	into	
continuous	variation	of	voltage.	The	greater	the	variation	of	pressure	
the	greater	the	variation	of	voltage	that	is	sent	to	the	computer.
		

Ideally,	the	transduction	process	should	be	as	transparent	and	clean	as	
possible:	i.e.,	whatever	goes	in	comes	out	as	a	perfect	voltage	
representation.	In	the	real	world	however	this	is	never	the	case.	Noise	
and	distortion	are	always	incorporated	into	the	signal.	Every	time	
sound	passes	through	a	transducer	or	is	transmitted	electrically	a	
change	in	signal	quality	will	result.	When	we	talk	of	'noise'	we	are	
talking	specifically	about	any	unwanted	signal	captured	during	the	
transduction	process.	This	normally	manifests	itself	as	an	unwanted	
'hiss'.
		

SAMPLING

DIGITAL	AUDIO

24

The	analogue	voltage	that	corresponds	to	an	acoustic	signal	changes	
continuously	so	that	at	each	instant	in	time	it	will	have	a	different	
value.	It	is	not	possible	for	a	computer	to	receive	the	value	of	the	
voltage	for	every	instant	because	of	the	physical	limitations	of	both	
the	computer	and	the	data	converters	(remember	also	that	there	are	an	
infinite	number	of	instances	between	every	two	instances!).

What	the	soundcard	can	do	however	is	to	measure	the	power	of	the	
analogue	voltage	at	intervals	of	equal	duration.	This	is	how	all	digital	
recording	works	and	is	known	as	'sampling'.	The	result	of	this	
sampling	process	is	a	discrete	or	digital	signal	which	is	no	more	than	
a	sequence	of	numbers	corresponding	to	the	voltage	at	each	
successive	sample	time.

	Below	left	is	a	diagram	showing	a	sinusoidal	waveform.	The	vertical	
lines	that	run	through	the	diagram	represents	the	points	in	time	when	
a	snapshot	is	taken	of	the	signal.	After	the	sampling	has	taken	place	
we	are	left	with	what	is	known	as	a	discrete	signal	consisting	of	a	
collection	of	audio	samples,	as	illustrated	in	the	diagram	on	the	right	
hand	side	below.	If	one	is	recording	using	a	typical	audio	editor	the	
incoming	samples	will	be	stored	in	the	computer	RAM	(Random	
Access	Memory).	In	Csound	one	can	process	the	incoming	audio	
samples	in	real	time	and	output	a	new	stream	of	samples,	or	write	
them	to	disk	in	the	form	of	a	sound	file.
		

It	is	important	to	remember	that	each	sample	represents	the	amount	
of	voltage,	positive	or	negative,	that	was	present	in	the	signal	at	the	
point	in	time	the	sample	or	snapshot	was	taken.

DIGITAL	AUDIO

25

The	same	principle	applies	to	recording	of	live	video.	A	video	camera
takes	a	sequence	of	pictures	of	something	in	motion	for	example.	
Most	video	cameras	will	take	between	30	and	60	still	pictures	a	
second.	Each	picture	is	called	a	frame.	When	these	frames	are	played	
we	no	longer	perceive	them	as	individual	pictures.	We	perceive	them	
instead	as	a	continuous	moving	image.

ANALOGUE	VERSUS	DIGITAL

In	general,	analogue	systems	can	be	quite	unreliable	when	it	comes	to	
noise	and	distortion.	Each	time	something	is	copied	or	transmitted,	
some	noise	and	distortion	is	introduced	into	the	process.	If	this	is	
done	many	times,	the	cumulative	effect	can	deteriorate	a	signal	quite	
considerably.	It	is	because	of	this,	the	music	industry	has	turned	to	
digital	technology,	which	so	far	offers	the	best	solution	to	this	
problem.	As	we	saw	above,	in	digital	systems	sound	is	stored	as	
numbers,	so	a	signal	can	be	effectively	"cloned".	Mathematical	
routines	can	be	applied	to	prevent	errors	in	transmission,	which	could	
otherwise	introduce	noise	into	the	signal.
		

SAMPLE	RATE	AND	THE	SAMPLING
THEOREM

The	sample	rate	describes	the	number	of	samples	(pictures/snapshots)	
taken	each	second.	To	sample	an	audio	signal	correctly	it	is	important	
to	pay	attention	to	the	sampling	theorem:

"To	represent	digitally	a	signal	containing	frequencies	up	to	X	Hz,	it	is	necessary	
to	use	a	sampling	rate	of	at	least	2X	samples	per	second"		

According	to	this	theorem,	a	soundcard	or	any	other	digital	recording	
device	will	not	be	able	to	represent	any	frequency	above	1/2	the	
sampling	rate.	Half	the	sampling	rate	is	also	referred	to	as	the	Nyquist	
frequency,	after	the	Swedish	physicist	Harry	Nyquist	who	formalized	
the	theory	in	the	1920s.	What	it	all	means	is	that	any	signal	with	
frequencies	above	the	Nyquist	frequency	will	be	misrepresented.	

DIGITAL	AUDIO

26

Furthermore	it	will	result	in	a	frequency	lower	than	the	one	being	
sampled.	When	this	happens	it	results	in	what	is	known	as	aliasing	or	
foldover.

ALIASING

Here	is	a	graphical	representation	of	aliasing.

	The	sinusoidal	wave	form	in	blue	is	being	sampled	at	each	arrow.	
The	line	that	joins	the	red	circles	together	is	the	captured	waveform.	
As	you	can	see	the	captured	wave	form	and	the	original	waveform	
have	different	frequencies.	Here	is	another	example:

We	can	see	that	if	the	sample	rate	is	40,000	there	is	no	problem	
sampling	a	signal	that	is	10KHz.	On	the	other	hand,	in	the	second	
example	it	can	be	seen	that	a	30kHz	waveform	is	not	going	to	be	
correctly	sampled.	In	fact	we	end	up	with	a	waveform	that	is	10kHz,	
rather	than	30kHz.

The	following	Csound	instrument	plays	a	1000	Hz	tone	first	directly,	

DIGITAL	AUDIO

27

and	then	because	the	frequency	is	1000	Hz	lower	than	the	sample	rate	
of	44100	Hz:

EXAMPLE	01A01_Aliasing.csd
		

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

instr	1
asig				oscils		.2,	p4,	0
								outs				asig,	asig
endin

</CsInstruments>
<CsScore>
i	1	0	2	1000	;1000	Hz	tone
i	1	3	2	43100	;43100	Hz	tone	sounds	like	1000	Hz	because	of	aliasing
</CsScore>
</CsoundSynthesizer>

The	same	phenomenon	takes	places	in	film	and	video	too.	You	may	
recall	having	seen	wagon	wheels	apparently	move	backwards	in	old	
Westerns.	Let	us	say	for	example	that	a	camera	is	taking	60	frames	
per	second	of	a	wheel	moving.	If	the	wheel	is	completing	one	rotation	
in	exactly	1/60th	of	a	second,	then	every	picture	looks	the	same.	-	as	a
result	the	wheel	appears	to	stand	still.	If	the	wheel	speeds	up,	i.e.,	
increases	frequency,	it	will	appear	as	if	the	wheel	is	slowly	turning	
backwards.	This	is	because	the	wheel	will	complete	more	than	a	full	
rotation	between	each	snapshot.	This	is	the	most	ugly	side-effect	of	
aliasing	-	wrong	information.

As	an	aside,	it	is	worth	observing	that	a	lot	of	modern	'glitch'	music	
intentionally	makes	a	feature	of	the	spectral	distortion	that	aliasing	
induces	in	digital	audio.
		

Audio-CD	Quality	uses	a	sample	rate	of	44100Kz	(44.1	kHz).	This	
means	that	CD	quality	can	only	represent	frequencies	up	to	22050Hz.	
Humans	typically	have	an	absolute	upper	limit	of	hearing	of	about	

DIGITAL	AUDIO

28

20Khz	thus	making	44.1KHz	a	reasonable	standard	sampling	rate.

BITS,	BYTES	AND	WORDS.
UNDERSTANDING	BINARY.	

All	digital	computers	represent	data	as	a	collection	of	bits	(short	for	
binary	digit).	A	bit	is	the	smallest	possible	unit	of	information.	One	
bit	can	only	be	one	of	two	states	-	off	or	on,	0	or	1.	The	meaning	of	
the	bit,	which	can	represent	almost	anything,	is	unimportant	at	this	
point.	The	thing	to	remember	is	that	all	computer	data	-	a	text	file	on	
disk,	a	program	in	memory,	a	packet	on	a	network	-	is	ultimately	a	
collection	of	bits.

Bits	in	groups	of	eight	are	called	bytes,	and	one	byte	usually	
represents	a	single	character	of	data	in	the	computer.	It's	a	little	used	
term,	but	you	might	be	interested	in	knowing	that	a	nibble	is	half	a	
byte	(usually	4	bits).

THE	BINARY	SYSTEM

All	digital	computers	work	in	a	environment	that	has	only	two	
variables,	0	and	1.	All	numbers	in	our	decimal	system	therefore	must	
be	translated	into	0's	and	1's	in	the	binary	system.	If	you	think	of
		
	binary	numbers	in	terms	of	switches.	With	one	switch	you	can	
represent	up	to	two	different	numbers.

0	(OFF)	=	Decimal	0
		
	1	(ON)	=	Decimal	1
		

Thus,	a	single	bit	represents	2	numbers,	two	bits	can	represent	4	
numbers,	three	bits	represent	8	numbers,	four	bits	represent	16	

DIGITAL	AUDIO

29

numbers,	and	so	on	up	to	a	byte,	or	eight	bits,	which	represents	256	
numbers.	Therefore	each	added	bit	doubles	the	amount	of	possible	
numbers	that	can	be	represented.	Put	simply,	the	more	bits	you	have	
at	your	disposal	the	more	information	you	can	store.

BIT-DEPTH	RESOLUTION

Apart	from	the	sample	rate,	another	important	parameter	which	can	
affect	the	fidelity	of	a	digital	signal	is	the	accuracy	with	which	each	
sample	is	known,	in	other	words	knowing	how	strong	each	voltage	is.	
Every	sample	obtained	is	set	to	a	specific	amplitude	(the	measure	of	
strength	for	each	voltage)	level.	The	number	of	levels	depends	on	the	
precision	of	the	measurement	in	bits,	i.e.,	how	many	binary	digits	are	
used	to	store	the	samples.	The	number	of	bits	that	a	system	can	use	is	
normally	referred	to	as	the	bit-depth	resolution.

If	the	bit-depth	resolution	is	3	then	there	are	8	possible	levels	of	
amplitude	that	we	can	use	for	each	sample.	We	can	see	this	in	the	
diagram	below.	At	each	sampling	period	the	soundcard	plots	an	
amplitude.	As	we	are	only	using	a	3-bit	system	the	resolution	is	not	
good	enough	to	plot	the	correct	amplitude	of	each	sample.	We	can	
see	in	the	diagram	that	some	vertical	lines	stop	above	or	below	the	
real	signal.	This	is	because	our	bit-depth	is	not	high	enough	to	plot	
the	amplitude	levels	with	sufficient	accuracy	at	each	sampling	period.

example	here	for	4,	6,	8,	12,	16	bit	of	a	sine	signal	...
...	coming	in	the	next	release

The	standard	resolution	for	CDs	is	16	bit,	which	allows	for	65536	
different	possible	amplitude	levels,	32767	either	side	of	the	zero	axis.	

DIGITAL	AUDIO

30

Using	bit	rates	lower	than	16	is	not	a	good	idea	as	it	will	result	in	
noise	being	added	to	the	signal.	This	is	referred	to	as	quantization	
noise	and	is	a	result	of	amplitude	values	being	excessively	rounded	
up	or	down	when	being	digitized.	Quantization	noise	becomes	most	
apparent	when	trying	to	represent	low	amplitude	(quiet)	sounds.	
Frequently	a	tiny	amount	of	noise,	known	as	a	dither	signal,	will	be	
added	to	digital	audio	before	conversion	back	into	an	analogue	signal.
Adding	this	dither	signal	will	actually	reduce	the	more	noticeable	
noise	created	by	quantization.	As	higher	bit	depth	resolutions	are	
employed	in	the	digitizing	process	the	need	for	dithering	is	reduced.	
A	general	rule	is	to	use	the	highest	bit	rate	available.

Many	electronic	musicians	make	use	of	deliberately	low	bit	depth	
quantization	in	order	to	add	noise	to	a	signal.	The	effect	is	commonly	
known	as	'bit-crunching'	and	is	relatively	easy	to	do	in	Csound.

ADC	/	DAC

The	entire	process,	as	described	above,	of	taking	an	analogue	signal	
and	converting	it	into	a	digital	signal	is	referred	to	as	analogue	to	
digital	conversion	or	ADC.	Of	course	digital	to	analogue	conversion,	
DAC,	is	also	possible.	This	is	how	we	get	to	hear	our	music	through	
our	PC's	headphones	or	speakers.	For	example,	if	one	plays	a	sound	
from	Media	Player	or	iTunes	the	software	will	send	a	series	of	
numbers	to	the	computer	soundcard.	In	fact	it	will	most	likely	send	
44100	numbers	a	second.	If	the	audio	that	is	playing	is	16	bit	then	
these	numbers	will	range	from	-32768	to	+32767.

When	the	sound	card	receives	these	numbers	from	the	audio	stream	it	
will	output	corresponding	voltages	to	a	loudspeaker.	When	the	
voltages	reach	the	loudspeaker	they	cause	the	loudspeakers	magnet	to	
move	inwards	and	outwards.	This	causes	a	disturbance	in	the	air	
around	the	speaker	resulting	in	what	we	perceive	as	sound.

FREQUENCIES

31

FREQUENCIES

As	mentioned	in	the	previous	section	frequency	is	defined	as	the	
number	of	cycles	or	periods	per	second.	Frequency	is	measured	in	
Hertz.	If	a	tone	has	a	frequency	of	440Hz	it	completes	440	cycles	
every	second.	Given	a	tone's	frequency,	one	can	easily	calculate	the	
period	of	any	sound.	Mathematically,	the	period	is	the	reciprocal	of	
the	frequency	and	vice	versa.	In	equation	form,	this	is	expressed	as	
follows.

	Frequency	=	1/Period									Period	=	1/Frequency	

Therefore	the	frequency	is	the	inverse	of	the	period,	so	a	wave	of	100	
Hz	frequency	has	a	period	of	1/100	or	0.01	seconds,	likewise	a	
frequency	of	256Hz	has	a	period	of	1/256,	or	0.004	seconds.	To	
calculate	the	wavelength	of	a	sound	in	any	given	medium	we	can	use	
the	following	equation:

λ	=	Velocity/Frequency

For	instance,	a	wave	of	1000	Hz	in	air	(velocity	of	diffusion	about	
340	m/s)	has	a	length	of	approximately	340/1000	m	=	34	cm.
		

LOWER	AND	HIGHER	BORDERS	FOR
HEARING

The	human	ear	can	generally	hear	sounds	in	the	range	20	Hz	to	
20,000	Hz	(20	kHz).	This	upper	limit	tends	to	decrease	with	age	due	
to	a	condition	known	as	presbyacusis,	or	age	related	hearing	loss.	
Most	adults	can	hear	to	about	16	kHz	while	most	children	can	hear	
beyond	this.	At	the	lower	end	of	the	spectrum	the	human	ear	does	not	
respond	to	frequencies	below	20	Hz,	with	40	of	50	Hz	being	the	
lowest	most	people	can	perceive.	

So,	in	the	following	example,	you	will	not	hear	the	first	(10	Hz)	tone,	
and	probably	not	the	last	(20	kHz)	one,	but	hopefully	the	other	ones	

FREQUENCIES

32

(100	Hz,	1000	Hz,	10000	Hz):

EXAMPLE	01B01_BordersForHearing.csd
		

<CsoundSynthesizer>
<CsOptions>
-odac	-m0
</CsOptions>
<CsInstruments>
;example	by	joachim	heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

instr	1
								prints		"Playing	%d	Hertz!\n",	p4
asig				oscils		.2,	p4,	0
								outs				asig,	asig
endin

</CsInstruments>
<CsScore>
i	1	0	2	10
i	.	+	.	100
i	.	+	.	1000
i	.	+	.	10000
i	.	+	.	20000
</CsScore>
</CsoundSynthesizer>

LOGARITHMS,	FREQUENCY	RATIOS	AND
INTERVALS

A	lot	of	basic	maths	is	about	simplification	of	complex	equations.	
Shortcuts	are	taken	all	the	time	to	make	things	easier	to	read	and	
equate.	Multiplication	can	be	seen	as	a	shorthand	of	addition,	for	
example,	5x10	=	5+5+5+5+5+5+5+5+5+5.	Exponents	are	shorthand	
for	multiplication,	35	=	3x3x3x3x3.	Logarithms	are	shorthand	for	
exponents	and	are	used	in	many	areas	of	science	and	engineering	in	
which	quantities	vary	over	a	large	range.	Examples	of	logarithmic	
scales	include	the	decibel	scale,	the	Richter	scale	for	measuring	
earthquake	magnitudes	and	the	astronomical	scale	of	stellar	
brightnesses.	Musical	frequencies	also	work	on	a	logarithmic	scale,	
more	on	this	later.
		

Intervals	in	music	describe	the	distance	between	two	notes.	When	

FREQUENCIES

33

dealing	with	standard	musical	notation	it	is	easy	to	determine	an	
interval	between	two	adjacent	notes.	For	example	a	perfect	5th	is	
always	made	up	of	7	semitones.	When	dealing	with	Hz	values	things	
are	different.	A	difference	of	say	100Hz	does	not	always	equate	to	the	
same	musical	interval.	This	is	because	musical	intervals	as	we	hear	
them	are	represented	in	Hz	as	frequency	ratios.	An	octave	for	
example	is	always	2:1.	That	is	to	say	every	time	you	double	a	Hz	
value	you	will	jump	up	by	a	musical	interval	of	an	octave.

Consider	the	following.	A	flute	can	play	the	note	A	at	440	Hz.	If	the	
player	plays	another	A	an	octave	above	it	at	880	Hz	the	difference	in	
Hz	is	440.	Now	consider	the	piccolo,	the	highest	pitched	instrument	
of	the	orchestra.	It	can	play	a	frequency	of	2000	Hz	but	it	can	also	
play	an	octave	above	this	at	4000	Hz	(2	x	2000	Hz).	While	the	
difference	in	Hertz	between	the	two	notes	on	the	flute	is	only	440	Hz,	
the	difference	between	the	two	high	pitched	notes	on	a	piccolo	is	
1000	Hz	yet	they	are	both	only	playing	notes	one	octave	apart.

What	all	this	demonstrates	is	that	the	higher	two	pitches	become	the	
greater	the	difference	in	Hertz	needs	to	be	for	us	to	recognize	the	
difference	as	the	same	musical	interval.	The	most	common	ratios	
found	in	the	equal	temperament	scale	are	the	unison:	(1:1),	the	
octave:	(2:1),	the	perfect	fifth	(3:2),	the	perfect	fourth	(4:3),	the	major	
third	(5:4)	and	the	minor	third	(6:5).

The	following	example	shows	the	difference	between	adding	a	
certain	frequency	and	applying	a	ratio.	First,	the	frequencies	of	100,	
400	and	800	Hz	all	get	an	addition	of	100	Hz.	This	sounds	very	
different,	though	the	added	frequency	is	the	same.	Second,	the	ratio	
3/2	(perfect	fifth)	is	applied	to	the	same	frequencies.	This	sounds	
always	the	same,	though	the	frequency	displacement	is	different	each	
time.

EXAMPLE	01B02_Adding_vs_ratio.csd	
		

<CsoundSynthesizer>

FREQUENCIES

34

<CsOptions>
-odac	-m0
</CsOptions>
<CsInstruments>
;example	by	joachim	heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

instr	1
								prints		"Playing	%d	Hertz!\n",	p4
asig				oscils		.2,	p4,	0
								outs				asig,	asig
endin

instr	2
								prints		"Adding	%d	Hertz	to	%d	Hertz!\n",	p5,	p4
asig				oscils		.2,	p4+p5,	0
								outs				asig,	asig
endin

instr	3
								prints		"Applying	the	ratio	of	%f	(adding	%d	Hertz)
																	to	%d	Hertz!\n",	p5,	p4*p5,	p4
asig				oscils		.2,	p4*p5,	0
								outs				asig,	asig
endin

</CsInstruments>
<CsScore>
;adding	a	certain	frequency	(instr	2)
i	1	0	1	100
i	2	1	1	100	100
i	1	3	1	400
i	2	4	1	400	100
i	1	6	1	800
i	2	7	1	800	100
;applying	a	certain	ratio	(instr	3)
i	1	10	1	100
i	3	11	1	100	[3/2]
i	1	13	1	400
i	3	14	1	400	[3/2]
i	1	16	1	800
i	3	17	1	800	[3/2]
</CsScore>
</CsoundSynthesizer>

So	what	of	the	algorithms	mentioned	above.	As	some	readers	will	
know	the	current	preferred	method	of	tuning	western	instruments	is	
based	on	equal	temperament.	Essentially	this	means	that	all	octaves	
are	split	into	12	equal	intervals.	Therefore	a	semitone	has	a	ratio	of	
2(1/12),	which	is	approximately	1.059463.

So	what	about	the	reference	to	logarithms	in	the	heading	above?	As	
stated	previously,	logarithms	are	shorthand	for	exponents.	2(1/12)=	
1.059463	can	also	be	written	as	log2(1.059463)=	1/12.	Therefore	
musical	frequency	works	on	a	logarithmic	scale.	

FREQUENCIES

35

MIDI	NOTES

Csound	can	easily	deal	with	MIDI	notes	and	comes	with	functions	
that	will	convert	MIDI	notes	to	Hertz	values	and	back	again.	In	MIDI	
speak	A440	is	equal	to	A4	and	is	MIDI	note	69.	You	can	think	of	A4	
as	being	the	fourth	A	from	the	lowest	A	we	can	hear,	well	almost	
hear.

Caution:	like	many	'standards'	there	is	occasional	disagreement
about	the	mapping	between	frequency	and	octave	number.	You	may
occasionally	encounter	A440	being	described	as	A3.

FREQUENCIES

36

INTENSITIES

37

INTENSITIES

REAL	WORLD	INTENSITIES	AND
AMPLITUDES

	There	are	many	ways	to	describe	a	sound	physically.	One	of	the	most	
common	is	the	Sound	Intensity	Level	(SIL).	It	describes	the	amount	
of	power	on	a	certain	surface,	so	its	unit	is	Watt	per	square	meter	(

).	The	range	of	human	hearing	is	about	 	at	the	
threshold	of	hearing	to	 	at	the	threshold	of	pain.	For	
ordering	this	immense	range,	and	to	facilitate	the	measurement	of	one
sound	intensity	based	upon	its	ratio	with	another,	a	logarithmic	scale	
is	used.	The	unit	Bel	describes	the	relation	of	one	intensity	I	to	a	
reference	intensity	I0	as	follows:

			Sound	Intensity	Level	in	Bel

If,	for	instance,	the	ratio		 		is	10,	this	is	1	Bel.	If	the	ratio	is	100,	
this	is	2	Bel.

For	real	world	sounds,	it	makes	sense	to	set	the	reference	value	 	to	
the	threshold	of	hearing	which	has	been	fixed	as	 	at	1000	
Hertz.	So	the	range	of	hearing	covers	about	12	Bel.	Usually	1	Bel	is	
divided	into	10	deci	Bel,	so	the	common	formula	for	measuring	a	
sound	intensity	is:

	

			Sound	Intensity	Level	(SIL)	in	Decibel	(dB)	with	

	

While	the	sound	intensity	level	is	useful	to	describe	the	way	in	which	
the	human	hearing	works,	the	measurement	of	sound	is	more	closely	

INTENSITIES

38

related	to	the	sound	pressure	deviations.	Sound	waves	compress	and	
expand	the	air	particles	and	by	this	they	increase	and	decrease	the	
localized	air	pressure.	These	deviations	are	measured	and	
transformed	by	a	microphone.	So	the	question	arises:	what	is	the	
relationship	between	the	sound	pressure	deviations	and	the	sound	
intensity?	The	answer	is:	sound	intensity	changes	 	are	proportional	
to	the	square	of	the	sound	pressure	changes	 	.	As	a	formula:

			Relation	between	Sound	Intensity	and	Sound	Pressure
		

Let	us	take	an	example	to	see	what	this	means.	The	sound	pressure	at	
the	threshold	of	hearing	can	be	fixed	at	 	.	This	value	is	the	
reference	value	of	the	Sound	Pressure	Level	(SPL).	If	we	have	now	a	
value	of	 	,	the	corresponding	sound	intensity	relation	can	be	
calculated	as:

		

So,	a	factor	of	10	at	the	pressure	relation	yields	a	factor	of	100	at	the	
intensity	relation.	In	general,	the	dB	scale	for	the	pressure	P	related	to	
the	pressure	P0	is:

	

Sound	Pressure	Level	(SPL)	in	Decibel	(dB)	with	
		

	

Working	with	Digital	Audio	basically	means	working	with	
amplitudes.	What	we	are	dealing	with	microphones	are	amplitudes.	
Any	audio	file	is	a	sequence	of	amplitudes.	What	you	generate	in	

INTENSITIES

39

Csound	and	write	either	to	the	DAC	in	realtime	or	to	a	sound	file,	are	
again	nothing	but	a	sequence	of	amplitudes.	As	amplitudes	are	
directly	related	to	the	sound	pressure	deviations,	all	the	relations	
between	sound	intensity	and	sound	pressure	can	be	transferred	to	
relations	between	sound	intensity	and	amplitudes:

	

				Relation	between	Intensity	and	Ampltitudes

			Decibel	(dB)	Scale	of	Amplitudes	with	any	amplitude	 	
related	to	an	other	amplitude	
		

	

If	you	drive	an	oscillator	with	the	amplitude	1,	and	another	oscillator	
with	the	amplitude	0.5,	and	you	want	to	know	the	difference	in	dB,	
you	calculate:

		

So,	the	most	useful	thing	to	keep	in	mind	is:	when	you	double	the	
amplitude,	you	get	+6	dB;	when	you	have	half	of	the	amplitude	as	
before,	you	get	-6	dB.

WHAT	IS	0	DB?

As	described	in	the	last	section,	any	dB	scale	-	for	intensities,	
pressures	or	amplitudes	-	is	just	a	way	to	describe	a	relationship.	To	
have	any	sort	of	quantitative	measurement	you	will	need	to	know	the	
reference	value	referred	to	as	"0	dB".	For	real	world	sounds,	it	makes	
sense	to	set	this	level	to	the	threshold	of	hearing.	This	is	done,	as	we	
saw,	by	setting	the	SIL	to	 and	the	SPL	to	 .

INTENSITIES

40

But	for	working	with	digital	sound	in	the	computer,	this	does	not	
make	any	sense.	What	you	will	hear	from	the	sound	you	produce	in	
the	computer,	just	depends	on	the	amplification,	the	speakers,	and	so	
on.	It	has	nothing,	per	se,	to	do	with	the	level	in	your	audio	editor	or	
in	Csound.	Nevertheless,	there	is	a	rational	reference	level	for	the	
amplitudes.	In	a	digital	system,	there	is	a	strict	limit	for	the	maximum
number	you	can	store	as	amplitude.	This	maximum	possible	level	is	
called	0	dB.

Each	program	connects	this	maximum	possible	amplitude	with	a	
number.	Usually	it	is	'1'	which	is	a	good	choice,	because	you	know	
that	everything	above	1	is	clipping,	and	you	have	a	handy	relation	for	
lower	values.	But	actually	this	value	is	nothing	but	a	setting,	and	in	
Csound	you	are	free	to	set	it	to	any	value	you	like	via	the	0dbfs	
opcode.	Usually	you	should	use	this	statement	in	the	orchestra	
header:

0dbfs	=	1

This	means:	"Set	the	level	for	zero	dB	as	full	scale	to	1	as	reference	
value."	Note	that	because	of	historical	reasons	the	default	value	in	
Csound	is	not	1	but	32768.	So	you	must	have	this	0dbfs=1	statement	
in	your	header	if	you	want	to	set	Csound	to	the	value	probably	all	
other	audio	applications	have.

DB	SCALE	VERSUS	LINEAR	AMPLITUDE

Let's	see	some	practical	consequences	now	of	what	we	have	discussed	
so	far.	One	major	point	is:	for	getting	smooth	transitions	between	
intensity	levels	you	must	not	use	a	simple	linear	transition	of	the	
amplitudes,	but	a	linear	transition	of	the	dB	equivalent.	The	following
example	shows	a	linear	rise	of	the	amplitudes	from	0	to	1,	and	then	a	
linear	rise	of	the	dB's	from	-80	to	0	dB,	both	over	10	seconds.
		

INTENSITIES

41

			EXAMPLE	01C01_db_vs_linear.csd	

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;example	by	joachim	heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

instr	1	;linear	amplitude	rise
kamp						line				0,	p3,	1	;amp	rise	0->1
asig						oscils		1,	1000,	0	;1000	Hz	sine
aout						=							asig	*	kamp
										outs				aout,	aout
endin

instr	2	;linear	rise	of	dB
kdb							line				-80,	p3,	0	;dB	rise	-60	->	0
asig						oscils		1,	1000,	0	;1000	Hz	sine
kamp						=							ampdb(kdb)	;transformation	db	->	amp
aout						=							asig	*	kamp
										outs				aout,	aout
endin

</CsInstruments>
<CsScore>
i	1	0	10
i	2	11	10
</CsScore>
</CsoundSynthesizer>

You	will	hear	how	fast	the	sound	intensity	increases	at	the	first	note	
with	direct	amplitude	rise,	and	then	stays	nearly	constant.	At	the	
second	note	you	should	hear	a	very	smooth	and	constant	increment	of	
intensity.

RMS	MEASUREMENT

Sound	intensity	depends	on	many	factors.	One	of	the	most	important	
is	the	effective	mean	of	the	amplitudes	in	a	certain	time	span.	This	is	
called	the	Root	Mean	Square	(RMS)	value.	To	calculate	it,	you	have	
(1)	to	calculate	the	squared	amplitudes	of	number	N	samples.	Then	
you	(2)	divide	the	result	by	N	to	calculate	the	mean	of	it.	Finally	(3)	
take	the	square	root.

Let's	see	a	simple	example,	and	then	have	a	look	how	getting	the	rms	
value	works	in	Csound.	Assumeing	we	have	a	sine	wave	which	

INTENSITIES

42

consists	of	16	samples,	we	get	these	amplitudes:

	

These	are	the	squared	amplitudes:

The	mean	of	these	values	is:

(0+0.146+0.5+0.854+1+0.854+0.5+0.146+0+0.146+0.5+0.854+1+0.
854+0.5+0.146)/16=8/16=0.5
		

And	the	resulting	RMS	value	is	0.5=0.707	.	

The	rms	opcode	in	Csound	calculates	the	RMS	power	in	a	certain	
time	span,	and	smoothes	the	values	in	time	according	to	the	ihp	
parameter:	the	higher	this	value	(the	default	is	10	Hz),	the	snappier	
the	measurement,	and	vice	versa.	This	opcode	can	be	used	to	
implement	a	self-regulating	system,	in	which	the	rms	opcode	prevents
the	system	from	exploding.	Each	time	the	rms	value	exceeds	a	certain	
value,	the	amount	of	feedback	is	reduced.	This	is	an	example1	:

INTENSITIES

43

			EXAMPLE	01C02_rms_feedback_system.csd		
		

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;example	by	Martin	Neukom,	adapted	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giSine				ftgen					0,	0,	2^10,	10,	1	;table	with	a	sine	wave

instr	1
a3								init						0
kamp						linseg				0,	1.5,	0.2,	1.5,	0	;envelope	for	initial	input
asnd						poscil				kamp,	440,	giSine	;initial	input
	if	p4	==	1	then	;choose	between	two	sines	...
adel1					poscil				0.0523,	0.023,	giSine
adel2					poscil				0.073,	0.023,	giSine,.5
	else	;or	a	random	movement	for	the	delay	lines
adel1					randi					0.05,	0.1,	2
adel2					randi					0.08,	0.2,	2
	endif
a0								delayr				1	;delay	line	of	1	second
a1								deltapi			adel1	+	0.1	;first	reading
a2								deltapi			adel2	+	0.1	;second	reading
krms						rms							a3	;rms	measurement
										delayw				asnd	+	exp(-krms)	*	a3	;feedback	depending	on	rms
a3								reson					-(a1+a2),	3000,	7000,	2	;calculate	a3
aout						linen					a1/3,	1,	p3,	1	;apply	fade	in	and	fade	out
										outs						aout,	aout
endin
</CsInstruments>
<CsScore>
i	1	0	60	1	;two	sine	movements	of	delay	with	feedback
i	1	61	.	2	;two	random	movements	of	delay	with	feedback
</CsScore>
</CsoundSynthesizer>

	

	

FLETCHER-MUNSON	CURVES

Human	hearing	is	roughly	in	a	range	between	20	and	20000	Hz.	But	
inside	this	range,	the	hearing	is	not	equally	sensitive.	The	most	
sensitive	region	is	around	3000	Hz.	If	you	come	to	the	upper	or	lower	
border	of	the	range,	you	need	more	intensity	to	perceive	a	sound	as	
"equally	loud".	

	These	curves	of	equal	loudness	are	mostly	called	"Fletcher-Munson	

INTENSITIES

44

Curves"	because	of	the	paper	of	H.	Fletcher	and	W.	A.	Munson	in	
1933.	They	look	like	this:

	

Try	the	following	test.	In	the	first	5	seconds	you	will	hear	a	tone	of	
3000	Hz.	Adjust	the	level	of	your	amplifier	to	the	lowest	possible	
point	at	which	you	still	can	hear	the	tone.	-	Then	you	hear	a	tone	
whose	frequency	starts	at	20	Hertz	and	ends	at	20000	Hertz,	over	20	
seconds.	Try	to	move	the	fader	or	knob	of	your	amplification	exactly	
in	a	way	that	you	still	can	hear	anything,	but	as	soft	as	possible.	The	
movement	of	your	fader	should	roughly	be	similar	to	the	lowest	
Fletcher-Munson-Curve:	starting	relatively	high,	going	down	and	
down	until	3000	Hertz,	and	then	up	again.	(As	always,	this	test	
depends	on	your	speaker	hardware.	If	your	speaker	do	not	provide	
proper	lower	frequencies,	you	will	not	hear	anything	in	the	bass	
region.)

			EXAMPLE	01C03_FletcherMunson.csd			

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giSine				ftgen					0,	0,	2^10,	10,	1	;table	with	a	sine	wave

instr	1
kfreq					expseg				p4,	p3,	p5

INTENSITIES

45

										printk				1,	kfreq	;prints	the	frequencies	once	a	second
asin						poscil				.2,	kfreq,	giSine
aout						linen					asin,	.01,	p3,	.01
										outs						aout,	aout
endin
</CsInstruments>
<CsScore>
i	1	0	5	1000	1000
i	1	6	20	20		20000
</CsScore>
</CsoundSynthesizer>

It	is	very	important	to	bear	in	mind	that	the	perceived	loudness	
depends	much	on	the	frequencies.	You	must	know	that	putting	out	a	
sine	of	30	Hz	with	a	certain	amplitude	is	totally	different	from	a	sine	
of	3000	Hz	with	the	same	amplitude	-	the	latter	will	sound	much	
louder.		

1.	 cf	Martin	Neukom,	Signale	Systeme	Klangsynthese,	Zürich	
2003,	p.	383^

INTENSITIES

46

RANDOM

47

RANDOM

This	chapter	is	in	three	parts.	Part	I	provides	a	general	introduction	to	
the	concepts	behind	random	numbers	and	how	to	work	with	them	in	
Csound.	Part	II	focusses	on	a	more	mathematical	approach.	Part	III	
introduces	a	number	of	opcodes	for	generating	random	numbers,	
functions	and	distributions	and	demonstrates	their	use	in	musical	
examples.
		

I.	GENERAL	INTRODUCTION	

RANDOM	IS	DIFFERENT	

The	term	random	derives	from	the	idea	of	a	horse	that	is	running	so	
fast	it	becomes	'out	of	control'	or	'beyond	predictability'.1		Yet	there	
are	different	ways	in	which	to	run	fast	and	to	be	out	of	control;	
therefore	there	are	different	types	of	randomness.

We	can	divide	types	of	randomness	into	two	classes.	The	first	
contains	random	events	that	are	independent	of	previous	events.	The	
most	common	example	for	this	is	throwing	a	die.	Even	if	you	have	
just	thrown	three	'1's	in	a	row,	when	thrown	again,	a	'1'	has	the	same	
probability	as	before	(and	as	any	other	number).	The	second	class	of	
random	number	involves	random	events	which	depend	in	some	way	
upon	previous	numbers	or	states.	Examples	here	are	Markov	chains	
and	random	walks.
		

RANDOM

48

	

The	use	of	randomness	in	electronic	music	is	widespread.	In	this	
chapter,	we	shall	try	to	explain	how	the	different	random	horses	are	
moving,	and	how	you	can	create	and	modify	them	on	your	own.	
Moreover,	there	are	many	pre-built	random	opcodes	in	Csound	which	
can	be	used	out	of	the	box	(see	the	overview	in	the	Csound	Manual).	
The	final	section	of	this	chapter	introduces	some	musically	
interesting	applications	of	them.
		

RANDOM	WITHOUT	HISTORY	

A	computer	is	typically	only	capable	of	computation.	Computations	
are	deterministic	processes:	one	input	will	always	generate	the	same	
output,	but	a	random	event	is	not	predictable.	To	generate	something	
which	looks	like	a	random	event,	the	computer	uses	a	pseudo-random	
generator.

The	pseudo-random	generator	takes	one	number	as	input,	and	
generates	another	number	as	output.	This	output	is	then	the	input	for	
the	next	generation.	For	a	huge	amount	of	numbers,	they	look	as	if	
they	are	randomly	distributed,	although	everything	depends	on	the	
first	input:	the	seed.	For	one	given	seed,	the	next	values	can	be	
predicted.
		

RANDOM

49

UNIFORM	DISTRIBUTION	

The	output	of	a	classical	pseudo-random	generator	is	uniformly	
distributed:	each	value	in	a	given	range	has	the	same	likelihood	of	
occurence.	The	first	example	shows	the	influence	of	a	fixed	seed	
(using	the	same	chain	of	numbers	and	beginning	from	the	same	
location	in	the	chain	each	time)	in	contrast	to	a	seed	being	taken	from	
the	system	clock	(the	usual	way	of	imitating	unpredictability).	The	
first	three	groups	of	four	notes	will	always	be	the	same	because	of	the	
use	of	the	same	seed	whereas	the	last	three	groups	should	always	have
a	different	pitch.

			EXAMPLE	01D01_different_seed.csd
		

<CsoundSynthesizer>
<CsOptions>
-d	-odac	-m0
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

instr	generate
	;get	seed:	0	=	seeding	from	system	clock
	;										otherwise	=	fixed	seed
											seed							p4
	;generate	four	notes	to	be	played	from	subinstrument
iNoteCount	=										0
	until	iNoteCount	==	4	do
iFreq						random					400,	800
											event_i				"i",	"play",	iNoteCount,	2,	iFreq
iNoteCount	+=									1	;increase	note	count
	enduntil
endin

instr	play
iFreq						=										p4
											print						iFreq
aImp							mpulse					.5,	p3
aMode						mode							aImp,	iFreq,	1000
aEnv							linen						aMode,	0.01,	p3,	p3-0.01
											outs							aEnv,	aEnv
endin
</CsInstruments>
<CsScore>
;repeat	three	times	with	fixed	seed
r	3
i	"generate"	0	2	1
;repeat	three	times	with	seed	from	the	system	clock
r	3
i	"generate"	0	1	0
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

RANDOM

50

Note	that	a	pseudo-random	generator	will	repeat	its	series	of	numbers	
after	as	many	steps	as	are	given	by	the	size	of	the	generator.	If	a	16-
bit	number	is	generated,	the	series	will	be	repeated	after	65536	steps.	
If	you	listen	carefully	to	the	following	example,	you	will	hear	a	
repetition	in	the	structure	of	the	white	noise	(which	is	the	result	of	
uniformly	distributed	amplitudes)	after	about	1.5	seconds	in	the	first	
note.2		In	the	second	note,	there	is	no	perceivable	repetition	as	the	
random	generator	now	works	with	a	31-bit	number.
		

			EXAMPLE	01D02_white_noises.csd	
		

<CsoundSynthesizer>
<CsOptions>
-d	-odac
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

instr	white_noise
iBit							=										p4	;0	=	16	bit,	1	=	31	bit
	;input	of	rand:	amplitude,	fixed	seed	(0.5),	bit	size
aNoise					rand							.1,	0.5,	iBit
											outs							aNoise,	aNoise
endin

</CsInstruments>
<CsScore>
i	"white_noise"	0	10	0
i	"white_noise"	11	10	1
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

Two	more	general	notes	about	this:

RANDOM

51

1.	 	The	way	to	set	the	seed	differs	from	opcode	to	opcode.	There	
are	several	opcodes	such	as	rand	featured	above,	which	offer	
the	choice	of	setting	a	seed	as	input	parameter.	For	others,	such	
as	the	frequently	used	random	family,	the	seed	can	only	be	set	
globally	via	the	seed	statement.	This	is	usually	done	in	the	
header	so	a	typical	statement	would	be:
		
<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1
seed	=	0	;seeding	from	current	time

...

2.	 	Random	number	generation	in	Csound	can	be	done	at	any	rate.
The	type	of	the	output	variable	tells	you	whether	you	are	
generating	random	values	at	i-,	k-	or	a-rate.	Many	random	
opcodes	can	work	at	all	these	rates,	for	instance	random:
		
1)	ires		random		imin,	imax
2)	kres		random		kmin,	kmax
3)	ares		random		kmin,	kmax

In	the	first	case,	a	random	value	is	generated	only	once,	when	
an	instrument	is	called,	at	initialisation.	The	generated	value	is	
then	stored	in	the	variable	ires.	In	the	second	case,	a	random	
value	is	generated	at	each	k-cycle,	and	stored	in	kres.	In	the	
third	case,	in	each	k-cycle	as	many	random	values	are	stored	as	
the	audio	vector	has	in	size,	and	stored	in	the	variable	ares.	
Have	a	look	at	example	03A12_Random_at_ika.csd	to	see	this	
at	work.	Chapter	03A	tries	to	explain	the	background	of	the	
different	rates	in	depth,	and	how	to	work	with	them.		

OTHER	DISTRIBUTIONS	

The	uniform	distribution	is	the	one	each	computer	can	output	via	its	
pseudo-random	generator.	But	there	are	many	situations	you	will	not	
want	a	uniformly	distributed	random,	but	any	other	shape.	Some	of	
these	shapes	are	quite	common,	but	you	can	actually	build	your	own	
shapes	quite	easily	in	Csound.	The	next	examples	demonstrate	how	to	

RANDOM

52

do	this.	They	are	based	on	the	chapter	in	Dodge/Jerse3		which	also	
served	as	a	model	for	many	random	number	generator	opcodes	in	
Csound.4

		

Linear

A	linear	distribution	means	that	either	lower	or	higher	values	in	a	
given	range	are	more	likely:

	
		

RANDOM

53

To	get	this	behaviour,	two	uniform	random	numbers	are	generated,	
and	the	lower	is	taken	for	the	first	shape.	If	the	second	shape	with	the	
precedence	of	higher	values	is	needed,	the	higher	one	of	the	two	
generated	numbers	is	taken.	The	next	example	implements	these	
random	generators	as	User	Defined	Opcodes.	First	we	hear	a	uniform	
distribution,	then	a	linear	distribution	with	precedence	of	lower	
pitches	(but	longer	durations),	at	least	a	linear	distribution	with	
precedence	of	higher	pitches	(but	shorter	durations).
		

			EXAMPLE	01D03_linrand.csd		
		

<CsoundSynthesizer>
<CsOptions>
-d	-odac	-m0
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1
seed	0

;****DEFINE	OPCODES	FOR	LINEAR	DISTRIBUTION****

opcode	linrnd_low,	i,	ii
	;linear	random	with	precedence	of	lower	values
iMin,	iMax	xin
	;generate	two	random	values	with	the	random	opcode
iOne							random					iMin,	iMax
iTwo							random					iMin,	iMax
	;compare	and	get	the	lower	one
iRnd							=										iOne	<	iTwo	?	iOne	:	iTwo
											xout							iRnd
endop

opcode	linrnd_high,	i,	ii
	;linear	random	with	precedence	of	higher	values
iMin,	iMax	xin
	;generate	two	random	values	with	the	random	opcode
iOne							random					iMin,	iMax
iTwo							random					iMin,	iMax
	;compare	and	get	the	higher	one
iRnd							=										iOne	>	iTwo	?	iOne	:	iTwo
											xout							iRnd
endop

;****INSTRUMENTS	FOR	THE	DIFFERENT	DISTRIBUTIONS****

instr	notes_uniform
											prints					"...	instr	notes_uniform	playing:\n"
											prints					"EQUAL	LIKELINESS	OF	ALL	PITCHES	AND	DURATIONS\n"
	;how	many	notes	to	be	played
iHowMany			=										p4
	;trigger	as	many	instances	of	instr	play	as	needed
iThisNote		=										0
iStart					=										0
	until	iThisNote	==	iHowMany	do

RANDOM

54

iMidiPch			random					36,	84	;midi	note
iDur							random					.5,	1	;duration
											event_i				"i",	"play",	iStart,	iDur,	int(iMidiPch)
iStart					+=									iDur	;increase	start
iThisNote		+=									1	;increase	counter
	enduntil
	;reset	the	duration	of	this	instr	to	make	all	events	happen
p3									=										iStart	+	2
	;trigger	next	instrument	two	seconds	after	the	last	note
											event_i				"i",	"notes_linrnd_low",	p3,	1,	iHowMany
endin

instr	notes_linrnd_low
											prints					"...	instr	notes_linrnd_low	playing:\n"
											prints					"LOWER	NOTES	AND	LONGER	DURATIONS	PREFERRED\n"
iHowMany			=										p4
iThisNote		=										0
iStart					=										0
	until	iThisNote	==	iHowMany	do
iMidiPch			linrnd_low	36,	84	;lower	pitches	preferred
iDur							linrnd_high	.5,	1	;longer	durations	preferred
											event_i				"i",	"play",	iStart,	iDur,	int(iMidiPch)
iStart					+=									iDur
iThisNote		+=									1
	enduntil
	;reset	the	duration	of	this	instr	to	make	all	events	happen
p3									=										iStart	+	2
	;trigger	next	instrument	two	seconds	after	the	last	note
											event_i				"i",	"notes_linrnd_high",	p3,	1,	iHowMany
endin

instr	notes_linrnd_high
											prints					"...	instr	notes_linrnd_high	playing:\n"
											prints					"HIGHER	NOTES	AND	SHORTER	DURATIONS	PREFERRED\n"
iHowMany			=										p4
iThisNote		=										0
iStart					=										0
	until	iThisNote	==	iHowMany	do
iMidiPch			linrnd_high	36,	84	;higher	pitches	preferred
iDur							linrnd_low	.3,	1.2	;shorter	durations	preferred
											event_i				"i",	"play",	iStart,	iDur,	int(iMidiPch)
iStart					+=									iDur
iThisNote		+=									1
	enduntil
	;reset	the	duration	of	this	instr	to	make	all	events	happen
p3									=										iStart	+	2
	;call	instr	to	exit	csound
											event_i				"i",	"exit",	p3+1,	1
endin

;****INSTRUMENTS	TO	PLAY	THE	SOUNDS	AND	TO	EXIT	CSOUND****

instr	play
	;increase	duration	in	random	range
iDur							random					p3,	p3*1.5
p3									=										iDur
	;get	midi	note	and	convert	to	frequency
iMidiNote		=										p4
iFreq						cpsmidinn		iMidiNote
	;generate	note	with	karplus-strong	algorithm
aPluck					pluck						.2,	iFreq,	iFreq,	0,	1
aPluck					linen						aPluck,	0,	p3,	p3
	;filter
aFilter				mode							aPluck,	iFreq,	.1
	;mix	aPluck	and	aFilter	according	to	MidiNote
	;(high	notes	will	be	filtered	more)
aMix							ntrpol					aPluck,	aFilter,	iMidiNote,	36,	84
	;panning	also	according	to	MidiNote
	;(low	=	left,	high	=	right)
iPan							=										(iMidiNote-36)	/	48
aL,	aR					pan2							aMix,	iPan
											outs							aL,	aR

RANDOM

55

endin

instr	exit
											exitnow
endin

</CsInstruments>
<CsScore>
i	"notes_uniform"	0	1	23	;set	number	of	notes	per	instr	here
;instruments	linrnd_low	and	linrnd_high	are	triggered	automatically
e	99999	;make	possible	to	perform	long	(exit	will	be	automatically)
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

Triangular

In	a	triangular	distribution	the	values	in	the	middle	of	the	given	range	
are	more	likely	than	those	at	the	borders.	The	probability	transition	
between	the	middle	and	the	extrema	are	linear:
		

The	algorithm	for	getting	this	distribution	is	very	simple	as	well.	
Generate	two	uniform	random	numbers	and	take	the	mean	of	them.	
The	next	example	shows	the	difference	between	uniform	and	
triangular	distribution	in	the	same	environment	as	the	previous	
example.

			EXAMPLE	01D04_trirand.csd			
		

<CsoundSynthesizer>
<CsOptions>
-d	-odac	-m0
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32

RANDOM

56

nchnls	=	2
0dbfs	=	1
seed	0

;****UDO	FOR	TRIANGULAR	DISTRIBUTION****
opcode	trirnd,	i,	ii
iMin,	iMax	xin
	;generate	two	random	values	with	the	random	opcode
iOne							random					iMin,	iMax
iTwo							random					iMin,	iMax
	;get	the	mean	and	output
iRnd							=										(iOne+iTwo)	/	2
											xout							iRnd
endop

;****INSTRUMENTS	FOR	UNIFORM	AND	TRIANGULAR	DISTRIBUTION****

instr	notes_uniform
											prints					"...	instr	notes_uniform	playing:\n"
											prints					"EQUAL	LIKELINESS	OF	ALL	PITCHES	AND	DURATIONS\n"
	;how	many	notes	to	be	played
iHowMany			=										p4
	;trigger	as	many	instances	of	instr	play	as	needed
iThisNote		=										0
iStart					=										0
	until	iThisNote	==	iHowMany	do
iMidiPch			random					36,	84	;midi	note
iDur							random					.25,	1.75	;duration
											event_i				"i",	"play",	iStart,	iDur,	int(iMidiPch)
iStart					+=									iDur	;increase	start
iThisNote		+=									1	;increase	counter
	enduntil
	;reset	the	duration	of	this	instr	to	make	all	events	happen
p3									=										iStart	+	2
	;trigger	next	instrument	two	seconds	after	the	last	note
											event_i				"i",	"notes_trirnd",	p3,	1,	iHowMany
endin

instr	notes_trirnd
											prints					"...	instr	notes_trirnd	playing:\n"
											prints					"MEDIUM	NOTES	AND	DURATIONS	PREFERRED\n"
iHowMany			=										p4
iThisNote		=										0
iStart					=										0
	until	iThisNote	==	iHowMany	do
iMidiPch			trirnd					36,	84	;medium	pitches	preferred
iDur							trirnd					.25,	1.75	;medium	durations	preferred
											event_i				"i",	"play",	iStart,	iDur,	int(iMidiPch)
iStart					+=									iDur
iThisNote		+=									1
	enduntil
	;reset	the	duration	of	this	instr	to	make	all	events	happen
p3									=										iStart	+	2
	;call	instr	to	exit	csound
											event_i				"i",	"exit",	p3+1,	1
endin

;****INSTRUMENTS	TO	PLAY	THE	SOUNDS	AND	EXIT	CSOUND****

instr	play
	;increase	duration	in	random	range
iDur							random					p3,	p3*1.5
p3									=										iDur
	;get	midi	note	and	convert	to	frequency
iMidiNote		=										p4
iFreq						cpsmidinn		iMidiNote
	;generate	note	with	karplus-strong	algorithm
aPluck					pluck						.2,	iFreq,	iFreq,	0,	1
aPluck					linen						aPluck,	0,	p3,	p3
	;filter
aFilter				mode							aPluck,	iFreq,	.1
	;mix	aPluck	and	aFilter	according	to	MidiNote

RANDOM

57

	;(high	notes	will	be	filtered	more)
aMix							ntrpol					aPluck,	aFilter,	iMidiNote,	36,	84
	;panning	also	according	to	MidiNote
	;(low	=	left,	high	=	right)
iPan							=										(iMidiNote-36)	/	48
aL,	aR					pan2							aMix,	iPan
											outs							aL,	aR
endin

instr	exit
											exitnow
endin

</CsInstruments>
<CsScore>
i	"notes_uniform"	0	1	23	;set	number	of	notes	per	instr	here
;instr	trirnd	will	be	triggered	automatically
e	99999	;make	possible	to	perform	long	(exit	will	be	automatically)
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

More	Linear	and	Triangular	

Having	written	this	with	some	very	simple	UDOs,	it	is	easy	to	
emphasise	the	probability	peaks	of	the	distributions	by	generating	
more	than	two	random	numbers.	If	you	generate	three	numbers	and	
choose	the	smallest	of	them,	you	will	get	many	more	numbers	near	
the	minimum	in	total	for	the	linear	distribution.	If	you	generate	three	
random	numbers	and	take	the	mean	of	them,	you	will	end	up	with	
more	numbers	near	the	middle	in	total	for	the	triangular	distribution.

If	we	want	to	write	UDOs	with	a	flexible	number	of	sub-generated	
numbers,	we	have	to	write	the	code	in	a	slightly	different	way.	
Instead	of	having	one	line	of	code	for	each	random	generator,	we	will	
use	a	loop,	which	calls	the	generator	as	many	times	as	we	wish	to	
have	units.	A	variable	will	store	the	results	of	the	accumulation.	Re-
writing	the	above	code	for	the	UDO	trirnd	would	lead	to	this	
formulation:

opcode	trirnd,	i,	ii
iMin,	iMax	xin
	;set	a	counter	and	a	maximum	count
iCount					=										0
iMaxCount		=										2
	;set	the	accumulator	to	zero	as	initial	value
iAccum					=										0
	;perform	loop	and	accumulate
	until	iCount	==	iMaxCount	do
iUniRnd				random					iMin,	iMax
iAccum					+=									iUniRnd
iCount					+=									1
	enduntil
	;get	the	mean	and	output

RANDOM

58

iRnd							=										iAccum	/	2
											xout							iRnd
endop

To	get	this	completely	flexible,	you	only	have	to	get	iMaxCount	as	
input	argument.	The	code	for	the	linear	distribution	UDOs	is	quite	
similar.	--	The	next	example	shows	these	steps:

1.	 Uniform	distribution.
2.	 Linear	distribution	with	the	precedence	of	lower	pitches	and	

longer	durations,	generated	with	two	units.
3.	 The	same	but	with	four	units.
4.	 Linear	distribution	with	the	precedence	of	higher	pitches	and	

shorter	durations,	generated	with	two	units.
5.	 The	same	but	with	four	units.
6.	 Triangular	distribution	with	the	precedence	of	both	medium	

pitches	and	durations,	generated	with	two	units.
7.	 The	same	but	with	six	units.

Rather	than	using	different	instruments	for	the	different	distributions,	
the	next	example	combines	all	possibilities	in	one	single	instrument.	
Inside	the	loop	which	generates	as	many	notes	as	desired	by	the	
iHowMany	argument,	an	if-branch	calculates	the	pitch	and	duration	
of	one	note	depending	on	the	distribution	type	and	the	number	of	sub-
units	used.	The	whole	sequence	(which	type	first,	which	next,	etc)	is	
stored	in	the	global	array	giSequence.	Each	instance	of	instrument	
"notes"	increases	the	pointer	giSeqIndx,	so	that	for	the	next	run	the	
next	element	in	the	array	is	being	read.	If	the	pointer	has	reached	the	
end	of	the	array,	the	instrument	which	exits	Csound	is	called	instead	
of	a	new	instance	of	"notes".
		

			EXAMPLE	01D05_more_lin_tri_units.csd				
		

<CsoundSynthesizer>
<CsOptions>
-d	-odac	-m0
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	2

RANDOM

59

0dbfs	=	1
seed	0

;****SEQUENCE	OF	UNITS	AS	ARRAY****/
giSequence[]	array	0,	1.2,	1.4,	2.2,	2.4,	3.2,	3.6
giSeqIndx	=	0	;startindex

;****UDO	DEFINITIONS****
opcode	linrnd_low,	i,	iii
	;linear	random	with	precedence	of	lower	values
iMin,	iMax,	iMaxCount	xin
	;set	counter	and	initial	(absurd)	result
iCount					=										0
iRnd							=										iMax
	;loop	and	reset	iRnd
	until	iCount	==	iMaxCount	do
iUniRnd				random					iMin,	iMax
iRnd							=										iUniRnd	<	iRnd	?	iUniRnd	:	iRnd
iCount					+=									1
	enduntil
											xout							iRnd
endop

opcode	linrnd_high,	i,	iii
	;linear	random	with	precedence	of	higher	values
iMin,	iMax,	iMaxCount	xin
	;set	counter	and	initial	(absurd)	result
iCount					=										0
iRnd							=										iMin
	;loop	and	reset	iRnd
	until	iCount	==	iMaxCount	do
iUniRnd				random					iMin,	iMax
iRnd							=										iUniRnd	>	iRnd	?	iUniRnd	:	iRnd
iCount					+=									1
	enduntil
											xout							iRnd
endop

opcode	trirnd,	i,	iii
iMin,	iMax,	iMaxCount	xin
	;set	a	counter	and	accumulator
iCount					=										0
iAccum					=										0
	;perform	loop	and	accumulate
	until	iCount	==	iMaxCount	do
iUniRnd				random					iMin,	iMax
iAccum					+=									iUniRnd
iCount					+=									1
	enduntil
	;get	the	mean	and	output
iRnd							=										iAccum	/	iMaxCount
											xout							iRnd
endop

;****ONE	INSTRUMENT	TO	PERFORM	ALL	DISTRIBUTIONS****
;0	=	uniform,	1	=	linrnd_low,	2	=	linrnd_high,	3	=	trirnd
;the	fractional	part	denotes	the	number	of	units,	e.g.
;3.4	=	triangular	distribution	with	four	sub-units

instr	notes
	;how	many	notes	to	be	played
iHowMany			=										p4
	;by	which	distribution	with	how	many	units
iWhich					=										giSequence[giSeqIndx]
iDistrib			=										int(iWhich)
iUnits					=										round(frac(iWhich)	*	10)
	;set	min	and	max	duration
iMinDur				=										.1
iMaxDur				=										2
	;set	min	and	max	pitch
iMinPch				=										36
iMaxPch				=										84

RANDOM

60

	;trigger	as	many	instances	of	instr	play	as	needed
iThisNote		=										0
iStart					=										0
iPrint					=										1

	;for	each	note	to	be	played
	until	iThisNote	==	iHowMany	do

		;calculate	iMidiPch	and	iDur	depending	on	type
		if	iDistrib	==	0	then
											printf_i			"%s",	iPrint,	"...	uniform	distribution:\n"
											printf_i			"%s",	iPrint,	"EQUAL	LIKELIHOOD	OF	ALL	PITCHES	AND	DURATIONS\n"
iMidiPch			random					iMinPch,	iMaxPch	;midi	note
iDur							random					iMinDur,	iMaxDur	;duration
		elseif	iDistrib	==	1	then
											printf_i				"...	linear	low	distribution	with	%d	units:\n",	iPrint,	iUnits
											printf_i				"%s",	iPrint,	"LOWER	NOTES	AND	LONGER	DURATIONS	PREFERRED\n"
iMidiPch			linrnd_low	iMinPch,	iMaxPch,	iUnits
iDur							linrnd_high	iMinDur,	iMaxDur,	iUnits
		elseif	iDistrib	==	2	then
											printf_i				"...	linear	high	distribution	with	%d	units:\n",	iPrint,	
iUnits
											printf_i				"%s",	iPrint,	"HIGHER	NOTES	AND	SHORTER	DURATIONS	PREFERRED\n"
iMidiPch			linrnd_high	iMinPch,	iMaxPch,	iUnits
iDur							linrnd_low	iMinDur,	iMaxDur,	iUnits
		else
											printf_i				"...	triangular	distribution	with	%d	units:\n",	iPrint,	iUnits
											printf_i				"%s",	iPrint,	"MEDIUM	NOTES	AND	DURATIONS	PREFERRED\n"
iMidiPch			trirnd					iMinPch,	iMaxPch,	iUnits
iDur							trirnd					iMinDur,	iMaxDur,	iUnits
		endif

	;call	subinstrument	to	play	note
											event_i				"i",	"play",	iStart,	iDur,	int(iMidiPch)

	;increase	start	tim	and	counter
iStart					+=									iDur
iThisNote		+=									1
	;avoid	continuous	printing
iPrint					=										0
	enduntil

	;reset	the	duration	of	this	instr	to	make	all	events	happen
p3									=										iStart	+	2

	;increase	index	for	sequence
giSeqIndx		+=									1
	;call	instr	again	if	sequence	has	not	been	ended
	if	giSeqIndx	<	lenarray(giSequence)	then
											event_i				"i",	"notes",	p3,	1,	iHowMany
	;or	exit
	else
											event_i				"i",	"exit",	p3,	1
	endif
endin

;****INSTRUMENTS	TO	PLAY	THE	SOUNDS	AND	EXIT	CSOUND****
instr	play
	;increase	duration	in	random	range
iDur							random					p3,	p3*1.5
p3									=										iDur
	;get	midi	note	and	convert	to	frequency
iMidiNote		=										p4
iFreq						cpsmidinn		iMidiNote
	;generate	note	with	karplus-strong	algorithm
aPluck					pluck						.2,	iFreq,	iFreq,	0,	1
aPluck					linen						aPluck,	0,	p3,	p3
	;filter
aFilter				mode							aPluck,	iFreq,	.1
	;mix	aPluck	and	aFilter	according	to	MidiNote
	;(high	notes	will	be	filtered	more)
aMix							ntrpol					aPluck,	aFilter,	iMidiNote,	36,	84

RANDOM

61

	;panning	also	according	to	MidiNote
	;(low	=	left,	high	=	right)
iPan							=										(iMidiNote-36)	/	48
aL,	aR					pan2							aMix,	iPan
											outs							aL,	aR
endin

instr	exit
											exitnow
endin

</CsInstruments>
<CsScore>
i	"notes"	0	1	23	;set	number	of	notes	per	instr	here
e	99999	;make	possible	to	perform	long	(exit	will	be	automatically)
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

With	this	method	we	can	build	probability	distributions	which	are	
very	similar	to	exponential	or	gaussian	distributions.5		Their	shape	
can	easily	be	formed	by	the	number	of	sub-units	used.

Scalings	

Random	is	a	complex	and	sensible	context.	There	are	so	many	ways	
to	let	the	horse	go,	run,	or	dance	--	the	conditions	you	set	for	this	'way	
of	moving'	are	much	more	important	than	the	fact	that	one	single	
move	is	not	predictable.	What	are	the	conditions	of	this	randomness?

Which	Way.	This	is	what	has	already	been	described:	random	
with	or	without	history,	which	probability	distribution,	etc.	
Which	Range.	This	is	a	decision	which	comes	from	the	
composer/programmer.	In	the	example	above	I	have	chosen	
pitches	from	Midi	Note	36	to	84	(C2	to	C6),	and	durations	
between	0.1	and	2	seconds.	Imagine	how	it	would	have	been	
sounded	with	pitches	from	60	to	67,	and	durations	from	0.9	to	
1.1	seconds,	or	from	0.1	to	0.2	seconds.	There	is	no	range	
which	is	'correct',	everything	depends	on	the	musical	idea.
Which	Development.	Usually	the	boundaries	will	change	in	the	
run	of	a	piece.	The	pitch	range	may	move	from	low	to	high,	or	
from	narrow	to	wide;	the	durations	may	become	shorter,	etc.
Which	Scalings.	Let	us	think	about	this	more	in	detail.

In	the	example	above	we	used	two	implicit	scalings.	The	pitches	have	
been	scaled	to	the	keys	of	a	piano	or	keyboard.	Why?	We	do	not	play	

RANDOM

62

piano	here	obviously	...	--	What	other	possibilities	might	have	been	
instead?	One	would	be:	no	scaling	at	all.	This	is	the	easiest	way	to	go	
--	whether	it	is	really	the	best,	or	simple	laziness,	can	only	be	decided	
by	the	composer	or	the	listener.

Instead	of	using	the	equal	tempered	chromatic	scale,	or	no	scale	at	
all,	you	can	use	any	other	ways	of	selecting	or	quantising	pitches.	Be	
it	any	which	has	been,	or	is	still,	used	in	any	part	of	the	world,	or	be	it	
your	own	invention,	by	whatever	fantasy	or	invention	or	system.

As	regards	the	durations,	the	example	above	has	shown	no	scaling	at	
all.	This	was	definitely	laziness...

The	next	example	is	essentially	the	same	as	the	previous	one,	but	it	
uses	a	pitch	scale	which	represents	the	overtone	scale,	starting	at	the	
second	partial	extending	upwards	to	the	32nd	partial.	This	scale	is	
written	into	an	array	by	a	statement	in	instrument	0.	The	durations	
have	fixed	possible	values	which	are	written	into	an	array	(from	the	
longest	to	the	shortest)	by	hand.	The	values	in	both	arrays	are	then	
called	according	to	their	position	in	the	array.

			EXAMPLE	01D06_scalings.csd					
		

<CsoundSynthesizer>
<CsOptions>
-d	-odac	-m0
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1
seed	0

;****POSSIBLE	DURATIONS	AS	ARRAY****
giDurs[]			array						3/2,	1,	2/3,	1/2,	1/3,	1/4
giLenDurs		lenarray			giDurs

;****POSSIBLE	PITCHES	AS	ARRAY****
	;initialize	array	with	31	steps
giScale[]		init							31
giLenScale	lenarray			giScale
	;iterate	to	fill	from	65	hz	onwards
iStart					=										65
iDenom					=										3	;start	with	3/2
iCnt							=										0
	until	iCnt	=	giLenScale	do
giScale[iCnt]	=							iStart

RANDOM

63

iStart					=										iStart	*	iDenom	/	(iDenom-1)
iDenom					+=									1	;next	proportion	is	4/3	etc
iCnt							+=									1
	enduntil

;****SEQUENCE	OF	UNITS	AS	ARRAY****
giSequence[]	array				0,	1.2,	1.4,	2.2,	2.4,	3.2,	3.6
giSeqIndx		=										0	;startindex

;****UDO	DEFINITIONS****
opcode	linrnd_low,	i,	iii
	;linear	random	with	precedence	of	lower	values
iMin,	iMax,	iMaxCount	xin
	;set	counter	and	initial	(absurd)	result
iCount					=										0
iRnd							=										iMax
	;loop	and	reset	iRnd
	until	iCount	==	iMaxCount	do
iUniRnd				random					iMin,	iMax
iRnd							=										iUniRnd	<	iRnd	?	iUniRnd	:	iRnd
iCount	+=	1
enduntil
											xout							iRnd
endop

opcode	linrnd_high,	i,	iii
	;linear	random	with	precedence	of	higher	values
iMin,	iMax,	iMaxCount	xin
	;set	counter	and	initial	(absurd)	result
iCount					=										0
iRnd							=										iMin
	;loop	and	reset	iRnd
	until	iCount	==	iMaxCount	do
iUniRnd				random					iMin,	iMax
iRnd							=										iUniRnd	>	iRnd	?	iUniRnd	:	iRnd
iCount	+=	1
enduntil
											xout							iRnd
endop

opcode	trirnd,	i,	iii
iMin,	iMax,	iMaxCount	xin
	;set	a	counter	and	accumulator
iCount					=										0
iAccum					=										0
	;perform	loop	and	accumulate
	until	iCount	==	iMaxCount	do
iUniRnd				random					iMin,	iMax
iAccum	+=	iUniRnd
iCount	+=	1
enduntil
	;get	the	mean	and	output
iRnd							=										iAccum	/	iMaxCount
											xout							iRnd
endop

;****ONE	INSTRUMENT	TO	PERFORM	ALL	DISTRIBUTIONS****
;0	=	uniform,	1	=	linrnd_low,	2	=	linrnd_high,	3	=	trirnd
;the	fractional	part	denotes	the	number	of	units,	e.g.
;3.4	=	triangular	distribution	with	four	sub-units

instr	notes
	;how	many	notes	to	be	played
iHowMany			=										p4
	;by	which	distribution	with	how	many	units
iWhich					=										giSequence[giSeqIndx]
iDistrib			=										int(iWhich)
iUnits					=										round(frac(iWhich)	*	10)

	;trigger	as	many	instances	of	instr	play	as	needed
iThisNote		=										0
iStart					=										0
iPrint					=										1

RANDOM

64

	;for	each	note	to	be	played
	until	iThisNote	==	iHowMany	do

		;calculate	iMidiPch	and	iDur	depending	on	type
		if	iDistrib	==	0	then
											printf_i			"%s",	iPrint,	"...	uniform	distribution:\n"
											printf_i			"%s",	iPrint,	"EQUAL	LIKELINESS	OF	ALL	PITCHES	AND	DURATIONS\n"
iScaleIndx	random					0,	giLenScale-.0001	;midi	note
iDurIndx			random					0,	giLenDurs-.0001	;duration
		elseif	iDistrib	==	1	then
											printf_i			"...	linear	low	distribution	with	%d	units:\n",	iPrint,	iUnits
											printf_i			"%s",	iPrint,	"LOWER	NOTES	AND	LONGER	DURATIONS	PREFERRED\n"
iScaleIndx	linrnd_low	0,	giLenScale-.0001,	iUnits
iDurIndx			linrnd_low	0,	giLenDurs-.0001,	iUnits
		elseif	iDistrib	==	2	then
											printf_i			"...	linear	high	distribution	with	%d	units:\n",	iPrint,	iUnits
											printf_i			"%s",	iPrint,	"HIGHER	NOTES	AND	SHORTER	DURATIONS	PREFERRED\n"
iScaleIndx	linrnd_high	0,	giLenScale-.0001,	iUnits
iDurIndx			linrnd_high	0,	giLenDurs-.0001,	iUnits
											else
											printf_i			"...	triangular	distribution	with	%d	units:\n",	iPrint,	iUnits
											printf_i			"%s",	iPrint,	"MEDIUM	NOTES	AND	DURATIONS	PREFERRED\n"
iScaleIndx	trirnd					0,	giLenScale-.0001,	iUnits
iDurIndx			trirnd					0,	giLenDurs-.0001,	iUnits
		endif

	;call	subinstrument	to	play	note
iDur							=										giDurs[int(iDurIndx)]
iPch							=										giScale[int(iScaleIndx)]
											event_i				"i",	"play",	iStart,	iDur,	iPch

	;increase	start	time	and	counter
iStart					+=									iDur
iThisNote		+=									1
	;avoid	continuous	printing
iPrint					=										0
enduntil

	;reset	the	duration	of	this	instr	to	make	all	events	happen
p3									=										iStart	+	2

	;increase	index	for	sequence
giSeqIndx	+=	1
	;call	instr	again	if	sequence	has	not	been	ended
	if	giSeqIndx	<	lenarray(giSequence)	then
											event_i				"i",	"notes",	p3,	1,	iHowMany
	;or	exit
											else
											event_i				"i",	"exit",	p3,	1
	endif
endin

;****INSTRUMENTS	TO	PLAY	THE	SOUNDS	AND	EXIT	CSOUND****
instr	play
	;increase	duration	in	random	range
iDur							random					p3*2,	p3*5
p3									=										iDur
	;get	frequency
iFreq						=										p4
	;generate	note	with	karplus-strong	algorithm
aPluck					pluck						.2,	iFreq,	iFreq,	0,	1
aPluck					linen						aPluck,	0,	p3,	p3
	;filter
aFilter				mode							aPluck,	iFreq,	.1
	;mix	aPluck	and	aFilter	according	to	freq
	;(high	notes	will	be	filtered	more)
aMix							ntrpol					aPluck,	aFilter,	iFreq,	65,	65*16
	;panning	also	according	to	freq
	;(low	=	left,	high	=	right)
iPan							=										(iFreq-65)	/	(65*16)
aL,	aR					pan2							aMix,	iPan

RANDOM

65

											outs							aL,	aR
endin

instr	exit
											exitnow
endin
</CsInstruments>
<CsScore>
i	"notes"	0	1	23	;set	number	of	notes	per	instr	here
e	99999	;make	possible	to	perform	long	(exit	will	be	automatically)
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

RANDOM	WITH	HISTORY	

There	are	many	ways	a	current	value	in	a	random	number	progression	
can	influence	the	next.	Two	of	them	are	used	frequently.	A	Markov	
chain	is	based	on	a	number	of	possible	states,	and	defines	a	different	
probability	for	each	of	these	states.	A	random	walk	looks	at	the	last	
state	as	a	position	in	a	range	or	field,	and	allows	only	certain	
deviations	from	this	position.
		

MARKOV	CHAINS	

A	typical	case	for	a	Markov	chain	in	music	is	a	sequence	of	certain	
pitches	or	notes.	For	each	note,	the	probability	of	the	following	note	
is	written	in	a	table	like	this:

	

This	means:	the	probability	that	element	a	is	repeated,	is	0.2;	the	
probability	that	b	follows	a	is	0.5;	the	probability	that	c	follows	a	is	
0.3.	The	sum	of	all	probabilities	must,	by	convention,	add	up	to	1.	
The	following	example	shows	the	basic	algorithm	which	evaluates	
the	first	line	of	the	Markov	table	above,	in	the	case,	the	previous	
element	has	been	'a'.

RANDOM

66

		

			EXAMPLE	01D07_markov_basics.csd						
		

<CsoundSynthesizer>
<CsOptions>
-ndm0
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32
0dbfs	=	1
nchnls	=	1
seed	0

instr	1
iLine[]				array						.2,	.5,	.3
iVal							random					0,	1
iAccum					=										iLine[0]
iIndex					=										0
	until	iAccum	>=	iVal	do
iIndex					+=									1
iAccum					+=									iLine[iIndex]
	enduntil
											printf_i			"Random	number	=	%.3f,	next	element	=	%c!\n",	1,	iVal,	
iIndex+97
endin
</CsInstruments>
<CsScore>
r	10
i	1	0	0
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

The	probabilities	are	0.2	0.5	0.3.	First	a	uniformly	distributed	random	
number	between	0	and	1	is	generated.	An	acculumator	is	set	to	the	
first	element	of	the	line	(here	0.2).	It	is	interrogated	as	to	whether	it	is	
larger	than	the	random	number.	If	so	then	the	index	is	returned,	if	not,	
the	second	element	is	added	(0.2+0.5=0.7),	and	the	process	is	
repeated,	until	the	accumulator	is	greater	or	equal	the	random	value.	
The	output	of	the	example	should	show	something	like	this:

Random	number	=	0.850,	next	element	=	c!

		

Random	number	=	0.010,	next	element	=	a!

		

Random	number	=	0.805,	next	element	=	c!

		

Random	number	=	0.696,	next	element	=	b!

		

RANDOM

67

Random	number	=	0.626,	next	element	=	b!

		

Random	number	=	0.476,	next	element	=	b!

		

Random	number	=	0.420,	next	element	=	b!

		

Random	number	=	0.627,	next	element	=	b!

		

Random	number	=	0.065,	next	element	=	a!

		

Random	number	=	0.782,	next	element	=	c!

		

The	next	example	puts	this	algorithm	in	an	User	Defined	Opcode.	Its	
input	is	a	Markov	table	as	a	two-dimensional	array,	and	the	previous	
line	as	index	(starting	with	0).	Its	output	is	the	next	element,	also	as	
index.	--	There	are	two	Markov	chains	in	this	example:	seven	pitches,	
and	three	durations.	Both	are	defined	in	two-dimensional	arrays:	
giProbNotes	and	giProbDurs.	Both	Markov	chains	are	running	
independently	from	each	other.

			EXAMPLE	01D08_markov_music.csd

<CsoundSynthesizer>
<CsOptions>
-dnm128	-odac
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32
0dbfs	=	1
nchnls	=	2
seed	0

;****USER	DEFINED	OPCODES	FOR	MARKOV	CHAINS****
		opcode	Markov,	i,	i[][]i
iMarkovTable[][],	iPrevEl	xin
iRandom				random					0,	1
iNextEl				=										0
iAccum					=										iMarkovTable[iPrevEl][iNextEl]
	until	iAccum	>=	iRandom	do
iNextEl				+=									1
iAccum					+=									iMarkovTable[iPrevEl][iNextEl]
	enduntil
											xout							iNextEl
		endop
		opcode	Markovk,	k,	k[][]k
kMarkovTable[][],	kPrevEl	xin
kRandom				random					0,	1
kNextEl				=										0

RANDOM

68

kAccum					=										kMarkovTable[kPrevEl][kNextEl]
	until	kAccum	>=	kRandom	do
kNextEl				+=									1
kAccum					+=									kMarkovTable[kPrevEl][kNextEl]
	enduntil
											xout							kNextEl
		endop

;****DEFINITIONS	FOR	NOTES****
	;notes	as	proportions	and	a	base	frequency
giNotes[]		array						1,	9/8,	6/5,	5/4,	4/3,	3/2,	5/3
giBasFreq		=										330
	;probability	of	notes	as	markov	matrix:
		;first	->	only	to	third	and	fourth
		;second	->	anywhere	without	self
		;third	->	strong	probability	for	repetitions
		;fourth	->	idem
		;fifth	->	anywhere	without	third	and	fourth
		;sixth	->	mostly	to	seventh
		;seventh	->	mostly	to	sixth
giProbNotes[][]	init		7,	7
giProbNotes	array					0.0,	0.0,	0.5,	0.5,	0.0,	0.0,	0.0,
																						0.2,	0.0,	0.2,	0.2,	0.2,	0.1,	0.1,
																						0.1,	0.1,	0.5,	0.1,	0.1,	0.1,	0.0,
																						0.0,	0.1,	0.1,	0.5,	0.1,	0.1,	0.1,
																						0.2,	0.2,	0.0,	0.0,	0.2,	0.2,	0.2,
																						0.1,	0.1,	0.0,	0.0,	0.1,	0.1,	0.6,
																						0.1,	0.1,	0.0,	0.0,	0.1,	0.6,	0.1

;****DEFINITIONS	FOR	DURATIONS****
	;possible	durations
gkDurs[]				array					1,	1/2,	1/3
	;probability	of	durations	as	markov	matrix:
		;first	->	anything
		;second	->	mostly	self
		;third	->	mostly	second
gkProbDurs[][]	init			3,	3
gkProbDurs	array						1/3,	1/3,	1/3,
																						0.2,	0.6,	0.3,
																						0.1,	0.5,	0.4

;****SET	FIRST	NOTE	AND	DURATION	FOR	MARKOV	PROCESS****
giPrevNote	init							1
gkPrevDur		init							1

;****INSTRUMENT	FOR	DURATIONS****
		instr	trigger_note
kTrig						metro						1/gkDurs[gkPrevDur]
	if	kTrig	==	1	then
											event						"i",	"select_note",	0,	1
gkPrevDur		Markovk				gkProbDurs,	gkPrevDur
	endif
		endin

;****INSTRUMENT	FOR	PITCHES****
		instr	select_note
	;choose	next	note	according	to	markov	matrix	and	previous	note
	;and	write	it	to	the	global	variable	for	(next)	previous	note
giPrevNote	Markov					giProbNotes,	giPrevNote
	;call	instr	to	play	this	note
											event_i				"i",	"play_note",	0,	2,	giPrevNote
	;turn	off	this	instrument
											turnoff
		endin

;****INSTRUMENT	TO	PERFORM	ONE	NOTE****
		instr	play_note
	;get	note	as	index	in	ginotes	array	and	calculate	frequency
iNote						=										p4
iFreq						=										giBasFreq	*	giNotes[iNote]
	;random	choice	for	mode	filter	quality	and	panning
iQ									random					10,	200
iPan							random					0.1,	.9

RANDOM

69

	;generate	tone	and	put	out
aImp							mpulse					1,	p3
aOut							mode							aImp,	iFreq,	iQ
aL,	aR					pan2							aOut,	iPan
											outs							aL,	aR
		endin

</CsInstruments>
<CsScore>
i	"trigger_note"	0	100
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz	

	

RANDOM	WALK

In	the	context	of	movement	between	random	values,	'walk'	can	be	
thought	of	as	the	opposite	of	'jump'.	If	you	jump	within	the	
boundaries	A	and	B,	you	can	end	up	anywhere	between	these	
boundaries,	but	if	you	walk	between	A	and	B	you	will	be	limited	by	
the	extent	of	your	step	-	each	step	applies	a	deviation	to	the	previous	
one.	If	the	deviation	range	is	slightly	more	positive	(say	from	-0.1	to	
+0.2),	the	general	trajectory	of	your	walk	will	be	in	the	positive	
direction	(but	individual	steps	will	not	necessarily	be	in	the	positive	
direction).	If	the	deviation	range	is	weighted	negative	(say	from	-0.2	
to	0.1),	then	the	walk	will	express	a	generally	negative	trajectory.

One	way	of	implementing	a	random	walk	will	be	to	take	the	current	
state,	derive	a	random	deviation,	and	derive	the	next	state	by	adding	
this	deviation	to	the	current	state.	The	next	example	shows	two	ways	
of	doing	this.

The	pitch	random	walk	starts	at	pitch	8	in	octave	notation.	The	
general	pitch	deviation	gkPitchDev	is	set	to	0.2,	so	that	the	next	pitch	
could	be	between	7.8	and	8.2.	But	there	is	also	a	pitch	direction	
gkPitchDir	which	is	set	to	0.1	as	initial	value.	This	means	that	the	
upper	limit	of	the	next	random	pitch	is	8.3	instead	of	8.2,	so	that	the	
pitch	will	move	upwards	in	a	greater	number	of	steps.	When	the	
upper	limit	giHighestPitch	has	been	crossed,	the	gkPitchDir	variable	
changes	from	+0.1	to	-0.1,	so	after	a	number	of	steps,	the	pitch	will	
have	become	lower.	Whenever	such	a	direction	change	happens,	the	

RANDOM

70

console	reports	this	with	a	message	printed	to	the	terminal.

The	density	of	the	notes	is	defined	as	notes	per	second,	and	is	applied	
as	frequency	to	the	metro	opcode	in	instrument	'walk'.	The	lowest	
possible	density	giLowestDens	is	set	to	1,	the	highest	to	8	notes	per	
second,	and	the	first	density	giStartDens	is	set	to	3.	The	possible	
random	deviation	for	the	next	density	is	defined	in	a	range	from	zero	
to	one:	zero	means	no	deviation	at	all,	one	means	that	the	next	
density	can	alter	the	current	density	in	a	range	from	half	the	current	
value	to	twice	the	current	value.	For	instance,	if	the	current	density	is	
4,	for	gkDensDev=1	you	would	get	a	density	between	2	and	8.	The	
direction	of	the	densities	gkDensDir	in	this	random	walk	follows	the	
same	range	0..1.	Assumed	you	have	no	deviation	of	densities	at	all	
(gkDensDev=0),	gkDensDir=0	will	produce	ticks	in	always	the	same	
speed,	whilst	gkDensDir=1	will	produce	a	very	rapid	increase	in	
speed.	Similar	to	the	pitch	walk,	the	direction	parameter	changes	
from	plus	to	minus	if	the	upper	border	has	crossed,	and	vice	versa.
		

			EXAMPLE	01D09_random_walk.csd
		

<CsoundSynthesizer>
<CsOptions>
-dnm128	-odac
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32
0dbfs	=	1
nchnls	=	2
seed	1	;change	to	zero	for	always	changing	results

;****SETTINGS	FOR	PITCHES****
	;define	the	pitch	street	in	octave	notation
giLowestPitch	=					7
giHighestPitch	=				9
	;set	pitch	startpoint,	deviation	range	and	the	first	direction
giStartPitch	=						8
gkPitchDev	init					0.2	;random	range	for	next	pitch
gkPitchDir	init					0.1	;positive	=	upwards

;****SETTINGS	FOR	DENSITY****
	;define	the	maximum	and	minimum	density	(notes	per	second)
giLowestDens	=						1
giHighestDens	=					8
	;set	first	density
giStartDens	=							3
	;set	possible	deviation	in	range	0..1
	;0	=	no	deviation	at	all
	;1	=	possible	deviation	is	between	half	and	twice	the	current	density

RANDOM

71

gkDensDev	init						0.5
	;set	direction	in	the	same	range	0..1
	;(positive	=	more	dense,	shorter	notes)
gkDensDir	init						0.1

;****INSTRUMENT	FOR	RANDOM	WALK****
		instr	walk
	;set	initial	values
kPitch				init						giStartPitch
kDens					init						giStartDens
	;trigger	impulses	according	to	density
kTrig					metro					kDens
	;if	the	metro	ticks
	if	kTrig	==	1	then
		;1)	play	current	note
										event					"i",	"play",	0,	1.5/kDens,	kPitch
		;2)	calculate	next	pitch
			;define	boundaries	according	to	direction
kLowPchBound	=						gkPitchDir	<	0	?	-gkPitchDev+gkPitchDir	:	-gkPitchDev
kHighPchBound	=					gkPitchDir	>	0	?	gkPitchDev+gkPitchDir	:	gkPitchDev
			;get	random	value	in	these	boundaries
kPchRnd			random				kLowPchBound,	kHighPchBound
			;add	to	current	pitch
kPitch	+=	kPchRnd
		;change	direction	if	maxima	are	crossed,	and	report
		if	kPitch	>	giHighestPitch	&&	gkPitchDir	>	0	then
gkPitchDir	=								-gkPitchDir
										printks			"	Pitch	touched	maximum	-	now	moving	down.\n",	0
		elseif	kPitch	<	giLowestPitch	&&	gkPitchDir	<	0	then
gkPitchDir	=								-gkPitchDir
										printks			"Pitch	touched	minimum	-	now	moving	up.\n",	0
		endif
		;3)	calculate	next	density	(=	metro	frequency)
			;define	boundaries	according	to	direction
kLowDensBound	=					gkDensDir	<	0	?	-gkDensDev+gkDensDir	:	-gkDensDev
kHighDensBound	=				gkDensDir	>	0	?	gkDensDev+gkDensDir	:	gkDensDev
			;get	random	value	in	these	boundaries
kDensRnd		random				kLowDensBound,	kHighDensBound
			;get	multiplier	(so	that	kDensRnd=1	yields	to	2,	and	kDens=-1	to	1/2)
kDensMult	=									2	^	kDensRnd
			;multiply	with	current	duration
kDens	*=	kDensMult
			;avoid	too	high	values	and	too	low	values
kDens					=									kDens	>	giHighestDens*1.5	?	giHighestDens*1.5	:	kDens
kDens					=									kDens	<	giLowestDens/1.5	?	giLowestDens/1.5	:	kDens
			;change	direction	if	maxima	are	crossed
		if	(kDens	>	giHighestDens	&&	gkDensDir	>	0)	||	(kDens	<	giLowestDens	&&	gkDensDir	<	
0)	then
gkDensDir	=									-gkDensDir
			if	kDens	>	giHighestDens	then
										printks			"	Density	touched	upper	border	-	now	becoming	less	dense.\n",	0
										else
										printks			"	Density	touched	lower	border	-	now	becoming	more	dense.\n",	0
			endif
		endif
	endif
		endin

;****INSTRUMENT	TO	PLAY	ONE	NOTE****
		instr	play
	;get	note	as	octave	and	calculate	frequency	and	panning
iOct							=										p4
iFreq						=										cpsoct(iOct)
iPan							ntrpol					0,	1,	iOct,	giLowestPitch,	giHighestPitch
	;calculate	mode	filter	quality	according	to	duration
iQ									ntrpol					10,	400,	p3,	.15,	1.5
	;generate	tone	and	throw	out
aImp							mpulse					1,	p3
aMode						mode							aImp,	iFreq,	iQ
aOut							linen						aMode,	0,	p3,	p3/4
aL,	aR					pan2							aOut,	iPan
											outs							aL,	aR
		endin

RANDOM

72

</CsInstruments>
<CsScore>
i	"walk"	0	999
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz	

II.	SOME	MATHS	PERSPECTIVES	ON
RANDOM	

RANDOM	PROCESSES		

The	relative	frequency	of	occurrence	of	a	random	variable	can	be	described	by	a	probability	function	(for	discrete	
random	variables)	or	by	density	functions	(for	continuous	random	variables).	

When	two	dice	are	thrown	simultaneously,	the	sum	x	of	
their	numbers	can	be	2,	3,	...12.	The	following	figure	
shows	the	probability	function	p(x)	of	these	possible	
outcomes.	p(x)	is	always	less	than	or	equal	to	1.	The	
sum	of	the	probabilities	of	all	possible	outcomes	is	1.			

				 	

For	continuous	random	variables	the	probability	of	
getting	a	specific	value	x	is	0.	But	the	probability	of	
getting	a	value	within	a	certain	interval	can	be	indicated	
by	an	area	that	corresponds	to	this	probability.	The	
function	f(x)	over	these	areas	is	called	the	density	
function.	With	the	following	density	the	chance	of	
getting	a	number	smaller	than	0	is	0,	to	get	a	number	
between	0	and	0.5	is	0.5,	to	get	a	number	between	0.5	
and	1	is	0.5	etc.	Density	functions	f(x)	can	reach	values	
greater	than	1	but	the	area	under	the	function	is	1.

RANDOM

73

							 	

Generating	Random	Numbers	With	a	Given	Probability	or	Density		

Csound	provides	opcodes	for	some	specific	densities	
but	no	means	to	produce	random	number	with	user	
defined	probability	or	density	functions.	The	opcodes	
rand_density	and	rand_probability	(see	below)	generate	
random	numbers	with	probabilities	or	densities	given	by	
tables.	They	are	realized	by	using	the	so-called	rejection
sampling	method.

Rejection	Sampling:		

The	principle	of	rejection	sampling	is	to	first	generate	uniformly	distributed	random	numbers	in	the	range	required
and	to	then	accept	these	values	corresponding	to	a	given	density	function	(or	otherwise	to	reject	them).	Let	us	
demonstrate	this	method	using	the	density	function	shown	in	the	next	figure.	(Since	the	rejection	sampling	
method	uses	only	the	"shape"	of	the	function,	the	area	under	the	function	need	not	be	1).	We	first	generate	
uniformly	distributed	random	numbers	rnd1	over	the	interval	[0,	1].	Of	these	we	accept	a	proportion	
corresponding	to	f(rnd1).	For	example,	the	value	0.32	will	only	be	accepted	in	the	proportion	of	f(0.32)	=	0.82.	
We	do	this	by	generating	a	new	random	number	rand2	between	0	and	1	and	accept	rnd1	only	if	rand2	<	f(rnd1);	
otherwise	we	reject	it.	(see	Signals,	Systems	and	Sound	Synthesis	chapter	10.1.4.4)

								

rejection	sampling	

EXAMPLE	01D10_Rejection_Sampling.csd

<CsoundSynthesizer>
<CsOptions>
-odac

RANDOM

74

</CsOptions>
<CsInstruments>
;example	by	martin	neukom
sr	=	44100
ksmps	=	10
nchnls	=	1
0dbfs	=	1

;	random	number	generator	to	a	given	density	function
;	kout	 random	number;	k_minimum,k_maximum,i_fn	for	a	density	function

opcode	 rand_density,	k,	kki	 	

kmin,kmax,ifn	 xin
loop:
krnd1	 	 random	 	 0,1
krnd2	 	 random	 	 0,1
k2	 	 table	 	 krnd1,ifn,1	
	 	 if	 krnd2	>	k2	 kgoto	loop	 	 	
	 	 xout	 	 kmin+krnd1*(kmax-kmin)
endop

;	random	number	generator	to	a	given	probability	function
;	kout	 random	number
;	in:	i_nr	number	of	possible	values
;	i_fn1	function	for	random	values
;	i_fn2	probability	functionExponential:	Generate	a	uniformly	distributed	number	
between	0	and	1	and	take	its	natural	logarithm.

opcode	 rand_probability,	k,	iii	 	

inr,ifn1,ifn2	 xin
loop:
krnd1	 	 random	 	 0,inr
krnd2	 	 random	 	 0,1
k2	 	 table	 	 int(krnd1),ifn2,0	
	 	 if	 krnd2	>	k2	 kgoto	loop	
kout	 	 table	 	 krnd1,ifn1,0	 	
	 	 xout	 	 kout
endop

instr	1

krnd	 	 rand_density	 400,800,2
aout	 	 poscil	 	 .1,krnd,1
	 	 out	 	 aout

endin

instr	2

krnd	 	 rand_probability	p4,p5,p6
aout	 	 poscil	 	 .1,krnd,1
	 	 out	 	 aout

endin

</CsInstruments>
<CsScore>
;sine
f1	0	32768	10	1
;density	function
f2	0	1024	6	1	112	0	800	0	112	1
;random	values	and	their	relative	probability	(two	dice)
f3	0	16	-2	2	3	4	5	6	7	8	9	10	11	12
f4	0	16		2	1	2	3	4	5	6	5	4		3		2		1
;random	values	and	their	relative	probability
f5	0	8	-2	400	500	600	800
f6	0	8		2	.3		.8		.3		.1

i1	 0	10	 	

;i2	0	10	4	5	6

RANDOM

75

</CsScore>
</CsoundSynthesizer>

Random	Walk	

In	a	series	of	random	numbers	the	single	numbers	are	
independent	upon	each	other.	Parameter	(left	figure)	or	
paths	in	the	room	(two-dimensional	trajectory	in	the	
right	figure)	created	by	random	numbers	wildly	jump	
around.

Example	1	

Table[RandomReal[{-1,	1}],	{100}];	

			 	

We	get	a	smoother	path,	a	so-called	random	walk,	by	
adding	at	every	time	step	a	random	number	r	to	the	
actual	position	x	(x	+=	r).

Example	2	

x	=	0;	walk	=	Table[x	+=	RandomReal[{-.2,	.2}],	
{300}];	

			

The	path	becomes	even	smoother	by	adding	a	random	
number	r	to	the	actual	velocity	v.	

v	+=	r
x	+=	v

		
The	path	can	by	bounded	to	an	area	(figure	to	the	right)	by	inverting	the	velocity	if	the	path	exceeds	the	limits	
(min,	max):	

RANDOM

76

vif(x	<	min	||	x	>	max)	v	*=	-1

		
The	movement	can	be	damped	by	decreasing	the	velocity	at	every	time	step	by	a	small	factor	d

	v	*=	(1-d)	

Example	3	

x	=	0;	v	=	0;	walk	=	Table[x	+=	v	+=	
RandomReal[{-.01,	.01}],	{300}];	

			

The	path	becomes	again	smoother	by	adding	a	random	number	r	to	the	actual	acelleration	a,	the	change	of	the	
aceleration,	etc.

a	+=	r
v	+=	a
x	+=	v

Example	4	

x	=	0;	v	=	0;	a	=	0;	
		

Table[x	+=	v	+=	a	+=	RandomReal[{-.0001,	
.0001}],	{300}];	

		

	(see	Martin	Neukom,	Signals,	Systems	and	Sound	
Synthesis	chapter	10.2.3.2)

EXAMPLE	01D11_Random_Walk2.csd

<CsoundSynthesizer>
<CsInstruments>
;example	by	martin	neukom

sr	=	44100
ksmps	=	128
nchnls	=	1

RANDOM

77

0dbfs	=	1

;	random	frequency
instr	1

kx		 random		-p6,	p6
kfreq		 =		 p5*2^kx
aout		 oscil		 p4,	kfreq,	1
out		 aout

endin

;	random	change	of	frequency
instr	2

kx		 init		 .5
kfreq		 =		 p5*2^kx
kv		 random		-p6,	p6
kv		 =		 kv*(1	-	p7)
kx		 =		 kx	+	kv
aout		 oscil		 p4,	kfreq,	1
out		 aout

endin

;	random	change	of	change	of	frequency
instr	3
kv	 init	 0
kx		 init		 .5
kfreq		 =		 p5*2^kx
ka		 random		-p7,	p7
kv		 =		 kv	+	ka
kv		 =		 kv*(1	-	p8)
kx		 =		 kx	+	kv
kv		 =		 (kx	<	-p6	||	kx	>	p6?-kv	:	kv)
aout		 oscili		p4,	kfreq,	1
out		 aout

endin

</CsInstruments>
<CsScore>

f1	0	32768	10	1
;	i1		 p4		 p5		 p6
;	i2		 p4		 p5		 p6		 p7
;		 amp		 c_fr		 rand		 damp
;	i2	0	20		 .1		 600		 0.01		 0.001
;		 amp		 c_fr		 d_fr		 rand		 damp
;		 amp		 c_fr		 rand
;	i1	0	20		 .1		 600		 0.5
;	i3		 p4		 p5		 p6		 p7		 p8
i3	0	20		 .1		 600		 1		 0.001		 0.001
</CsScore>
</CsoundSynthesizer>

III.	MISCELLANEOUS	EXAMPLES

Csound	has	a	range	of	opcodes	and	GEN	routine	for	the	creation	of	
various	random	functions	and	distributions.	Perhaps	the	simplest	of	
these	is	random	which	simply	generates	a	random	value	within	user	
defined	minimum	and	maximum	limit	and	at	i-time,	k-rate	or	a-rate	
accroding	to	the	variable	type	of	its	output:

RANDOM

78

ires	random	imin,	imax
kres	random	kmin,	kmax
ares	random	kmin,	kmax

	Values	are	generated	according	to	a	uniform	random	distribution,	
meaning	that	any	value	within	the	limits	has	equal	chance	of	
occurence.	Non-uniform	distributions	in	which	certain	values	have	
greater	chance	of	occurence	over	others	are	often	more	useful	and	
musical.	For	these	purposes,	Csound	includes	the	betarand,	bexprand,	
cauchy,	exprand,	gauss,	linrand,	pcauchy,	poisson,	trirand,	unirand	
and	weibull	random	number	generator	opcodes.	The	distributions	
generated	by	several	of	these	opcodes	are	illustrated	below.

	

	

RANDOM

79

In	addition	to	these	so	called	'x-class	noise	generators'	Csound	
provides	random	function	generators,	providing	values	that	change	
over	time	a	various	ways.

randomh	generates	new	random	numbers	at	a	user	defined	rate.	The	
previous	value	is	held	until	a	new	value	is	generated,	and	then	the	
output	immediately	assumes	that	value.

The	instruction:

kmin			=									-1
kmax			=									1
kfreq		=									2
kout			randomh			kmin,kmax,kfreq

will	produce	and	output	something	like:

randomi	is	an	interpolating	version	of	randomh.	Rather	than	jump	to	
new	values	when	they	are	generated,	randomi	interpolates	linearly	to	
the	new	value,	reaching	it	just	as	a	new	random	value	is	generated.	
Replacing	randomh	with	randomi	in	the	above	code	snippet	would	

RANDOM

80

result	in	the	following	output:

In	practice	randomi's	angular	changes	in	direction	as	new	random	
values	are	generated	might	be	audible	depending	on	the	how	it	is	
used.	rsplsine	allows	us	to	specify	not	just	a	single	frequency	but	a	
minimum	and	a	maximum	frequency,	and	the	resulting	function	is	a	
smooth	spline	between	the	minimum	and	maximum	values	and	these	
minimum	and	maximum	frequencies.	The	following	input:

kmin					=									-0.95
kmax					=									0.95
kminfrq		=									1
kmaxfrq		=									4
asig					jspline			kmin,	kmax,	kminfrq,	kmaxfrq

would	generate	an	output	something	like:

	

We	need	to	be	careful	with	what	we	do	with	rspline's	output	as	it	can	
exceed	the	limits	set	by	kmin	and	kmax.	Minimum	and	maximum	
values	can	be	set	conservatively	or	the	limit	opcode	could	be	used	to	
prevent	out	of	range	values	that	could	cause	problems.

The	following	example	uses	rspline	to	'humanise'	a	simple	
synthesiser.	A	short	melody	is	played,	first	without	any	humanising	
and	then	with	humanising.	rspline	random	variation	is	added	to	the	
amplitude	and	pitch	of	each	note	in	addition	to	an	i-time	random	
offset.
		

RANDOM

81

EXAMPLE	01D12_humanising.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1
seed	0

giWave		ftgen		0,	0,	2^10,	10,	1,0,1/4,0,1/16,0,1/64,0,1/256,0,1/1024

		instr	1	;	an	instrument	with	no	'humanising'
inote	=							p4
aEnv		linen			0.1,0.01,p3,0.01
aSig		poscil		aEnv,cpsmidinn(inote),giWave
						outs				aSig,aSig
		endin

		instr	2	;	an	instrument	with	'humanising'
inote			=							p4

;	generate	some	i-time	'static'	random	paramters
iRndAmp	random	 -3,3			;	amp.	will	be	offset	by	a	random	number	of	decibels
iRndNte	random		-5,5			;	note	will	be	offset	by	a	random	number	of	cents

;	generate	some	k-rate	random	functions
kAmpWob	rspline	-1,1,1,10			;	amplitude	'wobble'	(in	decibels)
kNteWob	rspline	-5,5,0.3,10	;	note	'wobble'	(in	cents)

;	calculate	final	note	function	(in	CPS)
kcps				=								cpsmidinn(inote+(iRndNte*0.01)+(kNteWob*0.01))

;	amplitude	envelope	(randomisation	of	attack	time)
aEnv				linen			0.1*ampdb(iRndAmp+kAmpWob),0.01+rnd(0.03),p3,0.01
aSig				poscil		aEnv,kcps,giWave
								outs				aSig,aSig
		endin

</CsInstruments>

<CsScore>
t	0	80
#define	SCORE(i)	#
i	$i	0	1			60
i	.		+	2.5	69
i	.		+	0.5	67
i	.		+	0.5	65
i	.		+	0.5	64
i	.		+	3			62
i	.		+	1			62
i	.		+	2.5	70
i	.		+	0.5	69
i	.		+	0.5	67
i	.		+	0.5	65
i	.		+	3			64	#
$SCORE(1)		;	play	melody	without	humanising
b	17
$SCORE(2)		;	play	melody	with	humanising
e
</CsScore>
</CsoundSynthesizer>
;example	by	Iain	McCurdy

The	final	example	implements	a	simple	algorithmic	note	generator.	It	
makes	use	of	GEN17	to	generate	histograms	which	define	the	

RANDOM

82

probabilities	of	certain	notes	and	certain	rhythmic	gaps	occuring.

EXAMPLE	01D13_simple_algorithmic_note_generator.csd

<CsoundSynthesizer>
<CsOptions>
-odac	-dm0
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

giNotes	ftgen	 0,0,-100,-17,0,48,	15,53,	30,55,	40,60,	50,63,	60,65,	79,67,	85,70,	
90,72,	96,75
giDurs	 ftgen	 0,0,-100,-17,0,2,	30,0.5,	75,1,	90,1.5

		instr	1
kDur		init								0.5													;	initial	rhythmic	duration
kTrig	metro							2/kDur										;	metronome	freq.	2	times	inverse	of	duration
kNdx		trandom					kTrig,0,1							;	create	a	random	index	upon	each	metro	'click'
kDur		table							kNdx,giDurs,1			;	read	a	note	duration	value
						schedkwhen		kTrig,0,0,2,0,1	;	trigger	a	note!
		endin

		instr	2
iNote	table					rnd(1),giNotes,1																	;	read	a	random	value	from	the	
function	table
aEnv		linsegr	 0,	0.005,	1,	p3-0.105,	1,	0.1,	0	;	amplitude	envelope
iPlk		random	 0.1,	0.3																									;	point	at	which	to	pluck	the	string
iDtn		random				-0.05,	0.05																						;	random	detune
aSig		wgpluck2		0.98,	0.2,	cpsmidinn(iNote+iDtn),	iPlk,	0.06
						out							aSig	*	aEnv
		endin
</CsInstruments>

<CsScore>
i	1	0				300		;	start	3	long	notes	close	after	one	another
i	1	0.01	300
i	1	0.02	300
e
</CsScore>
</CsoundSynthesizer>
;example	by	Iain	McCurdy

1.	 cf	http://www.etymonline.com/index.php?term=random^

2.	 Because	the	sample	rate	is	44100	samples	per	second.	So	a	
repetition	after	65536	samples	will	lead	to	a	repetition	after	
65536/44100	=	1.486	seconds.^

3.	 Charles	Dodge	and	Thomas	A.	Jerse,	Computer	Music,	New	
York	1985,	Chapter	8.1,	in	particular	page	269-278.^

4.	 Most	of	them	have	been	written	by	Paris	Smaragdis	in	1995:	
betarnd,	bexprnd,	cauchy,	exprnd,	gauss,	linrand,	pcauchy,	
poisson,	trirand,	unirand	and	weibull.^

5.	 According	to	Dodge/Jerse,	the	usual	algorithms	for	exponential	
and	gaussian	are:
		
Exponential:	Generate	a	uniformly	distributed	number	between	
0	and	1	and	take	its	natural	logarithm.
		
Gauss:	Take	the	mean	of	uniformly	distributed	numbers	and	
scale	them	by	the	standard	deviation.	^

MAKE	CSOUND	RUN

83

MAKE	CSOUND	RUN

CSOUND	AND	FRONTENDS

The	core	element	of	Csound	is	an	audio	engine	for	the	Csound	
language.	It	has	no	graphical	interface	and	it	is	designed	to	take	
Csound	text	files	(called	".csd"	files)	and	produce	audio,	either	in	
realtime,	or	by	writing	to	a	file.	It	can	still	be	used	in	this	way,	but	
most	users	nowadays	prefer	to	use	Csound	via	a	frontend.	A	frontend	
is	an	application	which	assists	you	in	writing	code	and	running	
Csound.	Beyond	the	functions	of	a	simple	text	editor,	a	frontend	
environment	will	offer	colour	coded	highlighting	of	language	specific	
keywords	and	quick	access	to	an	integrated	help	system.	A	frontend	
can	also	expand	possibilities	by	providing	tools	to	build	interactive	
interfaces	as	well,	sometimes,	as	advanced	compositional	tools.

In	2009	the	Csound	developers	decided	to	include	CsoundQt	as	the	
standard	frontend	to	be	included	with	the	Csound	distribution,	so	you	
will	already	have	this	frontend	if	you	have	installed	any	of	the	recent	
pre-built	versions	of	Csound.	Conversely	if	you	install	a	frontend	you	
will	require	a	separate	installation	of	Csound	in	order	for	it	to	
function.	If	you	experience	any	problems	with	CsoundQt,	or	simply	
prefer	another	frontend	design,	try	WinXound,	Cabbage	or	Blue	as	
alternative.	
		

ABOUT	CSOUND6...

Csound6	has	been	released	in	spring	2013.	It	has	a	lot	of	new	features	
like	on-the-fly	recompilation	of	Csound	code	(enabling	forms	of	live-
coding),	arrays,	new	syntax	for	using	opcodes,	a	redesigned	C/C++	
API,	better	threading	for	usage	with	multi-core	processors,	better	
real-time	performance,	etc.

HOW	TO	DOWNLOAD	AND	INSTALL

MAKE	CSOUND	RUN

84

CSOUND

To	get	Csound	you	first	need	to	download	the	package	for	your	
system	from	the	SourceForge	page:		
http://sourceforge.net/projects/csound/files/csound6
		

There	are	many	files	here,	so	here	are	some	guidelines	to	help	you	
choose	the	appropriate	version.

WINDOWS

Windows	installers	are	the	ones	ending	in	.exe.	Look	for	the	latest	
version	of	Csound,	and	find	a	file	which	should	be	called	something	
like:	Setup_Csound6_6.02.0.exe.	One	important	thing	to	note	is	the	
final	letter	of	the	installer	name,	which	can	be	"d"	or	"f".	This	
specifies	the	computation	precision	of	the	Csound	engine.	Float	
precision	(32-bit	float)	is	marked	with	"f"	and	double	precision	(64-
bit	float)	is	marked	"d".	This	is	important	to	bear	in	mind,	as	a	
frontend	which	works	with	the	"floats"	version	will	not	run	if	you	
have	the	"doubles"	version	installed.	More	recent	versions	of	the	pre-
built	Windows	installer	have	only	been	released	in	the	"doubles"	
version.
		

After	you	have	downloaded	the	installer,	you	might	find	it	easiest	just	
to	launch	the	executable	installer	and	follow	the	instructions	
accepting	the	defaults.	You	can,	however,	modify	the	components	
that	will	be	installed	during	the	installation	process	(utilities,	front-
ends,	documentation	etc.)	creating	either	a	fully-featured	installation	
or	a	super-light	installation	with	just	the	bare	bones.

MAKE	CSOUND	RUN

85

You	may	also	find	it	useful	to	install	the	Python	opcodes	at	the	this	
stage	-	selected	under	"Csound	interfaces".	If	you	choose	to	do	this	
however	you	will	have	to	separately	install	Python	itself.	You	will	
need	to	install	Python	in	any	case	if	you	plan	to	use	the	CsoundQt	
front	end,	as	the	current	version	of	CsoundQt	requires	Python.	(As	of	
March	2013,	Version	2.7	of	Python	is	the	correct	choice.)
		

Csound	will,	by	default,	install	into	your	Program	Files	folder,	but	
you	may	prefer	to	install	directly	into	a	folder	in	the	root	directory	of	
your	C:	drive.
		

Once	installation	has	completed,	you	can	find	a	Csound	folder	in	your	
Start	Menu	containing	short-cuts	to	various	items	of	documentation	
and	Csound	front-ends.

MAKE	CSOUND	RUN

86

The	Windows	installer	will	not	create	any	desktop	shortcuts	but	you	
can	easily	do	this	yourself		by	right-clicking	the	CsoundQt	executable	
(for	example)	and	selecting	"create	shortcut".	Drag	the	newly	created	
shortcut	onto	your	desktop.
		

MAC	OS	X

The	Mac	OS	X	installers	are	the	files	ending	in	.dmg.	Look	for	the	
latest	version	of	Csound	for	your	particular	system,	for	example	a	
Universal	binary	for	10.9	will	be	called	something	like:	
Csound6.02.0-OSX10.9-x86_64.dmg.	When	you	double	click	the	
downloaded	file,	you	will	have	a	disk	image	on	your	desktop,	with	
the	Csound	installer,	CsoundQt	and	a	readme	file.	Double-click	the	
installer	and	follow	the	instructions.	Csound	and	the	basic	Csound	
utilities	will	be	installed.	To	install	the	CsoundQt	frontend,	you	only	
need	to	move	it	to	your	Applications	folder.

LINUX	AND	OTHERS

Csound	is	available	from	the	official	package	repositories	for	many	
distributions	like	OpenSuse,	Debian,	Ubuntu,	Fedora,	Archlinux	and	
Gentoo.	If	there	are	no	binary	packages	for	your	platform,	or	you	
need	a	more	recent	version,	you	can	get	the	source	package	from	the	

MAKE	CSOUND	RUN

87

SourceForge	page	and	build	from	source.	You	will	find	the	most	
recent	build	instructions	in	the	Build.md	file	in	the	Csound	sources	or	
in	the	Github	Csound	Wiki.

After	installing	git,	you	can	use	this	command	to	clone	the	Csound6	
repository,	if	you	like	to	have	access	to	the	latest	(perhaps	unstable)	
sources:
		

git	clone	git://github.com/csound/csound.git

The	develop	sources	can	be	found	on	the	develop	branch:	
https://github.com/csound/csound/tree/develop.		There	you	will	find	a	
button	Download	Snapshot,	that	will	allow	you	to	download	the	latest	
sources.

In	the	develop	branch	you	will	find	a	file	called	"BUILD.md".	This	
file	contains	the	latest	instructions	on	how	to	build	Csound6	for

Debian/Ubuntu	Linux
		

Mac	OS	X	using	Homebrew
		

General	Instructions	for	Linux	without	Root	access
		

Raspberry	PI	standard	OS
		

Fedora	18
		

IOS	

If	you	would	just	like	to	run	Csound	on	your	iPad,	there	is	an	app	for	
that	called	CsoundPad:

MAKE	CSOUND	RUN

88

		
http://itunes.apple.com/app/csoundpad/id861008380?mt=8#

If	you	are	a	developer,	Csound	can	be	run	in	an	iOS	app	that	you're	
programming	by	including	the	Csound-for-iOS	files	in	your	Xcode	
project.		The	zip	archive	for	these	files	is	included	in	the	same	
directory	that	other	releases	are	available	in,	for	example	for	version	
6.05	of	Csound,	the	files	are	here:
		
http://sourceforge.net/projects/csound/files/csound6/Csound6.05/
		
The	"csound-iOS-6.05.0.zip"	file	contains	an	archive	of	an	example	
project	and	PDF	manual.

Some	sample	projects:

AudioKit	(http://audiokit.io)	is	an	Objective-C	and	Swift	
framework	for	building	iOS	and	OSX	apps	using	Csound	as	the	
audio	engine.

csGrain,	developed	by	the	Boulanger	Labs	
(http://www.boulangerlabs.com),	is	a	complex	audio	effects	
app	that	works	with	audio	files	or	live	audio	input.
Portable	Dandy,	an	innovative	sampler	synthesiser	for	iOS	(see	
http://www.barefoot-coders.com).
iPulsaret,	an	impressive	synthesizer	app	(see	
http://www.densitytigs.com).	

ANDROID

The	Android	files	for	Csound	are	found	in	a	subfolder	of	the	Csound	
files	on	SourceForge.	You	will	find	the	Android	files	in	the	version	
folder	in	http://sourceforge.net/projects/csound/files/csound6/.

Two	files	are	of	interest	here	(in	the	Csound6	folder).	One	is	a	CSD	
player	which	executes	Csound	files	on	an	Android	device	(the	CSD	
player	app	is	called	Csound6.apk).

MAKE	CSOUND	RUN

89

The	other	file	of	possible	interest	to	is	csound-android-X.XX.XX.zip	
(where	X.XX.XX	is	the	version	number),	this	file	contains	an	Android
port	of	the	Csound	programming	library	and	sample	Android	projects.	
The	source	code	for	the	CSD	player	mentioned	above,	is	one	of	the	
sample	projects.	This	file	should	not	be	installed	on	an	Android	
device.

To	install	the	CsoundApp-XXX.apk	on	an	Android	device	the	
following	steps	are	taken:

1.	 The	CsoundApp-XXX.apk	file	is	copied	onto	the	Android	
device,	for	example	/mnt/sdcard/download	or	something	
similar.

2.	 One	or	more	CSD	files	(not	included	in	the	distribution)	should	
be	copied	to	the	device's	shared	storage	location:	this	is	
usually	anywhere	in	or	below	/mnt/sdcard

3.	 Launch	a	file	explorer	app	on	the	device	and	navigate	to	the	
folder	containing	the	file	CsoundApp-XXX.apk	(copied	in	step	
1).	Select	the	apk	file	and	when	prompted,	select	to	install	
it.	The	app	is	installed	as	"CSD	Player".

4.	 In	the	device's	app	browser	(the	screen	which	is	used	to	launch	
all	the	apps	on	the	device)	run	the	"CSD	Player"	app.

5.	 CSD	Player	displays	its	initial	screen.	Tap	the	"Browse"	button	
to	find	a	CSD	file	to	play	on	your	device:	CSD	Player	displays	
a	file	browser	starting	at	the	device's	shared	storage	location	
(usually	/mnt/sdcard).	Select	a	csd	file	that	you	have	copied	to	
the	device	(step	2).

6.	 Tap	the	play	toggle	to	play	the	selected	CSD.
		

If	you	want	to	use	Csound6	on	Android,	have	a	look	at	chapter	12F	in	
this	manual,	which	describes	everything	in	detail.
				

On	Google's	Play	Store	there	are	some	apps	that	use	Csound.	Below	is	
a	small	sample	of	such	apps:
		

MAKE	CSOUND	RUN

90

DIY	Sound	Salad,	developed	by	Zatchu	
(http://zatchu.com/category/story/),	is	a	multi	sample	record	
and	playback	app.	Quite	enjoyable	to	use.

Chime	Pad,	developed	by	Arthur	B.	Hunkins	
(http://www.arthunkins.com),	is	a	soothing	chime	player	app.

Mono	Dot	Micro,	developed	by	Acoustic	Orchard	
(http://acousticorchard.com/microsynth/market),	this	app	is	a	2	
oscillator	synthesiser,	with	effects.

Psycho	Flute	developed	by	Brian	Redfern	(source	code	
available	at	http://github.com/bredfern/PsychoFlute),	it	is	a	
"physical	modelling	flute	synth".	Both	fun	and	interesting.

INSTALL	PROBLEMS?

If,	for	any	reason,	you	can't	find	the	CsoundQt	(formerly	
QuteCsound)	frontend	on	your	system	after	install,	or	if	you	want	to	
install	the	most	recent	version	of	CsoundQt,	or	if	you	prefer	another	
frontend	altogether:	see	the	CSOUND	FRONTENDS	section	of	this	
manual	for	further	information.	If	you	have	any	install	problems,	
consider	joining	the	Csound	Mailing	List	to	report	your	issues,	or	
write	a	mail	to	one	of	the	maintainers	(see	ON	THIS	RELEASE).
		

THE	CSOUND	REFERENCE	MANUAL

The	Csound	Reference	Manual	is	an	indispensable	companion	to	
Csound.	It	is	available	in	various	formats	from	the	same	place	as	the	
Csound	installers,	and	it	is	installed	with	the	packages	for	OS	X	and	
Windows.	It	can	also	be	browsed	online	at	
http://csound.github.io/docs/manual/index.html.	Many	frontends	will	
provide	you	with	direct	and	easy	access	to	it.

HOW	TO	EXECUTE	A	SIMPLE	EXAMPLE

MAKE	CSOUND	RUN

91

USING	CSOUNDQT

	Run	CsoundQt.	Go	into	the	CsoundQt	menubar	and	choose:	
Examples->Getting	started...->	Basics->	HelloWorld

You	will	see	a	very	basic	Csound	file	(.csd)	with	a	lot	of	comments	in	
green.

Click	on	the	"RUN"	icon	in	the	CsoundQt	control	bar	to	start	the	
realtime	Csound	engine.	You	should	hear	a	440	Hz	sine	wave.

You	can	also	run	the	Csound	engine	in	the	terminal	from	within	
QuteCsound.	Just	click	on	"Run	in	Term".	A	console	will	pop	up	and	
Csound	will	be	executed	as	an	independent	process.	The	result	should	
be	the	same	-	the	440	Hz	"beep".

USING	THE	TERMINAL	/	CONSOLE

1.	Save	the	following	code	in	any	plain	text	editor	as	HelloWorld.csd.

			EXAMPLE	02A01_HelloWorld.csd	
		

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Alex	Hofmann
instr	1
aSin						poscil				0dbfs/4,	440
										out							aSin
endin
</CsInstruments>
<CsScore>
i	1	0	1
</CsScore>
</CsoundSynthesizer>

	2.	Open	the	Terminal	/	Prompt	/	Console

3.	Type:	csound	/full/path/HelloWorld.csd

where		/full/path/HelloWorld.csd	is	the	complete	path	to	your	file.	
You	also	execute	this	file	by	just	typing	csound	then	dragging	the	file	
into	the	terminal	window	and	then	hitting	return.
		

You	should	hear	a	440	Hz	tone.	

MAKE	CSOUND	RUN

92

CSOUND	SYNTAX

93

CSOUND	SYNTAX

ORCHESTRA	AND	SCORE	

In	Csound,	you	must	define	"instruments",	which	are	units	which	"do	
things",	for	instance	playing	a	sine	wave.	These	instruments	must	be	
called	or	"turned	on"	by	a	"score".	The	Csound	"score"	is	a	list	of	
events	which	describe	how	the	instruments	are	to	be	played	in	time.	It	
can	be	thought	of	as	a	timeline	in	text.

A	Csound	instrument	is	contained	within	an	Instrument	Block,	which	
starts	with	the	keyword	instr	and	ends	with	the	keyword	endin.	All	
instruments	are	given	a	number	(or	a	name)	to	identify	them.
		

instr	1
...	instrument	instructions	come	here...
endin

Score	events	in	Csound	are	individual	text	lines,	which	can	turn	on	
instruments	for	a	certain	time.	For	example,	to	turn	on	instrument	1,	
at	time	0,	for	2	seconds	you	will	use:

i	1	0	2

THE	CSOUND	DOCUMENT	STRUCTURE	

A	Csound	document	is	structured	into	three	main	sections:

CsOptions:	Contains	the	configuration	options	for	Csound.	For	
example	using	"-o	dac"	in	this	section	will	make	Csound	run	in	
real-time	instead	of	writing	a	sound	file.1	
		
CsInstruments:	Contains	the	instrument	definitions	and	
optionally	some	global	settings	and	definitions	like	sample	
rate,	etc.	2	
		

CSOUND	SYNTAX

94

CsScore:	Contains	the	score	events	which	trigger	the	
instruments.
		

Each	of	these	sections	is	opened	with	a	<xyz>	tag	and	closed	with	a	
</xyz>	tag.	Every	Csound	file	starts	with	the	<CsoundSynthesizer>	
tag,	and	ends	with	</CsoundSynthesizer>.	Only	the	text	in-between	
will	be	used	by	Csound.

			EXAMPLE	02B01_DocStruct.csd	
		

<CsoundSynthesizer>;	START	OF	A	CSOUND	FILE

<CsOptions>	;	CSOUND	CONFIGURATION
-odac
</CsOptions>

<CsInstruments>	;	INSTRUMENT	DEFINITIONS	GO	HERE

;	Set	the	audio	sample	rate	to	44100	Hz
sr	=	44100

instr	1
;	a	440	Hz	Sine	Wave
aSin						oscils				0dbfs/4,	440,	0
										out							aSin
endin
</CsInstruments>

<CsScore>	;	SCORE	EVENTS	GO	HERE
i	1	0	1
</CsScore>

</CsoundSynthesizer>	;	END	OF	THE	CSOUND	FILE
;	Anything	after	a	semicolon	is	ignored	by	Csound

Comments,	which	are	lines	of	text	that	Csound	will	ignore,	are	started	
with	the	";"	character.	Multi-line	comments	can	be	made	by	encasing	
them	between	"/*"	and		"*/".

OPCODES

"Opcodes"	or	"Unit	generators"	are	the	basic	building	blocks	of	
Csound.	Opcodes	can	do	many	things	like	produce	oscillating	signals,	
filter	signals,	perform	mathematical	functions	or	even	turn	on	and	off	
instruments.	Opcodes,	depending	on	their	function,	will	take	inputs	
and	outputs.	Each	input	or	output	is	called,	in	programming	terms,	an	
"argument".	Opcodes	always	take	input	arguments	on	the	right	and	

CSOUND	SYNTAX

95

output	their	results	on	the	left,	like	this:
		

output				OPCODE				input1,	input2,	input3,	..,	inputN

For	example	the	poscil	opcode	has	two	mandatory	inputs:3		amplitude	
and	frequency,	and	produces	a	sine	wave	signal:

aSin						poscil				0dbfs/4,	440

In	this	case,	a	440	Hertz	oscillation	with	an	amplitude	of	0dbfs/4	(a	
quarter	of	0	dB	as	full	scale)	will	be	created	and	its	output	will	be	
stored	in	a	container	called	aSin.	The	order	of	the	arguments	is	
important:	the	first	input	to	poscil	will	always	be	amplitude	and	the	
second	input	will	always	be	read	by	Csound	as	frequency.

Many	opcodes	include	optional	input	arguments	and	occasionally	
optional	output	arguments.	These	will	always	be	placed	after	the	
essential	arguments.	In	the	Csound	Manual	documentation	they	are	
indicated	using	square	brackets	"[]".	If	optional	input	arguments	are	
omitted	they	are	replaced	with	the	default	values	indicated	in	the	
Csound	Manual.	The	addition	of	optional	output	arguments	normally	
initiates	a	different	mode	of	that	opcode:	for	example,	a	stereo	as	
opposed	to	mono	version	of	the	opcode.
		

VARIABLES

A	"variable"	is	a	named	container.	It	is	a	place	to	store	things	like	
signals	or	values	from	where	they	can	be	recalled	by	using	their	
name.	In	Csound	there	are	various	types	of	variables.	The	easiest	way	
to	deal	with	variables	when	getting	to	know	Csound	is	to	imagine	
them	as	cables.

If	you	want	to	patch	this	together:	Sound	Generator	->	Filter	->	
Output,

you	need	two	cables,	one	going	out	from	the	generator	into	the	filter	

CSOUND	SYNTAX

96

and	one	from	the	filter	to	the	output.	The	cables	carry	audio	signals,	
which	are	variables	beginning	with	the	letter	"a".
		

aSource				buzz							0.8,	200,	10,	1
aFiltered		moogladder	aSource,	400,	0.8
											out								aFiltered

In	the	example	above,	the	buzz	opcode	produces	a	complex	
waveform	as	signal	aSource.	This	signal	is	fed	into	the	moogladder	
opcode,	which	in	turn	produces	the	signal	aFiltered.	The	out	opcode	
takes	this	signal,	and	sends	it	to	the	output	whether	that	be	to	the	
speakers	or	to	a	rendered	file.

Other	common	variable	types	are	"k"	variables	which	store	control	
signals,	which	are	updated	less	frequently	than	audio	signals,	and	"i"	
variables	which	are	constants	within	each	instrument	note.

You	can	find	more	information	about	variable	types	here	in	this	
manual,	or	here	in	the	Csound	Journal.
		

USING	THE	MANUAL

The	Csound	Reference	Manual	is	a	comprehensive	source	regarding	
Csound's	syntax	and	opcodes.	All	opcodes	have	their	own	manual	
entry	describing	their	syntax	and	behavior,	and	the	manual	contains	a	
detailed	reference	on	the	Csound	language	and	options.

	In	CsoundQt	you	can	find	the	Csound	Manual	in	the	Help	Menu.	You	
can	quickly	go	to	a	particular	opcode	entry	in	the	manual	by	putting	
the	cursor	on	the	opcode	and	pressing	Shift+F1.		WinXsound	,	
Cabbage	and	Blue	also	provide	easy	access	to	the	manual.
		

CSOUND	SYNTAX

97

1.	 Find	all	options	("flags")	in	alphabetical	order	at	
www.csounds.com/manual/html/CommandFlags.html	or	sorted	
by	category	at	
www.csounds.com/manual/html/CommandFlagsCategory.html	
.^

2.	 It	is	not	obligatory	to	include	Orchestra	Header	Statements	(sr,	
kr,	ksmps,	nchnls,	etc.)	in	the		section.	If	they	are	omitted,	then	
the	default	value	will	be	used:
		
	sr	(audio	sampling	rate,	default	value	is	44100)
		
kr	(control	rate,	default	value	is	4410,	but	overwritten	if	ksmps	
is	specified,	as	kr=sr/ksmps)
		
ksmps	(number	of	samples	in	a	control	period,	default	value	is	
10)
		
nchnls	(number	of	channels	of	audio	output,	default	value	is	1	
(mono))
		
0dbfs	(value	of	0	decibels	using	full	scale	amplitude,	default	is	
32767)
		
Modern	audio	software	normal	uses	0dbfs	=	1
Read	chapter	01	to	know	more	about	these	terms	from	a	
general	perspective.	Read	chapter	03A	to	know	more	in	detail	
about	ksmps	and	friends.	^

3.	 The	third	and	fourth	input	are	a	table	containing	the	waveform,	
and	the	starting	phase.	They	are	optional.	If	not	specified,	they	
use	default	values:	a	sine	wave,	and	phase	zero.^

CSOUND	SYNTAX

98

CONFIGURING	MIDI

99

CONFIGURING	MIDI

Csound	can	receive	MIDI	events	(like	MIDI	notes	and	MIDI	control	
changes)	from	an	external	MIDI	interface	or	from	another	program	
via	a	virtual	MIDI	cable.	This	information	can	be	used	to	control	any	
aspect	of	synthesis	or	performance.

Csound	receives	MIDI	data	through	MIDI	Realtime	Modules.	These	
are	special	Csound	plugins	which	enable	MIDI	input	using	different	
methods	according	to	platform.	They	are	enabled	using	the	-+rtmidi	
command	line	flag	in	the	<CsOptions>	section	of	your	.csd	file,	but	
can	also	be	set	interactively	on	some	front-ends	via	the	configure	
dialog	setups.
		

There	is	the	universal	"portmidi"	module.	PortMidi	is	a	cross-
platform	module	for	MIDI	I/O	and	should	be	available	on	all	
platforms.	To	enable	the	"portmidi"	module,	you	can	use	the	flag:

-+rtmidi=portmidi

After	selecting	the	RT	MIDI	module	from	a	front-end	or	the	
command	line,	you	need	to	select	the	MIDI	devices	for	input	and	
output.	These	are	set	using	the	flags	-M	and	-Q	respectively	followed	
by	the	number	of	the	interface.	You	can	usually	use:

-M999

	To	get	a	performance	error	with	a	listing	of	available	interfaces.

For	the	PortMidi	module	(and	others	like	ALSA),	you	can	specify	no	
number	to	use	the	default	MIDI	interface	or	the	'a'	character	to	use	all	
devices.	This	will	even	work	when	no	MIDI	devices	are	present.

-Ma

So	if	you	want	MIDI	input	using	the	portmidi	module,	using	device	2	
for	input	and	device	1	for	output,	your	<CsOptions>	section	should	

CONFIGURING	MIDI

100

contain:

-+rtmidi=portmidi	-M2	-Q1

There	is	a	special	"virtual"	RT	MIDI	module	which	enables	MIDI	
input	from	a	virtual	keyboard.	To	enable	it,	you	can	use:

	-+rtmidi=virtual	-M0

PLATFORM	SPECIFIC	MODULES

If	the	"portmidi"	module	is	not	working	properly	for	some	reason,	
you	can	try	other	platform	specific	modules.
		

LINUX	

On	Linux	systems,	you	might	also	have	an	"alsa"	module	to	use	the	
alsa	raw	MIDI	interface.	This	is	different	from	the	more	common	alsa	
sequencer	interface	and	will	typically	require	the	snd-virmidi	module	
to	be	loaded.

OS	X

On	OS	X	you	may	have	a	"coremidi"	module	available.

WINDOWS

On	Windows,	you	may	have	a	"winmme"	MIDI	module.

MIDI	I/O	IN	CSOUNDQT

As	with	Audio	I/O,	you	can	set	the	MIDI	preferences	in	the	
configuration	dialog.	In	it	you	will	find	a	selection	box	for	the	RT	
MIDI	module,	and	text	boxes	for	MIDI	input	and	output	devices.

CONFIGURING	MIDI

101

	
		

HOW	TO	USE	A	MIDI	KEYBOARD

Once	you've	set	up	the	hardware,	you	are	ready	to	receive	MIDI	
information	and	interpret	it	in	Csound.	By	default,	when	a	MIDI	note	
is	received,	it	turns	on	the	Csound	instrument	corresponding	to	its	
channel	number,	so	if	a	note	is	received	on	channel	3,	it	will	turn	on	
instrument	3,	if	it	is	received	on	channel	10,	it	will	turn	on	instrument	
10	and	so	on.

If	you	want	to	change	this	routing	of	MIDI	channels	to	instruments,	
you	can	use	the	massign	opcode.	For	instance,	this	statement	lets	you	
route	your	MIDI	channel	1	to	instrument	10:

	massign	1,	10

On	the	following	example,	a	simple	instrument,	which	plays	a	sine	
wave,	is	defined	in	instrument	1.	There	are	no	score	note	events,	so	
no	sound	will	be	produced	unless	a	MIDI	note	is	received	on	channel	

CONFIGURING	MIDI

102

1.

			EXAMPLE	02C01_Midi_Keybd_in.csd
		

<CsoundSynthesizer>
<CsOptions>
-+rtmidi=portmidi	-Ma	-odac
</CsOptions>
<CsInstruments>
;Example	by	Andrés	Cabrera

sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

								massign			0,	1	;assign	all	MIDI	channels	to	instrument	1

instr	1
iCps				cpsmidi			;get	the	frequency	from	the	key	pressed
iAmp				ampmidi			0dbfs	*	0.3	;get	the	amplitude
aOut				poscil				iAmp,	iCps	;generate	a	sine	tone
								outs						aOut,	aOut	;write	it	to	the	output
endin

</CsInstruments>
<CsScore>
e	3600
</CsScore>
</CsoundSynthesizer>

Note	that	Csound	has	an	unlimited	polyphony	in	this	way:	each	key	
pressed	starts	a	new	instance	of	instrument	1,	and	you	can	have	any	
number	of	instrument	instances	at	the	same	time.
		

HOW	TO	USE	A	MIDI	CONTROLLER

To	receive	MIDI	controller	events,	opcodes	like	ctrl7	can	be	used.		In	
the	following	example	instrument	1	is	turned	on	for	60	seconds.	It	
will	receive	controller	#1	(modulation	wheel)	on	channel	1	and	
convert	MIDI	range	(0-127)	to	a	range	between	220	and	440.	This	
value	is	used	to	set	the	frequency	of	a	simple	sine	oscillator.

			EXAMPLE	02C02_Midi_Ctl_in.csd

<CsoundSynthesizer>
<CsOptions>
-+rtmidi=virtual	-M1	-odac
</CsOptions>
<CsInstruments>
;Example	by	Andrés	Cabrera

CONFIGURING	MIDI

103

sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

instr	1
;	---	receive	controller	number	1	on	channel	1	and	scale	from	220	to	440
kFreq	ctrl7		1,	1,	220,	440
;	---	use	this	value	as	varying	frequency	for	a	sine	wave
aOut		poscil	0.2,	kFreq
						outs			aOut,	aOut
endin
</CsInstruments>
<CsScore>
i	1	0	60
e
</CsScore>
</CsoundSynthesizer>

OTHER	TYPE	OF	MIDI	DATA

Csound	can	receive	other	type	of	MIDI,	like	pitch	bend,	and	
aftertouch	through	the	usage	of	specific	opcodes.	Generic	MIDI	Data	
can	be	received	using	the	midiin	opcode.	The	example	below	prints	
to	the	console	the	data	received	via	MIDI.

			EXAMPLE	02C03_Midi_all_in.csd
		

<CsoundSynthesizer>
<CsOptions>
-+rtmidi=portmidi	-Ma	-odac
</CsOptions>
<CsInstruments>
;Example	by	Andrés	Cabrera

sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

instr	1
kStatus,	kChan,	kData1,	kData2	midiin

if	kStatus	!=	0	then	;print	if	any	new	MIDI	message	has	been	received
				printk	0,	kStatus
				printk	0,	kChan
				printk	0,	kData1
				printk	0,	kData2
endif

endin

</CsInstruments>
<CsScore>
i1	0	3600
e
</CsScore>
</CsoundSynthesizer>

CONFIGURING	MIDI

104

LIVE	AUDIO

105

LIVE	AUDIO

CONFIGURING	AUDIO	&	TUNING	AUDIO
PERFORMANCE

SELECTING	AUDIO	DEVICES	AND	DRIVERS	

Csound	relates	to	the	various	inputs	and	outputs	of	sound	devices	
installed	on	your	computer	as	a	numbered	list.	If	you	wish	to	send	or	
receive	audio	to	or	from	a	specific	audio	connection	you	will	need	to	
know	the	number	by	which	Csound	knows	it.	If	you	are	not	sure	of	
what	that	is	you	can	trick	Csound	into	providing	you	with	a	list	of	
available	devices	by	trying	to	run	Csound	using	an	obviously	out	of	
range	device	number,	like	this:

			EXAMPLE	02D01_GetDeviceList.csd

<CsoundSynthesizer>
<CsOptions>
-iadc999	-odac999
</CsOptions>
<CsInstruments>
;Example	by	Andrés	Cabrera
instr	1
endin
</CsInstruments>
<CsScore>
e
</CsScore>
</CsoundSynthesizer>

The	input	and	output	devices	will	be	listed	seperately.1		Specify	your	
input	device	with	the	-iadc	flag	and	the	number	of	your	input	device,	
and	your	output	device	with	the	-odac	flag	and	the	number	of	your	
output	device.	For	instance,	if	you	select	one	of	the	devices	from	the	
list	above	both,	for	input	and	output,	you	may	include	something	like

	-iadc2	-odac3

in	the	<CsOptions>	section	of	you	.csd	file.
		

The	RT	(=	real-time)	output	module	can	be	set	with	the	-+rtaudio	

LIVE	AUDIO

106

flag.	If	you	don't	use	this	flag,	the	PortAudio	driver	will	be	used.	
Other	possible	drivers	are	jack	and	alsa	(Linux),	mme	(Windows)	or	
CoreAudio	(Mac).	So,	this	sets	your	audio	driver	to	mme	instead	of	
Port	Audio:
		

-+rtaudio=mme

TUNING	PERFORMANCE	AND	LATENCY	

Live	performance	and	latency	depend	mainly	on	the	sizes	of	the	
software	and	the	hardware	buffers.	They	can	be	set	in	the	
<CsOptions>	using	the	-B	flag	for	the	hardware	buffer,	and	the	-b	flag
for	the	software	buffer.2		For	instance,	this	statement	sets	the	
hardware	buffer	size	to	512	samples	and	the	software	buffer	size	to	
128	sample:
		

-B512	-b128

The	other	factor	which	affects	Csound's	live	performance	is	the	
ksmps	value	which	is	set	in	the	header	of	the	<CsInstruments>	
section.	By	this	value,	you	define	how	many	samples	are	processed	
every	Csound	control	cycle.
		

Try	your	realtime	performance	with	-B512,	-b128	and	ksmps=32.3		
With	a	software	buffer	of	128	samples,	a	hardware	buffer	of	512	and	
a	sample	rate	of	44100	you	will	have	around	12ms	latency,	which	is	
usable	for	live	keyboard	playing.	If	you	have	problems	with	either	the	
latency	or	the	performance,	tweak	the	values	as	described	here.

THE	"--REALTIME"	OPTION

When	you	have	instruments	that	have	substantial	sections	that	could	
block	out	execution,	for	instance	with	code	that	loads	buffers	from	
files	or	creates	big	tables,	you	can	try	the	option	--realtime.

LIVE	AUDIO

107

This	option	will	give	your	audio	processing	the	priority	over	other	
tasks	to	be	done.	It	places	all	initialisation	code	on	a	separate	thread,	
and	does	not	block	the	audio	thread.	Instruments	start	performing	
only	after	all	the	initialisation	is	done.	That	can	have	a	side-effect	on	
scheduling	if	your	audio	input	and	output	buffers	are	not	small	
enough,	because	the	audio	processing	thread	may	“run	ahead”	of	the	
initialisation	one,	taking	advantage	of	any	slack	in	the	buffering.

Given	that	this	option	is	intrinsically	linked	to	low-latency,	realtime	
audio	performance,	and	also	to	reduce	the	effect	on	scheduling	these	
other	tasks,	it	is	recommended	that	small	ksmps	and	buffer	sizes,	for	
example	ksmps=16,	32,	or	64,	-b32	or	64,	and	-B256	or	512.
		

CSOUNDQT

	To	define	the	audio	hardware	used	for	realtime	performance,	open	
the	configuration	dialog.	In	the	"Run"	Tab,	you	can	choose	your	
audio	interface,	and	the	preferred	driver.	You	can	select	input	and	
output	devices	from	a	list	if	you	press	the	buttons	to	the	right	of	the	
text	boxes	for	input	and	output	names.	Software	and	hardware	buffer	
sizes	can	be	set	at	the	top	of	this	dialogue	box.
		

LIVE	AUDIO

108

		

CSOUND	CAN	PRODUCE	EXTREME
DYNAMIC	RANGE!

Csound	can	produce	extreme	dynamic	range,	so	keep	an	eye	on	the	
level	you	are	sending	to	your	output.	The	number	which	describes	the	
level	of	0	dB,	can	be	set	in	Csound	by	the	0dbfs	assignment	in	the	
<CsInstruments>	header.	There	is	no	limitation,	if	you	set	0dbfs	=	1	
and	send	a	value	of	32000,	this	can	damage	your	ears	and	speakers!
		

USING	LIVE	AUDIO	INPUT	AND	OUTPUT

To	process	audio	from	an	external	source	(for	example	a	
microphone),	use	the	inch	opcode	to	access	any	of	the	inputs	of	your	
audio	input	device.	For	the	output,	outch	gives	you	all	necessary	
flexibility.	The	following	example	takes	a	live	audio	input	and	
transforms	its	sound	using	ring	modulation.	The	Csound	Console	

LIVE	AUDIO

109

should	output	five	times	per	second	the	input	amplitude	level.

			EXAMPLE	02D02_LiveInput.csd

<CsoundSynthesizer>
<CsOptions>
;CHANGE	YOUR	INPUT	AND	OUTPUT	DEVICE	NUMBER	HERE	IF	NECESSARY!
-iadc0	-odac0	-B512	-b128
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100	;set	sample	rate	to	44100	Hz
ksmps	=	32	;number	of	samples	per	control	cycle
nchnls	=	2	;use	two	audio	channels
0dbfs	=	1	;set	maximum	level	as	1

instr	1
aIn							inch						1			;take	input	from	channel	1
kInLev				downsamp		aIn	;convert	audio	input	to	control	signal
										printk				.2,	abs(kInLev)
;make	modulator	frequency	oscillate	200	to	1000	Hz
kModFreq		poscil				400,	1/2
kModFreq		=									kModFreq+600
aMod						poscil				1,	kModFreq	;modulator	signal
aRM							=									aIn	*	aMod	;ring	modulation
										outch					1,	aRM,	2,	aRM	;output	to	channel	1	and	2
endin
</CsInstruments>
<CsScore>
i	1	0	3600
</CsScore>
</CsoundSynthesizer>

Live	Audio	is	frequently	used	with	live	devices	like	widgets	or	MIDI.	
In	CsoundQt,	you	can	find	several	examples	in	Examples	->	Getting	
Started	->	Realtime	Interaction.
		

1.	 You	may	have	to	run	-iadc999	and	-odac999	seperately.^

LIVE	AUDIO

110

2.	 As	Victor	Lazzarini	explains	(mail	to	Joachim	Heintz,	19	
march	2013),	the	role	of	-b	and	-B	varies	between	the	Audio	
Modules:
		
"1.	For	portaudio,	-B	is	only	used	to	suggest	a	latency	to	the	
backend,	whereas	-b	is	used	to	set	the	actual	buffersize.
		
2.	For	coreaudio,	-B	is	used	as	the	size	of	the	internal	circular	
buffer,	and	-b	is	used	for	the	actual	IO	buffer	size.
		
3.	For	jack,	-B		is	used	to	determine	the	number	of	buffers	used	
in	conjunction	with	-b		,	num	=	(N	+	M	+	1)	/	M.	-b	is	the	size	
of	each	buffer.
		
4.	For	alsa,	-B	is	the	size	of	the	buffer	size,	-b	is	the	period	size	
(a	buffer	is	divided	into	periods).
		
5.	For	pulse,	-b	is	the	actual	buffersize	passed	to	the	device,	-B	
is	not	used.
		
In	other	words,	-B	is	not	too	significant	in	1),	not	used	in	5),	
but	has	a	part	to	play	in	2),	3)	and	4),	which	is	functionally	
similar."	^

3.	 It	is	always	preferable	to	use	power-of-two	values	for	ksmps	
(which	is	the	same	as	"block	size"	in	PureData	or	"vector	size"	
in	Max).	Just	with	ksmps	=	1,	2,	4,	8,	16	...	you	will	take	
advantage	of	the	"full	duplex"	audio,	which	provides	best	real	
time	audio.	Make	sure	your	ksmps	divides	your	buffer	size	
with	no	remainder.	So,	for	-b	128,	you	can	use	ksmps	=	128,	
64,	32,	16,	8,	4,	2	or	1.^

RENDERING	TO	FILE

111

RENDERING	TO	FILE

WHEN	TO	RENDER	TO	FILE

Csound	can	also	render	audio	straight	to	a	sound	file	stored	on	your	
hard	drive	instead	of	as	live	audio	sent	to	the	audio	hardware.	This	
gives	you	the	possibility	to	hear	the	results	of	very	complex	processes	
which	your	computer	can't	produce	in	realtime.	Or	you	want	to	render	
something	in	Csound	to	import	it	in	an	audio	editor,	or	as	the	final	
result	of	a	'tape'	piece.1	

Csound	can	render	to	formats	like	wav,	aiff	or	ogg	(and	other	less	
popular	ones),	but	not	mp3	due	to	its	patent	and	licencing	problems.

RENDERING	TO	FILE

Save	the	following	code	as	Render.csd:

			EXAMPLE	02E01_Render.csd	
		

<CsoundSynthesizer>
<CsOptions>
-o	Render.wav
</CsOptions>
<CsInstruments>
;Example	by	Alex	Hofmann
instr	1
aSin						poscil				0dbfs/4,	440
										out							aSin
endin
</CsInstruments>
<CsScore>
i	1	0	1
e
</CsScore>
</CsoundSynthesizer>

Open	the	Terminal	/	Prompt	/	Console	and	type:

csound	/path/to/Render.csd

Now,	because	you	changed	the	-o	flag	in	the	<CsOptions>	from	"-o	
dac"	to	"-o	filename",	the	audio	output	is	no	longer	written	in	
realtime	to	your	audio	device,	but	instead	to	a	file.	The	file	will	be	

RENDERING	TO	FILE

112

rendered	to	the	default	directory	(usually	the	user	home	directory).	
This	file	can	be	opened	and	played	in	any	audio	player	or	editor,	e.g.	
Audacity.	(By	default,	csound	is	a	non-realtime	program.	So	if	no	
command	line	options	are	given,	it	will	always	render	the	csd	to	a	file	
called	test.wav,	and	you	will	hear	nothing	in	realtime.)
		

The	-o	flag	can	also	be	used	to	write	the	output	file	to	a	certain	
directory.	Something	like	this	for	Windows	...
		

<CsOptions>
-o	c:/music/samples/Render.wav
</CsOptions>

...	and	this	for	Linux	or	Mac	OSX:

<CsOptions>
-o	/Users/JSB/organ/tatata.wav
</CsOptions>		

RENDERING	OPTIONS

	The	internal	rendering	of	audio	data	in	Csound	is	done	with	64-bit	
floating	point	numbers.	Depending	on	your	needs,	you	should	decide	
the	precision	of	your	rendered	output	file:

If	you	want	to	render	32-bit	floats,	use	the	option	flag	-f.
If	you	want	to	render	24-bit,	use	the	flag	-3.
If	you	want	to	render	16-bit,	use	the	flag	-s	(or	nothing,	
because	this	is	also	the	default	in	Csound).

For	making	sure	that	the	header	of	your	soundfile	will	be	written	
correctly,	you	should	use	the	-W	flag	for	a	WAV	file,	or	the	-A	flag	
for	a	AIFF	file.	So	these	options	will	render	the	file	"Wow.wav"	as	
WAV	file	with	24-bit	accuracy:

<CsOptions>
-o	Wow.wav	-W	-3
</CsOptions>		

REALTIME	AND	RENDER-TO-FILE	AT	THE	SAME

RENDERING	TO	FILE

113

TIME	

Sometimes	you	may	want	to	simultaneously	have	realtime	output	and	
file	rendering	to	disk,	like	recording	your	live	performance.	This	can	
be	achieved	by	using	the	fout	opcode.	You	just	have	to	specify	your	
output	file	name.	File	type	and	format	are	given	by	a	number,	for	
instance	18	specifies	"wav	24	bit"	(see	the	manual	page	for	more	
information).	The	following	example	creates	a	random	frequency	and	
panning	movement	of	a	sine	wave,	and	writes	it	to	the	file	
"live_record.wav"	(in	the	same	directory	as	your	.csd	file):

			EXAMPLE	02E02_RecordRT.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

										seed						0	;each	time	different	seed	for	random

		instr	1
kFreq					randomi			400,	800,	1	;random	sliding	frequency
aSig						poscil				.2,	kFreq	;sine	with	this	frequency
kPan						randomi			0,	1,	1	;random	panning
aL,	aR				pan2						aSig,	kPan	;stereo	output	signal
										outs						aL,	aR	;live	output
										fout						"live_record.wav",	18,	aL,	aR	;write	to	soundfile
		endin

</CsInstruments>
<CsScore>
i	1	0	10
e
</CsScore>
</CsoundSynthesizer>

CSOUNDQT

All	the	options	which	are	described	in	this	chapter	can	be	handled	
very	easily	in	CsoundQt:
		

Rendering	to	file	is	simply	done	by	clicking	the	"Render"	
button,	or	choosing	"Control->Render	to	File"	in	the	Menu.

RENDERING	TO	FILE

114

To	set	file-destination	and	file-type,	you	can	make	your	own	
settings	in	"CsoundQt	Configuration"	under	the	tab	"Run	->	
File	(offline	render)".	The	default	is	a	16-Bit	.wav-file.
To	record	a	live	performance,	just	click	the	"Record"	button.	
You	will	find	a	file	with	the	same	name	as	your	.csd	file,	and	a	
number	appended	for	each	record	task,	in	the	same	folder	as	
your	.csd	file.
		

1.	 or	bit-depth,	see	the	section	about	Bit-depth	Resolution	in	
chapter	01A	(Digital	Audio)^

INITIALIZATION	AND	PERFORMANCE	PASS

115

INITIALIZATION	AND	PERFORMANCE
PASS

Not	only	for	beginners,	but	also	for	experienced	Csound	users,	many	
problems	result	from	the	misunderstanding	of	the	so-called	i-rate	and	
k-rate.	You	want	Csound	to	do	something	just	once,	but	Csound	does	
it	continuously.	You	want	Csound	to	do	something	continuously,	but	
Csound	does	it	just	once.	If	you	experience	such	a	case,	you	will	most	
probably	have	confused	i-	and	k-rate-variables.

The	concept	behind	this	is	actually	not	complicated.	But	it	is	
something	which	is	more	implicitly	mentioned	when	we	think	of	a	
program	flow,	whereas	Csound	wants	to	know	it	explicitely.	So	we	
tend	to	forget	it	when	we	use	Csound,	and	we	do	not	notice	that	we	
ordered	a	stone	to	become	a	wave,	and	a	wave	to	become	a	stone.	
This	chapter	tries	to	explicate	very	carefully	the	difference	between	
stones	and	waves,	and	how	you	can	profit	from	them,	after	you	
understood	and	accepted	both	qualities.

THE	INIT	PASS

Whenever	a	Csound	instrument	is	called,	all	variables	are	set	to	
initial	values.	This	is	called	the	initialization	pass.

There	are	certain	variables,	which	stay	in	the	state	in	which	they	have	
been	put	by	the	init-pass.	These	variables	start	with	an	i	if	they	are	
local	(=	only	considered	inside	an	instrument),	or	with	a	gi	if	they	are	
global	(=	considered	overall	in	the	orchestra).	This	is	a	simple	
example:

			EXAMPLE	03A01_Init-pass.csd
		

<CsoundSynthesizer>
<CsInstruments>

giGlobal			=										1/2

INITIALIZATION	AND	PERFORMANCE	PASS

116

instr	1
iLocal					=										1/4
											print						giGlobal,	iLocal
endin

instr	2
iLocal					=										1/5
											print						giGlobal,	iLocal
endin

</CsInstruments>
<CsScore>
i	1	0	0
i	2	0	0
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

The	output	should	include	these	lines:
		
SECTION	1:

		

new	alloc	for	instr	1:

		

instr	1:		giGlobal	=	0.500		iLocal	=	0.250

		

new	alloc	for	instr	2:

		

instr	2:		giGlobal	=	0.500		iLocal	=	0.200	

As	you	see,	the	local	variables	iLocal	do	have	different	meanings	in	
the	context	of	their	instrument,	whereas	giGlobal	is	known	
everywhere	and	in	the	same	way.	It	is	also	worth	mentioning	that	the	
performance	time	of	the	instruments	(p3)	is	zero.	This	makes	sense,	
as	the	instruments	are	called,	but	only	the	init-pass	is	performed.1

THE	PERFORMANCE	PASS

After	having	assigned	initial	values	to	all	variables,	Csound	starts	the	
actual	performance.	As	music	is	a	variation	of	values	in	time,2		audio	
signals	are	producing	values	which	vary	in	time.	In	all	digital	audio,	
the	time	unit	is	given	by	the	sample	rate,	and	one	sample	is	the	
smallest	possible	time	atom.	For	a	sample	rate	of	44100	Hz,3		one	
sample	comes	up	to	the	duration	of	1/44100	=	0.0000227	seconds.

INITIALIZATION	AND	PERFORMANCE	PASS

117

So,	performance	for	an	audio	application	means	basically:	calculate	
all	the	samples	which	are	finally	being	written	to	the	output.	You	can	
imagine	this	as	the	cooperation	of	a	clock	and	a	calculator.	For	each	
sample,	the	clock	ticks,	and	for	each	tick,	the	next	sample	is	
calculated.

Most	audio	applications	do	not	perform	this	calculation	sample	by	
sample.	It	is	much	more	efficient	to	collect	some	amount	of	samples	
in	a	"block"	or	"vector",	and	calculate	them	all	together.	This	means	
in	fact,	to	introduce	another	internal	clock	in	your	application;	a	
clock	which	ticks	less	frequently	than	the	sample	clock.	For	instance,	
if	(always	assumed	your	sample	rate	is	44100	Hz)	your	block	size	
consists	of	10	samples,	your	internal	calculation	time	clock	ticks	
every	1/4410	(0.000227)	seconds.	If	your	block	size	consists	of	441	
samples,	the	clock	ticks	every	1/100	(0.01)	seconds.

The	following	illustration	shows	an	example	for	a	block	size	of	10	
samples.	The	samples	are	shown	at	the	bottom	line.	Above	are	the	
control	ticks,	one	for	each	ten	samples.	The	top	two	lines	show	the	
times	for	both	clocks	in	seconds.	In	the	upmost	line	you	see	that	the	
first	control	cycle	has	been	finished	at	0.000227	seconds,	the	second	
one	at	0.000454	seconds,	and	so	on.4	
		

The	rate	(frequency)	of	these	ticks	is	called	the	control	rate	in	
Csound.	By	historical	reason,5		it	is	called	"kontrol	rate"	instead	of	
control	rate,	and	abbreviated	as	"kr"	instead	of	cr.	Each	of	the	
calculation	cycles	is	called	a	"k-cycle".	The	block	size	or	vector	size	

INITIALIZATION	AND	PERFORMANCE	PASS

118

is	given	by	the	ksmps	parameter,	which	means:	how	many	samples	
(smps)	are	collected	for	one	k-cycle.6

Let	us	see	some	code	examples	to	illustrate	these	basic	contexts.
		

IMPLICIT	INCREMENTATION	

			EXAMPLE	03A02_Perf-pass_incr.csd
		

<CsoundSynthesizer>
<CsInstruments>
sr	=	44100
ksmps	=	4410

instr	1
kCount				init						0;	set	kcount	to	0	first
kCount				=									kCount	+	1;	increase	at	each	k-pass
										printk				0,	kCount;	print	the	value
endin

</CsInstruments>
<CsScore>
i	1	0	1
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

Your	output	should	contain	the	lines:
		
i			1	time					0.10000:					1.00000

		

i			1	time					0.20000:					2.00000

		

i			1	time					0.30000:					3.00000

		

i			1	time					0.40000:					4.00000

		

i			1	time					0.50000:					5.00000

		

i			1	time					0.60000:					6.00000

		

i			1	time					0.70000:					7.00000

		

INITIALIZATION	AND	PERFORMANCE	PASS

119

i			1	time					0.80000:					8.00000

		

i			1	time					0.90000:					9.00000

		

i			1	time					1.00000:				10.00000	

A	counter	(kCount)	is	set	here	to	zero	as	initial	value.	Then,	in	each	
control	cycle,	the	counter	is	increased	by	one.	What	we	see	here,	is	
the	typical	behaviour	of	a	loop.	The	loop	has	not	been	set	explicitely,	
but	works	implicitely	because	of	the	continuous	recalculation	of	all	k-
variables.	So	we	can	also	speak	about	the	k-cycles	as	an	implicit	(and	
time-triggered)	k-loop.7		Try	changing	the	ksmps	value	from	4410	to	
8820	and	to	2205	and	observe	the	difference.

The	next	example	reads	the	incrementation	of	kCount	as	rising	
frequency.	The	first	instrument,	called	Rise,	sets	the	k-rate	frequency	
kFreq	to	the	initial	value	of	100	Hz,	and	then	adds	10	Hz	in	every	
new	k-cycle.	As	ksmps=441,	one	k-cycle	takes	1/100	second	to	
perform.	So	in	3	seconds,	the	frequency	rises	from	100	to	3100	Hz.	At	
the	last	k-cycle,	the	final	frequency	value	is	printed	out.8		-	The	
second	instrument,	Partials,	increments	the	counter	by	one	for	each	k-
cycle,	but	only	sets	this	as	new	frequency	for	every	100	steps.	So	the	
frequency	stays	at	100	Hz	for	one	second,	then	at	200	Hz	for	one	
second,	and	so	on.	As	the	resulting	frequencies	are	in	the	ratio	1	:	2	:	
3	...,	we	hear	partials	based	on	a	100	Hz	fundamental,	from	the	first	
partial	up	to	the	31st.	The	opcode	printk2	prints	out	the	frequency	
value	whenever	it	has	changed.
		

			EXAMPLE	03A03_Perf-pass_incr_listen.csd
		

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	441
0dbfs	=	1

INITIALIZATION	AND	PERFORMANCE	PASS

120

nchnls	=	2

;build	a	table	containing	a	sine	wave
giSine					ftgen						0,	0,	2^10,	10,	1

instr	Rise
kFreq						init							100
aSine						poscil					.2,	kFreq,	giSine
											outs							aSine,	aSine
;increment	frequency	by	10	Hz	for	each	k-cycle
kFreq						=										kFreq	+	10
;print	out	the	frequency	for	the	last	k-cycle
kLast						release
	if	kLast	==	1	then
											printk					0,	kFreq
	endif
endin

instr	Partials
;initialize	kCount
kCount					init							100
;get	new	frequency	if	kCount	equals	100,	200,	...
	if	kCount	%	100	==	0	then
kFreq						=										kCount
	endif
aSine						poscil					.2,	kFreq,	giSine
											outs							aSine,	aSine
;increment	kCount
kCount					=										kCount	+	1
;print	out	kFreq	whenever	it	has	changed
											printk2				kFreq
endin
</CsInstruments>
<CsScore>
i	"Rise"	0	3
i	"Partials"	4	31
</CsScore>
</CsoundSynthesizer>

;example	by	joachim	heintz

INIT	VERSUS	EQUALS	

A	frequently	occuring	error	is	that	instead	of	setting	the	k-variable	as	
kCount	init	0,	it	is	set	as	kCount	=	0.	The	meaning	of	both	statements	
has	one	significant	difference.	kCount	init	0	sets	the	value	for	kCount	
to	zero	only	in	the	init	pass,	without	affecting	it	during	the	
performance	pass.	kCount	=	1	sets	the	value	for	kCount	to	zero	again	
and	again,	in	each	performance	cycle.	So	the	increment	always	starts	
from	the	same	point,	and	nothing	really	happens:
		

			EXAMPLE	03A04_Perf-pass_no_incr.csd
		

<CsoundSynthesizer>
<CsInstruments>

INITIALIZATION	AND	PERFORMANCE	PASS

121

sr	=	44100
ksmps	=	4410

instr	1
kcount				=									0;	sets	kcount	to	0	at	each	k-cycle
kcount				=									kcount	+	1;	does	not	really	increase	...
										printk				0,	kcount;	print	the	value
endin

</CsInstruments>
<CsScore>
i	1	0	1
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

Outputs:
		
	i			1	time					0.10000:					1.00000

		

	i			1	time					0.20000:					1.00000

		

	i			1	time					0.30000:					1.00000

		

	i			1	time					0.40000:					1.00000

		

	i			1	time					0.50000:					1.00000

		

	i			1	time					0.60000:					1.00000

		

	i			1	time					0.70000:					1.00000

		

	i			1	time					0.80000:					1.00000

		

	i			1	time					0.90000:					1.00000

		

	i			1	time					1.00000:					1.00000	

A	LOOK	AT	THE	AUDIO	VECTOR	

There	are	different	opcodes	to	print	out	k-variables.9	There	is	no	
opcode	in	Csound	to	print	out	the	audio	vector	directly,	but	you	can	
use	the	vaget	opcode	to	see	what	is	happening	inside	one	control	

INITIALIZATION	AND	PERFORMANCE	PASS

122

cycle	with	the	audio	samples.
		

			EXAMPLE	03A05_Audio_vector.csd
		

<CsoundSynthesizer>
<CsInstruments>
sr	=	44100
ksmps	=	5
0dbfs	=	1

instr	1
aSine						oscils					1,	2205,	0
kVec1						vaget						0,	aSine
kVec2						vaget						1,	aSine
kVec3						vaget						2,	aSine
kVec4						vaget						3,	aSine
kVec5						vaget						4,	aSine
											printks				"kVec1	=	%	f,	kVec2	=	%	f,	kVec3	=	%	f,	kVec4	=	%	f,	kVec5	=	%	
f\n",\
																						0,	kVec1,	kVec2,	kVec3,	kVec4,	kVec5
endin
</CsInstruments>
<CsScore>
i	1	0	[1/2205]
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

The	output	shows	these	lines:
		
kVec1	=		0.000000,	kVec2	=		0.309017,	kVec3	=		0.587785,	kVec4	=		0.809017,	kVec5	=		

0.951057

		

kVec1	=		1.000000,	kVec2	=		0.951057,	kVec3	=		0.809017,	kVec4	=		0.587785,	kVec5	=		

0.309017

		

kVec1	=	-0.000000,	kVec2	=	-0.309017,	kVec3	=	-0.587785,	kVec4	=	-0.809017,	kVec5	=	

-0.951057

		

kVec1	=	-1.000000,	kVec2	=	-0.951057,	kVec3	=	-0.809017,	kVec4	=	-0.587785,	kVec5	=	

-0.309017	

In	this	example,	the	number	of	audio	samples	in	one	k-cycle	is	set	to	
five	by	the	statement	ksmps=5.	The	first	argument	to	vaget	specifies	
which	sample	of	the	block	you	get.	For	instance,
		

INITIALIZATION	AND	PERFORMANCE	PASS

123

kVec1						vaget						0,	aSine

gets	the	first	value	of	the	audio	vector	and	writes	it	into	the	variable	
kVec1.	For	a	frequency	of	2205	Hz	at	a	sample	rate	of	44100	Hz,	you	
need	20	samples	to	write	one	complete	cycle	of	the	sine.	So	we	call	
the	instrument	for	1/2205	seconds,	and	we	get	4	k-cycles.	The	
printout	shows	exactly	one	period	of	the	sine	wave.

A	SUMMARIZING	EXAMPLE	

After	having	put	so	much	attention	to	the	different	single	aspects	of	
initialization,	performance	and	audio	vectors,	the	next	example	tries	
to	summarize	and	illustrate	all	the	aspects	in	their	practical	mixture.

			EXAMPLE	03A06_Init_perf_audio.csd	
		

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	441
nchnls	=	2
0dbfs	=	1
instr	1
iAmp						=							p4	;amplitude	taken	from	the	4th	parameter	of	the	score	line
iFreq					=							p5	;frequency	taken	from	the	5th	parameter
;	---	move	from	0	to	1	in	the	duration	of	this	instrument	call	(p3)
kPan						line						0,	p3,	1
aNote					oscils		iAmp,	iFreq,	0	;create	an	audio	signal
aL,	aR				pan2				aNote,	kPan	;let	the	signal	move	from	left	to	right
										outs				aL,	aR	;write	it	to	the	output
endin
</CsInstruments>
<CsScore>
i	1	0	3	0.2	443
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

As	ksmps=441,	each	control	cycle	is	0.01	seconds	long	(441/44100).	
So	this	happens	when	the	instrument	call	is	performed:

INITIALIZATION	AND	PERFORMANCE	PASS

124

InitAndPerfPass3

	
		

	

ACCESSING	THE	INITIALIZATION	VALUE
OF	A	K-VARIABLE

It	has	been	said	that	the	init	pass	sets	initial	values	to	all	variables.	It	
must	be	emphasized	that	this	indeed	concerns	all	variables,	not	only	
the	i-variables.	It	is	only	the	matter	that	i-variables	are	not	affected	
by	anything	which	happens	later,	in	the	performance.	But	also	k-	and	
a-variables	get	their	initial	values.

As	we	saw,	the	init	opcode	is	used	to	set	initial	values	for	k-	or	a-
variables	explicitely.	On	the	other	hand,	you	can	get	the	initial	value	
of	a	k-variable	which	has	not	been	set	explicitely,	by	the	i()	facility.	

INITIALIZATION	AND	PERFORMANCE	PASS

125

This	is	a	simple	example:
		

			EXAMPLE	03A07_Init-values_of_k-variables.csd	
		

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
instr	1
gkLine	line	0,	p3,	1
endin
instr	2
iInstr2LineValue	=	i(gkLine)
print	iInstr2LineValue
endin
instr	3
iInstr3LineValue	=	i(gkLine)
print	iInstr3LineValue
endin
</CsInstruments>
<CsScore>
i	1	0	5
i	2	2	0
i	3	4	0
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

Outputs:
		
new	alloc	for	instr	1:

		

B		0.000	..		2.000	T		2.000	TT		2.000	M:						0.0

		

new	alloc	for	instr	2:

		

instr	2:		iInstr2LineValue	=	0.400

		

B		2.000	..		4.000	T		4.000	TT		4.000	M:						0.0

		

new	alloc	for	instr	3:

		

instr	3:		iInstr3LineValue	=	0.800

		

B		4.000	..		5.000	T		5.000	TT		5.000	M:						0.0	

INITIALIZATION	AND	PERFORMANCE	PASS

126

Instrument	1	produces	a	rising	k-signal,	starting	at	zero	and	ending	at	
one,	over	a	time	of	five	seconds.	The	values	of	this	line	rise	are	
written	to	the	global	variable	gkLine.	After	two	seconds,	instrument	2	
is	called,	and	examines	the	value	of	gkLine	at	its	init-pass	via	
i(gkLine).	The	value	at	this	time	(0.4),	is	printed	out	at	init-time	as	
iInstr2LineValue.	The	same	happens	for	instrument	3,	which	prints	
out	iInstr3LineValue	=	0.800,	as	it	has	been	started	at	4	seconds.

The	i()	feature	is	particularily	useful	if	you	need	to	examine	the	value	
of	any	control	signal	from	a	widget	or	from	midi,	at	the	time	when	an	
instrument	starts.

K-VALUES	AND	INITIALIZATION	IN
MULTIPLE	TRIGGERED	INSTRUMENTS

What	happens	on	a	k-variable	if	an	instrument	is	called	multiple	
times?	What	is	the	initialization	value	of	this	variable	on	the	first	
call,	and	on	the	subsequent	calls?

If	this	variable	is	not	set	explicitely,	the	init	value	in	the	first	call	of	
an	instrument	is	zero,	as	usual.	But,	for	the	next	calls,	the	k-variable	
is	initialized	to	the	value	which	was	left	when	the	previous	instance	
of	the	same	instrument	turned	off.

The	following	example	shows	this	behaviour.		Instrument	"Call"	
simply	calls	the	instrument	"Called"	once	a	second,	and	sends	the	
number	of	the	call	to	it.		Instrument	"Called"	generates	the	variable	
kRndVal	by	a	random	generator,	and	reports	both:
		
-	the	value	of	kRndVal	at	initialization,	and
		
-	the	value	of	kRndVal	at	performance	time,	i.e.	the	first	control	
cycle.
		
(After	the	first	k-cycle,	the	instrument	is	turned	off	immediately.)

INITIALIZATION	AND	PERFORMANCE	PASS

127

			EXAMPLE	03A08_k-inits_in_multiple_calls_1.csd

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
ksmps	=	32

	instr	Call
kNumCall	init	1
kTrig	metro	1
if	kTrig	==	1	then
		event	"i",	"Called",	0,	1,	kNumCall
		kNumCall	+=	1
endif
	endin

	instr	Called
iNumCall	=	p4
kRndVal	random	0,	10
prints	"Initialization	value	of	kRnd	in	call	%d	=	%.3f\n",	iNumCall,	i(kRndVal)
printks	"		New	random	value	of	kRnd	generated	in	call	%d	=	%.3f\n",	0,	iNumCall,	
kRndVal
turnoff
	endin

</CsInstruments>
<CsScore>
i	"Call"	0	3
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

The	output	should	show	this:

Initialization	value	of	kRnd	in	call	1	=	0.000

		

		New	random	value	of	kRnd	generated	in	call	1	=	8.829

		

Initialization	value	of	kRnd	in	call	2	=	8.829

		

		New	random	value	of	kRnd	generated	in	call	2	=	2.913

		

Initialization	value	of	kRnd	in	call	3	=	2.913

		

		New	random	value	of	kRnd	generated	in	call	3	=	9.257	

		

The	printout	shows	what	was	stated	before:	If	there	is	no	previous	
value	of	a	k-variable,	this	variable	is	initialized	to	zero.		If	there	is	a	
previous	value,	it	serves	as	initialization	value.

INITIALIZATION	AND	PERFORMANCE	PASS

128

But	is	this	init-value	of	a	k-variable	of	any	relevance?		Actually,	we	
choose	a	k-value	because	we	want	to	use	it	at	performance-time,	not	
at	init-time.		—		Well,	the	problem	is	that	Csound	*will*	perform	the	
init-pass	for	all	k-	(and	a-)	variables,	unless	you	prevent	it	from	doing	
this	explicitely.		And	if	you,	for	example,	generate	an	array	index	in	
the	previous	instance	of	the	same	instrument,	which	is	out	of	range	at	
initialization,	Csound	will	report	an	error,	or	even	crash:

			EXAMPLE	03A09_Init_no_incr.csd	

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
ksmps	=	32

gkArray[]	fillarray	1,	2,	3,	5,	8

instr	Call
kNumCall	init	1
kTrig	metro	1
if	kTrig	==	1	then
		event	"i",	"Called",	0,	1,	kNumCall
		kNumCall	+=	1
endif
endin

instr	Called
		;get	the	number	of	the	instrument	instance
iNumCall	=	p4
		;set	the	start	index	for	the	while-loop
kIndex	=	0
		;get	the	init	value	of	kIndex
prints	"Initialization	value	of	kIndx	in	call	%d	=	%d\n",	iNumCall,	i(kIndex)
		;perform	the	while-loop	until	kIndex	equals	five
while	kIndex	<	lenarray(gkArray)	do
		printf	"Index	%d	of	gkArray	has	value	%d\n",	kIndex+1,	kIndex,	gkArray[kIndex]
		kIndex	+=	1
od
		;last	value	of	kIndex	is	5	because	of	increment
printks	"		Last	value	of	kIndex	in	call	%d	=	%d\n",	0,	iNumCall,	kIndex
		;turn	this	instance	off	after	first	k-cycle
turnoff
endin

</CsInstruments>
<CsScore>
i	"Call"	0	1	;change	performance	time	to	2	to	get	an	error!
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

When	you	change	the	performance	time	to	2	instead	of	1,	you	will	get	
an	error,	because	the	array	will	be	asked	for	index=5.		(But,	as	the	
length	of	this	array	is	5,	the	last	index	is	4.)		This	will	be	the	output	in	
this	case:

INITIALIZATION	AND	PERFORMANCE	PASS

129

Initialization	value	of	kIndx	in	call	1	=	0

		

Index	0	of	gkArray	has	value	1

		

Index	1	of	gkArray	has	value	2

		

Index	2	of	gkArray	has	value	3

		

Index	3	of	gkArray	has	value	5

		

Index	4	of	gkArray	has	value	8

		

		Last	value	of	kIndex	in	call	1	=	5

		

Initialization	value	of	kIndx	in	call	2	=	5

		

PERF	ERROR	in	instr	2:	Array	index	5	out	of	range	(0,4)	for	dimension	1

		

			note	aborted

		

The	problem	is	that	the	expression	gkArray[kIndex]	is	performed	*at	
init-time*.		And,	that	the	expression	kIndex=0	has	no	effect	at	all	to	
the	value	of	kIndex	*at	init-time*.		If	we	want	to	be	sure	that	kIndex	
is	zero	also	at	init-time,	we	must	write	this	explicitely	by

kIndex	init	0

Note	that	this	is	*exactly*	the	same	for	User-Defined	Opcodes!		If	
you	call	a	UDO	twice,	it	will	have	the	current	value	of	a	k-Variable	
of	the	first	call	as	init-value	of	the	second	call,	unless	you	initialize	
the	k-variable	explicitely	by	an	init	statement.

The	final	example	shows	both	possibilities,	using	explicit	
initialization	or	not,	and	the	resulting	effect.

INITIALIZATION	AND	PERFORMANCE	PASS

130

			EXAMPLE	03A10_k-inits_in_multiple_calls_3.csd
		

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
ksmps	=	32

instr	without_init
prints	"instr	without_init,	call	%d:\n",	p4
kVal	=	1
prints	"		Value	of	kVal	at	initialization	=	%d\n",	i(kVal)
printks	"		Value	of	kVal	at	first	k-cycle	=	%d\n",	0,	kVal
kVal	=	2
turnoff
endin

instr	with_init
prints	"instr	with_init,	call	%d:\n",	p4
kVal	init	1
kVal	=	1
prints	"		Value	of	kVal	at	initialization	=	%d\n",	i(kVal)
printks	"		Value	of	kVal	at	first	k-cycle	=	%d\n",	0,	kVal
kVal	=	2
turnoff
endin

</CsInstruments>
<CsScore>
i	"without_init"	0	.1	1
i	"without_init"	+	.1	2
i	"with_init"	1	.1	1
i	"with_init"	+	.1	2
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

This	is	the	output:

instr	without_init,	call	1:

		

		Value	of	kVal	at	initialization	=	0

		

		Value	of	kVal	at	first	k-cycle	=	1

		

instr	without_init,	call	2:

		

		Value	of	kVal	at	initialization	=	2

		

		Value	of	kVal	at	first	k-cycle	=	1

		

instr	with_init,	call	1:

INITIALIZATION	AND	PERFORMANCE	PASS

131

		

		Value	of	kVal	at	initialization	=	1

		

		Value	of	kVal	at	first	k-cycle	=	1

		

instr	with_init,	call	2:

		

		Value	of	kVal	at	initialization	=	1

		

		Value	of	kVal	at	first	k-cycle	=	1

		

REINITIALIZATION

As	we	saw	above,	an	i-value	is	not	affected	by	the	performance	loop.	
So	you	cannot	expect	this	to	work	as	an	incrementation:
		

			EXAMPLE	03A11_Init_no_incr.csd	
		

<CsoundSynthesizer>
<CsInstruments>
sr	=	44100
ksmps	=	4410

instr	1
iCount				init						0										;set	iCount	to	0	first
iCount				=									iCount	+	1	;increase
										print					iCount					;print	the	value
endin

</CsInstruments>
<CsScore>
i	1	0	1
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

The	output	is	nothing	but:
		
instr	1:		iCount	=	1.000	

But	you	can	advise	Csound	to	repeat	the	initialization	of	an	i-
variable.	This	is	done	with	the	reinit	opcode.	You	must	mark	a	

INITIALIZATION	AND	PERFORMANCE	PASS

132

section	by	a	label	(any	name	followed	by	a	colon).	Then	the	reinit	
statement	will	cause	the	i-variable	to	refresh.	Use	rireturn	to	end	the	
reinit	section.
		

			EXAMPLE	03A12_Re-init.csd	
		

<CsoundSynthesizer>
<CsInstruments>
sr	=	44100
ksmps	=	4410

instr	1
iCount				init						0										;	set	icount	to	0	first
										reinit				new								;	reinit	the	section	each	k-pass
new:
iCount				=									iCount	+	1	;	increase
										print					iCount					;	print	the	value
										rireturn
endin

</CsInstruments>
<CsScore>
i	1	0	1
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

Outputs:
		
instr	1:		iCount	=	1.000

		

instr	1:		iCount	=	2.000

		

instr	1:		iCount	=	3.000

		

instr	1:		iCount	=	4.000

		

instr	1:		iCount	=	5.000

		

instr	1:		iCount	=	6.000

		

instr	1:		iCount	=	7.000

		

instr	1:		iCount	=	8.000

INITIALIZATION	AND	PERFORMANCE	PASS

133

		

instr	1:		iCount	=	9.000

		

instr	1:		iCount	=	10.000

		

instr	1:		iCount	=	11.000	

		

What	happens	here	more	in	detail,	is	the	following.	In	the	actual	init-
pass,	iCount	is	set	to	zero	via	iCount	init	0.	Still	in	this	init-pass,	it	is	
incremented	by	one	(iCount	=	iCount+1)	and	the	value	is	printed	out	
as	iCount	=	1.000.	Now	starts	the	first	performance	pass.	The	
statement	reinit	new	advices	Csound	to	initialise	again	the	section	
labeled	as	"new".	So	the	statement	iCount	=	iCount	+	1	is	executed	
again.	As	the	current	value	of	iCount	at	this	time	is	1,	the	result	is	2.	
So	the	printout	at	this	first	performance	pass	is	iCount	=	2.000.	The	
same	happens	in	the	next	nine	performance	cycles,	so	the	final	count	
is	11.

ORDER	OF	CALCULATION

In	this	context,	it	can	be	very	important	to	observe	the	order	in	which	
the	instruments	of	a	Csound	orchestra	are	evaluated.	This	order	is	
determined	by	the	instrument	numbers.	So,	if	you	want	to	use	during	
the	same	performance	pass	a	value	in	instrument	10	which	is	
generated	by	another	instrument,	you	must	not	give	this	instrument	
the	number	11	or	higher.	In	the	following	example,	first	instrument	
10	uses	a	value	of	instrument	1,	then	a	value	of	instrument	100.
		

			EXAMPLE	03A13_Order_of_calc.csd	
		

<CsoundSynthesizer>
<CsInstruments>
sr	=	44100
ksmps	=	4410

instr	1

INITIALIZATION	AND	PERFORMANCE	PASS

134

gkcount			init						0	;set	gkcount	to	0	first
gkcount			=									gkcount	+	1	;increase
endin

instr	10
										printk				0,	gkcount	;print	the	value
endin

instr	100
gkcount			init						0	;set	gkcount	to	0	first
gkcount			=									gkcount	+	1	;increase
endin

</CsInstruments>
<CsScore>
;first	i1	and	i10
i	1	0	1
i	10	0	1
;then	i100	and	i10
i	100	1	1
i	10	1	1
</CsScore>
</CsoundSynthesizer>
;Example	by	Joachim	Heintz

The	output	shows	the	difference:
		
new	alloc	for	instr	1:

		

new	alloc	for	instr	10:

		

	i		10	time					0.10000:					1.00000

		

	i		10	time					0.20000:					2.00000

		

	i		10	time					0.30000:					3.00000

		

	i		10	time					0.40000:					4.00000

		

	i		10	time					0.50000:					5.00000

		

	i		10	time					0.60000:					6.00000

		

	i		10	time					0.70000:					7.00000

		

	i		10	time					0.80000:					8.00000

		

INITIALIZATION	AND	PERFORMANCE	PASS

135

	i		10	time					0.90000:					9.00000

		

	i		10	time					1.00000:				10.00000

		

B		0.000	..		1.000	T		1.000	TT		1.000	M:						0.0

		

new	alloc	for	instr	100:

		

	i		10	time					1.10000:					0.00000

		

	i		10	time					1.20000:					1.00000

		

	i		10	time					1.30000:					2.00000

		

	i		10	time					1.40000:					3.00000	

		

	i		10	time					1.50000:					4.00000

		

	i		10	time					1.60000:					5.00000

		

	i		10	time					1.70000:					6.00000

		

	i		10	time					1.80000:					7.00000

		

	i		10	time					1.90000:					8.00000

		

	i		10	time					2.00000:					9.00000

		

B		1.000	..		2.000	T		2.000	TT		2.000	M:						0.0	

Instrument	10	can	use	the	values	which	instrument	1	has	produced	in	
the	same	control	cycle,	but	it	can	only	refer	to	values	of	instrument	
100	which	are	produced	in	the	previous	control	cycle.	By	this	reason,	
the	printout	shows	values	which	are	one	less	in	the	latter	case.

INITIALIZATION	AND	PERFORMANCE	PASS

136

NAMED	INSTRUMENTS

It	has	been	said	in	chapter	02B	(Quick	Start)	that	instead	of	a	number	
you	can	also	use	a	name	for	an	instrument.	This	is	mostly	preferable,	
because	you	can	give	meaningful	names,	leading	to	a	better	readable	
code.	But	what	about	the	order	of	calculation	in	named	instruments?

The	answer	is	simple:	Csound	calculates	them	in	the	same	order	as	
they	are	written	in	the	orchestra.	So	if	your	instrument	collection	is	
like	this	...
		

			EXAMPLE	03A14_Order_of_calc_named.csd	
		

<CsoundSynthesizer>
<CsOptions>
-nd
</CsOptions>
<CsInstruments>

instr	Grain_machine
prints	"	Grain_machine\n"
endin

instr	Fantastic_FM
prints	"		Fantastic_FM\n"
endin

instr	Random_Filter
prints	"			Random_Filter\n"
endin

instr	Final_Reverb
prints	"				Final_Reverb\n"
endin

</CsInstruments>
<CsScore>
i	"Final_Reverb"	0	1
i	"Random_Filter"	0	1
i	"Grain_machine"	0	1
i	"Fantastic_FM"	0	1
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

...	you	can	count	on	this	output:
		
new	alloc	for	instr	Grain_machine:

		

	Grain_machine

INITIALIZATION	AND	PERFORMANCE	PASS

137

		

new	alloc	for	instr	Fantastic_FM:

		

		Fantastic_FM

		

new	alloc	for	instr	Random_Filter:

		

			Random_Filter

		

new	alloc	for	instr	Final_Reverb:

		

				Final_Reverb	

Note	that	the	score	has	not	the	same	order.	But	internally,	Csound	
transforms	all	names	to	numbers,	in	the	order	they	are	written	from	
top	to	bottom.	The	numbers	are	reported	on	the	top	of	Csound's	
output:10	
		
instr	Grain_machine	uses	instrument	number	1

		

instr	Fantastic_FM	uses	instrument	number	2

		

instr	Random_Filter	uses	instrument	number	3

		

instr	Final_Reverb	uses	instrument	number	4	

ABOUT	"I-TIME"	AND	"K-RATE"	OPCODES

It	is	often	confusing	for	the	beginner	that	there	are	some	opcodes	
which	only	work	at	"i-time"	or	"i-rate",	and	others	which	only	work	at
"k-rate"	or	"k-time".	For	instance,	if	the	user	wants	to	print	the	value	
of	any	variable,	(s)he	thinks:	"OK	-	print	it	out."	But	Csound	replies:	
"Please,	tell	me	first	if	you	want	to	print	an	i-	or	a	k-variable".11

The	print	opcode	just	prints	variables	which	are	updated	at	each	

INITIALIZATION	AND	PERFORMANCE	PASS

138

initialization	pass	("i-time"	or	"i-rate").	If	you	want	to	print	a	variable	
which	is	updated	at	each	control	cycle	("k-rate"	or	"k-time"),	you	
need	its	counterpart	printk.	(As	the	performance	pass	is	usually	
updated	some	thousands	times	per	second,	you	have	an	additional	
parameter	in	printk,	telling	Csound	how	often	you	want	to	print	out	
the	k-values.)

So,	some	opcodes	are	just	for	i-rate	variables,	like	filelen	or	ftgen.	
Others	are	just	for	k-rate	variables	like	metro	or	max_k.	Many	
opcodes	have	variants	for	either	i-rate-variables	or	k-rate-variables,	
like	printf_i	and	printf,	sprintf	and	sprintfk,	strindex	and	strindexk.
		

Most	of	the	Csound	opcodes	are	able	to	work	either	at	i-time	or	at	k-
time	or	at	audio-rate,	but	you	have	to	think	carefully	what	you	need,	
as	the	behaviour	will	be	very	different	if	you	choose	the	i-,	k-	or	a-
variante	of	an	opcode.	For	example,	the	random	opcode	can	work	at	
all	three	rates:

ires						random				imin,	imax	:	works	at	"i-time"
kres						random				kmin,	kmax	:	works	at	"k-rate"
ares						random				kmin,	kmax	:	works	at	"audio-rate"

If	you	use	the	i-rate	random	generator,	you	will	get	one	value	for	each
note.	For	instance,	if	you	want	to	have	a	different	pitch	for	each	note	
you	are	generating,	you	will	use	this	one.

If	you	use	the	k-rate	random	generator,	you	will	get	one	new	value	on	
every	control	cycle.	If	your	sample	rate	is	44100	and	your	ksmps=10,	
you	will	get	4410	new	values	per	second!	If	you	take	this	as	pitch	
value	for	a	note,	you	will	hear	nothing	but	a	noisy	jumping.	If	you	
want	to	have	a	moving	pitch,	you	can	use	the	randomi	variant	of	the	
k-rate	random	generator,	which	can	reduce	the	number	of	new	values	
per	second,	and	interpolate	between	them.

If	you	use	the	a-rate	random	generator,	you	will	get	as	many	new	
values	per	second	as	your	sample	rate	is.	If	you	use	it	in	the	range	of	
your	0	dB	amplitude,	you	produce	white	noise.

INITIALIZATION	AND	PERFORMANCE	PASS

139

			EXAMPLE	03A15_Random_at_ika.csd		

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32
0dbfs	=	1
nchnls	=	2

										seed						0	;each	time	different	seed
giSine				ftgen					0,	0,	2^10,	10,	1	;sine	table

instr	1	;i-rate	random
iPch						random				300,	600
aAmp						linseg				.5,	p3,	0
aSine					poscil				aAmp,	iPch,	giSine
										outs						aSine,	aSine
endin

instr	2	;k-rate	random:	noisy
kPch						random				300,	600
aAmp						linseg				.5,	p3,	0
aSine					poscil				aAmp,	kPch,	giSine
										outs						aSine,	aSine
endin

instr	3	;k-rate	random	with	interpolation:	sliding	pitch
kPch						randomi			300,	600,	3
aAmp						linseg				.5,	p3,	0
aSine					poscil				aAmp,	kPch,	giSine
										outs						aSine,	aSine
endin

instr	4	;a-rate	random:	white	noise
aNoise				random				-.1,	.1
										outs						aNoise,	aNoise
endin

</CsInstruments>
<CsScore>
i	1	0			.5
i	1	.25	.5
i	1	.5		.5
i	1	.75	.5
i	2	2			1
i	3	4			2
i	3	5			2
i	3	6			2
i	4	9			1
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

POSSIBLE	PROBLEMS	WITH	K-RATE	TICK
SIZE

It	has	been	said	that	usually	the	k-rate	clock	ticks	much	slower	than	
the	sample	(a-rate)	clock.	For	a	common	size	of	ksmps=32,	one	k-
value	remains	the	same	for	32	samples.	This	can	lead	to	problems,	for	
instance	if	you	use	k-rate	envelopes.	Let	us	assume	that	you	want	to	

INITIALIZATION	AND	PERFORMANCE	PASS

140

produce	a	very	short	fade-in	of	3	milliseconds,	and	you	do	it	with	the	
following	line	of	code:

kFadeIn	linseg	0,	.003,	1

Your	envelope	will	look	like	this:

Such	a	"staircase-envelope"	is	what	you	hear	in	the	next	example	as	
zipper	noise.	The	transeg	opcode	produces	a	non-linear	envelope	with	
a	sharp	peak:

	

The	rise	and	the	decay	are	each	1/100	seconds	long.	If	this	envelope	
is	produced	at	k-rate	with	a	blocksize	of	128	(instr	1),	the	noise	is	
clearly	audible.	Try	changing	ksmps	to	64,	32	or	16	and	compare	the	
amount	of	zipper	noise.	-	Instrument	2	uses	an	envelope	at	audio-rate	
instead.	Regardless	the	blocksize,	each	sample	is	calculated	
seperately,	so	the	envelope	will	always	be	smooth.

INITIALIZATION	AND	PERFORMANCE	PASS

141

			EXAMPLE	03A16_Zipper.csd			
		

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
sr	=	44100
;---	increase	or	decrease	to	hear	the	difference	more	or	less	evident
ksmps	=	128
nchnls	=	2
0dbfs	=	1

instr	1	;envelope	at	k-time
aSine					oscils				.5,	800,	0
kEnv						transeg			0,	.1,	5,	1,	.1,	-5,	0
aOut						=									aSine	*	kEnv
										outs						aOut,	aOut
endin

instr	2	;envelope	at	a-time
aSine					oscils				.5,	800,	0
aEnv						transeg			0,	.1,	5,	1,	.1,	-5,	0
aOut						=									aSine	*	aEnv
										outs						aOut,	aOut
endin

</CsInstruments>
<CsScore>
r	5	;repeat	the	following	line	5	times
i	1	0	1
s	;end	of	section
r	5
i	2	0	1
e
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

TIME	IMPOSSIBLE	

There	are	two	internal	clocks	in	Csound.	The	sample	rate	(sr)	
determines	the	audio-rate,	whereas	the	control	rate	(kr)	determines	
the	rate,	in	which	a	new	control	cycle	can	be	started	and	a	new	block	
of	samples	can	be	performed.	In	general,	Csound	can	not	start	any	
event	in	between	two	control	cycles,	nor	end.

The	next	example	chooses	an	extreme	small	control	rate	(only	10	k-
cycles	per	second)	to	illustrate	this.
		

			EXAMPLE	03A17_Time_Impossible.csd			
		

<CsoundSynthesizer>
<CsOptions>
-o	test.wav	-d
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	4410
nchnls	=	1
0dbfs	=	1

INITIALIZATION	AND	PERFORMANCE	PASS

142

LOCAL	AND	GLOBAL	VARIABLES

143

LOCAL	AND	GLOBAL	VARIABLES

VARIABLE	TYPES

In	Csound,	there	are	several	types	of	variables.	It	is	important	to	
understand	the	differences	between	these	types.	There	are

initialization	variables,	which	are	updated	at	each	
initialization	pass,	i.e.	at	the	beginning	of	each	note	or	score	
event.	They	start	with	the	character	i.	To	this	group	count	also	
the	score	parameter	fields,	which	always	starts	with	a	p,	
followed	by	any	number:	p1	refers	to	the	first	parameter	field	
in	the	score,	p2	to	the	second	one,	and	so	on.	
control	variables,	which	are	updated	at	each	control	cycle	
during	the	performance	of	an	instrument.	They	start	with	the	
character	k.
audio	variables,	which	are	also	updated	at	each	control	cycle,	
but	instead	of	a	single	number	(like	control	variables)	they	
consist	of	a	vector	(a	collection	of	numbers),	having	in	this	
way	one	number	for	each	sample.	They	start	with	the	character	
a.
string	variables,	which	are	updated	either	at	i-time	or	at	k-time	
(depending	on	the	opcode	which	produces	a	string).	They	start	
with	the	character	S.

Except	these	four	standard	types,	there	are	two	other	variable	types	
which	are	used	for	spectral	processing:

f-variables	are	used	for	the	streaming	phase	vocoder	opcodes	
(all	starting	with	the	characters	pvs),	which	are	very	important	
for	doing	realtime	FFT	(Fast	Fourier	Transform)	in	Csound.	
They	are	updated	at	k-time,	but	their	values	depend	also	on	the	
FFT	parameters	like	frame	size	and	overlap.
		
w-variables	are	used	in	some	older	spectral	processing	
opcodes.

The	following	example	exemplifies	all	the	variable	types	(except	the	

LOCAL	AND	GLOBAL	VARIABLES

144

w-type):

			EXAMPLE	03B01_Variable_types.csd			
		

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
0dbfs	=	1
nchnls	=	2

										seed						0;	random	seed	each	time	different

		instr	1;	i-time	variables
iVar1					=									p2;	second	parameter	in	the	score
iVar2					random				0,	10;	random	value	between	0	and	10
iVar						=									iVar1	+	iVar2;	do	any	math	at	i-rate
										print					iVar1,	iVar2,	iVar
		endin

		instr	2;	k-time	variables
kVar1					line							0,	p3,	10;	moves	from	0	to	10	in	p3
kVar2					random					0,	10;	new	random	value	each	control-cycle
kVar						=										kVar1	+	kVar2;	do	any	math	at	k-rate
;	---	print	each	0.1	seconds
printks			"kVar1	=	%.3f,	kVar2	=	%.3f,	kVar	=	%.3f%n",	0.1,	kVar1,	kVar2,	kVar
		endin

		instr	3;	a-variables
aVar1					oscils					.2,	400,	0;	first	audio	signal:	sine
aVar2					rand							1;	second	audio	signal:	noise
aVar3					butbp						aVar2,	1200,	12;	third	audio	signal:	noise	filtered
aVar						=										aVar1	+	aVar3;	audio	variables	can	also	be	added
										outs							aVar,	aVar;	write	to	sound	card
		endin

		instr	4;	S-variables
iMyVar				random					0,	10;	one	random	value	per	note
kMyVar				random					0,	10;	one	random	value	per	each	control-cycle
	;S-variable	updated	just	at	init-time
SMyVar1			sprintf			"This	string	is	updated	just	at	init-time:
																					kMyVar	=	%d\n",	iMyVar
										printf_i		"%s",	1,	SMyVar1
	;S-variable	updates	at	each	control-cycle
										printks			"This	string	is	updated	at	k-time:
																					kMyVar	=	%.3f\n",	.1,	kMyVar
		endin

		instr	5;	f-variables
aSig						rand							.2;	audio	signal	(noise)
;	f-signal	by	FFT-analyzing	the	audio-signal
fSig1					pvsanal				aSig,	1024,	256,	1024,	1
;	second	f-signal	(spectral	bandpass	filter)
fSig2					pvsbandp			fSig1,	350,	400,	400,	450
aOut						pvsynth				fSig2;	change	back	to	audio	signal
										outs							aOut*20,	aOut*20
		endin

</CsInstruments>
<CsScore>
;	p1				p2				p3
i	1					0					0.1
i	1					0.1			0.1
i	2					1					1

LOCAL	AND	GLOBAL	VARIABLES

145

i	3					2					1
i	4					3					1
i	5					4					1
</CsScore>
</CsoundSynthesizer>

You	can	think	of	variables	as	named	connectors	between	opcodes.	
You	can	connect	the	output	from	an	opcode	to	the	input	of	another.	
The	type	of	connector	(audio,	control,	etc.)	is	determined	by	the	first	
letter	of	its	name.

For	a	more	detailed	discussion,	see	the	article	An	overview	Of	Csound	
Variable	Types	by	Andrés	Cabrera	in	the	Csound	Journal,	and	the	
page	about	Types,	Constants	and	Variables	in	the	Canonical	Csound	
Manual.
		

LOCAL	SCOPE	

The	scope	of	these	variables	is	usually	the	instrument	in	which	they	
are	defined.	They	are	local	variables.	In	the	following	example,	the	
variables	in	instrument	1	and	instrument	2	have	the	same	names,	but	
different	values.

			EXAMPLE	03B02_Local_scope.csd				
		

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	4410;	very	high	because	of	printing
nchnls	=	2
0dbfs	=	1

		instr	1
;i-variable
iMyVar				init						0
iMyVar				=									iMyVar	+	1
										print					iMyVar
;k-variable
kMyVar				init						0
kMyVar				=									kMyVar	+	1
										printk				0,	kMyVar
;a-variable
aMyVar				oscils				.2,	400,	0
										outs						aMyVar,	aMyVar
;S-variable	updated	just	at	init-time
SMyVar1			sprintf			"This	string	is	updated	just	at	init-time:

LOCAL	AND	GLOBAL	VARIABLES

146

																					kMyVar	=	%d\n",	i(kMyVar)
										printf				"%s",	kMyVar,	SMyVar1
;S-variable	updated	at	each	control-cycle
SMyVar2			sprintfk		"This	string	is	updated	at	k-time:
																					kMyVar	=	%d\n",	kMyVar
										printf				"%s",	kMyVar,	SMyVar2
		endin

		instr	2
;i-variable
iMyVar				init						100
iMyVar				=									iMyVar	+	1
										print					iMyVar
;k-variable
kMyVar				init						100
kMyVar				=									kMyVar	+	1
										printk				0,	kMyVar
;a-variable
aMyVar				oscils				.3,	600,	0
										outs						aMyVar,	aMyVar
;S-variable	updated	just	at	init-time
SMyVar1			sprintf			"This	string	is	updated	just	at	init-time:
																					kMyVar	=	%d\n",	i(kMyVar)
										printf				"%s",	kMyVar,	SMyVar1
;S-variable	updated	at	each	control-cycle
SMyVar2			sprintfk		"This	string	is	updated	at	k-time:
																					kMyVar	=	%d\n",	kMyVar
										printf				"%s",	kMyVar,	SMyVar2
		endin

</CsInstruments>
<CsScore>
i	1	0	.3
i	2	1	.3
</CsScore>
</CsoundSynthesizer>

This	is	the	output	(first	the	output	at	init-time	by	the	print	opcode,	
then	at	each	k-cycle	the	output	of	printk	and	the	two	printf	opcodes):
		
new	alloc	for	instr	1:

		

instr	1:		iMyVar	=	1.000

		

	i			1	time					0.10000:					1.00000

		

This	string	is	updated	just	at	init-time:	kMyVar	=	0

		

This	string	is	updated	at	k-time:	kMyVar	=	1

		

	i			1	time					0.20000:					2.00000

		

This	string	is	updated	just	at	init-time:	kMyVar	=	0

		

LOCAL	AND	GLOBAL	VARIABLES

147

This	string	is	updated	at	k-time:	kMyVar	=	2

		

	i			1	time					0.30000:					3.00000

		

This	string	is	updated	just	at	init-time:	kMyVar	=	0

		

This	string	is	updated	at	k-time:	kMyVar	=	3

		

	B		0.000	..		1.000	T		1.000	TT		1.000	M:		0.20000		0.20000

		

new	alloc	for	instr	2:

		

instr	2:		iMyVar	=	101.000

		

	i			2	time					1.10000:			101.00000

		

This	string	is	updated	just	at	init-time:	kMyVar	=	100

		

This	string	is	updated	at	k-time:	kMyVar	=	101

		

	i			2	time					1.20000:			102.00000

		

This	string	is	updated	just	at	init-time:	kMyVar	=	100

		

This	string	is	updated	at	k-time:	kMyVar	=	102

		

	i			2	time					1.30000:			103.00000

		

This	string	is	updated	just	at	init-time:	kMyVar	=	100

		

This	string	is	updated	at	k-time:	kMyVar	=	103

		

B		1.000	..		1.300	T		1.300	TT		1.300	M:		0.29998		0.29998	

LOCAL	AND	GLOBAL	VARIABLES

148

GLOBAL	SCOPE

If	you	need	variables	which	are	recognized	beyond	the	scope	of	an	
instrument,	you	must	define	them	as	global.	This	is	done	by	prefixing	
the	character	g	before	the	types	i,	k,	a	or	S.	See	the	following	
example:

			EXAMPLE	03B03_Global_scope.csd				
		

<CsoundSynthesizer>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	4410;	very	high	because	of	printing
nchnls	=	2
0dbfs	=	1

	;global	scalar	variables	should	be	inititalized	in	the	header
giMyVar			init						0
gkMyVar			init						0

		instr	1
	;global	i-variable
giMyVar			=									giMyVar	+	1
										print					giMyVar
	;global	k-variable
gkMyVar			=									gkMyVar	+	1
										printk				0,	gkMyVar
	;global	S-variable	updated	just	at	init-time
gSMyVar1		sprintf			"This	string	is	updated	just	at	init-time:
																					gkMyVar	=	%d\n",	i(gkMyVar)
										printf				"%s",	gkMyVar,	gSMyVar1
	;global	S-variable	updated	at	each	control-cycle
gSMyVar2		sprintfk		"This	string	is	updated	at	k-time:
																					gkMyVar	=	%d\n",	gkMyVar
										printf				"%s",	gkMyVar,	gSMyVar2
		endin

		instr	2
	;global	i-variable,	gets	value	from	instr	1
giMyVar			=									giMyVar	+	1
										print					giMyVar
	;global	k-variable,	gets	value	from	instr	1
gkMyVar			=									gkMyVar	+	1
										printk				0,	gkMyVar
	;global	S-variable	updated	just	at	init-time,	gets	value	from	instr	1
										printf				"Instr	1	tells:	'%s'\n",	gkMyVar,	gSMyVar1
	;global	S-variable	updated	at	each	control-cycle,	gets	value	from	instr	1
										printf				"Instr	1	tells:	'%s'\n\n",	gkMyVar,	gSMyVar2
		endin

</CsInstruments>
<CsScore>
i	1	0	.3
i	2	0	.3
</CsScore>
</CsoundSynthesizer>

The	output	shows	the	global	scope,	as	instrument	2	uses	the	values	
which	have	been	changed	by	instrument	1	in	the	same	control	

LOCAL	AND	GLOBAL	VARIABLES

149

cycle:new	alloc	for	instr	1:
		
instr	1:		giMyVar	=	1.000

		

new	alloc	for	instr	2:

		

instr	2:		giMyVar	=	2.000

		

	i			1	time					0.10000:					1.00000

		

This	string	is	updated	just	at	init-time:	gkMyVar	=	0

		

This	string	is	updated	at	k-time:	gkMyVar	=	1

		

	i			2	time					0.10000:					2.00000

		

Instr	1	tells:	'This	string	is	updated	just	at	init-time:	gkMyVar	=	0'

		

Instr	1	tells:	'This	string	is	updated	at	k-time:	gkMyVar	=	1'

		

	i			1	time					0.20000:					3.00000

		

This	string	is	updated	just	at	init-time:	gkMyVar	=	0

		

This	string	is	updated	at	k-time:	gkMyVar	=	3

		

	i			2	time					0.20000:					4.00000

		

Instr	1	tells:	'This	string	is	updated	just	at	init-time:	gkMyVar	=	0'

		

Instr	1	tells:	'This	string	is	updated	at	k-time:	gkMyVar	=	3'

		

	i			1	time					0.30000:					5.00000

LOCAL	AND	GLOBAL	VARIABLES

150

		

This	string	is	updated	just	at	init-time:	gkMyVar	=	0

		

This	string	is	updated	at	k-time:	gkMyVar	=	5

		

	i			2	time					0.30000:					6.00000

		

Instr	1	tells:	'This	string	is	updated	just	at	init-time:	gkMyVar	=	0'

		

Instr	1	tells:	'This	string	is	updated	at	k-time:	gkMyVar	=	5'	

		

HOW	TO	WORK	WITH	GLOBAL	AUDIO
VARIABLES

	Some	special	considerations	must	be	taken	if	you	work	with	global	
audio	variables.	Actually,	Csound	behaves	basically	the	same	
whether	you	work	with	a	local	or	a	global	audio	variable.	But	usually	
you	work	with	global	audio	variables	if	you	want	to	add	several	audio
signals	to	a	global	signal,	and	that	makes	a	difference.

The	next	few	examples	are	going	into	a	bit	more	detail.	If	you	just	
want	to	see	the	result	(=	global	audio	usually	must	be	cleared),	you	
can	skip	the	next	examples	and	just	go	to	the	last	one	of	this	section.

It	should	be	understood	first	that	a	global	audio	variable	is	treated	the	
same	by	Csound	if	it	is	applied	like	a	local	audio	signal:

			EXAMPLE	03B04_Global_audio_intro.csd					
		

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2

LOCAL	AND	GLOBAL	VARIABLES

151

0dbfs	=	1

		instr	1;	produces	a	400	Hz	sine
gaSig					oscils				.1,	400,	0
		endin

		instr	2;	outputs	gaSig
										outs						gaSig,	gaSig
		endin

</CsInstruments>
<CsScore>
i	1	0	3
i	2	0	3
</CsScore>
</CsoundSynthesizer>

Of	course	there	is	no	need	to	use	a	global	variable	in	this	case.	If	you	
do	it,	you	risk	your	audio	will	be	overwritten	by	an	instrument	with	a	
higher	number	using	the	same	variable	name.	In	the	following	
example,	you	will	just	hear	a	600	Hz	sine	tone,	because	the	400	Hz	
sine	of	instrument	1	is	overwritten	by	the	600	Hz	sine	of	instrument	2:

			EXAMPLE	03B05_Global_audio_overwritten.csd						
		

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

		instr	1;	produces	a	400	Hz	sine
gaSig					oscils				.1,	400,	0
		endin

		instr	2;	overwrites	gaSig	with	600	Hz	sine
gaSig					oscils				.1,	600,	0
		endin

		instr	3;	outputs	gaSig
										outs						gaSig,	gaSig
		endin

</CsInstruments>
<CsScore>
i	1	0	3
i	2	0	3
i	3	0	3
</CsScore>
</CsoundSynthesizer>

	In	general,	you	will	use	a	global	audio	variable	like	a	bus	to	which	
several	local	audio	signal	can	be	added.	It's	this	addition	of	a	global	
audio	signal	to	its	previous	state	which	can	cause	some	trouble.	Let's	

LOCAL	AND	GLOBAL	VARIABLES

152

first	see	a	simple	example	of	a	control	signal	to	understand	what	is	
happening:

			EXAMPLE	03B06_Global_audio_added.csd							
		

<CsoundSynthesizer>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	4410;	very	high	because	of	printing
nchnls	=	2
0dbfs	=	1

		instr	1
kSum						init						0;	sum	is	zero	at	init	pass
kAdd						=									1;	control	signal	to	add
kSum						=									kSum	+	kAdd;	new	sum	in	each	k-cycle
										printk				0,	kSum;	print	the	sum
		endin

</CsInstruments>
<CsScore>
i	1	0	1
</CsScore>
</CsoundSynthesizer>

In	this	case,	the	"sum	bus"	kSum	increases	at	each	control	cycle	by	1,	
because	it	adds	the	kAdd	signal	(which	is	always	1)	in	each	k-pass	to	
its	previous	state.	It	is	no	different	if	this	is	done	by	a	local	k-signal,	
like	here,	or	by	a	global	k-signal,	like	in	the	next	example:

			EXAMPLE	03B07_Global_control_added.csd								
		

<CsoundSynthesizer>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	4410;	very	high	because	of	printing
nchnls	=	2
0dbfs	=	1

gkSum					init						0;	sum	is	zero	at	init

		instr	1
gkAdd					=									1;	control	signal	to	add
		endin

		instr	2
gkSum					=									gkSum	+	gkAdd;	new	sum	in	each	k-cycle
										printk				0,	gkSum;	print	the	sum
		endin

</CsInstruments>
<CsScore>
i	1	0	1
i	2	0	1
</CsScore>
</CsoundSynthesizer>

LOCAL	AND	GLOBAL	VARIABLES

153

What	happens	when	working	with	audio	signals	instead	of	control	
signals	in	this	way,	repeatedly	adding	a	signal	to	its	previous	state?	
Audio	signals	in	Csound	are	a	collection	of	numbers	(a	vector).	The	
size	of	this	vector	is	given	by	the	ksmps	constant.	If	your	sample	rate	
is	44100,	and	ksmps=100,	you	will	calculate	441	times	in	one	second	
a	vector	which	consists	of	100	numbers,	indicating	the	amplitude	of	
each	sample.

So,	if	you	add	an	audio	signal	to	its	previous	state,	different	things	
can	happen,	depending	on	the	vector's	present	and	previous	states.	If	
both	previous	and	present	states	(with	ksmps=9)	are	[0	0.1	0.2	0.1	0	
-0.1	-0.2	-0.1	0]	you	will	get	a	signal	which	is	twice	as	strong:	[0	0.2	
0.4	0.2	0	-0.2	-0.4	-0.2	0].	But	if	the	present	state	is	opposite	[0	-0.1	
-0.2	-0.1	0	0.1	0.2	0.1	0],	you	will	only	get	zeros	when	you	add	them.	
This	is	shown	in	the	next	example	with	a	local	audio	variable,	and	
then	in	the	following	example	with	a	global	audio	variable.

			EXAMPLE	03B08_Local_audio_add.csd									
		

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	4410;	very	high	because	of	printing
												;(change	to	441	to	see	the	difference)
nchnls	=	2
0dbfs	=	1

		instr	1
	;initialize	a	general	audio	variable
aSum						init						0
	;produce	a	sine	signal	(change	frequency	to	401	to	see	the	difference)
aAdd						oscils				.1,	400,	0
	;add	it	to	the	general	audio	(=	the	previous	vector)
aSum						=									aSum	+	aAdd
kmax						max_k					aSum,	1,	1;	calculate	maximum
										printk				0,	kmax;	print	it	out
										outs						aSum,	aSum
		endin

</CsInstruments>
<CsScore>
i	1	0	1
</CsScore>
</CsoundSynthesizer>

	prints:

LOCAL	AND	GLOBAL	VARIABLES

154

		
	i			1	time					0.10000:					0.10000

		

	i			1	time					0.20000:					0.20000

		

	i			1	time					0.30000:					0.30000

		

	i			1	time					0.40000:					0.40000

		

	i			1	time					0.50000:					0.50000

		

	i			1	time					0.60000:					0.60000

		

	i			1	time					0.70000:					0.70000

		

	i			1	time					0.80000:					0.79999

		

	i			1	time					0.90000:					0.89999

		

	i			1	time					1.00000:					0.99999	

		

			EXAMPLE	03B09_Global_audio_add.csd									

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	4410;	very	high	because	of	printing
												;(change	to	441	to	see	the	difference)
nchnls	=	2
0dbfs	=	1

	;initialize	a	general	audio	variable
gaSum					init						0

		instr	1
	;produce	a	sine	signal	(change	frequency	to	401	to	see	the	difference)
aAdd						oscils				.1,	400,	0
	;add	it	to	the	general	audio	(=	the	previous	vector)
gaSum					=									gaSum	+	aAdd
		endin

		instr	2
kmax						max_k					gaSum,	1,	1;	calculate	maximum

LOCAL	AND	GLOBAL	VARIABLES

155

										printk				0,	kmax;	print	it	out
										outs						gaSum,	gaSum
		endin

</CsInstruments>
<CsScore>
i	1	0	1
i	2	0	1
</CsScore>
</CsoundSynthesizer>

In	both	cases,	you	get	a	signal	which	increases	each	1/10	second,	
because	you	have	10	control	cycles	per	second	(ksmps=4410),	and	the
frequency	of	400	Hz	can	be	evenly	divided	by	this.	If	you	change	the	
ksmps	value	to	441,	you	will	get	a	signal	which	increases	much	faster	
and	is	out	of	range	after	1/10	second.	If	you	change	the	frequency	to	
401	Hz,	you	will	get	a	signal	which	increases	first,	and	then	
decreases,	because	each	audio	vector	has	40.1	cycles	of	the	sine	
wave.	So	the	phases	are	shifting;	first	getting	stronger	and	then	
weaker.	If	you	change	the	frequency	to	10	Hz,	and	then	to	15	Hz	(at	
ksmps=44100),	you	cannot	hear	anything,	but	if	you	render	to	file,	
you	can	see	the	whole	process	of	either	enforcing	or	erasing	quite	
clear:

Self-reinforcing	global	audio	signal	on	account	of	its	state	in	one	
control	cycle	being	the	same	as	in	the	previous	one	
		

LOCAL	AND	GLOBAL	VARIABLES

156

	

Partly	self-erasing	global	audio	signal	because	of	phase	inversions	in
two	subsequent	control	cycles

So	the	result	of	all	is:	If	you	work	with	global	audio	variables	in	a	
way	that	you	add	several	local	audio	signals	to	a	global	audio	
variable	(which	works	like	a	bus),	you	must	clear	this	global	bus	at	
each	control	cycle.	As	in	Csound	all	the	instruments	are	calculated	in	
ascending	order,	it	should	be	done	either	at	the	beginning	of	the	first,	
or	at	the	end	of	the	last	instrument.	Perhaps	it	is	the	best	idea	to	
declare	all	global	audio	variables	in	the	orchestra	header	first,	and	
then	clear	them	in	an	"always	on"	instrument	with	the	highest	number	
of	all	the	instruments	used.	This	is	an	example	of	a	typical	situation:

			EXAMPLE	03B10_Global_with_clear.csd
		

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

	;initialize	the	global	audio	variables
gaBusL				init						0
gaBusR				init						0
	;make	the	seed	for	random	values	each	time	different
										seed						0

		instr	1;	produces	short	signals
	loop:
iDur						random				.3,	1.5
										timout				0,	iDur,	makenote
										reinit				loop

LOCAL	AND	GLOBAL	VARIABLES

157

	makenote:
iFreq					random				300,	1000
iVol						random				-12,	-3;	dB
iPan						random				0,	1;	random	panning	for	each	signal
aSin						oscil3				ampdb(iVol),	iFreq,	1
aEnv						transeg			1,	iDur,	-10,	0;	env	in	a-rate	is	cleaner
aAdd						=									aSin	*	aEnv
aL,	aR				pan2						aAdd,	iPan
gaBusL				=									gaBusL	+	aL;	add	to	the	global	audio	signals
gaBusR				=									gaBusR	+	aR
		endin

		instr	2;	produces	short	filtered	noise	signals	(4	partials)
	loop:
iDur						random				.1,	.7
										timout				0,	iDur,	makenote
										reinit				loop
	makenote:
iFreq					random				100,	500
iVol						random				-24,	-12;	dB
iPan						random				0,	1
aNois					rand						ampdb(iVol)
aFilt					reson					aNois,	iFreq,	iFreq/10
aRes						balance			aFilt,	aNois
aEnv						transeg			1,	iDur,	-10,	0
aAdd						=									aRes	*	aEnv
aL,	aR				pan2						aAdd,	iPan
gaBusL				=									gaBusL	+	aL;	add	to	the	global	audio	signals
gaBusR				=									gaBusR	+	aR
		endin

		instr	3;	reverb	of	gaBus	and	output
aL,	aR				freeverb		gaBusL,	gaBusR,	.8,	.5
										outs						aL,	aR
		endin

		instr	100;	clear	global	audios	at	the	end
										clear					gaBusL,	gaBusR
		endin

</CsInstruments>
<CsScore>
f	1	0	1024	10	1	.5	.3	.1
i	1	0	20
i	2	0	20
i	3	0	20
i	100	0	20
</CsScore>
</CsoundSynthesizer>

THE	CHN	OPCODES	FOR	GLOBAL
VARIABLES

Instead	of	using	the	traditional	g-variables	for	any	values	or	signals	
which	are	to	transfer	between	several	instruments,	it	is	also	possible	
to	use	the	chn	opcodes.	An	i-,	k-,	a-	or	S-value	or	signal	can	be	set	by	
chnset	and	received	by	chnget.	One	advantage	is	to	have	strings	as	
names,	so	that	you	can	choose	intuitive	names.

For	audio	variables,	instead	of	performing	an	addition,	you	can	use	
the	chnmix	opcode.	For	clearing	an	audio	variable,	the	chnclear	
opcode	can	be	used.

			EXAMPLE	03B11_Chn_demo.csd	
		

LOCAL	AND	GLOBAL	VARIABLES

158

CONTROL	STRUCTURES

159

CONTROL	STRUCTURES

In	a	way,	control	structures	are	the	core	of	a	programming	language.	
The	fundamental	element	in	each	language	is	the	conditional	if	
branch.	Actually	all	other	control	structures	like	for-,	until-	or	while-
loops	can	be	traced	back	to	if-statements.
		

So,	Csound	provides	mainly	the	if-statement;	either	in	the	usual	if-
then-else	form,	or	in	the	older	way	of	an	if-goto	statement.	These	will	
be	covered	first.	Though	all	necessary	loops	can	be	built	just	by	if-
statements,	Csound's	while,	until	and	loop	facility	offer	a	more	
comfortable	way	of	performing	loops.	They	will	be	introduced	later,	
in	the	Loop	and	the	While	/	Until	section	of	this	chapter.	Finally,	time
loops	are	shown,	which	are	particulary	important	in	audio	
programming	languages.
		

IF	I-TIME	THEN	NOT	K-TIME!

The	fundamental	difference	in	Csound	between	i-time	and	k-time	
which	has	been	explained	in	chapter	03A,	must	be	regarded	very	
carefully	when	you	work	with	control	structures.	If	you	make	a	
conditional	branch	at	i-time,	the	condition	will	be	tested	just	once	
for	each	note,	at	the	initialization	pass.	If	you	make	a	conditional	
branch	at	k-time,	the	condition	will	be	tested	again	and	again	in	
each	control-cycle.

For	instance,	if	you	test	a	soundfile	whether	it	is	mono	or	stereo,	this	
is	done	at	init-time.	If	you	test	an	amplitude	value	to	be	below	a	
certain	threshold,	it	is	done	at	performance	time	(k-time).	If	you	get	
user-input	by	a	scroll	number,	this	is	also	a	k-value,	so	you	need	a	k-
condition.

CONTROL	STRUCTURES

160

Thus,	all	if	and	loop	opcodes	have	an	"i"	and	a	"k"	descendant.	In	the	
next	few	sections,	a	general	introduction	into	the	different	control	
tools	is	given,	followed	by	examples	both	at	i-time	and	at	k-time	for	
each	tool.

IF	-	THEN	-	[ELSEIF	-	THEN	-]	ELSE

The	use	of	the	if-then-else	statement	is	very	similar	to	other	
programming	languages.	Note	that	in	Csound,	"then"	must	be	written	
in	the	same	line	as	"if"	and	the	expression	to	be	tested,	and	that	you	
must	close	the	if-block	with	an	"endif"	statement	on	a	new	line:

if	<condition>	then
...
else
...
endif

It	is	also	possible	to	have	no	"else"	statement:

if	<condition>	then
...
endif

Or	you	can	have	one	or	more	"elseif-then"	statements	in	between:

if	<condition1>	then
...
elseif	<condition2>	then
...
else
...
endif

If	statements	can	also	be	nested.	Each	level	must	be	closed	with	an	
"endif".	This	is	an	example	with	three	levels:

if	<condition1>	then;	first	condition	opened
	if	<condition2>	then;	second	condition	openend
		if	<condition3>	then;	third	condition	openend
		...
		else
		...
		endif;	third	condition	closed
	elseif	<condition2a>	then
	...
	endif;	second	condition	closed
else
...
endif;	first	condition	closed

I-RATE	EXAMPLES

CONTROL	STRUCTURES

161

A	typical	problem	in	Csound:	You	have	either	mono	or	stereo	files,	
and	want	to	read	both	with	a	stereo	output.	For	the	real	stereo	ones	
that	means:	use	soundin	(diskin	/	diskin2)	with	two	output	arguments.	
For	the	mono	ones	it	means:	use	soundin	/	diskin	/	diskin2	with	one	
output	argument,	and	throw	it	to	both	output	channels:

			EXAMPLE	03C01_IfThen_i.csd	

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

		instr	1
Sfile					=										"/my/file.wav"	;your	soundfile	path	here
ifilchnls	filenchnls	Sfile
	if	ifilchnls	==	1	then	;mono
aL								soundin				Sfile
aR								=										aL
	else	 ;stereo
aL,	aR				soundin				Sfile
	endif
										outs							aL,	aR
		endin

</CsInstruments>
<CsScore>
i	1	0	5
</CsScore>
</CsoundSynthesizer>

If	you	use	CsoundQt,	you	can	browse	in	the	widget	panel	for	the	
soundfile.	See	the	corresponding	example	in	the	CsoundQt	Example	
menu.

K-RATE	EXAMPLES

The	following	example	establishes	a	moving	gate	between	0	and	1.	If	
the	gate	is	above	0.5,	the	gate	opens	and	you	hear	a	tone.		If	the	gate	
is	equal	or	below	0.5,	the	gate	closes,	and	you	hear	nothing.

			EXAMPLE	03C02_IfThen_k.csd	

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>

CONTROL	STRUCTURES

162

;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

										seed						0;	random	values	each	time	different
giTone				ftgen					0,	0,	2^10,	10,	1,	.5,	.3,	.1

		instr	1

;	move	between	0	and	1	(3	new	values	per	second)
kGate					randomi			0,	1,	3
;	move	between	300	and	800	hz	(1	new	value	per	sec)
kFreq					randomi			300,	800,	1
;	move	between	-12	and	0	dB	(5	new	values	per	sec)
kdB							randomi			-12,	0,	5
aSig						oscil3				1,	kFreq,	giTone
kVol						init						0
	if	kGate	>	0.5	then;	if	kGate	is	larger	than	0.5
kVol						=									ampdb(kdB);	open	gate
	else
kVol						=									0;	otherwise	close	gate
	endif
kVol						port						kVol,	.02;	smooth	volume	curve	to	avoid	clicks
aOut						=									aSig	*	kVol
										outs						aOut,	aOut
		endin

</CsInstruments>
<CsScore>
i	1	0	30
</CsScore>
</CsoundSynthesizer>

SHORT	FORM:	(A	V	B	?	X	:	Y)

If	you	need	an	if-statement	to	give	a	value	to	an	(i-	or	k-)	variable,	
you	can	also	use	a	traditional	short	form	in	parentheses:	(a	v	b	?	x	:	
y).1		It	asks	whether	the	condition	a	or	b	is	true.	If	a,	the	value	is	set	to
x;	if	b,	to	y.	For	instance,	the	last	example	could	be	written	in	this	
way:

			EXAMPLE	03C03_IfThen_short_form.csd	

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

										seed						0
giTone				ftgen					0,	0,	2^10,	10,	1,	.5,	.3,	.1

		instr	1
kGate					randomi			0,	1,	3;	moves	between	0	and	1	(3	new	values	per	second)
kFreq					randomi			300,	800,	1;	moves	between	300	and	800	hz
																															;(1	new	value	per	sec)

CONTROL	STRUCTURES

163

kdB							randomi			-12,	0,	5;	moves	between	-12	and	0	dB
																													;(5	new	values	per	sec)
aSig						oscil3				1,	kFreq,	giTone
kVol						init						0
kVol						=									(kGate	>	0.5	?	ampdb(kdB)	:	0);	short	form	of	condition
kVol						port						kVol,	.02;	smooth	volume	curve	to	avoid	clicks
aOut						=									aSig	*	kVol
										outs						aOut,	aOut
		endin

</CsInstruments>
<CsScore>
i	1	0	20
</CsScore>
</CsoundSynthesizer>

IF	-	GOTO

An	older	way	of	performing	a	conditional	branch	-	but	still	useful	in	
certain	cases	-	is	an	"if"	statement	which	is	not	followed	by	a	"then",	
but	by	a	label	name.	The	"else"	construction	follows	(or	doesn't	
follow)	in	the	next	line.	Like	the	if-then-else	statement,	the	if-goto	
works	either	at	i-time	or	at	k-time.	You	should	declare	the	type	by	
either	using	igoto	or	kgoto.	Usually	you	need	an	additional	
igoto/kgoto	statement	for	omitting	the	"else"	block	if	the	first	
condition	is	true.	This	is	the	general	syntax:

i-time

if	<condition>	igoto	this;	same	as	if-then
	igoto	that;	same	as	else
this:	;the	label	"this"	...
...
igoto	continue	;skip	the	"that"	block
that:	;	...	and	the	label	"that"	must	be	found
...
continue:	;go	on	after	the	conditional	branch
...

k-time

if	<condition>	kgoto	this;	same	as	if-then
	kgoto	that;	same	as	else
this:	;the	label	"this"	...
...
kgoto	continue	;skip	the	"that"	block
that:	;	...	and	the	label	"that"	must	be	found
...
continue:	;go	on	after	the	conditional	branch
...

I-RATE	EXAMPLES

This	is	the	same	example	as	above	in	the	if-then-else	syntax	for	a	

CONTROL	STRUCTURES

164

branch	depending	on	a	mono	or	stereo	file.	If	you	just	want	to	know	
whether	a	file	is	mono	or	stereo,	you	can	use	the	"pure"	if-igoto	
statement:

			EXAMPLE	03C04_IfGoto_i.csd	

<CsoundSynthesizer>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

		instr	1
Sfile					=	"/Joachim/Materialien/SamplesKlangbearbeitung/Kontrabass.aif"
ifilchnls	filenchnls	Sfile
if	ifilchnls	==	1	igoto	mono;	condition	if	true
	igoto	stereo;	else	condition
mono:
										prints					"The	file	is	mono!%n"
										igoto						continue
stereo:
										prints					"The	file	is	stereo!%n"
continue:
		endin

</CsInstruments>
<CsScore>
i	1	0	0
</CsScore>
</CsoundSynthesizer>

But	if	you	want	to	play	the	file,	you	must	also	use	a	k-rate	if-kgoto,	
because,	not	only	do	you	have	an	event	at	i-time	(initializing	the	
soundin	opcode)	but	also	at	k-time	(producing	an	audio	signal).	So	
the	code	in	this	case	is	much	more	cumbersome,	or	obfuscated,	than	
the	previous	if-then-else	example.

			EXAMPLE	03C05_IfGoto_ik.csd	

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

		instr	1
Sfile					=										"my/file.wav"
ifilchnls	filenchnls	Sfile
	if	ifilchnls	==	1	kgoto	mono
		kgoto	stereo
	if	ifilchnls	==	1	igoto	mono;	condition	if	true
		igoto	stereo;	else	condition
mono:

CONTROL	STRUCTURES

165

aL								soundin				Sfile
aR								=										aL
										igoto						continue
										kgoto						continue
stereo:
aL,	aR				soundin				Sfile
continue:
										outs							aL,	aR
		endin

</CsInstruments>
<CsScore>
i	1	0	5
</CsScore>
</CsoundSynthesizer>

K-RATE	EXAMPLES

This	is	the	same	example	as	above	(03C02)	in	the	if-then-else	syntax	
for	a	moving	gate	between	0	and	1:

			EXAMPLE	03C06_IfGoto_k.csd	

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

										seed						0
giTone				ftgen					0,	0,	2^10,	10,	1,	.5,	.3,	.1

		instr	1
kGate					randomi			0,	1,	3;	moves	between	0	and	1	(3	new	values	per	second)
kFreq					randomi			300,	800,	1;	moves	between	300	and	800	hz
																														;(1	new	value	per	sec)
kdB							randomi			-12,	0,	5;	moves	between	-12	and	0	dB
																													;(5	new	values	per	sec)
aSig						oscil3				1,	kFreq,	giTone
kVol						init						0
	if	kGate	>	0.5	kgoto	open;	if	condition	is	true
		kgoto	close;	"else"	condition
open:
kVol						=									ampdb(kdB)
kgoto	continue
close:
kVol						=									0
continue:
kVol						port						kVol,	.02;	smooth	volume	curve	to	avoid	clicks
aOut						=									aSig	*	kVol
										outs						aOut,	aOut
		endin

</CsInstruments>
<CsScore>
i	1	0	30
</CsScore>
</CsoundSynthesizer>

CONTROL	STRUCTURES

166

LOOPS

Loops	can	be	built	either	at	i-time	or	at	k-time	just	with	the	"if"	
facility.	The	following	example	shows	an	i-rate	and	a	k-rate	loop	
created	using	the	if-i/kgoto	facility:

			EXAMPLE	03C07_Loops_with_if.csd	

<CsoundSynthesizer>
<CsInstruments>
;Example	by	Joachim	Heintz

		instr	1	;i-time	loop:	counts	from	1	until	10	has	been	reached
icount				=									1
count:
										print					icount
icount				=									icount	+	1
	if	icount	<	11	igoto	count
										prints				"i-END!%n"
		endin

		instr	2	;k-rate	loop:	counts	in	the	100th	k-cycle	from	1	to	11
kcount				init						0
ktimek				timeinstk	;counts	k-cycle	from	the	start	of	this	instrument
	if	ktimek	==	100	kgoto	loop
		kgoto	noloop
loop:
										printks			"k-cycle	%d	reached!%n",	0,	ktimek
kcount				=									kcount	+	1
										printk2			kcount
	if	kcount	<	11	kgoto	loop
										printks			"k-END!%n",	0
noloop:
		endin

</CsInstruments>
<CsScore>
i	1	0	0
i	2	0	1
</CsScore>
</CsoundSynthesizer>

But	Csound	offers	a	slightly	simpler	syntax	for	this	kind	of	i-rate	or	k-
rate	loops.	There	are	four	variants	of	the	loop	opcode.	All	four	refer	
to	a	label	as	the	starting	point	of	the	loop,	an	index	variable	as	a	
counter,	an	increment	or	decrement,	and	finally	a	reference	value	
(maximum	or	minimum)	as	comparision:

loop_lt	counts	upwards	and	looks	if	the	index	variable	is	lower	
than	the	reference	value;
loop_le	also	counts	upwards	and	looks	if	the	index	is	lower	
than	or	equal	to	the	reference	value;
loop_gt	counts	downwards	and	looks	if	the	index	is	greater	
than	the	reference	value;

CONTROL	STRUCTURES

167

loop_ge	also	counts	downwards	and	looks	if	the	index	is	
greater	than	or	equal	to	the	reference	value.

As	always,	all	four	opcodes	can	be	applied	either	at	i-time	or	at	k-
time.	Here	are	some	examples,	first	for	i-time	loops,	and	then	for	k-
time	loops.

I-RATE	EXAMPLES

The	following	.csd	provides	a	simple	example	for	all	four	loop	
opcodes:

			EXAMPLE	03C08_Loop_opcodes_i.csd	

<CsoundSynthesizer>
<CsInstruments>
;Example	by	Joachim	Heintz

		instr	1	;loop_lt:	counts	from	1	upwards	and	checks	if	<	10
icount				=									1
loop:
										print					icount
										loop_lt			icount,	1,	10,	loop
										prints				"Instr	1	terminated!%n"
		endin

		instr	2	;loop_le:	counts	from	1	upwards	and	checks	if	<=	10
icount				=									1
loop:
										print					icount
										loop_le			icount,	1,	10,	loop
										prints				"Instr	2	terminated!%n"
		endin

		instr	3	;loop_gt:	counts	from	10	downwards	and	checks	if	>	0
icount				=									10
loop:
										print					icount
										loop_gt			icount,	1,	0,	loop
										prints				"Instr	3	terminated!%n"
		endin

		instr	4	;loop_ge:	counts	from	10	downwards	and	checks	if	>=	0
icount				=									10
loop:
										print					icount
										loop_ge			icount,	1,	0,	loop
										prints				"Instr	4	terminated!%n"
		endin

</CsInstruments>
<CsScore>
i	1	0	0
i	2	0	0
i	3	0	0
i	4	0	0
</CsScore>
</CsoundSynthesizer>

The	next	example	produces	a	random	string	of	10	characters	and	

CONTROL	STRUCTURES

168

prints	it	out:

			EXAMPLE	03C09_Random_string.csd	

<CsoundSynthesizer>
<CsInstruments>
;Example	by	Joachim	Heintz

		instr	1
icount				=									0
Sname					=									"";	starts	with	an	empty	string
loop:
ichar					random				65,	90.999
Schar					sprintf			"%c",	int(ichar);	new	character
Sname					strcat				Sname,	Schar;	append	to	Sname
										loop_lt			icount,	1,	10,	loop;	loop	construction
										printf_i		"My	name	is	'%s'!\n",	1,	Sname;	print	result
		endin

</CsInstruments>
<CsScore>
;	call	instr	1	ten	times
r	10
i	1	0	0
</CsScore>
</CsoundSynthesizer>

You	can	also	use	an	i-rate	loop	to	fill	a	function	table	(=	buffer)	with	
any	kind	of	values.	This	table	can	then	be	read,	or	manipulated	and	
then	be	read	again.	In	the	next	example,	a	function	table	with	20	
positions	(indices)	is	filled	with	random	integers	between	0	and	10	by	
instrument	1.	Nearly	the	same	loop	construction	is	used	afterwards	to	
read	these	values	by	instrument	2.
		

			EXAMPLE	03C10_Random_ftable_fill.csd	

<CsoundSynthesizer>
<CsInstruments>
;Example	by	Joachim	Heintz

giTable			ftgen					0,	0,	-20,	-2,	0;	empty	function	table	with	20	points
										seed						0;	each	time	different	seed

		instr	1	;	writes	in	the	table
icount				=									0
loop:
ival						random				0,	10.999	;random	value
;	---	write	in	giTable	at	first,	second,	third	...	position
										tableiw			int(ival),	icount,	giTable
										loop_lt			icount,	1,	20,	loop;	loop	construction
		endin

		instr	2;	reads	from	the	table
icount				=									0
loop:
;	---	read	from	giTable	at	first,	second,	third	...	position
ival						tablei				icount,	giTable

CONTROL	STRUCTURES

169

										print					ival;	prints	the	content
										loop_lt			icount,	1,	20,	loop;	loop	construction
		endin

</CsInstruments>
<CsScore>
i	1	0	0
i	2	0	0
</CsScore>
</CsoundSynthesizer>

K-RATE	EXAMPLES

The	next	example	performs	a	loop	at	k-time.	Once	per	second,	every	
value	of	an	existing	function	table	is	changed	by	a	random	deviation	
of	10%.	Though	there	are	some	vectorial	opcodes	for	this	task	(and	in	
Csound	6	probably	array),	it	can	also	be	done	by	a	k-rate	loop	like	the	
one	shown	here:

			EXAMPLE	03C11_Table_random_dev.csd	

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	441
nchnls	=	2
0dbfs	=	1

giSine				ftgen					0,	0,	256,	10,	1;	sine	wave
										seed						0;	each	time	different	seed

		instr	1
ktiminstk	timeinstk	;time	in	control-cycles
kcount				init						1
	if	ktiminstk	==	kcount	*	kr	then;	once	per	second	table	values	manipulation:
kndx						=									0
loop:
krand					random				-.1,	.1;random	factor	for	deviations
kval						table					kndx,	giSine;	read	old	value
knewval			=									kval	+	(kval	*	krand);	calculate	new	value
										tablew				knewval,	kndx,	giSine;	write	new	value
										loop_lt			kndx,	1,	256,	loop;	loop	construction
kcount				=									kcount	+	1;	increase	counter
	endif
asig						poscil				.2,	400,	giSine
										outs						asig,	asig
		endin

</CsInstruments>
<CsScore>
i	1	0	10
</CsScore>
</CsoundSynthesizer>

WHILE	/	UNTIL	

CONTROL	STRUCTURES

170

Since	Csound6,	it	is	possible	to	write	loops	in	a	way	which	is	very	
similar	to	many	other	programming	languages,	using	the	keywords	
while	or	until.	The	general	syntax	is:2

while	<condition>	do
			...
od
until	<condition>	do
			...
od

The	body	of	the	while	loop	will	be	performed	again	and	again,	as	
long	as	<condition>	is	true.	The	body	of	the	until	loop	will	be	
performed,	as	long	as	<condition>	is	false	(not	true).	This	is	a	simple	
example	at	i-rate:

			EXAMPLE	03C12_while_until_i-rate.csd	
		

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
ksmps	=	32

instr	1
iCounter	=	0
while	iCounter	<	5	do
		print	iCounter
iCounter	+=	1
od
prints	"\n"
endin

instr	2
iCounter	=	0
until	iCounter	>=	5	do
		print	iCounter
iCounter	+=	1
od
endin

</CsInstruments>
<CsScore>
i	1	0	.1
i	2	.1	.1
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

Prints:

instr	1:		iprint	=	0.000

		

CONTROL	STRUCTURES

171

instr	1:		iprint	=	1.000

		

instr	1:		iprint	=	2.000

		

instr	1:		iprint	=	3.000

		

instr	1:		iprint	=	4.000

		

instr	2:		iprint	=	0.000

		

instr	2:		iprint	=	1.000

		

instr	2:		iprint	=	2.000

		

instr	2:		iprint	=	3.000

		

instr	2:		iprint	=	4.000

		

The	most	important	thing	in	using	the	while/until	loop	is	to	
increment	the	variable	you	are	using	in	the	loop	(here:	iCounter).	
This	is	done	by	the	statement

iCounter	+=	1

which	is	equivalent	to	the	"old"	way	of	writing	as

iCounter	=	iCounter	+	1

If	you	miss	this	increment,	Csound	will	perform	an	endless	loop,	and	
you	will	have	to	terminate	it	by	the	operating	system.

The	next	example	shows	a	similar	process	at	k-rate.	It	uses	a	while	
loop	to	print	the	values	of	an	array,	and	also	set	new	values.	As	this	
procedure	is	repeated	in	each	control	cycle,	the	instrument	is	being	
turned	off	after	the	third	cycle.

CONTROL	STRUCTURES

172

		

			EXAMPLE	03C13_while_until_k-rate.csd		
		

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
ksmps	=	32

		;create	and	fill	an	array
gkArray[]	fillarray	1,	2,	3,	4,	5

instr	1
		;count	performance	cycles	and	print	it
kCycle	timeinstk
printks	"kCycle	=	%d\n",	0,	kCycle
		;set	index	to	zero
kIndex	=	0
		;perform	the	loop
while	kIndex	<	lenarray(gkArray)	do
				;print	array	value
		printf	"		gkArray[%d]	=	%d\n",	kIndex+1,	kIndex,	gkArray[kIndex]
				;square	array	value
		gkArray[kIndex]	=	gkArray[kIndex]	*	gkArray[kIndex]
		;increment	index
kIndex	+=	1
od
		;stop	after	third	control	cycle
if	kCycle	==	3	then
		turnoff
endif
endin

</CsInstruments>
<CsScore>
i	1	0	1
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

Prints:

kCycle	=	1

		

		gkArray[0]	=	1

		

		gkArray[1]	=	2

		

		gkArray[2]	=	3

		

		gkArray[3]	=	4

		

CONTROL	STRUCTURES

173

		gkArray[4]	=	5

		

kCycle	=	2

		

		gkArray[0]	=	1

		

		gkArray[1]	=	4

		

		gkArray[2]	=	9

		

		gkArray[3]	=	16

		

		gkArray[4]	=	25

		

kCycle	=	3

		

		gkArray[0]	=	1

		

		gkArray[1]	=	16

		

		gkArray[2]	=	81

		

		gkArray[3]	=	256

		

		gkArray[4]	=	625

		

TIME	LOOPS

Until	now,	we	have	just	discussed	loops	which	are	executed	"as	fast	
as	possible",	either	at	i-time	or	at	k-time.	But,	in	an	audio	
programming	language,	time	loops	are	of	particular	interest	and	
importance.	A	time	loop	means,	repeating	any	action	after	a	certain	
amount	of	time.	This	amount	of	time	can	be	equal	to	or	different	to	
the	previous	time	loop.	The	action	can	be,	for	instance:	playing	a	

CONTROL	STRUCTURES

174

tone,	or	triggering	an	instrument,	or	calculating	a	new	value	for	the	
movement	of	an	envelope.

In	Csound,	the	usual	way	of	performing	time	loops,	is	the	timout	
facility.	The	use	of	timout	is	a	bit	intricate,	so	some	examples	are	
given,	starting	from	very	simple	to	more	complex	ones.

Another	way	of	performing	time	loops	is	by	using	a	measurement	of	
time	or	k-cycles.	This	method	is	also	discussed	and	similar	examples	
to	those	used	for	the	timout	opcode	are	given	so	that	both	methods	
can	be	compared.

TIMOUT	BASICS

The	timout	opcode	refers	to	the	fact	that	in	the	traditional	way	of	
working	with	Csound,	each	"note"	(an	"i"	score	event)	has	its	own	
time.	This	is	the	duration	of	the	note,	given	in	the	score	by	the	
duration	parameter,	abbreviated	as	"p3".	A	timout	statement	says:	"I	
am	now	jumping	out	of	this	p3	duration	and	establishing	my	own	
time."	This	time	will	be	repeated	as	long	as	the	duration	of	the	note	
allows	it.

Let's	see	an	example.	This	is	a	sine	tone	with	a	moving	frequency,	
starting	at	400	Hz	and	ending	at	600	Hz.	The	duration	of	this	
movement	is	3	seconds	for	the	first	note,	and	5	seconds	for	the	second	
note:

			EXAMPLE	03C14_Timout_pre.csd	

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giSine				ftgen					0,	0,	2^10,	10,	1

		instr	1
kFreq					expseg				400,	p3,	600
aTone					poscil				.2,	kFreq,	giSine

CONTROL	STRUCTURES

175

										outs						aTone,	aTone
		endin

</CsInstruments>
<CsScore>
i	1	0	3
i	1	4	5
</CsScore>
</CsoundSynthesizer>

Now	we	perform	a	time	loop	with	timout	which	is	1	second	long.	So,	
for	the	first	note,	it	will	be	repeated	three	times,	and	five	times	for	the	
second	note:

			EXAMPLE	03C15_Timout_basics.csd	

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giSine				ftgen					0,	0,	2^10,	10,	1

		instr	1
loop:
										timout				0,	1,	play
										reinit				loop
play:
kFreq					expseg				400,	1,	600
aTone					poscil				.2,	kFreq,	giSine
										outs						aTone,	aTone
		endin

</CsInstruments>
<CsScore>
i	1	0	3
i	1	4	5
</CsScore>
</CsoundSynthesizer>

This	is	the	general	syntax	of	timout:

first_label:
										timout				istart,	idur,	second_label
										reinit				first_label
second_label:
...	<any	action	you	want	to	have	here>

The	first_label	is	an	arbitrary	word	(followed	by	a	colon)	to	mark	the	
beginning	of	the	time	loop	section.	The	istart	argument	for	timout	
tells	Csound,	when	the	second_label	section	is	to	be	executed.	
Usually	istart	is	zero,	telling	Csound:	execute	the	second_label	
section	immediately,	without	any	delay.	The	idur	argument	for	

CONTROL	STRUCTURES

176

timout	defines	for	how	many	seconds	the	second_label	section	is	to	
be	executed	before	the	time	loop	begins	again.	Note	that	the	reinit	
first_label	is	necessary	to	start	the	second	loop	after	idur	seconds	
with	a	resetting	of	all	the	values.	(See	the	explanations	about	
reinitialization	in	the	chapter	Initilalization	And	Performance	Pass.)

As	usual	when	you	work	with	the	reinit	opcode,	you	can	use	a	rireturn	
statement	to	constrain	the	reinit-pass.	In	this	way	you	can	have	both,	
the	timeloop	section	and	the	non-timeloop	section	in	the	body	of	an	
instrument:

			EXAMPLE	03C16_Timeloop_and_not.csd	

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giSine				ftgen					0,	0,	2^10,	10,	1

		instr	1
loop:
										timout				0,	1,	play
										reinit				loop
play:
kFreq1				expseg				400,	1,	600
aTone1				oscil3				.2,	kFreq1,	giSine
										rireturn		;end	of	the	time	loop
kFreq2				expseg				400,	p3,	600
aTone2				poscil				.2,	kFreq2,	giSine

										outs						aTone1+aTone2,	aTone1+aTone2
		endin

</CsInstruments>
<CsScore>
i	1	0	3
i	1	4	5
</CsScore>
</CsoundSynthesizer>

TIMOUT	APPLICATIONS

In	a	time	loop,	it	is	very	important	to	change	the	duration	of	the	loop.	
This	can	be	done	either	by	referring	to	the	duration	of	this	note	(p3)	...

			EXAMPLE	03C17_Timout_different_durations.csd	

CONTROL	STRUCTURES

177

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giSine				ftgen					0,	0,	2^10,	10,	1

		instr	1
loop:
										timout				0,	p3/5,	play
										reinit				loop
play:
kFreq					expseg				400,	p3/5,	600
aTone					poscil				.2,	kFreq,	giSine
										outs						aTone,	aTone
		endin

</CsInstruments>
<CsScore>
i	1	0	3
i	1	4	5
</CsScore>
</CsoundSynthesizer>

...	or	by	calculating	new	values	for	the	loop	duration	on	each	reinit	
pass,	for	instance	by	random	values:

			EXAMPLE	03C18_Timout_random_durations.csd	

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giSine				ftgen					0,	0,	2^10,	10,	1

		instr	1
loop:
idur						random				.5,	3	;new	value	between	0.5	and	3	seconds	each	time
										timout				0,	idur,	play
										reinit				loop
play:
kFreq					expseg				400,	idur,	600
aTone					poscil				.2,	kFreq,	giSine
										outs						aTone,	aTone
		endin

</CsInstruments>
<CsScore>
i	1	0	20
</CsScore>
</CsoundSynthesizer>

The	applications	discussed	so	far	have	the	disadvantage	that	all	the	

CONTROL	STRUCTURES

178

signals	inside	the	time	loop	must	definitely	be	finished	or	interrupted,	
when	the	next	loop	begins.	In	this	way	it	is	not	possible	to	have	any	
overlapping	of	events.	To	achieve	this,	the	time	loop	can	be	used	to	
simply	trigger	an	event.	This	can	be	done	with	event_i	or	
scoreline_i.	In	the	following	example,	the	time	loop	in	instrument	1	
triggers	a	new	instance	of	instrument	2	with	a	duration	of	1	to	5	
seconds,	every	0.5	to	2	seconds.	So	in	most	cases,	the	previous	
instance	of	instrument	2	will	still	be	playing	when	the	new	instance	is	
triggered.	Random	calculations	are	executed	in	instrument	2	so	that	
each	note	will	have	a	different	pitch,creating	a	glissando	effect:

			EXAMPLE	03C19_Timout_trigger_events.csd	

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giSine				ftgen					0,	0,	2^10,	10,	1

		instr	1
loop:
idurloop		random				.5,	2	;duration	of	each	loop
										timout				0,	idurloop,	play
										reinit				loop
play:
idurins			random				1,	5	;duration	of	the	triggered	instrument
										event_i			"i",	2,	0,	idurins	;triggers	instrument	2
		endin

		instr	2
ifreq1				random				600,	1000	;starting	frequency
idiff					random				100,	300	;difference	to	final	frequency
ifreq2				=									ifreq1	-	idiff	;final	frequency
kFreq					expseg				ifreq1,	p3,	ifreq2	;glissando
iMaxdb				random				-12,	0	;peak	randomly	between	-12	and	0	dB
kAmp						transeg			ampdb(iMaxdb),	p3,	-10,	0	;envelope
aTone					poscil				kAmp,	kFreq,	giSine
										outs						aTone,	aTone
		endin

</CsInstruments>
<CsScore>
i	1	0	30
</CsScore>
</CsoundSynthesizer>

The	last	application	of	a	time	loop	with	the	timout	opcode	which	is	
shown	here,	is	a	randomly	moving	envelope.	If	you	want	to	create	an
envelope	in	Csound	which	moves	between	a	lower	and	an	upper	limit,

CONTROL	STRUCTURES

179

and	has	one	new	random	value	in	a	certain	time	span	(for	instance,	
once	a	second),	the	time	loop	with	timout	is	one	way	to	achieve	it.	A	
line	movement	must	be	performed	in	each	time	loop,	from	a	given	
starting	value	to	a	new	evaluated	final	value.	Then,	in	the	next	loop,	
the	previous	final	value	must	be	set	as	the	new	starting	value,	and	so	
on.	Here	is	a	possible	solution:

			EXAMPLE	03C20_Timout_random_envelope.csd	

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giSine				ftgen					0,	0,	2^10,	10,	1
										seed						0

		instr	1
iupper				=									0;	upper	and	...
ilower				=									-24;	...	lower	limit	in	dB
ival1					random				ilower,	iupper;	starting	value
loop:
idurloop		random				.5,	2;	duration	of	each	loop
										timout				0,	idurloop,	play
										reinit				loop
play:
ival2					random				ilower,	iupper;	final	value
kdb							linseg				ival1,	idurloop,	ival2
ival1					=									ival2;	let	ival2	be	ival1	for	next	loop
										rireturn		;end	reinit	section
aTone					poscil				ampdb(kdb),	400,	giSine
										outs						aTone,	aTone
		endin

</CsInstruments>
<CsScore>
i	1	0	30
</CsScore>
</CsoundSynthesizer>

Note	that	in	this	case	the	oscillator	has	been	put	after	the	time	loop	
section	(which	is	terminated	by	the	rireturn	statement.	Otherwise	the	
oscillator	would	start	afresh	with	zero	phase	in	each	time	loop,	thus	
producing	clicks.

TIME	LOOPS	BY	USING	THE	METRO	OPCODE

The	metro	opcode	outputs	a	"1"	at	distinct	times,	otherwise	it	outputs	
a	"0".	The	frequency	of	this	"banging"	(which	is	in	some	way	similar	

CONTROL	STRUCTURES

180

to	the	metro	objects	in	PD	or	Max)	is	given	by	the	kfreq	input	
argument.	So	the	output	of	metro	offers	a	simple	and	intuitive	method	
for	controlling	time	loops,	if	you	use	it	to	trigger	a	separate	
instrument	which	then	carries	out	another	job.	Below	is	a	simple	
example	for	calling	a	subinstrument	twice	per	second:

			EXAMPLE	03C21_Timeloop_metro.csd	

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

		instr	1;	triggering	instrument
kTrig					metro					2;	outputs	"1"	twice	a	second
	if	kTrig	==	1	then
										event					"i",	2,	0,	1
	endif
		endin

		instr	2;	triggered	instrument
aSig						oscils				.2,	400,	0
aEnv						transeg			1,	p3,	-10,	0
										outs						aSig*aEnv,	aSig*aEnv
		endin

</CsInstruments>
<CsScore>
i	1	0	10
</CsScore>
</CsoundSynthesizer>

The	example	which	is	given	above	
(03C17_Timout_trigger_events.csd)	as	a	flexible	time	loop	by	
timout,	can	be	done	with	the	metro	opcode	in	this	way:

			EXAMPLE	03C22_Metro_trigger_events.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giSine				ftgen					0,	0,	2^10,	10,	1
										seed						0

		instr	1
kfreq					init						1;	give	a	start	value	for	the	trigger	frequency
kTrig					metro					kfreq
	if	kTrig	==	1	then	;if	trigger	impulse:
kdur						random				1,	5;	random	duration	for	instr	2
										event					"i",	2,	0,	kdur;	call	instr	2
kfreq					random				.5,	2;	set	new	value	for	trigger	frequency
	endif
		endin

FUNCTION	TABLES

181

FUNCTION	TABLES

Note:	This	chapter	has	been	written	before	arrays	have	been	
introduced	in	Csound.	Now	the	usage	of	arrays	is	in	many	cases	
preferable	to	using	function	tables.	Have	a	look	in	chapter	03E	to	see	
how	you	can	use	arrays.
		

A	function	table	is	essentially	the	same	as	what	other	audio	
programming	languages	might	call	a	buffer,	a	table,	a	list	or	an	array.	
It	is	a	place	where	data	can	be	stored	in	an	ordered	way.	Each	
function	table	has	a	size:	how	much	data	(in	Csound,	just	numbers)	it	
can	store.	Each	value	in	the	table	can	be	accessed	by	an	index,	
counting	from	0	to	size-1.	For	instance,	if	you	have	a	function	table	
with	a	size	of	10,	and	the	numbers	[1.1	2.2	3.3	5.5	8.8	13.13	21.21	
34.34	55.55	89.89]	in	it,	this	is	the	relation	of	value	and	index:

	VALUE 	1.1 	2.2 	3.3 	5.5 	8.8 	13.13 	21.21 	34.34 	55.55 	89.89
	INDEX 	0 	1 	2 	3 	4 	5 	6 	7 	8 	9

So,	if	you	want	to	retrieve	the	value	13.13,	you	must	point	to	the	
value	stored	under	index	5.

The	use	of	function	tables	is	manifold.	A	function	table	can	contain	
pitch	values	to	which	you	may	refer	using	the	input	of	a	MIDI	
keyboard.	A	function	table	can	contain	a	model	of	a	waveform	which	
is	read	periodically	by	an	oscillator.	You	can	record	live	audio	input	
in	a	function	table,	and	then	play	it	back.	There	are	many	more	
applications,	all	using	the	fast	access	(because	function	tables	are	
stored	in	RAM)	and	flexible	use	of	function	tables.

HOW	TO	GENERATE	A	FUNCTION	TABLE

Each	function	table	must	be	created	before	it	can	be	used.	Even	if	
you	want	to	write	values	later,	you	must	first	create	an	empty	table,	
because	you	must	initially	reserve	some	space	in	memory	for	it.

FUNCTION	TABLES

182

Each	creation	of	a	function	table	in	Csound	is	performed	by	one	of	
the	GEN	Routines.	Each	GEN	Routine	generates	a	function	table	in	a
particular	way:	GEN01	transfers	audio	samples	from	a	soundfile	into	
a	table,	GEN02	stores	values	we	define	explicitly	one	by	one,	GEN10	
calculates	a	waveform	using	user-defined	weightings	of	harmonically	
related	sinusoids,	GEN20	generates	window	functions	typically	used	
for	granular	synthesis,	and	so	on.	There	is	a	good	overview	in	the	
Csound	Manual	of	all	existing	GEN	Routines.	Here	we	will	explain	
their	general	use	and	provide	some	simple	examples	using	commonly	
used	GEN	routines.

GEN02	AND	GENERAL	PARAMETERS	FOR	GEN
ROUTINES

Let's	start	with	our	example	described	above	and	write	the	10	
numbers	into	a	function	table	with	10	storage	locations.	For	this	task	
use	of	a	GEN02	function	table	is	required.	A	short	description	of	
GEN02	from	the	manual	reads	as	follows:

f	#	time	size	2	v1	v2	v3	...

This	is	the	traditional	way	of	creating	a	function	table	by	use	of	an	"f	
statement"	or	an	"f	score	event"	(in	a	manner	similar	to	the	use	of	"i	
score	events"	to	call	instrument	instances).	The	input	parameters	after	
the	"f"	are	as	follows:

#:	a	number	(as	positive	integer)	for	this	function	table;
time:	at	what	time,	in	relation	to	the	passage	of	the	score,	the	
function	table	is	created	(usually	0:	from	the	beginning);
size:	the	size	of	the	function	table.	A	little	care	is	required:	in	
the	early	days	of	Csound	only	power-of-two	sizes	were	
possible	for	function	tables	(2,	4,	8,	16,	...);	nowadays	almost	
all	GEN	Routines	accepts	other	sizes,	but	these	non-power-of-
two	sizes	must	be	declared	as	negative	numbers!
		

FUNCTION	TABLES

183

2:	the	number	of	the	GEN	Routine	which	is	used	to	generate	
the	table,	and	here	is	another	important	point	which	must	be	
borne	in	mind:	by	default,	Csound	normalizes	the	table	
values.	This	means	that	the	maximum	is	scaled	to	+1	if	
positive,	and	to	-1	if	negative.	All	other	values	in	the	table	are	
then	scaled	by	the	same	factor	that	was	required	to	scale	the	
maximum	to	+1	or	-1.	To	prevent	Csound	from	normalizing,	a	
negative	number	can	be	given	as	GEN	number	(in	this	
example,	the	GEN	routine	number	will	be	given	as	-2	instead	
of	2).
v1	v2	v3	...:	the	values	which	are	written	into	the	function	
table.

The	example	below	demonstrates	how	the	values	[1.1	2.2	3.3	5.5	8.8	
13.13	21.21	34.34	55.55	89.89]	can	be	stored	in	a	function	table	using	
an	f-statement	in	the	score.	Two	versions	are	created:	an	
unnormalised	version	(table	number	1)	and	an	normalised	version	
(table	number	2).	The	difference	in	their	contents	will	be	
demonstrated.

			EXAMPLE	03D01_Table_norm_notNorm.csd	

<CsoundSynthesizer>
<CsInstruments>
;Example	by	Joachim	Heintz
		instr	1	;prints	the	values	of	table	1	or	2
										prints				"%nFunction	Table	%d:%n",	p4
indx						init						0
loop:
ival						table					indx,	p4
										prints				"Index	%d	=	%f%n",	indx,	ival
										loop_lt			indx,	1,	10,	loop
		endin
</CsInstruments>
<CsScore>
f	1	0	-10	-2	1.1	2.2	3.3	5.5	8.8	13.13	21.21	34.34	55.55	89.89;	not	normalized
f	2	0	-10	2	1.1	2.2	3.3	5.5	8.8	13.13	21.21	34.34	55.55	89.89;	normalized
i	1	0	0	1;	prints	function	table	1
i	1	0	0	2;	prints	function	table	2
</CsScore>
</CsoundSynthesizer>

Instrument	1	simply	reads	and	prints	(to	the	terminal)	the	values	of	
the	table.	Notice	the	difference	in	values	read,	whether	the	table	is	
normalized	(positive	GEN	number)	or	not	normalized	(negative	GEN	
number).	

FUNCTION	TABLES

184

Using	the	ftgen	opcode	is	a	more	modern	way	of	creating	a	function	
table,	which	is	generally	preferable	to	the	old	way	of	writing	an	f-
statement	in	the	score.1		The	syntax	is	explained	below:

giVar					ftgen					ifn,	itime,	isize,	igen,	iarg1	[,	iarg2	[,	...]]

giVar:	a	variable	name.	Each	function	is	stored	in	an	i-
variable.	Usually	you	want	to	have	access	to	it	from	every	
instrument,	so	a	gi-variable	(global	initialization	variable)	is	
given.
ifn:	a	number	for	the	function	table.	If	you	type	in	0,	you	give	
Csound	the	job	to	choose	a	number,	which	is	mostly	preferable.

The	other	parameters	(size,	GEN	number,	individual	arguments)	are	
the	same	as	in	the	f-statement	in	the	score.	As	this	GEN	call	is	now	a	
part	of	the	orchestra,	each	argument	is	separated	from	the	next	by	a	
comma	(not	by	a	space	or	tab	like	in	the	score).

So	this	is	the	same	example	as	above,	but	now	with	the	function	
tables	being	generated	in	the	orchestra	header:

			EXAMPLE	03D02_Table_ftgen.csd	
		

<CsoundSynthesizer>
<CsInstruments>
;Example	by	Joachim	Heintz

giFt1	ftgen	1,	0,	-10,	-2,	1.1,	2.2,	3.3,	5.5,	8.8,	13.13,	21.21,	34.34,	55.55,	89.89
giFt2	ftgen	2,	0,	-10,	2,	1.1,	2.2,	3.3,	5.5,	8.8,	13.13,	21.21,	34.34,	55.55,	89.89

		instr	1;	prints	the	values	of	table	1	or	2
										prints				"%nFunction	Table	%d:%n",	p4
indx						init						0
loop:
ival						table					indx,	p4
										prints				"Index	%d	=	%f%n",	indx,	ival
										loop_lt			indx,	1,	10,	loop
		endin

</CsInstruments>
<CsScore>
i	1	0	0	1;	prints	function	table	1
i	1	0	0	2;	prints	function	table	2
</CsScore>
</CsoundSynthesizer>

GEN01:	IMPORTING	A	SOUNDFILE

FUNCTION	TABLES

185

GEN01	is	used	for	importing	soundfiles	stored	on	disk	into	the	
computer's	RAM,	ready	for	for	use	by	a	number	of	Csound's	opcodes	
in	the	orchestra.	A	typical	ftgen	statement	for	this	import	might	be	
the	following:

varname													ifn	itime	isize	igen	Sfilnam							iskip	iformat	ichn
giFile				ftgen					0,		0,				0,				1,			"myfile.wav",	0,				0,						0

varname,	ifn,	itime:	These	arguments	have	the	same	meaning	
as	explained	above	in	reference	to	GEN02.	Note	that	on	this	
occasion	the	function	table	number	(ifn)	has	been	defined	
using	a	zero.	This	means	that	Csound	will	automatically	assign	
a	unique	function	table	number.	This	number	will	also	be	held	
by	the	variable	giFile	which	we	will	normally	use	to	reference	
the	function	table	anyway	so	its	actual	value	will	not	be	
important	to	us.	If	you	are	interested	you	can	print	the	value	of	
giFile	(ifn)	out.	If	no	other	tables	are	defined,	it	will	be	101	and
subsequent	tables,	also	using	automatically	assigned	table		
numbers,	will	follow	accordingly:	102,	103	etc.
		
isize:	Usually	you	won't	know	the	length	of	your	soundfile	in	
samples,	and	want	to	have	a	table	length	which	includes	
exactly	all	the	samples.	This	is	done	by	setting	isize=0.	(Note	
that	some	opcodes	may	need	a	power-of-two	table.	In	this	case	
you	can	not	use	this	option,	but	must	calculate	the	next	larger	
power-of-two	value	as	size	for	the	function	table.)
igen:	As	explained	in	the	previous	subchapter,	this	is	always	
the	place	for	indicating	the	number	of	the	GEN	Routine	which	
must	be	used.	As	always,	a	positive	number	means	
normalizing,	which	is	often	convenient	for	audio	samples.
Sfilnam:	The	name	of	the	soundfile	in	double	quotes.	Similar	
to	other	audio	programming	languages,	Csound	recognizes	just	
the	name	if	your	.csd	and	the	soundfile	are	in	the	same	folder.	
Otherwise,	give	the	full	path.	(You	can	also	include	the	folder	
via	the	"SSDIR"	variable,	or	add	the	folder	via	the	"--
env:NAME+=VALUE"	option.)
iskip:	The	time	in	seconds	you	want	to	skip	at	the	beginning	of	
the	soundfile.	0	means	reading	from	the	beginning	of	the	file.

FUNCTION	TABLES

186

iformat:	The	format	of	the	amplitude	samples	in	the	soundfile,	
e.g.	16	bit,	24	bit	etc.	Usually	providing	0	here	is	sufficient,	in	
which	case	Csound	will	read	the	sample	format	form	the	
soundfile	header.
		
ichn:	1	=	read	the	first	channel	of	the	soundfile	into	the	table,	2	
=	read	the	second	channel,	etc.	0	means	that	all	channels	are	
read.	Note	that	only	certain	opcodes	are	able	to	properly	make	
use	of	multichannel	audio	stored	in	function	tables.
		

The	following	example	loads	a	short	sample	into	RAM	via	a	function	
table	and	then	plays	it.	You	can	download	the	sample	here	(or	replace	
it	with	one	of	your	own).	Copy	the	text	below,	save	it	to	the	same	
location	as	the	"fox.wav"	soundfile	(or	add	the	folder	via	the	"--
env:NAME+=VALUE"	option),2		and	it	should	work.	Reading	the	
function	table	here	is	done	using	the	poscil3	opcode	which	can	deal	
with	non-power-of-two	tables.

			EXAMPLE	03D03_Sample_to_table.csd	

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giSample		ftgen					0,	0,	0,	1,	"fox.wav",	0,	0,	1

		instr	1
itablen			=									ftlen(giSample)	;length	of	the	table
idur						=									itablen	/	sr	;duration
aSamp					poscil3			.5,	1/idur,	giSample
										outs						aSamp,	aSamp
		endin

</CsInstruments>
<CsScore>
i	1	0	2.757
</CsScore>
</CsoundSynthesizer>

GEN10:	CREATING	A	WAVEFORM

The	third	example	for	generating	a	function	table	covers	a	classic	

FUNCTION	TABLES

187

case:	building	a	function	table	which	stores	one	cycle	of	a	waveform.	
This	waveform	will	then	be	read	by	an	oscillator	to	produce	a	sound.

There	are	many	GEN	Routines	which	can	be	used	to	achieve	this.	The
simplest	one	is	GEN10.	It	produces	a	waveform	by	adding	sine	waves	
which	have	the	"harmonic"	frequency	relationship	1	:	2	:	3		:	4	...	
After	the	usual	arguments	for	function	table	number,	start,	size	and	
gen	routine	number,	which	are	the	first	four	arguments	in	ftgen	for	all	
GEN	Routines,	with	GEN10	you	must	specify	the	relative	strengths	of
the	harmonics.	So,	if	you	just	provide	one	argument,	you	will	end	up	
with	a	sine	wave	(1st	harmonic).	The	next	argument	is	the	strength	of	
the	2nd	harmonic,	then	the	3rd,	and	so	on.	In	this	way,	you	can	build	
approximations	of	the	standard	harmonic	waveforms	by	the	addition	
of	sinusoids.	This	is	done	in	the	next	example	by	instruments	1-5.	
Instrument	6	uses	the	sine	wavetable	twice:	for	generating	both	the	
sound	and	the	envelope.

			EXAMPLE	03D04_Standard_waveforms_with_GEN10.csd	

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giSine				ftgen					0,	0,	2^10,	10,	1
giSaw					ftgen					0,	0,	2^10,	10,	1,	1/2,	1/3,	1/4,	1/5,	1/6,	1/7,	1/8,	1/9
giSquare		ftgen					0,	0,	2^10,	10,	1,	0,	1/3,	0,	1/5,	0,	1/7,	0,	1/9
giTri					ftgen					0,	0,	2^10,	10,	1,	0,	-1/9,	0,	1/25,	0,	-1/49,	0,	1/81
giImp					ftgen					0,	0,	2^10,	10,	1,	1,	1,	1,	1,	1,	1,	1,	1

		instr	1	;plays	the	sine	wavetable
aSine					poscil				.2,	400,	giSine
aEnv						linen					aSine,	.01,	p3,	.05
										outs						aEnv,	aEnv
		endin

		instr	2	;plays	the	saw	wavetable
aSaw						poscil				.2,	400,	giSaw
aEnv						linen					aSaw,	.01,	p3,	.05
										outs						aEnv,	aEnv
		endin

		instr	3	;plays	the	square	wavetable
aSqu						poscil				.2,	400,	giSquare
aEnv						linen					aSqu,	.01,	p3,	.05
										outs						aEnv,	aEnv
		endin

FUNCTION	TABLES

188

		instr	4	;plays	the	triangular	wavetable
aTri						poscil				.2,	400,	giTri
aEnv						linen					aTri,	.01,	p3,	.05
										outs						aEnv,	aEnv
		endin

		instr	5	;plays	the	impulse	wavetable
aImp						poscil				.2,	400,	giImp
aEnv						linen					aImp,	.01,	p3,	.05
										outs						aEnv,	aEnv
		endin

		instr	6	;plays	a	sine	and	uses	the	first	half	of	its	shape	as	envelope
aEnv						poscil				.2,	1/6,	giSine
aSine					poscil				aEnv,	400,	giSine
										outs						aSine,	aSine
		endin

</CsInstruments>
<CsScore>
i	1	0	3
i	2	4	3
i	3	8	3
i	4	12	3
i	5	16	3
i	6	20	3
</CsScore>
</CsoundSynthesizer>

HOW	TO	WRITE	VALUES	TO	A	FUNCTION
TABLE

As	we	have	seen,	GEN	Routines	generate	function	tables,	and	by	
doing	this,	they	write	values	into	them	according	to	various	methods,	
but	in	certain	cases	you	might	first	want	to	create	an	empty	table,	and	
then	write	the	values	into	it	later	or	you	might	want	to	alter	the	
default	values	held	in	a	function	table.	The	following	section	
demonstrates	how	to	do	this.

To	be	precise,	it	is	not	actually	correct	to	talk	about	an	"empty	table".	
If	Csound	creates	an	"empty"	table,	in	fact	it	writes	zeros	to	the	
indices	which	are	not	specified.	Perhaps	the	easiest	method	of	
creating	an	"empty"	table	for	100	values	is	shown	below:

giEmpty			ftgen					0,	0,	-100,	2,	0

The	simplest	to	use	opcode	that	writes	values	to	existing	function	
tables	during	a	note's	performance	is	tablew	and	its	i-time	equivalent	
is	tableiw.	Note	that	you	may	have	problems	with	some	features	if	
your	table	is	not	a	power-of-two	size.	In	this	case,	you	can	also	use	
tabw	/	tabw_i,	but	they	don't	have	the	offset-	and	the	wraparound-

FUNCTION	TABLES

189

feature.	As	usual,	you	must	differentiate	if	your	signal	(variable)	is	i-
rate,	k-rate	or	a-rate.	The	usage	is	simple	and	differs	just	in	the	class	
of	values	you	want	to	write	to	the	table	(i-,	k-	or	a-variables):

										tableiw			isig,	indx,	ifn	[,	ixmode]	[,	ixoff]	[,	iwgmode]
										tablew				ksig,	kndx,	ifn	[,	ixmode]	[,	ixoff]	[,	iwgmode]
										tablew				asig,	andx,	ifn	[,	ixmode]	[,	ixoff]	[,	iwgmode]

isig,	ksig,	asig	is	the	value	(variable)	you	want	to	write	into	a	
specified	location	of	the	table;
indx,	kndx,	andx	is	the	location	(index)	where	you	will	write	
the	value;
ifn	is	the	function	table	you	want	to	write	to;
ixmode	gives	the	choice	to	write	by	raw	indices	(counting	
from	0	to	size-1),	or	by	a	normalized	writing	mode	in	which	
the	start	and	end	of	each	table	are	always	referred	as	0	and	1	
(not	depending	on	the	length	of	the	table).	The	default	is	
ixmode=0	which	means	the	raw	index	mode.	A	value	not	equal	
to	zero	for	ixmode	changes	to	the	normalized	index	mode.
ixoff	(default=0)	gives	an	index	offset.	So,	if	indx=0	and	
ixoff=5,	you	will	write	at	index	5.
iwgmode	tells	what	you	want	to	do	if	your	index	is	larger	than	
the	size	of	the	table.	If	iwgmode=0	(default),	any	index	larger	
than	possible	is	written	at	the	last	possible	index.	If	
iwgmode=1,	the	indices	are	wrapped	around.	For	instance,	if	
your	table	size	is	8,	and	your	index	is	10,	in	the	wraparound	
mode	the	value	will	be	written	at	index	2.

Here	are	some	examples	for	i-,	k-	and	a-rate	values.

I-RATE	EXAMPLE

The	following	example	calculates	the	first	12	values	of	a	Fibonacci	
series	and	writes	them	to	a	table.	An	empty	table	has	first	been	
created	in	the	header	(filled	with	zeros),	then	instrument	1	calculates	
the	values	in	an	i-time	loop	and	writes	them	to	the	table	using	
tableiw.	Instrument	2	simply	prints	all	the	values	in	a	list	to	the	
terminal.

			EXAMPLE	03D05_Write_Fibo_to_table.csd	

FUNCTION	TABLES

190

		

<CsoundSynthesizer>
<CsInstruments>
;Example	by	Joachim	Heintz

giFt						ftgen					0,	0,	-12,	-2,	0

		instr	1;	calculates	first	12	fibonacci	values	and	writes	them	to	giFt
istart				=									1
inext					=									2
indx						=									0
loop:
										tableiw			istart,	indx,	giFt	;writes	istart	to	table
istartold	=									istart	;keep	previous	value	of	istart
istart				=									inext	;reset	istart	for	next	loop
inext					=									istartold	+	inext	;reset	inext	for	next	loop
										loop_lt			indx,	1,	12,	loop
		endin

		instr	2;	prints	the	values	of	the	table
										prints				"%nContent	of	Function	Table:%n"
indx						init						0
loop:
ival						table					indx,	giFt
										prints				"Index	%d	=	%f%n",	indx,	ival
										loop_lt			indx,	1,	ftlen(giFt),	loop
		endin

</CsInstruments>
<CsScore>
i	1	0	0
i	2	0	0
</CsScore>
</CsoundSynthesizer>

K-RATE	EXAMPLE

The	next	example	writes	a	k-signal	continuously	into	a	table.	This	
can	be	used	to	record	any	kind	of	user	input,	for	instance	by	MIDI	or	
widgets.	It	can	also	be	used	to	record	random	movements	of	k-
signals,	like	here:

			EXAMPLE	03D06_Record_ksig_to_table.csd		
		

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giFt						ftgen					0,	0,	-5*kr,	2,	0;	size	for	5	seconds	of	recording
giWave				ftgen					0,	0,	2^10,	10,	1,	.5,	.3,	.1;	waveform	for	oscillator
										seed						0

FUNCTION	TABLES

191

;	-	recording	of	a	random	frequency	movement	for	5	seconds,	and	playing	it
		instr	1
kFreq					randomi			400,	1000,	1	;random	frequency
aSnd						poscil				.2,	kFreq,	giWave	;play	it
										outs						aSnd,	aSnd
;;record	the	k-signal
										prints				"RECORDING!%n"
	;create	a	writing	pointer	in	the	table,
	;moving	in	5	seconds	from	index	0	to	the	end
kindx					linseg				0,	5,	ftlen(giFt)
	;write	the	k-signal
										tablew				kFreq,	kindx,	giFt
		endin

		instr	2;	read	the	values	of	the	table	and	play	it	again
;;read	the	k-signal
										prints				"PLAYING!%n"
	;create	a	reading	pointer	in	the	table,
	;moving	in	5	seconds	from	index	0	to	the	end
kindx					linseg				0,	5,	ftlen(giFt)
	;read	the	k-signal
kFreq					table					kindx,	giFt
aSnd						oscil3				.2,	kFreq,	giWave;	play	it
										outs						aSnd,	aSnd
		endin

</CsInstruments>
<CsScore>
i	1	0	5
i	2	6	5
</CsScore>
</CsoundSynthesizer>

As	you	see,	this	typical	case	of	writing	k-values	to	a	table	requires	a	
changing	value	for	the	index,	otherwise	tablew	will	continually	
overwrite	at	the	same	table	location.	This	changing	value	can	be	
created	using	the	line	or	linseg	opcodes	-	as	was	done	here	-	or	by	
using	a	phasor.	A	phasor	moves	continuously	from	0	to	1	at	a	user-
defined	frequency.	For	example,	if	you	want	a	phasor	to	move	from	0	
to	1	in	5	seconds,	you	must	set	the	frequency	to	1/5.	Upon	reaching	1,	
the	phasor	will	wrap-around	to	zero	and	begin	again.	Note	that	phasor	
can	also	be	given	a	negative	frequency	in	which	case	it	moves	in	
reverse	from	1	to	zero	then	wrapping	around	to	1.	By	setting	the	
ixmode	argument	of	tablew	to	1,	you	can	use	the	phasor	output	
directly	as	writing	pointer.	Below	is	an	alternative	version	of	
instrument	1	from	the	previous	example,	this	time	using	phasor	to	
generate	the	index	values:

instr	1;	recording	of	a	random	frequency	movement	for	5	seconds,	and	playing	it
kFreq					randomi			400,	1000,	1;	random	frequency
aSnd						oscil3				.2,	kFreq,	giWave;	play	it
										outs						aSnd,	aSnd
;;record	the	k-signal	with	a	phasor	as	index
										prints				"RECORDING!%n"
	;create	a	writing	pointer	in	the	table,
	;moving	in	5	seconds	from	index	0	to	the	end
kindx					phasor				1/5

FUNCTION	TABLES

192

	;write	the	k-signal
										tablew				kFreq,	kindx,	giFt,	1
endin

A-RATE	EXAMPLE

Recording	an	audio	signal	is	quite	similar	to	recording	a	control	
signal.	You	just	need	an	a-signal	to	provide	input	values	and	also	an	
index	that	changes	at	a-rate.	The	next	example	first	records	a	
randomly	generated	audio	signal	and	then	plays	it	back.	It	then	
records	the	live	audio	input	for	5	seconds	and	subsequently	plays	it	
back.

			EXAMPLE	03D07_Record_audio_to_table.csd			
		

<CsoundSynthesizer>
<CsOptions>
-iadc	-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giFt						ftgen					0,	0,	-5*sr,	2,	0;	size	for	5	seconds	of	recording	audio
										seed						0

		instr	1	;generating	a	band	filtered	noise	for	5	seconds,	and	recording	it
aNois					rand						.2
kCfreq				randomi			200,	2000,	3;	random	center	frequency
aFilt					butbp					aNois,	kCfreq,	kCfreq/10;	filtered	noise
aBal						balance			aFilt,	aNois,	1;	balance	amplitude
										outs						aBal,	aBal
;;record	the	audiosignal	with	a	phasor	as	index
										prints				"RECORDING	FILTERED	NOISE!%n"
	;create	a	writing	pointer	in	the	table,
	;moving	in	5	seconds	from	index	0	to	the	end
aindx					phasor				1/5
	;write	the	k-signal
										tablew				aBal,	aindx,	giFt,	1
		endin

		instr	2	;read	the	values	of	the	table	and	play	it
										prints				"PLAYING	FILTERED	NOISE!%n"
aindx					phasor				1/5
aSnd						table3				aindx,	giFt,	1
										outs						aSnd,	aSnd
		endin

		instr	3	;record	live	input
ktim						timeinsts	;	playing	time	of	the	instrument	in	seconds
										prints				"PLEASE	GIVE	YOUR	LIVE	INPUT	AFTER	THE	BEEP!%n"
kBeepEnv		linseg				0,	1,	0,	.01,	1,	.5,	1,	.01,	0
aBeep					oscils				.2,	600,	0
										outs						aBeep*kBeepEnv,	aBeep*kBeepEnv
;;record	the	audiosignal	after	2	seconds
	if	ktim	>	2	then
ain							inch						1

FUNCTION	TABLES

193

										printks			"RECORDING	LIVE	INPUT!%n",	10
	;create	a	writing	pointer	in	the	table,
	;moving	in	5	seconds	from	index	0	to	the	end
aindx					phasor				1/5
	;write	the	k-signal
										tablew				ain,	aindx,	giFt,	1
	endif
		endin

		instr	4	;read	the	values	from	the	table	and	play	it
										prints				"PLAYING	LIVE	INPUT!%n"
aindx					phasor				1/5
aSnd						table3				aindx,	giFt,	1
										outs						aSnd,	aSnd
		endin

</CsInstruments>
<CsScore>
i	1	0	5		;	record	5	seconds	of	generated	audio	to	a	table
i	2	6	5		;	play	back	the	recording	of	generated	audio
i	3	12	7	;	record	5	seconds	of	live	audio	to	a	table
i	4	20	5	;	play	back	the	recording	of	live	audio
</CsScore>
</CsoundSynthesizer>

HOW	TO	RETRIEVE	VALUES	FROM	A
FUNCTION	TABLE

There	are	two	methods	of	reading	table	values.	You	can	either	use	the	
table	/	tab	opcodes,	which	are	universally	usable,	but	need	an	index;	
or	you	can	use	an	oscillator	for	reading	a	table	at	k-rate	or	a-rate.
		

THE	TABLE	OPCODE

The	table	opcode	is	quite	similar	in	syntax	to	the	tableiw/tablew	
opcodes	(which	are	explained	above).	It	is	simply	its	counterpart	for	
reading	values	from	a	function	table	instead	of	writing	them.	Its	
output	can	be	either	an	i-,	k-	or	a-rate	signal	and	the	value	type	of	the	
output	automatically	selects	either	the	a-	k-	or	a-rate	version	of	the	
opcode.	The	first	input	is	an	index	at	the	appropriate	rate	(i-index	for	
i-output,	k-index	for	k-output,	a-index	for	a-output).	The	other	
arguments	are	as	explained	above	for	tableiw/tablew:
		

ires						table				indx,	ifn	[,	ixmode]	[,	ixoff]	[,	iwrap]
kres						table				kndx,	ifn	[,	ixmode]	[,	ixoff]	[,	iwrap]
ares						table				andx,	ifn	[,	ixmode]	[,	ixoff]	[,	iwrap]

As	table	reading	often	requires	interpolation	between	the	table	values	

FUNCTION	TABLES

194

-	for	instance	if	you	read	k-	or	a-values	faster	or	slower	than	they	
have	been	written	in	the	table	-	Csound	offers	two	descendants	of	
table	for	interpolation:	tablei	interpolates	linearly,	whilst	table3	
performs	cubic	interpolation	(which	is	generally	preferable	but	is	
computationally	slightly	more	expensive)	and	when	CPU	cycles	are	
no	object,	tablexkt	can	be	used	for	ultimate	interpolating	quality.3

		
Another	variant	is	the	tab_i	/	tab	opcode	which	misses	some	features	
but	may	be	preferable	in	some	situations.	If	you	have	any	problems	in	
reading	non-power-of-two	tables,	give	them	a	try.	They	should	also	
be	faster	than	the	table	(and	variants	thereof)	opcode,	but	you	must	
take	care:	they	include	fewer	built-in	protection	measures	than	table,	
tablei	and	table3	and	if	they	are	given	index	values	that	exceed	the	
table	size	Csound	will	stop	and	report	a	performance	error.
		
Examples	of	the	use	of	the	table	opcodes	can	be	found	in	the	earlier	
examples	in	the	How-To-Write-Values...	section.
		

OSCILLATORS

It	is	normal	to	read	tables	that	contain	a	single	cycle	of	an	audio	
waveform	using	an	oscillator	but	you	can	actually	read	any	table	
using	an	oscillator,	either	at	a-	or	at	k-rate.	The	advantage	is	that	you	
needn't	create	an	index	signal.	You	can	simply	specify	the	frequency	
of	the	oscillator	(the	opcode	creates	the	required	index	internally	
based	on	the	asked	for	frequency).
		
You	should	bear	in	mind	that	many	of	the	oscillators	in	Csound	will	
work	only	with	power-of-two	table	sizes.	The	poscil/poscil3	opcodes	
do	not	have	this	restriction	and	offer	a	high	precision,	because	they	
work	with	floating	point	indices,	so	in	general	it	is	recommended	to	
use	them.	Below	is	an	example	that	demonstrates	both	reading	a	k-
rate	and	an	a-rate	signal	from	a	buffer	with	poscil3	(an	oscillator	with	
a	cubic	interpolation):

FUNCTION	TABLES

195

			EXAMPLE	03D08_RecPlay_ak_signals.csd			

<CsoundSynthesizer>
<CsOptions>
-iadc	-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1
;	--	size	for	5	seconds	of	recording	control	data
giControl	ftgen					0,	0,	-5*kr,	2,	0
;	--	size	for	5	seconds	of	recording	audio	data
giAudio			ftgen					0,	0,	-5*sr,	2,	0
giWave				ftgen					0,	0,	2^10,	10,	1,	.5,	.3,	.1;	waveform	for	oscillator
										seed						0

;	--	;recording	of	a	random	frequency	movement	for	5	seconds,	and	playing	it
		instr	1
kFreq					randomi			400,	1000,	1;	random	frequency
aSnd						poscil				.2,	kFreq,	giWave;	play	it
										outs						aSnd,	aSnd
;;record	the	k-signal	with	a	phasor	as	index
										prints				"RECORDING	RANDOM	CONTROL	SIGNAL!%n"
	;create	a	writing	pointer	in	the	table,
	;moving	in	5	seconds	from	index	0	to	the	end
kindx					phasor				1/5
	;write	the	k-signal
										tablew				kFreq,	kindx,	giControl,	1
		endin

		instr	2;	read	the	values	of	the	table	and	play	it	with	poscil
										prints				"PLAYING	CONTROL	SIGNAL!%n"
kFreq					poscil				1,	1/5,	giControl
aSnd						poscil				.2,	kFreq,	giWave;	play	it
										outs						aSnd,	aSnd
		endin

		instr	3;	record	live	input
ktim						timeinsts	;	playing	time	of	the	instrument	in	seconds
										prints				"PLEASE	GIVE	YOUR	LIVE	INPUT	AFTER	THE	BEEP!%n"
kBeepEnv		linseg				0,	1,	0,	.01,	1,	.5,	1,	.01,	0
aBeep					oscils				.2,	600,	0
										outs						aBeep*kBeepEnv,	aBeep*kBeepEnv
;;record	the	audiosignal	after	2	seconds
	if	ktim	>	2	then
ain							inch						1
										printks			"RECORDING	LIVE	INPUT!%n",	10
	;create	a	writing	pointer	in	the	table,
	;moving	in	5	seconds	from	index	0	to	the	end
aindx					phasor				1/5
	;write	the	k-signal
										tablew				ain,	aindx,	giAudio,	1
	endif
		endin

		instr	4;	read	the	values	from	the	table	and	play	it	with	poscil
										prints				"PLAYING	LIVE	INPUT!%n"
aSnd						poscil				.5,	1/5,	giAudio
										outs						aSnd,	aSnd
		endin

</CsInstruments>
<CsScore>
i	1	0	5
i	2	6	5
i	3	12	7
i	4	20	5
</CsScore>
</CsoundSynthesizer>

FUNCTION	TABLES

196

SAVING	THE	CONTENTS	OF	A	FUNCTION
TABLE	TO	A	FILE	

A	function	table	exists	only	as	long	as	you	run	the	Csound	instance	
which	has	created	it.	If	Csound	terminates,	all	the	data	is	lost.	If	you	
want	to	save	the	data	for	later	use,	you	must	write	them	to	a	file.	
There	are	several	cases,	depending	firstly	on	whether	you	write	at	i-
time	or	at	k-time	and	secondly	on	what	kind	of	file	you	want	to	write	
to.
		

WRITING	A	FILE	IN	CSOUND'S	FTSAVE	FORMAT
AT	I-TIME	OR	K-TIME	

Any	function	table	in	Csound	can	be	easily	written	to	a	file	using	the	
ftsave	(i-time)	or	ftsavek	(k-time)	opcode.	Their	use	is	very	simple.	
The	first	argument	specifies	the	filename	(in	double	quotes),	the	
second	argument	selects	between	a	text	format	(non	zero)	or	a	binary	
format	(zero)	output.	Finally	you	just	provide	the	number	of	the	
function	table(s)	to	save.
		
With	the	following	example,	you	should	end	up	with	two	textfiles	in	
the	same	folder	as	your	.csd:	"i-time_save.txt"	saves	function	table	1	
(a	sine	wave)	at	i-time;	"k-time_save.txt"	saves	function	table	2	(a	
linear	increment	produced	during	the	performance)	at	k-time.

			EXAMPLE	03D09_ftsave.csd			

<CsoundSynthesizer>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giWave				ftgen					1,	0,	2^7,	10,	1;	sine	with	128	points
giControl	ftgen					2,	0,	-kr,	2,	0;	size	for	1	second	of	recording	control	data
										seed						0

		instr	1;	saving	giWave	at	i-time
										ftsave				"i-time_save.txt",	1,	1
		endin

		instr	2;	recording	of	a	line	transition	between	0	and	1	for	one	second

FUNCTION	TABLES

197

kline					linseg				0,	1,	1
										tabw						kline,	kline,	giControl,	1
		endin

		instr	3;	saving	giWave	at	k-time
										ftsave				"k-time_save.txt",	1,	2
		endin

</CsInstruments>
<CsScore>
i	1	0	0
i	2	0	1
i	3	1	.1
</CsScore>
</CsoundSynthesizer>

The	counterpart	to	ftsave/ftsavek	are	the	ftload/ftloadk	opcodes.	You	
can	use	them	to	load	the	saved	files	into	function	tables.
		

WRITING	A	SOUNDFILE	FROM	A	RECORDED
FUNCTION	TABLE	

If	you	have	recorded	your	live-input	to	a	buffer,	you	may	want	to	
save	your	buffer	as	a	soundfile.	There	is	no	opcode	in	Csound	which	
does	that,	but	it	can	be	done	by	using	a	k-rate	loop	and	the	fout	
opcode.	This	is	shown	in	the	next	example	in	instrument	2.	First	
instrument	1	records	your	live	input.	Then	instrument	2	creates	a	
soundfile	"testwrite.wav"	containing	this	audio	in	the	same	folder	as	
your	.csd.	This	is	done	at	the	first	k-cycle	of	instrument	2,	by	
repeatedly	reading	the	table	values	and	writing	them	as	an	audio	
signal	to	disk.	After	this	is	done,	the	instrument	is	turned	off	by	
executing	the	turnoff	statement.

			EXAMPLE	03D10_Table_to_soundfile.csd			

<CsoundSynthesizer>
<CsOptions>
-i	adc
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1
;	--		size	for	5	seconds	of	recording	audio	data
giAudio			ftgen					0,	0,	-5*sr,	2,	0

		instr	1	;record	live	input
ktim						timeinsts	;	playing	time	of	the	instrument	in	seconds

FUNCTION	TABLES

198

										prints				"PLEASE	GIVE	YOUR	LIVE	INPUT	AFTER	THE	BEEP!%n"
kBeepEnv		linseg				0,	1,	0,	.01,	1,	.5,	1,	.01,	0
aBeep					oscils				.2,	600,	0
										outs						aBeep*kBeepEnv,	aBeep*kBeepEnv
;;record	the	audiosignal	after	2	seconds
	if	ktim	>	2	then
ain							inch						1
										printks			"RECORDING	LIVE	INPUT!%n",	10
	;create	a	writing	pointer	in	the	table,
	;moving	in	5	seconds	from	index	0	to	the	end
aindx					phasor				1/5
	;write	the	k-signal
										tablew				ain,	aindx,	giAudio,	1
	endif
		endin

		instr	2;	write	the	giAudio	table	to	a	soundfile
Soutname		=									"testwrite.wav";	name	of	the	output	file
iformat			=									14;	write	as	16	bit	wav	file
itablen			=									ftlen(giAudio);	length	of	the	table	in	samples

kcnt						init						0;	set	the	counter	to	0	at	start
loop:
kcnt						=									kcnt+ksmps;	next	value	(e.g.	10	if	ksmps=10)
andx						interp				kcnt-1;	calculate	audio	index	(e.g.	from	0	to	9)
asig						tab							andx,	giAudio;	read	the	table	values	as	audio	signal
										fout						Soutname,	iformat,	asig;	write	asig	to	a	file
	if	kcnt	<=	itablen-ksmps	kgoto	loop;	go	back	as	long	there	is	something	to	do
										turnoff			;	terminate	the	instrument
		endin

</CsInstruments>
<CsScore>
i	1	0	7
i	2	7	.1
</CsScore>
</CsoundSynthesizer>

This	code	can	also	be	used	in	the	form	of	a	User	Defined	Opcode.	It	
can	be	found	here.

OTHER	GEN	ROUTINE	HIGHLIGHTS

GEN05,	GEN07,	GEN25,	GEN27	and	GEN16	are	useful	for	creating	
envelopes.	GEN07	and	GEN27	create	functions	table	in	the	manner	
of	the	linseg	opcode	-	with	GEN07	the	user	defines	segment	duration	
whereas	in	GEN27	the	user	defines	the	absolute	time	for	each	
breakpoint	from	the	beginning	of	the	envelope.	GEN05	and	GEN25	
operate	similarly	to	GEN07	and	GEN27	except	that	envelope	
segments	are	exponential	in	shape.	GEN16	also	create	an	envelope	in	
breakpoint	fashion	but	it	allows	the	user	to	specify	the	curvature	of	
each	segment	individually	(concave	-	straight	-	convex).

GEN17,		GEN41	and	GEN42	are	used	the	generate	histogram-type	
functions	which	may	prove	useful	in	algorithmic	composition	and	

FUNCTION	TABLES

199

work	with	probabilities.

GEN09	and	GEN19	are	developments	of	GEN10	and	are	useful	in	
additive	synthesis.

GEN11	is	a	GEN	routine	version	of	the	gbuzz	opcode	and	as	it	is	a	
fixed	waveform	(unlike	gbuzz)	it	can	be	a	useful	and	efficient	sound	
source	in	subtractive	synthesis.		

GEN08
f	#	time	size	8	a	n1	b	n2	c	n3	d	...

GEN08	creates	a	curved	function	that	forms	the	smoothest	possible	
line	between	a	sequence	of	user	defined	break-points.	This	GEN	
routine	can	be	useful	for	the	creation	of	window	functions	for	use	as	
envelope	shapes	or	in	granular	synthesis.	In	forming	a	smooth	curve,	
GEN08	may	create	apexes	that	extend	well	above	or	below	any	of	the	
defined	values.	For	this	reason	GEN08	is	mostly	used	with	post-
normalisation	turned	on,	i.e.	a	minus	sign	is	not	added	to	the	GEN	
number	when	the	function	table	is	defined.	Here	are	some	examples	
of	GEN08	tables:

	

f	1	0	1024	8	0	1	1	1023	0

	

f	2	0	1024	8	0	97	1	170	0.583	757	0

FUNCTION	TABLES

200

	

f	3	0	1024	8	0	1	0.145	166	0.724	857	0

	

	

f	4	0	1024	8	0	1	0.079	96	0.645	927	0

	

	

GEN16
f	#	time	size	16	val1	dur1	type1	val2	[dur2	type2	val3	...	typeX	valN]

GEN16	allows	the	creation	of	envelope	functions	using	a	sequence	of
user	defined	breakpoints.	Additionally	for	each	segment	of	the
envelope	we	can	define	a	curvature.	The	nature	of	the	curvature	–
concave	or	convex	–	will	also	depend	upon	the	direction	of	the
segment:	rising	or	falling.	For	example,	positive	curvature	values	will
result	in	concave	curves	in	rising	segments	and	convex	curves	in
falling	segments.	The	opposite	applies	if	the	curvature	value	is
negative.	Below	are	some	examples	of	GEN16	function	tables:	

f	1	0	1024	16	0	512	20	1	512	20	0

FUNCTION	TABLES

201

	

f	2	0	1024	16	0	512	4	1	512	4	0

	

	

f	3	0	1024	16	0	512	0	1	512	0	0

	

	

f	4	0	1024	16	0	512	-4	1	512	-4	0

	

	

f	5	0	1024	16	0	512	-20	1	512	-20	0

	

GEN19	

FUNCTION	TABLES

202

f	#	time	size		19		pna			stra		phsa		dcoa		pnb	strb		phsb		dcob		...

GEN19	follows	on	from	GEN10	and	GEN09	in	complexity	and	
control	options.	It	shares	the	basic	concept	of	generating	a	harmonic	
waveform	from	stacked	sinusoids	but	in	addition	to	control	over	the	
strength	of	each	partial	(GEN10)	and	the	partial	number	and	phase	
(GEN09)	it	offers	control	over	the	DC	offset	of	each	partial.	In	
addition	to	the	creation	of	waveforms	for	use	by	audio	oscillators	
other	applications	might	be	the	creation	of	functions	for	LFOs	and	
window	functions	for	envelopes	in	granular	synthesis.	Below	are	
some	examples	of	GEN19:
		

	

f	1	0	1024	19	1	1	0	0	20	0.1	0	0

	

	

f	2	0	1024	-19	0.5	1	180	1

	

	

GEN30	
f	#	time	size		30		src		minh	maxh	[ref_sr]	[interp]

GEN30	uses	FFT	to	create	a	band-limited	version	of	a	source	
waveform	without	band-limiting.	We	can	create	a	sawtooth	

FUNCTION	TABLES

203

waveform	by	drawing	one	explicitly	using	GEN07	by	used	as	an	
audio	waveform	this	will	create	problems	as	it	contains	frequencies	
beyond	the	Nyquist	frequency	therefore	will	cause	aliasing,	
particularly	when	higher	notes	are	played.	GEN30	can	analyse	this	
waveform	and	create	a	new	one	with	a	user	defined	lowest	and	
highest	partial.	If	we	know	what	note	we	are	going	to	play	we	can	
predict	what	the	highest	partial	below	the	Nyquist	frequency	will	be.	
For	a	given	frequency,	freq,	the	maximum	number	of	harmonics	that	
can	be	represented	without	aliasing	can	be	derived	using	sr	/	(2	*	
freq).		
		
Here	are	some	examples	of	GEN30	function	tables	(the	first	table	is	
actually	a	GEN07	generated	sawtooth,	the	second	two	are	GEN30	
band-limited	versions	of	the	first):

	

	f	1	0	1024	7	1	1024	-1

	

	

f	2	0	1024	30	1	1	20

	

	

FUNCTION	TABLES

204

f	3	0	1024	30	1	2	20

RELATED	OPCODES

ftgen:	Creates	a	function	table	in	the	orchestra	using	any	GEN	
Routine.
		

table	/	tablei	/	table3:	Read	values	from	a	function	table	at	any	rate,	
either	by	direct	indexing	(table),	or	by	linear	(tablei)	or	cubic	(table3)	
interpolation.	These	opcodes	provide	many	options	and	are	safe	
because	of	boundary	check,	but	you	may	have	problems	with	non-
power-of-two	tables.

tab_i	/	tab:	Read	values	from	a	function	table	at	i-rate	(tab_i),	k-rate	
or	a-rate	(tab).	Offer	no	interpolation	and	less	options	than	the	table	
opcodes,	but	they	work	also	for	non-power-of-two	tables.	They	do	not	
provide	a	boundary	check,	which	makes	them	fast	but	also	give	the	
user	the	resposability	not	reading	any	value	off	the	table	boundaries.

tableiw	/	tablew:	Write	values	to	a	function	table	at	i-rate	(tableiw),	
k-rate	and	a-rate	(tablew).	These	opcodes	provide	many	options	and	
are	safe	because	of	boundary	check,	but	you	may	have	problems	with	
non-power-of-two	tables.

tabw_i	/	tabw:	Write	values	to	a	function	table	at	i-rate	(tabw_i),	k-
rate	or	a-rate	(tabw).	Offer	less	options	than	the	tableiw/tablew	
opcodes,	but	work	also	for	non-power-of-two	tables.	They	do	not	
provide	a	boundary	check,	which	makes	them	fast	but	also	give	the	
user	the	resposability	not	writing	any	value	off	the	table	boundaries.

poscil	/	poscil3:	Precise	oscillators	for	reading	function	tables	at	k-	or	
a-rate,	with	linear	(poscil)	or	cubic	(poscil3)	interpolation.	They	
support	also	non-power-of-two	tables,	so	it's	usually	recommended	to	
use	them	instead	of	the	older	oscili/oscil3	opcodes.	Poscil	has	also	a-
rate	input	for	amplitude	and	frequency,	while	poscil3	has	just	k-rate	
input.	

FUNCTION	TABLES

205

oscili	/	oscil3:	The	standard	oscillators	in	Csound	for	reading	function	
tables	at	k-	or	a-rate,	with	linear	(oscili)	or	cubic	(oscil3)	
interpolation.	They	support	all	rates	for	the	amplitude	and	frequency	
input,	but	are	restricted	to	power-of-two	tables.	Particularily	for	long	
tables	and	low	frequencies	they	are	not	as	precise	as	the	
poscil/poscil3	oscillators.
		

ftsave	/	ftsavek:	Save	a	function	table	as	a	file,	at	i-time	(ftsave)	or	k-
time	(ftsavek).	This	can	be	a	text	file	or	a	binary	file,	but	not	a	
soundfile.	If	you	want	to	save	a	soundfile,	use	the	User	Defined	
Opcode	TableToSF.

ftload	/	ftloadk:	Load	a	function	table	which	has	been	written	by	
ftsave/ftsavek.

line	/	linseg	/	phasor:	Can	be	used	to	create	index	values	which	are	
needed	to	read/write	k-	or	a-signals	with	the	table/tablew	or	tab/tabw	
opcodes.
		

1.	 ftgen	is	preferred	mainly	because	you	can	refer	to	the	function	
table	by	a	variable	name	and	must	not	deal	with	constant	tables	
numbers.	This	will	enhance	the	portability	of	orchestras	and	
better	facilitate	the	combining	of	multiple	orchestras.	It	can	
also	enhance	the	readability	of	an	orchestra	if	a	function	table	
is	located	in	the	code	nearer	the	instrument	that	uses	it.^

2.	 If	youŕ	.csd	file	is,	for	instance,	in	the	directory	
/home/jh/csound,	and	your	sound	file	in	the	directory	
/home/jh/samples,	you	should	add	this	inside	the	<CsOptions>	
tag:	
--env:SSDIR+=/home/jh/samples.	This	means:	'Look	also	in	
/home/jh/sample	as	Sound	Sample	Directory	(SSDIR)'
		
^

3.	 For	a	general	introduction	about	interpolation,	see	for	instance	
http://en.wikipedia.org/wiki/Interpolation^

FUNCTION	TABLES

206

ARRAYS

207

ARRAYS

One	of	the	principal	new	features	of	Csound	6	is	the	support	of	arrays.	
This	chapter	aims	to	demonstrate	how	to	use	arrays	using	the	methods	
currently	implemented.

The	outline	of	this	chapter	is	as	follows:

Types	of	Arrays
Dimensions
i-	or	k-rate
Local	or	Global
Arrays	of	Strings
Arrays	of	Audio	Signals
				

Naming	Conventions
Creating	an	Array

init
array	/	fillarray
genarray
				

Basic	Operations:	len	/	slice
Copy	Arrays	from/to	Tables
Copy	Arrays	from/to	FFT	Data
		
Math	Operations

+,	-,	*,	/	on	a	Number
+,	-,	*,	/	on	a	Second	Array
min	/	max	/	sum	/	scale
Function	Mapping	on	an	Array:	maparray

Arrays	in	UDOs
		

TYPES	OF	ARRAYS

DIMENSIONS

	One-dimensional	arrays	-	also	called	vectors	-	are	the	most	

ARRAYS

208

commonly	used	type	of	array,	but	in	Csound6	you	can	also	use	arrays	
with	two	or	more	dimensions.	The	way	in	which	the	number	of	
dimensions	is	designated	is	very	similar	to	how	it	is	done	in	other	
programming	languages.

The	code	below	denotes	the	second	element	of	a	one-dimensional	
array	(as	usual,	indexing	an	element	starts	at	zero,	so	kArr[0]	would	
be	the	first	element):

kArr[1]

The	following	denotes	the	second	column	in	the	third	row	of	a	two-
dimensional	array:

kArr[2][1]

Note	that	the	square	brackets	are	not	used	everywhere.	This	is	
explained	in	more	detail	below	under	'Naming	Conventions'.
		

I-	OR	K-RATE	

Like	most	other	variables	in	Csound,	arrays	can	be	either	i-rate	or	k-
rate.	An	i-array	can	only	be	modified	at	init-time,	and	any	operation	
on	it	is	only	performed	once,	at	init-time.	A	k-array	can	be	modified	
during	the	performance,	and	any	(k-)	operation	on	it	will	be	
performed	in	every	k-cycle	(!).	Here	is	a	very	simple	example:

				EXAMPLE	03E01_i_k_arrays.csd	

<CsoundSynthesizer>
<CsOptions>
-nm128	;no	sound	and	reduced	messages
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	4410	;10	k-cycles	per	second

instr	1
iArr[]	array	1,	2,	3
iArr[0]	=	iArr[0]	+	10
prints	"			iArr[0]	=	%d\n\n",	iArr[0]
endin

instr	2
kArr[]	array	1,	2,	3
kArr[0]	=	kArr[0]	+	10

ARRAYS

209

printks	"			kArr[0]	=	%d\n",	0,	kArr[0]
endin

</CsInstruments>
<CsScore>
i	1	0	1
i	2	1	1
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

	The	output	shows	this:
		

		

iArr[0]	=	11

		

kArr[0]	=	11

		

kArr[0]	=	21

		

kArr[0]	=	31

		

kArr[0]	=	41

		

kArr[0]	=	51

		

kArr[0]	=	61

		

kArr[0]	=	71

		

kArr[0]	=	81

		

kArr[0]	=	91

		

kArr[0]	=	101	

Although	both	instruments	run	for	one	second,	the	operation	to	
increment	the	first	array	value	by	ten	is	executed	only	once	in	the	i-
rate	version	of	the	array.	But	in	the	k-rate	version,	the	incrementation	

ARRAYS

210

is	repeated	in	each	k-cycle	-	in	this	case	every	1/10	second,	but	
usually	something	around	every	1/1000	second.	A	good	opportunity	
to	throw	off	rendering	power	for	useless	repetitions,	or	to	produce	
errors	if	you	intentionally	wanted	to	operate	something	only	once	...

LOCAL	OR	GLOBAL

	Like	any	other	variable	in	Csound,	an	array	usually	has	a	local	scope	
-	this	means	that	it	is	only	recognized	within	the	scope	of	the	
instrument	in	which	it	has	been	defined.	If	you	want	to	use	arrays	in	a	
globally	(across	instruments),	then	you	have	to	prefix	the	variable	
name	with	the	character	g,	(as	is	done	with	other	types	of	global	
variable	in	Csound).	The	next	example	demonstrates	local	and	global	
arrays	at	both	i-	and	k-rate.

			EXAMPLE	03E02_Local_vs_global_arrays.csd	
		

<CsoundSynthesizer>
<CsOptions>
-nm128	;no	sound	and	reduced	messages
</CsOptions>
<CsInstruments>
ksmps	=	32

instr	i_local
iArr[]	array		1,	2,	3
							prints	"			iArr[0]	=	%d			iArr[1]	=	%d			iArr[2]	=	%d\n",
														iArr[0],	iArr[1],	iArr[2]
endin

instr	i_local_diff	;same	name,	different	content
iArr[]	array		4,	5,	6
							prints	"			iArr[0]	=	%d			iArr[1]	=	%d			iArr[2]	=	%d\n",
														iArr[0],	iArr[1],	iArr[2]
endin

instr	i_global
giArr[]	array	11,	12,	13
endin

instr	i_global_read	;understands	giArr	though	not	defined	here
							prints	"			giArr[0]	=	%d			giArr[1]	=	%d			giArr[2]	=	%d\n",
														giArr[0],	giArr[1],	giArr[2]
endin

instr	k_local
kArr[]	array		-1,	-2,	-3
							printks	"			kArr[0]	=	%d			kArr[1]	=	%d			kArr[2]	=	%d\n",
															0,	kArr[0],	kArr[1],	kArr[2]
							turnoff
endin

instr	k_local_diff
kArr[]	array		-4,	-5,	-6
							printks	"			kArr[0]	=	%d			kArr[1]	=	%d			kArr[2]	=	%d\n",

ARRAYS

211

															0,	kArr[0],	kArr[1],	kArr[2]
							turnoff
endin

instr	k_global
gkArr[]	array	-11,	-12,	-13
							turnoff
endin

instr	k_global_read
							printks	"			gkArr[0]	=	%d			gkArr[1]	=	%d			gkArr[2]	=	%d\n",
															0,	gkArr[0],	gkArr[1],	gkArr[2]
							turnoff
endin
</CsInstruments>
<CsScore>
i	"i_local"	0	0
i	"i_local_diff"	0	0
i	"i_global"	0	0
i	"i_global_read"	0	0
i	"k_local"	0	1
i	"k_local_diff"	0	1
i	"k_global"	0	1
i	"k_global_read"	0	1
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

ARRAYS	OF	STRINGS

	So	far	we	have	discussed	only	arrays	of	numbers.	It	is	also	possible	to
have	arrays	of	strings,	which	can	be	very	useful	in	many	situations,	
for	instance	while	working	with	file	paths.1			Here	is	a	very	simple	
example	first,	followed	by	a	more	extended	one.

			EXAMPLE	03E03_String_arrays.csd	

<CsoundSynthesizer>
<CsOptions>
-nm128	;no	sound	and	reduced	messages
</CsOptions>
<CsInstruments>
ksmps	=	32

instr	1
String			=							"onetwothree"
S_Arr[]		init				3
S_Arr[0]	strsub		String,	0,	3
S_Arr[1]	strsub		String,	3,	6
S_Arr[2]	strsub		String,	6
									printf_i	"S_Arr[0]	=	'%s'\nS_Arr[1]	=	'%s'\nS_Arr[2]	=	'%s'\n",	1,
																		S_Arr[0],	S_Arr[1],	S_Arr[2]
endin

</CsInstruments>
<CsScore>
i	1	0	1
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

			EXAMPLE	03E04_Anagram.csd			

ARRAYS

212

<CsoundSynthesizer>
<CsOptions>
-dnm0
</CsOptions>
<CsInstruments>
ksmps	=	32

giArrLen		=								5
gSArr[]			init					giArrLen

		opcode	StrAgrm,	S,	Sj
		;changes	the	elements	in	Sin	randomly,	like	in	an	anagram
Sin,	iLen		xin
	if	iLen	==	-1	then
iLen							strlen					Sin
	endif
Sout							=										""
;for	all	elements	in	Sin
iCnt							=										0
iRange					=										iLen
loop:
;get	one	randomly
iRnd							rnd31						iRange-.0001,	0
iRnd							=										int(abs(iRnd))
Sel								strsub					Sin,	iRnd,	iRnd+1
Sout							strcat					Sout,	Sel
;take	it	out	from	Sin
Ssub1						strsub					Sin,	0,	iRnd
Ssub2						strsub					Sin,	iRnd+1
Sin								strcat					Ssub1,	Ssub2
;adapt	range	(new	length)
iRange					=										iRange-1
											loop_lt				iCnt,	1,	iLen,	loop
											xout							Sout
		endop

instr	1
											prints					"Filling	gSArr[]	in	instr	%d	at	init-time!\n",	p1
iCounter			=										0
		until						(iCounter	==	giArrLen)	do
S_new						StrAgrm				"csound"
gSArr[iCounter]	=					S_new
iCounter			+=									1
		od
endin

instr	2
											prints					"Printing	gSArr[]	in	instr	%d	at	init-time:\n		[",	p1
iCounter			=										0
		until						(iCounter	==	giArrLen)	do
											printf_i			"%s	",	iCounter+1,	gSArr[iCounter]
iCounter			+=									1
		od
											prints					"]\n"
endin

instr	3
										printks			"Printing	gSArr[]	in	instr	%d	at	perf-time:\n		[",	0,	p1
kcounter		=								0
		until	(kcounter	==	giArrLen)	do
										printf			"%s	",	kcounter+1,	gSArr[kcounter]
kcounter		+=							1
		od
										printks		"]\n",	0
										turnoff
endin

instr	4
											prints					"Modifying	gSArr[]	in	instr	%d	at	init-time!\n",	p1
iCounter			=										0
		until						(iCounter	==	giArrLen)	do
S_new						StrAgrm				"csound"

ARRAYS

213

gSArr[iCounter]	=					S_new
iCounter			+=									1
		od
endin

instr	5
											prints					"Printing	gSArr[]	in	instr	%d	at	init-time:\n		[",	p1
iCounter			=										0
		until	(iCounter	==	giArrLen)	do
											printf_i			"%s	",	iCounter+1,	gSArr[iCounter]
iCounter			+=									1
		od
											prints					"]\n"
endin

instr	6
kCycle					timeinstk
											printks				"Modifying	gSArr[]	in	instr	%d	at	k-cycle	%d!\n",	0,
																						p1,	kCycle
kCounter			=										0
		until	(kCounter	==	giArrLen)	do
kChar						random					33,	127
S_new						sprintfk			"%c	",	int(kChar)
gSArr[kCounter]	strcpyk	S_new	;'='	should	work	but	does	not
kCounter			+=									1
		od
		if	kCycle	==	3	then
											turnoff
		endif
endin

instr	7
kCycle					timeinstk
											printks				"Printing	gSArr[]	in	instr	%d	at	k-cycle	%d:\n		[",
																						0,	p1,	kCycle
kCounter			=										0
		until	(kCounter	==	giArrLen)	do
											printf					"%s	",	kCounter+1,	gSArr[kCounter]
kCounter			+=									1
		od
											printks				"]\n",	0
		if	kCycle	==	3	then
											turnoff
		endif
endin

</CsInstruments>
<CsScore>
i	1	0	1
i	2	0	1
i	3	0	1
i	4	1	1
i	5	1	1
i	6	1	1
i	7	1	1
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

Prints:

Filling	gSArr[]	in	instr	1	at	init-time!

		

Printing	gSArr[]	in	instr	2	at	init-time:

		

[nudosc	coudns	dsocun	ocsund	osncdu]

ARRAYS

214

		

Printing	gSArr[]	in	instr	3	at	perf-time:

		

[nudosc	coudns	dsocun	ocsund	osncdu]

		

Modifying	gSArr[]	in	instr	4	at	init-time!

		

Printing	gSArr[]	in	instr	5	at	init-time:

		

[ousndc	uocdns	sudocn	usnocd	ouncds]

		

Modifying	gSArr[]	in	instr	6	at	k-cycle	1!

		

Printing	gSArr[]	in	instr	7	at	k-cycle	1:

		

[s	<	x	+	!]

		

Modifying	gSArr[]	in	instr	6	at	k-cycle	2!

		

Printing	gSArr[]	in	instr	7	at	k-cycle	2:

		

[P	Z	r	u	U]

		

Modifying	gSArr[]	in	instr	6	at	k-cycle	3!

		

Printing	gSArr[]	in	instr	7	at	k-cycle	3:

		

[b	K	c	"	h]	

		

ARRAYS	OF	AUDIO	SIGNALS	

Collecting	audio	signals	in	an	array	simplifies	working	with	multiple	
channels,	as	one	of	many	possible	cases	of	use.	Here	are	two	simple	
examples,	one	for	local	audio	arrays	and	the	other	for	global	audio	

ARRAYS

215

arrays.

			EXAMPLE	03E05_Local_audio_array.csd			

<CsoundSynthesizer>
<CsOptions>
-odac	-d
</CsOptions>
<CsInstruments>

sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

instr	1
aArr[]					init							2
a1									oscils					.2,	400,	0
a2									oscils					.2,	500,	0
kEnv							transeg				1,	p3,	-3,	0
aArr[0]				=										a1	*	kEnv
aArr[1]				=										a2	*	kEnv
											outch						1,	aArr[0],	2,	aArr[1]
endin

instr	2	;to	test	identical	names
aArr[]					init							2
a1									oscils					.2,	600,	0
a2									oscils					.2,	700,	0
kEnv							transeg				0,	p3-p3/10,	3,	1,	p3/10,	-6,	0
aArr[0]				=										a1	*	kEnv
aArr[1]				=										a2	*	kEnv
											outch						1,	aArr[0],	2,	aArr[1]
endin
</CsInstruments>
<CsScore>
i	1	0	3
i	2	0	3
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

				EXAMPLE	03E06_Global_audio_array.csd			
		

<CsoundSynthesizer>
<CsOptions>
-odac	-d
</CsOptions>
<CsInstruments>

sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

gaArr[]				init							2

		instr	1	;	left	channel
kEnv							loopseg				0.5,	0,	0,	1,0.003,	1,0.0001,	0,0.9969
aSig							pinkish				kEnv
gaArr[0]			=										aSig
		endin

		instr	2	;	right	channel
kEnv							loopseg				0.5,	0,	0.5,	1,0.003,	1,0.0001,	0,0.9969
aSig							pinkish				kEnv

ARRAYS

216

gaArr[1]			=										aSig
		endin

		instr	3	;	reverb
aInSigL				=										gaArr[0]	/	3
aInSigR				=										gaArr[1]	/	2
aRvbL,aRvbR	reverbsc		aInSigL,	aInSigR,	0.88,	8000
gaArr[0]			=										gaArr[0]	+	aRvbL
gaArr[1]			=										gaArr[1]	+	aRvbR
											outs							gaArr[0]/4,	gaArr[1]/4
gaArr[0]			=										0
gaArr[1]			=										0
		endin
</CsInstruments>
<CsScore>
i	1	0	10
i	2	0	10
i	3	0	12
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz,	using	code	by	iain	mccurdy

NAMING	CONVENTIONS

An	array	must	be	created	(via	init	or	array	/	fillarray2)	as	
kMyArrayName	plus	ending	brackets.	The	brackets	determine	the	
dimensions	of	the	array.	So

kArr[]	init	10

creates	a	one-dimensional	array	of	length	10,	whereas

kArr[][]	init	10,	10

creates	a	two-dimensional	array	with	10	rows	and	10	columns.

After	the	initialization	of	the	array,	referring	to	the	array	as	a	whole	is	
done	without	any	brackets.	Brackets	are	only	used	if	an	element	is	
indexed:

kArr[]			init			10													;with	brackets	because	of	initialization
kLen					=						lenarray(kArr)	;without	brackets
kFirstEl	=						kArr[0]								;with	brackets	because	of	indexing

	The	same	syntax	is	used	for	a	simple	copy	via	the	'='	operator:

kArr1[]		array		1,	2,	3,	4,	5		;creates	kArr1
kArr2[]		=						kArr1										;creates	kArr2	as	copy	of	kArr1

CREATING	AN	ARRAY

An	array	can	currently	be	created	by	four	methods:	with	the	init	

ARRAYS

217

opcode,	with	array/fillarray,	with	genarray,	or	as	a	copy	of	an	already	
existing	array	with	the	'='	operator.
		

INIT

	The	most	general	method,	which	works	for	arrays	of	any	number	of	
dimensions,	is	to	use	the	init	opcode.	Here	you	define	a	specified	
space	for	the	array:

kArr[]			init	10					;creates	a	one-dimensional	array	with	length	10
kArr[][]	init	10,	10	;creates	a	two-dimensional	array

FILLARRAY

If	you	want	to	fill	an	array	with	distinct	values,	you	can	use	the	
fillarray	opcode.	This	line	creates	a	vector	with	length	4	and	puts	in	
the	numbers	[1,	2,	3,	4]:

kArr[]	fillarray	1,	2,	3,	4

You	can	also	use	this	opcode	for	filling	two-dimensional	arrays:3

		

			EXAMPLE	03E07_Fill_multidim_array.csd		
		

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
ksmps	=	32

instr	1
iArr[][]	init			2,3
iArr					array		1,2,3,7,6,5
iRow					=						0
until	iRow	==	2	do
iColumn		=						0
		until	iColumn	==	3	do
		prints	"iArr[%d][%d]	=	%d\n",	iRow,	iColumn,	iArr[iRow][iColumn]
		iColumn	+=				1
enduntil
iRow						+=				1
od
endin

</CsInstruments>
<CsScore>

ARRAYS

218

i	1	0	0
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

GENARRAY

	This	opcode	creates	an	array	which	is	filled	by	a	series	of	numbers	
from	a	starting	value	to	an	(included)	ending	value.	Here	are	some	
examples:

iArr[]	genarray			1,	5	;	creates	i-array	with	[1,	2,	3,	4,	5]
kArr[]	genarray_i	1,	5	;	creates	k-array	at	init-time	with	[1,	2,	3,	4,	5]
iArr[]	genarray			-1,	1,	0.5	;	i-array	with	[-1,	-0.5,	0,	0.5,	1]
iArr[]	genarray			1,	-1,	-0.5	;	[1,	0.5,	0,	-0.5,	-1]
iArr[]	genarray			-1,	1,	0.6	;	[-1,	-0.4,	0.2,	0.8]		

BASIC	OPERATIONS:	LEN,	SLICE

The	opcode	lenarray	reports	the	length	of	an	i-	or	k-array.	As	with	
many	opcodes	now	in	Csound	6,	it	can	be	used	either	in	the	
traditional	way	(Left-hand-side	<-	Opcode	<-	Right-hand-side),	or	as	
a	function.	The	next	example	shows	both	usages,	for	i-	and	k-arrays.	
For	multidimensional	arrays,	lenarray	returns	the	length	of	the	first	
dimension	(instr	5).
		

			EXAMPLE	03E08_lenarray.csd		

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
ksmps	=	32

instr	1	;simple	i-rate	example
iArr[]			fillarray	1,	3,	5,	7,	9
iLen					lenarray		iArr
									prints				"Length	of	iArr	=	%d\n",	iLen
endin

instr	2	;simple	k-rate	example
kArr[]			fillarray	2,	4,	6,	8
kLen					lenarray		kArr
									printks			"Length	of	kArr	=	%d\n",	0,	kLen
									turnoff
endin

instr	3	;i-rate	with	functional	syntax
iArr[]			genarray	1,	9,	2
iIndx				=								0
		until	iIndx	==	lenarray(iArr)	do
									prints			"iArr[%d]	=	%d\n",	iIndx,	iArr[iIndx]

ARRAYS

219

iIndx				+=							1
		od
endin

instr	4	;k-rate	with	functional	syntax
kArr[]			genarray_i	-2,	-8,	-2
kIndx				=								0
		until	kIndx	==	lenarray(kArr)	do
									printf			"kArr[%d]	=	%d\n",	kIndx+1,	kIndx,	kArr[kIndx]
kIndx				+=							1
		od
									turnoff
endin

instr	5	;multi-dimensional	arrays
kArr[][]	init					9,	5
kArrr[][][]	init		7,	9,	5
printks	"lenarray(kArr)	(2-dim)	=	%d\n",	0,	lenarray(kArr)
printks	"lenarray(kArrr)	(3-dim)	=	%d\n",	0,	lenarray(kArrr)
endin

</CsInstruments>
<CsScore>
i	1	0	0
i	2	.1	.1
i	3	.2	0
i	4	.3	.1
i	5	.4	.1
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

Prints:

Length	of	iArr	=	5

		

Length	of	kArr	=	4

		

iArr[0]	=	1

		

iArr[1]	=	3

		

iArr[2]	=	5

		

iArr[3]	=	7

		

iArr[4]	=	9

		

kArr[0]	=	-2

		

kArr[1]	=	-4

		

ARRAYS

220

kArr[2]	=	-6

		

kArr[3]	=	-8

		

lenarray(kArr)	(2-dim)	=	9

		

lenarray(kArrr)	(3-dim)	=	7

		

The	opcode	slicearray	takes	a	slice	of	a	(one-dimensional)	array:

		slicearray	kArr,	iStart,	iEnd	

returns	a	slice	of	kArr	from	index	iStart	to	index	iEnd	(included).

The	array	for	receiving	the	slice	must	have	been	created	in	advance:

		kArr[]		fillarray		1,	2,	3,	4,	5,	6,	7,	8,	9
		kArr1[]	init							5
		kArr2[]	init							4
		kArr1			slicearray	kArr,	0,	4								;[1,	2,	3,	4,	5]
		kArr2			slicearray	kArr,	5,	8								;[6,	7,	8,	9]

			EXAMPLE	03E09_slicearray.csd

<CsoundSynthesizer>
<CsOptions>
-n
</CsOptions>
<CsInstruments>
ksmps	=	32

instr	1

;create	and	fill	an	array
kArr[]		genarray_i	1,	9

;print	the	content
								printf		"%s",	1,	"kArr	=	whole	array\n"
kndx				=							0
		until	kndx	==	lenarray(kArr)	do
								printf		"kArr[%d]	=	%f\n",	kndx+1,	kndx,	kArr[kndx]
kndx				+=						1
		od

;build	new	arrays	for	the	slices
kArr1[]	init				5
kArr2[]	init				4

;put	in	first	five	and	last	four	elements
kArr1			slicearray	kArr,	0,	4
kArr2			slicearray	kArr,	5,	8

;print	the	content
								printf		"%s",	1,	"\nkArr1	=	slice	from	index	0	to	index	4\n"
kndx				=							0

ARRAYS

221

		until	kndx	==	lenarray(kArr1)	do
								printf		"kArr1[%d]	=	%f\n",	kndx+1,	kndx,	kArr1[kndx]
kndx				+=						1
		od
								printf		"%s",	1,	"\nkArr2	=	slice	from	index	5	to	index	8\n"
kndx				=							0
		until	kndx	==	lenarray(kArr2)	do
								printf		"kArr2[%d]	=	%f\n",	kndx+1,	kndx,	kArr2[kndx]
kndx				+=						1
		od

								turnoff
endin

</CsInstruments>
<CsScore>
i	1	0	1
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

COPY	ARRAYS	FROM/TO	TABLES

	As	function	tables	have	been	the	classical	way	of	working	with	
arrays	in	Csound,	switching	between	them	and	the	new	array	facility	
in	Csound	is	a	basic	operation.	Copying	data	from	a	function	table	to	
a	vector	is	done	by	copyf2array,	whereas	copya2ftab	copies	data	from	
a	vector	to	a	function	table:

copyf2array	kArr,	kfn	;from	a	function	table	to	an	array
copya2ftab		kArr,	kfn	;from	an	array	to	a	function	table

The	following	presents	a	simple	example	of	each	operation.

			EXAMPLE	03E10_copyf2array.csd
		

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
ksmps	=	32

;8	points	sine	wave	function	table
giSine		ftgen			0,	0,	8,	10,	1

		instr	1
;create	array
kArr[]		init				8

;copy	table	values	in	it
								copyf2array	kArr,	giSine

;print	values
kndx				=							0
		until	kndx	==	lenarray(kArr)	do
								printf		"kArr[%d]	=	%f\n",	kndx+1,	kndx,	kArr[kndx]

ARRAYS

222

kndx				+=						1
		enduntil

;turn	instrument	off
								turnoff
		endin

</CsInstruments>
<CsScore>
i	1	0	0.1
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

			EXAMPLE	03E11_copya2ftab.csd	
		

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
ksmps	=	32

;an	'empty'	function	table	with	10	points
giTable	ftgen			0,	0,	-10,	2,	0

		instr	1

;print	inital	values	of	giTable
								puts				"\nInitial	table	content:",	1
indx				=							0
		until	indx	==	ftlen(giTable)	do
iVal				table			indx,	giTable
								printf_i	"Table	index	%d	=	%f\n",	1,	indx,	iVal
indx	+=	1
		od

;create	array	with	values	1..10
kArr[]		genarray_i	1,	10

;print	array	values
								printf		"%s",	1,	"\nArray	content:\n"
kndx				=							0
		until	kndx	==	lenarray(kArr)	do
								printf		"kArr[%d]	=	%f\n",	kndx+1,	kndx,	kArr[kndx]
kndx				+=						1
		od

;copy	array	values	to	table
								copya2ftab	kArr,	giTable

;print	modified	values	of	giTable
								printf		"%s",	1,	"\nModified	table	content	after	copya2ftab:\n"
kndx				=							0
		until	kndx	==	ftlen(giTable)	do
kVal				table			kndx,	giTable
								printf		"Table	index	%d	=	%f\n",	kndx+1,	kndx,	kVal
kndx	+=	1
		od

;turn	instrument	off
								turnoff
		endin

</CsInstruments>
<CsScore>
i	1	0	0.1
</CsScore>

ARRAYS

223

</CsoundSynthesizer>
;example	by	joachim	heintz

COPY	ARRAYS	FROM/TO	FFT	DATA	

	You	can	copy	the	data	of	an	f-signal	-	which	contains	the	results	of	a	
Fast	Fourier	Transform	-	into	an	array	with	the	opcode	pvs2array.	The	
counterpart	pvsfromarray	copies	the	content	of	an	array	to	a	f-signal.

kFrame		pvs2array				kArr,	fSigIn	;from	f-signal	fSig	to	array	kArr
fSigOut	pvsfromarray	kArr	[,ihopsize,	iwinsize,	iwintype]

Some	care	is	needed	to	use	these	opcodes	correctly:

The	array	kArr	must	be	declared	in	advance	to	its	usage	in	
these	opcodes,	usually	with	init.
		
The	size	of	this	array	depends	on	the	FFT	size	of	the	f-signal	
fSigIn.	If	the	FFT	size	is	N,	the	f-signal	will	contain	N/2+1	
amplitude-frequency	pairs.	For	instance,	if	the	FFT	size	is	
1024,	the	FFT	will	write	out	513	bins,	each	bin	containing	one	
value	for	amplitude	and	one	value	for	frequency.	So	to	store	all	
these	values,	the	array	must	have	a	size	of	1026.	In	general,	the	
size	of	kArr	equals	FFT-size	plus	two.
The	indices	0,	2,	4,	...	of	kArr	will	contain	the	amplitudes;	the	
indices	1,	3,	5,	...	will	contain	the	frequencies	of	the	bins	of	a	
specific	frame.
The	number	of	this	frame	is	reported	in	the	kFrame	output	of	
pvs2array.	By	this	parameter	you	know	when	pvs2array	writes	
new	values	to	the	array	kArr.
On	the	way	back,	the	FFT	size	of	fSigOut,	which	is	written	by	
pvsfromarray,	depends	on	the	size	of	kArr.	If	the	size	of	kArr	is	
1026,	the	FFT	size	will	be	1024.
The	default	value	for	ihopsize	is	4	(=	fftsize/4);	the	default	
value	for	inwinsize	is	the	fftsize;	and	the	default	value	for	
iwintype	is	1,	which	means	a	hanning	window.
		

Here	is	an	example	that	implements	a	spectral	high-pass	filter.	The	f-
signal	is	written	to	an	array	and	the	amplitudes	of	the	first	40	bins	are	

ARRAYS

224

then	zeroed.4		This	is	only	done	when	a	new	frame	writes	its	values	to	
the	array	so	as	not	to	waste	rendering	power.

			EXAMPLE	03E12_pvs_to_from_array.csd		

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>

sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs		=	1

gifil				ftgen					0,	0,	0,	1,	"fox.wav",	0,	0,	1

instr	1
ifftsize	=									2048	;fft	size	set	to	pvstanal	default
fsrc					pvstanal		1,	1,	1,	gifil	;create	fsig	stream	from	function	table
kArr[]			init						ifftsize+2	;create	array	for	bin	data
kflag				pvs2array	kArr,	fsrc	;export	data	to	array	

;if	kflag	has	reported	a	new	write	action	...
knewflag	changed			kflag
if	knewflag	==	1	then
	;	...	set	amplitude	of	first	40	bins	to	zero:
kndx					=									0	;even	array	index	=	bin	amplitude
kstep				=									2	;change	only	even	indices
kmax					=									80
loop:
kArr[kndx]	=							0
									loop_le			kndx,	kstep,	kmax,	loop
endif

fres					pvsfromarray	kArr	;read	modified	data	back	to	fres
aout					pvsynth			fres	;and	resynth
									outs						aout,	aout

endin
</CsInstruments>
<CsScore>
i	1	0	2.7
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

	Basically,	with	the	opcodes	pvs2array	and	pvsfromarray,	you	have	
complete	access	to	every	operation	in	the	spectral	domain.	You	could	
re-write	the	existing	pvs	transformations,	you	could	change	them,	but	
you	can	also	simply	use	the	spectral	data	to	do	anything	with	it.	The	
next	example	looks	for	the	most	prominent	amplitudes	in	a	frame,	
and	then	triggers	another	instrument.

			EXAMPLE	03E13_fft_peaks_arpegg.csd		
		

ARRAYS

225

<CsoundSynthesizer>
<CsOptions>
-odac	-d	-m128
;	Example	by	Tarmo	Johannes
</CsOptions>
<CsInstruments>

sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giSine					ftgen						0,	0,	4096,	10,	1

instr	getPeaks

;generate	signal	to	analyze
kfrcoef				jspline				60,	0.1,	1	;	change	the	signal	in	time	a	bit	for	better	testing
kharmcoef		jspline				4,	0.1,	1
kmodcoef			jspline				1,	0.1,	1
kenv							linen						0.5,	0.05,	p3,	0.05
asig							foscil					kenv,	300+kfrcoef,	1,	1+kmodcoef,	10,	giSine
											outs							asig*0.05,	asig*0.05	;	original	sound	in	backround

;FFT	analysis
ifftsize			=										1024
ioverlap			=										ifftsize	/	4
iwinsize			=										ifftsize
iwinshape		=										1
fsig							pvsanal				asig,	ifftsize,	ioverlap,	iwinsize,	iwinshape
ithresh				=										0.001	;	detect	only	peaks	over	this	value

;FFT	values	to	array
kFrames[]		init							iwinsize+2	;	declare	array
kframe					pvs2array		kFrames,	fsig	;	even	member	=	amp	of	one	bin,	odd	=	frequency

;detect	peaks
kindex					=										2	;	start	checking	from	second	bin
kcounter			=										0
iMaxPeaks		=										13	;	track	up	to	iMaxPeaks	peaks
ktrigger			metro						1/2	;	check	after	every	2	seconds
	if	ktrigger	==	1	then
loop:
;	check	with	neigbouring	amps	-	if	higher	or	equal	than	previous	amp
;	and	more	than	the	coming	one,	must	be	peak.
			if	(kFrames[kindex-2]<=kFrames[kindex]	&&
						kFrames[kindex]>kFrames[kindex+2]	&&
						kFrames[kindex]>ithresh	&&
						kcounter<iMaxPeaks)	then
kamp								=									kFrames[kindex]
kfreq							=									kFrames[kindex+1]
;	play	sounds	with	the	amplitude	and	frequency	of	the	peak	as	in	arpeggio
												event					"i",	"sound",	kcounter*0.1,	1,	kamp,	kfreq
kcounter	=	kcounter+1
				endif
												loop_lt			kindex,	2,		ifftsize,	loop
		endif
endin

instr	sound
iamp							=										p4
ifreq						=										p5
kenv							adsr							0.1,0.1,0.5,p3/2
kndx							line							5,p3,1
asig							foscil					iamp*kenv,	ifreq,1,0.75,kndx,giSine
											outs							asig,	asig
endin

</CsInstruments>
<CsScore>
i	"getPeaks"	0	60
</CsScore>
</CsoundSynthesizer>

ARRAYS

226

	

MATH	OPERATIONS	

+,	-,	*,	/	ON	A	NUMBER

	If	the	four	basic	math	operators	are	used	between	an	array	and	a	
scalar	(number),	the	operation	is	applied	to	each	element.	The	safest	
way	to	do	this	is	to	store	the	result	in	a	new	array:

kArr1[]	fillarray	1,	2,	3
kArr2[]	=	kArr1	+	10				;(kArr2	is	now	[11,	12,	13])

Here	is	an	example	of	array-scalar	operations.

			EXAMPLE	03E14_array_scalar_math.csd		
		

<CsoundSynthesizer>
<CsOptions>
-n	-m128
</CsOptions>
<CsInstruments>
ksmps	=	32

		instr	1

;create	array	and	fill	with	numbers	1..10
kArr1[]	genarray_i	1,	10

;print	content
								printf		"%s",	1,	"\nInitial	content:\n"
kndx				=							0
		until	kndx	==	lenarray(kArr1)	do
								printf		"kArr[%d]	=	%f\n",	kndx+1,	kndx,	kArr1[kndx]
kndx				+=						1
		od

;add	10
kArr2[]	=							kArr1	+	10

;print	content
								printf		"%s",	1,	"\nAfter	adding	10:\n"
kndx				=							0
		until	kndx	==	lenarray(kArr2)	do
								printf		"kArr[%d]	=	%f\n",	kndx+1,	kndx,	kArr2[kndx]
kndx				+=						1
		od

;subtract	5
kArr3[]	=							kArr2	-	5

;print	content
								printf		"%s",	1,	"\nAfter	subtracting	5:\n"
kndx				=							0
		until	kndx	==	lenarray(kArr3)	do
								printf		"kArr[%d]	=	%f\n",	kndx+1,	kndx,	kArr3[kndx]
kndx				+=						1
		od

ARRAYS

227

;multiply	by	-1.5
kArr4[]	=							kArr3	*	-1.5

;print	content
								printf		"%s",	1,	"\nAfter	multiplying	by	-1.5:\n"
kndx				=							0
		until	kndx	==	lenarray(kArr4)	do
								printf		"kArr[%d]	=	%f\n",	kndx+1,	kndx,	kArr4[kndx]
kndx				+=						1
		od

;divide	by	-3/2
kArr5[]	=							kArr4	/	-(3/2)

;print	content
								printf		"%s",	1,	"\nAfter	dividing	by	-3/2:\n"
kndx				=							0
		until	kndx	==	lenarray(kArr5)	do
								printf		"kArr[%d]	=	%f\n",	kndx+1,	kndx,	kArr5[kndx]
kndx				+=						1
		od

;turnoff
								turnoff
		endin

</CsInstruments>
<CsScore>
i	1	0	.1
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

Prints:

Initial	content:

		

kArr[0]	=	1.000000

		

kArr[1]	=	2.000000

		

kArr[2]	=	3.000000

		

kArr[3]	=	4.000000

		

kArr[4]	=	5.000000

		

kArr[5]	=	6.000000

		

kArr[6]	=	7.000000

		

ARRAYS

228

kArr[7]	=	8.000000

		

kArr[8]	=	9.000000

		

kArr[9]	=	10.000000

		

After	adding	10:

		

kArr[0]	=	11.000000

		

kArr[1]	=	12.000000

		

kArr[2]	=	13.000000

		

kArr[3]	=	14.000000

		

kArr[4]	=	15.000000

		

kArr[5]	=	16.000000

		

kArr[6]	=	17.000000

		

kArr[7]	=	18.000000

		

kArr[8]	=	19.000000

		

kArr[9]	=	20.000000

		

After	subtracting	5:

		

kArr[0]	=	6.000000

		

kArr[1]	=	7.000000

ARRAYS

229

		

kArr[2]	=	8.000000

		

kArr[3]	=	9.000000

		

kArr[4]	=	10.000000

		

kArr[5]	=	11.000000

		

kArr[6]	=	12.000000

		

kArr[7]	=	13.000000

		

kArr[8]	=	14.000000

		

kArr[9]	=	15.000000

		

After	multiplying	by	-1.5:

		

kArr[0]	=	-9.000000

		

kArr[1]	=	-10.500000

		

kArr[2]	=	-12.000000

		

kArr[3]	=	-13.500000

		

kArr[4]	=	-15.000000

		

kArr[5]	=	-16.500000

		

kArr[6]	=	-18.000000

		

kArr[7]	=	-19.500000

ARRAYS

230

		

kArr[8]	=	-21.000000

		

kArr[9]	=	-22.500000

		

After	dividing	by	-3/2:

		

kArr[0]	=	6.000000

		

kArr[1]	=	7.000000

		

kArr[2]	=	8.000000

		

kArr[3]	=	9.000000

		

kArr[4]	=	10.000000

		

kArr[5]	=	11.000000

		

kArr[6]	=	12.000000

		

kArr[7]	=	13.000000

		

kArr[8]	=	14.000000

		

kArr[9]	=	15.000000

		

+,	-,	*,	/	ON	A	SECOND	ARRAY

	If	the	four	basic	math	operators	are	used	between	two	arrays,	their	
operation	is	applied	element	by	element.	The	result	can	be	easily	
stored	in	a	new	array:

kArr1[]	fillarray	1,	2,	3
kArr2[]	fillarray	10,	20,	30

ARRAYS

231

kArr3[]	=	kArr1	+	kArr2				;(kArr3	is	now	[11,	22,	33])

Here	is	an	example	of	array-array	operations.

			EXAMPLE	03E15_array_array_math.csd			

<CsoundSynthesizer>
<CsOptions>
-n	-m128
</CsOptions>
<CsInstruments>
ksmps	=	32

		instr	1

;create	array	and	fill	with	numbers	1..10	resp	.1..1
kArr1[]	fillarray	1,	2,	3,	4,	5,	6,	7,	8,	9,	10
kArr2[]	fillarray	1,	2,	3,	5,	8,	13,	21,	34,	55,	89

;print	contents
								printf		"%s",	1,	"\nkArr1:\n"
kndx				=							0
		until	kndx	==	lenarray(kArr1)	do
								printf		"kArr1[%d]	=	%f\n",	kndx+1,	kndx,	kArr1[kndx]
kndx				+=						1
		od
								printf		"%s",	1,	"\nkArr2:\n"
kndx				=							0
		until	kndx	==	lenarray(kArr2)	do
								printf		"kArr2[%d]	=	%f\n",	kndx+1,	kndx,	kArr2[kndx]
kndx				+=						1
		od

;add	arrays
kArr3[]	=							kArr1	+	kArr2

;print	content
								printf		"%s",	1,	"\nkArr1	+	kArr2:\n"
kndx				=							0
		until	kndx	==	lenarray(kArr3)	do
								printf		"kArr3[%d]	=	%f\n",	kndx+1,	kndx,	kArr3[kndx]
kndx				+=						1
		od

;subtract	arrays
kArr4[]	=							kArr1	-	kArr2

;print	content
								printf		"%s",	1,	"\nkArr1	-	kArr2:\n"
kndx				=							0
		until	kndx	==	lenarray(kArr4)	do
								printf		"kArr4[%d]	=	%f\n",	kndx+1,	kndx,	kArr4[kndx]
kndx				+=						1
		od

;multiply	arrays
kArr5[]	=							kArr1	*	kArr2

;print	content
								printf		"%s",	1,	"\nkArr1	*	kArr2:\n"
kndx				=							0
		until	kndx	==	lenarray(kArr5)	do
								printf		"kArr5[%d]	=	%f\n",	kndx+1,	kndx,	kArr5[kndx]
kndx	+=	1
		od

;divide	arrays
kArr6[]	=							kArr1	/	kArr2

ARRAYS

232

;print	content
								printf		"%s",	1,	"\nkArr1	/	kArr2:\n"
kndx				=							0
		until	kndx	==	lenarray(kArr6)	do
								printf		"kArr5[%d]	=	%f\n",	kndx+1,	kndx,	kArr6[kndx]
kndx	+=	1
		od

;turnoff
								turnoff

		endin

</CsInstruments>
<CsScore>
i	1	0	.1
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

MIN,	MAX,	SUM,	SCALE

	minarray	and	maxarray	return	the	smallest	/	largest	value	in	an	array,	
and	optionally	its	index:

kMin	[,kMinIndx]	minarray	kArr
kMax	[,kMaxIndx]	maxarray	kArr	

Here	is	a	simple	example	of	these	operations:

			EXAMPLE	03E16_min_max_array.csd			

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
ksmps	=	32

											seed							0

instr	1
;create	an	array	with	10	elements
kArr[]					init							10
;fill	in	random	numbers	and	print	them	out
kIndx						=										0
		until	kIndx	==	10	do
kNum							random					-100,	100
kArr[kIndx]	=									kNum
											printf					"kArr[%d]	=	%10f\n",	kIndx+1,	kIndx,	kNum
kIndx						+=									1
		od
;investigate	minimum	and	maximum	number	and	print	them	out
kMin,	kMinIndx	minarray	kArr
kMax,	kMaxIndx	maxarray	kArr
											printf					"Minimum	of	kArr	=	%f	at	index	%d\n",	kIndx+1,	kMin,	kMinIndx
											printf					"Maximum	of	kArr	=	%f	at	index	%d\n\n",	kIndx+1,	kMax,	kMaxIndx
											turnoff
endin
</CsInstruments>
<CsScore>
i1	0	0.1
</CsScore>
</CsoundSynthesizer>

ARRAYS

233

;example	by	joachim	heintz	

This	would	create	a	different	output	each	time	you	run	it;	for	
instance:

kArr[0]	=		-2.071383

		

kArr[1]	=		97.150272

		

kArr[2]	=		21.187835

		

kArr[3]	=		72.199983

		

kArr[4]	=	-64.908241

		

kArr[5]	=		-7.276434

		

kArr[6]	=	-51.368650

		

kArr[7]	=		41.324552

		

kArr[8]	=		-8.483235

		

kArr[9]	=		77.560219

		

Minimum	of	kArr	=	-64.908241	at	index	4

		

Maximum	of	kArr	=	97.150272	at	index	1	

		

sumarray	simply	returns	the	sum	of	all	values	in	an	(numerical)	array.	
Here	is	a	simple	example:

			EXAMPLE	03E17_sumarray.csd			
		

<CsoundSynthesizer>
<CsOptions>

ARRAYS

234

-nm0
</CsOptions>
<CsInstruments>
ksmps	=	32

											seed							0

instr	1
;create	an	array	with	10	elements
kArr[]					init							10
;fill	in	random	numbers	and	print	them	out
kIndx						=										0
		until	kIndx	==	10	do
kNum							random					0,	10
kArr[kIndx]	=									kNum
											printf					"kArr[%d]	=	%10f\n",	kIndx+1,	kIndx,	kNum
kIndx						+=									1
		od
;calculate	sum	of	all	values	and	print	it	out
kSum							sumarray			kArr
											printf					"Sum	of	all	values	in	kArr	=	%f\n",	kIndx+1,	kSum
											turnoff
endin
</CsInstruments>
<CsScore>
i1	0	0.1
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

Finally,	scalearray	scales	the	values	of	a	given	numerical	array	
between	a	minimum	and	a	maximum	value.	These	lines	...

kArr[]	fillarray		1,	3,	9,	5,	6
							scalearray	kArr,	1,	3		

...	change	kArr	from	[1,	3,	9,	5,	6]	to	[1,	1.5,	3,	2,	2.25].	Here	is	a	
simple	example:

			EXAMPLE	03E18_scalearray.csd			

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
ksmps	=	32

											seed							0

instr	1
;create	an	array	with	10	elements
kArr[]					init							10
;fill	in	random	numbers	and	print	them	out
											printks				"kArr	in	maximum	range	0..100:\n",	0
kIndx						=										0
		until	kIndx	==	10	do
kNum							random					0,	100
kArr[kIndx]	=									kNum
											printf					"kArr[%d]	=	%10f\n",	kIndx+1,	kIndx,	kNum
kIndx						+=									1
		od
;scale	numbers	0...1	and	print	them	out	again
											scalearray	kArr,	0,	1
kIndx						=										0

ARRAYS

235

											printks				"kArr	in	range	0..1\n",	0
		until	kIndx	==	10	do
											printf					"kArr[%d]	=	%10f\n",	kIndx+1,	kIndx,	kArr[kIndx]
kIndx						+=									1
		od
											turnoff
endin
</CsInstruments>
<CsScore>
i1	0	0.1
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

One	possible	output:

kArr	in	maximum	range	0..100:

		

kArr[0]	=		93.898027

		

kArr[1]	=		98.554934

		

kArr[2]	=		37.244273

		

kArr[3]	=		58.581820

		

kArr[4]	=		71.195263

		

kArr[5]	=		11.948356

		

kArr[6]	=			3.493777

		

kArr[7]	=		13.688537

		

kArr[8]	=		24.875835

		

kArr[9]	=		52.205258

		

kArr	in	range	0..1

		

kArr[0]	=			0.951011

		

ARRAYS

236

kArr[1]	=			1.000000

		

kArr[2]	=			0.355040

		

kArr[3]	=			0.579501

		

kArr[4]	=			0.712189

		

kArr[5]	=			0.088938

		

kArr[6]	=			0.000000

		

kArr[7]	=			0.107244

		

kArr[8]	=			0.224929

		

kArr[9]	=			0.512423

		

FUNCTION	MAPPING	ON	AN	ARRAY:	MAPARRAY

	maparray	applies	the	function	"fun"	(which	needs	to	have	one	input	
and	one	output	argument)	to	each	element	of	the	vector	kArrSrc	and	
stores	the	result	in	kArrRes	(which	needs	to	have	been	created	
previously):

kArrRes		maparray	kArrSrc,	"fun"	

Possible	functions	are	for	instance	abs,	ceil,	exp,	floor,	frac,	int,	log,	
log10,	round,	sqrt.	The	following	example	applies	different	functions	
sequentially	to	the	source	array:

			EXAMPLE	03E19_maparray.csd			

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
ksmps	=	32

ARRAYS

237

instr	1

;create	an	array	and	fill	with	numbers
kArrSrc[]	array	1.01,	2.02,	3.03,	4.05,	5.08,	6.13,	7.21

;print	source	array
								printf		"%s",	1,	"\nSource	array:\n"
kndx				=							0
		until	kndx	==	lenarray(kArrSrc)	do
								printf		"kArrSrc[%d]	=	%f\n",	kndx+1,	kndx,	kArrSrc[kndx]
kndx				+=						1
		od

;create	an	empty	array	for	the	results
kArrRes[]	init		7

;apply	the	sqrt()	function	to	each	element
kArrRes	maparray	kArrSrc,	"sqrt"

;print	the	result
								printf		"%s",	1,	"\nResult	after	applying	sqrt()	to	source	array\n"
kndx				=							0
		until	kndx	==	lenarray(kArrRes)	do
								printf		"kArrRes[%d]	=	%f\n",	kndx+1,	kndx,	kArrRes[kndx]
kndx				+=						1
		od

;apply	the	log()	function	to	each	element
kArrRes	maparray	kArrSrc,	"log"

;print	the	result
								printf		"%s",	1,	"\nResult	after	applying	log()	to	source	array\n"
kndx				=							0
		until	kndx	==	lenarray(kArrRes)	do
								printf		"kArrRes[%d]	=	%f\n",	kndx+1,	kndx,	kArrRes[kndx]
kndx				+=						1
		od

;apply	the	int()	function	to	each	element
kArrRes	maparray	kArrSrc,	"int"

;print	the	result
								printf		"%s",	1,	"\nResult	after	applying	int()	to	source	array\n"
kndx				=							0
		until	kndx	==	lenarray(kArrRes)	do
								printf		"kArrRes[%d]	=	%f\n",	kndx+1,	kndx,	kArrRes[kndx]
kndx					+=					1
		od

;apply	the	frac()	function	to	each	element
kArrRes	maparray	kArrSrc,	"frac"

;print	the	result
								printf		"%s",	1,	"\nResult	after	applying	frac()	to	source	array\n"
kndx				=							0
		until	kndx	==	lenarray(kArrRes)	do
								printf		"kArrRes[%d]	=	%f\n",	kndx+1,	kndx,	kArrRes[kndx]
kndx	+=	1
		od

;turn	instrument	instance	off
								turnoff

endin

</CsInstruments>
<CsScore>
i	1	0	0.1
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

ARRAYS

238

Prints:
		

Source	array:

		

kArrSrc[0]	=	1.010000

		

kArrSrc[1]	=	2.020000

		

kArrSrc[2]	=	3.030000

		

kArrSrc[3]	=	4.050000

		

kArrSrc[4]	=	5.080000

		

kArrSrc[5]	=	6.130000

		

kArrSrc[6]	=	7.210000

		

Result	after	applying	sqrt()	to	source	array

		

kArrRes[0]	=	1.004988

		

kArrRes[1]	=	1.421267

		

kArrRes[2]	=	1.740690

		

kArrRes[3]	=	2.012461

		

kArrRes[4]	=	2.253886

		

kArrRes[5]	=	2.475884

		

kArrRes[6]	=	2.685144

		

Result	after	applying	log()	to	source	array

		

kArrRes[0]	=	0.009950

LIVE	EVENTS

239

LIVE	EVENTS

The	basic	concept	of	Csound	from	the	early	days	of	the	program	is	
still	valid	and	fertile	because	it	is	a	familiar	musical	one.	You	create	
a	set	of	instruments	and	instruct	them	to	play	at	various	times.	These	
calls	of	instrument	instances,	and	their	execution,	are	called	
"instrument	events".

Whenever	any	Csound	code	is	executed,	it	has	to	be	compiled	first.	
Since	Csound6,	you	can	change	the	code	of	any	running	Csound	
instance,	and	recompile	it	on	the	fly.	There	are	basically	two	opcodes	
for	this	"live	coding":	compileorc	re-compiles	any	existing	orc	file,	
whereas	compilestr	compiles	any	string.	At	the	end	of	this	chapter,	
we	will	present	some	simple	examples	for	both	methods,	followed	by	
a	description	how	to	re-compile	code	on	the	fly	in	CsoundQt.
		

The	scheme	of	instruments	and	events	can	be	instigated	in	a	number	
of	ways.	In	the	classical	approach	you	think	of	an	"orchestra"	with	a	
number	of	musicians	playing	from	a	"score",	but	you	can	also	trigger	
instruments	using	any	kind	of	live	input:	from	MIDI,	from	OSC,	from	
the	command	line,	from	a	GUI	(such	as	Csound's	FLTK	widgets	or	
CsoundQt's	widgets),	from	the	API	(also	used	in	CsoundQt's	Live	
Event	Sheet).	Or	you	can	create	a	kind	of	"master	instrument",	which	
is	always	on,	and	triggers	other	instruments	using	opcodes	designed	
for	this	task,	perhaps	under	certain	conditions:	if	the	live	audio	input	
from	a	singer	has	been	detected	to	have	a	base	frequency	greater	than	
1043	Hz,	then	start	an	instrument	which	plays	a	soundfile	of	broken	
glass...

ORDER	OF	EXECUTION	REVISITED

Whatever	you	do	in	Csound	with	instrument	events,	you	must	bear	in	
mind	the	order	of	execution	that	has	been	explained	in	the	first	
chapter	of	this	section	about	the	Initialization	and	Performance	Pass:	

LIVE	EVENTS

240

instruments	are	executed	one	by	one,	both	in	the	initialization	pass	
and	in	each	control	cycle,	and	the	order	is	determined	by	the	
instrument	number.

It	is	worth	to	have	a	closer	look	to	what	is	happening	exactly	in	time	
if	you	trigger	an	instrument	from	inside	another	instrument.	The	first	
example	shows	the	result	when	instrument	2	triggers	instrument	1	and	
instrument	3	at	init-time.

			EXAMPLE	03F01_OrderOfExc_event_i.csd		

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	441

instr	1
kCycle	timek
prints	"Instrument	1	is	here	at	initialization.\n"
printks	"Instrument	1:	kCycle	=	%d\n",	0,	kCycle
endin

instr	2
kCycle	timek
prints	"		Instrument	2	is	here	at	initialization.\n"
printks	"		Instrument	2:	kCycle	=	%d\n",	0,	kCycle
event_i	"i",	3,	0,	.02
event_i	"i",	1,	0,	.02
endin

instr	3
kCycle	timek
prints	"				Instrument	3	is	here	at	initialization.\n"
printks	"				Instrument	3:	kCycle	=	%d\n",	0,	kCycle
endin

</CsInstruments>
<CsScore>
i	2	0	.02
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

This	is	the	output:
		
		Instrument	2	is	here	at	initialization.

		

				Instrument	3	is	here	at	initialization.

		

Instrument	1	is	here	at	initialization.

		

LIVE	EVENTS

241

Instrument	1:	kCycle	=	1

		

		Instrument	2:	kCycle	=	1

		

				Instrument	3:	kCycle	=	1

		

Instrument	1:	kCycle	=	2

		

		Instrument	2:	kCycle	=	2

		

				Instrument	3:	kCycle	=	2	

		

Instrument	2	is	the	first	one	to	initialize,	because	it	is	the	only	one	
which	is	called	by	the	score.	Then	instrument	3	is	initialized,	because	
it	is	called	first	by	instrument	2.	The	last	one	is	instrument	1.	All	this	
is	done	before	the	actual	performance	begins.	In	the	performance	
itself,	starting	from	the	first	control	cycle,	all	instruments	are	
executed	by	their	order.

Let	us	compare	now	what	is	happening	when	instrument	2	calls	
instrument	1	and	3	during	the	performance	(=	at	k-time):

			EXAMPLE	03F02_OrderOfExc_event_k.csd		
		

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	441
0dbfs	=	1
nchnls	=	1

instr	1
kCycle	timek
prints	"Instrument	1	is	here	at	initialization.\n"
printks	"Instrument	1:	kCycle	=	%d\n",	0,	kCycle
endin

instr	2
kCycle	timek
prints	"		Instrument	2	is	here	at	initialization.\n"
printks	"		Instrument	2:	kCycle	=	%d\n",	0,	kCycle
	if	kCycle	==	1	then

LIVE	EVENTS

242

event	"i",	3,	0,	.02
event	"i",	1,	0,	.02
	endif
printks	"		Instrument	2:	still	in	kCycle	=	%d\n",	0,	kCycle
endin

instr	3
kCycle	timek
prints	"				Instrument	3	is	here	at	initialization.\n"
printks	"				Instrument	3:	kCycle	=	%d\n",	0,	kCycle
endin

instr	4
kCycle	timek
prints	"						Instrument	4	is	here	at	initialization.\n"
printks	"						Instrument	4:	kCycle	=	%d\n",	0,	kCycle
endin

</CsInstruments>
<CsScore>
i	4	0	.02
i	2	0	.02
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

This	is	the	output:
		
		Instrument	2	is	here	at	initialization.

		

						Instrument	4	is	here	at	initialization.

		

		Instrument	2:	kCycle	=	1

		

		Instrument	2:	still	in	kCycle	=	1

		

						Instrument	4:	kCycle	=	1

		

				Instrument	3	is	here	at	initialization.

		

Instrument	1	is	here	at	initialization.

		

Instrument	1:	kCycle	=	2

		

		Instrument	2:	kCycle	=	2

		

		Instrument	2:	still	in	kCycle	=	2

		

LIVE	EVENTS

243

				Instrument	3:	kCycle	=	2

		

						Instrument	4:	kCycle	=	2	

		

	Instrument	2	starts	with	its	init-pass,	and	then	instrument	4	is	
initialized.	As	you	see,	the	reverse	order	of	the	scorelines	has	no	
effect;	the	instruments	which	start	at	the	same	time	are	executed	in	
ascending	order,	depending	on	their	numbers.

In	this	first	cycle,	instrument	2	calls	instrument	3	and	1.	As	you	see	
by	the	output	of	instrument	4,	the	whole	control	cycle	is	finished	first,	
before	instrument	3	and	1	(in	this	order)	are	initialized.1		These	both	
instruments	start	their	performance	in	cycle	number	two,	where	they	
find	themselves	in	the	usual	order:	instrument	1	before	instrument	2,	
then	instrument	3	before	instrument	4.

	Usually	you	will	not	need	to	know	all	of	this	with	such	precise	
timing.	But	in	case	you	experience	any	problems,	a	clearer	awareness	
of	the	process	may	help.
		

INSTRUMENT	EVENTS	FROM	THE	SCORE

This	is	the	classical	way	of	triggering	instrument	events:	you	write	a	
list	in	the	score	section	of	a	.csd	file.	Each	line	which	begins	with	an	
"i",	is	an	instrument	event.	As	this	is	very	simple,	and	examples	can	
be	found	easily,	let	us	focus	instead	on	some	additional	features	
which	can	be	useful	when	you	work	in	this	way.	Documentation	for	
these	features	can	be	found	in	the	Score	Statements	section	of	the	
Canonical	Csound	Reference	Manual.	Here	are	some	examples:

			EXAMPLE	03F03_Score_tricks.csd			

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>

LIVE	EVENTS

244

;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giWav					ftgen					0,	0,	2^10,	10,	1,	.5,	.3,	.1

		instr	1
kFadout			init						1
krel						release			;returns	"1"	if	last	k-cycle
	if	krel	==	1	&&	p3	<	0	then	;if	so,	and	negative	p3:
										xtratim			.5							;give	0.5	extra	seconds
kFadout			linseg				1,	.5,	0	;and	make	fade	out
	endif
kEnv						linseg				0,	.01,	p4,	abs(p3)-.1,	p4,	.09,	0;	normal	fade	out
aSig						poscil				kEnv*kFadout,	p5,	giWav
										outs						aSig,	aSig
		endin

</CsInstruments>
<CsScore>
t	0	120																						;set	tempo	to	120	beats	per	minute
i				1				0				1				.2			400	;play	instr	1	for	one	second
i				1				2			-10			.5			500	;play	instr	1	indefinetely	(negative	p3)
i			-1				5				0													;turn	it	off	(negative	p1)
;	--	turn	on	instance	1	of	instr	1	one	sec	after	the	previous	start
i				1.1		^+1		-10		.2			600
i				1.2		^+2		-10		.2			700	;another	instance	of	instr	1
i			-1.2		^+2		0													;turn	off	1.2
;	--	turn	off	1.1	(dot	=	same	as	the	same	p-field	above)
i			-1.1		^+1		.
s																												;end	of	a	section,	so	time	begins	from	new	at	zero
i				1				1				1				.2			800
r	5																										;repeats	the	following	line	(until	the	next	"s")
i				1			.25		.25			.2			900
s
v	2																										;lets	time	be	double	as	long
i				1				0				2				.2			1000
i				1				1				1				.2			1100
s
v	0.5																								;lets	time	be	half	as	long
i				1				0				2				.2			1200
i				1				1				1				.2			1300
s																												;time	is	normal	now	again
i				1				0				2				.2			1000
i				1				1				1				.2			900
s
;	--	make	a	score	loop	(4	times)	with	the	variable	"LOOP"
{4	LOOP
i				1				[0	+	4	*	$LOOP.]				3				.2			[1200	-	$LOOP.	*	100]
i				1				[1	+	4	*	$LOOP.]				2				.				[1200	-	$LOOP.	*	200]
i				1				[2	+	4	*	$LOOP.]				1				.				[1200	-	$LOOP.	*	300]
}
e
</CsScore>
</CsoundSynthesizer>

Triggering	an	instrument	with	an	indefinite	duration	by	setting	p3	to	
any	negative	value,	and	stopping	it	by	a	negative	p1	value,	can	be	an	
important	feature	for	live	events.	If	you	turn	instruments	off	in	this	
way	you	may	have	to	add	a	fade	out	segment.	One	method	of	doing	
this	is	shown	in	the	instrument	above	with	a	combination	of	the	
release	and	the	xtratim	opcodes.	Also	note	that	you	can	start	and	stop	
certain	instances	of	an	instrument	with	a	floating	point	number	as	p1.

LIVE	EVENTS

245

USING	MIDI	NOTE-ON	EVENTS

Csound	has	a	particular	feature	which	makes	it	very	simple	to	trigger	
instrument	events	from	a	MIDI	keyboard.	Each	MIDI	Note-On	event	
can	trigger	an	instrument,	and	the	related	Note-Off	event	of	the	same	
key	stops	the	related	instrument	instance.	This	is	explained	more	in	
detail	in	the	chapter	Triggering	Instrument	Instances	in	the	MIDI	
section	of	this	manual.	Here,	just	a	small	example	is	shown.	Simply	
connect	your	MIDI	keyboard	and	it	should	work.

			EXAMPLE	03F04_Midi_triggered_events.csd			

<CsoundSynthesizer>
<CsOptions>
-Ma	-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giSine				ftgen					0,	0,	2^10,	10,	1
										massign			0,	1;	assigns	all	midi	channels	to	instr	1

		instr	1
iFreq					cpsmidi			;gets	frequency	of	a	pressed	key
iAmp						ampmidi			8	;gets	amplitude	and	scales	0-8
iRatio				random				.9,	1.1	;ratio	randomly	between	0.9	and	1.1
aTone					foscili			.1,	iFreq,	1,	iRatio/5,	iAmp+1,	giSine	;fm
aEnv						linenr				aTone,	0,	.01,	.01	;	avoiding	clicks	at	the	note-end
										outs						aEnv,	aEnv
		endin

</CsInstruments>
<CsScore>
f	0	36000;	play	for	10	hours
e
</CsScore>
</CsoundSynthesizer>

USING	WIDGETS

If	you	want	to	trigger	an	instrument	event	in	realtime	with	a	
Graphical	User	Interface,	it	is	usually	a	"Button"	widget	which	will	
do	this	job.	We	will	see	here	a	simple	example;	first	implemented	
using	Csound's	FLTK	widgets,	and	then	using	CsoundQt's	widgets.

FLTK	BUTTON

LIVE	EVENTS

246

This	is	a	very	simple	example	demonstrating	how	to	trigger	an	
instrument	using	an	FLTK	button.	A	more	extended	example	can	be	
found	here.

			EXAMPLE	03F05_FLTK_triggered_events.csd			

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

						;	--	create	a	FLTK	panel	--
										FLpanel			"Trigger	By	FLTK	Button",	300,	100,	100,	100
						;	--	trigger	instr	1	(equivalent	to	the	score	line	"i	1	0	1")k1,	ih1			FLbutton		
"Push	me!",	0,	0,	1,	150,	40,	10,	25,	0,	1,	0,	1
						;	--	trigger	instr	2
k2,	ih2			FLbutton		"Quit",	0,	0,	1,	80,	40,	200,	25,	0,	2,	0,	1
										FLpanelEnd;	end	of	the	FLTK	panel	section
										FLrun					;	run	FLTK
										seed						0;	random	seed	different	each	time

		instr	1
idur						random				.5,	3;	recalculate	instrument	duration
p3								=									idur;	reset	instrument	duration
ioct						random				8,	11;	random	values	between	8th	and	11th	octave
idb							random				-18,	-6;	random	values	between	-6	and	-18	dB
aSig						poscil				ampdb(idb),	cpsoct(ioct)
aEnv						transeg			1,	p3,	-10,	0
										outs						aSig*aEnv,	aSig*aEnv
		endin

instr	2
										exitnow
endin

</CsInstruments>
<CsScore>
f	0	36000
e
</CsScore>
</CsoundSynthesizer>

Note	that	in	this	example	the	duration	of	an	instrument	event	is	
recalculated	when	the	instrument	is	initialised.	This	is	done	using	the	
statement	"p3	=	i...".	This	can	be	a	useful	technique	if	you	want	the	
duration	that	an	instrument	plays	for	to	be	different	each	time	it	is	
called.	In	this	example	duration	is	the	result	of	a	random	function'.	
The	duration	defined	by	the	FLTK	button	will	be	overwritten	by	any	
other	calculation	within	the	instrument	itself	at	i-time.

CSOUNDQT	BUTTON

LIVE	EVENTS

247

In	CsoundQt,	a	button	can	be	created	easily	from	the	submenu	in	a	
widget	panel:

	

In	the	Properties	Dialog	of	the	button	widget,	make	sure	you	have	
selected	"event"	as	Type.	Insert	a	Channel	name,	and	at	the	bottom	
type	in	the	event	you	want	to	trigger	-	as	you	would	if	writing	a	line	
in	the	score.

In	your	Csound	code,	you	need	nothing	more	than	the	instrument	you	
want	to	trigger:

	

LIVE	EVENTS

248

For	more	information	about	CsoundQt,	read	the	CsoundQt	chapter	in	
the	'Frontends'	section	of	this	manual.

USING	A	REALTIME	SCORE

COMMAND	LINE	WITH	THE	-L	STDIN	OPTION

If	you	use	any	.csd	with	the	option	"-L	stdin"	(and	the	-odac	option	
for	realtime	output),	you	can	type	any	score	line	in	realtime	(sorry,	
this	does	not	work	for	Windows).	For	instance,	save	this	.csd	
anywhere	and	run	it	from	the	command	line:

			EXAMPLE	03F06_Commandline_rt_events.csd			

<CsoundSynthesizer>
<CsOptions>
-L	stdin	-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

										seed						0;	random	seed	different	each	time

		instr	1
idur						random				.5,	3;	calculate	instrument	duration
p3								=									idur;	reset	instrument	duration
ioct						random				8,	11;	random	values	between	8th	and	11th	octave
idb							random				-18,	-6;	random	values	between	-6	and	-18	dB
aSig						oscils				ampdb(idb),	cpsoct(ioct),	0
aEnv						transeg			1,	p3,	-10,	0
										outs						aSig*aEnv,	aSig*aEnv
		endin

</CsInstruments>
<CsScore>
f	0	36000
e
</CsScore>
</CsoundSynthesizer>

If	you	run	it	by	typing	and	returning	a	command	line	like	this	...

...	you	should	get	a	prompt	at	the	end	of	the	Csound	messages:

LIVE	EVENTS

249

	

If	you	now	type	the	line	"i	1	0	1"	and	press	return,	you	should	hear	
that	instrument	1	has	been	executed.	After	three	times	your	messages	
may	look	like	this:

	

CSOUNDQT'S	LIVE	EVENT	SHEET

In	general,	this	is	the	method	that	CsoundQt	uses	and	it	is	made	

LIVE	EVENTS

250

available	to	the	user	in	a	flexible	environment	called	the	Live	Event	
Sheet.	Have	a	look	in	the	CsoundQt	frontend	to	see	more	of	the	
possibilities	of	"firing"	live	instrument	events	using	the	Live	Event	
Sheet.2	

	

BY	CONDITIONS

We	have	discussed	first	the	classical	method	of	triggering	instrument	
events	from	the	score	section	of	a	.csd	file,	then	we	went	on	to	look	at	
different	methods	of	triggering	real	time	events	using	MIDI,	by	using	
widgets,	and	by	using	score	lines	inserted	live.	We	will	now	look	at	
the	Csound	orchestra	itself	and	to	some	methods	by	which	an	
instrument	can	internally	trigger	another	instrument.	The	pattern	of	
triggering	could	be	governed	by	conditionals,	or	by	different	kinds	of	
loops.	As	this	"master"	instrument	can	itself	be	triggered	by	a	
realtime	event,	you	have	unlimited	options	available	for	combining	
the	different	methods.

Let's	start	with	conditionals.	If	we	have	a	realtime	input,	we	may	
want	to	define	a	threshold,	and	trigger	an	event

1.	 if	we	cross	the	threshold	from	below	to	above;
2.	 if	we	cross	the	threshold	from	above	to	below.

In	Csound,	this	could	be	implemented	using	an	orchestra	of	three	
instruments.	The	first	instrument	is	the	master	instrument.	It	receives	
the	input	signal	and	investigates	whether	that	signal	is	crossing	the	

LIVE	EVENTS

251

threshold	and	if	it	does	whether	it	is	crossing	from	low	to	high	or	
from	high	to	low.	If	it	crosses	the	threshold	from	low	ot	high	the	
second	instrument	is	triggered,	if	it	crosses	from	high	to	low	the	third	
instrument	is	triggered.

			EXAMPLE	03F07_Event_by_condition.csd			

<CsoundSynthesizer>
<CsOptions>
-iadc	-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

										seed						0;	random	seed	different	each	time

		instr	1;	master	instrument
ichoose			=									p4;	1	=	real	time	audio,	2	=	random	amplitude	movement
ithresh			=									-12;	threshold	in	dB
kstat					init						1;	1	=	under	the	threshold,	2	=	over	the	threshold
;;CHOOSE	INPUT	SIGNAL
	if	ichoose	==	1	then
ain							inch						1
	else
kdB							randomi			-18,	-6,	1
ain							pinkish			ampdb(kdB)
	endif
;;MEASURE	AMPLITUDE	AND	TRIGGER	SUBINSTRUMENTS	IF	THRESHOLD	IS	CROSSED
afoll					follow				ain,	.1;	measure	mean	amplitude	each	1/10	second
kfoll					downsamp		afoll
	if	kstat	==	1	&&	dbamp(kfoll)	>	ithresh	then;	transition	down->up
										event					"i",	2,	0,	1;	call	instr	2
										printks			"Amplitude	=	%.3f	dB%n",	0,	dbamp(kfoll)
kstat					=									2;	change	status	to	"up"
	elseif	kstat	==	2	&&	dbamp(kfoll)	<	ithresh	then;	transition	up->down
										event					"i",	3,	0,	1;	call	instr	3
										printks			"Amplitude	=	%.3f	dB%n",	0,	dbamp(kfoll)
kstat					=									1;	change	status	to	"down"
	endif
		endin

		instr	2;	triggered	if	threshold	has	been	crossed	from	down	to	up
asig						poscil				.2,	500
aenv						transeg			1,	p3,	-10,	0
										outs						asig*aenv,	asig*aenv
		endin

		instr	3;	triggered	if	threshold	has	been	crossed	from	up	to	down
asig						poscil				.2,	400
aenv						transeg			1,	p3,	-10,	0
										outs						asig*aenv,	asig*aenv
		endin

</CsInstruments>
<CsScore>
i	1	0	1000	2	;change	p4	to	"1"	for	live	input
e
</CsScore>
</CsoundSynthesizer>

USING	I-RATE	LOOPS	FOR	CALCULATING

LIVE	EVENTS

252

A	POOL	OF	INSTRUMENT	EVENTS

You	can	perform	a	number	of	calculations	at	init-time	which	lead	to	a	
list	of	instrument	events.	In	this	way	you	are	producing	a	score,	but	
inside	an	instrument.	The	score	events	are	then	executed	later.

Using	this	opportunity	we	can	introduce	the	scoreline	/	scoreline_i	
opcode.	It	is	quite	similar	to	the	event	/	event_i	opcode	but	has	two	
major	benefits:

You	can	write	more	than	one	scoreline	by	using	"{{"	at	the	
beginning	and	"}}"	at	the	end.
You	can	send	a	string	to	the	subinstrument	(which	is	not	
possible	with	the	event	opcode).

Let's	look	at	a	simple	example	for	executing	score	events	from	an	
instrument	using	the	scoreline	opcode:

			EXAMPLE	03F08_Generate_event_pool.csd			

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

										seed						0;	random	seed	different	each	time

		instr	1	;master	instrument	with	event	pool
										scoreline_i	{{i	2	0	2	7.09
																								i	2	2	2	8.04
																								i	2	4	2	8.03
																								i	2	6	1	8.04}}
		endin

		instr	2	;plays	the	notes
asig						pluck					.2,	cpspch(p4),	cpspch(p4),	0,	1
aenv						transeg			1,	p3,	0,	0
										outs						asig*aenv,	asig*aenv
		endin

</CsInstruments>
<CsScore>
i	1	0	7
e
</CsScore>
</CsoundSynthesizer>

LIVE	EVENTS

253

With	good	right,	you	might	say:	"OK,	that's	nice,	but	I	can	also	write	
scorelines	in	the	score	itself!"	That's	right,	but	the	advantage	with	the	
scoreline_i	method	is	that	you	can	render	the	score	events	in	an	
instrument,	and	then	send	them	out	to	one	or	more	instruments	to	
execute	them.	This	can	be	done	with	the	sprintf	opcode,	which	
produces	the	string	for	scoreline	in	an	i-time	loop	(see	the	chapter	
about	control	structures).

			EXAMPLE	03F09_Events_sprintf.csd			

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giPch					ftgen					0,	0,	4,	-2,	7.09,	8.04,	8.03,	8.04
										seed						0;	random	seed	different	each	time

		instr	1	;	master	instrument	with	event	pool
itimes				=									7	;number	of	events	to	produce
icnt						=									0	;counter
istart				=									0
Slines				=									""
loop:															;start	of	the	i-time	loop
idur						random				1,	2.9999	;duration	of	each	note:
idur						=									int(idur)	;either	1	or	2
itabndx			random				0,	3.9999	;index	for	the	giPch	table:
itabndx			=									int(itabndx)	;0-3
ipch						table					itabndx,	giPch	;random	pitch	value	from	the	table
Sline					sprintf			"i	2	%d	%d	%.2f\n",	istart,	idur,	ipch	;new	scoreline
Slines				strcat				Slines,	Sline	;append	to	previous	scorelines
istart				=									istart	+	idur	;recalculate	start	for	next	scoreline
										loop_lt			icnt,	1,	itimes,	loop	;end	of	the	i-time	loop
										puts						Slines,	1	;print	the	scorelines
										scoreline_i	Slines	;execute	them
iend						=									istart	+	idur	;calculate	the	total	duration
p3								=									iend	;set	p3	to	the	sum	of	all	durations
										print					p3	;print	it
		endin

		instr	2	;plays	the	notes
asig						pluck					.2,	cpspch(p4),	cpspch(p4),	0,	1
aenv						transeg			1,	p3,	0,	0
										outs						asig*aenv,	asig*aenv
		endin

</CsInstruments>
<CsScore>
i	1	0	1	;p3	is	automatically	set	to	the	total	duration
e
</CsScore>
</CsoundSynthesizer>

In	this	example,	seven	events	have	been	rendered	in	an	i-time	loop	in	
instrument	1.	The	result	is	stored	in	the	string	variable	Slines.	This	

LIVE	EVENTS

254

string	is	given	at	i-time	to	scoreline_i,	which	executes	them	then	one	
by	one	according	to	their	starting	times	(p2),	durations	(p3)	and	other	
parameters.

Instead	of	collecting	all	score	lines	in	a	single	string,	you	can	also	
execute	them	inside	the	i-time	loop.	Also	in	this	way	all	the	single	
score	lines	are	added	to	Csound's	event	pool.	The	next	example	shows	
an	alternative	version	of	the	previous	one	by	adding	the	instrument	
events	one	by	one	in	the	i-time	loop,	either	with	event_i	(instr	1)	or	
with	scoreline_i	(instr	2):
		

			EXAMPLE	03F10_Events_collected.csd			

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giPch					ftgen					0,	0,	4,	-2,	7.09,	8.04,	8.03,	8.04
										seed						0;	random	seed	different	each	time

		instr	1;	master	instrument	with	event_i
itimes				=									7;	number	of	events	to	produce
icnt						=									0;	counter
istart				=									0
loop:															;start	of	the	i-time	loop
idur						random				1,	2.9999;	duration	of	each	note:
idur						=									int(idur);	either	1	or	2
itabndx			random				0,	3.9999;	index	for	the	giPch	table:
itabndx			=									int(itabndx);	0-3
ipch						table					itabndx,	giPch;	random	pitch	value	from	the	table
										event_i			"i",	3,	istart,	idur,	ipch;	new	instrument	event
istart				=									istart	+	idur;	recalculate	start	for	next	scoreline
										loop_lt			icnt,	1,	itimes,	loop;	end	of	the	i-time	loop
iend						=									istart	+	idur;	calculate	the	total	duration
p3								=									iend;	set	p3	to	the	sum	of	all	durations
										print					p3;	print	it
		endin

		instr	2;	master	instrument	with	scoreline_i
itimes				=									7;	number	of	events	to	produce
icnt						=									0;	counter
istart				=									0
loop:															;start	of	the	i-time	loop
idur						random				1,	2.9999;	duration	of	each	note:
idur						=									int(idur);	either	1	or	2
itabndx			random				0,	3.9999;	index	for	the	giPch	table:
itabndx			=									int(itabndx);	0-3
ipch						table					itabndx,	giPch;	random	pitch	value	from	the	table
Sline					sprintf			"i	3	%d	%d	%.2f",	istart,	idur,	ipch;	new	scoreline
										scoreline_i	Sline;	execute	it
										puts						Sline,	1;	print	it
istart				=									istart	+	idur;	recalculate	start	for	next	scoreline

LIVE	EVENTS

255

										loop_lt			icnt,	1,	itimes,	loop;	end	of	the	i-time	loop
iend						=									istart	+	idur;	calculate	the	total	duration
p3								=									iend;	set	p3	to	the	sum	of	all	durations
										print					p3;	print	it
		endin

		instr	3;	plays	the	notes
asig						pluck					.2,	cpspch(p4),	cpspch(p4),	0,	1
aenv						transeg			1,	p3,	0,	0
										outs						asig*aenv,	asig*aenv
		endin

</CsInstruments>
<CsScore>
i	1	0	1
i	2	14	1
e
</CsScore>
</CsoundSynthesizer>

USING	TIME	LOOPS

As	discussed	above	in	the	chapter	about	control	structures,	a	time	
loop	can	be	built	in	Csound	either	with	the	timout	opcode	or	with	the	
metro	opcode.	There	were	also	simple	examples	for	triggering	
instrument	events	using	both	methods.	Here,	a	more	complex	
example	is	given:	A	master	instrument	performs	a	time	loop	(choose	
either	instr	1	for	the	timout	method	or	instr	2	for	the	metro	method)	
and	triggers	once	in	a	loop	a	subinstrument.	The	subinstrument	itself	
(instr	10)	performs	an	i-time	loop	and	triggers	several	instances	of	a	
sub-subinstrument	(instr	100).	Each	instance	performs	a	partial	with	
an	independent	envelope	for	a	bell-like	additive	synthesis.

			EXAMPLE	03F11_Events_time_loop.csd			

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

										seed						0

		instr	1;	time	loop	with	timout.	events	are	triggered	by	event_i	(i-rate)
loop:
idurloop		random				1,	4;	duration	of	each	loop
										timout				0,	idurloop,	play
										reinit				loop
play:
idurins			random				1,	5;	duration	of	the	triggered	instrument
										event_i			"i",	10,	0,	idurins;	triggers	instrument	10
		endin

LIVE	EVENTS

256

		instr	2;	time	loop	with	metro.	events	are	triggered	by	event	(k-rate)
kfreq					init						1;	give	a	start	value	for	the	trigger	frequency
kTrig					metro					kfreq
	if	kTrig	==	1	then	;if	trigger	impulse:
kdur						random				1,	5;	random	duration	for	instr	10
										event					"i",	10,	0,	kdur;	call	instr	10
kfreq					random				.25,	1;	set	new	value	for	trigger	frequency
	endif
		endin

		instr	10;	triggers	8-13	partials
inumparts	random				8,	14
inumparts	=									int(inumparts);	8-13	as	integer
ibasoct			random				5,	10;	base	pitch	in	octave	values
ibasfreq		=									cpsoct(ibasoct)
ipan						random				.2,	.8;	random	panning	between	left	(0)	and	right	(1)
icnt						=									0;	counter
loop:
										event_i			"i",	100,	0,	p3,	ibasfreq,	icnt+1,	inumparts,	ipan
										loop_lt			icnt,	1,	inumparts,	loop
		endin

		instr	100;	plays	one	partial
ibasfreq		=									p4;	base	frequency	of	sound	mixture
ipartnum		=									p5;	which	partial	is	this	(1	-	N)
inumparts	=									p6;	total	number	of	partials
ipan						=									p7;	panning
ifreqgen		=									ibasfreq	*	ipartnum;	general	frequency	of	this	partial
ifreqdev		random				-10,	10;	frequency	deviation	between	-10%	and	+10%
;	--	real	frequency	regarding	deviation
ifreq					=									ifreqgen	+	(ifreqdev*ifreqgen)/100
ixtratim		random				0,	p3;	calculate	additional	time	for	this	partial
p3								=									p3	+	ixtratim;	new	duration	of	this	partial
imaxamp			=									1/inumparts;	maximum	amplitude
idbdev				random				-6,	0;	random	deviation	in	dB	for	this	partial
iamp						=			imaxamp	*	ampdb(idbdev-ipartnum);	higher	partials	are	softer
ipandev			random				-.1,	.1;	panning	deviation
ipan						=									ipan	+	ipandev
aEnv						transeg			0,	.005,	0,	iamp,	p3-.005,	-10,	0
aSine					poscil				aEnv,	ifreq
aL,	aR				pan2						aSine,	ipan
										outs						aL,	aR
										prints				"ibasfreq	=	%d,	ipartial	=	%d,	ifreq	=	%d%n",\
																					ibasfreq,	ipartnum,	ifreq
		endin

</CsInstruments>
<CsScore>
i	1	0	300	;try	this,	or	the	next	line	(or	both)
;i	2	0	300
</CsScore>
</CsoundSynthesizer>

WHICH	OPCODE	SHOULD	I	USE?		

Csound	users	are	often	confused	about	the	variety	of	opcodes	
available	to	trigger	instrument	events.	Should	I	use	event,	scoreline,	
schedule	or	schedkwhen?	Should	I	use	event	or	event_i?

	Let	us	start	with	the	latter,	which	actually	leads	to	the	general	
question	about	"i-rate"	and	"k-rate"	opcodes.3	In	short:	Using	event_i	
(the	i-rate	version)	will	only	trigger	an	event	once,	when	the	

LIVE	EVENTS

257

instrument	in	which	this	opcode	works	is	initiated.	Using	event	(the	
k-rate	version)	will	trigger	an	event	potentially	again	and	again,	as	
long	as	the	instrument	runs,	in	each	control	cycle.	This	is	a	very	
simple	example:

			EXAMPLE	03F12_event_i_vs_event.csd			
		

<CsoundSynthesizer>
<CsOptions>
-nm0
</CsOptions>
<CsInstruments>
sr=44100
ksmps	=	32

;set	counters	for	the	instances	of	Called_i	and	Called_k
giInstCi	init	1
giInstCk	init	1

instr	Call_i
;call	another	instrument	at	i-rate
event_i	"i",	"Called_i",	0,	1
endin

instr	Call_k
;call	another	instrument	at	k-rate
event	"i",	"Called_k",	0,	1
endin

instr	Called_i
;report	that	instrument	starts	and	which	instance
prints	"Instance	#%d	of	Called_i	is	starting!\n",	giInstCi
;increment	number	of	instance	for	next	instance
giInstCi	+=	1
endin

instr	Called_k
;report	that	instrument	starts	and	which	instance
prints	"		Instance	#%d	of	Called_k	is	starting!\n",	giInstCk
;increment	number	of	instance	for	next	instance
giInstCk	+=	1
endin

</CsInstruments>
<CsScore>
;run	"Call_i"	for	one	second
i	"Call_i"	0	1
;run	"Call_k"	for	1/100	seconds
i	"Call_k"	0	0.01
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

Although	instrument	"Call_i"	runs	for	one	second,	the	call	to	
instrument	"Called_i"	is	only	performed	once,	because	it	is	done	with	
event_i:	at	initialization	only.	But	instrument	"Call_k"	calls	one	
instance	of	"Called_k"	in	each	control	cycle;	so	for	the	duration	of	
0.01	seconds	of	running	instrument	"Call_k",	fourteen	instances	of	

LIVE	EVENTS

258

instrument	"Called_k"	are	being	started.4	So	this	is	the	output:

Instance	#1	of	Called_i	is	starting!

		

		Instance	#1	of	Called_k	is	starting!

		

		Instance	#2	of	Called_k	is	starting!

		

		Instance	#3	of	Called_k	is	starting!

		

		Instance	#4	of	Called_k	is	starting!

		

		Instance	#5	of	Called_k	is	starting!

		

		Instance	#6	of	Called_k	is	starting!

		

		Instance	#7	of	Called_k	is	starting!

		

		Instance	#8	of	Called_k	is	starting!

		

		Instance	#9	of	Called_k	is	starting!

		

		Instance	#10	of	Called_k	is	starting!

		

		Instance	#11	of	Called_k	is	starting!

		

		Instance	#12	of	Called_k	is	starting!

		

		Instance	#13	of	Called_k	is	starting!

		

		Instance	#14	of	Called_k	is	starting!

		

So	the	first	(and	probably	most	important)	decision	in	asking	"which	
opcode	should	I	use",	is	the	answer	to	the	question:	"Do	I	need	an	i-

LIVE	EVENTS

259

rate	or	a	k-rate	opcode?"

I-RATE	VERSIONS:	SCHEDULE,	EVENT_I,
SCORELINE_I	

If	you	need	an	i-rate	opcode	to	trigger	an	instrument	event,	schedule	
is	the	most	basic	choice.	You	use	it	actually	exactly	the	same	as	
writing	any	score	event;	just	separting	the	parameter	fields	by	
commas	rather	by	spaces:

schedule	iInstrNum	(or	"InstrName"),	iStart,	iDur	[,	ip4]	[,	ip5]	[...]

event_i	is	very	similar:

event_i	"i",	iInstrNum	(or	"InstrName"),	iStart,	iDur	[,	ip4]	[,	ip5]	[...]

The	only	difference	between	schedule	and	event_i	is	this:	schedule	
can	only	trigger	instruments,	whereas	event_i	can	also	trigger	"f"	
events	(=	build	function	tables).

	Both,	schedule	and	event_i	have	a	restriction:	they	are	not	able	to	
send	strings	in	the	parameter	fields	p4,	p5,	...		So,	if	you	execute	this	
code	...

schedule	"bla",	0,	1,	"blu"

...	you	will	get	this	error	message	in	the	console:

ERROR:		Unable	to	find	opcode	entry	for	'schedule'	with	matching	argument	types:

		

Found:	(null)	schedule	SccS

		

scoreline_i	is	designed	to	make	this	possible.	It	takes	one	or	more	
lines	of	score	statements	which	follow	the	same	conventions	as	if	
written	in	the	score	section	itself.5	If	you	enclose	the	line(s)	by	{{	and
}},	you	can	include	as	many	strings	in	it	as	you	wish:

scoreline_i	{{
														i	"bla"	0	1	"blu"	"sound"

LIVE	EVENTS

260

														i	"bla"	1	1	"brown"	"earth"
												}}

K-RATE	VERSIONS:	EVENT,	SCORELINE,
SCHEDKWHEN

If	you	need	a	k-rate	opcode	to	trigger	an	instrument	event,	event	is	
the	basic	choice.	Its	syntax	is	very	similar	to	event_i,	but	as	described	
above,	it	works	at	k-rate	and	you	can	also	change	all	its	arguments	at	
k-rate:

event	"i",	kInstrNum	(or	"InstrName"),	kStart,	kDur	[,	kp4]	[,	kp5]	[...]

	Usually,	you	will	not	want	to	trigger	another	instrument	each	control	
cycle,	but	based	on	certain	conditions.	A	very	common	case	is	a	
"ticking"	periodic	signal,	whichs	ticks	are	being	used	as	trigger	
impulses.	The	typical	code	snippel	using	a	metro	and	the	event	
opcode	would	be:

kTrigger		metro				1	;"ticks"	once	a	second
if	kTrigger	==	1	then	;if	it	ticks
		event	"i",	"my_instr",	0,	1	;call	the	instrument
endif

In	other	words:	This	code	would	only	use	one	control-cycle	per	
second	to	call	my_instr,	and	would	do	nothing	in	the	other	control	
cycles.	The	schedkwhen	opcode	simplifies	such	typical	use	cases,	and	
adds	some	other	useful	arguments.	This	is	the	syntax:

schedkwhen	kTrigger,	kMinTim,	kMaxNum,	kInsrNum	(or	"InstrName"),	kStart,	kDur	[,	
kp4]	[,	kp5]	[...]

The	kMinTim	parameter	specifies	the	time	which	has	to	be	spent	
between	two	subsequent	calls	of	the	subinstrument.	This	is	often	quite	
useful	as	you	may	want	to	state:	"Do	not	call	the	next	instance	of	the	
subinstrument	unless	0.1	seconds	have	been	passed."	If	you	set	this	
parameter	to	zero,	there	will	be	no	time	limit	for	calling	the	
subinstrument.
		

	The	kMaxNum	parameter	specifies	the	maximum	number	of	
instances	which	run	simultaneously.	Say,	kMaxNum	=	2	and	there	are	

LIVE	EVENTS

261

indeed	two	instances	of	the	subinstrument	running,	no	other	instance	
will	be	initiated.	if	you	set	this	parameter	to	zero,	there	will	be	no	
limit	for	calling	new	instances.

So,	with	schedkwhen,	we	can	write	the	above	code	snippet	in	two	
lines	instead	of	four:

kTrigger		metro				1	;"ticks"	once	a	second
schedkwhen	kTrigger,	0,	0,	"my_instr",	0,	1

Only,	you	cannot	pass	strings	as	p-fields	via	schedkwhen	(and	event).	
So,	very	much	similar	as	described	above	for	i-rate	opcodes,	scoreline	
fills	this	gap.	Usually	we	will	use	it	with	a	condition,		as	we	did	for	
the	event	opcode:

kTrigger		metro				1	;"ticks"	once	a	second
if	kTrigger	==	1	then
		;if	it	ticks,	call	two	instruments	and	pass	strings	as	p-fields
		scoreline	{{
														i	"bla"	0	1	"blu"	"sound"
														i	"bla"	1	1	"brown"	"earth"
												}}
endif

RECOMPILATION

	As	it	has	been	mentioned	at	the	start	of	this	chapter,	since	Csound6	
you	can	re-compile	any	code	in	an	already	running	Csound	instance.	
Let	us	first	see	some	simple	examples	for	the	general	use,	and	then	a	
more	practical	approach	in	CsoundQt.

COMPILEORC	/	COMPILESTR	

The	opcode	compileorc	refers	to	a	definition	of	instruments	which	
has	been	saved	as	an	.orc	("orchestra")	file.	To	see	how	it	works,	save	
this	text	in	a	simple	text	(ASCII)	format	as	"to_recompile.orc":

instr	1
iAmp	=	.2
iFreq	=	465
aSig	oscils	iAmp,	iFreq,	0
outs	aSig,	aSig
endin

Then	save	this	csd	in	the	same	directory:

LIVE	EVENTS

262

			EXAMPLE	03F13_compileorc.csd			

<CsoundSynthesizer>
<CsOptions>
-o	dac	-d	-L	stdin	-Ma
</CsOptions>
<CsInstruments>
sr	=	44100
nchnls	=	2
ksmps	=	32
0dbfs	=	1

massign	0,	9999

instr	9999
ires	compileorc	"to_recompile.orc"
print	ires	;	0	if	compiled	successfully
event_i	"i",	1,	0,	3	;send	event
endin

</CsInstruments>
<CsScore>
i	9999	0	1
</CsScore>
</CsoundSynthesizer>

If	you	run	this	csd	in	the	terminal,	you	should	hear	a	three	seconds	
beep,	and	the	output	should	be	like	this:
		
SECTION	1:

		

new	alloc	for	instr	9999:

		

instr	9999:		ires	=	0.000

		

new	alloc	for	instr	1:

		

B		0.000	..		1.000	T		1.000	TT		1.000	M:		0.20000		0.20000

		

B		1.000	..		3.000	T		3.000	TT		3.000	M:		0.20000		0.20000

		

Score	finished	in	csoundPerform().

		

inactive	allocs	returned	to	freespace

		

end	of	score.											overall	amps:		0.20000		0.20000

		

							overall	samples	out	of	range:								0								0

LIVE	EVENTS

263

		

0	errors	in	performance

		

Having	understood	this,	it	is	easy	to	do	the	next	step.	Remove	(or	
comment	out)	the	score	line	"i	9999	0	1"	so	that	the	score	is	empty.	If	
you	start	the	csd	now,	Csound	will	run	indefinitely.	Now	call	instr	
9999	by	typing	"i	9999	0	1"	in	the	terminal	window	(if	the	option	-L	
stdin	works	for	your	setup),	or	by	pressing	any	MIDI	key	(if	you	have	
connected	a	keyboard).	You	should	hear	the	same	beep	as	before.	But	
as	the	recompile.csd	keeps	running,	you	can	change	now	the	
to_recompile.orc	instrument.	Try,	for	instance,	another	value	for	
kFreq.	Whenever	this	is	done	(do	not	forget	to	save	the	file)	and	you	
call	again	instr	9999	in	recompile.csd,	the	new	version	of	this	
instrument	is	compiled	and	then	called	immediately.
		

The	other	possibility	to	recompile	code	by	using	an	opcode	is	
compilestr.	It	will	compile	any	instrument	definition	which	is	
contained	in	a	string.	As	this	will	be	a	string	with	several	lines,	you	
will	usually	use	the	'{{'	delimiter	for	the	start	and	'}}'	for	the	end	of	
the	string.	This	is	a	basic	example:

			EXAMPLE	03F14_compilestr.csd			

<CsoundSynthesizer>
<CsOptions>
-o	dac	-d
</CsOptions>
<CsInstruments>
sr	=	44100
nchnls	=	1
ksmps	=	32
0dbfs	=	1

instr	1

	;will	fail	because	of	wrong	code
ires	compilestr	{{
instr	2
a1	oscilb	p4,	p5,	0
out	a1
endin
}}
print	ires	;	returns	-1	because	not	successfull

	;will	compile	...
ires	compilestr	{{

LIVE	EVENTS

264

instr	2
a1	oscils	p4,	p5,	0
out	a1
endin
}}
print	ires	;	...	and	returns	0

	;call	the	new	instrument
	;(note	that	the	overall	performance	is	extended)
scoreline_i	"i	2	0	3	.2	415"

endin

</CsInstruments>
<CsScore>
i1	0	1
</CsScore>
</CsoundSynthesizer>

As	you	see,	instrument	2	is	defined	inside	instrument	1,	and	compiled	
via	compilestr.	in	case	you	can	change	this	string	in	real-time	(for	
instance	in	receiving	it	via	OSC),	you	can	add	any	new	definition	of	
instruments	on	the	fly.	But	much	more	elegant	is	to	use	the	related	
method	of	the	Csound	API,	as	CsoundQt	does.
		

RE-COMPILATION	IN	CSOUNDQT	

(The	following	description	is	only	valid	if	you	have	CsoundQt	with	
PythonQt	support.	If	so,	your	CsoundQt	application	should	be	called	
CsoundQt-d-py-cs6	or	similar.	If	the	"-py"	is	missing,	you	will	
probably	not	have	PythonQt	support.)

To	see	how	easy	it	is	to	re-compile	code	of	a	running	Csound	
instance,	load	this	csd	in	CsoundQt:

			EXAMPLE	03F15_Recompile_in_CsoundQt.csd			

<CsoundSynthesizer>
<CsInstruments>
sr	=	44100
nchnls	=	1
ksmps	=	32
0dbfs	=	1

instr	1
a1	poscil	.2,	500
out	a1
endin

</CsInstruments>
<CsScore>
r	1000
i	1	0	1

LIVE	EVENTS

265

</CsScore>
</CsoundSynthesizer>

The	r-statement	repeats	the	call	to	instr	1	for	1000	times.	Now	change	
the	frequency	of	500	in	instr	1	to	say	800.	You	will	hear	no	change,	
because	this	has	not	been	compiled	yet.	But	when	you	now	select	the	
instrument	definition	(including	the	instr	...	endin)	and	then	choose	
Edit	->	Evaluate	selection,	you	will	hear	that	in	the	next	call	of	
instrument	1	the	frequency	has	changed.	(Instead	of	selecting	code	
and	evaluation	the	selection,	you	can	also	place	the	cursor	inside	an	
instrument	and	then	choose	Edit	->	Evaluate	section.)

You	can	also	insert	new	instrument	definitions,	and	then	call	it	with	
CsoundQt's	Live	event	sheet.	You	even	need	not	save	it	-	instead	you	
can	save	several	results	of	your	live	coding	without	stopping	Csound.	
Have	fun	...
		

	

	

LINKS	AND	RELATED	OPCODES

LINKS

A	great	collection	of	interactive	examples	with	FLTK	widgets	by	Iain	
McCurdy	can	be	found	here.	See	particularily	the	"Realtime	Score	
Generation"	section.	Recently,	the	collection	has	been	ported	to	
QuteCsound	by	René	Jopi,	and	is	part	of	QuteCsound's	example	
menu.
		

An	extended	example	for	calculating	score	events	at	i-time	can	be	
found	in	the	Re-Generation	of	Stockhausen's	"Studie	II"	by	Joachim	
Heintz	(also	included	in	the	QuteCsound	Examples	menu).

RELATED	OPCODES

LIVE	EVENTS

266

event_i	/	event:	Generate	an	instrument	event	at	i-time	(event_i)	or	at	
k-time	(event).	Easy	to	use,	but	you	cannot	send	a	string	to	the	
subinstrument.

scoreline_i	/	scoreline:	Generate	an	instrument	at	i-time	(scoreline_i)	
or	at	k-time	(scoreline).	Like	event_i/event,	but	you	can	send	to	more	
than	one	instrument	but	unlike	event_i/event	you	can	send	strings.	On	
the	other	hand,	you	must	usually	preformat	your	scoreline-string	
using	sprintf.

sprintf	/	sprintfk:	Generate	a	formatted	string	at	i-time	(sprintf)	or	k-
time	(sprintfk),	and	store	it	as	a	string-variable.

-+max_str_len=10000:	Option	in	the	"CsOptions"	tag	of	a	.csd	file	
which	extend	the	maximum	string	length	to	9999	characters.

massign:	Assigns	the	incoming	MIDI	events	to	a	particular	
instrument.	It	is	also	possible	to	prevent	any	assigment	by	this	
opcode.

cpsmidi	/	ampmidi:	Returns	the	frequency	/	velocity	of	a	pressed	
MIDI	key.

release:	Returns	"1"	if	the	last	k-cycle	of	an	instrument	has	begun.

xtratim:	Adds	an	additional	time	to	the	duration	(p3)	of	an	
instrument.

turnoff	/	turnoff2:	Turns	an	instrument	off;	either	by	the	instrument	
itself	(turnoff),	or	from	another	instrument	and	with	several	options	
(turnoff2).

-p3	/	-p1:	A	negative	duration	(p3)	turns	an	instrument	on	
"indefinitely";	a	negative	instrument	number	(p1)	turns	this	
instrument	off.	See	the	examples	at	the	beginning	of	this	chapter.

-L	stdin:	Option	in	the	"CsOptions"	tag	of	a	.csd	file	which	lets	you	
type	in	realtime	score	events.

timout:	Allows	you	to	perform	time	loops	at	i-time	with	
reinitalization	passes.

metro:	Outputs	momentary	1s	with	a	definable	(and	variable)	

USER	DEFINED	OPCODES

267

USER	DEFINED	OPCODES

Opcodes	are	the	core	units	of	everything	that	Csound	does.	They	are	
like	little	machines	that	do	a	job,	and	programming	is	akin	to	
connecting	these	little	machines	to	perform	a	larger	job.	An	opcode	
usually	has	something	which	goes	into	it:	the	inputs	or	arguments,	
and	usually	it	has	something	which	comes	out	of	it:	the	output	which	
is	stored	in	one	or	more	variables.	Opcodes	are	written	in	the	
programming	language	C	(that	is	where	the	name	"Csound"	comes	
from).	If	you	want	to	create	a	new	opcode	in	Csound,	you	must	write	
it	in	C.	How	to	do	this	is	described	in	the	Extending	Csound	chapter	
of	this	manual,	and	is	also	described	in	the	relevant	chapter	of	the	
Canonical	Csound	Reference	Manual.

There	is,	however,	a	way	of	writing	your	own	opcodes	in	the	Csound	
Language	itself.	The	opcodes	which	are	written	in	this	way,	are	called
User	Defined	Opcodes	or	"UDO"s.	A	UDO	behaves	in	the	same	way	
as	a	standard	opcode:	it	has	input	arguments,	and	usually	one	or	more	
output	variables.	They	run	at	i-time	or	at	k-time.	You	use	them	as	part
of	the	Csound	Language	after	you	have	defined	and	loaded	them.

User	Defined	Opcodes	have	many	valuable	properties.	They	make	
your	instrument	code	clearer	because	they	allow	you	to	create	
abstractions	of		blocks	of	code.	Once	a	UDO	has	been	defined	it	can	
be	recalled	and	repeated	many	times	within	an	orchestra,	each	
repetition	requiring	only	a	single	line	of	code.	UDOs	allow	you	to	
build	up	your	own	library	of	functions	you	need	and	return	to	
frequently	in	your	work.	In	this	way,	you	build	your	own	Csound	
dialect	within	the	Csound	Language.	UDOs	also	represent	a	
convenient	format	with	which	to	share	your	work	in	Csound	with	
other	users.

This	chapter	explains,	initially	with	a	very	basic	example,	how	you	
can	build	your	own	UDOs,	and	what	options	they	offer.	Following	
this,	the	practice	of	loading	UDOs	in	your	.csd	file	is	shown,	followed	

USER	DEFINED	OPCODES

268

by	some	tips	in	regard	to	some	unique	capabilities	of	UDOs.	Before	
the	"Links	And	Related	Opcodes"	section	at	the	end,	some	examples	
are	shown	for	different	User	Defined	Opcode	definitions	and	
applications.

If	you	want	to	write	a	User	Defined	Opcode	in	Csound6	which	uses	
arrays,	have	a	look	at	the	end	of	chapter	03E	to	see	their	usage	and	
naming	conventions.
		

TRANSFORMING	CSOUND	INSTRUMENT
CODE	TO	A	USER	DEFINED	OPCODE	

Writing	a	User	Defined	Opcode	is	actually	very	easy	and	
straightforward.	It	mainly	means	to	extract	a	portion	of	usual	Csound	
instrument	code,	and	put	it	in	the	frame	of	a	UDO.	Let's	start	with	the	
instrument	code:

			EXAMPLE	03G01_Pre_UDO.csd			
		

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giSine				ftgen					0,	0,	2^10,	10,	1
										seed						0

		instr	1
aDel						init						0;	initialize	delay	signal
iFb							=									.7;	feedback	multiplier
aSnd						rand						.2;	white	noise
kdB							randomi			-18,	-6,	.4;	random	movement	between	-18	and	-6
aSnd						=									aSnd	*	ampdb(kdB);	applied	as	dB	to	noise
kFiltFq			randomi			100,	1000,	1;	random	movement	between	100	and	1000
aFilt					reson				aSnd,	kFiltFq,	kFiltFq/5;	applied	as	filter	center	frequency
aFilt					balance			aFilt,	aSnd;	bring	aFilt	to	the	volume	of	aSnd
aDelTm				randomi			.1,	.8,	.2;	random	movement	between	.1	and	.8	as	delay	time
aDel						vdelayx			aFilt	+	iFb*aDel,	aDelTm,	1,	128;	variable	delay
kdbFilt			randomi			-12,	0,	1;	two	random	movements	between	-12	and	0	(dB)	...
kdbDel				randomi			-12,	0,	1;	...	for	the	filtered	and	the	delayed	signal
aOut						=									aFilt*ampdb(kdbFilt)	+	aDel*ampdb(kdbDel);	mix	it
										outs						aOut,	aOut
		endin

USER	DEFINED	OPCODES

269

</CsInstruments>
<CsScore>
i	1	0	60
</CsScore>
</CsoundSynthesizer>

This	is	a	filtered	noise,	and	its	delay,	which	is	fed	back	again	into	the	
delay	line	at	a	certain	ratio	iFb.	The	filter	is	moving	as	kFiltFq	
randomly	between	100	and	1000	Hz.	The	volume	of	the	filtered	noise	
is	moving	as	kdB	randomly	between	-18	dB	and	-6	dB.	The	delay	
time	moves	between	0.1	and	0.8	seconds,	and	then	both	signals	are	
mixed	together.

BASIC	EXAMPLE	

If	this	signal	processing	unit	is	to	be	transformed	into	a	User	Defined	
Opcode,	the	first	question	is	about	the	extend	of	the	code	that	will	be	
encapsulated:	where	the	UDO	code	will	begin	and	end?	The	first	
solution	could	be	a	radical,	and	possibly	bad,	approach:	to	transform	
the	whole	instrument	into	a	UDO.

			EXAMPLE	03G02_All_to_UDO.csd				
		

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giSine				ftgen					0,	0,	2^10,	10,	1
										seed						0

		opcode	FiltFb,	0,	0
aDel						init						0;	initialize	delay	signal
iFb							=									.7;	feedback	multiplier
aSnd						rand						.2;	white	noise
kdB							randomi			-18,	-6,	.4;	random	movement	between	-18	and	-6
aSnd						=									aSnd	*	ampdb(kdB);	applied	as	dB	to	noise
kFiltFq			randomi			100,	1000,	1;	random	movement	between	100	and	1000
aFilt					reson				aSnd,	kFiltFq,	kFiltFq/5;	applied	as	filter	center	frequency
aFilt					balance			aFilt,	aSnd;	bring	aFilt	to	the	volume	of	aSnd
aDelTm				randomi			.1,	.8,	.2;	random	movement	between	.1	and	.8	as	delay	time
aDel						vdelayx			aFilt	+	iFb*aDel,	aDelTm,	1,	128;	variable	delay
kdbFilt			randomi			-12,	0,	1;	two	random	movements	between	-12	and	0	(dB)	...
kdbDel				randomi			-12,	0,	1;	...	for	the	filtered	and	the	delayed	signal
aOut						=									aFilt*ampdb(kdbFilt)	+	aDel*ampdb(kdbDel);	mix	it
										outs						aOut,	aOut
		endop

instr	1

USER	DEFINED	OPCODES

270

										FiltFb
endin

</CsInstruments>
<CsScore>
i	1	0	60
</CsScore>
</CsoundSynthesizer>	

Before	we	continue	the	discussion	about	the	quality	of	this	
transormation,	we	should	have	a	look	at	the	syntax	first.	The	general	
syntax	for	a	User	Defined	Opcode	is:

opcode	name,	outtypes,	intypes
...
endop

Here,	the	name	of	the	UDO	is	FiltFb.	You	are	free	to	use	any	name,	
but	it	is	suggested	that	you	begin	the	name	with	a	capital	letter.	By	
doing	this,	you	avoid	duplicating	the	name	of	most	of	the	pre-existing	
opcodes1		which	normally	start	with	a	lower	case	letter.	As	we	have	
no	input	arguments	and	no	output	arguments	for	this	first	version	of	
FiltFb,	both	outtypes	and	intypes	are	set	to	zero.	Similar	to	the	instr	
...	endin	block	of	a	normal	instrument	definition,	for	a	UDO	the	
opcode	...	endop	keywords	begin	and	end	the	UDO	definition	block.	
In	the	instrument,	the	UDO	is	called	like	a	normal	opcode	by	using	its	
name,	and	in	the	same	line	the	input	arguments	are	listed	on	the	right	
and	the	output	arguments	on	the	left.	In	the	previous	a	example,	
'FiltFb'	has	no	input	and	output	arguments	so	it	is	called	by	just	using	
its	name:

instr	1
										FiltFb
endin

Now	-	why	is	this	UDO	more	or	less	useless?	It	achieves	nothing,	
when	compared	to	the	original	non	UDO	version,	and	in	fact	looses	
some	of	the	advantages	of	the	instrument	defined	version.	Firstly,	it	is	
not	advisable	to	include	this	line	in	the	UDO:
		

										outs						aOut,	aOut

This	statement	writes	the	audio	signal	aOut	from	inside	the	UDO	to	

USER	DEFINED	OPCODES

271

the	output	device.	Imagine	you	want	to	change	the	output	channels,	
or	you	want	to	add	any	signal	modifier	after	the	opcode.	This	would	
be	impossible	with	this	statement.	So	instead	of	including	the	'outs'	
opcode,	we	give	the	FiltFb	UDO	an	audio	output:

										xout						aOut

The	xout	statement	of	a	UDO	definition	works	like	the	"outlets"	in	
PD	or	Max,	sending	the	result(s)	of	an	opcode	back	to	the	caller	
instrument.	

	Now	let	us	consider	the	UDO's	input	arguments,	choose	which	
processes	should	be	carried	out	within	the	FiltFb	unit,	and	what	
aspects	would	offer	greater	flexibility	if	controllable	from	outside	the	
UDO.	First,	the	aSnd	parameter	should	not	be	restricted	to	a	white	
noise	with	amplitude	0.2,	but	should	be	an	input	(like	a	"signal	inlet"	
in	PD/Max).	This	is	implemented	using	the	line:

aSnd						xin

Both	the	output	and	the	input	type	must	be	declared	in	the	first	line	of	
the	UDO	definition,	whether	they	are	i-,	k-	or	a-variables.	So	instead	
of	"opcode	FiltFb,	0,	0"	the	statement	has	changed	now	to	"opcode	
FiltFb,	a,	a",	because	we	have	both	input	and	output	as	a-variable.

The	UDO	is	now	much	more	flexible	and	logical:	it	takes	any	audio	
input,	it	performs	the	filtered	delay	and	feedback	processing,	and	
returns	the	result	as	another	audio	signal.	In	the	next	example,	
instrument	1	does	exactly	the	same	as	before.	Instrument	2	has	live	
input	instead.
		

			EXAMPLE	03G03_UDO_more_flex.csd			

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

USER	DEFINED	OPCODES

272

giSine				ftgen					0,	0,	2^10,	10,	1
										seed						0

		opcode	FiltFb,	a,	a
aSnd						xin
aDel						init						0;	initialize	delay	signal
iFb							=									.7;	feedback	multiplier
kdB							randomi			-18,	-6,	.4;	random	movement	between	-18	and	-6
aSnd						=									aSnd	*	ampdb(kdB);	applied	as	dB	to	noise
kFiltFq			randomi			100,	1000,	1;	random	movement	between	100	and	1000
aFilt					reson				aSnd,	kFiltFq,	kFiltFq/5;	applied	as	filter	center	frequency
aFilt					balance			aFilt,	aSnd;	bring	aFilt	to	the	volume	of	aSnd
aDelTm				randomi			.1,	.8,	.2;	random	movement	between	.1	and	.8	as	delay	time
aDel						vdelayx			aFilt	+	iFb*aDel,	aDelTm,	1,	128;	variable	delay
kdbFilt			randomi			-12,	0,	1;	two	random	movements	between	-12	and	0	(dB)	...
kdbDel				randomi			-12,	0,	1;	...	for	the	filtered	and	the	delayed	signal
aOut						=									aFilt*ampdb(kdbFilt)	+	aDel*ampdb(kdbDel);	mix	it
										xout						aOut
		endop

		instr	1;	white	noise	input
aSnd						rand						.2
aOut						FiltFb				aSnd
										outs						aOut,	aOut
		endin

		instr	2;	live	audio	input
aSnd						inch						1;	input	from	channel	1
aOut						FiltFb				aSnd
										outs						aOut,	aOut
		endin

</CsInstruments>
<CsScore>
i	1	0	60	;change	to	i	2	for	live	audio	input
</CsScore>
</CsoundSynthesizer>

IS	THERE	AN	OPTIMAL	DESIGN	FOR	A	USER
DEFINED	OPCODE?

Is	this	now	the	optimal	version	of	the	FiltFb	User	Defined	Opcode?	
Obviously	there	are	other	parts	of	the	opcode	definiton	which	could	
be	controllable	from	outside:	the	feedback	multiplier	iFb,	the	random	
movement	of	the	input	signal	kdB,	the	random	movement	of	the	filter	
frequency	kFiltFq,	and	the	random	movements	of	the	output	mix	
kdbSnd	and	kdbDel.	Is	it	better	to	put	them	outside	of	the	opcode	
definition,	or	is	it	better	to	leave	them	inside?

There	is	no	general	answer.	It	depends	on	the	degree	of	abstraction	
you	desire	or	you	prefer	to	relinquish.	If	you	are	working	on	a	piece	
for	which	all	of	the	parameters	settings	are	already	defined	as	
required	in	the	UDO,	then	control	from	the	caller	instrument	may	not	
be	necessary	.	The	advantage	of	minimizing	the	number	of	input	and	

USER	DEFINED	OPCODES

273

output	arguments	is	the	simplification	in	using	the	UDO.	The	more	
flexibility	you	require	from	your	UDO	however,	the	greater	the	
number	of	input	arguments	that	will	be	required.	Providing	more	
control	is	better	for	a	later	reusability,	but	may	be	unnecessarily	
complicated.

Perhaps	it	is	the	best	solution	to	have	one	abstract	definition	which	
performs	one	task,	and	to	create	a	derivative	-	also	as	UDO	-	fine	
tuned	for	the	particular	project	you	are	working	on.	The	final	
example	demonstrates	the	definition	of	a	general	and	more	abstract	
UDO	FiltFb,	and	its	various	applications:	instrument	1	defines	the	
specifications	in	the	instrument	itself;	instrument	2	uses	a	second	
UDO	Opus123_FiltFb	for	this	purpose;	instrument	3	sets	the	general	
FiltFb	in	a	new	context	of	two	varying	delay	lines	with	a	buzz	sound	
as	input	signal.

			EXAMPLE	03G04_UDO_calls_UDO.csd			

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giSine				ftgen					0,	0,	2^10,	10,	1
										seed						0

		opcode	FiltFb,	aa,	akkkia
;	--	DELAY	AND	FEEDBACK	OF	A	BAND	FILTERED	INPUT	SIGNAL	--
;input:	aSnd	=	input	sound
;	kFb	=	feedback	multiplier	(0-1)
;	kFiltFq:	center	frequency	for	the	reson	band	filter	(Hz)
;	kQ	=	band	width	of	reson	filter	as	kFiltFq/kQ
;	iMaxDel	=	maximum	delay	time	in	seconds
;	aDelTm	=	delay	time
;output:	aFilt	=	filtered	and	balanced	aSnd
;	aDel	=	delay	and	feedback	of	aFilt

aSnd,	kFb,	kFiltFq,	kQ,	iMaxDel,	aDelTm	xin
aDel						init						0
aFilt					reson					aSnd,	kFiltFq,	kFiltFq/kQ
aFilt					balance			aFilt,	aSnd
aDel						vdelayx			aFilt	+	kFb*aDel,	aDelTm,	iMaxDel,	128;	variable	delay
										xout						aFilt,	aDel
		endop

		opcode	Opus123_FiltFb,	a,	a
;;the	udo	FiltFb	here	in	my	opus	123	:)
;input	=	aSnd
;output	=	filtered	and	delayed	aSnd	in	different	mixtures

USER	DEFINED	OPCODES

274

aSnd						xin
kdB							randomi			-18,	-6,	.4;	random	movement	between	-18	and	-6
aSnd						=									aSnd	*	ampdb(kdB);	applied	as	dB	to	noise
kFiltFq			randomi			100,	1000,	1;	random	movement	between	100	and	1000
iQ								=									5
iFb							=									.7;	feedback	multiplier
aDelTm				randomi			.1,	.8,	.2;	random	movement	between	.1	and	.8	as	delay	time
aFilt,	aDel	FiltFb				aSnd,	iFb,	kFiltFq,	iQ,	1,	aDelTm
kdbFilt			randomi			-12,	0,	1;	two	random	movements	between	-12	and	0	(dB)	...
kdbDel				randomi			-12,	0,	1;	...	for	the	noise	and	the	delay	signal
aOut						=									aFilt*ampdb(kdbFilt)	+	aDel*ampdb(kdbDel);	mix	it
										xout						aOut
		endop

		instr	1;	well	known	context	as	instrument
aSnd						rand						.2
kdB							randomi			-18,	-6,	.4;	random	movement	between	-18	and	-6
aSnd						=									aSnd	*	ampdb(kdB);	applied	as	dB	to	noise
kFiltFq			randomi			100,	1000,	1;	random	movement	between	100	and	1000
iQ								=									5
iFb							=									.7;	feedback	multiplier
aDelTm				randomi			.1,	.8,	.2;	random	movement	between	.1	and	.8	as	delay	time
aFilt,	aDel	FiltFb				aSnd,	iFb,	kFiltFq,	iQ,	1,	aDelTm
kdbFilt			randomi			-12,	0,	1;	two	random	movements	between	-12	and	0	(dB)	...
kdbDel				randomi			-12,	0,	1;	...	for	the	noise	and	the	delay	signal
aOut						=									aFilt*ampdb(kdbFilt)	+	aDel*ampdb(kdbDel);	mix	it
aOut						linen					aOut,	.1,	p3,	3
										outs						aOut,	aOut
		endin

		instr	2;	well	known	context	UDO	which	embeds	another	UDO
aSnd						rand						.2
aOut						Opus123_FiltFb	aSnd
aOut						linen					aOut,	.1,	p3,	3
										outs						aOut,	aOut
		endin

		instr	3;	other	context:	two	delay	lines	with	buzz
kFreq					randomh			200,	400,	.08;	frequency	for	buzzer
aSnd						buzz						.2,	kFreq,	100,	giSine;	buzzer	as	aSnd
kFiltFq			randomi			100,	1000,	.2;	center	frequency
aDelTm1			randomi			.1,	.8,	.2;	time	for	first	delay	line
aDelTm2			randomi			.1,	.8,	.2;	time	for	second	delay	line
kFb1						randomi			.8,	1,	.1;	feedback	for	first	delay	line
kFb2						randomi			.8,	1,	.1;	feedback	for	second	delay	line
a0,	aDel1	FiltFb				aSnd,	kFb1,	kFiltFq,	1,	1,	aDelTm1;	delay	signal	1
a0,	aDel2	FiltFb				aSnd,	kFb2,	kFiltFq,	1,	1,	aDelTm2;	delay	signal	2
aDel1					linen					aDel1,	.1,	p3,	3
aDel2					linen					aDel2,	.1,	p3,	3
										outs						aDel1,	aDel2
		endin

</CsInstruments>
<CsScore>
i	1	0	30
i	2	31	30
i	3	62	120
</CsScore>
</CsoundSynthesizer>

The	good	thing	about	the	different	possibilities	of	writing	a	more	
specified	UDO,	or	a	more	generalized:	You	needn't	decide	this	at	the	
beginning	of	your	work.	Just	start	with	any	formulation	you	find	
useful	in	a	certain	situation.	If	you	continue	and	see	that	you	should	
have	some	more	parameters	accessible,	it	should	be	easy	to	rewrite	
the	UDO.	Just	be	careful	not	to	confuse	the	different	versions	you	

USER	DEFINED	OPCODES

275

create.	Use	names	like	Faulty1,	Faulty2	etc.	instead	of	overwriting	
Faulty.	Making	use	of	extensive	commenting	when	you	initially	
create	the	UDO	will	make	it	easier	to	adapt	the	UDO	at	a	later	time.	
What	are	the	inputs	(including	the	measurement	units	they	use	such	
as	Hertz	or	seconds)?	What	are	the	outputs?	-	How	you	do	this,	is	up	
to	you	and	depends	on	your	style	and	your	preference.
		

HOW	TO	USE	THE	USER	DEFINED	OPCODE
FACILITY	IN	PRACTICE

In	this	section,	we	will	address	the	main	points	of	using	UDOs:	what	
you	must	bear	in	mind	when	loading	them,	what	special	features	they	
offer,	what	restrictions	you	must	be	aware	of	and	how	you	can	build	
your	own	language	with	them.
		

LOADING	USER	DEFINED	OPCODES	IN	THE
ORCHESTRA	HEADER

As	can	be	seen	from	the	examples	above,	User	Defined	Opcodes	must	
be	defined	in	the	orchestra	header	(which	is	sometimes	called	
"instrument	0").
		

You	can	load	as	many	User	Defined	Opcodes	into	a	Csound	orchestra	
as	you	wish.	As	long	as	they	do	not	depend	on	each	other,	their	order	
is	arbitrarily.	If	UDO	Opus123_FiltFb	uses	the	UDO	FiltFb	for	its	
definition	(see	the	example	above),	you	must	first	load	FiltFb,	and	
then	Opus123_FiltFb.	If	not,	you	will	get	an	error	like	this:

orch	compiler:
	 opcode	 Opus123_FiltFb	 a	 a	
error:		no	legal	opcode,	line	25:
aFilt,	aDel	FiltFb				aSnd,	iFb,	kFiltFq,	iQ,	1,	aDelTm

LOADING	BY	AN	#INCLUDE	FILE

USER	DEFINED	OPCODES

276

Definitions	of	User	Defined	Opcodes	can	also	be	loaded	into	a	.csd	
file	by	an	"#include"	statement.	What	you	must	do	is	the	following:

1.	 Save	your	opcode	definitions	in	a	plain	text	file,	for	instance	
"MyOpcodes.txt".

2.	 If	this	file	is	in	the	same	directory	as	your	.csd	file,	you	can	just
call	it	by	the	statement:
		
#include	"MyOpcodes.txt"

3.	 If	"MyOpcodes.txt"	is	in	a	different	directory,	you	must	call	it	
by	the	full	path	name,	for	instance:
		
#include	"/Users/me/Documents/Csound/UDO/MyOpcodes.txt"

As	always,	make	sure	that	the	"#include"	statement	is	the	last	one	in	
the	orchestra	header,	and	that	the	logical	order	is	accepted	if	one	
opcode	depends	on	another.

If	you	work	with	User	Defined	Opcodes	a	lot,	and	build	up	a	
collection	of	them,	the	#include	feature	allows	you	easily	import	
several	or	all	of	them	to	your	.csd	file.
		

THE	SETKSMPS	FEATURE

The	ksmps	assignment	in	the	orchestra	header	cannot	be	changed	
during	the	performance	of	a	.csd	file.	But	in	a	User	Defined	Opcode	
you	have	the	unique	possibility	of	changing	this	value	by	a	local	
assignment.	If	you	use	a	setksmps	statement	in	your	UDO,	you	can	
have	a	locally	smaller	value	for	the	number	of	samples	per	control	
cycle	in	the	UDO.	In	the	following	example,	the	print	statement	in	
the	UDO	prints	ten	times	compared	to	one	time	in	the	instrument,	
because	ksmps	in	the	UDO	is	10	times	smaller:

			EXAMPLE	03G06_UDO_setksmps.csd			
		

<CsoundSynthesizer>

USER	DEFINED	OPCODES

277

<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	44100	;very	high	because	of	printing

		opcode	Faster,	0,	0
setksmps	4410	;local	ksmps	is	1/10	of	global	ksmps
printks	"UDO	print!%n",	0
		endop

		instr	1
printks	"Instr	print!%n",	0	;print	each	control	period	(once	per	second)
Faster	;print	10	times	per	second	because	of	local	ksmps
		endin

</CsInstruments>
<CsScore>
i	1	0	2
</CsScore>
</CsoundSynthesizer>

DEFAULT	ARGUMENTS	

For	i-time	arguments,	you	can	use	a	simple	feature	to	set	default	
values:

"o"	(instead	of	"i")	defaults	to	0
"p"	(instead	of	"i")	defaults	to	1
"j"	(instead	of	"i")	defaults	to	-1
		

For	k-time	arguments,	you	can	use	since	Csound	5.18	these	default	
values:

"O"	(instead	of	"k")	defaults	to	0
"P"	(instead	of	"k")	defaults	to	1
"V"	(instead	of	"k")	defaults	to	0.5
		

So	you	can	omit	these	arguments	-	in	this	case	the	default	values	will	
be	used.	If	you	give	an	input	argument	instead,	the	default	value	will	
be	overwritten:

			EXAMPLE	03G07_UDO_default_args.csd				
		

<CsoundSynthesizer>
<CsInstruments>
;Example	by	Joachim	Heintz

		opcode	Defaults,	iii,	opj

USER	DEFINED	OPCODES

278

ia,	ib,	ic	xin
xout	ia,	ib,	ic
		endop

instr	1
ia,	ib,	ic	Defaults
											print					ia,	ib,	ic
ia,	ib,	ic	Defaults		10
											print					ia,	ib,	ic
ia,	ib,	ic	Defaults		10,	100
											print					ia,	ib,	ic
ia,	ib,	ic	Defaults		10,	100,	1000
											print					ia,	ib,	ic
endin

</CsInstruments>
<CsScore>
i	1	0	0
</CsScore>
</CsoundSynthesizer>

RECURSIVE	USER	DEFINED	OPCODES

Recursion	means	that	a	function	can	call	itself.	This	is	a	feature	
which	can	be	useful	in	many	situations.	Also	User	Defined	Opcodes	
can	be	recursive.	You	can	do	many	things	with	a	recursive	UDO	
which	you	cannot	do	in	any	other	way;	at	least	not	in	a	simliarly	
simple	way.	This	is	an	example	of	generating	eight	partials	by	a	
recursive	UDO.	See	the	last	example	in	the	next	section	for	a	more	
musical	application	of	a	recursive	UDO.

			EXAMPLE	03G08_Recursive_UDO.csd				
		

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

		opcode	Recursion,	a,	iip
;input:	frequency,	number	of	partials,	first	partial	(default=1)
ifreq,	inparts,	istart	xin
iamp						=									1/inparts/istart	;decreasing	amplitudes	for	higher	partials
	if	istart	<	inparts	then	;if	inparts	have	not	yet	reached
acall					Recursion	ifreq,	inparts,	istart+1	;call	another	instance	of	this	UDO
	endif
aout						oscils				iamp,	ifreq*istart,	0	;execute	this	partial
aout						=									aout	+	acall	;add	the	audio	signals
										xout						aout
		endop

		instr	1
amix						Recursion	400,	8	;8	partials	with	a	base	frequency	of	400	Hz
aout						linen					amix,	.01,	p3,	.1
										outs						aout,	aout

USER	DEFINED	OPCODES

279

		endin

</CsInstruments>
<CsScore>
i	1	0	1
</CsScore>
</CsoundSynthesizer>

EXAMPLES

We	will	focus	here	on	some	examples	which	will	hopefully	show	the	
wide	range	of	User	Defined	Opcodes.	Some	of	them	are	adaptions	of	
examples	from	previous	chapters	about	the	Csound	Syntax.	Much	
more	examples	can	be	found	in	the	User-Defined	Opcode	Database,	
editied	by	Steven	Yi.

PLAY	A	MONO	OR	STEREO	SOUNDFILE

Csound	is	often	very	strict	and	gives	errors	where	other	applications	
might	'turn	a	blind	eye'.	This	is	also	the	case	if	you	read	a	soundfile	
using	one	of	Csound's	opcodes:	soundin,	diskin	or	diskin2.	If	your	
soundfile	is	mono,	you	must	use	the	mono	version,	which	has	one	
audio	signal	as	output.	If	your	soundfile	is	stereo,	you	must	use	the	
stereo	version,	which	outputs	two	audio	signals.	If	you	want	a	stereo	
output,	but	you	happen	to	have	a	mono	soundfile	as	input,	you	will	
get	the	error	message:

INIT	ERROR	in	...:	number	of	output	args	inconsistent	with	number
of	file	channels

It	may	be	more	useful	to	have	an	opcode	which	works	for	both,	mono	
and	stereo	files	as	input.	This	is	a	ideal	job	for	a	UDO.	Two	versions	
are	possible:	FilePlay1	returns	always	one	audio	signal	(if	the	file	is	
stereo	it	uses	just	the	first	channel),	FilePlay2	returns	always	two	
audio	signals	(if	the	file	is	mono	it	duplicates	this	to	both	channels).	
We	can	use	the	default	arguments	to	make	this	opcode	behave	
exactly	as	diskin2:

			EXAMPLE	03G09_UDO_FilePlay.csd					
		

<CsoundSynthesizer>

USER	DEFINED	OPCODES

280

<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

		opcode	FilePlay1,	a,	Skoooooo
;gives	mono	output	regardless	your	soundfile	is	mono	or	stereo
;(if	stereo,	just	the	first	channel	is	used)
;see	diskin2	page	of	the	csound	manual	for	information	about	the	input	arguments
Sfil,	kspeed,	iskip,	iloop,	iformat,	iwsize,	ibufsize,	iskipinit	xin
ichn						filenchnls	Sfil
	if	ichn	==	1	then
aout						diskin2			Sfil,	kspeed,	iskip,	iloop,	iformat,	iwsize,\
																				ibufsize,	iskipinit
	else
aout,	a0		diskin2			Sfil,	kspeed,	iskip,	iloop,	iformat,	iwsize,\
																				ibufsize,	iskipinit
	endif
										xout						aout
		endop

		opcode	FilePlay2,	aa,	Skoooooo
;gives	stereo	output	regardless	your	soundfile	is	mono	or	stereo
;see	diskin2	page	of	the	csound	manual	for	information	about	the	input	arguments
Sfil,	kspeed,	iskip,	iloop,	iformat,	iwsize,	ibufsize,	iskipinit	xin
ichn						filenchnls	Sfil
	if	ichn	==	1	then
aL								diskin2				Sfil,	kspeed,	iskip,	iloop,	iformat,	iwsize,\
																					ibufsize,	iskipinit
aR								=										aL
	else
aL,	aR	 				diskin2				Sfil,	kspeed,	iskip,	iloop,	iformat,	iwsize,\
																						ibufsize,	iskipinit
	endif
										xout							aL,	aR
		endop

		instr	1
aMono					FilePlay1		"fox.wav",	1
										outs							aMono,	aMono
		endin

		instr	2
aL,	aR				FilePlay2		"fox.wav",	1
										outs							aL,	aR
		endin

</CsInstruments>
<CsScore>
i	1	0	4
i	2	4	4
</CsScore>
</CsoundSynthesizer>

CHANGE	THE	CONTENT	OF	A	FUNCTION	TABLE	

In	example	03C11_Table_random_dev.csd,	a	function	table	has	been	
changed	at	performance	time,	once	a	second,	by	random	deviations.	
This	can	be	easily	transformed	to	a	User	Defined	Opcode.	It	takes	the	
function	table	variable,	a	trigger	signal,	and	the	random	deviation	in	

USER	DEFINED	OPCODES

281

percent	as	input.	In	each	control	cycle	where	the	trigger	signal	is	"1",	
the	table	values	are	read.	The	random	deviation	is	applied,	and	the	
changed	values	are	written	again	into	the	table.	Here,	the	tab/tabw	
opcodes	are	used	to	make	sure	that	also	non-power-of-two	tables	can	
be	used.

			EXAMPLE	03G10_UDO_rand_dev.csd					
		

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	441
nchnls	=	2
0dbfs	=	1

giSine				ftgen					0,	0,	256,	10,	1;	sine	wave
										seed						0;	each	time	different	seed

		opcode	TabDirtk,	0,	ikk
;"dirties"	a	function	table	by	applying	random	deviations	at	a	k-rate	trigger
;input:	function	table,	trigger	(1	=	perform	manipulation),
;deviation	as	percentage
ift,	ktrig,	kperc	xin
	if	ktrig	==	1	then	;just	work	if	you	get	a	trigger	signal
kndx						=									0
loop:
krand					random				-kperc/100,	kperc/100
kval						tab							kndx,	ift;	read	old	value
knewval			=									kval	+	(kval	*	krand);	calculate	new	value
										tabw						knewval,	kndx,	giSine;	write	new	value
										loop_lt			kndx,	1,	ftlen(ift),	loop;	loop	construction
	endif
		endop

		instr	1
kTrig					metro					1,	.00001	;trigger	signal	once	per	second
										TabDirtk		giSine,	kTrig,	10
aSig						poscil				.2,	400,	giSine
										outs						aSig,	aSig
		endin

</CsInstruments>
<CsScore>
i	1	0	10
</CsScore>
</CsoundSynthesizer>

Of	course	you	can	also	change	the	content	of	a	function	table	at	init-
time.	The	next	example	permutes	a	series	of	numbers	randomly	each	
time	it	is	called.	For	this	purpose,	first	the	input	function	table	iTabin	
is	copied	as	iCopy.	This	is	necessary	because	we	do	not	want	to	
change	iTabin	in	any	way.	Next	a	random	index	in	iCopy	is	created	
and	the	value	at	this	location	in	iTabin	is	written	at	the	beginning	of	

USER	DEFINED	OPCODES

282

iTabout,	which	contains	the	permuted	results.	At	the	end	of	this	cycle,	
each	value	in	iCopy	which	has	a	larger	index	than	the	one	which	has	
just	been	read,	is	shifted	one	position	to	the	left.	So	now	iCopy	has	
become	one	position	smaller	-	not	in	table	size	but	in	the	number	of	
values	to	read.	This	procedure	is	continued	until	all	values	from	
iCopy	are	reflected	in	iTabout:

			EXAMPLE	03G11_TabPermRnd.csd					

<CsoundSynthesizer>
<CsInstruments>
;Example	by	Joachim	Heintz

giVals	ftgen	0,	0,	-12,	-2,	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12
										seed						0;	each	time	different	seed

		opcode	TabPermRand_i,	i,	i
;permuts	randomly	the	values	of	the	input	table
;and	creates	an	output	table	for	the	result
iTabin				xin
itablen			=									ftlen(iTabin)
iTabout			ftgen					0,	0,	-itablen,	2,	0	;create	empty	output	table
iCopy					ftgen					0,	0,	-itablen,	2,	0	;create	empty	copy	of	input	table
										tableicopy	iCopy,	iTabin	;write	values	of	iTabin	into	iCopy
icplen				init						itablen	;number	of	values	in	iCopy
indxwt				init						0	;index	of	writing	in	iTabout
loop:
indxrd				random				0,	icplen	-	.0001;	random	read	index	in	iCopy
indxrd				=									int(indxrd)
ival						tab_i					indxrd,	iCopy;	read	the	value
										tabw_i				ival,	indxwt,	iTabout;	write	it	to	iTabout
;	--	shift	values	in	iCopy	larger	than	indxrd	one	position	to	the	left
	shift:
	if	indxrd	<	icplen-1	then	;if	indxrd	has	not	been	the	last	table	value
ivalshft		tab_i					indxrd+1,	iCopy	;take	the	value	to	the	right	...
										tabw_i				ivalshft,	indxrd,	iCopy	;...and	write	it	to	indxrd	position
indxrd				=									indxrd	+	1	;then	go	to	the	next	position
										igoto					shift	;return	to	shift	and	see	if	there	is	anything	left	to	do
	endif
indxwt				=									indxwt	+	1	;increase	the	index	of	writing	in	iTabout
										loop_gt			icplen,	1,	0,	loop	;loop	as	long	as	there	is	;
																																							;a	value	in	iCopy
										ftfree				iCopy,	0	;delete	the	copy	table
										xout						iTabout	;return	the	number	of	iTabout
		endop

instr	1
iPerm					TabPermRand_i	giVals	;perform	permutation
;print	the	result
indx						=									0
Sres						=									"Result:"
print:
ival						tab_i					indx,	iPerm
Sprint				sprintf			"%s	%d",	Sres,	ival
Sres						=									Sprint
										loop_lt			indx,	1,	12,	print
										puts						Sres,	1
endin

instr	2;	the	same	but	performed	ten	times
icnt						=									0
loop:
iPerm					TabPermRand_i	giVals	;perform	permutation
;print	the	result
indx						=									0

USER	DEFINED	OPCODES

283

Sres						=									"Result:"
print:
ival						tab_i					indx,	iPerm
Sprint				sprintf			"%s	%d",	Sres,	ival
Sres						=									Sprint
										loop_lt			indx,	1,	12,	print
										puts						Sres,	1
										loop_lt			icnt,	1,	10,	loop
endin

</CsInstruments>
<CsScore>
i	1	0	0
i	2	0	0
</CsScore>
</CsoundSynthesizer>

PRINT	THE	CONTENT	OF	A	FUNCTION	TABLE

There	is	no	opcode	in	Csound	for	printing	the	contents	of	a	function	
table,	but	one	can	be	created	as	a	UDO.2		Again	a	loop	is	needed	for	
checking	the	values	and	putting	them	into	a	string	which	can	then	be	
printed.	In	addition,	some	options	can	be	given	for	the	print	precision	
and	for	the	number	of	elements	in	a	line.

			EXAMPLE	03G12_TableDumpSimp.csd					
		

<CsoundSynthesizer>
<CsOptions>
-ndm0	-+max_str_len=10000
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz

gitab					ftgen					1,	0,	-7,	-2,	0,	1,	2,	3,	4,	5,	6
gisin					ftgen					2,	0,	128,	10,	1

		opcode	TableDumpSimp,	0,	ijo
;prints	the	content	of	a	table	in	a	simple	way
;input:	function	table,	float	precision	while	printing	(default	=	3),
;parameters	per	row	(default	=	10,	maximum	=	32)
ifn,	iprec,	ippr	xin
iprec					=									(iprec	==	-1	?	3	:	iprec)
ippr						=									(ippr	==	0	?	10	:	ippr)
iend						=									ftlen(ifn)
indx						=									0
Sformat			sprintf			"%%.%df\t",	iprec
Sdump					=									""
loop:
ival						tab_i					indx,	ifn
Snew						sprintf			Sformat,	ival
Sdump					strcat				Sdump,	Snew
indx						=									indx	+	1
imod						=									indx	%	ippr
	if	imod	==	0	then
										puts						Sdump,	1
Sdump					=									""
	endif
	if	indx	<	iend	igoto	loop
										puts						Sdump,	1

USER	DEFINED	OPCODES

284

		endop
	
	
instr	1
										TableDumpSimp	p4,	p5,	p6
										prints				"%n"
endin

</CsInstruments>
<CsScore>
;i1			st			dur			ftab			prec			ppr
i1				0				0					1						-1
i1				.				.					1							0
i1				.				.					2							3					10	
i1				.				.					2							6					32
</CsScore>
</CsoundSynthesizer>

A	RECURSIVE	USER	DEFINED	OPCODE	FOR
ADDITIVE	SYNTHESIS

In	the	last	example	of	the	chapter	about	Triggering	Instrument	Events	
a	number	of	partials	were	synthesized,	each	with	a	random	frequency	
deviation	of	up	to	10%	compared	to	precise	harmonic	spectrum	
frequencies	and	a	unique	duration	for	each	partial.	This	can	also	be	
written	as	a	recursive	UDO.	Each	UDO	generates	one	partial,	and	
calls	the	UDO	again	until	the	last	partial	is	generated.	Now	the	code	
can	be	reduced	to	two	instruments:	instrument	1	performs	the	time	
loop,	calculates	the	basic	values	for	one	note,	and	triggers	the	event.	
Then	instrument	11	is	called	which	feeds	the	UDO	with	the	values	
and	passes	the	audio	signals	to	the	output.

			EXAMPLE	03G13_UDO_Recursive_AddSynth.csd
		

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giSine				ftgen					0,	0,	2^10,	10,	1
										seed						0

		opcode	PlayPartials,	aa,	iiipo
;plays	inumparts	partials	with	frequency	deviation	and	own	envelopes	and
;durations	for	each	partial
;ibasfreq:	base	frequency	of	sound	mixture
;inumparts:	total	number	of	partials
;ipan:	panning
;ipartnum:	which	partial	is	this	(1	-	N,	default=1)

USER	DEFINED	OPCODES

285

;ixtratim:	extra	time	in	addition	to	p3	needed	for	this	partial	(default=0)

ibasfreq,	inumparts,	ipan,	ipartnum,	ixtratim	xin
ifreqgen		=									ibasfreq	*	ipartnum;	general	frequency	of	this	partial
ifreqdev		random				-10,	10;	frequency	deviation	between	-10%	and	+10%
ifreq					=									ifreqgen	+	(ifreqdev*ifreqgen)/100;	real	frequency
ixtratim1	random				0,	p3;	calculate	additional	time	for	this	partial
imaxamp			=									1/inumparts;	maximum	amplitude
idbdev				random				-6,	0;	random	deviation	in	dB	for	this	partial
iamp						=								imaxamp	*	ampdb(idbdev-ipartnum);	higher	partials	are	softer
ipandev			random				-.1,	.1;	panning	deviation
ipan						=									ipan	+	ipandev
aEnv						transeg			0,	.005,	0,	iamp,	p3+ixtratim1-.005,	-10,	0;	envelope
aSine					poscil				aEnv,	ifreq,	giSine
aL1,	aR1		pan2						aSine,	ipan
	if	ixtratim1	>	ixtratim	then
ixtratim		=		ixtratim1	;set	ixtratim	to	the	ixtratim1	if	the	latter	is	larger
	endif
	if	ipartnum	<	inumparts	then	;if	this	is	not	the	last	partial
;	--	call	the	next	one
aL2,	aR2		PlayPartials	ibasfreq,	inumparts,	ipan,	ipartnum+1,	ixtratim
	else															;if	this	is	the	last	partial
p3								=									p3	+	ixtratim;	reset	p3	to	the	longest	ixtratim	value
	endif
										xout						aL1+aL2,	aR1+aR2
		endop

		instr	1;	time	loop	with	metro
kfreq					init						1;	give	a	start	value	for	the	trigger	frequency
kTrig					metro					kfreq
	if	kTrig	==	1	then	;if	trigger	impulse:
kdur						random				1,	5;	random	duration	for	instr	10
knumparts	random				8,	14
knumparts	=									int(knumparts);	8-13	partials
kbasoct			random				5,	10;	base	pitch	in	octave	values
kbasfreq		=									cpsoct(kbasoct)	;base	frequency
kpan						random				.2,	.8;	random	panning	between	left	(0)	and	right	(1)
										event					"i",	11,	0,	kdur,	kbasfreq,	knumparts,	kpan;	call	instr	11
kfreq					random				.25,	1;	set	new	value	for	trigger	frequency
	endif
		endin

		instr	11;	plays	one	mixture	with	8-13	partials
aL,	aR				PlayPartials	p4,	p5,	p6
										outs						aL,	aR
		endin

</CsInstruments>
<CsScore>
i	1	0	300
</CsScore>
</CsoundSynthesizer>

USING	STRINGS	AS	ARRAYS

	For	some	situations	it	can	be	very	useful	to	use	strings	in	Csound	as	a	
collection	of	single	strings	or	numbers.	This	is	what	programming	
languages	call	a	list	or	an	array.	Csound	does	not	provide	opcodes	for	
this	purpose,	but	you	can	define	these	opcodes	as	UDOs.	A	set	of	
these	UDOs	can	then	be	used	like	this:

ilen							StrayLen					"a	b	c	d	e"
	ilen	->	5
Sel								StrayGetEl			"a	b	c	d	e",	0
	Sel	->	"a"

USER	DEFINED	OPCODES

286

inum							StrayGetNum		"1	2	3	4	5",	0
	inum	->	1
ipos							StrayElMem			"a	b	c	d	e",	"c"
	ipos	->	2
ipos							StrayNumMem		"1	2	3	4	5",	3
	ipos	->	2
Sres							StraySetEl			"a	b	c	d	e",	"go",	0
	Sres	->	"go	a	b	c	d	e"
Sres							StraySetNum		"1	2	3	4	5",	0,	0
	Sres	->	"0	1	2	3	4	5"
Srev							StrayRev					"a	b	c	d	e"
	Srev	->	"e	d	c	b	a"
Sub								StraySub					"a	b	c	d	e",	1,	3
	Sub	->	"b	c"
Sout							StrayRmv					"a	b	c	d	e",	"b	d"
	Sout	->	"a	c	e"
Srem							StrayRemDup		"a	b	a	c	c	d	e	e"
	Srem	->	"a	b	c	d	e"
ift,iftlen	StrayNumToFt	"1	2	3	4	5",	1
	ift	->	1	(same	as	f	1	0	-5	-2	1	2	3	4	5)
	iftlen	->	5

You	can	find	an	article	about	defining	such	a	sub-language	here,	and	
the	up	to	date	UDO	code	here	(or	at	the	UDO	repository).
		

LINKS	AND	RELATED	OPCODES

LINKS	

This	is	the	page	in	the	Canonical	Csound	Reference	Manual	about	the	
definition	of	UDOs.

The	most	important	resource	of	User	Defined	Opcodes	is	the	User-
Defined	Opcode	Database,	editied	by	Steven	Yi.

Also	by	Steven	Yi,	read	the	second	part	of	his	article	about	control	
flow	in	Csound	in	the	Csound	Journal	(summer	2006).

RELATED	OPCODES

opcode:	The	opcode	used	to	begin	a	User	Defined	Opcode	definition.
		

#include:	Useful	to	include	any	loadable	Csound	code,	in	this	case	
definitions	of	User	Defined	Opcodes.
		

setksmps:	Lets	you	set	a	smaller	ksmps	value	locally	in	a	User	
Defined	Opcode.
		

MACROS

287

MACROS

Macros	within	Csound	provide	a	mechanism	whereby	a	line	or	a	
block	of	code	can	be	referenced	using	a	macro	codeword.	Whenever	
the	user-defined	macro	codeword	for	that	block	of	code	is	
subsequently	encountered	in	a	Csound	orchestra	or	score	it	will	be	
replaced	by	the	code	text	contained	within	the	macro.	This	
mechanism	can	be	extremely	useful	in	situations	where	a	line	or	a	
block	of	code	will	be	repeated	many	times	-	if	a	change	is	required	in	
the	code	that	will	be	repeated,	it	need	only	be	altered	once	in	the	
macro	definition	rather	than	having	to	be	edited	in	each	of	the	
repetitions.

Csound	utilises	a	subtly	different	mechanism	for	orchestra	and	score	
macros	so	each	will	be	considered	in	turn.	There	are	also	additional	
features	offered	by	the	macro	system	such	as	the	ability	to	create	a	
macro	that	accepts	arguments	-	which	can	be	thought	of	as	the	main	
macro	containing	sub-macros	that	can	be	repeated	multiple	times	
within	the	main	macro	-	the	inclusion	of	a	block	of	text	contained	
within	a	completely	separate	file	and	other	macro	refinements.

	It	is	important	to	realise	that	a	macro	can	contain	any	text,	including	
carriage	returns,	and	that	Csound	will	be	ignorant	to	its	use	of	syntax	
until	the	macro	is	actually	used	and	expanded	elsewhere	in	the	
orchestra	or	score.	Macro	expansion	is	a	feature	of	the	orchestra	and	
score	parser	and	is	not	part	of	the	orchestra	performance	time.

ORCHESTRA	MACROS

Macros	are	defined	using	the	syntax:

#define	NAME	#	replacement	text	#

	'NAME'	is	the	user-defined	name	that	will	be	used	to	call	the	macro	
at	some	point	later	in	the	orchestra;	it	must	begin	with	a	letter	but	can	
then	contain	any	combination	of	numbers	and	letters.	A	limited	range	

MACROS

288

of	special	characters	can	be	employed	in	the	name.	Apostrophes,	hash	
symbols	and	dollar	signs	should	be	avoided.	'replacement	text',	
bounded	by	hash	symbols	will	be	the	text	that	will	replace	the	macro	
name	when	later	called.	Remember	that	the	replacement	text	can	
stretch	over	several	lines.	A	macro	can	be	defined	anywhere	within	
the	<CsInstruments>	</CsInstruments>	sections	of	a	.csd	file.	A	
macro	can	be	redefined	or	overwritten	by	reusing	the	same	macro	
name	in	another	macro	definition.	Subsequent	expansions	of	the	
macro	will	then	use	the	new	version.

To	expand	the	macro	later	in	the	orchestra	the	macro	name	needs	to	
be	preceded	with	a	'$'	symbol	thus:

		$NAME

The	following	example	illustrates	the	basic	syntax	needed	to	employ	
macros.	The	name	of	a	sound	file	is	referenced	twice	in	the	score	so	it	
is	defined	as	a	macro	just	after	the	header	statements.	Instrument	1	
derives	the	duration	of	the	sound	file	and	instructs	instrument	2	to	
play	a	note	for	this	duration.	instrument	2	plays	the	sound	file.	The	
score	as	defined	in	the	<CsScore>	</CsScore>	section	only	lasts	for	
0.01	seconds	but	the	event_i	statement	in	instrument	1	will	extend	
this	for	the	required	duration.	The	sound	file	is	a	mono	file	so	you	can	
replace	it	with	any	other	mono	file	or	use	the	original	one.

EXAMPLE	03H01_Macros_basic.csd	

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>
sr		 =		 44100
ksmps		 =		 16
nchnls		=		 1
0dbfs	 =	 1

;	define	the	macro
#define	SOUNDFILE	#	"loop.wav"	#

	instr		1
;	use	an	expansion	of	the	macro	in	deriving	the	duration	of	the	sound	file
idur		filelen			$SOUNDFILE
						event_i			"i",2,0,idur
	endin

MACROS

289

	instr		2
;	use	another	expansion	of	the	macro	in	playing	the	sound	file
a1		diskin2		$SOUNDFILE,1
				out						a1
	endin

</CsInstruments>

<CsScore>
i	1	0	0.01
e
</CsScore>
</CsoundSynthesizer>
;	example	written	by	Iain	McCurdy

In	more	complex	situations	where	we	require	slight	variations,	such	
as	different	constant	values	or	different	sound	files	in	each	reuse	of	
the	macro,	we	can	use	a	macro	with	arguments.	A	macro's	arguments	
are	defined	as	a	list	of	sub-macro	names	within	brackets	after	the	
name	of	the	primary	macro	with	each	macro	argument	being	
separated	using	an	apostrophe	as	shown	below.

#define	NAME(Arg1'Arg2'Arg3...)	#	replacement	text	#

Arguments	can	be	any	text	string	permitted	as	Csound	code,	they	
should	not	be	likened	to	opcode	arguments	where	each	must	conform	
to	a	certain	type	such	as	i,	k,	a	etc.	Macro	arguments	are	subsequently	
referenced	in	the	macro	text	using	their	names	preceded	by	a	'$'	
symbol.	When	the	main	macro	is	called	later	in	the	orchestra	its	
arguments	are	then	replaced	with	the	values	or	strings	required.	The	
Csound	Reference	Manual	states	that	up	to	five	arguments	are	
permitted	but	this	still	refers	to	an	earlier	implementation	and	in	fact	
many	more	are	actually	permitted.
		

	In	the	following	example	a	6	partial	additive	synthesis	engine	with	a	
percussive	character	is	defined	within	a	macro.	Its	fundamental	
frequency	and	the	ratios	of	its	six	partials	to	this	fundamental	
frequency	are	prescribed	as	macro	arguments.	The	macro	is	reused	
within	the	orchestra	twice	to	create	two	different	timbres,	it	could	be	
reused	many	more	times	however.	The	fundamental	frequency	
argument	is	passed	to	the	macro	as	p4	from	the	score.
		

MACROS

290

EXAMPLE	03H02_Macro_6partials.csd	

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>
sr		 =		 44100
ksmps		 =		 16
nchnls		=		 1
0dbfs	 =	 1

gisine		ftgen		0,0,2^10,10,1

;	define	the	macro
#define	ADDITIVE_TONE(Frq'Ratio1'Ratio2'Ratio3'Ratio4'Ratio5'Ratio6)	#
iamp	=						0.1
aenv	expseg		1,p3*(1/$Ratio1),0.001,1,0.001
a1		poscil		iamp*aenv,$Frq*$Ratio1,gisine
aenv	expseg		1,p3*(1/$Ratio2),0.001,1,0.001
a2		poscil		iamp*aenv,$Frq*$Ratio2,gisine
aenv	expseg		1,p3*(1/$Ratio3),0.001,1,0.001
a3		poscil		iamp*aenv,$Frq*$Ratio3,gisine
aenv	expseg		1,p3*(1/$Ratio4),0.001,1,0.001
a4		poscil		iamp*aenv,$Frq*$Ratio4,gisine
aenv	expseg		1,p3*(1/$Ratio5),0.001,1,0.001
a5		poscil		iamp*aenv,$Frq*$Ratio5,gisine
aenv	expseg		1,p3*(1/$Ratio6),0.001,1,0.001
a6		poscil		iamp*aenv,$Frq*$Ratio6,gisine
a7		sum					a1,a2,a3,a4,a5,a6
				out					a7
#

	instr		1	;	xylophone
;	expand	the	macro	with	partial	ratios	that	reflect	those	of	a	xylophone
;	the	fundemental	frequency	macro	argument	(the	first	argument	-
;	-	is	passed	as	p4	from	the	score
$ADDITIVE_TONE(p4'1'3.932'9.538'16.688'24.566'31.147)
	endin

	instr		2	;	vibraphone
$ADDITIVE_TONE(p4'1'3.997'9.469'15.566'20.863'29.440)
	endin

</CsInstruments>

<CsScore>
i	1	0		1	200
i	1	1		2	150
i	1	2		4	100
i	2	3		7	800
i	2	4		4	700
i	2	5		7	600
e
</CsScore>
</CsoundSynthesizer>
;	example	written	by	Iain	McCurdy

SCORE	MACROS

Score	macros	employ	a	similar	syntax.	Macros	in	the	score	can	be	
used	in	situations	where	a	long	string	of	p-fields	are	likely	to	be	

MACROS

291

repeated	or,	as	in	the	next	example,	to	define	a	palette	of	score	
patterns	than	repeat	but	with	some	variation	such	as	transposition.	In	
this	example	two	'riffs'	are	defined	which	each	employ	two	macro	
arguments:	the	first	to	define	when	the	riff	will	begin	and	the	second	
to	define	a	transposition	factor	in	semitones.	These	riffs	are	played	
back	using	a	bass	guitar-like	instrument	using	the	wgpluck2	opcode.	
Remember	that	mathematical	expressions	within	the	Csound	score	
must	be	bound	within	square	brackets	[].
		

EXAMPLE	03H03_Score_macro.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>
sr		 =		 44100
ksmps		 =		 16
nchnls		=		 1
0dbfs	 =	 1

	instr		1	;	bass	guitar
a1			wgpluck2	0.98,	0.4,	cpsmidinn(p4),	0.1,	0.6
aenv	linseg			1,p3-0.1,1,0.1,0
	out	 a1*aenv
	endin

</CsInstruments>

<CsScore>
;	p4	=	pitch	as	a	midi	note	number
#define	RIFF_1(Start'Trans)
#
i	1	[$Start]		1					[36+$Trans]
i	1	[$Start+1]		0.25		[43+$Trans]
i	1	[$Start+1.25]		0.25		[43+$Trans]
i	1	[$Start+1.75]		0.25		[41+$Trans]
i	1	[$Start+2.5]		1					[46+$Trans]
i	1	[$Start+3.25]		1					[48+$Trans]
#
#define	RIFF_2(Start'Trans)
#
i	1	[$Start]		1					[34+$Trans]
i	1	[$Start+1.25]		0.25		[41+$Trans]
i	1	[$Start+1.5]		0.25		[43+$Trans]
i	1	[$Start+1.75]		0.25		[46+$Trans]
i	1	[$Start+2.25]		0.25		[43+$Trans]
i	1	[$Start+2.75]		0.25		[41+$Trans]
i	1	[$Start+3]		0.5			[43+$Trans]
i	1	[$Start+3.5]		0.25		[46+$Trans]
#
t	0	90
$RIFF_1(0	'	0)
$RIFF_1(4	'	0)
$RIFF_2(8	'	0)
$RIFF_2(12'-5)
$RIFF_1(16'-5)

MACROS

292

$RIFF_2(20'-7)
$RIFF_2(24'	0)
$RIFF_2(28'	5)
e
</CsScore>
</CsoundSynthesizer>
;	example	written	by	Iain	McCurdy

Score	macros	can	themselves	contain	macros	so	that,	for	example,	the	
above	example	could	be	further	expanded	so	that	a	verse,	chorus	
structure	could	be	employed	where	verses	and	choruses,	defined	using
macros,	were	themselves	constructed	from	a	series	of	riff	macros.	
		

UDOs	and	macros	can	both	be	used	to	reduce	code	repetition	and	
there	are	many	situations	where	either	could	be	used	with	equal	
justification	but	each	offers	its	own	strengths.	UDOs	strengths	lies	in	
their	ability	to	be	used	just	like	an	opcode	with	inputs	and	outputs,	the
ease	with	which	they	can	be	shared	-	between	Csound	projects	and	
between	Csound	users	-	their	ability	to	operate	at	a	different	k-rate	to	
the	rest	of	the	orchestra	and	in	how	they	facilitate	recursion.	The	fact	
that	macro	arguments	are	merely	blocks	of	text,	however,	offers	up	
new	possibilities	and	unlike	UDOs,	macros	can	span	several	
instruments.	Of	course	UDOs	have	no	use	in	the	Csound	score	unlike	
macros.	Macros	can	also	be	used	to	simplify	the	creation	of	complex	
FLTK	GUI	where	panel	sections	might	be	repeated	with	variations	of	
output	variable	names	and	location.
		

Csound's	orchestra	and	score	macro	system	offers	many	additional	
refinements	and	this	chapter	serves	merely	as	an	introduction	to	their	
basic	use.	To	learn	more	it	is	recommended	to	refer	to	the	relevant	
sections	of	the	Csound	Reference	Manual.

FUNCTIONAL	SYNTAX

293

FUNCTIONAL	SYNTAX

Functional	syntax	is	very	common	in	many	programming	languages.	
It	takes	the	form	of	fun(),	where	fun	is	any	function	which	encloses	its
arguments	in	parentheses.	Even	in	"old"	Csound,	there	existed	some	
rudiments	of	this	functional	syntax	in	some	mathematical	functions,	
such	as	sqrt(),	log(),	int(),	frac().	For	instance,	the	following	code

iNum	=	1.234
print	int(iNum)
print	frac(iNum)

would	print:

instr	1:		#i0	=	1.000

		

instr	1:		#i1	=	0.230

Here	the	integer	part	and	the	fractional	part	of	the	number	1.234	are	
passed	directly	as	an	argument	to	the	print	opcode,	without	needing	
to	be	stored	at	any	point	as	a	variable.

This	alternative	way	of	formulating	code	can	now	be	used	with	many	
opcodes	in	Csound61.	In	the	future	many	more	opcodes	will	be	
incorporated	into	this	system.	First	we	shall	look	at	some	examples.

The	traditional	way	of	applying	a	fade	and	a	sliding	pitch	(glissando)	
to	a	tone	is	something	like	this:

		EXAMPLE	03I01_traditional_syntax.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr	=	44100
nchnls	=	1
ksmps	=	32
0dbfs	=	1

instr	1
kFade				linseg			0,	p3/2,	1,	p3/2,	0
kSlide			expseg			400,	p3/2,	800,	p3/2,	600
aTone				poscil			kFade,	kSlide

FUNCTIONAL	SYNTAX

294

									out						aTone
endin

</CsInstruments>
<CsScore>
i	1	0	5
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

In	plain	English	what	is	happening	is:

1.	 We	create	a	line	signal	with	the	opcode	linseg.	It	starts	at	zero,	
moves	to	one	in	half	of	the	instrument's	duration	(p3/2),	and	
moves	back	to	zero	for	the	second	half	of	the	instrument's	
duration.	We	store	this	signal	in	the	variable	kFade.

2.	 We	create	an	exponential2	signal	with	the	opcode	expseg.	It	
starts	at	400,	moves	to	800	in	half	the	instrument's	duration,	
and	moves	to	600	for	the	second	half	of	the	instrument's	
duration.	We	store	this	signal	in	the	variable	kSlide.

3.	 We	create	a	sine	audio	signal	with	the	opcode	poscil.	We	feed	
in	the	signal	stored	in	the	variable	kFade	as	amplitude,	and	the	
signal	stored	in	the	variable	kSlide	as	frequency	input.	We	
store	the	audio	signal	in	the	variable	aTone.

4.	 Finally,	we	write	the	audio	signal	to	the	output	with	the	opcode	
out.
		

Each	of	these	four	lines	can	be	considered	as	a	"function	call",	as	we	
call	the	opcodes	(functions)	linseg,	expseg,	poscil	and	out	with	certain
arguments	(input	parameters).	If	we	now	transform	this	example	to	
functional	syntax,	we	will	avoid	storing	the	result	of	a	function	call	in	
a	variable.	Rather	we	will	feed	the	function	and	its	arguments	directly	
into	the	appropriate	slot,	by	means	of	the	fun()	syntax.

If	we	write	the	first	line	in	functional	syntax,	it	will	look	like	this:

linseg(0,	p3/2,	1,	p3/2,	0)

And	the	second	line	will	look	like	this:

expseg(400,	p3/2,	800,	p3/2,	600)

So	we	can	reduce	our	code	from	four	lines	to	two	lines:

FUNCTIONAL	SYNTAX

295

		EXAMPLE	03I02_functional_syntax_1.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr	=	44100
nchnls	=	1
ksmps	=	32
0dbfs	=	1

instr	1
aTone				poscil			linseg(0,	p3/2,	1,	p3/2,	0),	expseg(400,	p3/2,	800,	p3/2,	600)
									out						aTone
endin

</CsInstruments>
<CsScore>
i	1	0	5
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

Or	would	you	prefer	the	"all-in-one"	solution?

		EXAMPLE	03I03_functional_syntax_2.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr	=	44100
nchnls	=	1
ksmps	=	32
0dbfs	=	1

instr	1
out	poscil(linseg(0,	p3/2,	1,	p3/2,	0),	expseg(400,	p3/2,	800,	p3/2,	600))
endin

</CsInstruments>
<CsScore>
i	1	0	5
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

DECLARE	YOUR	COLOR:	I,	K	OR	A?	

Most	of	the	Csound	opcodes	work	not	only	at	one	rate.	You	can,	for	
instance,	produce	random	numbers	at	i-,	k-	or	a-rate:3	

ires						random				imin,	imax
kres						random				kmin,	kmax
ares						random				kmin,	kmax

Let	us	assume	we	want	to	change	the	highest	frequency	in	our	

FUNCTIONAL	SYNTAX

296

example	from	800	to	a	random	value	between	700	and	1400	Hz,	so	
that	we	hear	a	different	movement	for	each	tone.	In	this	case,	we	can	
simply	write	random(700,	1400),	because	the	context	demands	an	i-
rate	result	of	the	random	operation	here:4

		EXAMPLE	03I04_functional_syntax_rate_1.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr	=	44100
nchnls	=	1
ksmps	=	32
0dbfs	=	1

instr	1
out	poscil(linseg(0,	p3/2,	1,	p3/2,	0),	expseg(400,	p3/2,	random(700,	1400),	p3/2,	
600))
endin

</CsInstruments>
<CsScore>
r	5
i	1	0	3
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

But	it	is	much	clearer	both,	for	the	Csound	parser	and	for	the	Csound
user,	if	you	explicitly	declare	at	which	rate	a	function	is	to	be
performed.	This	code	claims	that	poscil	runs	at	a-rate,	linseg	and
expseg	run	at	k-rate,	and	random	runs	at	i-rate	here:	

		EXAMPLE	03I05_functional_syntax_rate_2.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr	=	44100
nchnls	=	1
ksmps	=	32
0dbfs	=	1

instr	1
out	poscil:a(linseg:k(0,	p3/2,	1,	p3/2,	0),	expseg:k(400,	p3/2,	random:i(700,	1400),	
p3/2,	600))
endin

</CsInstruments>
<CsScore>
r	5
i	1	0	3
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

FUNCTIONAL	SYNTAX

297

As	you	can	see,	rate	declaration	is	done	with	simply	:a,	:k	or	:i	after	
the	function.	It	would	represent	good	practice	to	include	it	all	the	
time,	to	be	clear	about	what	is	happening.

ONLY	ONE	OUTPUT	

Currently,	there	is	a	limitation	in	that	only	opcodes	which	have	one	or
no	outputs	can	be	written	using	functional	syntax.	For	instance,	
reading	a	stereo	file	using	soundin

aL,	aR	soundin	"my_file.wav"

cannot	be	written	using	functional	syntax.	This	limitation	is	likely	to	
be	removed	in	the	future.

FUN()	WITH	UDOS	

It	should	be	mentioned	that	you	can	use	the	functional	style	also	with
self	created	opcodes	("User	Defined	Opcodes"):	

		EXAMPLE	03I06_functional_syntax_udo.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr	=	44100
nchnls	=	1
ksmps	=	32
0dbfs	=	1

opcode	FourModes,	a,	akk[]
		;kFQ[]	contains	four	frequency-quality	pairs
		aIn,	kBasFreq,	kFQ[]	xin
aOut1	mode	aIn,	kBasFreq*kFQ[0],	kFQ[1]
aOut2	mode	aIn,	kBasFreq*kFQ[2],	kFQ[3]
aOut3	mode	aIn,	kBasFreq*kFQ[4],	kFQ[5]
aOut4	mode	aIn,	kBasFreq*kFQ[6],	kFQ[7]
						xout	(aOut1+aOut2+aOut3+aOut4)	/	4
endop

instr	1
kArr[]	fillarray	1,	2000,	2.8,	2000,	5.2,	2000,	8.2,	2000
aImp			mpulse				.3,	1
							out							FourModes(aImp,	200,	kArr)
endin

</CsInstruments>
<CsScore>
i	1	0	10
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz,	based	on	an	example	of	iain	mccurdy

FUNCTIONAL	SYNTAX

298

HOW	MUCH	FUN()	IS	GOOD	FOR	YOU?	

Only	you,	and	perhaps	your	spiritual	consultant,	can	know	...

But	seriously,	this	is	mostly	a	matter	of	style.	Some	people	consider	it	
most	elegant	if	all	is	written	in	one	single	expression,	whilst	others	
prefer	to	see	the	signal	flow	from	line	to	line.	Certainly	excessive	
numbers	of	parentheses	may	not	result	in	the	best	looking	code	...

At	least	the	functional	syntax	allows	the	user	to	emphasize	his	or	her	
own	personal	style	and	to	avoid	some	awkwardness:

"If	i	new	value	of	kIn	has	been	received,	do	this	and	that",	can	be	
written:

if	changed(kIn)==1	then
		<do	this	and	that>
endif

"If	you	understand	what	happens	here,	you	will	have	been	moved	to	
the	next	level",	can	be	written:

		EXAMPLE	03I07_functional_syntax_you_win.csd

<CsoundSynthesizer>
<CsOptions>
-odac	-m128
</CsOptions>
<CsInstruments>
sr	=	44100
nchnls	=	1
ksmps	=	32
0dbfs	=	1
seed	0

opcode	FourModes,	a,	akk[]
		;kFQ[]	contains	four	frequency-quality	pairs
		aIn,	kBasFreq,	kFQ[]	xin
aOut1	mode	aIn,	kBasFreq*kFQ[0],	kFQ[1]
aOut2	mode	aIn,	kBasFreq*kFQ[2],	kFQ[3]
aOut3	mode	aIn,	kBasFreq*kFQ[4],	kFQ[5]
aOut4	mode	aIn,	kBasFreq*kFQ[6],	kFQ[7]
						xout	(aOut1+aOut2+aOut3+aOut4)	/	4
endop

instr	ham
gkPchMovement	=	randomi:k(50,	1000,	(random:i(.2,	.4)),	3)
schedule("hum",	0,	p3)
endin

instr	hum
if	metro(randomh:k(1,	10,	random:k(1,	4),	3))	==	1	then
event("i",	"play",	0,	5,	gkPchMovement)

FUNCTIONAL	SYNTAX

299

endif
endin

instr	play
iQ1	=	random(100,	1000)
kArr[]	fillarray	1*random:i(.9,	1.1),	iQ1,
																	2.8*random:i(.8,	1.2),	iQ1*random:i(.5,	2),
																	5.2*random:i(.7,	1.4),	iQ1*random:i(.5,	2),
																	8.2*random:i(.6,	1.8),	iQ1*random:i(.5,	2)
aImp			mpulse				ampdb(random:k(-30,	0)),	p3
							out							FourModes(aImp,	p4,	kArr)*linseg(1,	p3/2,	1,	p3/2,	0)
endin

</CsInstruments>
<CsScore>
i	"ham"	0	60
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz,	with	thanks	to	steven	and	iain

So	enjoy,	and	stay	in	contact	with	the	spirit	...	

	

	

1.	 thanks	to	the	huge	work	of	John	ffitch,	Steven	Yi	and	others	on	
a	new	parser^

2.	 which	in	simple	words	means	that	the	signal	moves	like	a	
curve	which	coincidents	with	the	way	we	perceive	frequency	
relations^

3.	 See	chapter	03A	Initialization	and	Performance	Pass	for	a	
more	thorough	explanation.^

4.	 because	all	inputs	for	expseg	must	be	i-rate^

FUNCTIONAL	SYNTAX

300

ADDITIVE	SYNTHESIS

301

ADDITIVE	SYNTHESIS

Jean	Baptiste	Joseph	Fourier	demonstrated	in	around	1800	that	any	
continuous	function	can	be	described	perfectly	as	a	sum	of	sine	
waves.	This	means	that	you	can	create	any	sound,	no	matter	how	
complex,	if	you	know	how	many	sine	waves,	and	at	what	frequencies,	
to	add	together.

This	concept	really	excited	the	early	pioneers	of	electronic	music,	
who	imagined	that	sine	waves	would	give	them	the	power	to	create	
any	sound	imaginable	and	previously	unimagined	sounds.	
Unfortunately,	they	soon	realised	that	while	adding	sine	waves	is	
easy,	interesting	sounds	require	a	large	number	of	sine	waves	that	are	
varying	constantly	in	frequency	and	amplitude	and	this	turns	out	to	be	
a	hugely	impractical	task.

Nonetheless,	additive	synthesis	can	provide	unusual	and	interesting	
sounds	and	the	power	of	modern	computers	and	their	ability	to	
manage	data	in	a	programming	language	offers	new	dimensions	of	
working	with	this	old	technique.	As	with	most	things	in	Csound	there	
are	several	ways	to	go	about	implementing	additive	synthesis.	We	
shall	endeavour	to	introduce	some	of	them	and	to	allude	to	how	they	
relate	to	different	programming	paradigms.
		

WHAT	ARE	THE	MAIN	PARAMETERS	OF
ADDITIVE	SYNTHESIS?

	Before	examining	various	methods	of	implementing	additive	
synthesis	in	Csound,	we	shall	first	consider	what	parameters	might	be	
required.	As	additive	synthesis	involves	the	addition	of	multiple	sine	
generators,	the	parameters	we	use	will	operate	on	one	of	two	different	
levels:

ADDITIVE	SYNTHESIS

302

For	each	sine,	there	will	be	a	frequency	and	an	amplitude	with	
an	envelope.

The	frequency	will	usually	be	a	constant	value,	but	it	can	
be	varied	and	in	fact	natural	sounds	typically	exhibit	slight	
modulations	of	partial	frequencies.
The	amplitude	must	have	at	least	a	simple	envelope	such	
as	the	well-known	ADSR	but	more	complex	methods	of	
continuously	altering	the	amplitude	will	result	in	a	livelier	
sound.
				

For	the	sound	as	an	entirety,	the	relevant	parameters	are:
The	total	number	of	sinusoids.	A	sound	which	consists	of	
just	three	sinusoids	will	most	likely	sound	poorer	than	one	
which	employs	100.
				
The	frequency	ratios	of	the	sine	generators.	For	a	classic	
harmonic	spectrum,	the	multipliers	of	the	sinusoids	are	1,	
2,	3,	...	(If	your	first	sine	is	100	Hz,	the	others	will	be	200,	
300,	400,	...	Hz.)	An	inharmonic	or	noisy	spectrum	will	
probably	have	no	simple	integer	ratios.	These	frequency	
ratios	are	chiefly	responsible	for	our	perception	of	timbre.
The	base	frequency	is	the	frequency	of	the	first	partial.	If	
the	partials	are	exhibiting	a	harmonic	ratio,	this	frequency	
(in	the	example	given	100	Hz)	is	also	the	overall	perceived	
pitch.
				
The	amplitude	ratios	of	the	sinusoids.	This	is	also	very	
important	in	determining	the	resulting	timbre	of	a	sound.	If	
the	higher	partials	are	relatively	strong,	the	sound	will	be	
perceived	as	being	more	'brilliant';	if	the	higher	partials	are	
soft,	then	the	sound	will	be	perceived	as	being	dark	and	
soft.
The	duration	ratios	of	the	sinusoids.	In	simple	additive	
synthesis,	all	single	sines	have	the	same	duration,	but	it	
will	be	more	interesting	if	they	differ	-	this	will	usually	
relate	to	the	durations	of	the	envelopes:	if	the	envelopes	of	
different	partials	vary,	some	partials	will	die	away	faster	
than	others.

ADDITIVE	SYNTHESIS

303

It	is	not	always	the	aim	of	additive	synthesis	to	imitate	natural	
sounds,	but	the	task	of	first	analysing	and	then	attempting	to	imitate	a	
sound	can	prove	to	be	very	useful	when	studying	additive	synthesis.	
This	is	what	a	guitar	note	looks	like	when	spectrally	analysed:

	

Spectral	analysis	of	a	guitar	tone	in	time	(courtesy	of	W.	Fohl,	
Hamburg)	
		

Each	partial	possesses	its	own	frequency	movement	and	duration.	We	
may	or	may	not	be	able	to	achieve	this	successfully	using	additive	
synthesis.	Let	us	begin	with	some	simple	sounds	and	consider	how	to	
go	about	programming	this	in	Csound.	Later	we	will	look	at	some	
more	complex	sounds	and	the	more	advanced	techniques	required	to	
synthesize	them.
		

SIMPLE	ADDITIONS	OF	SINUSOIDS	INSIDE
AN	INSTRUMENT	

If	additive	synthesis	amounts	to	simply	adding	together	sine	

ADDITIVE	SYNTHESIS

304

generators,	it	is	therefore	straightforward	to	implement	this	by	
creating	multiple	oscillators	in	a	single	instrument	and	adding	their	
outputs	together.	In	the	following	example,	instrument	1	
demonstrates	the	creation	of	a	harmonic	spectrum,	and	instrument	2	
an	inharmonic	one.	Both	instruments	share	the	same	amplitude	
multipliers:	1,	1/2,	1/3,	1/4,	...	and	receive	the	base	frequency	in	
Csound's	pitch	notation	(octave.semitone)	and	the	main	amplitude	in	
dB.
		

EXAMPLE	04A01_AddSynth_simple.csd	

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
;example	by	Andrés	Cabrera
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giSine				ftgen					0,	0,	2^10,	10,	1

				instr	1	;harmonic	additive	synthesis
;receive	general	pitch	and	volume	from	the	score
ibasefrq		=									cpspch(p4)	;convert	pitch	values	to	frequency
ibaseamp		=									ampdbfs(p5)	;convert	dB	to	amplitude
;create	8	harmonic	partials
aOsc1					poscil				ibaseamp,	ibasefrq,	giSine
aOsc2					poscil				ibaseamp/2,	ibasefrq*2,	giSine
aOsc3					poscil				ibaseamp/3,	ibasefrq*3,	giSine
aOsc4					poscil				ibaseamp/4,	ibasefrq*4,	giSine
aOsc5					poscil				ibaseamp/5,	ibasefrq*5,	giSine
aOsc6					poscil				ibaseamp/6,	ibasefrq*6,	giSine
aOsc7					poscil				ibaseamp/7,	ibasefrq*7,	giSine
aOsc8					poscil				ibaseamp/8,	ibasefrq*8,	giSine
;apply	simple	envelope
kenv						linen					1,	p3/4,	p3,	p3/4
;add	partials	and	write	to	output
aOut	=	aOsc1	+	aOsc2	+	aOsc3	+	aOsc4	+	aOsc5	+	aOsc6	+	aOsc7	+	aOsc8
										outs						aOut*kenv,	aOut*kenv
				endin

				instr	2	;inharmonic	additive	synthesis
ibasefrq		=									cpspch(p4)
ibaseamp		=									ampdbfs(p5)
;create	8	inharmonic	partials
aOsc1					poscil				ibaseamp,	ibasefrq,	giSine
aOsc2					poscil				ibaseamp/2,	ibasefrq*1.02,	giSine
aOsc3					poscil				ibaseamp/3,	ibasefrq*1.1,	giSine
aOsc4					poscil				ibaseamp/4,	ibasefrq*1.23,	giSine
aOsc5					poscil				ibaseamp/5,	ibasefrq*1.26,	giSine
aOsc6					poscil				ibaseamp/6,	ibasefrq*1.31,	giSine
aOsc7					poscil				ibaseamp/7,	ibasefrq*1.39,	giSine
aOsc8					poscil				ibaseamp/8,	ibasefrq*1.41,	giSine
kenv						linen					1,	p3/4,	p3,	p3/4
aOut	=	aOsc1	+	aOsc2	+	aOsc3	+	aOsc4	+	aOsc5	+	aOsc6	+	aOsc7	+	aOsc8
										outs	aOut*kenv,	aOut*kenv
				endin

ADDITIVE	SYNTHESIS

305

</CsInstruments>
<CsScore>
;										pch							amp
i	1	0	5				8.00						-13
i	1	3	5				9.00						-17
i	1	5	8				9.02						-15
i	1	6	9				7.01						-15
i	1	7	10			6.00						-13
s
i	2	0	5				8.00						-13
i	2	3	5				9.00						-17
i	2	5	8				9.02						-15
i	2	6	9				7.01						-15
i	2	7	10			6.00						-13
</CsScore>
</CsoundSynthesizer>

SIMPLE	ADDITIONS	OF	SINUSOIDS	VIA
THE	SCORE	

A	typical	paradigm	in	programming:	if	you	are	repeating	lines	of	
code	with	just	minor	variations,	consider	abstracting	it	in	some	way.	
In	the	Csound	language	this	could	mean	moving	parameter	control	to	
the	score.	In	our	case,	the	lines

aOsc1					poscil				ibaseamp,	ibasefrq,	giSine
aOsc2					poscil				ibaseamp/2,	ibasefrq*2,	giSine
aOsc3					poscil				ibaseamp/3,	ibasefrq*3,	giSine
aOsc4					poscil				ibaseamp/4,	ibasefrq*4,	giSine
aOsc5					poscil				ibaseamp/5,	ibasefrq*5,	giSine
aOsc6					poscil				ibaseamp/6,	ibasefrq*6,	giSine
aOsc7					poscil				ibaseamp/7,	ibasefrq*7,	giSine
aOsc8					poscil				ibaseamp/8,	ibasefrq*8,	giSine

could	be	abstracted	to	the	form

aOsc					poscil				ibaseamp*iampfactor,	ibasefrq*ifreqfactor,	giSine

with	the	parameters	iampfactor	(the	relative	amplitude	of	a	partial)	
and	ifreqfactor	(the	frequency	multiplier)	being	transferred	to	the	
score	as	p-fields.
		

The	next	version	of	the	previous	instrument,	simplifies	the	instrument	
code	and	defines	the	variable	values	as	score	parameters:

EXAMPLE	04A02_AddSynth_score.csd	

ADDITIVE	SYNTHESIS

306

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
;example	by	Andrés	Cabrera	and	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giSine				ftgen					0,	0,	2^10,	10,	1

				instr	1
iBaseFreq	=									cpspch(p4)
iFreqMult	=									p5	;frequency	multiplier
iBaseAmp		=									ampdbfs(p6)
iAmpMult		=									p7	;amplitude	multiplier
iFreq					=									iBaseFreq	*	iFreqMult
iAmp						=									iBaseAmp	*	iAmpMult
kEnv						linen					iAmp,	p3/4,	p3,	p3/4
aOsc						poscil				kEnv,	iFreq,	giSine
										outs						aOsc,	aOsc
				endin

</CsInstruments>
<CsScore>
;										freq						freqmult		amp							ampmult
i	1	0	7				8.09						1									-10							1
i	.	.	6				.									2									.									[1/2]
i	.	.	5				.									3									.									[1/3]
i	.	.	4				.									4									.									[1/4]
i	.	.	3				.									5									.									[1/5]
i	.	.	3				.									6									.									[1/6]
i	.	.	3				.									7									.									[1/7]
s
i	1	0	6				8.09						1.5							-10							1
i	.	.	4				.									3.1							.									[1/3]
i	.	.	3				.									3.4							.									[1/6]
i	.	.	4				.									4.2							.									[1/9]
i	.	.	5				.									6.1							.									[1/12]
i	.	.	6				.									6.3							.									[1/15]
</CsScore>
</CsoundSynthesizer>

You	might	ask:	"Okay,	where	is	the	simplification?	There	are	even	
more	lines	than	before!"	This	is	true,	but	this	still	represents	better	
coding	practice.	The	main	benefit	now	is	flexibility.	Now	we	are	able	
to	realise	any	number	of	partials	using	the	same	instrument,	with	any	
amplitude,	frequency	and	duration	ratios.	Using	the	Csound	score	
abbreviations	(for	instance	a	dot	for	repeating	the	previous	value	in	
the	same	p-field),	you	can	make	great	use	of	copy-and-paste,	and	
focus	just	on	what	is	changing	from	line	to	line.

Note	that	you	are	now	calling	one	instrument	multiple	times	in	the	
creation	of	a	single	additive	synthesis	note,	in	fact,	each	instance	of	
the	instrument	contributes	just	one	partial	to	the	additive	tone.	

ADDITIVE	SYNTHESIS

307

Calling	multiple	instances	of	one	instrument	in	this	way	also	
represents	good	practice	in	Csound	coding.	We	will	discuss	later	how	
this	end	can	be	achieved	in	a	more	elegant	way.
		

CREATING	FUNCTION	TABLES	FOR
ADDITIVE	SYNTHESIS	

Before	we	continue,	let	us	return	to	the	first	example	and	discuss	a	
classic	and	abbreviated	method	for	playing	a	number	of	partials.	As	
we	mentioned	at	the	beginning,	Fourier	stated	that	any	periodic	
oscillation	can	be	described	using	a	sum	of	simple	sinusoids.	If	the	
single	sinusoids	are	static	(with	no	individual	envelopes,	durations	or	
frequency	fluctuations),	the	resulting	waveform	will	be	similarly	
static.

		

		

ADDITIVE	SYNTHESIS

308

Above	you	see	four	sine	waves,	each	with	fixed	frequency	and	
amplitude	relationships.	These	are	then	mixed	together	with	the	
resulting	waveform	illustrated	at	the	bottom	(Sum).	This	then	begs	
the	question:	why	not	simply	calculate	this	composite	waveform	first,	
and	then	read	it	with	just	a	single	oscillator?

This	is	what	some	Csound	GEN	routines	do.	They	compose	the	
resulting	shape	of	the	periodic	waveform,	and	store	the	values	in	a	
function	table.	GEN10	can	be	used	for	creating	a	waveform	
consisting	of	harmonically	related	partials.	It	form	begins	with	the	
common	GEN	routine	p-fields

<table	number>,	<creation	time>,	<size	in	points>,	<GEN	number>

following	which	you	just	have	to	define	the	relative	strengths	of	the	
harmonics.	GEN09	is	more	complex	and	allows	you	to	also	control	
the	frequency	multiplier	and	the	phase	(0-360°)	of	each	partial.	Thus	
we	are	able	to	reproduce	the	first	example	in	a	shorter	(and	
computationally	faster)	form:

EXAMPLE	04A03_AddSynth_GEN.csd	

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
;example	by	Andrés	Cabrera	and	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giSine				ftgen					0,	0,	2^10,	10,	1
giHarm				ftgen					1,	0,	2^12,	10,	1,	1/2,	1/3,	1/4,	1/5,	1/6,	1/7,	1/8
giNois				ftgen					2,	0,	2^12,	9,	100,1,0,		102,1/2,0,		110,1/3,0,	\
																	123,1/4,0,		126,1/5,0,		131,1/6,0,		139,1/7,0,		141,1/8,0

				instr	1
iBasFreq		=									cpspch(p4)
iTabFreq		=									p7	;base	frequency	of	the	table
iBasFreq		=									iBasFreq	/	iTabFreq
iBaseAmp		=									ampdb(p5)
iFtNum				=									p6
aOsc						poscil				iBaseAmp,	iBasFreq,	iFtNum
aEnv						linen					aOsc,	p3/4,	p3,	p3/4
										outs						aEnv,	aEnv
				endin

</CsInstruments>

ADDITIVE	SYNTHESIS

309

<CsScore>
;										pch							amp							table						table	base	(Hz)
i	1	0	5				8.00						-10							1										1
i	.	3	5				9.00						-14							.										.
i	.	5	8				9.02						-12							.										.
i	.	6	9				7.01						-12							.										.
i	.	7	10			6.00						-10							.										.
s
i	1	0	5				8.00						-10							2										100
i	.	3	5				9.00						-14							.										.
i	.	5	8				9.02						-12							.										.
i	.	6	9				7.01						-12							.										.
i	.	7	10			6.00						-10							.										.
</CsScore>
</CsoundSynthesizer>

You	maybe	noticed	that	to	store	a	waveform	in	which	the	partials	are	
not	harmonically	related,	the	table	must	be	constructed	in	a	slightly	
special	way	(see	table	'giNois').	If	the	frequency	multipliers	in	our	
first	example	started	with	1	and	1.02,	the	resulting	period	is	actually	
very	long.	If	the	oscillator	was	playing	at	100	Hz,	the	tone	it	would	
produce	would	actually	contain	partials	at	100	Hz	and	102	Hz.	So	you	
need	100	cycles	from	the	1.00	multiplier	and	102	cycles	from	the	
1.02	multiplier	to	complete	one	period	of	the	composite	waveform.	In	
other	words,	we	have	to	create	a	table	which	contains	respectively	
100	and	102	periods,	instead	of	1	and	1.02.	Therefore	the	table	
frequencies	will	not	be	related	to	1	as	usual	but	instead	to	100.	This	is	
the	reason	that	we	have	to	introduce	a	new	parameter,	iTabFreq,	for	
this	purpose.	(N.B.	In	this	simple	example	we	could	actually	reduce	
the	ratios	to	50	and	51	as	100	and	102	share	a	common	denominator	
of	2.)
		

This	method	of	composing	waveforms	can	also	be	used	for	generating	
four	standard	waveform	shapes	typically	encountered	in	vintage	
synthesizers.	An	impulse	wave	can	be	created	by	adding	a	number	of	
harmonics	of	the	same	strength.	A	sawtooth	wave	has	the	amplitude	
multipliers	1,	1/2,	1/3,	...	for	the	harmonics.	A	square	wave	has	the	
same	multipliers,	but	just	for	the	odd	harmonics.	A	triangle	can	be	
calculated	as	1	divided	by	the	square	of	the	odd	partials,	with	
swapping	positive	and	negative	values.	The	next	example	creates	
function	tables	with	just	the	first	ten	partials	for	each	of	these	
waveforms.

ADDITIVE	SYNTHESIS

310

EXAMPLE	04A04_Standard_waveforms.csd	

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
;example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giImp		ftgen		1,	0,	4096,	10,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1
giSaw		ftgen		2,	0,	4096,	10,	1,1/2,1/3,1/4,1/5,1/6,1/7,1/8,1/9,1/10
giSqu		ftgen		3,	0,	4096,	10,	1,	0,	1/3,	0,	1/5,	0,	1/7,	0,	1/9,	0
giTri		ftgen		4,	0,	4096,	10,	1,	0,	-1/9,	0,	1/25,	0,	-1/49,	0,	1/81,	0

instr	1
asig			poscil	.2,	457,	p4
							outs			asig,	asig
endin

</CsInstruments>
<CsScore>
i	1	0	3	1
i	1	4	3	2
i	1	8	3	3
i	1	12	3	4
</CsScore>
</CsoundSynthesizer>

TRIGGERING	INSTRUMENT	EVENTS	FOR
THE	PARTIALS	

	Performing	additive	synthesis	by	designing	partial	strengths	into	
function	tables	has	the	disadvantage	that	once	a	note	has	begun	there	
is	no	way	of	varying	the	relative	strengths	of	individual	partials.	
There	are	various	methods	to	circumvent	the	inflexibility	of	table-
based	additive	synthesis	such	as	morphing	between	several	tables	(for	
example	by	using	the	ftmorf	opcode)	or	by	filtering	the	result.	Next	
we	shall	consider	another	approach:	triggering	one	instance	of	a	sub-
instrument1		for	each	partial,	and	exploring	the	possibilities	of	
creating	a	spectrally	dynamic	sound	using	this	technique.

Let	us	return	to	the	second	instrument	(05A02.csd)	which	had	already	
made	use	of	some	abstractions	and	triggered	one	instrument	instance	
for	each	partial.	This	was	done	in	the	score,	but	now	we	will	trigger	
one	complete	note	in	one	score	line,	not	just	one	partial.	The	first	step	

ADDITIVE	SYNTHESIS

311

is	to	assign	the	desired	number	of	partials	via	a	score	parameter.	The	
next	example	triggers	any	number	of	partials	using	this	one	value:

EXAMPLE	04A05_Flexible_number_of_partials.csd	
		

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giSine				ftgen					0,	0,	2^10,	10,	1

instr	1	;master	instrument
inumparts	=									p4	;number	of	partials
ibasfreq		=									200	;base	frequency
ipart					=									1	;count	variable	for	loop
;loop	for	inumparts	over	the	ipart	variable
;and	trigger	inumpartss	instanes	of	the	subinstrument
loop:
ifreq					=									ibasfreq	*	ipart
iamp						=									1/ipart/inumparts
										event_i			"i",	10,	0,	p3,	ifreq,	iamp
										loop_le			ipart,	1,	inumparts,	loop
endin

instr	10	;subinstrument	for	playing	one	partial
ifreq					=									p4	;frequency	of	this	partial
iamp						=									p5	;amplitude	of	this	partial
aenv						transeg			0,	.01,	0,	iamp,	p3-0.1,	-10,	0
apart					poscil				aenv,	ifreq,	giSine
										outs						apart,	apart
endin

</CsInstruments>
<CsScore>
;									number	of	partials
i	1	0	3			10
i	1	3	3			20
i	1	6	3			2
</CsScore>
</CsoundSynthesizer>

This	instrument	can	easily	be	transformed	to	be	played	via	a	midi	
keyboard.	In	the	next	the	midi	key	velocity	will	map	to	the	number	of	
synthesized	partials	played	to	implement	a	brightness	control.

EXAMPLE	04A06_Play_it_with_Midi.csd
		

<CsoundSynthesizer>
<CsOptions>
-o	dac	-Ma
</CsOptions>
<CsInstruments>

ADDITIVE	SYNTHESIS

312

;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giSine				ftgen					0,	0,	2^10,	10,	1
										massign			0,	1	;all	midi	channels	to	instr	1

instr	1	;master	instrument
ibasfreq		cpsmidi	 ;base	frequency
iampmid			ampmidi			20	;receive	midi-velocity	and	scale	0-20
inparts			=									int(iampmid)+1	;exclude	zero
ipart					=									1	;count	variable	for	loop
;loop	for	inparts	over	the	ipart	variable
;and	trigger	inparts	instances	of	the	sub-instrument
loop:
ifreq					=									ibasfreq	*	ipart
iamp						=									1/ipart/inparts
										event_i			"i",	10,	0,	1,	ifreq,	iamp
										loop_le			ipart,	1,	inparts,	loop
endin

instr	10	;subinstrument	for	playing	one	partial
ifreq					=									p4	;frequency	of	this	partial
iamp						=									p5	;amplitude	of	this	partial
aenv						transeg			0,	.01,	0,	iamp,	p3-.01,	-3,	0
apart					poscil				aenv,	ifreq,	giSine
										outs						apart/3,	apart/3
endin

</CsInstruments>
<CsScore>
f	0	3600
</CsScore>
</CsoundSynthesizer>

Although	this	instrument	is	rather	primitive	it	is	useful	to	be	able	to	
control	the	timbre	in	this	way	using	key	velocity.	Let	us	continue	to	
explore	some	other	methods	of	creating	parameter	variation	in	
additive	synthesis.

USER-CONTROLLED	RANDOM
VARIATIONS	IN	ADDITIVE	SYNTHESIS	

Natural	sounds	exhibit	constant	movement	and	change	in	the	
parameters	we	have	so	far	discussed.	Even	the	best	player	or	singer	
will	not	be	able	to	play	a	note	in	the	exact	same	way	twice	and	within	
a	tone,	the	partials	will	have	some	unsteadiness:	slight	waverings	in	
the	amplitudes	and	slight	frequency	fluctuations.	In	an	audio	
programming	environment	like	Csound,	we	can	imitate	these	
movements	by	employing	random	deviations.	The	boundaries	of	
random	deviations	must	be	adjusted	as	carefully.	Exaggerate	them	
and	the	result	will	be	unnatural	or	like	a	bad	player.	The	rates	or	

ADDITIVE	SYNTHESIS

313

speeds	of	these	fluctuations	will	also	need	to	be	chosen	carefully	and	
sometimes	we	need	to	modulate	the	rate	of	modulation	in	order	to	
achieve	naturalness.

Let	us	start	with	some	random	deviations	in	our	subinstrument.	The	
following	parameters	can	be	affected:

The	frequency	of	each	partial	can	be	slightly	detuned.	The	
range	of	this	possible	maximum	detuning	can	be	set	in	cents	
(100	cent	=	1	semitone).
The	amplitude	of	each	partial	can	be	altered	relative	to	its	
default	value.	This	alteration	can	be	measured	in	decibels	(dB).
The	duration	of	each	partial	can	be	made	to	be	longer	or	
shorter	than	the	default	value.	Let	us	define	this	deviation	as	a	
percentage.	If	the	expected	duration	is	five	seconds,	a	
maximum	deviation	of	100%	will	mean	a	resultant	value	of	
between	half	the	duration	(2.5	sec)	and	double	the	duration	(10	
sec).

The	following	example	demonstrates	the	effect	of	these	variations.	As
a	base	-	and	as	a	reference	to	its	author	-	we	take	as	our	starting	point,	
the	'bell-like'	sound	created	by	Jean-Claude	Risset	in	his	'Sound	
Catalogue'.2		

EXAMPLE	04A07_Risset_variations.csd				

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

;frequency	and	amplitude	multipliers	for	11	partials	of	Risset's	bell
giFqs					ftgen					0,	0,	-11,-2,.56,.563,.92,	.923,1.19,1.7,2,2.74,	\
																					3,3.74,4.07
giAmps				ftgen					0,	0,	-11,	-2,	1,	2/3,	1,	1.8,	8/3,	1.46,	4/3,	4/3,	1,	4/3
giSine				ftgen					0,	0,	2^10,	10,	1
										seed						0

instr	1	;master	instrument
ibasfreq		=									400
ifqdev				=									p4	;maximum	freq	deviation	in	cents
iampdev			=									p5	;maximum	amp	deviation	in	dB
idurdev			=									p6	;maximum	duration	deviation	in	%
indx						=									0	;count	variable	for	loop

ADDITIVE	SYNTHESIS

314

loop:
ifqmult			tab_i					indx,	giFqs	;get	frequency	multiplier	from	table
ifreq					=									ibasfreq	*	ifqmult
iampmult		tab_i					indx,	giAmps	;get	amp	multiplier
iamp						=									iampmult	/	20	;scale
										event_i			"i",	10,	0,	p3,	ifreq,	iamp,	ifqdev,	iampdev,	idurdev
										loop_lt			indx,	1,	11,	loop
endin

instr	10	;subinstrument	for	playing	one	partial
;receive	the	parameters	from	the	master	instrument
ifreqnorm	=									p4	;standard	frequency	of	this	partial
iampnorm		=									p5	;standard	amplitude	of	this	partial
ifqdev				=									p6	;maximum	freq	deviation	in	cents
iampdev			=									p7	;maximum	amp	deviation	in	dB
idurdev			=									p8	;maximum	duration	deviation	in	%
;calculate	frequency
icent					random				-ifqdev,	ifqdev	;cent	deviation
ifreq					=									ifreqnorm	*	cent(icent)
;calculate	amplitude
idb							random				-iampdev,	iampdev	;dB	deviation
iamp						=									iampnorm	*	ampdb(idb)
;calculate	duration
idurperc		random				-idurdev,	idurdev	;duration	deviation	(%)
iptdur				=									p3	*	2^(idurperc/100)
p3								=									iptdur	;set	p3	to	the	calculated	value
;play	partial
aenv						transeg			0,	.01,	0,	iamp,	p3-.01,	-10,	0
apart					poscil				aenv,	ifreq,	giSine
										outs						apart,	apart
endin

</CsInstruments>
<CsScore>
;									frequency			amplitude			duration
;									deviation			deviation			deviation
;									in	cent					in	dB							in	%
;;unchanged	sound	(twice)
r	2
i	1	0	5			0											0											0
s
;;slight	variations	in	frequency
r	4
i	1	0	5			25										0											0
;;slight	variations	in	amplitude
r	4
i	1	0	5			0											6											0
;;slight	variations	in	duration
r	4
i	1	0	5			0											0											30
;;slight	variations	combined
r	6
i	1	0	5			25										6											30
;;heavy	variations
r	6
i	1	0	5			50										9											100
</CsScore>
</CsoundSynthesizer>	

In	midi-triggered	descendant	of	this	instrument,	we	could	-	as	one	of	
many	possible	options	-	vary	the	amount	of	possible	random	variation	
according	to	the	key	velocity	so	that	a	key	pressed	softly	plays	the	
bell-like	sound	as	described	by	Risset	but	as	a	key	is	struck	with	
increasing	force	the	sound	produced	will	be	increasingly	altered.

EXAMPLE	04A08_Risset_played_by_Midi.csd				

ADDITIVE	SYNTHESIS

315

<CsoundSynthesizer>
<CsOptions>
-o	dac	-Ma
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

;frequency	and	amplitude	multipliers	for	11	partials	of	Risset's	bell
giFqs					ftgen					0,	0,	-11,	-2,	.56,.563,.92,.923,1.19,1.7,2,2.74,3,\
																				3.74,4.07
giAmps				ftgen					0,	0,	-11,	-2,	1,	2/3,	1,	1.8,	8/3,	1.46,	4/3,	4/3,	1,\
																				4/3
giSine				ftgen					0,	0,	2^10,	10,	1
										seed						0
										massign			0,	1	;all	midi	channels	to	instr	1

instr	1	;master	instrument
;;scale	desired	deviations	for	maximum	velocity
;frequency	(cent)
imxfqdv			=									100
;amplitude	(dB)
imxampdv		=									12
;duration	(%)
imxdurdv		=									100
;;get	midi	values
ibasfreq		cpsmidi	 ;base	frequency
iampmid			ampmidi			1	;receive	midi-velocity	and	scale	0-1
;;calculate	maximum	deviations	depending	on	midi-velocity
ifqdev				=									imxfqdv	*	iampmid
iampdev			=									imxampdv	*	iampmid
idurdev			=									imxdurdv	*	iampmid
;;trigger	subinstruments
indx						=									0	;count	variable	for	loop
loop:
ifqmult			tab_i					indx,	giFqs	;get	frequency	multiplier	from	table
ifreq					=									ibasfreq	*	ifqmult
iampmult		tab_i					indx,	giAmps	;get	amp	multiplier
iamp						=									iampmult	/	20	;scale
										event_i			"i",	10,	0,	3,	ifreq,	iamp,	ifqdev,	iampdev,	idurdev
										loop_lt			indx,	1,	11,	loop
endin

instr	10	;subinstrument	for	playing	one	partial
;receive	the	parameters	from	the	master	instrument
ifreqnorm	=									p4	;standard	frequency	of	this	partial
iampnorm		=									p5	;standard	amplitude	of	this	partial
ifqdev				=									p6	;maximum	freq	deviation	in	cents
iampdev			=									p7	;maximum	amp	deviation	in	dB
idurdev			=									p8	;maximum	duration	deviation	in	%
;calculate	frequency
icent					random				-ifqdev,	ifqdev	;cent	deviation
ifreq					=									ifreqnorm	*	cent(icent)
;calculate	amplitude
idb							random				-iampdev,	iampdev	;dB	deviation
iamp						=									iampnorm	*	ampdb(idb)
;calculate	duration
idurperc		random				-idurdev,	idurdev	;duration	deviation	(%)
iptdur				=									p3	*	2^(idurperc/100)
p3								=									iptdur	;set	p3	to	the	calculated	value
;play	partial
aenv						transeg			0,	.01,	0,	iamp,	p3-.01,	-10,	0
apart					poscil				aenv,	ifreq,	giSine
										outs						apart,	apart
endin

</CsInstruments>
<CsScore>
f	0	3600
</CsScore>

ADDITIVE	SYNTHESIS

316

</CsoundSynthesizer>	

Whether	you	can	play	examples	like	this	in	realtime	will	depend	on	
the	power	of	your	computer.	Have	a	look	at	chapter	2D	(Live	Audio)	
for	tips	on	getting	the	best	possible	performance	from	your	Csound	
orchestra.		

In	the	next	example	we	shall	use	additive	synthesis	to	make	a	kind	of	
a	wobble	bass.	It	starts	as	a	bass	sound,	then	evolves	into	something	
else,	and	then	returns	to	being	a	bass	sound	again.	We	will	first	
generate	all	the	inharmonic	partials	with	a	loop.	Harmonic	partials	
are	arithmetic,	we	add	the	same	value	to	one	partial	to	get	the	next.	In	
this	example	we	will	instead	use	geometric	partials,	we	will	multiply	
one	partial	with	a	certain	number	(kfreqmult)	to	derive	the	next	
partial	frequency	and	so	on.	This	number	will	not	be	constant,	but	
will	be	generated	by	a	sine	oscillator.	This	is	frequency	modulation.	
Finally	some	randomness	is	added	to	create	a	more	interesting	sound,	
and	a	chorus	effect	is	also	added	to	make	the	sound	more	'fat'.	The	
exponential	function,	exp,	is	used	when	deriving	frequencies	because	
if	we	move	upwards	in	common	musical	scales,	then	the	frequencies	
grow	exponentially.

			EXAMPLE	04A09_Wobble_bass.csd	

<CsoundSynthesizer>	;	Wobble	bass	made	using	additive	synthesis

<CsOptions>	;	and	frequency	modulation
-odac
</CsOptions>

<CsInstruments>
;	Example	by	Bjørn	Houdorf,	March	2013
sr	=	44100
ksmps	=	1
nchnls	=	2
0dbfs	=	1

instr	1
kamp							=										24	;	Amplitude
kfreq						expseg					p4,	p3/2,	50*p4,	p3/2,	p4	;	Base	frequency
iloopnum			=										p5	;	Number	of	all	partials	generated
alyd1						init							0
alyd2						init							0
											seed							0
kfreqmult		oscili					1,	2,	1
kosc							oscili					1,	2.1,	1
ktone						randomh				0.5,	2,	0.2	;	A	random	input

ADDITIVE	SYNTHESIS

317

icount					=										1

loop:	;	Loop	to	generate	partials	to	additive	synthesis
kfreq						=										kfreqmult	*	kfreq
atal							oscili					1,	0.5,	1
apart						oscili					1,	icount*exp(atal*ktone)	,	1	;	Modulate	each	partials
anum							=										apart*kfreq*kosc
asig1						oscili					kamp,	anum,	1
asig2						oscili					kamp,	1.5*anum,	1	;	Chorus	effect	to	make	the	sound	more	"fat"
asig3						oscili					kamp,	2*anum,	1
asig4						oscili					kamp,	2.5*anum,	1
alyd1						=										(alyd1	+	asig1+asig4)/icount	;Sum	of	partials
alyd2						=										(alyd2	+	asig2+asig3)/icount
											loop_lt				icount,	1,	iloopnum,	loop	;	End	of	loop

											outs							alyd1,	alyd2	;	Output	generated	sound
endin
</CsInstruments>

<CsScore>
f1	0	128	10	1
i1	0	60	110	50
e
</CsScore>

</CsoundSynthesizer>

GBUZZ,	BUZZ	AND	GEN11

gbuzz	is	useful	for	creating	additive	tones	made	of	of	harmonically	
related	cosine	waves.	Rather	than	define	attributes	for	every	partial	
individually	gbuzz	allows	us	to	define	parameters	that	describe	the	
entire	additive	tone	in	a	more	general	way,	specifically,	the	number	
of	partials	in	the	tone,	the	partial	number	of	the	lowest	partial	present	
and	an	amplitude	coefficient	multipler	which	shifts	the	peak	of	
spectral	energy	in	the	tone.	Although	number	of	harmonics	(knh)	and	
lowest	hamonic	(klh)	are	k-rate	arguments,	they	only	interpreted	as	
integers	by	the	opcode	therefore	changes	from	integer	to	integer	will	
result	in	discontinuities	in	the	output	signal.	The	amplitude	
coefficient	multiplier	allows	for	smooth	spectral	modulations	
however.	Although	we	lose	some	control	of	individual	partials	using	
gbuzz,	we	gain	by	being	able	to	nimbly	sculpt	the	spectrum	of	the	
tone	it	produces.
		

In	the	following	example	a	100Hz	tone	is	created	in	which	the	
number	of	partials	it	contains	rises	from	1	to	20	across	its	8	second	
duration.	A	spectrogram/sonogram	displays	how	this	manifests	

ADDITIVE	SYNTHESIS

318

spectrally.	A	linear	frequency	scale	is	employed	in	the	spectrogram	
so	that	harmonic	partials	appear	equally	spaced.

			EXAMPLE	04A10_gbuzz.csd
		

<CsoundSynthesizer>

<CsOptions>
-o	dac
</CsOptions>

<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

;	a	cosine	wave
gicos	ftgen	0,	0,	2^10,	11,	1

	instr	1
knh		line		1,	p3,	20		;	number	of	harmonics
klh		=					1										;	lowest	harmonic
kmul	=					1										;	amplitude	coefficient	multiplier
asig	gbuzz	1,	100,	knh,	klh,	kmul,	gicos
					outs		asig,	asig
	endin

</CsInstruments>

<CsScore>
i	1	0	8
e
</CsScore>

</CsoundSynthesizer>

The	total	number	of	partials	only	reaches	19	because	the	line	function	

ADDITIVE	SYNTHESIS

319

only	reaches	20	at	the	very	conclusion	of	the	note.	
		

In	the	next	example	the	number	of	partials	contained	within	the	tone	
remains	constant	but	the	partial	number	of	the	lowest	partial	rises	
from	1	to	20.

			EXAMPLE	04A11_gbuzz_partials_rise.csd	
		

<CsoundSynthesizer>

<CsOptions>
-o	dac
</CsOptions>

<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

;	a	cosine	wave
gicos	ftgen	0,	0,	2^10,	11,	1

	instr	1
knh		=					20
klh		line		1,	p3,	20
kmul	=					1
asig	gbuzz	1,	100,	knh,	klh,	kmul,	gicos
					outs		asig,	asig
	endin

</CsInstruments>

<CsScore>
i	1	0	8
e
</CsScore>

</CsoundSynthesizer>

	

ADDITIVE	SYNTHESIS

320

In	the	sonogram	it	can	be	seen	how,	as	lowermost	partials	are	
removed,	additional	partials	are	added	at	the	top	of	the	spectrum.	
This	is	because	the	total	number	of	partials	remains	constant	at	20.
		

In	the	final	gbuzz	example	the	amplitude	coefficient	multiplier	rises	
from	0	to	2.	It	can	be	heard	(and	seen	in	the	sonogram)	how,	when	
this	value	is	zero,	emphasis	is	on	the	lowermost	partial	and	when	this	
value	is	2,	emphasis	is	on	the	uppermost	partial.

			EXAMPLE	04A12_gbuzz_amp_coeff_rise.csd
		

<CsoundSynthesizer>

<CsOptions>
-o	dac
</CsOptions>

<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

;	a	cosine	wave
gicos	ftgen	0,	0,	2^10,	11,	1

	instr	1
knh		=					20
klh		=					1
kmul	line		0,	p3,	2
asig	gbuzz	1,	100,	knh,	klh,	kmul,	gicos
					outs		asig,	asig
	endin

</CsInstruments>

<CsScore>
i	1	0	8
e
</CsScore>

</CsoundSynthesizer>

ADDITIVE	SYNTHESIS

321

	

buzz	is	a	simplified	version	of	gbuzz	with	fewer	parameters	–	it	does	
not	provide	for	modulation	of	the	lowest	partial	number	and	
amplitude	coefficient	multiplier.

GEN11	creates	a	function	table	waveform	using	the	same	parameters	
as	gbuzz.	If	a	gbuzz	tone	is	required	but	no	performance	time	
modulation	of	its	parameters	is	needed,	GEN11	may	provide	a	more	
efficient	option.	GEN11	also	opens	the	possibility	of	using	its	
waveforms	in	a	variety	of	other	opcodes.	gbuzz,	buzz	and	GEN11	
may	also	prove	useful	as	a	source	for	subtractive	synthesis.

ADDITIONAL	INTERESTING	OPCODES	FOR
ADDITIVE	SYNTHESIS

HSBOSCIL

The	opcode	hsboscil	offers	an	interesting	method	of	additive	
synthesis	in	which	all	partials	are	spaced	an	octave	apart.	Whilst	this	
may	at	first	seems	limiting,	it	does	offer	simple	means	for	morphing	
the	precise	make	up	if	its	spectrum.	It	can	be	thought	of	as	producing	
a	sound	spectrum	that	extends	infinitely	above	and	below	the	base	
frequency.	Rather	than	sounding	all	of	the	resultant	partials	
simultaneously,	a	window	(typically	a	Hanning	window)	is	placed	

ADDITIVE	SYNTHESIS

322

over	the	spectrum,	masking	it	so	that	only	one	or	several	of	these	
partials	sound	at	any	one	time.	The	user	can	shift	the	position	of	this	
window	up	or	down	the	spectrum	at	k-rate	and	this	introduces	the	
possibility	of	spectral	morphing.	hsbosil	refers	to	this	control	as	
'kbrite'.	The	width	of	the	window	can	be	specified	(but	only	at	i-time)	
using	its	'iOctCnt'	parameter.	The	entire	spectrum	can	also	be	shifted	
up	or	down,	independent	of	the	location	of	the	masking	window	using	
the	'ktone'	parameter,	which	can	be	used	to	create	a	'Risset	glissando'-
type	effect.	The	sense	of	the	interval	of	an	octave	between	partials	
tends	to	dominate	but	this	can	be	undermined	through	the	use	of	
frequency	shifting	or	by	using	a	waveform	other	than	a	sine	wave	as	
the	source	waveform	for	each	partial.

In	the	next	example,	instrument	1	demonstrates	the	basic	sound	
produced	by	hsboscil	whilst	randomly	modulating	the	location	of	the	
masking	window	(kbrite)	and	the	transposition	control	(ktone).	
Instrument	2	introduces	frequency	shifting	(through	the	use	of	the	
hilbert	opcode)	which	adds	a	frequency	value	to	all	partials	thereby	
warping	the	interval	between	partials.	Instrument	3	employs	a	more	
complex	waveform	(pseudo-inharmonic)	as	the	source	waveform	for	
the	partials.

EXAMPLE	04A13_hsboscil.csd		

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>

0dbfs	=	1

giSine				ftgen		0,	0,	2^10,	10,	1
;	hanning	window
giWindow		ftgen		0,	0,	1024,	-19,	1,	0.5,	270,	0.5
;	a	complex	pseudo	inharmonic	waveform	(partials	scaled	up	X	100)
giWave				ftgen		0,	0,	262144,	9,	100,1.000,0,	278,0.500,0,	518,0.250,0,	\	
816,0.125,0,	1166,0.062,0,	1564,0.031,0,	1910,0.016,0

		instr	1	;	demonstration	of	hsboscil
kAmp					=								0.3
kTone				rspline		-1,1,0.05,0.2	;	randomly	shift	spectrum	up	and	down
kBrite			rspline		-1,3,0.4,2				;	randomly	shift	masking	window	up	and	down
iBasFreq	=								200											;	base	frequency
iOctCnt		=								3													;	width	of	masking	window
aSig					hsboscil	kAmp,	kTone,	kBrite,	iBasFreq,	giSine,	giWindow,	iOctCnt
									out						aSig

ADDITIVE	SYNTHESIS

323

		endin

		instr	2	;	frequency	shifting	added
kAmp					=								0.3
kTone				=								0										;	spectrum	remains	static	this	time
kBrite			rspline		-2,5,0.4,2	;	randomly	shift	masking	window	up	and	down
iBasFreq	=								75									;	base	frequency
iOctCnt		=								6										;	width	of	masking	window
aSig					hsboscil	kAmp,	kTone,	kBrite,	iBasFreq,	giSine,	giWindow,	iOctCnt
	;	frequency	shift	the	sound
kfshift			=							-357							;	amount	to	shift	the	frequency
areal,aimag	hilbert	aSig					;	hilbert	filtering
asin					poscil			1,	kfshift,	giSine,	0				;	modulating	signals
acos					poscil			1,	kfshift,	giSine,	0.25	
aSig	 =									(areal*acos)	-	(aimag*asin)		;	frequency	shifted	signal
								out							aSig
		endin

		instr	3	;	hsboscil	using	a	complex	waveform
kAmp					=								0.3
kTone				rspline		-1,1,0.05,0.2	;	randomly	shift	spectrum	up	and	down
kBrite			rspline		-3,3,0.1,1				;	randomly	shift	masking	window
iBasFreq	=								200
aSig					hsboscil	kAmp,	kTone,	kBrite,	iBasFreq/100,	giWave,	giWindow
aSig2				hsboscil	kAmp,kTone,	kBrite,	(iBasFreq*1.001)/100,	giWave,	giWindow
							out								aSig+aSig2	;	mix	signal	with	'detuned'	version
		endin

</CsInstruments>

<CsScore>
i	1	0		14
i	2	15	14
i	3	30	14
e
</CsScore>

</CsoundSynthesizer>

Additive	synthesis	can	still	be	an	exciting	way	of	producing	sounds.	It	
offers	the	user	a	level	of	control	that	other	methods	of	synthesis	
simply	cannot	match.	It	also	provides	an	essential	workbench	for	
learning	about	acoustics	and	spectral	theory	as	related	to	sound.	

1.	 This	term	is	used	here	in	a	general	manner.	There	is	also	a	
Csound	opcode	"subinstr"	which	has	some	more	specific	
meanings.	^

2.	 Jean-Claude	Risset,	Introductory	Catalogue	of	Computer	
Synthesized	Sounds	(1969),	cited	after	Dodge/Jerse,	Computer	
Music,	New	York	/	London	1985,	p.94^

ADDITIVE	SYNTHESIS

324

SUBTRACTIVE	SYNTHESIS

325

SUBTRACTIVE	SYNTHESIS

INTRODUCTION

Subtractive	synthesis	is,	at	least	conceptually,	the	inverse	of	additive	
synthesis	in	that	instead	of	building	complex	sound	through	the	
addition	of	simple	cellular	materials	such	as	sine	waves,	subtractive	
synthesis	begins	with	a	complex	sound	source,	such	as	white	noise	or	
a	recorded	sample,	or	a	rich	waveform,	such	as	a	sawtooth	or	pulse,	
and	proceeds	to	refine	that	sound	by	removing	partials	or	entire	
sections	of	the	frequency	spectrum	through	the	use	of	audio	filters.

The	creation	of	dynamic	spectra	(an	arduous	task	in	additive	
synthesis)	is	relatively	simple	in	subtractive	synthesis	as	all	that	will	
be	required	will	be	to	modulate	a	few	parameters	pertaining	to	any	
filters	being	used.	Working	with	the	intricate	precision	that	is	
possible	with	additive	synthesis	may	not	be	as	easy	with	subtractive	
synthesis	but	sounds	can	be	created	much	more	instinctively	than	is	
possible	with	additive	or	FM	synthesis.

A	CSOUND	TWO-OSCILLATOR
SYNTHESIZER

The	first	example	represents	perhaps	the	classic	idea	of	subtractive	
synthesis:	a	simple	two	oscillator	synth	filtered	using	a	single	
resonant	lowpass	filter.	Many	of	the	ideas	used	in	this	example	have	
been	inspired	by	the	design	of	the	Minimoog	synthesizer	(1970)	and	
other	similar	instruments.

Each	oscillator	can	describe	either	a	sawtooth,	PWM	waveform	(i.e.	
square	-	pulse	etc.)	or	white	noise	and	each	oscillator	can	be	
transposed	in	octaves	or	in	cents	with	respect	to	a	fundamental	pitch.	
The	two	oscillators	are	mixed	and	then	passed	through	a	4-pole	/	

SUBTRACTIVE	SYNTHESIS

326

24dB	per	octave	resonant	lowpass	filter.	The	opcode	'moogladder'	is	
chosen	on	account	of	its	authentic	vintage	character.	The	cutoff	
frequency	of	the	filter	is	modulated	using	an	ADSR-style	(attack-
decay-sustain-release)	envelope	facilitating	the	creation	of	dynamic,	
evolving	spectra.	Finally	the	sound	output	of	the	filter	is	shaped	by	an	
ADSR	amplitude	envelope.	Waveforms	such	as	sawtooths	and	square	
waves	offer	rich	sources	for	subtractive	synthesis	as	they	contains	a	
lot	of	sound	energy	across	a	wide	range	of	frequencies	-	it	could	be	
said	that	white	noise	offers	the	richest	sound	source	containing,	as	it	
does,	energy	at	every	frequency.	A	sine	wave	would	offer	a	very	poor	
source	for	subtractive	synthesis	as	it	contains	energy	at	only	one	
frequency.	Other	Csound	opcodes	that	might	provide	rich	sources	are	
the	buzz	and	gbuzz	opcodes	and	the	GEN09,	GEN10,	GEN11	and	
GEN19	GEN	routines.
		

As	this	instrument	is	suggestive	of	a	performance	instrument	
controlled	via	MIDI,	this	has	been	partially	implemented.	Through	
the	use	of	Csound's	MIDI	interoperability	opcode,	mididefault,	the	
instrument	can	be	operated	from	the	score	or	from	a	MIDI	keyboard.	
If	a	MIDI	note	is	received,	suitable	default	p-field	values	are	
substituted	for	the	missing	p-fields.	MIDI	controller	1	can	be	used	to	
control	the	global	cutoff	frequency	for	the	filter.

A	schematic	for	this	instrument	is	shown	below:
		

SUBTRACTIVE	SYNTHESIS

327

	

			EXAMPLE	04B01_Subtractive_Midi.csd

<CsoundSynthesizer>

<CsOptions>
-odac	-Ma
</CsOptions>

<CsInstruments>
sr	=	44100
ksmps	=	4
nchnls	=	2
0dbfs	=	1

initc7	1,1,0.8																	;set	initial	controller	position

prealloc	1,	10

			instr	1
iNum			notnum																		;read	in	midi	note	number
iCF				ctrl7								1,1,0.1,14	;read	in	midi	controller	1

;	set	up	default	p-field	values	for	midi	activated	notes
							mididefault		iNum,	p4			;pitch	(note	number)
							mididefault		0.3,	p5				;amplitude	1
							mididefault		2,	p6						;type	1
							mididefault		0.5,	p7				;pulse	width	1
							mididefault		0,	p8						;octave	disp.	1
							mididefault		0,	p9						;tuning	disp.	1
							mididefault		0.3,	p10			;amplitude	2
							mididefault		1,	p11					;type	2
							mididefault		0.5,	p12			;pulse	width	2
							mididefault		-1,	p13				;octave	displacement	2
							mididefault		20,	p14				;tuning	disp.	2
							mididefault		iCF,	p15			;filter	cutoff	freq
							mididefault		0.01,	p16		;filter	env.	attack	time
							mididefault		1,	p17					;filter	env.	decay	time
							mididefault		0.01,	p18		;filter	env.	sustain	level
							mididefault		0.1,	p19			;filter	release	time
							mididefault		0.3,	p20			;filter	resonance
							mididefault		0.01,	p21		;amp.	env.	attack
							mididefault		0.1,	p22			;amp.	env.	decay.
							mididefault		1,	p23					;amp.	env.	sustain
							mididefault		0.01,	p24		;amp.	env.	release

SUBTRACTIVE	SYNTHESIS

328

;	asign	p-fields	to	variables
iCPS			=												cpsmidinn(p4)	;convert	from	note	number	to	cps
kAmp1		=												p5
iType1	=												p6
kPW1			=												p7
kOct1		=												octave(p8)	;convert	from	octave	displacement	to	multiplier
kTune1	=												cent(p9)			;convert	from	cents	displacement	to	multiplier
kAmp2		=												p10
iType2	=												p11
kPW2			=												p12
kOct2		=												octave(p13)
kTune2	=												cent(p14)
iCF				=												p15
iFAtt		=												p16
iFDec		=												p17
iFSus		=												p18
iFRel		=												p19
kRes			=												p20
iAAtt		=												p21
iADec		=												p22
iASus		=												p23
iARel		=												p24

;oscillator	1
;if	type	is	sawtooth	or	square...
if	iType1==1||iType1==2	then
	;...derive	vco2	'mode'	from	waveform	type
	iMode1	=	(iType1=1?0:2)
	aSig1		vco2			kAmp1,iCPS*kOct1*kTune1,iMode1,kPW1;VCO	audio	oscillator
else																																			;otherwise...
	aSig1		noise		kAmp1,	0.5														;...generate	white	noise
endif

;oscillator	2	(identical	in	design	to	oscillator	1)
if	iType2==1||iType2==2	then
	iMode2		=		(iType2=1?0:2)
	aSig2		vco2			kAmp2,iCPS*kOct2*kTune2,iMode2,kPW2
else
		aSig2	noise		kAmp2,0.5
endif

;mix	oscillators
aMix							sum										aSig1,aSig2
;lowpass	filter
kFiltEnv			expsegr						0.0001,iFAtt,iCPS*iCF,iFDec,iCPS*iCF*iFSus,iFRel,0.0001
aOut							moogladder			aMix,	kFiltEnv,	kRes

;amplitude	envelope
aAmpEnv				expsegr						0.0001,iAAtt,1,iADec,iASus,iARel,0.0001
aOut							=												aOut*aAmpEnv
											outs									aOut,aOut
		endin
</CsInstruments>

<CsScore>
;p4		=	oscillator	frequency
;oscillator	1
;p5		=	amplitude
;p6		=	type	(1=sawtooth,2=square-PWM,3=noise)
;p7		=	PWM	(square	wave	only)
;p8		=	octave	displacement
;p9		=	tuning	displacement	(cents)
;oscillator	2
;p10	=	amplitude
;p11	=	type	(1=sawtooth,2=square-PWM,3=noise)
;p12	=	pwm	(square	wave	only)
;p13	=	octave	displacement
;p14	=	tuning	displacement	(cents)
;global	filter	envelope
;p15	=	cutoff
;p16	=	attack	time
;p17	=	decay	time
;p18	=	sustain	level	(fraction	of	cutoff)

SUBTRACTIVE	SYNTHESIS

329

;p19	=	release	time
;p20	=	resonance
;global	amplitude	envelope
;p21	=	attack	time
;p22	=	decay	time
;p23	=	sustain	level
;p24	=	release	time
;	p1	p2	p3		p4	p5		p6	p7			p8	p9		p10	p11	p12	p13
;p14	p15	p16		p17		p18		p19	p20	p21		p22	p23	p24
i	1		0		1			50	0			2		.5			0		-5		0			2			0.5	0			\
	5			12		.01		2				.01		.1		0			.005	.01	1			.05
i	1		+		1			50	.2		2		.5			0		-5		.2		2			0.5	0			\
	5			1			.01		1				.1			.1		.5		.005	.01	1			.05
i	1		+		1			50	.2		2		.5			0		-8		.2		2			0.5	0			\
	8			3			.01		1				.1			.1		.5		.005	.01	1			.05
i	1		+		1			50	.2		2		.5			0		-8		.2		2			0.5	-1		\
	8			7		.01			1				.1			.1		.5		.005	.01	1			.05
i	1		+		3			50	.2		1		.5			0		-10	.2		1			0.5	-2		\
	10		40		.01		3				.001	.1		.5		.005	.01	1			.05
i	1		+		10		50	1			2		.01		-2	0			.2		3			0.5	0			\
	0			40		5				5				.001	1.5	.1		.005	.01	1			.05

f	0	3600
e
</CsScore>

</CsoundSynthesizer>

SIMULATION	OF	TIMBRES	FROM	A	NOISE
SOURCE

The	next	example	makes	extensive	use	of	bandpass	filters	arranged	in	
parallel	to	filter	white	noise.	The	bandpass	filter	bandwidths	are	
narrowed	to	the	point	where	almost	pure	tones	are	audible.	The	
crucial	difference	is	that	the	noise	source	always	induces	instability	in
the	amplitude	and	frequency	of	tones	produced	-	it	is	this	quality	that	
makes	this	sort	of	subtractive	synthesis	sound	much	more	organic	
than	an	additive	synthesis	equivalent.	If	the	bandwidths	are	widened,	
then	more	of	the	characteristic	of	the	noise	source	comes	through	and	
the	tone	becomes	'airier'	and	less	distinct;	if	the	bandwidths	are	
narrowed,	the	resonating	tones	become	clearer	and	steadier.	By	
varying	the	bandwidths	interesting	metamorphoses	of	the	resultant	
sound	are	possible.

22	reson	filters	are	used	for	the	bandpass	filters	on	account	of	their	
ability	to	ring	and	resonate	as	their	bandwidth	narrows.	Another	
reason	for	this	choice	is	the	relative	CPU	economy	of	the	reson	filter,	
a	not	insignificant	concern	as	so	many	of	them	are	used.	The	

SUBTRACTIVE	SYNTHESIS

330

frequency	ratios	between	the	22	parallel	filters	are	derived	from	
analysis	of	a	hand	bell,	the	data	was	found	in	the	appendix	of	the	
Csound	manual	here.	Obviously	with	so	much	repetition	of	similar	
code,	some	sort	of	abstraction	would	be	a	good	idea	(perhaps	through	
a	UDO	or	by	using	a	macro),	but	here,	and	for	the	sake	of	clarity,	it	is	
left	unabstracted.
		

In	addition	to	the	white	noise	as	a	source,	noise	impulses	are	also	
used	as	a	sound	source	(via	the	'mpulse'	opcode).	The	instrument	will	
automatically	and	randomly	slowly	crossfade	between	these	two	
sound	sources.

A	lowpass	and	highpass	filter	are	inserted	in	series	before	the	parallel	
bandpass	filters	to	shape	the	frequency	spectrum	of	the	source	sound.	
Csound's	butterworth	filters	butlp	and	buthp	are	chosen	for	this	task	
on	account	of	their	steep	cutoff	slopes	and	minimal	ripple	at	the	
cutoff	frequency.

The	outputs	of	the	reson	filters	are	sent	alternately	to	the	left	and	
right	outputs	in	order	to	create	a	broad	stereo	effect.
		

	This	example	makes	extensive	use	of	the	'rspline'	opcode,	a	generator
of	random	spline	functions,	to	slowly	undulate	the	many	input	
parameters.	The	orchestra	is	self	generative	in	that	instrument	1	
repeatedly	triggers	note	events	in	instrument	2	and	the	extensive	use	
of	random	functions	means	that	the	results	will	continually	evolve	as	
the	orchestra	is	allowed	to	perform.

A	flow	diagram	for	this	instrument	is	shown	below:

SUBTRACTIVE	SYNTHESIS

331

	

			EXAMPLE	04B02_Subtractive_timbres.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>
;Example	written	by	Iain	McCurdy

sr	=	44100
ksmps	=	16
nchnls	=	2
0dbfs	=	1

		instr	1	;	triggers	notes	in	instrument	2	with	randomised	p-fields
krate		randomi	0.2,0.4,0.1			;rate	of	note	generation
ktrig		metro		krate										;triggers	used	by	schedkwhen
koct			random	5,12											;fundemental	pitch	of	synth	note
kdur			random	15,30										;duration	of	note
schedkwhen	ktrig,0,0,2,0,kdur,cpsoct(koct)	;trigger	a	note	in	instrument	2
		endin

		instr	2	;	subtractive	synthesis	instrument
aNoise		pinkish		1																		;a	noise	source	sound:	pink	noise
kGap				rspline		0.3,0.05,0.2,2					;time	gap	between	impulses
aPulse		mpulse			15,	kGap											;a	train	of	impulses
kCFade		rspline		0,1,0.1,1										;crossfade	point	between	noise	and	impulses
aInput		ntrpol			aPulse,aNoise,kCFade;implement	crossfade

;	cutoff	frequencies	for	low	and	highpass	filters
kLPF_CF		rspline		13,8,0.1,0.4
kHPF_CF		rspline		5,10,0.1,0.4
;	filter	input	sound	with	low	and	highpass	filters	in	series	-
;	-	done	twice	per	filter	in	order	to	sharpen	cutoff	slopes
aInput				butlp				aInput,	cpsoct(kLPF_CF)
aInput				butlp				aInput,	cpsoct(kLPF_CF)
aInput				buthp				aInput,	cpsoct(kHPF_CF)
aInput				buthp				aInput,	cpsoct(kHPF_CF)

kcf					rspline		p4*1.05,p4*0.95,0.01,0.1	;	fundemental
;	bandwidth	for	each	filter	is	created	individually	as	a	random	spline	function
kbw1				rspline		0.00001,10,0.2,1
kbw2				rspline		0.00001,10,0.2,1
kbw3				rspline		0.00001,10,0.2,1
kbw4				rspline		0.00001,10,0.2,1
kbw5				rspline		0.00001,10,0.2,1
kbw6				rspline		0.00001,10,0.2,1
kbw7				rspline		0.00001,10,0.2,1
kbw8				rspline		0.00001,10,0.2,1
kbw9				rspline		0.00001,10,0.2,1
kbw10			rspline		0.00001,10,0.2,1
kbw11			rspline		0.00001,10,0.2,1

SUBTRACTIVE	SYNTHESIS

332

kbw12			rspline		0.00001,10,0.2,1
kbw13			rspline		0.00001,10,0.2,1
kbw14			rspline		0.00001,10,0.2,1
kbw15			rspline		0.00001,10,0.2,1
kbw16			rspline		0.00001,10,0.2,1
kbw17			rspline		0.00001,10,0.2,1
kbw18			rspline		0.00001,10,0.2,1
kbw19			rspline		0.00001,10,0.2,1
kbw20			rspline		0.00001,10,0.2,1
kbw21			rspline		0.00001,10,0.2,1
kbw22			rspline		0.00001,10,0.2,1

imode			=								0	;	amplitude	balancing	method	used	by	the	reson	filters
a1						reson				aInput,	kcf*1,															kbw1,	imode
a2						reson				aInput,	kcf*1.0019054878049,	kbw2,	imode
a3						reson				aInput,	kcf*1.7936737804878,	kbw3,	imode
a4						reson				aInput,	kcf*1.8009908536585,	kbw4,	imode
a5						reson				aInput,	kcf*2.5201981707317,	kbw5,	imode
a6						reson				aInput,	kcf*2.5224085365854,	kbw6,	imode
a7						reson				aInput,	kcf*2.9907012195122,	kbw7,	imode
a8						reson				aInput,	kcf*2.9940548780488,	kbw8,	imode
a9						reson				aInput,	kcf*3.7855182926829,	kbw9,	imode
a10					reson				aInput,	kcf*3.8061737804878,	kbw10,imode
a11					reson				aInput,	kcf*4.5689024390244,	kbw11,imode
a12					reson				aInput,	kcf*4.5754573170732,	kbw12,imode
a13					reson				aInput,	kcf*5.0296493902439,	kbw13,imode
a14					reson				aInput,	kcf*5.0455030487805,	kbw14,imode
a15					reson				aInput,	kcf*6.0759908536585,	kbw15,imode
a16					reson				aInput,	kcf*5.9094512195122,	kbw16,imode
a17					reson				aInput,	kcf*6.4124237804878,	kbw17,imode
a18					reson				aInput,	kcf*6.4430640243902,	kbw18,imode
a19					reson				aInput,	kcf*7.0826219512195,	kbw19,imode
a20					reson				aInput,	kcf*7.0923780487805,	kbw20,imode
a21					reson				aInput,	kcf*7.3188262195122,	kbw21,imode
a22					reson				aInput,	kcf*7.5551829268293,	kbw22,imode

;	amplitude	control	for	each	filter	output
kAmp1				rspline		0,	1,	0.3,	1
kAmp2				rspline		0,	1,	0.3,	1
kAmp3				rspline		0,	1,	0.3,	1
kAmp4				rspline		0,	1,	0.3,	1
kAmp5				rspline		0,	1,	0.3,	1
kAmp6				rspline		0,	1,	0.3,	1
kAmp7				rspline		0,	1,	0.3,	1
kAmp8				rspline		0,	1,	0.3,	1
kAmp9				rspline		0,	1,	0.3,	1
kAmp10			rspline		0,	1,	0.3,	1
kAmp11			rspline		0,	1,	0.3,	1
kAmp12			rspline		0,	1,	0.3,	1
kAmp13			rspline		0,	1,	0.3,	1
kAmp14			rspline		0,	1,	0.3,	1
kAmp15			rspline		0,	1,	0.3,	1
kAmp16			rspline		0,	1,	0.3,	1
kAmp17			rspline		0,	1,	0.3,	1
kAmp18			rspline		0,	1,	0.3,	1
kAmp19			rspline		0,	1,	0.3,	1
kAmp20			rspline		0,	1,	0.3,	1
kAmp21			rspline		0,	1,	0.3,	1
kAmp22			rspline		0,	1,	0.3,	1

;	left	and	right	channel	mixes	are	created	using	alternate	filter	outputs.
;	This	shall	create	a	stereo	effect.
aMixL				sum						a1*kAmp1,a3*kAmp3,a5*kAmp5,a7*kAmp7,a9*kAmp9,a11*kAmp11,\
																								a13*kAmp13,a15*kAmp15,a17*kAmp17,a19*kAmp19,a21*kAmp21
aMixR				sum						a2*kAmp2,a4*kAmp4,a6*kAmp6,a8*kAmp8,a10*kAmp10,a12*kAmp12,\
																								a14*kAmp14,a16*kAmp16,a18*kAmp18,a20*kAmp20,a22*kAmp22

kEnv					linseg			0,	p3*0.5,	1,p3*0.5,0,1,0							;	global	amplitude	envelope
outs			(aMixL*kEnv*0.00008),	(aMixR*kEnv*0.00008)	;	audio	sent	to	outputs
		endin

</CsInstruments>

SUBTRACTIVE	SYNTHESIS

333

<CsScore>
i	1	0	3600		;	instrument	1	(note	generator)	plays	for	1	hour
e
</CsScore>

</CsoundSynthesizer>

VOWEL-SOUND	EMULATION	USING
BANDPASS	FILTERING

The	final	example	in	this	section	uses	precisely	tuned	bandpass	
filters,	to	simulate	the	sound	of	the	human	voice	expressing	vowel	
sounds.	Spectral	resonances	in	this	context	are	often	referred	to	as	
'formants'.	Five	formants	are	used	to	simulate	the	effect	of	the	human	
mouth	and	head	as	a	resonating	(and	therefore	filtering)	body.	The	
filter	data	for	simulating	the	vowel	sounds	A,E,I,O	and	U	as	
expressed	by	a	bass,	tenor,	counter-tenor,	alto	and	soprano	voice	were	
found	in	the	appendix	of	the	Csound	manual	here.	Bandwidth	and	
intensity	(dB)	information	is	also	needed	to	accurately	simulate	the	
various	vowel	sounds.

reson	filters	are	again	used	but	butbp	and	others	could	be	equally	
valid	choices.
		

Data	is	stored	in	GEN07	linear	break	point	function	tables,	as	this	
data	is	read	by	k-rate	line	functions	we	can	interpolate	and	therefore	
morph	between	different	vowel	sounds	during	a	note.
		

The	source	sound	for	the	filters	comes	from	either	a	pink	noise	
generator	or	a	pulse	waveform.	The	pink	noise	source	could	be	used	if
the	emulation	is	to	be	that	of	just	the	breath	whereas	the	pulse	
waveform	provides	a	decent	approximation	of	the	human	vocal	
chords	buzzing.	This	instrument	can	however	morph	continuously	
between	these	two	sources.

A	flow	diagram	for	this	instrument	is	shown	below:

SUBTRACTIVE	SYNTHESIS

334

	

			EXAMPLE	04B03_Subtractive_vowels.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>
;example	by	Iain	McCurdy

sr	=	44100
ksmps	=	16
nchnls	=	2
0dbfs	=	1

;FUNCTION	TABLES	STORING	DATA	FOR	VARIOUS	VOICE	FORMANTS

;BASS
giBF1	ftgen	0,	0,	-5,	-2,	600,			400,	250,			400,		350
giBF2	ftgen	0,	0,	-5,	-2,	1040,	1620,	1750,		750,		600
giBF3	ftgen	0,	0,	-5,	-2,	2250,	2400,	2600,	2400,	2400
giBF4	ftgen	0,	0,	-5,	-2,	2450,	2800,	3050,	2600,	2675
giBF5	ftgen	0,	0,	-5,	-2,	2750,	3100,	3340,	2900,	2950

giBDb1	ftgen	0,	0,	-5,	-2,			0,			0,			0,			0,			0
giBDb2	ftgen	0,	0,	-5,	-2,		-7,	-12,	-30,	-11,	-20
giBDb3	ftgen	0,	0,	-5,	-2,		-9,		-9,	-16,	-21,	-32
giBDb4	ftgen	0,	0,	-5,	-2,		-9,	-12,	-22,	-20,	-28
giBDb5	ftgen	0,	0,	-5,	-2,	-20,	-18,	-28,	-40,	-36

giBBW1	ftgen	0,	0,	-5,	-2,		60,		40,		60,		40,		40
giBBW2	ftgen	0,	0,	-5,	-2,		70,		80,		90,		80,		80
giBBW3	ftgen	0,	0,	-5,	-2,	110,	100,	100,	100,	100
giBBW4	ftgen	0,	0,	-5,	-2,	120,	120,	120,	120,	120
giBBW5	ftgen	0,	0,	-5,	-2,	130,	120,	120,	120,	120

;TENOR
giTF1	ftgen	0,	0,	-5,	-2,		650,		400,		290,		400,		350
giTF2	ftgen	0,	0,	-5,	-2,	1080,	1700,	1870,		800,		600
giTF3	ftgen	0,	0,	-5,	-2,	2650,	2600,	2800,	2600,	2700
giTF4	ftgen	0,	0,	-5,	-2,	2900,	3200,	3250,	2800,	2900
giTF5	ftgen	0,	0,	-5,	-2,	3250,	3580,	3540,	3000,	3300

giTDb1	ftgen	0,	0,	-5,	-2,			0,			0,			0,			0,			0
giTDb2	ftgen	0,	0,	-5,	-2,		-6,	-14,	-15,	-10,	-20

SUBTRACTIVE	SYNTHESIS

335

giTDb3	ftgen	0,	0,	-5,	-2,		-7,	-12,	-18,	-12,	-17
giTDb4	ftgen	0,	0,	-5,	-2,		-8,	-14,	-20,	-12,	-14
giTDb5	ftgen	0,	0,	-5,	-2,	-22,	-20,	-30,	-26,	-26

giTBW1	ftgen	0,	0,	-5,	-2,		80,		70,		40,		40,		40
giTBW2	ftgen	0,	0,	-5,	-2,		90,		80,		90,		80,		60
giTBW3	ftgen	0,	0,	-5,	-2,	120,	100,	100,	100,	100
giTBW4	ftgen	0,	0,	-5,	-2,	130,	120,	120,	120,	120
giTBW5	ftgen	0,	0,	-5,	-2,	140,	120,	120,	120,	120

;COUNTER	TENOR
giCTF1	ftgen	0,	0,	-5,	-2,		660,		440,		270,		430,		370
giCTF2	ftgen	0,	0,	-5,	-2,	1120,	1800,	1850,		820,		630
giCTF3	ftgen	0,	0,	-5,	-2,	2750,	2700,	2900,	2700,	2750
giCTF4	ftgen	0,	0,	-5,	-2,	3000,	3000,	3350,	3000,	3000
giCTF5	ftgen	0,	0,	-5,	-2,	3350,	3300,	3590,	3300,	3400

giTBDb1	ftgen	0,	0,	-5,	-2,			0,			0,			0,			0,			0
giTBDb2	ftgen	0,	0,	-5,	-2,		-6,	-14,	-24,	-10,	-20
giTBDb3	ftgen	0,	0,	-5,	-2,	-23,	-18,	-24,	-26,	-23
giTBDb4	ftgen	0,	0,	-5,	-2,	-24,	-20,	-36,	-22,	-30
giTBDb5	ftgen	0,	0,	-5,	-2,	-38,	-20,	-36,	-34,	-30

giTBW1	ftgen	0,	0,	-5,	-2,	80,			70,		40,		40,		40
giTBW2	ftgen	0,	0,	-5,	-2,	90,			80,		90,		80,		60
giTBW3	ftgen	0,	0,	-5,	-2,	120,	100,	100,	100,	100
giTBW4	ftgen	0,	0,	-5,	-2,	130,	120,	120,	120,	120
giTBW5	ftgen	0,	0,	-5,	-2,	140,	120,	120,	120,	120

;ALTO
giAF1	ftgen	0,	0,	-5,	-2,		800,		400,		350,		450,		325
giAF2	ftgen	0,	0,	-5,	-2,	1150,	1600,	1700,		800,		700
giAF3	ftgen	0,	0,	-5,	-2,	2800,	2700,	2700,	2830,	2530
giAF4	ftgen	0,	0,	-5,	-2,	3500,	3300,	3700,	3500,	2500
giAF5	ftgen	0,	0,	-5,	-2,	4950,	4950,	4950,	4950,	4950

giADb1	ftgen	0,	0,	-5,	-2,			0,			0,			0,			0,			0
giADb2	ftgen	0,	0,	-5,	-2,		-4,	-24,	-20,		-9,	-12
giADb3	ftgen	0,	0,	-5,	-2,	-20,	-30,	-30,	-16,	-30
giADb4	ftgen	0,	0,	-5,	-2,	-36,	-35,	-36,	-28,	-40
giADb5	ftgen	0,	0,	-5,	-2,	-60,	-60,	-60,	-55,	-64

giABW1	ftgen	0,	0,	-5,	-2,	50,			60,		50,		70,		50
giABW2	ftgen	0,	0,	-5,	-2,	60,			80,	100,		80,		60
giABW3	ftgen	0,	0,	-5,	-2,	170,	120,	120,	100,	170
giABW4	ftgen	0,	0,	-5,	-2,	180,	150,	150,	130,	180
giABW5	ftgen	0,	0,	-5,	-2,	200,	200,	200,	135,	200

;SOPRANO
giSF1	ftgen	0,	0,	-5,	-2,		800,		350,		270,		450,		325
giSF2	ftgen	0,	0,	-5,	-2,	1150,	2000,	2140,		800,		700
giSF3	ftgen	0,	0,	-5,	-2,	2900,	2800,	2950,	2830,	2700
giSF4	ftgen	0,	0,	-5,	-2,	3900,	3600,	3900,	3800,	3800
giSF5	ftgen	0,	0,	-5,	-2,	4950,	4950,	4950,	4950,	4950

giSDb1	ftgen	0,	0,	-5,	-2,			0,			0,			0,			0,			0
giSDb2	ftgen	0,	0,	-5,	-2,		-6,	-20,	-12,	-11,	-16
giSDb3	ftgen	0,	0,	-5,	-2,	-32,	-15,	-26,	-22,	-35
giSDb4	ftgen	0,	0,	-5,	-2,	-20,	-40,	-26,	-22,	-40
giSDb5	ftgen	0,	0,	-5,	-2,	-50,	-56,	-44,	-50,	-60

giSBW1	ftgen	0,	0,	-5,	-2,		80,		60,		60,		70,		50
giSBW2	ftgen	0,	0,	-5,	-2,		90,		90,		90,		80,		60
giSBW3	ftgen	0,	0,	-5,	-2,	120,	100,	100,	100,	170
giSBW4	ftgen	0,	0,	-5,	-2,	130,	150,	120,	130,	180
giSBW5	ftgen	0,	0,	-5,	-2,	140,	200,	120,	135,	200

instr	1
		kFund				expon					p4,p3,p5															;	fundamental
		kVow					line						p6,p3,p7															;	vowel	select
		kBW						line						p8,p3,p9															;	bandwidth	factor
		iVoice			=									p10																				;	voice	select
		kSrc					line						p11,p3,p12													;	source	mix

SUBTRACTIVE	SYNTHESIS

336

		aNoise			pinkish			3																						;	pink	noise
		aVCO					vco2						1.2,kFund,2,0.02							;	pulse	tone
		aInput			ntrpol				aVCO,aNoise,kSrc							;	input	mix

		;	read	formant	cutoff	frequenies	from	tables
		kCF1					tablei				kVow*5,giBF1+(iVoice*15)
		kCF2					tablei				kVow*5,giBF1+(iVoice*15)+1
		kCF3					tablei				kVow*5,giBF1+(iVoice*15)+2
		kCF4					tablei				kVow*5,giBF1+(iVoice*15)+3
		kCF5					tablei				kVow*5,giBF1+(iVoice*15)+4
		;	read	formant	intensity	values	from	tables
		kDB1					tablei				kVow*5,giBF1+(iVoice*15)+5
		kDB2					tablei				kVow*5,giBF1+(iVoice*15)+6
		kDB3					tablei				kVow*5,giBF1+(iVoice*15)+7
		kDB4					tablei				kVow*5,giBF1+(iVoice*15)+8
		kDB5					tablei				kVow*5,giBF1+(iVoice*15)+9
		;	read	formant	bandwidths	from	tables
		kBW1					tablei				kVow*5,giBF1+(iVoice*15)+10
		kBW2					tablei				kVow*5,giBF1+(iVoice*15)+11
		kBW3					tablei				kVow*5,giBF1+(iVoice*15)+12
		kBW4					tablei				kVow*5,giBF1+(iVoice*15)+13
		kBW5					tablei				kVow*5,giBF1+(iVoice*15)+14
		;	create	resonant	formants	byt	filtering	source	sound
		aForm1			reson					aInput,	kCF1,	kBW1*kBW,	1					;	formant	1
		aForm2			reson					aInput,	kCF2,	kBW2*kBW,	1					;	formant	2
		aForm3			reson					aInput,	kCF3,	kBW3*kBW,	1					;	formant	3
		aForm4			reson					aInput,	kCF4,	kBW4*kBW,	1					;	formant	4
		aForm5			reson					aInput,	kCF5,	kBW5*kBW,	1					;	formant	5

		;	formants	are	mixed	and	multiplied	both	by	intensity	values	derived	from	tables	
and	by	the	on-screen	gain	controls	for	each	formant
		aMix					sum							
aForm1*ampdbfs(kDB1),aForm2*ampdbfs(kDB2),aForm3*ampdbfs(kDB3),aForm4*ampdbfs(kDB4),a
Form5*ampdbfs(kDB5)
		kEnv					linseg				0,3,1,p3-6,1,3,0					;	an	amplitude	envelope
											outs						aMix*kEnv,	aMix*kEnv	;	send	audio	to	outputs
endin

</CsInstruments>

<CsScore>
;	p4	=	fundemental	begin	value	(c.p.s.)
;	p5	=	fundemental	end	value
;	p6	=	vowel	begin	value	(0	-	1	:	a	e	i	o	u)
;	p7	=	vowel	end	value
;	p8	=	bandwidth	factor	begin	(suggested	range	0	-	2)
;	p9	=	bandwidth	factor	end
;	p10	=	voice	(0=bass;	1=tenor;	2=counter_tenor;	3=alto;	4=soprano)
;	p11	=	input	source	begin	(0	-	1	:	VCO	-	noise)
;	p12	=	input	source	end

;									p4		p5		p6		p7		p8		p9	p10	p11		p12
i	1	0		10	50		100	0			1			2			0		0			0				0
i	1	8		.		78		77		1			0			1			0		1			0				0
i	1	16	.		150	118	0			1			1			0		2			1				1
i	1	24	.		200	220	1			0			0.2	0		3			1				0
i	1	32	.		400	800	0			1			0.2	0		4			0				1
e
</CsScore>

</CsoundSynthesizer>

CONCLUSION

These	examples	have	hopefully	demonstrated	the	strengths	of	
subtractive	synthesis	in	its	simplicity,	intuitive	operation	and	its	

SUBTRACTIVE	SYNTHESIS

337

ability	to	create	organic	sounding	timbres.	Further	research	could	
explore	Csound's	other	filter	opcodes	including	vcomb,	wguide1,	
wguide2,	mode	and	the	more	esoteric	phaser1,	phaser2	and	resony.
		

SUBTRACTIVE	SYNTHESIS

338

AMPLITUDE	AND	RING	MODULATION

339

AMPLITUDE	AND	RING	MODULATION

INTRODUCTION

Amplitude-modulation	(AM)	means,	that	one	oscillator	varies	the	
volume/amplitude	of	an	other.	If	this	modulation	is	done	very	slowly	
(1	Hz	to	10	Hz)	it	is	recognised	as	tremolo.	Volume-modulation	
above	10	Hz	leads	to	the	effect,	that	the	sound	changes	its	timbre.	So	
called	side-bands	appear.

Example	04C01_Simple_AM.csd
		

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>

sr	=	48000
ksmps	=	32
nchnls	=	1
0dbfs	=	1

instr	1
aRaise	expseg	2,	20,	100
aModSine	poscil	0.5,	aRaise,	1
aDCOffset	=	0.5				;	we	want	amplitude-modulation
aCarSine	poscil	0.3,	440,	1
out	aCarSine*(aModSine	+	aDCOffset)
endin

</CsInstruments>
<CsScore>
f	1	0	1024	10	1
i	1	0	25
e
</CsScore>
</CsoundSynthesizer>
;	written	by	Alex	Hofmann	(Mar.	2011)

THEORY,	MATHEMATICS	AND	SIDEBANDS

The	side-bands	appear	on	both	sides	of	the	main	frequency.	This	
means	(freq1-freq2)	and	(freq1+freq2)	appear.

The	sounding	result	of	the	following	example	can	be	calculated	as	
this:	freq1	=	440Hz,	freq2	=	40	Hz	->	The	result	is	a	sound	with	[400,	
440,	480]	Hz.

AMPLITUDE	AND	RING	MODULATION

340

The	amount	of	the	sidebands	can	be	controlled	by	a	DC-offset	of	the	
modulator.
		

Example	04C02_Sidebands.csd
		

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>

sr	=	48000
ksmps	=	32
nchnls	=	1
0dbfs	=	1

instr	1
aOffset	linseg	0,	1,	0,	5,	0.6,	3,	0
aSine1	poscil	0.3,	40	,	1
aSine2	poscil	0.3,	440,	1
out	(aSine1+aOffset)*aSine2
endin

</CsInstruments>
<CsScore>
f	1	0	1024	10	1
i	1	0	10
e
</CsScore>
</CsoundSynthesizer>
;	written	by	Alex	Hofmann	(Mar.	2011)

Ring-modulation	is	a	special-case	of	AM,	without	DC-offset	(DC-
Offset	=	0).	That	means	the	modulator	varies	between	-1	and	+1	like	
the	carrier.	The	sounding	difference	to	AM	is,	that	RM	doesn't	
contain	the	carrier	frequency.
		

(If	the	modulator	is	unipolar	(oscillates	between	0	and	+1)	the	effect	
is	called	AM.)

MORE	COMPLEX	SYNTHESIS	USING	RING
MODULATION	AND	AMPLITUDE
MODULATION	

	If	the	modulator	itself	contains	more	harmonics,	the	resulting	ring	
modulated	sound	becomes	more	complex.

AMPLITUDE	AND	RING	MODULATION

341

Carrier	freq:	600	Hz
		
Modulator	freqs:	200Hz	with	3	harmonics	=	[200,	400,	600]	Hz
		
Resulting	freqs:		[0,	200,	400,	<-600->,	800,	1000,	1200]

Example	04C03_RingMod.csd

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>

sr	=	48000
ksmps	=	32
nchnls	=	1
0dbfs	=	1

instr	1			;	Ring-Modulation	(no	DC-Offset)
aSine1	poscil	0.3,	200,	2	;	->	[200,	400,	600]	Hz
aSine2	poscil	0.3,	600,	1
out	aSine1*aSine2
endin

</CsInstruments>
<CsScore>
f	1	0	1024	10	1	;	sine
f	2	0	1024	10	1	1	1;	3	harmonics
i	1	0	5
e
</CsScore>
</CsoundSynthesizer>
;	written	by	Alex	Hofmann	(Mar.	2011)

Using	an	inharmonic	modulator	frequency	also	makes	the	result	
sound	inharmonic.	Varying	the	DC-offset	makes	the	sound-spectrum	
evolve	over	time.
		
Modulator	freqs:	[230,	460,	690]
		
Resulting	freqs:		[(-)90,	140,	370,	<-600->,	830,	1060,	1290]
		
(negative	frequencies	become	mirrored,	but	phase	inverted)

Example	04C04_Evolving_AM.csd

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>

AMPLITUDE	AND	RING	MODULATION

342

sr	=	48000
ksmps	=	32
nchnls	=	1
0dbfs	=	1

instr	1			;	Amplitude-Modulation
aOffset	linseg	0,	1,	0,	5,	1,	3,	0
aSine1	poscil	0.3,	230,	2	;	->	[230,	460,	690]	Hz
aSine2	poscil	0.3,	600,	1
out	(aSine1+aOffset)*aSine2
endin

</CsInstruments>
<CsScore>
f	1	0	1024	10	1	;	sine
f	2	0	1024	10	1	1	1;	3	harmonics
i	1	0	10
e
</CsScore>
</CsoundSynthesizer>

FREQUENCY	MODULATION

343

FREQUENCY	MODULATION

FROM	VIBRATO	TO	THE	EMERGENCE	OF
SIDEBANDS

A	vibrato	is	a	periodical	change	of	pitch,	normally	less	than	a	
halftone	and	with	a	slow	changing-rate	(around	5Hz).	Frequency	
modulation	is	usually	implemented	using	sine-wave	oscillators.

Example	04D01_Vibrato.csd	
		

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
sr	=	48000
ksmps	=	32
nchnls	=	2
0dbfs	=	1

instr	1
aMod	poscil	10,	5	,	1		;	5	Hz	vibrato	with	10	Hz	modulation-width
aCar	poscil	0.3,	440+aMod,	1		;	->	vibrato	between	430-450	Hz
outs	aCar,	aCar
endin

</CsInstruments>
<CsScore>
f	1	0	1024	10	1		 	 ;Sine	wave	for	table	1
i	1	0	2
</CsScore>
</CsoundSynthesizer>
;	written	by	Alex	Hofmann	(Mar.	2011)

	As	the	depth	of	modulation	is	increased,	it	becomes	harder	to	
perceive	the	base-frequency,	but	it	is	still	vibrato.
		

Example	04D02_Vibrato_deep.csd
		

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
sr	=	48000
ksmps	=	32
nchnls	=	2
0dbfs	=	1

FREQUENCY	MODULATION

344

instr	1
aMod	poscil	90,	5	,	1	;	modulate	90Hz	->vibrato	from	350	to	530	hz
aCar	poscil	0.3,	440+aMod,	1
outs	aCar,	aCar
endin

</CsInstruments>
<CsScore>
f	1	0	1024	10	1		 	 ;Sine	wave	for	table	1
i	1	0	2
</CsScore>
</CsoundSynthesizer>
;	written	by	Alex	Hofmann	(Mar.	2011)

THE	SIMPLE	MODULATOR->CARRIER
PAIRING

Increasing	the	modulation-rate	leads	to	a	different	effect.	Frequency-
modulation	with	more	than	20Hz	is	no	longer	recognized	as	vibrato.	
The	main-oscillator	frequency	lays	in	the	middle	of	the	sound	and	
sidebands	appear	above	and	below.	The	number	of	sidebands	is	
related	to	the	modulation	amplitude,	later	this	is	controlled	by	the	so	
called	modulation-index.

	Example	04D03_FM_index.csd

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
sr	=	48000
ksmps	=	32
nchnls	=	2
0dbfs	=	1

instr	1
aRaise	linseg	2,	10,	100				;increase	modulation	from	2Hz	to	100Hz
aMod	poscil	10,	aRaise	,	1
aCar	poscil	0.3,	440+aMod,	1
outs	aCar,	aCar
endin

</CsInstruments>
<CsScore>
f	1	0	1024	10	1		 	 ;Sine	wave	for	table	1
i	1	0	12
</CsScore>
</CsoundSynthesizer>
;	written	by	Alex	Hofmann	(Mar.	2011)

	Hereby	the	main-oscillator	is	called	carrier	and	the	one	changing	the	

FREQUENCY	MODULATION

345

carriers	frequency	is	the	modulator.	The	modulation-index:	I	=	mod-
amp/mod-freq.	Making	changes	to	the	modulation-index,	changes	
the	amount	of	overtones,	but	not	the	overall	volume.	That	gives	the	
possibility	produce	drastic	timbre-changes	without	the	risk	of	
distortion.
		

When	carrier	and	modulator	frequency	have	integer	ratios	like	1:1,	
2:1,	3:2,	5:4..	the	sidebands	build	a	harmonic	series,	which	leads	to	a	
sound	with	clear	fundamental	pitch.

Example	04D04_Harmonic_FM.csd
		

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
sr	=	48000
ksmps	=	32
nchnls	=	2
0dbfs	=	1

instr	1
kCarFreq	=	660					;	660:440	=	3:2	->	harmonic	spectrum
kModFreq	=	440
kIndex	=	15								;	high	Index..	try	lower	values	like	1,	2,	3..
kIndexM	=	0
kMaxDev	=	kIndex*kModFreq
kMinDev	=	kIndexM*kModFreq
kVarDev	=	kMaxDev-kMinDev
kModAmp	=	kMinDev+kVarDev
aModulator	poscil	kModAmp,	kModFreq,	1
aCarrier	poscil	0.3,	kCarFreq+aModulator,	1
outs	aCarrier,	aCarrier
endin

</CsInstruments>
<CsScore>
f	1	0	1024	10	1		 	 ;Sine	wave	for	table	1
i	1	0	15
</CsScore>
</CsoundSynthesizer>
;	written	by	Alex	Hofmann	(Mar.	2011)

	Otherwise	the	spectrum	of	the	sound	is	inharmonic,	which	makes	it	
metallic	or	noisy.
		
	Raising	the	modulation-index,	shifts	the	energy	into	the	side-bands.	
The	side-bands	distance	is:		Distance	in	Hz	=	(carrierFreq)-
(k*modFreq)	|	k	=	{1,	2,	3,	4	..}

FREQUENCY	MODULATION

346

This	calculation	can	result	in	negative	frequencies.	Those	become	
reflected	at	zero,	but	with	inverted	phase!	So	negative	frequencies	
can	erase	existing	ones.	Frequencies	over	Nyquist-frequency	(half	of	
samplingrate)	"fold	over"	(aliasing).
		

THE	JOHN	CHOWNING	FM	MODEL	OF	A
TRUMPET

Composer	and	researcher	Jown	Chowning	worked	on	the	first	digital	
implementation	of	FM	in	the	1970's.
		

Using	envelopes	to	control	the	modulation	index	and	the	overall	
amplitude	gives	you	the	possibility	to	create	evolving	sounds	with	
enormous	spectral	variations.	Chowning	showed	these	possibilities	in	
his	pieces,	where	he	let	the	sounds	transform.	In	the	piece	Sabelithe	a	
drum	sound	morphes	over	the	time	into	a	trumpet	tone.

Example	04D05_Trumpet_FM.csd	
		

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
sr	=	48000
ksmps	=	32
nchnls	=	2
0dbfs	=	1

instr	1		;	simple	way	to	generate	a	trumpet-like	sound
kCarFreq	=	440
kModFreq	=	440
kIndex	=	5
kIndexM	=	0
kMaxDev	=	kIndex*kModFreq
kMinDev	=	kIndexM	*	kModFreq
kVarDev	=	kMaxDev-kMinDev
aEnv	expseg	.001,	0.2,	1,	p3-0.3,	1,	0.2,	0.001
aModAmp	=	kMinDev+kVarDev*aEnv
aModulator	poscil	aModAmp,	kModFreq,	1
aCarrier	poscil	0.3*aEnv,	kCarFreq+aModulator,	1
outs	aCarrier,	aCarrier
endin

</CsInstruments>
<CsScore>
f	1	0	1024	10	1		 	 ;Sine	wave	for	table	1

FREQUENCY	MODULATION

347

i	1	0	2
</CsScore>
</CsoundSynthesizer>
;	written	by	Alex	Hofmann	(Mar.	2011)

The	following	example	uses	the	same	instrument,	with	different	
settings	to	generate	a	bell-like	sound:

Example	04D06_Bell_FM.csd

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
sr	=	48000
ksmps	=	32
nchnls	=	2
0dbfs	=	1

instr	1		;	bell-like	sound
kCarFreq	=	200		;	200/280	=	5:7	->	inharmonic	spectrum
kModFreq	=	280
kIndex	=	12
kIndexM	=	0
kMaxDev	=	kIndex*kModFreq
kMinDev	=	kIndexM	*	kModFreq
kVarDev	=	kMaxDev-kMinDev
aEnv	expseg	.001,	0.001,	1,	0.3,	0.5,	8.5,	.001
aModAmp	=	kMinDev+kVarDev*aEnv
aModulator	poscil	aModAmp,	kModFreq,	1
aCarrier	poscil	0.3*aEnv,	kCarFreq+aModulator,	1
outs	aCarrier,	aCarrier
endin

</CsInstruments>
<CsScore>
f	1	0	1024	10	1		 	 ;Sine	wave	for	table	1
i	1	0	9
</CsScore>
</CsoundSynthesizer>
;	written	by	Alex	Hofmann	(Mar.	2011)

MORE	COMPLEX	FM	ALGORITHMS

Combining	more	than	two	oscillators	(operators)	is	called	complex	
FM	synthesis.	Operators	can	be	connected	in	different	combinations	
often	4-6	operators	are	used.	The	carrier	is	always	the	last	operator	in	
the	row.	Changing	it's	pitch,	shifts	the	whole	sound.	All	other	
operators	are	modulators,	changing	their	pitch	alters	the	sound-
spectrum.
		

FREQUENCY	MODULATION

348

Two	into	One:	M1+M2	->	C

The	principle	here	is,	that	(M1:C)	and	(M2:C)	will	be	separate	
modulations	and	later	added	together.	
		

Example	04D07_Added_FM.csd	
		

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
sr	=	48000
ksmps	=	32
nchnls	=	2
0dbfs	=	1

instr	1
aMod1	poscil	200,	700,	1
aMod2	poscil	1800,	290,	1
aSig	poscil	0.3,	440+aMod1+aMod2,	1
outs	aSig,	aSig
endin

</CsInstruments>
<CsScore>
f	1	0	1024	10	1		 	 ;Sine	wave	for	table	1
i	1	0	3
</CsScore>
</CsoundSynthesizer>
;	written	by	Alex	Hofmann	(Mar.	2011)

In	series:	M1->M2->C

This	is	much	more	complicated	to	calculate	and	sound-timbre	
becomes	harder	to	predict,	because	M1:M2	produces	a	complex	
spectrum	(W),	which	then	modulates	the	carrier	(W:C).

Example	04D08_Serial_FM.csd	
		

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
sr	=	48000
ksmps	=	32
nchnls	=	2
0dbfs	=	1

instr	1

FREQUENCY	MODULATION

349

aMod1	poscil	200,	700,	1
aMod2	poscil	1800,	290+aMod1,	1
aSig	poscil	0.3,	440+aMod2,	1
outs	aSig,	aSig
endin

</CsInstruments>
<CsScore>
f	1	0	1024	10	1		 	 ;Sine	wave	for	table	1
i	1	0	3
</CsScore>
</CsoundSynthesizer>
;	written	by	Alex	Hofmann	(Mar.	2011)

PHASE	MODULATION	-	THE	YAMAHA	DX7
AND	FEEDBACK	FM

There	is	a	strong	relation	between	frequency	modulation	and	phase	
modulation,	as	both	techniques	influence	the	oscillator's	pitch,	and	
the	resulting	timbre	modifications	are	the	same.

If	you'd	like	to	build	a	feedbacking	FM	system,	it	will	happen	that	the	
self-modulation	comes	to	a	zero	point,	which	stops	the	oscillator	
forever.	To	avoid	this,	it	is	more	practical	to	modulate	the	carriers	
table-lookup	phase,	instead	of	its	pitch.
		

	Even	the	most	famous	FM-synthesizer	Yamaha	DX7	is	based	on	the	
phase-modulation	(PM)	technique,	because	this	allows	feedback.	The	
DX7	provides	7	operators,	and	offers	32	routing	combinations	of	
these.	(http://yala.freeservers.com/t2synths.htm#DX7)

To	build	a	PM-synth	in	Csound	tablei	opcode	needs	to	be	used	as	
oscillator.	In	order	to	step	through	the	f-table,	a	phasor	will	output	the	
necessary	steps.

Example	04D09_PhaseMod.csd	
		

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>

FREQUENCY	MODULATION

350

sr	=	48000
ksmps	=	32
nchnls	=	2
0dbfs	=	1

instr	1		;	simple	PM-Synth
kCarFreq	=	200
kModFreq	=	280
kModFactor	=	kCarFreq/kModFreq
kIndex	=	12/6.28			;		12/2pi	to	convert	from	radians	to	norm.	table	index
aEnv	expseg	.001,	0.001,	1,	0.3,	0.5,	8.5,	.001
aModulator	poscil	kIndex*aEnv,	kModFreq,	1
aPhase	phasor	kCarFreq
aCarrier	tablei	aPhase+aModulator,	1,	1,	0,	1
outs	(aCarrier*aEnv),	(aCarrier*aEnv)
endin

</CsInstruments>
<CsScore>
f	1	0	1024	10	1		 	 ;Sine	wave	for	table	1
i	1	0	9
</CsScore>
</CsoundSynthesizer>
;	written	by	Alex	Hofmann	(Mar.	2011)

Let's	use	the	possibilities	of	self-modulation	(feedback-modulation)	
of	the	oscillator.	So	in	the	following	example,	the	oscillator	is	both	
modulator	and	carrier.	To	control	the	amount	of	modulation,	an	
envelope	scales	the	feedback.

Example	04D10_Feedback_modulation.csd

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
sr	=	48000
ksmps	=	32
nchnls	=	2
0dbfs	=	1

instr	1		;	feedback	PM
kCarFreq	=	200
kFeedbackAmountEnv	linseg	0,	2,	0.2,	0.1,	0.3,	0.8,	0.2,	1.5,	0
aAmpEnv	expseg	.001,	0.001,	1,	0.3,	0.5,	8.5,	.001
aPhase	phasor	kCarFreq
aCarrier	init	0	;	init	for	feedback
aCarrier	tablei	aPhase+(aCarrier*kFeedbackAmountEnv),	1,	1,	0,	1
outs	aCarrier*aAmpEnv,	aCarrier*aAmpEnv
endin

</CsInstruments>
<CsScore>
f	1	0	1024	10	1		 	 ;Sine	wave	for	table	1
i	1	0	9
</CsScore>
</CsoundSynthesizer>
;	written	by	Alex	Hofmann	(Mar.	2011)

WAVESHAPING

351

WAVESHAPING

Waveshaping	is	in	some	ways	a	relation	of	modulation	techniques	
such	as	frequency	or	phase	modulation.	Waveshaping	can	create	quite
dramatic	sound	transformations	through	the	application	of	a	very	
simple	process.	In	FM	(frequency	modulation)	modulation	synthesis	
occurs	between	two	oscillators,	waveshaping	is	implemented	using	a	
single	oscillator	(usually	a	simple	sine	oscillator)	and	a	so-called	
'transfer	function'.	The	transfer	function	transforms	and	shapes	the	
incoming	amplitude	values	using	a	simple	look-up	process:	if	the	
incoming	value	is	x,	the	outgoing	value	becomes	y.	This	can	be	
written	as	a	table	with	two	columns.	Here	is	a	simple	example:

		Incoming	(x)	Value 		Outgoing	(y)	Value

-0.5	or	lower	 	-1

	between	-0.5	and	0.5	 	remain	unchanged	

	0.5	or	higher	 	1

	

Illustrating	this	in	an	x/y	coordinate	system	results	in	the	following	
graph:

WAVESHAPING

352

	

BASIC	IMPLEMENTATION	MODEL	

Although	Csound	contains	several	opcodes	for	waveshaping,	
implementing	waveshaping	from	first	principles	as	Csound	code	is	
fairly	straightforward.	The	x-axis	is	the	amplitude	of	every	single	
sample,	which	is	in	the	range	of	-1	to	+1.	This	number	has	to	be	used	
as	index	to	a	table	which	stores	the	transfer	function.	To	create	a	table
like	the	one	above,	you	can	use	Csound's	sub-routine	GEN07.	This	
statement	will	create	a	table	of	4096	points	with	the	desired	shape:

giTrnsFnc	ftgen	0,	0,	4096,	-7,	-0.5,	1024,	-0.5,	2048,	0.5,	1024,	0.5

WAVESHAPING

353

	

Now	two	problems	must	be	solved.	First,	the	index	of	the	function	
table	is	not	-1	to	+1.	Rather,	it	is	either	0	to	4095	in	the	raw	index	
mode,	or	0	to	1	in	the	normalized	mode.	The	simplest	solution	is	to	
use	the	normalized	index	and	scale	the	incoming	amplitudes,	so	that	
an	amplitude	of	-1	becomes	an	index	of	0,	and	an	amplitude	of	1	
becomes	an	index	of	1:

aIndx	=	(aAmp	+	1)	/	2

The	other	problem	stems	from	the	difference	in	the	accuracy	of	
possible	values	in	a	sample	and	in	a	function	table.	Every	single	
sample	is	encoded	in	a	32-bit	floating	point	number	in	standard	audio	
applications	-	or	even	in	a	64-bit	float	in	recent	Csound.	A	table	with	
4096	points	results	in	a	12-bit	number,	so	you	will	have	a	serious	loss	
of	accuracy	(=	sound	quality)	if	you	use	the	table	values	directly.	
Here,	the	solution	is	to	use	an	interpolating	table	reader.	The	opcode	
tablei	(instead	of	table)	does	this	job.	This	opcode	then	needs	an	extra	
point	in	the	table	for	interpolating,	so	we	give	4097	as	the	table	size	
instead	of	4096.	
		

This	is	the	code	for	simple	waveshaping	using	our	transfer	function	
which	has	been	discussed	previously:

WAVESHAPING

354

EXAMPLE	04E01_Simple_waveshaping.csd
		

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giTrnsFnc	ftgen	0,	0,	4097,	-7,	-0.5,	1024,	-0.5,	2048,	0.5,	1024,	0.5
giSine				ftgen	0,	0,	1024,	10,	1

instr	1
aAmp						poscil				1,	400,	giSine
aIndx					=									(aAmp	+	1)	/	2
aWavShp			tablei				aIndx,	giTrnsFnc,	1
										outs						aWavShp,	aWavShp
endin

</CsInstruments>
<CsScore>
i	1	0	10
</CsScore>
</CsoundSynthesizer>

	

POWERSHAPE	

The	powershape	opcode	performs	waveshaping	by	simply	raising	all	
samples	to	the	power	of	a	user	given	exponent.	Its	main	innovation	is	
that	the	polarity	of	samples	within	the	negative	domain	will	be	
retained.	It	simply	performs	the	power	function	on	absolute	values	

WAVESHAPING

355

(negative	values	made	positive)	and	then	reinstates	the	minus	sign	if	
required.	It	also	normalises	the	input	signal	between	-1	and	1	before	
shaping	and	then	rescales	the	output	by	the	inverse	of	whatever	
multiple	was	required	to	normalise	the	input.	This	ensures	useful	
results	but	does	require	that	the	user	states	the	maximum	amplitude	
value	expected	in	the	opcode	declaration	and	thereafter	abide	by	that	
limit.	The	exponent,	which	the	opcode	refers	to	as	'shape	amount',	can
be	varied	at	k-rate	thereby	facilitating	the	creation	of	dynamic	spectra
upon	a	constant	spectrum	input.

If	we	consider	the	simplest	possible	input	-	a	sine	wave	-	a	shape	
amount	of	'1'	will	produce	no	change.	(Raising	any	value	to	the	power	
of	1	leaves	that	value	unchanged.)

A	shaping	amount	of	2.5	will	visibly	'squeeze'	the	waveform	as	values	
less	than	1	become	increasingly	biased	towards	the	zero	axis.

	

Much	higher	values	will	narrow	the	positive	and	negative	peaks	
further.	Below	is	the	waveform	resulting	from	a	shaping	amount	of	
50.

WAVESHAPING

356

	

Shape	amounts	less	than	1	(but	greater	than	zero)	will	give	the	
opposite	effect	of	drawing	values	closer	to	-1	or	1.	The	waveform	
resulting	from	a	shaping	amount	of	0.5	shown	below	is	noticeably	
more	rounded	than	the	sine	wave	input.

	

Reducing	shape	amount	even	closer	to	zero	will	start	to	show	
squaring	of	the	waveform.	The	result	of	a	shape	amount	of	0.1	is	
shown	below.

	

The	sonograms	of	the	five	examples	shown	above	are	as	shown	
below:

WAVESHAPING

357

	As
power	(shape	amount)	is	increased	from	1	through	2.5	to	50,	it	can	be
observed	how	harmonic	partials	are	added.	It	is	worth	noting	also	that
when	the	power	exponent	is	50	the	strength	of	the	fundamental	has
waned	somewhat.	What	is	not	clear	from	the	sonogram	is	that	the
partials	present	are	only	the	odd	numbered	ones.	As	the	power
exponent	is	reduced	below	1	through	0.5	and	finally	0.1,	odd
numbered	harmonic	partials	again	appear	but	this	time	the	strength	of
the	fundamental	remains	constant.	It	can	also	be	observed	that
aliasing	is	becoming	a	problem	as	evidenced	by	the	vertical	artifacts
in	the	sonograms	for	0.5	and	in	particularl	0.1.	This	is	a	significant
concern	when	using	waveshaping	techniques.	Raising	the	sampling
rate	can	provide	additional	headroom	before	aliasing	manifests	but
ultimately	subtlety	in	waveshaping's	use	is	paramount.

DISTORT

The	distort	opcode,	authored	by	Csound's	original	creator	Barry	
Vercoe,	was	originally	part	of	the	Extended	Csound	project	but	was	
introduced	into	Canonical	Csound	in	version	5.	It	waveshapes	an	
input	signal	according	to	a	transfer	function	provided	by	the	user	
using	a	function	table.	At	first	glance	this	may	seem	to	offer	little	
more	than	what	we	have	already	demonstrated	is	easily	possible	from	
first	principles	but	it	offers	a	number	of	additional	features	that	
enhance	its	usability.	The	input	signal	first	has	soft-knee	compression	

WAVESHAPING

358

applied	before	being	mapped	through	the	transfer	function.	Input	gain	
is	also	provided	via	the	'distortion	amount'	input	argument	and	this	
provides	dynamic	control	of	the	waveshaping	transformation.	The	
result	of	using	compression	means	that	spectrally	the	results	are	better
behaved	than	is	typical	with	waveshaping.	A	common	transfer	
function	would	be	the	hyperbolic	tangent	(tanh)	function.	Csound	
now	possesses	an	GEN	routine	GENtanh	for	the	creation	of	tanh	
functions:

GENtanh
f	#	time	size	"tanh"	start	end	rescale

By	adjusting	the	'start'	and	'end'	values	we	can	modify	the	shape	of	
the	tanh	transfer	function	and	therefore	the	aggressiveness	of	the	
waveshaping.	('Start'	and	'end'	values	should	be	the	same	absolute	
values	and	negative	and	positive	respectively	if	we	want	the	function	
to	pass	through	the	origin	from	the	lower	left	quadrant	to	the	upper	
right	quadrant.)

Start	and	end	values	of	-1	and	1	will	produce	a	gentle	's'	curve.

	

This	represents	only	a	very	slight	deviation	from	a	straight	line	
function	from	(-1,-1)	to	(1,1)	-	which	would	produce	no	distortion	-	
therefore	the	effects	of	the	above	used	as	a	transfer	function	will	be	
extremely	subtle.

Start	and	end	points	of	-10	and	10	will	produce	a	much	more	dramatic

WAVESHAPING

359

curve	and	more	dramatic	waveshaping:

f	1	0	1024	"tanh"	-5	5	0

	

Note	that	the	GEN	routine's	p7	argument	for	rescaling	is	set	to	zero	
ensuring	that	the	function	only	ever	extends	from	-1	and	1.	The	
values	provided	for	'start'	and	'end'	only	alter	the	shape.

In	the	following	test	example	a	sine	wave	at	200	hz	is	waveshaped	
using	distort	and	the	tanh	function	shown	above.

EXAMPLE	04E02_Distort_1.csd	
		

<CsoundSynthesizer>

<CsOptions>		
-dm0	-odac
</CsOptions>

<CsInstruments>

sr	=	44100
ksmps	=32
nchnls	=	1
0dbfs	=	1

giSine		ftgen			1,0,1025,10,1											;	sine	function
giTanh		ftgen			2,0,257,"tanh",-10,10,0	;	tanh	function

instr	1
	aSig		poscil			1,	200,	giSine										;	a	sine	wave
	kAmt		line					0,	p3,	1																;	rising	distortion	amount
	aDst		distort		aSig,	kAmt,	giTanh						;	distort	the	sine	tone
							out						aDst*0.1
endin

</CsInstruments>

<CsScore>
i	1	0	4
</CsScore>

</CsoundSynthesizer>

WAVESHAPING

360

The	resulting	sonogram	looks	like	this:
		

	

As	the	distort	amount	is	raised	from	zero	to	1	it	can	be	seen	from	the	
sonogram	how	upper	partials	emerge	and	gain	in	strength.	Only	the	
odd	numbered	partials	are	produced	therefore	over	the	fundemental	at	
200	hz	partials	are	present	at	600,	1000,	1400	hz	and	so	on.	If	we	
want	to	restore	the	even	numbered	partials	we	can	simultaneously	
waveshape	a	sine	at	400	hz,	one	octave	above	the	fundemental	as	in	
the	next	example.

EXAMPLE	04E03_Distort_2.csd
		

<CsoundSynthesizer>

<CsOptions>
-dm0	-odac
</CsOptions>

<CsInstruments>

sr	=	44100
ksmps	=32
nchnls	=	1
0dbfs	=				1

giSine				ftgen				1,0,1025,10,1
giTanh				ftgen			2,0,257,"tanh",-10,10,0

instr	1
	kAmt		line					0,	p3,	1																	;	rising	distortion	amount
	aSig		poscil			1,	200,	giSine											;	a	sine
	aSig2	poscil			kAmt*0.8,400,giSine						;	a	sine	an	octave	above
	aDst		distort		aSig+aSig2,	kAmt,	giTanh	;	distort	a	mixture	of	the	two	sines
							out						aDst*0.1
endin

WAVESHAPING

361

</CsInstruments>

<CsScore>
i	1	0	4
</CsScore>
</CsoundSynthesizer>

The	higher	of	the	two	sines	is	faded	in	using	the	distortion	amount	
control	so	that	when	distortion	amount	if	zero	we	will	be	left	with	
only	the	fundamental.	The	sonogram	looks	like	this:
		

What	we	hear	this	time	is	something	close	a	sawtooth	waveform	with	
a	rising	low-pass	filter.	The	higher	of	the	two	input	sines	at	400	hz	
will	produce	overtones	at	1200,	2000,	2800...	thereby	filling	in	the	
missing	partials.

REFERENCES

Distortion	Synthesis	-	a	tutorial	with	Csound	examples	by	Victor	
Lazzarini	
http://www.csounds.com/journal/issue11/distortionSynthesis.html

		

WAVESHAPING

362

GRANULAR	SYNTHESIS	

363

GRANULAR	SYNTHESIS	

CONCEPT	BEHIND	GRANULAR	SYNTHESIS

Granular	synthesis	is	a	technique	in	which	a	source	sound	or	
waveform	is	broken	into	many	fragments,	often	of	very	short	
duration,	which	are	then	restructured	and	rearranged	according	to	
various	patterning	and	indeterminacy	functions.

	If	we	imagine	the	simplest	possible	granular	synthesis	algorithm	in	
which	a	precise	fragment	of	sound	is	repeated	with	regularity,	there	
are	two	principle	attributes	of	this	process	that	we	are	most	concerned	
with.	Firstly	the	duration	of	each	sound	grain	is	significant:	if	the	
grain	duration	if	very	small,	typically	less	than	0.02	seconds,	then	less	
of	the	characteristics	of	the	source	sound	will	be	evident.	If	the	grain	
duration	is	greater	than	0.02	then	more	of	the	character	of	the	source	
sound	or	waveform	will	be	evident.	Secondly	the	rate	at	which	grains	
are	generated	will	be	significant:	if	grain	generation	is	below	20	
hertz,	i.e.	less	than	20	grains	per	second,	then	the	stream	of	grains	
will	be	perceived	as	a	rhythmic	pulsation;	if	rate	of	grain	generation	
increases	beyond	20	Hz	then	individual	grains	will	be	harder	to	
distinguish	and	instead	we	will	begin	to	perceive	a	buzzing	tone,	the	
fundamental	of	which	will	correspond	to	the	frequency	of	grain	
generation.	Any	pitch	contained	within	the	source	material	is	not	
normally	perceived	as	the	fundamental	of	the	tone	whenever	grain	
generation	is	periodic,	instead	the	pitch	of	the	source	material	or	
waveform	will	be	perceived	as	a	resonance	peak	(sometimes	referred	
to	as	a	formant);	therefore	transposition	of	the	source	material	will	
result	in	the	shifting	of	this	resonance	peak.

GRANULAR	SYNTHESIS	DEMONSTRATED
USING	FIRST	PRINCIPLES	

The	following	example	exemplifies	the	concepts	discussed	above.	
None	of	Csound's	built-in	granular	synthesis	opcodes	are	used,	instead

GRANULAR	SYNTHESIS	

364

schedkwhen	in	instrument	1	is	used	to	precisely	control	the	triggering	
of	grains	in	instrument	2.	Three	notes	in	instrument	1	are	called	from	
the	score	one	after	the	other	which	in	turn	generate	three	streams	of	
grains	in	instrument	2.	The	first	note	demonstrates	the	transition	from	
pulsation	to	the	perception	of	a	tone	as	the	rate	of	grain	generation	
extends	beyond	20	Hz.	The	second	note	demonstrates	the	loss	of	
influence	of	the	source	material	as	the	grain	duration	is	reduced	
below	0.02	seconds.	The	third	note	demonstrates	how	shifting	the	
pitch	of	the	source	material	for	the	grains	results	in	the	shifting	of	a	
resonance	peak	in	the	output	tone.	In	each	case	information	regarding	
rate	of	grain	generation,	duration	and	fundamental	(source	material	
pitch)	is	output	to	the	terminal	every	1/2	second	so	that	the	user	can	
observe	the	changing	parameters.

	It	should	also	be	noted	how	the	amplitude	of	each	grain	is	enveloped	
in	instrument	2.	If	grains	were	left	unenveloped	they	would	likely	
produce	clicks	on	account	of	discontinuities	in	the	waveform	
produced	at	the	beginning	and	ending	of	each	grain.

Granular	synthesis	in	which	grain	generation	occurs	with	perceivable	
periodicity	is	referred	to	as	synchronous	granular	synthesis.	granular	
synthesis	in	which	this	periodicity	is	not	evident	is	referred	to	as	
asynchronous	granular	synthesis.	
		

EXAMPLE	04F01_GranSynth_basic.csd

<CsoundSynthesizer>

<CsOptions>
-odac	-m0
</CsOptions>

<CsInstruments>
;Example	by	Iain	McCurdy

sr	=	44100
ksmps	=	1
nchnls	=	1
0dbfs	=	1

giSine		ftgen		0,0,4096,10,1

GRANULAR	SYNTHESIS	

365

instr	1
		kRate		expon		p4,p3,p5			;	rate	of	grain	generation
		kTrig		metro		kRate						;	a	trigger	to	generate	grains
		kDur			expon		p6,p3,p7			;	grain	duration
		kForm		expon		p8,p3,p9			;	formant	(spectral	centroid)
			;																						p1	p2	p3			p4
		schedkwhen				kTrig,0,0,2,	0,	kDur,kForm	;trigger	a	note(grain)	in	instr	2
		;print	data	to	terminal	every	1/2	second
		printks	"Rate:%5.2F		Dur:%5.2F		Formant:%5.2F%n",	0.5,	kRate	,	kDur,	kForm
endin

instr	2
		iForm	=							p4
		aEnv		linseg		0,0.005,0.2,p3-0.01,0.2,0.005,0
		aSig		poscil		aEnv,	iForm,	giSine
								out					aSig
endin

</CsInstruments>

<CsScore>
;p4	=	rate	begin
;p5	=	rate	end
;p6	=	duration	begin
;p7	=	duration	end
;p8	=	formant	begin
;p9	=	formant	end
;	p1	p2	p3	p4	p5		p6			p7				p8		p9
i	1		0		30	1		100	0.02	0.02		400	400		;demo	of	grain	generation	rate
i	1		31	10	10	10		0.4		0.01		400	400		;demo	of	grain	size
i	1		42	20	50	50		0.02	0.02		100	5000	;demo	of	changing	formant
e
</CsScore>

</CsoundSynthesizer>

GRANULAR	SYNTHESIS	OF	VOWELS:	FOF

The	principles	outlined	in	the	previous	example	can	be	extended	to	
imitate	vowel	sounds	produced	by	the	human	voice.	This	type	of	
granular	synthesis	is	referred	to	as	FOF	(fonction	d'onde	formatique)	
synthesis	and	is	based	on	work	by	Xavier	Rodet	on	his	CHANT	
program	at	IRCAM.	Typically	five	synchronous	granular	synthesis	
streams	will	be	used	to	create	five	different	resonant	peaks	in	a	
fundamental	tone	in	order	to	imitate	different	vowel	sounds	
expressible	by	the	human	voice.	The	most	crucial	element	in	defining	
a	vowel	imitation	is	the	degree	to	which	the	source	material	within	
each	of	the	five	grain	streams	is	transposed.	Bandwidth	(essentially	
grain	duration)	and	intensity	(loudness)	of	each	grain	stream	are	also	
important	indicators	in	defining	the	resultant	sound.	

Csound	has	a	number	of	opcodes	that	make	working	with	FOF	
synthesis	easier.	We	will	be	using	fof.

GRANULAR	SYNTHESIS	

366

Information	regarding	frequency,	bandwidth	and	intensity	values	that	
will	produce	various	vowel	sounds	for	different	voice	types	can	be	
found	in	the	appendix	of	the	Csound	manual	here.	These	values	are	
stored	in	function	tables	in	the	FOF	synthesis	example.	GEN07,	
which	produces	linear	break	point	envelopes,	is	chosen	as	we	will	
then	be	able	to	morph	continuously	between	vowels.

EXAMPLE	04F02_Fof_vowels.csd	

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>
;example	by	Iain	McCurdy

sr	=	44100
ksmps	=	16
nchnls	=	2
0dbfs	=	1

;FUNCTION	TABLES	STORING	DATA	FOR	VARIOUS	VOICE	FORMANTS
;BASS
giBF1	ftgen	0,	0,	-5,	-2,	600,			400,	250,			400,		350
giBF2	ftgen	0,	0,	-5,	-2,	1040,	1620,	1750,		750,		600
giBF3	ftgen	0,	0,	-5,	-2,	2250,	2400,	2600,	2400,	2400
giBF4	ftgen	0,	0,	-5,	-2,	2450,	2800,	3050,	2600,	2675
giBF5	ftgen	0,	0,	-5,	-2,	2750,	3100,	3340,	2900,	2950

giBDb1	ftgen	0,	0,	-5,	-2,			0,			0,			0,			0,			0
giBDb2	ftgen	0,	0,	-5,	-2,		-7,	-12,	-30,	-11,	-20
giBDb3	ftgen	0,	0,	-5,	-2,		-9,		-9,	-16,	-21,	-32
giBDb4	ftgen	0,	0,	-5,	-2,		-9,	-12,	-22,	-20,	-28
giBDb5	ftgen	0,	0,	-5,	-2,	-20,	-18,	-28,	-40,	-36

giBBW1	ftgen	0,	0,	-5,	-2,		60,		40,		60,		40,		40
giBBW2	ftgen	0,	0,	-5,	-2,		70,		80,		90,		80,		80
giBBW3	ftgen	0,	0,	-5,	-2,	110,	100,	100,	100,	100
giBBW4	ftgen	0,	0,	-5,	-2,	120,	120,	120,	120,	120
giBBW5	ftgen	0,	0,	-5,	-2,	130,	120,	120,	120,	120

;TENOR
giTF1	ftgen	0,	0,	-5,	-2,		650,		400,		290,		400,		350
giTF2	ftgen	0,	0,	-5,	-2,	1080,	1700,	1870,		800,		600
giTF3	ftgen	0,	0,	-5,	-2,	2650,	2600,	2800,	2600,	2700
giTF4	ftgen	0,	0,	-5,	-2,	2900,	3200,	3250,	2800,	2900
giTF5	ftgen	0,	0,	-5,	-2,	3250,	3580,	3540,	3000,	3300

giTDb1	ftgen	0,	0,	-5,	-2,			0,			0,			0,			0,			0
giTDb2	ftgen	0,	0,	-5,	-2,		-6,	-14,	-15,	-10,	-20
giTDb3	ftgen	0,	0,	-5,	-2,		-7,	-12,	-18,	-12,	-17
giTDb4	ftgen	0,	0,	-5,	-2,		-8,	-14,	-20,	-12,	-14
giTDb5	ftgen	0,	0,	-5,	-2,	-22,	-20,	-30,	-26,	-26

giTBW1	ftgen	0,	0,	-5,	-2,		80,		70,		40,		40,		40
giTBW2	ftgen	0,	0,	-5,	-2,		90,		80,		90,		80,		60
giTBW3	ftgen	0,	0,	-5,	-2,	120,	100,	100,	100,	100
giTBW4	ftgen	0,	0,	-5,	-2,	130,	120,	120,	120,	120
giTBW5	ftgen	0,	0,	-5,	-2,	140,	120,	120,	120,	120

;COUNTER	TENOR
giCTF1	ftgen	0,	0,	-5,	-2,		660,		440,		270,		430,		370

GRANULAR	SYNTHESIS	

367

giCTF2	ftgen	0,	0,	-5,	-2,	1120,	1800,	1850,		820,		630
giCTF3	ftgen	0,	0,	-5,	-2,	2750,	2700,	2900,	2700,	2750
giCTF4	ftgen	0,	0,	-5,	-2,	3000,	3000,	3350,	3000,	3000
giCTF5	ftgen	0,	0,	-5,	-2,	3350,	3300,	3590,	3300,	3400

giTBDb1	ftgen	0,	0,	-5,	-2,			0,			0,			0,			0,			0
giTBDb2	ftgen	0,	0,	-5,	-2,		-6,	-14,	-24,	-10,	-20
giTBDb3	ftgen	0,	0,	-5,	-2,	-23,	-18,	-24,	-26,	-23
giTBDb4	ftgen	0,	0,	-5,	-2,	-24,	-20,	-36,	-22,	-30
giTBDb5	ftgen	0,	0,	-5,	-2,	-38,	-20,	-36,	-34,	-30

giTBW1	ftgen	0,	0,	-5,	-2,	80,			70,		40,		40,		40
giTBW2	ftgen	0,	0,	-5,	-2,	90,			80,		90,		80,		60
giTBW3	ftgen	0,	0,	-5,	-2,	120,	100,	100,	100,	100
giTBW4	ftgen	0,	0,	-5,	-2,	130,	120,	120,	120,	120
giTBW5	ftgen	0,	0,	-5,	-2,	140,	120,	120,	120,	120

;ALTO
giAF1	ftgen	0,	0,	-5,	-2,		800,		400,		350,		450,		325
giAF2	ftgen	0,	0,	-5,	-2,	1150,	1600,	1700,		800,		700
giAF3	ftgen	0,	0,	-5,	-2,	2800,	2700,	2700,	2830,	2530
giAF4	ftgen	0,	0,	-5,	-2,	3500,	3300,	3700,	3500,	2500
giAF5	ftgen	0,	0,	-5,	-2,	4950,	4950,	4950,	4950,	4950

giADb1	ftgen	0,	0,	-5,	-2,			0,			0,			0,			0,			0
giADb2	ftgen	0,	0,	-5,	-2,		-4,	-24,	-20,		-9,	-12
giADb3	ftgen	0,	0,	-5,	-2,	-20,	-30,	-30,	-16,	-30
giADb4	ftgen	0,	0,	-5,	-2,	-36,	-35,	-36,	-28,	-40
giADb5	ftgen	0,	0,	-5,	-2,	-60,	-60,	-60,	-55,	-64

giABW1	ftgen	0,	0,	-5,	-2,	50,			60,		50,		70,		50
giABW2	ftgen	0,	0,	-5,	-2,	60,			80,	100,		80,		60
giABW3	ftgen	0,	0,	-5,	-2,	170,	120,	120,	100,	170
giABW4	ftgen	0,	0,	-5,	-2,	180,	150,	150,	130,	180
giABW5	ftgen	0,	0,	-5,	-2,	200,	200,	200,	135,	200

;SOPRANO
giSF1	ftgen	0,	0,	-5,	-2,		800,		350,		270,		450,		325
giSF2	ftgen	0,	0,	-5,	-2,	1150,	2000,	2140,		800,		700
giSF3	ftgen	0,	0,	-5,	-2,	2900,	2800,	2950,	2830,	2700
giSF4	ftgen	0,	0,	-5,	-2,	3900,	3600,	3900,	3800,	3800
giSF5	ftgen	0,	0,	-5,	-2,	4950,	4950,	4950,	4950,	4950

giSDb1	ftgen	0,	0,	-5,	-2,			0,			0,			0,			0,			0
giSDb2	ftgen	0,	0,	-5,	-2,		-6,	-20,	-12,	-11,	-16
giSDb3	ftgen	0,	0,	-5,	-2,	-32,	-15,	-26,	-22,	-35
giSDb4	ftgen	0,	0,	-5,	-2,	-20,	-40,	-26,	-22,	-40
giSDb5	ftgen	0,	0,	-5,	-2,	-50,	-56,	-44,	-50,	-60

giSBW1	ftgen	0,	0,	-5,	-2,		80,		60,		60,		70,		50
giSBW2	ftgen	0,	0,	-5,	-2,		90,		90,		90,		80,		60
giSBW3	ftgen	0,	0,	-5,	-2,	120,	100,	100,	100,	170
giSBW4	ftgen	0,	0,	-5,	-2,	130,	150,	120,	130,	180
giSBW5	ftgen	0,	0,	-5,	-2,	140,	200,	120,	135,	200

gisine	ftgen	0,	0,	4096,	10,	1
giexp	ftgen	0,	0,	1024,	19,	0.5,	0.5,	270,	0.5

instr	1
		kFund				expon					p4,p3,p5															;	fundemental
		kVow					line						p6,p3,p7															;	vowel	select
		kBW						line						p8,p3,p9															;	bandwidth	factor
		iVoice			=									p10																				;	voice	select

		;	read	formant	cutoff	frequenies	from	tables
		kForm1			tablei				kVow*5,giBF1+(iVoice*15)
		kForm2			tablei				kVow*5,giBF1+(iVoice*15)+1
		kForm3			tablei				kVow*5,giBF1+(iVoice*15)+2
		kForm4			tablei				kVow*5,giBF1+(iVoice*15)+3
		kForm5			tablei				kVow*5,giBF1+(iVoice*15)+4
		;	read	formant	intensity	values	from	tables
		kDB1					tablei				kVow*5,giBF1+(iVoice*15)+5
		kDB2					tablei				kVow*5,giBF1+(iVoice*15)+6

GRANULAR	SYNTHESIS	

368

		kDB3					tablei				kVow*5,giBF1+(iVoice*15)+7
		kDB4					tablei				kVow*5,giBF1+(iVoice*15)+8
		kDB5					tablei				kVow*5,giBF1+(iVoice*15)+9
		;	read	formant	bandwidths	from	tables
		kBW1					tablei				kVow*5,giBF1+(iVoice*15)+10
		kBW2					tablei				kVow*5,giBF1+(iVoice*15)+11
		kBW3					tablei				kVow*5,giBF1+(iVoice*15)+12
		kBW4					tablei				kVow*5,giBF1+(iVoice*15)+13
		kBW5					tablei				kVow*5,giBF1+(iVoice*15)+14
		;	create	resonant	formants	using	fof	opcode
		koct					=									1	
		aForm1			fof							ampdb(kDB1),kFund,kForm1,0,kBW1,0.003,0.02,0.007,\
																							1000,gisine,giexp,3600
		aForm2			fof							ampdb(kDB2),kFund,kForm2,0,kBW2,0.003,0.02,0.007,\
																							1000,gisine,giexp,3600
		aForm3			fof							ampdb(kDB3),kFund,kForm3,0,kBW3,0.003,0.02,0.007,\
																							1000,gisine,giexp,3600
		aForm4			fof							ampdb(kDB4),kFund,kForm4,0,kBW4,0.003,0.02,0.007,\
																							1000,gisine,giexp,3600
		aForm5			fof							ampdb(kDB5),kFund,kForm5,0,kBW5,0.003,0.02,0.007,\
																							1000,gisine,giexp,3600

		;	formants	are	mixed
		aMix					sum							aForm1,aForm2,aForm3,aForm4,aForm5
		kEnv					linseg				0,3,1,p3-6,1,3,0					;	an	amplitude	envelope
											outs						aMix*kEnv*0.3,	aMix*kEnv*0.3	;	send	audio	to	outputs
endin

</CsInstruments>

<CsScore>
;	p4	=	fundamental	begin	value	(c.p.s.)
;	p5	=	fundamental	end	value
;	p6	=	vowel	begin	value	(0	-	1	:	a	e	i	o	u)
;	p7	=	vowel	end	value
;	p8	=	bandwidth	factor	begin	(suggested	range	0	-	2)
;	p9	=	bandwidth	factor	end
;	p10	=	voice	(0=bass;	1=tenor;	2=counter_tenor;	3=alto;	4=soprano)

;	p1	p2		p3		p4		p5		p6		p7		p8		p9	p10
i	1		0			10		50		100	0			1			2			0		0
i	1		8			.			78		77		1			0			1			0		1
i	1		16		.			150	118	0			1			1			0		2
i	1		24		.			200	220	1			0			0.2	0		3
i	1		32		.			400	800	0			1			0.2	0		4
e
</CsScore>
</CsoundSynthesizer>

ASYNCHRONOUS	GRANULAR	SYNTHESIS

The	previous	two	examples	have	played	psychoacoustic	phenomena	
associated	with	the	perception	of	granular	textures	that	exhibit	
periodicity	and	patterns.	If	we	introduce	indeterminacy	into	some	of	
the	parameters	of	granular	synthesis	we	begin	to	lose	the	coherence	of
some	of	these	harmonic	structures.

The	next	example	is	based	on	the	design	of	example	04F01.csd.	Two	
streams	of	grains	are	generated.	The	first	stream	begins	as	a	
synchronous	stream	but	as	the	note	progresses	the	periodicity	of	grain	

GRANULAR	SYNTHESIS	

369

generation	is	eroded	through	the	addition	of	an	increasing	degree	of	
gaussian	noise.	It	will	be	heard	how	the	tone	metamorphosizes	from	
one	characterized	by	steady	purity	to	one	of	fuzzy	airiness.	The	
second	the	applies	a	similar	process	of	increasing	indeterminacy	to	
the	formant	parameter	(frequency	of	material	within	each	grain).

Other	parameters	of	granular	synthesis	such	as	the	amplitude	of	each	
grain,	grain	duration,	spatial	location	etc.	can	be	similarly	modulated	
with	random	functions	to	offset	the	psychoacoustic	effects	of	
synchronicity	when	using	constant	values.

EXAMPLE	04F03_Asynchronous_GS.csd	

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>
;Example	by	Iain	McCurdy

sr	=	44100
ksmps	=	1
nchnls	=	1
0dbfs	=	1

giWave		ftgen		0,0,2^10,10,1,1/2,1/4,1/8,1/16,1/32,1/64

instr	1	;grain	generating	instrument	1
		kRate									=										p4
		kTrig									metro						kRate						;	a	trigger	to	generate	grains
		kDur										=										p5
		kForm									=										p6
		;note	delay	time	(p2)	is	defined	using	a	random	function	-
		;-	beginning	with	no	randomization	but	then	gradually	increasing
		kDelayRange			transeg				0,1,0,0,		p3-1,4,0.03
		kDelay								gauss						kDelayRange
		;																																		p1	p2	p3			p4
																schedkwhen	kTrig,0,0,3,	abs(kDelay),	kDur,kForm	;trigger	a	note	
(grain)	in	instr	3
endin

instr	2	;grain	generating	instrument	2
		kRate										=										p4
		kTrig										metro						kRate						;	a	trigger	to	generate	grains
		kDur											=										p5
		;formant	frequency	(p4)	is	multiplied	by	a	random	function	-
		;-	beginning	with	no	randomization	but	then	gradually	increasing
		kForm										=										p6
		kFormOSRange		transeg					0,1,0,0,		p3-1,2,12	;range	defined	in	semitones
		kFormOS							gauss							kFormOSRange
		;																																			p1	p2	p3			p4
																schedkwhen		kTrig,0,0,3,	0,	kDur,kForm*semitone(kFormOS)
endin

instr	3	;grain	sounding	instrument
		iForm	=							p4
		aEnv		linseg		0,0.005,0.2,p3-0.01,0.2,0.005,0
		aSig		poscil		aEnv,	iForm,	giWave

GRANULAR	SYNTHESIS	

370

								out					aSig
endin

</CsInstruments>

<CsScore>
;p4	=	rate
;p5	=	duration
;p6	=	formant
;	p1	p2			p3	p4		p5			p6
i	1		0				12	200	0.02	400
i	2		12.5	12	200	0.02	400
e
</CsScore>

</CsoundSynthesizer>

SYNTHESIS	OF	DYNAMIC	SOUND
SPECTRA:	GRAIN3

The	next	example	introduces	another	of	Csound's	built-in	granular	
synthesis	opcodes	to	demonstrate	the	range	of	dynamic	sound	spectra	
that	are	possible	with	granular	synthesis.

Several	parameters	are	modulated	slowly	using	Csound's	random	
spline	generator	rspline.	These	parameters	are	formant	frequency,	
grain	duration	and	grain	density	(rate	of	grain	generation).	The	
waveform	used	in	generating	the	content	for	each	grain	is	randomly	
chosen	using	a	slow	sample	and	hold	random	function	-	a	new	
waveform	will	be	selected	every	10	seconds.	Five	waveforms	are	
provided:	a	sawtooth,	a	square	wave,	a	triangle	wave,	a	pulse	wave	
and	a	band	limited	buzz-like	waveform.	Some	of	these	waveforms,	
particularly	the	sawtooth,	square	and	pulse	waveforms,	can	generate	
very	high	overtones,	for	this	reason	a	high	sample	rate	is	
recommended	to	reduce	the	risk	of	aliasing	(see	chapter	01A).

Current	values	for	formant	(cps),	grain	duration,	density	and	
waveform	are	printed	to	the	terminal	every	second.	The	key	for	
waveforms	is:	1:sawtooth;	2:square;	3:triangle;	4:pulse;	5:buzz.

EXAMPLE	04F04_grain3.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

GRANULAR	SYNTHESIS	

371

<CsInstruments>
;example	by	Iain	McCurdy

sr	=	96000
ksmps	=	16
nchnls	=	1
0dbfs	=	1

;waveforms	used	for	granulation
giSaw			ftgen	1,0,4096,7,0,4096,1
giSq				ftgen	2,0,4096,7,0,2046,0,0,1,2046,1
giTri			ftgen	3,0,4096,7,0,2046,1,2046,0
giPls			ftgen	4,0,4096,7,1,200,1,0,0,4096-200,0
giBuzz		ftgen	5,0,4096,11,20,1,1

;window	function	-	used	as	an	amplitude	envelope	for	each	grain
;(hanning	window)
giWFn			ftgen	7,0,16384,20,2,1

instr	1
		;random	spline	generates	formant	values	in	oct	format
		kOct				rspline	4,8,0.1,0.5
		;oct	format	values	converted	to	cps	format
		kCPS				=							cpsoct(kOct)
		;phase	location	is	left	at	0	(the	beginning	of	the	waveform)
		kPhs				=							0
		;frequency	(formant)	randomization	and	phase	randomization	are	not	used
		kFmd				=							0
		kPmd				=							0
		;grain	duration	and	density	(rate	of	grain	generation)
		kGDur			rspline	0.01,0.2,0.05,0.2
		kDens			rspline	10,200,0.05,0.5
		;maximum	number	of	grain	overlaps	allowed.	This	is	used	as	a	CPU	brake
		iMaxOvr	=							1000
		;function	table	for	source	waveform	for	content	of	the	grain
		;a	different	waveform	chosen	once	every	10	seconds
		kFn					randomh	1,5.99,0.1
		;print	info.	to	the	terminal
										printks	"CPS:%5.2F%TDur:%5.2F%TDensity:%5.2F%TWaveform:%1.0F%n",1,\
																					kCPS,kGDur,kDens,kFn
		aSig				grain3		kCPS,	kPhs,	kFmd,	kPmd,	kGDur,	kDens,	iMaxOvr,	kFn,	giWFn,	\
																				0,	0
										out					aSig*0.06
endin

</CsInstruments>

<CsScore>
i	1	0	300
e
</CsScore>

</CsoundSynthesizer>

The	final	example	introduces	grain3's	two	built-in	randomizing	
functions	for	phase	and	pitch.	Phase	refers	to	the	location	in	the	
source	waveform	from	which	a	grain	will	be	read,	pitch	refers	to	the	
pitch	of	the	material	within	grains.	In	this	example	a	long	note	is	
played,	initially	no	randomization	is	employed	but	gradually	phase	
randomization	is	increased	and	then	reduced	back	to	zero.	The	same	
process	is	applied	to	the	pitch	randomization	amount	parameter.	This	
time	grain	size	is	relatively	large:0.8	seconds	and	density	

GRANULAR	SYNTHESIS	

372

correspondingly	low:	20	Hz.

EXAMPLE	04F05_grain3_random.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>
;example	by	Iain	McCurdy

sr	=	44100
ksmps	=	16
nchnls	=	1
0dbfs	=	1

;waveforms	used	for	granulation
giBuzz		ftgen	1,0,4096,11,40,1,0.9

;window	function	-	used	as	an	amplitude	envelope	for	each	grain
;(bartlett	window)
giWFn			ftgen	2,0,16384,20,3,1

instr	1
		kCPS				=							100
		kPhs				=							0
		kFmd				transeg	0,21,0,0,	10,4,15,	10,-4,0
		kPmd				transeg	0,1,0,0,		10,4,1,		10,-4,0
		kGDur			=							0.8
		kDens			=							20
		iMaxOvr	=							1000
		kFn					=							1
		;print	info.	to	the	terminal
										printks	"Random	Phase:%5.2F%TPitch	Random:%5.2F%n",1,kPmd,kFmd
		aSig				grain3		kCPS,	kPhs,	kFmd,	kPmd,	kGDur,	kDens,	iMaxOvr,	kFn,	giWFn,	0,	0
										out					aSig*0.06
endin

</CsInstruments>

<CsScore>
i	1	0	51
e
</CsScore>

</CsoundSynthesizer>

CONCLUSION

This	chapter	has	introduced	some	of	the	concepts	behind	the	synthesis
of	new	sounds	based	on	simple	waveforms	by	using	granular	
synthesis	techniques.	Only	two	of	Csound's	built-in	opcodes	for	
granular	synthesis,	fof	and	grain3,	have	been	used;	it	is	beyond	the	
scope	of	this	work	to	cover	all	of	the	many	opcodes	for	granulation	
that	Csound	provides.	This	chapter	has	focused	mainly	on	
synchronous	granular	synthesis;	chapter	05G,	which	introduces	

GRANULAR	SYNTHESIS	

373

granulation	of	recorded	sound	files,	makes	greater	use	of	
asynchronous	granular	synthesis	for	time-stretching	and	pitch	
shifting.	This	chapter	will	also	introduce	some	of	Csound's	other	
opcodes	for	granular	synthesis.
		

GRANULAR	SYNTHESIS	

374

PHYSICAL	MODELLING

375

PHYSICAL	MODELLING

With	physical	modelling	we	employ	a	completely	different	approach	
to	synthesis	than	we	do	with	all	other	standard	techniques.	Unusually	
the	focus	is	not	primarily	to	produce	a	sound,	but	to	model	a	physical	
process	and	if	this	process	exhibits	certain	features	such	as	periodic	
oscillation	within	a	frequency	range	of	20	to	20000	Hz,	it	will	
produce	sound.

Physical	modelling	synthesis	techniques	do	not	build	sound	using	
wave	tables,	oscillators	and	audio	signal	generators,	instead	they	
attempt	to	establish	a	model,	as	a	system	in	itself,	which	which	can	
then	produce	sound	because	of	how	the	function	it	producers	time	
varies	with	time.	A	physical	model	usually	derives	from	the	real	
physical	world,	but	could	be	any	time-varying	system.	Physical	
modelling	is	an	exciting	area	for	the	production	of	new	sounds.

Compared	with	the	complexity	of	a	real-world	physically	dynamic	
system	a	physical	model	will	most	likely	represent	a	brutal	
simplification.	Nevertheless,	using	this	technique	will	demand	a	lot	of
formulae,	because	physical	models	are	described	in	terms	of	
mathematics.	Although	designing	a	model	may	require	some	
considerable	work,	once	established	the	results	commonly	exhibit	a	
lively	tone	with	time-varying	partials	and	a	"natural"	difference	
between	attack	and	release	by	their	very	design	-	features	that	other	
synthesis	techniques	will	demand	more	from	the	end	user	in	order	to	
establish.
		

Csound	already	contains	many	ready-made	physical	models	as	
opcodes	but	you	can	still	build	your	own	from	scratch.	This	chapter	
will	look	at	how	to	implement	two	classical	models	from	first	
principles	and	then	introduce	a	number	of	Csound's	ready	made	
physical	modelling	opcodes.

PHYSICAL	MODELLING

376

THE	MASS-SPRING	MODEL1		

Many	oscillating	processes	in	nature	can	be	modelled	as	connections	
of	masses	and	springs.	Imagine	one	mass-spring	unit	which	has	been	
set	into	motion.	This	system	can	be	described	as	a	sequence	of	states,	
where	every	new	state	results	from	the	two	preceding	ones.	Assumed	
the	first	state	a0	is	0	and	the	second	state	a1	is	0.5.	Without	the	
restricting	force	of	the	spring,	the	mass	would	continue	moving	
unimpeded	following	a	constant	velocity:

	

As	the	velocity	between	the	first	two	states	can	be	described	as	a1-a0,	
the	value	of	the	third	state	a2	will	be:

a2	=	a1	+	(a1	-	a0)	=	0.5	+	0.5	=	1
		

But,	the	spring	pulls	the	mass	back	with	a	force	which	increases	the	

PHYSICAL	MODELLING

377

further	the	mass	moves	away	from	the	point	of	equilibrium.	Therefore
the	masses	movement	can	be	described	as	the	product	of	a	constant	
factor	c	and	the	last	position	a1.	This	damps	the	continuous	
movement	of	the	mass	so	that	for	a	factor	of	c=0.4	the	next	position	
will	be:

a2	=	(a1	+	(a1	-	a0))	-	c	*	a1	=	1	-	0.2	=	0.8
		

	

Csound	can	easily	calculate	the	values	by	simply	applying	the	
formulae.	For	the	first	k-cycle2	,	they	are	set	via	the	init	opcode.	After
calculating	the	new	state,	a1	becomes	a0	and	a2	becomes	a1	for	the	
next	k-cycle.	This	is	a	csd	which	prints	the	new	values	five	times	per	
second.	(The	states	are	named	here	as	k0/k1/k2	instead	of	a0/a1/a2,	
because	k-rate	values	are	needed	here	for	printing	instead	of	audio	
samples.)

PHYSICAL	MODELLING

378

EXAMPLE	04G01_Mass_spring_sine.csd
		

<CsoundSynthesizer>
<CsOptions>
-n	;no	sound
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	8820	;5	steps	per	second

instr	PrintVals
;initial	values
kstep	init	0
k0	init	0
k1	init	0.5
kc	init	0.4
;calculation	of	the	next	value
k2	=	k1	+	(k1	-	k0)	-	kc	*	k1
printks	"Sample=%d:	k0	=	%.3f,	k1	=	%.3f,	k2	=	%.3f\n",	0,	kstep,	k0,	k1,	k2
;actualize	values	for	the	next	step
kstep	=	kstep+1
k0	=	k1
k1	=	k2
endin

</CsInstruments>
<CsScore>
i	"PrintVals"	0	10
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

The	output	starts	with:

State=0:		k0	=		0.000,		k1	=		0.500,		k2	=		0.800
State=1:		k0	=		0.500,		k1	=		0.800,		k2	=		0.780
State=2:		k0	=		0.800,		k1	=		0.780,		k2	=		0.448
State=3:		k0	=		0.780,		k1	=		0.448,		k2	=	-0.063
State=4:		k0	=		0.448,		k1	=	-0.063,		k2	=	-0.549
State=5:		k0	=	-0.063,		k1	=	-0.549,		k2	=	-0.815
State=6:		k0	=	-0.549,		k1	=	-0.815,		k2	=	-0.756
State=7:		k0	=	-0.815,		k1	=	-0.756,		k2	=	-0.393
State=8:		k0	=	-0.756,		k1	=	-0.393,		k2	=		0.126
State=9:		k0	=	-0.393,		k1	=		0.126,		k2	=		0.595
State=10:	k0	=		0.126,		k1	=		0.595,		k2	=		0.826
State=11:	k0	=		0.595,		k1	=		0.826,		k2	=		0.727
State=12:	k0	=		0.826,		k1	=		0.727,		k2	=		0.337

	

PHYSICAL	MODELLING

379

So,	a	sine	wave	has	been	created,	without	the	use	of	any	of	Csound's	
oscillators...

	Here	is	the	audible	proof:

EXAMPLE	04G02_MS_sine_audible.csd
		

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	1
nchnls	=	2
0dbfs	=	1

instr	MassSpring
;initial	values
a0								init						0
a1								init						0.05
ic								=									0.01	;spring	constant
;calculation	of	the	next	value
a2								=									a1+(a1-a0)	-	ic*a1
										outs						a0,	a0
;actualize	values	for	the	next	step
a0								=									a1
a1								=									a2
endin
</CsInstruments>
<CsScore>
i	"MassSpring"	0	10
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz,	after	martin	neukom

As	the	next	sample	is	calculated	in	the	next	control	cycle,	ksmps	has	
to	be	set	to	1.3	The	resulting	frequency	depends	on	the	spring	
constant:	the	higher	the	constant,	the	higher	the	frequency.	The	
resulting	amplitude	depends	on	both,	the	starting	value	and	the	spring	
constant.

	This	simple	model	shows	the	basic	principle	of	a	physical	modelling	
synthesis:	creating	a	system	which	produces	sound	because	it	varies	
in	time.	Certainly	it	is	not	the	goal	of	physical	modelling	synthesis	to	
reinvent	the	wheel	of	a	sine	wave.	But	modulating	the	parameters	of	a
model	may	lead	to	interesting	results.	The	next	example	varies	the	
spring	constant,	which	is	now	no	longer	a	constant:

EXAMPLE	04G03_MS_variable_constant.csd

PHYSICAL	MODELLING

380

		

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	1
nchnls	=	2
0dbfs	=	1

instr	MassSpring
;initial	values
a0								init						0
a1								init						0.05
kc								randomi			.001,	.05,	8,	3
;calculation	of	the	next	value
a2								=									a1+(a1-a0)	-	kc*a1
										outs						a0,	a0
;actualize	values	for	the	next	step
a0								=									a1
a1								=									a2
endin
</CsInstruments>
<CsScore>
i	"MassSpring"	0	10
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

Working	with	physical	modelling	demands	thought	in	more	physical	
or	mathematical	terms:	examples	of	this	might	be	if	you	were	to	
change	the	formula	when	a	certain	value	of	c	had	been	reached,	or	
combine	more	than	one	spring.

IMPLEMENTING	SIMPLE	PHYSICAL
SYSTEMS

This	text	shows	how	to	get	oscillators	and	filters	from	
simple	physical	models	by	recording	the	position	of	a	
point	(mass)	of	a	physical	system.	The	behavior	of	a	
particle	(mass	on	a	spring,	mass	of	a	pendulum,	etc.)	is	
described	by	its	position,	velocity	and	acceleration.	The	
mathematical	equations	which	describe	the	movement	
of	such	a	point	are	differential	equations.	In	what	
follows,	we	describe	how	to	derive	time	discrete	system	

PHYSICAL	MODELLING

381

equations	(also	called	difference	equations)	from	
physical	models	(described	by	differential	equations).	At	
every	time	step	we	first	calculate	the	acceleration	of	a	
mass	and	then	its	new	velocity	and	position.	This	
procedure	is	called	Euler's	method	and	yields	good	
results	for	low	frequencies	compared	to	the	sampling	
rate.	(Better	approximations	are	achieved	with	the	
improved	Euler's	method	or	the	Runge–Kutta	methods.)

(The	figures	below	have	been	realized	with	Mathematica)

INTEGRATING	THE	TRAJECTORY	OF	A	POINT	

Velocity	v	is	the	difference	of	positions	x	per	time	unit	T,	acceleration	a	the	difference	of	velocities	v	per	time	unit	
T:
	vt	=	(xt	–	xt-1)/T,	at	=	(vt	–	vt-1)/T.	

	Putting	T	=	1	we	get
	vt	=	xt	–	xt-1,	at	=	vt	–	vt-1.

If	we	know	the	position	and	velocity	of	a	point	at	time	t	–	1	and	are	able	to	calculate	its	acceleration	at	time	t	we	
can	calculate	the	velocity	vt	and	the	position	xt	at	time	t:

	vt	=	vt-1	+	at	and	xt	=	xt-1	+	vt
With	the	following	algorithm	we	calculate	a	sequence	of	successive	positions	x:

1.	init	x	and	v
2.	calculate	a
3.	v	+=	a				 ;	v	=	v	+	a
4.	x	+=	v	 ;	x	=	x	+	v

Example	1:	The	acceleration	of	gravity	is	constant	(g	=	
–9.81ms-2).	For	a	mass	with	initial	position	x	=	300m	
(above	ground)	and	velocity	v	=	70ms-1	(upwards)	we	
get	the	following	trajectory	(path)	

g	=	-9.81;	x	=	300;	v	=	70;	Table[v	+=	g;	x	+=	v,	{16}];

						 													

Example	2:	The	acceleration	a	of	a	mass	on	a	spring	is	
proportional	(with	factor	–c)	to	its	position	(deflection)	
x.		

PHYSICAL	MODELLING

382

x	=	0;	v	=	1;	c	=	.3;	Table[a	=	-c*x;	v	+=	a;	x	+=	v,	{22}];

						

INTRODUCING	DAMPING

Since	damping	is	proportional	to	the	velocity	we	reduce	
velocity	at	every	time	step	by	a	certain	amount	d:

v	*=	(1	-	d)

Example	3:	Spring	with	damping	(see	lin_reson.csd	below):	

d	=	0.2;	c	=	.3;	x	=	0;	v	=	1;
Table[a	=	-c*x;	v	+=	a;	v	*=	(1	-	d);	x	+=	v,	{22}];		

												

	

The	factor	c	can	be	calculated	from	the	frequency	f:

	c	=	2	–	sqrt(4	–	d2)	cos(2π	f/sr)	

INTRODUCING	EXCITATION

In	the	examples	2	and	3	the	systems	oscillate	because	of	their	initial	velocity	v	=	1.	The	resultant	oscillation	is	
the	impulse	response	of	the	systems.	We	can	excite	the	systems	continuously	by	adding	a	value	exc	to	the	
velocity	at	every	time	step.

v	+=	exc;

Example	4:	Damped	spring	with	random	excitation	(resonator	with	noise	as	input)

d	=	.01;	s	=	0;	v	=	0;		Table[a	=	-.3*s;	v	+=	a;	v	+=	RandomReal[{-1,	1}];	v	*=	(1	-	
d);	s	+=	v,	{61}];

PHYSICAL	MODELLING

383

									

EXAMPLE	04G04_lin_reson.csd		

<CsoundSynthesizer>
<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

opcode		lin_reson,		 a,	akk
setksmps	1
avel		 init		 0		 	 ;velocity
ax		 init		 0		 	 ;deflection	x
ain,kf,kdamp		 xin
kc		 =		 2-sqrt(4-kdamp^2)*cos(kf*2*$M_PI/sr)
aacel		 =		 -kc*ax
avel		 =		 avel+aacel+ain
avel		 =		 avel*(1-kdamp)
ax		 =		 ax+avel
	 xout		 ax
endop

instr	1
aexc		 rand		 p4
aout		 lin_reson		 aexc,p5,p6
	 out		 aout
endin

</CsInstruments>
<CsScore>
;		 	 p4		 	 p5		 p6
;		 	 excitaion		 freq		 damping
i1	0	5			 .0001				 440		 .0001
</CsScore>
</CsoundSynthesizer>
;example	by	martin	neukom

INTRODUCING	NONLINEAR	ACCELERATION

PHYSICAL	MODELLING

384

Example	5:	The	acceleration	of	a	pendulum	depends	on	
its	deflection	(angle	x).	

a	=	c*sin(x)

This	figure	shows	the	function	–.3sin(x)			

																		

The	following	trajectory	shows	that	the	frequency	decreases	with	encreasing	amplitude	and	that	the	pendulum	
can	turn	around.

d	=	.003;	s	=	0;	v	=	0;
Table[a	=	f[s];	v	+=	a;	v	+=	RandomReal[{-.09,	.1}];	v	*=	(1	-	d);
s	+=	v,	{400}];

											

		

We	can	implement	systems	with	accelerations	that	are	arbitrary	functions	of	position	x.

		
Example	6:	a	=	f(x)	=	–	c1x	+	c2sin(c3x)	

						 	

	d	=	.03;	x	=	0;	v	=	0;		Table[a	=	f[x];	v	+=	a;	v	+=	RandomReal[{-.1,	.1}];	v	*=	(1	
-	d);			x	+=	v,	{400}];

						

EXAMPLE	04G05_nonlin_reson.csd

PHYSICAL	MODELLING

385

<CsoundSynthesizer>
<CsInstruments>

sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

;	simple	damped	nonlinear	resonator
opcode	nonlin_reson,	a,	akki
setksmps	1
avel		 init	0	 	 	 ;velocity
adef		 init	0	 	 	 ;deflection
ain,kc,kdamp,ifn	xin
aacel		 tablei		adef,	ifn,	1,	.5	;acceleration	=	-c1*f1(def)
aacel		 =		 -kc*aacel
avel		 =		 avel+aacel+ain	 ;vel	+=	acel	+	excitation
avel		 =		 avel*(1-kdamp)
adef		 =		 adef+avel
	 xout		 adef
endop

instr	1
kenv		 oscil		 	 p4,.5,1
aexc		 rand		 	 kenv
aout		 nonlin_reson		 aexc,p5,p6,p7
	 out		 	 aout
endin

</CsInstruments>
<CsScore>
f1	0	1024	10	1
f2	0	1024	7	-1	510	.15	4	-.15	510	1
f3	0	1024	7	-1	350	.1	100	-.3	100	.2	100	-.1	354	1
;		 	 p4		 	 p5		 p6		 p7
;				 	 excitation			 c1					 damping	ifn
i1	0	20				 .0001							 .01				 .00001			3
;i1	0	20			 .0001							 .01				 .00001			2
</CsScore>
</CsoundSynthesizer>
;example	by	martin	neukom

	THE	VAN	DER	POL	OSCILLATOR

While	attempting	to	explain	the	nonlinear	dynamics	of	vacuum	tube	circuits,	the	Dutch	electrical	engineer	
Balthasar	van	der	Pol	derived	the	differential	equation

		

		d2x/dt2	=	–ω2x	+	μ(1	–	x2)dx/dt.	(where	d2x/dt2	=	acelleration	and	dx/dt	=	velocity)

		

The	equation	describes	a	linear	oscillator	d2x/dt2	=	–ω2x	with	an	additional	nonlinear	term	μ(1	–	x2)dx/dt.	When	
|x|	>	1,	the	nonlinear	term	results	in	damping,	but	when	|x|	<	1,	negative	damping	results,	which	means	that	
energy	is	introduced	into	the	system.	
Such	oscillators	compensating	for	energy	loss	by	an	inner	energy	source	are	called	self-sustained	oscillators.	

v	=	0;	x	=	.001;	ω	=	0.1;	μ	=	0.25;
snd	=	Table[v	+=	(-ω^2*x	+	μ*(1	-	x^2)*v);	x	+=	v,	{200}];

PHYSICAL	MODELLING

386

										

The	constant	ω	is	the	angular	frequency	of	the	linear	oscillator	(μ	=	0).	For	a	simulation	with	sampling	rate	sr	we	
calculate	the	frequency	f	in	Hz	as
	f	=	ω·sr/2π.
Since	the	simulation	is	only	an	approximation	of	the	oscillation	this	formula	gives	good	results	only	for	low	
frequencies.	The	exact	frequency	of	the	simulation	is		

	f	=	arccos(1	–	ω2/2)sr·/2π.

We	get	ω2	from	frequency	f	as

	2	–	2cos(f·2π/sr).	

With	increasing	μ	the	oscillations	nonlinearity	becomes	
stronger	and	more	overtones	arise	(and	at	the	same	
time	the	frequency	becomes	lower).	The	following	figure	
shows	the	spectrum	of	the	oscillation	for	various	values	
of	μ.	

		 		 		 	

Certain	oscillators	can	be	synchronized	either	by	an	external	force	or	by	mutual	influence.	Examples	of	
synchronization	by	an	external	force	are	the	control	of	cardiac	activity	by	a	pace	maker	and	the	adjusting	of	a	
clock	by	radio	signals.	An	example	for	the	mutual	synchronization	of	oscillating	systems	is	the	coordinated	
clapping	of	an	audience.	These	systems	have	in	common	that	they	are	not	linear	and	that	they	oscillate	without	
external	excitation	(self-sustained	oscillators).	

The	UDO	v_d_p	represents	a	Van	der	Pol	oscillator	with	
a	natural	frequency	kfr	and	a	nonlinearity	factor	kmu.	It	
can	be	excited	by	a	sine	wave	of	frequency	kfex	and	
amplitude	kaex.	The	range	of	frequency	within	which	
the	oscillator	is	synchronized	to	the	exciting	frequency	
increases	as	kmu	and	kaex	increase.		

EXAMPLE	04G06_van_der_pol.csd

<CsoundSynthesizer>
<CsInstruments>

PHYSICAL	MODELLING

387

sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

;Van	der	Pol	Oscillator	;outputs	a	nonliniear	oscillation
;inputs:	a_excitation,	k_frequency	in	Hz	(of	the	linear	part),	nonlinearity	(0	<	mu	<	
ca.	0.7)
opcode	v_d_p,	a,	akk
setksmps	1
av	init	0
ax	init	0
ain,kfr,kmu	xin
kc	=	2-2*cos(kfr*2*$M_PI/sr)
aa	=	-kc*ax	+	kmu*(1-ax*ax)*av
av	=	av	+	aa
ax	=	ax	+	av	+	ain
xout	ax
endop

instr	1
kaex	invalue	"aex"
kfex	invalue	"fex"
kamp	invalue	"amp"
kf	invalue	"freq"
kmu	invalue	"mu"
a1	oscil	kaex,kfex,1
aout	v_d_p	a1,kf,kmu
out	kamp*aout,a1*100
endin

</CsInstruments>
<CsScore>
f1	0	32768	10	1
i1	0	95
</CsScore>
</CsoundSynthesizer>

	The	variation	of	the	phase	difference	between	excitation
and	oscillation,	as	well	as	the	transitions	between	
synchronous,	beating	and	asynchronous	behaviors,	can	
be	visualized	by	showing	the	sum	of	the	excitation	and	
the	oscillation	signals	in	a	phase	diagram.	The	following	
figures	show	to	the	upper	left	the	waveform	of	the	Van	
der	Pol	oscillator,	to	the	lower	left	that	of	the	excitation	
(normalized)	and	to	the	right	the	phase	diagram	of	their	
sum.	For	these	figures,	the	same	values	were	always	
used	for	kfr,	kmu	and	kaex.	Comparing	the	first	two	
figures,	one	sees	that	the	oscillator	adopts	the	exciting	
frequency	kfex	within	a	large	frequency	range.	When	the	
frequency	is	low	(figure	a),	the	phases	of	the	two	waves	
are	nearly	the	same.	Hence	there	is	a	large	deflection	
along	the	x-axis	in	the	phase	diagram	showing	the	sum	
of	the	waveforms.	When	the	frequency	is	high,	the	
phases	are	nearly	inverted	(figure	b)	and	the	phase	

PHYSICAL	MODELLING

388

diagram	shows	only	a	small	deflection.	The	figure	c	
shows	the	transition	to	asynchronous	behavior.	If	the	
proportion	between	the	natural	frequency	of	the	
oscillator	kfr	and	the	excitation	frequency	kfex	is	
approximately	simple	(kfex/kfr	≅	m/n),	then	within	a	
certain	range	the	frequency	of	the	Van	der	Pol	oscillator	
is	synchronized	so	that	kfex/kfr	=	m/n.	Here	one	speaks	
of	higher	order	synchronization	(figure	d).	

		 			

		 			 	

THE	KARPLUS-STRONG	ALGORITHM:
PLUCKED	STRING	

The	Karplus-Strong	algorithm	provides	another	simple	yet	interesting	
example	of	how	physical	modelling	can	be	used	to	synthesized	sound.	
A	buffer	is	filled	with	random	values	of	either	+1	or	-1.	At	the	end	of	
the	buffer,	the	mean	of	the	first	and	the	second	value	to	come	out	of	
the	buffer	is	calculated.	This	value	is	then	put	back	at	the	beginning	
of	the	buffer,	and	all	the	values	in	the	buffer	are	shifted	by	one	
position.	

This	is	what	happens	for	a	buffer	of	five	values,	for	the	first	five	
steps:

PHYSICAL	MODELLING

389

	initial	state	 	1 -1	 1	 1	 -1	

	step	1	 	0	 	1 -1	 1	 1	

	step	2	 	1 	0 1 -1 1	

	step	3	 	0 	1 0	 1	 -1	

	step	4	 	0 	0 1	 0	 1	

	step	5	 	0.5 	0 0	 1	 0	

The	next	Csound	example	represents	the	content	of	the	buffer	in	a	
function	table,	implements	and	executes	the	algorithm,	and	prints	the	
result	after	each	five	steps	which	here	is	referred	to	as	one	cycle:

EXAMPLE	04G07_KarplusStrong.csd

<CsoundSynthesizer>
<CsOptions>
-n
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

		opcode	KS,	0,	ii
		;performs	the	karplus-strong	algorithm
iTab,	iTbSiz	xin
;calculate	the	mean	of	the	last	two	values
iUlt						tab_i					iTbSiz-1,	iTab
iPenUlt			tab_i					iTbSiz-2,	iTab
iNewVal			=									(iUlt	+	iPenUlt)	/	2
;shift	values	one	position	to	the	right
indx						=									iTbSiz-2
loop:
iVal						tab_i					indx,	iTab
										tabw_i				iVal,	indx+1,	iTab
										loop_ge			indx,	1,	0,	loop
;fill	the	new	value	at	the	beginning	of	the	table
										tabw_i				iNewVal,	0,	iTab
		endop

		opcode	PrintTab,	0,	iiS
		;prints	table	content,	with	a	starting	string
iTab,	iTbSiz,	Sout	xin
indx						=									0
loop:
iVal						tab_i					indx,	iTab
Snew						sprintf			"%8.3f",	iVal
Sout						strcat				Sout,	Snew
										loop_lt			indx,	1,	iTbSiz,	loop
										puts						Sout,	1
		endop

PHYSICAL	MODELLING

390

instr	ShowBuffer
;fill	the	function	table
iTab						ftgen					0,	0,	-5,	-2,	1,	-1,	1,	1,	-1
iTbLen				tableng			iTab
;loop	cycles	(five	states)
iCycle				=									0
cycle:
Scycle				sprintf			"Cycle	%d:",	iCycle
										PrintTab		iTab,	iTbLen,	Scycle
;loop	states
iState				=									0
state:
										KS								iTab,	iTbLen
										loop_lt			iState,	1,	iTbLen,	state
										loop_lt			iCycle,	1,	10,	cycle
endin

</CsInstruments>
<CsScore>
i	"ShowBuffer"	0	1
</CsScore>
</CsoundSynthesizer>

This	is	the	output:
		

Cycle	0:			1.000		-1.000			1.000			1.000		-1.000
Cycle	1:			0.500			0.000			0.000			1.000			0.000
Cycle	2:			0.500			0.250			0.000			0.500			0.500
Cycle	3:			0.500			0.375			0.125			0.250			0.500
Cycle	4:			0.438			0.438			0.250			0.188			0.375
Cycle	5:			0.359			0.438			0.344			0.219			0.281
Cycle	6:			0.305			0.398			0.391			0.281			0.250
Cycle	7:			0.285			0.352			0.395			0.336			0.266
Cycle	8:			0.293			0.318			0.373			0.365			0.301
Cycle	9:			0.313			0.306			0.346			0.369			0.333

It	can	be	seen	clearly	that	the	values	get	smoothed	more	and	more	
from	cycle	to	cycle.	As	the	buffer	size	is	very	small	here,	the	values	
tend	to	come	to	a	constant	level;	in	this	case	0.333.	But	for	larger	
buffer	sizes,	after	some	cycles	the	buffer	content	has	the	effect	of	a	
period	which	is	repeated	with	a	slight	loss	of	amplitude.	This	is	how	it
sounds,	if	the	buffer	size	is	1/100	second	(or	441	samples	at	
sr=44100):		

EXAMPLE	04G08_Plucked.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=		1
nchnls	=	2
0dbfs	=	1

instr	1
;delay	time
iDelTm				=									0.01

PHYSICAL	MODELLING

391

;fill	the	delay	line	with	either	-1	or	1	randomly
kDur						timeinsts
	if	kDur	<	iDelTm	then
aFill					rand						1,	2,	1,	1	;values	0-2
aFill					=									floor(aFill)*2	-	1	;just	-1	or	+1
										else
aFill					=									0
	endif
;delay	and	feedback
aUlt						init						0	;last	sample	in	the	delay	line
aUlt1					init						0	;delayed	by	one	sample
aMean					=									(aUlt+aUlt1)/2	;mean	of	these	two
aUlt						delay					aFill+aMean,	iDelTm
aUlt1					delay1				aUlt
										outs						aUlt,	aUlt
endin

</CsInstruments>
<CsScore>
i	1	0	60
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz,	after	martin	neukom

This	sound	resembles	a	plucked	string:	at	the	beginning	the	sound	is	
noisy	but	after	a	short	period	of	time	it	exhibits	periodicity.	As	can	be	
heard,	unless	a	natural	string,	the	steady	state	is	virtually	endless,	so	
for	practical	use	it	needs	some	fade-out.	The	frequency	the	listener	
perceives	is	related	to	the	length	of	the	delay	line.	If	the	delay	line	is	
1/100	of	a	second,	the	perceived	frequency	is	100	Hz.	Compared	with	
a	sine	wave	of	similar	frequency,	the	inherent	periodicity	can	be	seen,	
and	also	the	rich	overtone	structure:

Csound	also	contains	over	forty	opcodes	which	provide	a	wide	variety
of	ready-made	physical	models	and	emulations.	A	small	number	of	
them	will	be	introduced	here	to	give	a	brief	overview	of	the	sort	of	
things	available.

PHYSICAL	MODELLING

392

WGBOW	-	A	WAVEGUIDE	EMULATION	OF
A	BOWED	STRING	BY	PERRY	COOK	

Perry	Cook	is	a	prolific	author	of	physical	models	and	a	lot	of	his	
work	has	been	converted	into	Csound	opcodes.	A	number	of	these	
models	wgbow,	wgflute,	wgclar	wgbowedbar	and	wgbrass	are	based	
on	waveguides.	A	waveguide,	in	its	broadest	sense,	is	some	sort	of	
mechanism	that	limits	the	extend	of	oscillations,	such	as	a	vibrating	
string	fixed	at	both	ends	or	a	pipe.	In	these	sorts	of	physical	model	a	
delay	is	used	to	emulate	these	limits.	One	of	these,	wgbow,	
implements	an	emulation	of	a	bowed	string.	Perhaps	the	most	
interesting	aspect	of	many	physical	models	in	not	specifically	
whether	they	emulate	the	target	instrument	played	in	a	conventional	
way	accurately	but	the	facilities	they	provide	for	extending	the	
physical	limits	of	the	instrument	and	how	it	is	played	-	there	are	
already	vast	sample	libraries	and	software	samplers	for	emulating	
conventional	instruments	played	conventionally.	wgbow	offers	
several	interesting	options	for	experimentation	including	the	ability	
to	modulate	the	bow	pressure	and	the	bowing	position	at	k-rate.	
Varying	bow	pressure	will	change	the	tone	of	the	sound	produced	by	
changing	the	harmonic	emphasis.	As	bow	pressure	reduces,	the	
fundamental	of	the	tone	becomes	weaker	and	overtones	become	more	
prominent.	If	the	bow	pressure	is	reduced	further	the	abilty	of	the	
system	to	produce	a	resonance	at	all	collapse.	This	boundary	between	
tone	production	and	the	inability	to	produce	a	tone	can	provide	some	
interesting	new	sound	effect.	The	following	example	explores	this	
sound	area	by	modulating	the	bow	pressure	parameter	around	this	
threshold.	Some	additional	features	to	enhance	the	example	are	that	7	
different	notes	are	played	simultaneously,	the	bow	pressure	
modulations	in	the	right	channel	are	delayed	by	a	varying	amount	
with	respect	top	the	left	channel	in	order	to	create	a	stereo	effect	and	
a	reverb	has	been	added.

EXAMPLE	04G09_wgbow.csd

<CsoundSynthesizer>

PHYSICAL	MODELLING

393

<CsOptions>
-odac
</CsOptions>

<CsInstruments>

sr						=							44100
ksmps			=							32
nchnls		=							2
0dbfs			=							1
								seed				0

gisine		ftgen	 0,0,4096,10,1

gaSendL,gaSendR	init	0

	instr	1	;	wgbow	instrument
kamp					=								0.3
kfreq				=								p4
ipres1			=								p5
ipres2			=								p6
;	kpres	(bow	pressure)	defined	using	a	random	spline
kpres				rspline		p5,p6,0.5,2
krat					=								0.127236
kvibf				=								4.5
kvibamp		=								0
iminfreq	=								20
;	call	the	wgbow	opcode
aSigL	 	wgbow				kamp,kfreq,kpres,krat,kvibf,kvibamp,gisine,iminfreq
;	modulating	delay	time
kdel					rspline		0.01,0.1,0.1,0.5
;	bow	pressure	parameter	delayed	by	a	varying	time	in	the	right	channel
kpres				vdel_k			kpres,kdel,0.2,2
aSigR	 	wgbow	 		kamp,kfreq,kpres,krat,kvibf,kvibamp,gisine,iminfreq
									outs					aSigL,aSigR
;	send	some	audio	to	the	reverb
gaSendL		=								gaSendL	+	aSigL/3
gaSendR		=								gaSendR	+	aSigR/3
	endin

	instr	2	;	reverb
aRvbL,aRvbR	reverbsc	gaSendL,gaSendR,0.9,7000
												outs					aRvbL,aRvbR
												clear				gaSendL,gaSendR
	endin

</CsInstruments>

<CsScore>
;	instr.	1
;		p4	=	pitch	(hz.)
;		p5	=	minimum	bow	pressure
;		p6	=	maximum	bow	pressure
;	7	notes	played	by	the	wgbow	instrument
i	1		0	480		70	0.03	0.1
i	1		0	480		85	0.03	0.1
i	1		0	480	100	0.03	0.09
i	1		0	480	135	0.03	0.09
i	1		0	480	170	0.02	0.09
i	1		0	480	202	0.04	0.1
i	1		0	480	233	0.05	0.11
;	reverb	instrument
i	2	0	480
</CsScore>

</CsoundSynthesizer>

This	time	a	stack	of	eight	sustaining	notes,	each	separated	by	an	
octave,	vary	their	'bowing	position'	randomly	and	independently.	You	

PHYSICAL	MODELLING

394

will	hear	how	different	bowing	positions	accentuates	and	attenuates	
different	partials	of	the	bowing	tone.	To	enhance	the	sound	produced	
some	filtering	with	tone	and	pareq	is	employed	and	some	reverb	is	
added.

EXAMPLE	04G010_wgbow_enhanced.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>

sr						=							44100
ksmps			=							32
nchnls		=							2
0dbfs			=							1
								seed				0

gisine		ftgen	 0,0,4096,10,1

gaSend	init	0

	instr	1	;	wgbow	instrument
kamp					=								0.1
kfreq				=								p4
kpres				=								0.2
krat					rspline		0.006,0.988,0.1,0.4
kvibf				=								4.5
kvibamp		=								0
iminfreq	=								20
aSig	 	wgbow				kamp,kfreq,kpres,krat,kvibf,kvibamp,gisine,iminfreq
aSig					butlp					aSig,2000
aSig					pareq				aSig,80,6,0.707
									outs					aSig,aSig
gaSend			=								gaSend	+	aSig/3
	endin

	instr	2	;	reverb
aRvbL,aRvbR	reverbsc	gaSend,gaSend,0.9,7000
												outs					aRvbL,aRvbR
												clear				gaSend
	endin

</CsInstruments>

<CsScore>
;	instr.	1	(wgbow	instrument)
;		p4	=	pitch	(hertz)
;	wgbow	instrument
i	1		0	480		20
i	1		0	480		40
i	1		0	480		80
i	1		0	480		160
i	1		0	480		320
i	1		0	480		640
i	1		0	480		1280
i	1		0	480		2460
;	reverb	instrument
i	2	0	480
</CsScore>

</CsoundSynthesizer>	

PHYSICAL	MODELLING

395

All	of	the	wg-	family	of	opcodes	are	worth	exploring	and	often	the	
approach	taken	here	-	exploring	each	input	parameter	in	isolation	
whilst	the	others	retain	constant	values	-	sets	the	path	to	
understanding	the	model	better.	Tone	production	with	wgbrass	is	very	
much	dependent	upon	the	relationship	between	intended	pitch	and	lip	
tension,	random	experimentation	with	this	opcode	is	as	likely	to	
result	in	silence	as	it	is	in	sound	and	in	this	way	is	perhaps	a	
reflection	of	the	experience	of	learning	a	brass	instrument	when	the	
student	spends	most	time	push	air	silently	through	the	instrument.	
With	patience	it	is	capable	of	some	interesting	sounds	however.	In	its	
case,	I	would	recommend	building	a	realtime	GUI	and	exploring	the	
interaction	of	its	input	arguments	that	way.	wgbowedbar,	like	a	
number	of	physical	modelling	algorithms,	is	rather	unstable.	This	is	
not	necessary	a	design	flaw	in	the	algorithm	but	instead	perhaps	an	
indication	that	the	algorithm	has	been	left	quite	open	for	out	
experimentation	-	or	abuse.	In	these	situation	caution	is	advised	in	
order	to	protect	ears	and	loudspeakers.	Positive	feedback	within	the	
model	can	result	in	signals	of	enormous	amplitude	very	quickly.	
Employment	of	the	clip	opcode	as	a	means	of	some	protection	is	
recommended	when	experimenting	in	realtime.
		

BARMODEL	-	A	MODEL	OF	A	STRUCK
METAL	BAR	BY	STEFAN	BILBAO

barmodel	can	also	imitate	wooden	bars,	tubular	bells,	chimes	and	
other	resonant	inharmonic	objects.	barmodel	is	a	model	that	can	
easily	be	abused	to	produce	ear	shreddingly	loud	sounds	therefore	
precautions	are	advised	when	experimenting	with	it	in	realtime.	We	
are	presented	with	a	wealth	of	input	arguments	such	as	'stiffness',	
'strike	position'	and	'strike	velocity',	which	relate	in	an	easily	
understandable	way	to	the	physical	process	we	are	emulating.	Some	
parameters	will	evidently	have	more	of	a	dramatic	effect	on	the	
sound	produced	than	other	and	again	it	is	recommended	to	create	a	
realtime	GUI	for	exploration.	Nonetheless,	a	fixed	example	is	

PHYSICAL	MODELLING

396

provided	below	that	should	offer	some	insight	into	the	kinds	of	
sounds	possible.

Probably	the	most	important	parameter	for	us	is	the	stiffness	of	the	
bar.	This	actually	provides	us	with	our	pitch	control	and	is	not	in	
cycle-per-second	so	some	experimentation	will	be	required	to	find	a	
desired	pitch.	There	is	a	relationship	between	stiffness	and	the	
parameter	used	to	define	the	width	of	the	strike	-	when	the	stiffness	
coefficient	is	higher	a	wider	strike	may	be	required	in	order	for	the	
note	to	sound.	Strike	width	also	impacts	upon	the	tone	produced,	
narrower	strikes	generating	emphasis	upon	upper	partials	(provided	a	
tone	is	still	produced)	whilst	wider	strikes	tend	to	emphasize	the	
fundamental).
		

The	parameter	for	strike	position	also	has	some	impact	upon	the	
spectral	balance.	This	effect	may	be	more	subtle	and	may	be	
dependent	upon	some	other	parameter	settings,	for	example,	when	
strike	width	is	particularly	wide,	its	effect	may	be	imperceptible.	A	
general	rule	of	thumb	here	is	that	is	that	in	order	to	achieve	the	
greatest	effect	from	strike	position,	strike	width	should	be	as	low	as	
will	still	produce	a	tone.	This	kind	of	interdependency	between	input	
parameters	is	the	essence	of	working	with	a	physical	model	that	can	
be	both	intriguing	and	frustrating.

An	important	parameter	that	will	vary	the	impression	of	the	bar	from	
metal	to	wood	is
		

An	interesting	feature	incorporated	into	the	model	in	the	ability	to	
modulate	the	point	along	the	bar	at	which	vibrations	are	read.	This	
could	also	be	described	as	pick-up	position.	Moving	this	scanning	
location	results	in	tonal	and	amplitude	variations.	We	just	have	
control	over	the	frequency	at	which	the	scanning	location	is	
modulated.

PHYSICAL	MODELLING

397

EXAMPLE	04G011_barmodel.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr					=	44100
ksmps		=	32
nchnls	=	2
0dbfs		=	1

	instr			1
;	boundary	conditions	1=fixed	2=pivot	3=free
kbcL				=															1
kbcR				=															1
;	stiffness
iK						=															p4
;	high	freq.	loss	(damping)
ib						=															p5
;	scanning	frequency
kscan			rspline									p6,p7,0.2,0.8
;	time	to	reach	30db	decay
iT30				=															p3
;	strike	position
ipos				random										0,1
;	strike	velocity
ivel				=															1000
;	width	of	strike
iwid				=															0.1156
aSig				barmodel								kbcL,kbcR,iK,ib,kscan,iT30,ipos,ivel,iwid
kPan	 rspline									0.1,0.9,0.5,2
aL,aR			pan2												aSig,kPan
	 outs													aL,aR
	endin

</CsInstruments>

<CsScore>
;t	0	90	1	30	2	60	5	90	7	30
;	p4	=	stiffness	(pitch)

#define	gliss(dur'Kstrt'Kend'b'scan1'scan2)
#
i	1	0					20	$Kstrt	$b	$scan1	$scan2
i	1	^+0.05	$dur	>					$b	$scan1	$scan2
i	1	^+0.05	$dur	>					$b	$scan1	$scan2
i	1	^+0.05	$dur	>					$b	$scan1	$scan2
i	1	^+0.05	$dur	>					$b	$scan1	$scan2
i	1	^+0.05	$dur	>					$b	$scan1	$scan2
i	1	^+0.05	$dur	>					$b	$scan1	$scan2
i	1	^+0.05	$dur	>					$b	$scan1	$scan2
i	1	^+0.05	$dur	>					$b	$scan1	$scan2
i	1	^+0.05	$dur	>					$b	$scan1	$scan2
i	1	^+0.05	$dur	>					$b	$scan1	$scan2
i	1	^+0.05	$dur	>					$b	$scan1	$scan2
i	1	^+0.05	$dur	>					$b	$scan1	$scan2
i	1	^+0.05	$dur	>					$b	$scan1	$scan2
i	1	^+0.05	$dur	>					$b	$scan1	$scan2
i	1	^+0.05	$dur	>					$b	$scan1	$scan2
i	1	^+0.05	$dur	>					$b	$scan1	$scan2
i	1	^+0.05	$dur	$Kend	$b	$scan1	$scan2
#
$gliss(15'40'400'0.0755'0.1'2)
b	5
$gliss(2'80'800'0.755'0'0.1)
b	10
$gliss(3'10'100'0.1'0'0)
b	15
$gliss(40'40'433'0'0.2'5)
e
</CsScore>

PHYSICAL	MODELLING

398

</CsoundSynthesizer>
;	example	written	by	Iain	McCurdy

PHISEM	-	PHYSICALLY	INSPIRED
STOCHASTIC	EVENT	MODELING

The	PhiSEM	set	of	models	in	Csound,	again	based	on	the	work	of	
Perry	Cook,	imitate	instruments	that	rely	on	collisions	between	
smaller	sound	producing	object	to	produce	their	sounds.	These	
models	include	a	tambourine,	a	set	of	bamboo	windchimes	and	
sleighbells.	These	models	algorithmically	mimic	these	multiple	
collisions	internally	so	that	we	only	need	to	define	elements	such	as	
the	number	of	internal	elements	(timbrels,	beans,	bells	etc.)	internal	
damping	and	resonances.	Once	again	the	most	interesting	aspect	of	
working	with	a	model	is	to	stretch	the	physical	limits	so	that	we	can	
hear	the	results	from,	for	example,	a	maraca	with	an	impossible	
number	of	beans,	a	tambourine	with	so	little	internal	damping	that	it	
never	decays.	In	the	following	example	I	explore	tambourine,	
bamboo	and	sleighbells	each	in	turn,	first	in	a	state	that	mimics	the	
source	instrument	and	then	with	some	more	extreme	conditions.

EXAMPLE	04G12_PhiSEM.csd
		

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>

sr					=	44100
ksmps		=	32
nchnls	=	1
0dbfs		=	1

	instr	 1	;	tambourine
iAmp						=											p4
iDettack		=											0.01
iNum						=											p5
iDamp					=											p6
iMaxShake	=											0
iFreq					=											p7
iFreq1				=											p8
iFreq2				=											p9
aSig						tambourine		iAmp,iDettack,iNum,iDamp,iMaxShake,iFreq,iFreq1,iFreq2
										out									aSig
	endin

	instr	 2	;	bamboo

PHYSICAL	MODELLING

399

iAmp						=											p4
iDettack		=											0.01
iNum						=											p5
iDamp					=											p6
iMaxShake	=											0
iFreq					=											p7
iFreq1				=											p8
iFreq2				=											p9
aSig						bamboo						iAmp,iDettack,iNum,iDamp,iMaxShake,iFreq,iFreq1,iFreq2
										out									aSig
	endin

	instr	 3	;	sleighbells
iAmp						=											p4
iDettack		=											0.01
iNum						=											p5
iDamp					=											p6
iMaxShake	=											0
iFreq					=											p7
iFreq1				=											p8
iFreq2				=											p9
aSig						sleighbells	iAmp,iDettack,iNum,iDamp,iMaxShake,iFreq,iFreq1,iFreq2
										out									aSig
	endin

</CsInstruments>

<CsScore>
;	p4	=	amp.
;	p5	=	number	of	timbrels
;	p6	=	damping
;	p7	=	freq	(main)
;	p8	=	freq	1
;	p9	=	freq	2

;	tambourine
i	1	0	1	0.1		32	0.47	2300	5600	8100
i	1	+	1	0.1		32	0.47	2300	5600	8100
i	1	+	2	0.1		32	0.75	2300	5600	8100
i	1	+	2	0.05		2	0.75	2300	5600	8100
i	1	+	1	0.1		16	0.65	2000	4000	8000
i	1	+	1	0.1		16	0.65	1000	2000	3000
i	1	8	2	0.01		1	0.75	1257	2653	6245
i	1	8	2	0.01		1	0.75		673	3256	9102
i	1	8	2	0.01		1	0.75		314	1629	4756

b	10

;	bamboo
i	2	0	1	0.4	1.25	0.0		2800	2240	3360
i	2	+	1	0.4	1.25	0.0		2800	2240	3360
i	2	+	2	0.4	1.25	0.05	2800	2240	3360
i	2	+	2	0.2			10	0.05	2800	2240	3360
i	2	+	1	0.3			16	0.01	2000	4000	8000
i	2	+	1	0.3			16	0.01	1000	2000	3000
i	2	8	2	0.1				1	0.05	1257	2653	6245
i	2	8	2	0.1				1	0.05	1073	3256	8102
i	2	8	2	0.1				1	0.05		514	6629	9756

b	20

;	sleighbells
i	3	0	1	0.7	1.25	0.17	2500	5300	6500
i	3	+	1	0.7	1.25	0.17	2500	5300	6500
i	3	+	2	0.7	1.25	0.3		2500	5300	6500
i	3	+	2	0.4			10	0.3		2500	5300	6500
i	3	+	1	0.5			16	0.2		2000	4000	8000
i	3	+	1	0.5			16	0.2		1000	2000	3000
i	3	8	2	0.3				1	0.3		1257	2653	6245
i	3	8	2	0.3				1	0.3		1073	3256	8102
i	3	8	2	0.3				1	0.3			514	6629	9756
e
</CsScore>

PHYSICAL	MODELLING

400

</CsoundSynthesizer>
;	example	written	by	Iain	McCurdy

	Physical	modelling	can	produce	rich,	spectrally	dynamic	sounds	with	
user	manipulation	usually	abstracted	to	a	small	number	of	descriptive	
parameters.	Csound	offers	a	wealth	of	other	opcodes	for	physical	
modelling	which	cannot	all	be	introduced	here	so	the	user	is	
encouraged	to	explore	based	on	the	approaches	exemplified	here.	
You	can	find	lists	in	the	chapters	Models	and	Emulations,	Scanned	
Synthesis	and	Waveguide	Physical	Modeling	of	the	Csound	Manual.

1.	 The	explanation	here	follows	chapter	8.1.1	of	Martin	Neukom's	
Signale	Systeme	Klangsynthese	(Bern	2003)^

2.	 See	chapter	03A	INITIALIZATION	AND	PERFORMANCE	
PASS	for	more	information	about	Csound's	performance	
loops.^

3.	 If	defining	this	as	a	UDO,	a	local	ksmps=1	could	be	set	without	
affecting	the	general	ksmps.	See	chapter	03F	USER	DEFINED	
OPCODES	and	the	Csound	Manual	for	setksmps	for	more	
information.^

SCANNED	SYNTHESIS

401

SCANNED	SYNTHESIS

	Scanned	Synthesis	is	a	relatively	new	synthesis	technique	invented	
by	Max	Mathews,	Rob	Shaw	and	Bill	Verplank	at	Interval	Research	
in	2000.	This	algorithm	uses	a	combination	of	a	table-lookup	
oscillator	and	Sir	Issac	Newton's	mechanical	model	(equation)	of	a	
mass	and	spring	system	to	dynamically	change	the	values	stored	in	an	
f-table.	The	sonic	result	is	a	timbral	spectrum	that	changes	with	time.

	Csound	has	a	couple	opcodes	dedicated	to	scanned	synthesis,	and	
these	opcodes	can	be	used	not	only	to	make	sounds,	but	also	to	
generate	dynamic	f-tables	for	use	with	other	Csound	opcodes.

A	QUICK	SCANNED	SYNTH

	The	quickest	way	to	start	using	scanned	synthesis	is	Matt	Ingalls'	
opcode	scantable.

	a1	scantable	iamp,	kfrq,	ipos,	imass,	istiff,	idamp,	ivel	

The	arguments	iamp	and	kfrq	should	be	familiar,	amplitude	and	
frequency	respectively.	The	other	arguments	are	f-table	numbers	
containing	data	known	in	the	scanned	synthesis	world	as	profiles.

PROFILES

Profiles	refer	to	variables	in	the	mass	and	spring	equation.	Newton's	
model	describes	a	string	as	a	finite	series	of	marbles	connected	to	
each	other	with	springs.
		

In	this	example	we	will	use	128	marbles	in	our	system.	To	the	Csound
user,	profiles	are	a	series	of	f-tables	that	set	up	the	scantable	opcode.	
To	the	opcode,	these	f-tables	influence	the	dynamic	behavior	of	the	
table	read	by	a	table-lookup	oscillator.

SCANNED	SYNTHESIS

402

gipos					ftgen	1,	0,	128,	10,	1														;Initial	Shape			;Sine	wave	range	-1	to	
1
gimass				ftgen	2,	0,	128,	-7,	1,	1											;Masses										;Constant	value	1
gistiff			ftgen	3,	0,	128,	-7,	50,	64,	100,	64,	0	;Stiffness				;Unipolar	triangle	
range	to	100
gidamp				ftgen	4,	0,	128,	-7,	1,	128,	1						;Damping									;Constant	value	1
givel					ftgen	5,	0,	128,	-7,	0,	128,	0						;Initial	Velocity;Constant	value	0

	These	tables	need	to	be	the	same	size	as	each	other	or	Csound	will	
return	an	error.

Run	the	following	.csd.	Notice	that	the	sound	starts	off	sounding	like	
our	intial	shape	(a	sine	wave)	but	evolves	as	if	there	are	filters	or	
distortions	or	LFO's.

EXAMPLE	04H01_scantable.csd
		

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
nchnls	=	2
sr=44100
ksmps	=	32
0dbfs	=	1
gipos			ftgen	1,	0,	128,	10,	1																		;Initial	Shape,	sine	wave	range	-1	to	
1
gimass		ftgen	2,	0,	128,	-7,	1,	128,	1										;Masses(adj.),	constant	value	1
gistiff	ftgen	3,	0,	128,	-7,	50,	64,	100,	64,	0	;Stiffness;	unipolar	triangle	range	0	
to	100
gidamp		ftgen	4,	0,	128,	-7,	1,	128,	1										;Damping;	constant	value	1
givel			ftgen	5,	0,	128,	-7,	0,	128,	0										;Initial	Velocity;	constant	value	0
instr	1
iamp	=	.7
kfrq	=	440
a1	scantable	iamp,	kfrq,	gipos,	gimass,	gistiff,	gidamp,	givel
a1	dcblock2	a1
outs	a1,	a1
endin
</CsInstruments>
<CsScore>
i	1	0	10
e
</CsScore>
</CsoundSynthesizer>
;Example	by	Christopher	Saunders

	But	as	you	see	no	effects	or	controls	signals	in	the	.csd,	just	a	synth!

This	is	the	power	of	scanned	synthesis.	It	produces	a	dynamic	

SCANNED	SYNTHESIS

403

spectrum	with	"just"	an	oscillator.	Imagine	now	applying	a	scanned	
synthesis	oscillator	to	all	your	favorite	synth	techniques	-	Subtractive,	
Waveshaping,	FM,	Granular	and	more.

Recall	from	the	subtractive	synthesis	technique,	that	the	"shape"	of	
the	waveform	of	your	oscillator	has	a	huge	effect	on	the	way	the	
oscillator	sounds.	In	scanned	synthesis,	the	shape	is	in	motion	and	
these	f-tables	control	how	the	shape	moves.

DYNAMIC	TABLES

The	scantable	opcode	makes	it	easy	to	use	dynamic	f-tables	in	other	
csound	opcodes.	The	example	below	sounds	exactly	like	the	above	
.csd,	but	it	demonstrates	how	the	f-table	set	into	motion	by	scantable	
can	be	used	by	other	csound	opcodes.

EXAMPLE	04H02_Dynamic_tables.csd
		

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
nchnls	=	2
sr=44100
ksmps	=	32
0dbfs	=	1

gipos						ftgen						1,	0,	128,	10,	1	;Initial	Shape,	sine	wave	range	-1	to	1;
gimass					ftgen						2,	0,	128,	-7,	1,	128,	1	;Masses(adj.),	constant	value	1
gistiff				ftgen						3,	0,	128,	-7,	50,	64,	100,	64,	0	;Stiffness;	unipolar	triangle	
range	0	to	100
gidamp					ftgen						4,	0,	128,	-7,	1,	128,	1	;Damping;	constant	value	1
givel						ftgen						5,	0,	128,	-7,	0,	128,	0	;Initial	Velocity;	constant	value	0
instr	1
iamp							=										.7
kfrq							=										440
a0									scantable		iamp,	kfrq,	gipos,	gimass,	gistiff,	gidamp,	givel	;
a1									oscil3					iamp,	kfrq,	gipos
a1									dcblock2			a1
											outs							a1,	a1
endin
</CsInstruments>
<CsScore>
i	1	0	10
e
</CsScore>
</CsoundSynthesizer>

SCANNED	SYNTHESIS

404

;Example	by	Christopher	Saunders

	Above	we	use	a	table-lookup	oscillator	to	periodically	read	a	
dynamic	table.

	Below	is	an	example	of	using	the	values	of	an	f-table	generated	by	
scantable,	to	modify	the	amplitudes	of	an	fsig,	a	signal	type	in	csound	
which	represents	a	spectral	signal.

EXAMPLE	04H03_Scantable_pvsmaska.csd
		

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
nchnls	=	2
sr=44100
ksmps	=	32
0dbfs	=	1

gipos						ftgen						1,	0,	128,	10,	1																		;Initial	Shape,	sine	wave	
range	-1	to	1;
gimass					ftgen						2,	0,	128,	-7,	1,	128,	1										;Masses(adj.),	constant	value	
1
gistiff				ftgen						3,	0,	128,	-7,	50,	64,	100,	64,	0	;Stiffness;	unipolar	triangle	
range	0	to	100
gidamp					ftgen						4,	0,	128,	-7,	1,	128,	1										;Damping;	constant	value	1
givel						ftgen						5,	0,	128,	-7,	0,	128,	0										;Initial	Velocity;	constant	
value	0
gisin						ftgen						6,	0,8192,	10,	1																		;Sine	wave	for	buzz	opcode

instr	1
iamp							=										.7
kfrq							=										110
a1									buzz							iamp,	kfrq,	32,	gisin
											outs							a1,	a1
endin
instr	2
iamp							=										.7
kfrq							=										110
a0									scantable		1,	10,	gipos,	gimass,	gistiff,	gidamp,	givel	;
ifftsize			=										128
ioverlap			=										ifftsize	/	4
iwinsize			=										ifftsize
iwinshape		=										1;	von-Hann	window
a1									buzz							iamp,	kfrq,	32,	gisin
fftin						pvsanal				a1,	ifftsize,	ioverlap,	iwinsize,	iwinshape;	fft-analysis	of	
file
fmask						pvsmaska			fftin,	1,	1
a2									pvsynth				fmask;	resynthesize
											outs							a2,	a2
endin
</CsInstruments>
<CsScore>

SCANNED	SYNTHESIS

405

i	1	0	3
i	2	5	10
e
</CsScore>
</CsoundSynthesizer>
;Example	by	Christopher	Saunders

	In	this	.csd,	the	score	plays	instrument	1,	a	normal	buzz	sound,	and	
then	the	score	plays	instrument	2	--	the	same	buzz	sound	re-
synthesized	with	amplitudes	of	each	of	the	128	frequency	bands,	
controlled	by	a	dynamic	f-table.	

A	MORE	FLEXIBLE	SCANNED	SYNTH

	Scantable	can	do	a	lot	for	us,	it	can	synthesize	an	interesting,	time-
varying	timbre	using	a	table	lookup	oscillator,	or	animate	an	f-table	
for	use	in	other	Csound	opcodes.	However,	there	are	other	scanned	
synthesis	opcodes	that	can	take	our	expressive	use	of	the	algorithm	
even	further.

	The	opcodes	scans	and	scanu	by	Paris	Smaragdis	give	the	Csound	
user	one	of	the	most	robust	and	flexible	scanned	synthesis	
environments.	These	opcodes	work	in	tandem	to	first	set	up	the	
dynamic	wavetable,	and	then	to	"scan"	the	dynamic	table	in	ways	a	
table-lookup	oscillator	cannot.

	The	opcode	scanu	takes	18	arguments	and	sets	a	table	into	motion.

		scanu	ipos,	irate,	ifnvel,	ifnmass,	ifnstif,	ifncentr,	ifndamp,	kmass,	kstif,	
kcentr,	kdamp,	ileft,	iright,	kpos,	kstrngth,	ain,	idisp,	id	

	For	a	detailed	description	of	what	each	argument	does,	see	the	
Csound	Reference	Manual	(link);	I	will	discuss	the	various	types	of	
arguments	in	the	opcode.

	The	first	set	of	arguments	-	ipos,	irate,	ifnvel,	ifnmass,	ifnstiff,	
ifncenter,	and	ifndamp,	are	f-tables	describing	the	profiles,	similar	to	
the	profile	arguments	for	scantable.	Scanu	takes	6	f-tables	instead	of	
scantable's	5.	Like	scantable,	these	need	to	be	f-tables	of	the	same	
size	or	Csound	will	return	an	error.

SCANNED	SYNTHESIS

406

	An	exception	to	this	size	requirement	is	the	ifnstiff	table.	This	
table	is	the	size	of	the	other	profiles	squared.	If	the	other	f-tables	are	
size	128,	then	ifnstiff	should	be	of	size16384	(or	128	x	128).	To	
discuss	what	this	table	does,	I	must	first	introduce	the	concept	of	a	
scanned	matrix.	

THE	SCANNED	MATRIX

	The	scanned	matrix	is	a	convention	designed	to	describe	the	shape	of	
the	connections	of	masses(n.)	in	the	mass(n.)	and	spring	model.

	Going	back	to	our	discussion	on	Newton's	mechanical	model,	the	
mass(n.)	and	spring	model	describes	the	behavior	of	a	string	as	a	
finite	number	of	masses	connected	by	springs.	As	you	can	imagine,	
the	masses	are	connected	sequentially,	one	to	another,	like	beads	on	a	
string.	Mass(n.)	#1	is	connected	to	#2,	#2	connected	to	#3	and	so	on.	
However,	the	pioneers	of	scanned	synthesis	had	the	idea	to	connect	
the	masses	in	a	non-linear	way.	It's	hard	to	imagine,	because	as	
musicians,	we	have	experience	with	piano	or	violin	strings	(one	
dimensional	strings),	but	not	with	multi-dimensional	strings.	
Fortunately,	the	computer	has	no	problem	working	with	this	this	idea,	
and	the	flexibility	of	Newton's	equation	allows	us	to	use	the	CPU	to	
model	mass(n.)	#1	being	connected	with	springs	not	only	to	#2	but	
also	to	#3	and	any	other	mass(n.)	in	the	model.

	The	most	direct	and	useful	implementation	of	this	concept	is	to	
connect	mass	#1	to	mass	#2	and	mass	#128	--	forming	a	string	
without	endpoints,	a	circular	string.	Like	tying	our	string	with	beads	
to	make	a	necklace.	The	pioneers	of	scanned	synthesis	discovered	
that	this	circular	string	model	is	more	useful	than	a	conventional	one-
dimensionalstring	model	with	endpoints.	In	fact,	scantable	uses	a	
circular	string.

	The	matrix	is	described	in	a	simple	ASCII	file,	imported	into	Csound	
via	a	GEN23	generated	f-table.

		f3	0	16384	-23	"string-128"	

SCANNED	SYNTHESIS

407

	This	text	file	must	be	located	in	the	same	directory	as	your	.csd	or	
csound	will	give	you	this	error

ftable	3:	error	opening	ASCII	file	

	f	3	0.00	16384.00	-23.00	"circularstring-128"

You	can	construct	your	own	matrix	using	Stephen	Yi's	Scanned	
Matrix	editor	included	in	the	Blue	frontend	for	Csound,	and	as	a	
standalone	Java	application	Scanned	Synthesis	Matrix	Editor.

	To	swap	out	matrices,	simply	type	the	name	of	a	different	matrix	file	
into	the	double	quotes.

f3	0	16384	-23	"circularstring-128";	

	Different	matrices	have	unique	effects	on	the	behavior	of	the	system.	
Some	matrices	can	make	the	synth	extremely	loud,	others	extremely	
quiet.	Experiment	with	using	different	matrices.

	Now	would	be	a	good	time	to	point	out	that	Csound	has	other	
scanned	synthesis	opcodes	preceded	with	an	"x",	xscans,	xscanu,	that	
use	a	different	matrix	format	than	the	one	used	by	scans,	scanu,	and	
Stephen	Yi's	Scanned	Matrix	Editor.	The	Csound	Reference	Manual	
has	more	information	on	this.

THE	HAMMER

	If	the	initial	shape,	an	f-table	specified	by	the	ipos	argument	
determines	the	shape	of	the	initial	contents	in	our	dynamic	table.	If	
you	use	autocomplete	in	CsoundQT,	the	scanu	opcode	line	highlights	
the	first	p-field	of	scanu	as	the	"init"	opcode.	In	my	examples	I	use	
"ipos"	to	avoid	p1	of	scanu	being	syntax-highlighted.	But	what	if	we	
want	to	"reset"	or	"pluck"	the	table,	perhaps	with	a	shape	of	a	square	
wave	instead	of	a	sine	wave,	while	the	instrument	is	playing?

	With	scantable,	there	is	an	easy	way	to	to	this,	send	a	score	event	

SCANNED	SYNTHESIS

408

changing	the	contents	of	the	dynamic	f-table.	You	can	do	this	with	
the	Csound	score	by	adjusting	the	start	time	of	the	f-events	in	the	
score.

EXAMPLE	04H04_Hammer.csd	
		

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
sr=44100
kr=4410
ksmps=10
nchnls=2
0dbfs=1

instr	1
ipos							ftgen						1,	0,	128,	10,	1	;	Initial	Shape,	sine	wave	range	-1	to	1;
imass						ftgen						2,	0,	128,	-7,	1,	128,	1	;Masses(adj.),	constant	value	1
istiff					ftgen						3,	0,	128,	-7,	50,	64,	100,	64,	0	;Stiffness;	unipolar	triangle	
range	0	to	100
idamp						ftgen						4,	0,	128,	-7,	1,	128,	1;	;Damping;	constant	value	1
ivel							ftgen						5,	0,	128,	-7,	0,	128,	0	;Initial	Velocity;	constant	value	0
iamp							=										0.5
a1									scantable		iamp,	60,	ipos,	imass,	istiff,	idamp,	ivel
											outs							a1,	a1
endin
</CsInstruments>
<CsScore>
i	1	0	14
f	1	1	128	10	1	1	1	1	1	1	1	1	1	1	1
f	1	2	128	10	1	1	0	0	0	0	0	0	0	1	1
f	1	3	128	10	1	1	1	1	1
f	1	4	128	10	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
f	1	5	128	10	1	1
f	1	6	128	13	1	1	0	0	0	-.1	0	.3	0	-.5	0	.7	0	-.9	0	1	0	-1	0
f	1	7	128	21	6	5.745
</CsScore>
</CsoundSynthesizer>
;Example	by	Christopher	Saunders

	You'll	get	the	warning

WARNING:	replacing	previous	ftable	1	

	This	is	not	a	bad	thing,	it	means	this	method	of	hammering	the	string	
is	working.	In	fact	you	could	use	this	method	to	explore	and	hammer	
every	possible	GEN	routine	in	Csound.	GEN10	(sines),	GEN	21	
(noise)	and	GEN	27	(breakpoint	functions)	could	keep	you	occupied	
for	a	while.

SCANNED	SYNTHESIS

409

	Unipolar	waves	have	a	different	sound	but	a	loss	in	volume	can	
occur.

	There	is	a	way	to	do	this	with	scanu.	But	I	do	not	use	this	feature	and	
just	use	these	values	instead.

ileft	=	0.
iright	=	1.
kpos	=	0.
kstrngth	=	0.

MORE	ON	PROFILES

	One	of	the	biggest	challenges	in	understanding	scanned	synthesis	is	
the	concept	of	profiles.

	Setting	up	the	opcode	scanu	requires	3	profiles	-	Centering,	Mass,	
Damping.	The	pioneers	of	scanned	synthesis	discovered	early	on	that	
the	resultant	timbre	is	far	more	interesting	if	marble	#1	had	a	
different	centering	force	than	mass	#64.

	The	farther	our	model	gets	away	from	a	physical	real-world	string	
that	we	know	and	pluck	on	our	guitars	and	pianos,	the	more	
interesting	the	sounds	for	synthesis.	Therefore,	instead	of	one	mass,	
and	damping,	and	centering	value	for	all	128	of	the	marbles	each	
marble	should	have	its	own	conditions.	How	the	centering,	mass,	and	
damping	profiles	make	the	system	behave	is	up	to	the	user	to	discover	
through	experimentation.	(More	on	how	to	experiment	safely	later	in	
this	chapter.)

CONTROL	RATE	PROFILE	SCALARS

	Profiles	are	a	detailed	way	to	control	the	behavior	of	the	string,	but	
what	if	we	want	to	influence	the	mass	or	centering	or	damping	of	
every	marble	after	a	note	has	been	activated	and	while	its	playing?

Scanu	gives	us	4	k-rate	arguments	kmass,	kstif,	kcentr,	kdamp,	to	
scale	these	forces.	One	could	scale	mass	to	volume,	or	have	an	

SCANNED	SYNTHESIS

410

envelope	controlling	centering.

Caution!	These	parameters	can	make	the	scanned	system	unstable	in	
ways	that	could	make	extremely	loud	sounds	come	out	of	your	
computer.	It	is	best	to	experiment	with	small	changes	in	range	and	
keep	your	headphones	off.	A	good	place	to	start	experimenting	is	
with	different	values	for	kcentr	while	keeping	kmass,	kstiff,	and	
kdamp	constant.

	You	could	also	scale	mass	and	stiffness	to	MIDI	velocity.

AUDIO	INJECTION

	Instead	of	using	the	hammer	method	to	move	the	marbles	around,	we	
could	use	audio	to	add	motion	to	the	mass	and	spring	model.	Scanu	
lets	us	do	this	with	a	simple	audio	rate	argument.	When	the	Reference
manual	says	"amplitude	should	not	be	too	great"	it	means	it.

	A	good	place	to	start	is	by	scaling	down	the	audio	in	the	opcode	line.

ain/2000

	It	is	always	a	good	idea	to	take	into	account	the	0dbfs	statement	in	
the	header.	Simply	put	if	0dbfs	=1	and	you	send	scans	an	audio	signal	
with	a	value	of	1,	you	and	your	immediate	neighbors	are	in	for	a	very	
loud	ugly	sound.	"amplitude	should	not	be	too	great"

	to	bypass	audio	injection	all	together,	simply	assign	0	to	an	a-rate	
variable.

ain	=	0

	and	use	this	variable	as	the	argument.

CONNECTING	TO	SCANS

	The	p-field	id,	is	an	arbitrary	integer	label	that	tells	the	scans	opcode	

SCANNED	SYNTHESIS

411

which	scanu	to	read.	By	making	the	value	of	id	negative,	the	arbitrary	
numerical	label	becomes	the	number	of	an	f-table	that	can	be	used	by	
any	other	opcode	in	Csound,	like	we	did	with	scantable	earlier	in	this	
chapter.

	We	could	then	use	oscil	to	perform	a	table	lookup	algorithm	to	make	
sound	out	of	scanu	(as	long	as	id	is	negative),	but	scanu	has	a	
companion	opcode,	scans	which	has	1	more	argument	than	oscil.	This	
argument	is	the	number	of	an	f-table	containing	the	scan	trajectory.

SCAN	TRAJECTORIES

	One	thing	we	have	take	for	granted	so	far	with	oscil	is	that	the	wave	
table	is	read	front	to	back	If	you	regard	oscil	as	a	phasor	and	table	
pair,	the	first	index	of	the	table	is	always	read	first	and	the	last	index	
is	always	read	last	as	in	the	example	below

EXAMPLE	04H05_Scan_trajectories.csd

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>

sr=44100
kr=4410
ksmps=10
nchnls=2
0dbfs=1

instr	1
andx	phasor	440
a1	table	andx*8192,	1
outs	a1*.2,	a1*.2
endin
</CsInstruments>
<CsScore>

f1	0	8192	10	1
i	1	0	4
</CsScore>
</CsoundSynthesizer>
;Example	by	Christopher	Saunders

	But	what	if	we	wanted	to	read	the	table	indices	back	to	front,	or	even	
"out	of	order"?	Well	we	could	do	something	like	this-

EXAMPLE	04H06_Scan_trajectories2.csd

SCANNED	SYNTHESIS

412

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
sr=44100
kr=4410
ksmps=10
nchnls=2	;	STEREO
0dbfs=1
instr	1
andx	phasor	440
andx	table	andx*8192,	1		;	read	the	table	out	of	order!
a1			table	andx*8192,	1
outs	a1*.2,	a1*.2
endin
</CsInstruments>
<CsScore>

f1	0	8192	10	1
f2	0	8192	-5	.001	8192	1;
i	1	0	4
</CsScore>
</CsoundSynthesizer>
;Example	by	Christopher	Saunders

	We	are	still	dealing	with	2	dimensional	arrays,	or	f-tables	as	we	
know	them.	But	if	we	remember	back	to	the	our	conversation	about	
the	scanned	matrix,	matrices	are	multi-dimensional,	it	would	be	a	
shame	to	only	read	them	in	"2D".

	The	opcode	scans	gives	us	the	flexibility	of	specifying	a	scan	
trajectory,	analogous	to	the	telling	the	phasor/table	combination	to	
read	values	non-consecutively.	We	could	read	these	values,	not	left	to	
right,	but	in	a	spiral	order,	by	specifying	a	table	to	be	the	ifntraj	
argument	of	scans.

a3	scans	iamp,	kpch,	ifntraj	,id	,	interp	

	An	f-table	for	the	spiral	method	can	generated	by	reading	the	ASCII	
file	"spiral-8,16,128,2,1over2"	by	GEN23

f2	0	128	-23	"spiral-8,16,128,2,1over2"

	The	following	.csd	requires	that	the	files	"circularstring-128"	and	
"spiral-8,16,	128,2,1over2"	be	located	in	the	same	directory	as	the	
.csd.

SCANNED	SYNTHESIS

413

EXAMPLE	04H07_Scan_matrices.csd

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
nchnls	=	2
sr	=	44100
ksmps	=	10
0dbfs	=	1
instr	1
ipos	ftgen	1,	0,	128,	10,	1
irate	=	.005
ifnvel	ftgen	6,	0,	128,	-7,	0,	128,	0
ifnmass	ftgen	2,	0,	128,	-7,	1,	128,	1
ifnstif	ftgen	3,	0,	16384,-23,"circularstring-128"
ifncentr	ftgen	4,	0,	128,	-7,	0,	128,	2
ifndamp	ftgen	5,	0,	128,	-7,	1,	128,	1
imass	=	2
istif	=	1.1
icentr	=	.1
idamp	=	-0.01
ileft	=	0.
iright	=	.5
ipos	=	0.
istrngth	=	0.
ain	=	0
idisp	=	0
id	=	8
scanu	1,	irate,	ifnvel,	ifnmass,	ifnstif,	ifncentr,	ifndamp,	imass,	istif,	icentr,	
idamp,	ileft,	iright,	ipos,	istrngth,	ain,	idisp,	id
scanu	1,.007,6,2,3,4,5,	2,	1.10	,.10	,0	,.1	,.5,	0,	0,ain,1,2;
iamp	=	.2
ifreq	=	200
a1	scans	iamp,	ifreq,	7,	id
a1	dcblock	a1
outs	a1,	a1
endin
</CsInstruments>
<CsScore>
f7	0	128	-7	0	128	128
i	1	0	5
f7	5	128	-23	"spiral-8,16,128,2,1over2"
i	1	5	5
f7	10	128	-7	127	64	1	63	127
i	1	10	5
</CsScore>
</CsoundSynthesizer>
;Example	by	Christopher	Saunders

Notice	that	the	scan	trajectory	has	an	FM-like	effect	on	the	sound.

TABLE	SIZE	AND	INTERPOLATION

	Tables	used	for	scan	trajectory	must	be	the	same	size	(have	the	same	
number	of	indices)	as	the	mass,	centering,	damping	tables.	and	must	
also	have	the	same	range	as	the	size	of	these	tables.	For	example,	in	
our	.csd's	we've	been	using	128	point	tables	for	initial	position,	mass	
centering,	damping;(our	stiffness	tables	have	been	128	squared).	So	
our	trajectory	tables	must	be	of	size	128,	and	contain	values	from	0	to	

SCANNED	SYNTHESIS

414

127.

	One	can	use	larger	or	smaller	tables,	but	their	sizes	must	agree	in	this	
way	or	Csound	will	give	you	an	error.	Larger	tables,	of	course	
significantly	increase	CPU	usage	and	slow	down	real-time	
performance.

	If	all	the	sizes	are	multiples	of	a	number	(128),	we	can	use	Csound's	
Macro	language	extension	to	define	the	table	size	as	a	macro,	and	
then	change	the	definition	twice	(once	for	the	orc	and	once	for	the	
score)	instead	of	10	times.

EXAMPLE	04H08_Scan_tablesize.csd

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
nchnls	=	2
sr	=	44100
ksmps	=	10
0dbfs	=	1
#define	SIZE	#128#
instr	1
ipos	ftgen	1,	0,	$SIZE.,	10,	1
irate	=	.005
ifnvel	ftgen	6,	0,	$SIZE.,	-7,	0,	$SIZE.,	0
ifnmass	ftgen	2,	0,	$SIZE.,	-7,	1,	$SIZE.,	1
ifnstif	ftgen	3,	0,	$SIZE.*$SIZE.,-23,	"circularstring-$SIZE."
ifncentr	ftgen	4,	0,	$SIZE.,	-7,	0,	$SIZE.,	2
ifndamp	ftgen	5,	0,	$SIZE.,	-7,	1,	$SIZE.,	1
imass	=	2
istif	=	1.1
icentr	=	.1
idamp	=	-0.01
ileft	=	0.
iright	=	.5
ipos	=	0.
istrngth	=	0.
ain	=	0
idisp	=	0
id	=	8
	
scanu	1,	irate,	ifnvel,	ifnmass,	ifnstif,	ifncentr,	ifndamp,	imass,	istif,	icentr,	
idamp,	ileft,	iright,	ipos,	istrngth,	ain,	idisp,	id
scanu	1,.007,6,2,3,4,5,	2,	1.10	,.10	,0	,.1	,.5,	0,	0,ain,1,2;
iamp	=	.2
ifreq	=	200
a1	scans	iamp,	ifreq,	7,	id,	4
a1	dcblock	a1
outs	a1,	a1
endin
</CsInstruments>
<CsScore>
#define	SIZE	#128#
f7	0	$SIZE.	-7	0	$SIZE.	$SIZE.
i	1	0	5
f7	5	$SIZE.	-7	0	63	[$SIZE.-1]	63	0
i	1	5	5

SCANNED	SYNTHESIS

415

f7	10	$SIZE.	-7	[$SIZE.-1]	64	1	63	[$SIZE.-1]
i	1	10	5
</CsScore>
</CsoundSynthesizer>
;Example	by	Christopher	Saunders

	Macros	even	work	in	our	string	literal	in	our	GEN	23	f-table!	But	if	
you	define	size	as	64	and	there	isn't	a	file	in	your	directory	named	
"circularstring-64"	Csound	will	not	run	your	score	and	give	you	an	
error.	Here	is	a	link	to	download	power-of-two	size	ASCII	files	that	
create	circular	matrices	for	use	in	this	way,	and	of	course,	you	can	
design	your	own	stiffness	matrix	files	with	Steven	Yi's	scanned	
matrix	editor.

	When	using	smaller	size	tables	it	may	be	necessary	to	use	
interpolation	to	avoid	the	artifacts	of	a	small	table.	scans	gives	us	this	
option	as	a	fifth	optional	argument,	iorder,	detailed	in	the	reference	
manual	and	worth	experimenting	with.

	Using	the	opcodes	scanu	and	scans	require	that	we	fill	in	22	
arguments	and	create	at	least	7	f-tables,	including	at	least	one	
external	ASCII	file	(because	no	one	wants	to	fill	in	16,384	arguments	
to	an	f-statement).	This	a	very	challenging	pair	of	opcodes.	The	
beauty	of	scanned	synthesis	is	that	there	is	no	one	scanned	synthesis	
"sound".

USING	BALANCE	TO	TAME	AMPLITUDES

	However,	like	this	frontier	can	be	a	lawless,	dangerous	place.	When	
experimenting	with	scanned	synthesis	parameters,	one	can	illicit	
extraordinarily	loud	sounds	out	of	Csound,	often	by	something	as	
simple	as	a	misplaced	decimal	point.

	Warning	the	following	.csd	is	hot,	it	produces	massively	loud	
amplitude	values.	Be	very	cautious	about	rendering	this	.csd,	I	
highly	recommend	rendering	to	a	file	instead	of	real-time,	if	you	
must	run	it.

EXAMPLE	04H09_Scan_extreme_amplitude.csd

SCANNED	SYNTHESIS

416

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>

nchnls	=	2
sr	=	44100
ksmps	=	256
0dbfs	=	1
;NOTE	THIS	CSD	WILL	NOT	RUN	UNLESS
;IT	IS	IN	THE	SAME	FOLDER	AS	THE	FILE	"STRING-128"
instr	1
ipos	ftgen	1,	0,	128	,	10,	1
irate	=	.007
ifnvel	ftgen	6,	0,	128	,	-7,	0,	128,	0.1
ifnmass	ftgen	2,	0,	128	,	-7,	1,	128,	1
ifnstif	ftgen	3,	0,	16384,	-23,	"string-128"
ifncentr	ftgen	4,	0,	128	,	-7,	1,	128,	2
ifndamp	ftgen	5,	0,	128	,	-7,	1,	128,	1
kmass	=	1
kstif	=	0.1
kcentr	=	.01
kdamp	=	1
ileft	=	0
iright	=	1
kpos	=	0
kstrngth	=	0.
ain	=	0
idisp	=	1
id	=	22
scanu	ipos,	irate,	ifnvel,	ifnmass,	\
ifnstif,	ifncentr,	ifndamp,	kmass,	\
kstif,	kcentr,	kdamp,	ileft,	iright,\
kpos,	kstrngth,	ain,	idisp,	id
kamp	=	0dbfs*.2
kfreq	=	200
ifn	ftgen	7,	0,	128,	-5,	.001,	128,	128.
a1	scans	kamp,	kfreq,	ifn,	id
a1	dcblock2	a1
iatt	=	.005
idec	=	1
islev	=	1
irel	=	2
aenv	adsr	iatt,	idec,	islev,	irel
;outs	a1*aenv,a1*aenv;	Uncomment	for	speaker	destruction;
endin
</CsInstruments>
<CsScore>
f8	0	8192	10	1;
i	1	0	5
</CsScore>
</CsoundSynthesizer>
;Example	by	Christopher	Saunders

	The	extreme	volume	of	this	.csd	comes	from	from	a	value	given	to	
scanu

kdamp	=	.1	

	.1	is	not	exactly	a	safe	value	for	this	argument,	in	fact,	any	value	
above	0	for	this	argument	can	cause	chaos.

	It	would	take	a	skilled	mathematician	to	map	out	safe	possible	

SCANNED	SYNTHESIS

417

ranges	for	all	the	arguments	of	scanu.	I	figured	out	these	values	
through	a	mix	of	trial	and	error	and	studying	other	.csd's.

	We	can	use	the	opcode	balance	to	listen	to	sine	wave	(a	signal	with	
consistent,	safe	amplitude)	and	squash	down	our	extremely	loud	
scanned	synth	output	(which	is	loud	only	because	of	our	intentional	
carelessness.)

EXAMPLE	04H10_Scan_balanced_amplitudes.csd

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>

nchnls	=	2
sr	=	44100
ksmps	=	256
0dbfs	=	1
;NOTE	THIS	CSD	WILL	NOT	RUN	UNLESS
;IT	IS	IN	THE	SAME	FOLDER	AS	THE	FILE	"STRING-128"

instr	1
ipos	ftgen	1,	0,	128	,	10,	1
irate	=	.007
ifnvel			ftgen	6,	0,	128	,	-7,	0,	128,	0.1
ifnmass		ftgen	2,	0,	128	,	-7,	1,	128,	1
ifnstif		ftgen	3,	0,	16384,	-23,	"string-128"
ifncentr	ftgen	4,	0,	128	,	-7,	1,	128,	2
ifndamp		ftgen	5,	0,	128	,	-7,	1,	128,	1
kmass	=	1
kstif	=	0.1
kcentr	=	.01
kdamp	=	-0.01
ileft	=	0
iright	=	1
kpos	=	0
kstrngth	=	0.
ain	=	0
idisp	=	1
id	=	22
scanu	ipos,	irate,	ifnvel,	ifnmass,	\
ifnstif,	ifncentr,	ifndamp,	kmass,	\
kstif,	kcentr,	kdamp,	ileft,	iright,\
kpos,	kstrngth,	ain,	idisp,	id
kamp	=	0dbfs*.2
kfreq	=	200
ifn	ftgen	7,	0,	128,	-5,	.001,	128,	128.
a1	scans	kamp,	kfreq,	ifn,	id
a1	dcblock2	a1
ifnsine	ftgen	8,	0,	8192,	10,	1
a2	oscil	kamp,	kfreq,	ifnsine
a1	balance	a1,	a2
iatt	=	.005
idec	=	1
islev	=	1
irel	=	2
aenv	adsr	iatt,	idec,	islev,	irel
outs	a1*aenv,a1*aenv
endin
</CsInstruments>
<CsScore>
f8	0	8192	10	1;

SCANNED	SYNTHESIS

418

i	1	0	5
</CsScore>
</CsoundSynthesizer>
;Example	by	Christopher	Saunders

	It	must	be	emphasized	that	this	is	merely	a	safeguard.	We	still	get	
samples	out	of	range	when	we	run	this	.csd,	but	many	less	than	if	we	
had	not	used	balance.	It	is	recommended	to	use	balance	if	you	are	
doing	real-time	mapping	of	k-rate	profile	scalar	arguments	for	scans;	
mass	stiffness,	damping,	and	centering.

REFERENCES	AND	FURTHER	READING

Max	Matthews,	Bill	Verplank,	Rob	Shaw,	Paris	Smaragdis,	Richard	
Boulanger,	John	ffitch,	Matthew	Gilliard,	Matt	Ingalls,	and	Steven	Yi	
all	worked	to	make	scanned	synthesis	usable,	stable	and	openly	
available	to	the	open-source	Csound	community.	Their	contributions	
are	in	the	reference	manual,	several	academic	papers	on	scanned	
synthesis	and	journal	articles,	and	the	software	that	supports	the	
Csound	community.

Csounds.com	page	on	Scanned	Synthesis

http://www.csounds.com/scanned/

Dr.	Richard	Boulanger's	tutorial	on	Scanned	Synthesis

http://www.csounds.com/scanned/toot/index.html	

Steven	Yi's	Page	on	experimenting	with	Scanned	Synthesis

http://www.csounds.com/stevenyi/scanned/yi_scannedSynthesis.html	

ENVELOPES

419

ENVELOPES

Envelopes	are	used	to	define	how	a	value	evolves	over	time.	In	early	
synthesisers,	envelopes	were	used	to	define	the	changes	in	amplitude	
in	a	sound	across	its	duration	thereby	imbuing	sounds	characteristics	
such	as	'percussive',	or	'sustaining'.	Envelopes	are	also	commonly	
used	to	modulate	filter	cutoff	frequencies	and	the	frequencies	of	
oscillators	but	in	reality	we	are	only	limited	by	our	imaginations	in	
regard	to	what	they	can	be	used	for.

Csound	offers	a	wide	array	of	opcodes	for	generating	envelopes	
including	ones	which	emulate	the	classic	ADSR	(attack-decay-
sustain-release)	envelopes	found	on	hardware	and	commercial	
software	synthesizers.	A	selection	of	these	opcodes	types	shall	be	
introduced	here.

The	simplest	opcode	for	defining	an	envelope	is	line.	line	describes	a	
single	envelope	segment	as	a	straight	line	between	a	start	value	and	
an	end	value	which	has	a	given	duration.

ares	line	ia,	idur,	ib
kres	line	ia,	idur,	ib

In	the	following	example	line	is	used	to	create	a	simple	envelope	
which	is	then	used	as	the	amplitude	control	of	a	poscil	oscillator.	This	
envelope	starts	with	a	value	of	0.5	then	over	the	course	of	2	seconds	
descends	in	linear	fashion	to	zero.

			EXAMPLE	05A01_line.csd
		

<CsoundSynthesizer>

<CsOptions>
-odac	;	activates	real	time	sound	output
</CsOptions>

<CsInstruments>
sr	=	44100
ksmps	=	32

ENVELOPES

420

nchnls	=	1
0dbfs	=	1

giSine			ftgen				0,	0,	2^12,	10,	1	;	a	sine	wave

		instr	1
aEnv					line					0.5,	2,	0									;	amplitude	envelope
aSig					poscil			aEnv,	500,	giSine	;	audio	oscillator
									out						aSig														;	audio	sent	to	output
		endin

</CsInstruments>
<CsScore>
i	1	0	2	;	instrument	1	plays	a	note	for	2	seconds
e
</CsScore>
</CsoundSynthesizer>

The	envelope	in	the	above	example	assumes	that	all	notes	played	by	
this	instrument	will	be	2	seconds	long.	In	practice	it	is	often	
beneficial	to	relate	the	duration	of	the	envelope	to	the	duration	of	the	
note	(p3)	in	some	way.	In	the	next	example	the	duration	of	the	
envelope	is	replaced	with	the	value	of	p3	retrieved	from	the	score,	
whatever	that	may	be.	The	envelope	will	be	stretched	or	contracted	
accordingly.

			EXAMPLE	05A02_line_p3.csd
		

<CsoundSynthesizer>

<CsOptions>
-odac	;activates	real	time	sound	output
</CsOptions>

<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

giSine			ftgen				0,	0,	2^12,	10,	1	;	a	sine	wave

		instr	1
;	A	single	segment	envelope.	Time	value	defined	by	note	duration.
aEnv					line					0.5,	p3,	0
aSig					poscil			aEnv,	500,	giSine	;	an	audio	oscillator
									out						aSig														;	audio	sent	to	output
		endin

</CsInstruments>
<CsScore>
;	p1	p2		p3
i	1		0				1
i	1		2		0.2
i	1		3				4
e
</CsScore>

ENVELOPES

421

</CsoundSynthesizer>

It	may	not	be	disastrous	if	a	envelope's	duration	does	not	match	p3	
and	indeed	there	are	many	occasions	when	we	want	an	envelope	
duration	to	be	independent	of	p3	but	we	need	to	remain	aware	that	if	
p3	is	shorter	than	an	envelope's	duration	then	that	envelope	will	be	
truncated	before	it	is	allowed	to	complete	and	if	p3	is	longer	than	an	
envelope's	duration	then	the	envelope	will	complete	before	the	note	
ends	(the	consequences	of	this	latter	situation	will	be	looked	at	in	
more	detail	later	on	in	this	section).

line	(and	most	of	Csound's	envelope	generators)	can	output	either	k	or	
a-rate	variables.	k-rate	envelopes	are	computationally	cheaper	than	a-
rate	envelopes	but	in	envelopes	with	fast	moving	segments	
quantisation	can	occur	if	they	output	a	k-rate	variable,	particularly	
when	the	control	rate	is	low,	which	in	the	case	of	amplitude	
envelopes	can	lead	to	clicking	artefacts	or	distortion.

linseg	is	an	elaboration	of	line	and	allows	us	to	add	an	arbitrary	
number	of	segments	by	adding	further	pairs	of	time	durations	
followed	envelope	values.	Provided	we	always	end	with	a	value	and	
not	a	duration	we	can	make	this	envelope	as	long	as	we	like.

In	the	next	example	a	more	complex	amplitude	envelope	is	employed	
by	using	the	linseg	opcode.	This	envelope	is	also	note	duration	(p3)	
dependent	but	in	a	more	elaborate	way.	An	attack-decay	stage	is	
defined	using	explicitly	declared	time	durations.	A	release	stage	is	
also	defined	with	an	explicitly	declared	duration.	The	sustain	stage	is	
the	p3	dependent	stage	but	to	ensure	that	the	duration	of	the	entire	
envelope	still	adds	up	to	p3,	the	explicitly	defined	durations	of	the	
attack,	decay	and	release	stages	are	subtracted	from	the	p3	dependent	
sustain	stage	duration.	For	this	envelope	to	function	correctly	it	is	
important	that	p3	is	not	less	than	the	sum	of	all	explicitly	defined	
envelope	segment	durations.	If	necessary,	additional	code	could	be	
employed	to	circumvent	this	from	happening.

			EXAMPLE	05A03_linseg.csd

ENVELOPES

422

		

<CsoundSynthesizer>

<CsOptions>
-odac	;	activates	real	time	sound	output
</CsOptions>

<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

giSine			ftgen				0,	0,	2^12,	10,	1	;	a	sine	wave

		instr	1
;	a	more	complex	amplitude	envelope:
;																	|-attack-|-decay--|---sustain---|-release-|
aEnv					linseg			0,	0.01,	1,	0.1,	0.1,	p3-0.21,	0.1,	0.1,	0
aSig					poscil			aEnv,	500,	giSine
									out						aSig
		endin

</CsInstruments>

<CsScore>
i	1	0	1
i	1	2	5
e
</CsScore>

</CsoundSynthesizer>

The	next	example	illustrates	an	approach	that	can	be	taken	whenever	
it	is	required	that	more	than	one	envelope	segment	duration	be	p3	
dependent.	This	time	each	segment	is	a	fraction	of	p3.	The	sum	of	all	
segments	still	adds	up	to	p3	so	the	envelope	will	complete	across	the	
duration	of	each	each	note	regardless	of	duration.

			EXAMPLE	05A04_linseg_p3_fractions.csd		

<CsoundSynthesizer>

<CsOptions>
-odac	;activates	real	time	sound	output
</CsOptions>

<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

giSine			ftgen				0,	0,	2^12,	10,	1	;	a	sine	wave

		instr	1
aEnv					linseg			0,	p3*0.5,	1,	p3*0.5,	0	;	rising	then	falling	envelope
aSig					poscil			aEnv,	500,	giSine
									out						aSig

ENVELOPES

423

		endin

</CsInstruments>

<CsScore>
;	3	notes	of	different	durations	are	played
i	1	0			1
i	1	2	0.1
i	1	3			5
e
</CsScore>

</CsoundSynthesizer>

The	next	example	highlights	an	important	difference	in	the	
behaviours	of	line	and	linseg	when	p3	exceeds	the	duration	of	an	
envelope.

When	a	note	continues	beyond	the	end	of	the	final	value	of	a	linseg	
defined	envelope	the	final	value	of	that	envelope	is	held.	A	line	
defined	envelope	behaves	differently	in	that	instead	of	holding	its	
final	value	it	continues	in	the	trajectory	defined	by	its	one	and	only	
segment.

This	difference	is	illustrated	in	the	following	example.	The	linseg	and	
line	envelopes	of	instruments	1	and	2	appear	to	be	the	same	but	the	
difference	in	their	behaviour	as	described	above	when	they	continue	
beyond	the	end	of	their	final	segment	is	clear	when	listening	to	the	
example.

			EXAMPLE	05A05_line_vs_linseg.csd

<CsoundSynthesizer>

<CsOptions>
-odac	;	activates	real	time	sound	output
</CsOptions>

<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

giSine			ftgen				0,	0,	2^12,	10,	1	;	a	sine	wave

		instr	1	;	linseg	envelope
aCps					linseg			300,	1,	600							;	linseg	holds	its	last	value

ENVELOPES

424

aSig					poscil			0.2,	aCps,	giSine
									out						aSig
		endin

		instr	2	;	line	envelope
aCps					line					300,	1,	600							;	line	continues	its	trajectory
aSig					poscil			0.2,	aCps,	giSine
									out						aSig
		endin

</CsInstruments>

<CsScore>
i	1	0	5	;	linseg	envelope
i	2	6	5	;	line	envelope
e
</CsScore>

</CsoundSynthesizer>	

expon	and	expseg	are	versions	of	line	and	linseg	that	instead	produce	
envelope	segments	with	concave	exponential	shapes	rather	than	
linear	shapes.	expon	and	expseg	can	often	be	more	musically	useful	
for	envelopes	that	define	amplitude	or	frequency	as	they	will	reflect	
the	logarithmic	nature	of	how	these	parameters	are	perceived.	On	
account	of	the	mathematics	that	are	used	to	define	these	curves,	we	
cannot	define	a	value	of	zero	at	any	node	in	the	envelope	and	an	
envelope	cannot	cross	the	zero	axis.	If	we	require	a	value	of	zero	we	
can	instead	provide	a	value	very	close	to	zero.	If	we	still	really	need	
zero	we	can	always	subtract	the	offset	value	from	the	entire	envelope	
in	a	subsequent	line	of	code.

The	following	example	illustrates	the	difference	between	line	and	
expon	when	applied	as	amplitude	envelopes.

			EXAMPLE	05A06_line_vs_expon.csd		

<CsoundSynthesizer>

<CsOptions>
-odac	;	activates	real	time	sound	output
</CsOptions>

<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

giSine			ftgen				0,	0,	2^12,	10,	1	;	a	sine	wave

		instr	1	;	line	envelope
aEnv					line					1,	p3,	0
aSig					poscil			aEnv,	500,	giSine
									out						aSig
		endin

ENVELOPES

425

		instr	2	;	expon	envelope
aEnv					expon				1,	p3,	0.0001
aSig					poscil			aEnv,	500,	giSine
									out						aSig
		endin

</CsInstruments>

<CsScore>
i	1	0	2	;	line	envelope
i	2	2	1	;	expon	envelope
e
</CsScore>

</CsoundSynthesizer>	

The	nearer	our	'near-zero'	values	are	to	zero	the	quicker	the	curve	will
appear	to	reach	'zero'.	In	the	next	example	smaller	and	smaller	
envelope	end	values	are	passed	to	the	expon	opcode	using	p4	values	
in	the	score.	The	percussive	'ping'	sounds	are	perceived	to	be	
increasingly	short.

			EXAMPLE	05A07_expon_pings.csd

<CsoundSynthesizer>

<CsOptions>
-odac	;	activates	real	time	sound	output
</CsOptions>

<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

giSine			ftgen				0,	0,	2^12,	10,	1	;	a	sine	wave

		instr	1;	expon	envelope
iEndVal		=								p4	;	variable	'iEndVal'	retrieved	from	score
aEnv					expon				1,	p3,	iEndVal
aSig					poscil			aEnv,	500,	giSine
									out						aSig
		endin

</CsInstruments>

<CsScore>
;p1		p2	p3	p4
i	1		0		1		0.001
i	1		1		1		0.000001
i	1		2		1		0.000000000000001
e
</CsScore>

</CsoundSynthesizer>

ENVELOPES

426

Note	that	expseg	does	not	behave	like	linseg	in	that	it	will	not	hold	its	
last	final	value	if	p3	exceeds	its	entire	duration,	instead	it	continues	
its	curving	trajectory	in	a	manner	similar	to	line	(and	expon).	This	
could	have	dangerous	results	if	used	as	an	amplitude	envelope.

When	dealing	with	notes	with	an	indefinite	duration	at	the	time	of	
initiation	(such	as	midi	activated	notes	or	score	activated	notes	with	a	
negative	p3	value),	we	do	not	have	the	option	of	using	p3	in	a	
meaningful	way.	Instead	we	can	use	one	of	Csound's	envelopes	that	
sense	the	ending	of	a	note	when	it	arrives	and	adjust	their	behaviour	
according	to	this.	The	opcodes	in	question	are	linenr,	linsegr,	
expsegr,	madsr,	mxadsr	and	envlpxr.	These	opcodes	wait	until	a	held	
note	is	turned	off	before	executing	their	final	envelope	segment.	To	
facilitate	this	mechanism	they	extend	the	duration	of	the	note	so	that	
this	final	envelope	segment	can	complete.

The	following	example	uses	midi	input	(either	hardware	or	virtual)	to	
activate	notes.	The	use	of	the	linsegr	envelope	means	that	after	the	
short	attack	stage	lasting	0.1	seconds,	the	penultimate	value	of	1	will	
be	held	as	long	as	the	note	is	sustained	but	as	soon	as	the	note	is	
released	the	note	will	be	extended	by	0.5	seconds	in	order	to	allow	
the	final	envelope	segment	to	decay	to	zero.

			EXAMPLE	05A08_linsegr.csd

<CsoundSynthesizer>

<CsOptions>
-odac	-+rtmidi=virtual	-M0
;	activate	real	time	audio	and	MIDI	(virtual	midi	device)
</CsOptions>

<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

giSine			ftgen				0,	0,	2^12,	10,	1								;	a	sine	wave

		instr	1
icps					cpsmidi
;																	attack-|sustain-|-release
aEnv					linsegr		0,	0.01,		0.1,					0.5,0	;	envelope	that	senses	note	releases
aSig					poscil			aEnv,	icps,	giSine							;	audio	oscillator

ENVELOPES

427

									out						aSig																					;	audio	sent	to	output
		endin

</CsInstruments>

<CsScore>
f	0	240	;	csound	performance	for	4	minutes
e
</CsScore>

</CsoundSynthesizer>

Sometimes	designing	our	envelope	shape	in	a	function	table	can	
provide	us	with	shapes	that	are	not	possible	using	Csound's	envelope	
generating	opcodes.	In	this	case	the	envelope	can	be	read	from	the	
function	table	using	an	oscillator.	If	the	oscillator	is	given	a	
frequency	of	1/p3	then	it	will	read	though	the	envelope	just	once	
across	the	duration	of	the	note.

The	following	example	generates	an	amplitude	envelope	which	uses	
the	shape	of	the	first	half	of	a	sine	wave.

			EXAMPLE	05A09_sine_env.csd

<CsoundSynthesizer>

<CsOptions>
-odac	;	activate	real	time	sound	output
</CsOptions>

<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

giSine			ftgen				0,	0,	2^12,	10,	1								;	a	sine	wave
giEnv				ftgen				0,	0,	2^12,	9,	0.5,	1,	0	;	envelope	shape:	a	half	sine

		instr	1
;	read	the	envelope	once	during	the	note's	duration:
aEnv					poscil			1,	1/p3,	giEnv
aSig					poscil			aEnv,	500,	giSine								;	audio	oscillator
									out						aSig																					;	audio	sent	to	output
		endin

</CsInstruments>

<CsScore>
;	7	notes,	increasingly	short
i	1	0	2
i	1	2	1
i	1	3	0.5
i	1	4	0.25

ENVELOPES

428

i	1	5	0.125
i	1	6	0.0625
i	1	7	0.03125
f	0	7.1
e
</CsScore>

</CsoundSynthesizer>

COMPARISON	OF	THE	STANDARD
ENVELOPE	OPCODES

The	precise	shape	of	the	envelope	of	a	sound,	whether	that	envelope	
refers	to	its	amplitude,	its	pitch	or	any	other	parameter,	can	be	
incredibly	subtle	and	our	ears,	in	identifying	and	characterising	
sounds,	are	fantastically	adept	at	sensing	those	subtleties.	Csound's	
original	envelope	generating	opcode	linseg,	whilst	capable	of	
emulating	the	envelope	generators	of	vintage	electronic	synthesisers,	
may	not	produce	convincing	results	in	the	emulation	of	acoustic	
instruments	and	natural	sound.	linseg	has,	since	Csound's	creation,	
been	augmented	with	a	number	of	other	envelope	generators	whose	
usage	is	similar	to	that	of	linseg	but	whose	output	function	is	subtly	
different	in	shape.

If	we	consider	a	basic	envelope	that	ramps	up	across	¼	of	the	
duration	of	a	note,	then	sustains	for	½	the	durations	of	the	and	finally	
ramps	down	across	the	remaining	¼	duration	of	the	note,	we	can	
implement	this	envelope	using	linseg	thus:
kEnv		linseg		 0,	p3/4,	0.9,	p3/2,	0.9,	p3/4,	0

The	resulting	envelope	will	look	like	this:

	

ENVELOPES

429

When	employed	as	an	amplitude	control,	the	resulting	sound	may	
seem	to	build	rather	too	quickly,	then	crescendo	in	a	slightly	
mechanical	fashion	and	finally	arrive	at	its	sustain	portion	with	
abrupt	stop	in	the	crescendo.	Similar	critcism	could	be	levelled	at	the	
latter	part	of	the	envelope	going	from	sustain	to	ramping	down.

The	expseg	opcode,	introduced	sometime	after	linseg,	attempted	to	
address	the	issue	of	dynamic	response	when	mapping	an	envelope	to	
amplitude.	Two	caveats	exist	in	regard	to	the	use	of	expseg:	firstly	a	
single	expseg	definition	cannot	cross	from	the	positive	domain	to	the	
negative	domain	(and	vice	versa),	and	secondly	it	cannot	pass	through
zero.	This	second	caveat	means	that	an	amplitude	envelope	created	
using	expseg	cannot	express	'silence'	unless	we	remove	the	offset	
away	form	zero	that	the	envelope	employs.	An	envelope	with	similar	
input	values	to	the	linseg	envelope	above	but	created	with	expseg	
could	use	the	following	code:

kEnv	 expseg		0.001,	p3/4,	0.901,	p3/2,	0.901,	p3/4,	0.001
kEnv				=							kEnv	–	0.001

and	would	look	like	this:

	

In	this	example	the	offset	above	zero	has	been	removed.	This	time	we	
can	see	that	the	sound	will	build	in	a	rather	more	natural	and	
expressive	way,	however	the	change	from	crescendo	to	sustain	is	
even	more	abrupt	this	time.	Adding	some	lowpass	filtering	to	the	
envelope	signal	can	smooth	these	abrupt	changes	in	direction.	This	
could	be	done	with,	for	example,	the	port	opcode	given	a	half-point	
value	of	0.05.

ENVELOPES

430

kEnv		port		kEnv,	0.05

The	resulting	envelope	looking	like	this:

	

	

The	changes	to	and	from	the	sustain	portion	have	clearly	been	
improved	but	close	examination	of	the	end	of	the	envelope	reveals	
that	the	use	of	port	has	prevented	the	envelope	from	reaching	zero.	
Extending	the	duration	of	the	note	or	overlaying	a	second	'anti-click'	
envelope	should	obviate	this	issue.
xtratim		0.1

will	extend	the	note	by	1/10	of	a	second.
aRamp		linseg		1,	p3-0.1,	1,	0.1,	0

will	provide	a	quick	ramp	down	at	the	note	conclusion	if	multiplied	
to	the	previously	created	envelope.

A	more	recently	introduced	alternative	is	the	cosseg	opcode	which	
applies	a	cosine	transfer	function	to	each	segment	of	the	envelope.	
Using	the	following	code:
kEnv		cosseg		0,	p3/4,	0.9,	p3/2,	0.9,	p3/4,	0

the	resulting	envelope	will	look	like	this:

ENVELOPES

431

	

t	can	be	observed	that	this	envelope	provides	a	smooth	gradual	
building	up	from	silence	and	and	a	gradual	arrival	at	the	sustain	level.	
This	opcodes	has	no	restrictions	relating	to	changing	polarity	or	
passing	through	zero.

Another	alternative	that	offers	enhanced	user	control	and	that	might	
in	many	situations	provide	more	natural	results	is	the	transeg	opcode.	
transeg	allows	us	to	specify	the	curvature	of	each	segment	but	it	
should	be	noted	that	the	curvature	is	dependent	upon	whether	the	
segment	is	rising	or	falling.	For	example	a	positive	curvature	will	
result	in	a	concave	segment	in	a	rising	segment	but	a	convex	segment	
in	a	falling	segment.	The	following	code:
kEnv	transeg	0,	p3/4,	-4,	0.9,	p3/2,	0,	0.9,	p3/4,	-4,	0

will	produce	the	following	envelope:

	

	This	looks	perhaps	rather	lopsided	but	in	emulating	acoustic	
instruments	can	actually	produce	more	natural	results.	Considering	an	
instrument	such	as	a	clarinet,	it	is	in	reality	very	difficult	to	fade	a	
note	in	smoothly	from	silence.	It	is	more	likely	that	a	note	will	'start'	
slightly	abruptly	in	spite	of	the	player's	efforts.	This	aspect	is	well	
represented	by	the	attack	portion	of	the	envelope	above.	When	the	

ENVELOPES

432

note	is	stopped,	its	amplitude	will	decay	quickly	and	exponentially	as	
reflected	in	the	envelope	also.	Similar	attack	and	release	
characteristics	can	be	observed	in	the	slight	pitch	envelopes	
expressed	by	wind	instruments.

LPSHOLD,	LOOPSEG	AND	LOOPTSEG	-	A
CSOUND	TB303	

The	next	example	introduces	three	of	Csound's	looping	opcodes,	
lpshold,	loopseg	and	looptseg.

These	opcodes	generate	envelopes	which	are	looped	at	a	rate	
corresponding	to	a	defined	frequency.	What	they	each	do	could	also	
be	accomplished	using	the	'envelope	from	table'	technique	outlined	in	
an	earlier	example	but	these	opcodes	provide	the	added	convenience	
of	encapsulating	all	the	required	code	in	one	line	without	the	need	for	
phasors,	tables	and	ftgens.	Furthermore	all	of	the	input	arguments	for	
these	opcodes	can	be	modulated	at	k-rate.

lpshold	generates	an	envelope	with	in	which	each	break	point	is	held	
constant	until	a	new	break	point	is	encountered.	The	resulting	
envelope	will	contain	horizontal	line	segments.	In	our	example	this	
opcode	will	be	used	to	generate	the	notes	(as	MIDI	note	numbers)	for	
a	looping	bassline	in	the	fashion	of	a	Roland	TB303.	Because	the	
duration	of	the	entire	envelope	is	wholly	dependent	upon	the	
frequency	with	which	the	envelope	repeats	-	in	fact	it	is	the	reciprocal	
of	the	frequency	–	values	for	the	durations	of	individual	envelope	
segments	are	not	defining	times	in	seconds	but	instead	represent	
proportions	of	the	entire	envelope	duration.	The	values	given	for	all	
these	segments	do	not	need	to	add	up	to	any	specific	value	as	Csound	
rescales	the	proportionality	according	to	the	sum	of	all	segment	
durations.	You	might	find	it	convenient	to	contrive	to	have	them	all	
add	up	to	1,	or	to	100	–	either	is	equally	valid.	The	other	looping	
envelope	opcodes	discussed	here	use	the	same	method	for	defining	

ENVELOPES

433

segment	durations.

loopseg	allows	us	to	define	a	looping	envelope	with	linear	segments.	
In	this	example	it	is	used	to	define	the	amplitude	envelope	for	each	
individual	note.	Take	note	that	whereas	the	lpshold	envelope	used	to	
define	the	pitches	of	the	melody	repeats	once	per	phrase,	the	
amplitude	envelope	repeats	once	for	each	note	of	the	melody	
therefore	its	frequency	is	16	times	that	of	the	melody	envelope	(there	
are	16	notes	in	our	melodic	phrase).

looptseg	is	an	elaboration	of	loopseg	in	that	is	allows	us	to	define	the	
shape	of	each	segment	individually,	whether	that	be	convex,	linear	or	
concave.	This	aspect	is	defined	using	the	'type'	parameters.	A	'type'	
value	of	0	denotes	a	linear	segement,	a	positive	value	denotes	a	
convex	segment	with	higher	positive	values	resulting	in	increasingly	
convex	curves.	Negative	values	denote	concave	segments	with	
increasing	negative	values	resulting	in	increasingly	concave	curves.	
In	this	example	looptseg	is	used	to	define	a	filter	envelope	which,	like
the	amplitude	envelope,	repeats	for	every	note.	The	addition	of	the	
'type'	parameter	allows	us	to	modulate	the	sharpness	of	the	decay	of	
the	filter	envelope.	This	is	a	crucial	element	of	the	TB303	design.

Other	crucial	features	of	this	instrument	such	as	'note	on/off'	and	
'hold'	for	each	step	are	also	implemented	using	lpshold.

A	number	of	the	input	parameters	of	this	example	are	modulated	
automatically	using	the	randomi	opcodes	in	order	to	keep	it	
interesting.	It	is	suggested	that	these	modulations	could	be	replaced	
by	linkages	to	other	controls	such	as	CsoundQt	widgets,	FLTK	
widgets	or	MIDI	controllers.	Suggested	ranges	for	each	of	these	
values	are	given	in	the	.csd.

EXAMPLE	05A10_lpshold_loopseg.csd

<CsoundSynthesizer>
<CsOptions>

ENVELOPES

434

-odac	;activates	real	time	sound	output
</CsOptions>
<CsInstruments>
;	Example	by	Iain	McCurdy

sr	=	44100
ksmps	=	4
nchnls	=	1
0dbfs	=	1

seed	0;	seed	random	number	generators	from	system	clock

		instr	1;	Bassline	instrument
kTempo				=												90										;	tempo	in	beats	per	minute
kCfBase			randomi						1,4,	0.2				;	base	filter	frequency	(oct	format)
kCfEnv				randomi						0,4,0.2					;	filter	envelope	depth
kRes						randomi						0.5,0.9,0.2	;	filter	resonance
kVol						=												0.5									;	volume	control
kDecay				randomi						-10,10,0.2		;	decay	shape	of	the	filter.
kWaveform	=												0											;	oscillator	waveform.	0=sawtooth	2=square
kDist					randomi						0,1,0.1					;	amount	of	distortion
kPhFreq			=												kTempo/240		;	freq.	to	repeat	the	entire	phrase
kBtFreq			=												(kTempo)/15	;	frequency	of	each	1/16th	note
;	--	Envelopes	with	held	segments		--
;	The	first	value	of	each	pair	defines	the	relative	duration	of	that	segment,
;	the	second,	the	value	itself.
;	Note	numbers	(kNum)	are	defined	as	MIDI	note	numbers.
;	Note	On/Off	(kOn)	and	hold	(kHold)	are	defined	as	on/off	switches,	1	or	zero
;																				note:1						2					3					4					5					6					7					8
;																									9					10				11				12				13				14				15				16				0
kNum		lpshold	kPhFreq,	0,	0,40,		1,42,	1,50,	1,49,	1,60,	1,54,	1,39,	1,40,	\
																							1,46,	1,36,	1,40,	1,46,	1,50,	1,56,	1,44,	1,47,1
kOn			lpshold	kPhFreq,	0,	0,1,			1,1,		1,1,		1,1,		1,1,		1,1,		1,0,		1,1,		\
																							1,1,		1,1,		1,1,		1,1,		1,1,		1,1,		1,0,		1,1,		1
kHold	lpshold	kPhFreq,	0,	0,0,			1,1,		1,1,		1,0,		1,0,		1,0,		1,0,		1,1,		\
																							1,0,		1,0,		1,1,		1,1,		1,1,		1,1,		1,0,		1,0,		1
kHold					vdel_k							kHold,	1/kBtFreq,	1	;	offset	hold	by	1/2	note	duration
kNum						portk								kNum,	(0.01*kHold)		;	apply	portamento	to	pitch	changes
																																											;	if	note	is	not	held:	no	portamento
kCps						=												cpsmidinn(kNum)					;	convert	note	number	to	cps
kOct						=												octcps(kCps)								;	convert	cps	to	oct	format
;	amplitude	envelope																		attack				sustain							decay		gap
kAmpEnv			loopseg						kBtFreq,	0,	0,	0,0.1,	1,	55/kTempo,	1,	0.1,0,	5/kTempo,0,0
kAmpEnv			=												(kHold=0?kAmpEnv:1)		;	if	a	held	note,	ignore	envelope
kAmpEnv			port									kAmpEnv,0.001

;	filter	envelope
kCfOct				looptseg						kBtFreq,0,0,kCfBase+kCfEnv+kOct,kDecay,1,kCfBase+kOct
;	if	hold	is	off,	use	filter	envelope,	otherwise	use	steady	state	value:
kCfOct				=													(kHold=0?kCfOct:kCfBase+kOct)
kCfOct				limit								kCfOct,	4,	14	;	limit	the	cutoff	frequency	(oct	format)
aSig						vco2									0.4,	kCps,	i(kWaveform)*2,	0.5	;	VCO-style	oscillator
aFilt						lpf18								aSig,	cpsoct(kCfOct),	kRes,	(kDist^2)*10	;	filter	audio
aSig						balance							aFilt,aSig													;	balance	levels
kOn							port									kOn,	0.006														;	smooth	on/off	switching
;	audio	sent	to	output,	apply	amp.	envelope,
;	volume	control	and	note	On/Off	status
aAmpEnv			interp							kAmpEnv*kOn*kVol
										out										aSig	*	aAmpEnv
		endin

</CsInstruments>
<CsScore>
i	1	0	3600	;	instr	1	plays	for	1	hour
e
</CsScore>
</CsoundSynthesizer>

Hopefully	this	final	example	has	provided	some	idea	as	to	the	extend	
of	parameters	that	can	be	controlled	using	envelopes	and	also	an	

ENVELOPES

435

allusion	to	their	importance	in	the	generation	of	musical	'gesture'.
		

ENVELOPES

436

PANNING	AND	SPATIALIZATION

437

PANNING	AND	SPATIALIZATION

SIMPLE	STEREO	PANNING	

Csound	provides	a	large	number	of	opcodes	designed	to	assist	in	the	
distribution	of	sound	amongst	two	or	more	speakers.	These	range	
from	opcodes	that	merely	balance	a	sound	between	two	channel	to	
ones	that	include	algorithms	to	simulate	the	doppler	shift	that	occurs	
when	sound	moves,	algorithms	that	simulate	the	filtering	and	inter-
aural	delay	that	occurs	as	sound	reaches	both	our	ears	and	algorithms	
that	simulate	distance	in	an	acoustic	space.

First	we	will	look	at	some	methods	of	panning	a	sound	between	two	
speakers	based	on	first	principles.

The	simplest	method	that	is	typically	encountered	is	to	multiply	one	
channel	of	audio	(aSig)	by	a	panning	variable	(kPan)	and	to	multiply	
the	other	side	by	1	minus	the	same	variable	like	this:

aSigL		=		aSig	*	kPan
aSigR		=		aSig	*	(1	–	kPan)
										outs	aSigL,	aSigR

kPan	should	be	a	value	within	the	range	zero	and	1.	If	kPan	is	1	all	of	
the	signal	will	be	in	the	left	channel,	if	it	is	zero,	all	of	the	signal	will	
be	in	the	right	channel	and	if	it	is	0.5	there	will	be	signal	of	equal	
amplitude	in	both	the	left	and	the	right	channels.	This	way	the	signal	
can	be	continuously	panned	between	the	left	and	right	channels.

The	problem	with	this	method	is	that	the	overall	power	drops	as	the	
sound	is	panned	to	the	middle.

One	possible	solution	to	this	problem	is	to	take	the	square	root	of	the	
panning	variable	for	each	channel	before	multiplying	it	to	the	audio	
signal	like	this:

aSigL		=					aSig	*	sqrt(kPan)
aSigR		=					aSig	*	sqrt((1	–	kPan))
							outs		aSigL,	aSigR

PANNING	AND	SPATIALIZATION

438

By	doing	this,	the	straight	line	function	of	the	input	panning	variable	
becomes	a	convex	curve	so	that	less	power	is	lost	as	the	sound	is	
panned	centrally.

Using	90º	sections	of	a	sine	wave	for	the	mapping	produces	a	more	
convex	curve	and	a	less	immediate	drop	in	power	as	the	sound	is	
panned	away	from	the	extremities.	This	can	be	implemented	using	
the	code	shown	below.

aSigL		=					aSig	*	sin(kPan*$M_PI_2)
aSigR		=					aSig	*	cos(kPan*$M_PI_2)
							outs		aSigL,	aSigR

(Note	that	'$M_PI_2'	is	one	of	Csound's	built	in	macros	and	is	
equivalent	to	pi/2.)

A	fourth	method,	devised	by	Michael	Gogins,	places	the	point	of	
maximum	power	for	each	channel	slightly	before	the	panning	
variable	reaches	its	extremity.	The	result	of	this	is	that	when	the	
sound	is	panned	dynamically	it	appears	to	move	beyond	the	point	of	
the	speaker	it	is	addressing.	This	method	is	an	elaboration	of	the	
previous	one	and	makes	use	of	a	different	90	degree	section	of	a	sine	
wave.	It	is	implemented	using	the	following	code:

aSigL		=					aSig	*	sin((kPan	+	0.5)	*	$M_PI_2)
aSigR		=					aSig	*	cos((kPan	+	0.5)	*	$M_PI_2)
							outs		aSigL,	aSigR

The	following	example	demonstrates	all	three	methods	one	after	the	
other	for	comparison.	Panning	movement	is	controlled	by	a	slow	
moving	LFO.	The	input	sound	is	filtered	pink	noise.

			EXAMPLE	05B01_Pan_stereo.csd

<CsoundSynthesizer>

<CsOptions>
-odac	;	activates	real	time	sound	output
</CsOptions>

PANNING	AND	SPATIALIZATION

439

<CsInstruments>
sr	=	44100
ksmps	=	10
nchnls	=	2
0dbfs	=	1

		instr	1
imethod		=									p4	;	read	panning	method	variable	from	score	(p4)

;----------------	generate	a	source	sound	-------------------
a1							pinkish			0.3												;	pink	noise
a1							reson					a1,	500,	30,	1	;	bandpass	filtered
aPan					lfo							0.5,	1,	1						;	panning	controlled	by	an	lfo
aPan					=									aPan	+	0.5					;	offset	shifted	+0.5
;--

	if	imethod=1	then
;------------------------	method	1	--------------------------
aPanL				=									aPan
aPanR				=									1	-	aPan
;--
	endif

	if	imethod=2	then
;------------------------	method	2	--------------------------
aPanL				=							sqrt(aPan)
aPanR				=							sqrt(1	-	aPan)
;--
	endif

	if	imethod=3	then
;------------------------	method	3	--------------------------
aPanL				=							sin(aPan*$M_PI_2)
aPanR				=							cos(aPan*$M_PI_2)
;--
	endif

	if	imethod=4	then
;------------------------	method	4	--------------------------
aPanL			=		sin((aPan	+	0.5)	*	$M_PI_2)
aPanR			=		cos((aPan	+	0.5)	*	$M_PI_2)
;--
	endif

									outs				a1*aPanL,	a1*aPanR	;	audio	sent	to	outputs
		endin

</CsInstruments>

<CsScore>
;	4	notes	one	after	the	other	to	demonstrate	4	different	methods	of	panning
;	p1	p2		p3			p4(method)
i	1		0			4.5		1
i	1		5			4.5		2
i	1		10		4.5		3
i	1		15		4.5		4
e
</CsScore>

</CsoundSynthesizer>

An	opcode	called	pan2	exists	which	makes	it	slightly	easier	for	us	to	
implement	various	methods	of	panning.	The	following	example	
demonstrates	the	three	methods	that	this	opcode	offers	one	after	the	

PANNING	AND	SPATIALIZATION

440

other.	The	first	is	the	'equal	power'	method,	the	second	'square	root'	
and	the	third	is	simple	linear.	The	Csound	Manual	describes	a	fourth	
method	but	this	one	does	not	seem	to	function	currently.

			EXAMPLE	05B02_pan2.csd

<CsoundSynthesizer>

<CsOptions>
-odac	;	activates	real	time	sound	output
</CsOptions>

<CsInstruments>
sr	=	44100
ksmps	=	10
nchnls	=	2
0dbfs	=	1

		instr	1
imethod								=									p4	;	read	panning	method	variable	from	score	(p4)
;-----------------------	generate	a	source	sound	------------------------
aSig											pinkish			0.5														;	pink	noise
aSig											reson					aSig,	500,	30,	1	;	bandpass	filtered
;--

;----------------------------	pan	the	signal	----------------------------
aPan											lfo							0.5,	1,	1								;	panning	controlled	by	an	lfo
aPan											=									aPan	+	0.5							;	DC	shifted	+	0.5
aSigL,	aSigR			pan2						aSig,	aPan,	imethod;	create	stereo	panned	output
;--

															outs						aSigL,	aSigR					;	audio	sent	to	outputs
		endin

</CsInstruments>

<CsScore>
;	3	notes	one	after	the	other	to	demonstrate	3	methods	used	by	pan2
;p1	p2		p3			p4
i	1		0		4.5			0	;	equal	power	(harmonic)
i	1		5		4.5			1	;	square	root	method
i	1	10		4.5			2	;	linear
e
</CsScore>

</CsoundSynthesizer>	

In	the	next	example	we	will	generate	some	sounds	as	the	primary	
signal.	We	apply	some	delay	and	reverb	to	this	signal	to	produce	a	
secondary	signal.	A	random	function	will	pan	the	primary	signal	
between	the	channels,	but	the	secondary	signal	remains	panned	in	the	
middle	all	the	time.

PANNING	AND	SPATIALIZATION

441

			EXAMPLE	05B03_Different_pan_layers.csd	
		

<CsoundSynthesizer>

<CsOptions>
-o	dac	-d
</CsOptions>

<CsInstruments>
;	Example	by	Bjorn	Houdorf,	March	2013

sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1
											seed							0

instr	1
ktrig						metro						0.8;	Trigger	frequency,	instr.	2
											scoreline		"i	2	0	4",	ktrig
endin

instr	2
ital							random					60,	72;	random	notes
ifrq							=										cpsmidinn(ital)
knumpart1		oscili					4,	0.1,	1
knumpart2		oscili					5,	0.11,	1
;	Generate	primary	signal.....
asig							buzz							0.1,	ifrq,	knumpart1*knumpart2+1,	1
ipan							random					0,	1;make	random	function...
asigL,	asigR	pan2					asig,	ipan,	1;	...pan	it...
											outs							asigL,	asigR	;....	and	output	it..
kran1						randomi				0,4,3
kran2						randomi				0,4,3
asigdel1			delay						asig,	0.1+i(kran1)
asigdel2			delay						asig,	0.1+i(kran2)
;	Make	secondary	signal...
aL,	aR					reverbsc			asig+asigdel1,	asig+asigdel2,	0.9,	15000
											outs							aL,	aR;	...and	output	it
endin
</CsInstruments>

<CsScore>
f1	0	8192	10	1
i1	0	60
</CsScore>

</CsoundSynthesizer>

3-D	BINAURAL	ENCODING	

3-D	binaural	simulation	is	available	through	a	number	of	opcodes	that	
make	use	of	spectral	data	files	that	provide	information	about	the	
filtering	and	inter-aural	delay	effects	of	the	human	head.	The	oldest	
one	of	these	is	hrtfer.	Newer	ones	are	hrtfmove,	hrtfmove2	and	
hrftstat.	The	main	parameters	for	control	of	the	opcodes	are	azimuth	
(the	horizontal	direction	of	the	source	expressed	as	an	angle	formed	
from	the	direction	in	which	we	are	facing)	and	elevation	(the	angle	by	

PANNING	AND	SPATIALIZATION

442

which	the	sound	deviates	from	this	horizontal	plane,	either	above	or	
below).	Both	these	parameters	are	defined	in	degrees.	'Binaural'	infers	
that	the	stereo	output	of	this	opcode	should	be	listened	to	using	
headphones	so	that	no	mixing	in	the	air	of	the	two	channels	occurs	
before	they	reach	our	ears	(although	a	degree	of	effect	is	still	audible	
through	speakers).

The	following	example	take	a	monophonic	source	sound	of	noise	
impulses	and	processes	it	using	the	hrtfmove2	opcode.	First	of	all	the	
sound	is	rotated	around	us	in	the	horizontal	plane	then	it	is	raised	
above	our	head	then	dropped	below	us	and	finally	returned	to	be	level	
and	directly	in	front	of	us.	For	this	example	to	work	you	will	need	to	
download	the	files	hrtf-44100-left.dat	and	hrtf-44100-right.dat	and	
place	them	in	your	SADIR	(see	setting	environment	variables)	or	in	
the	same	directory	as	the	.csd.
		

			EXAMPLE	05B04_hrtfmove.csd

<CsoundSynthesizer>

<CsOptions>
-odac	;	activates	real	time	sound	output
</CsOptions>

<CsInstruments>
;	Example	by	Iain	McCurdy

sr	=	44100
ksmps	=	10
nchnls	=	2
0dbfs	=	1

giSine									ftgen							0,	0,	2^12,	10,	1													;	sine	wave
giLFOShape					ftgen							0,	0,	131072,	19,	0.5,1,180,1	;	U-shape	parabola

		instr	1
;	create	an	audio	signal	(noise	impulses)
krate										oscil							30,0.2,giLFOShape												;	rate	of	impulses
;	amplitude	envelope:	a	repeating	pulse
kEnv											loopseg					krate+3,0,	0,1,	0.05,0,	0.95,0,0
aSig											pinkish					kEnv																													;	noise	pulses

;	--	apply	binaural	3d	processing	--
;	azimuth	(direction	in	the	horizontal	plane)
kAz												linseg						0,	8,	360
;	elevation	(held	horizontal	for	8	seconds	then	up,	then	down,	then	horizontal

PANNING	AND	SPATIALIZATION

443

kElev										linseg						0,	8,			0,	4,	90,	8,	-40,	4,	0
;	apply	hrtfmove2	opcode	to	audio	source	-	create	stereo	ouput
aLeft,	aRight		hrtfmove2			aSig,	kAz,	kElev,	\
																															"hrtf-44100-left.dat","hrtf-44100-right.dat"
															outs								aLeft,	aRight																	;	audio	to	outputs
endin

</CsInstruments>

<CsScore>
i	1	0	24	;	instr	1	plays	a	note	for	24	seconds
e
</CsScore>

</CsoundSynthesizer>

GOING	MULTICHANNEL

So	far	we	have	only	considered	working	in	2-channels/stereo	but	
Csound	is	extremely	flexible	at	working	in	more	that	2	channels.	By	
changing	nchnls	in	the	orchestra	header	we	can	specify	any	number	
of	channels	but	we	also	need	to	ensure	that	we	choose	an	audio	
hardware	device	using	-odac	that	can	handle	multichannel	audio.	
Audio	channels	sent	from	Csound	that	do	not	address	hardware	
channels	will	simply	not	be	reproduced.	There	may	be	some	need	to	
make	adjustments	to	the	software	settings	of	your	soundcard	using	its	
own	software	or	the	operating	system's	software	but	due	to	the	variety	
of	sound	hardware	options	available	it	would	be	impossible	to	offer	
further	specific	advice	here.

SENDING	MULTICHANNEL	SOUND	TO	THE
LOUDSPEAKERS	

In	order	to	send	multichannel	audio	we	must	use	opcodes	designed	
for	that	task.	So	far	we	have	used	outs	to	send	stereo	sound	to	a	pair	
of	loudspeakers.	(The	's'	actually	stands	for	'stereo'.)	Correspondingly	
there	exist	opcodes	for	quadophonic	(outq),	hexaphonic	(outh),	
octophonic	(outo),	16-channel	sound	(outx)	and	32-channel	sound	
(out32).

For	example:

	outq		a1,	a2,	a3,	a4

sends	four	independent	audio	streams	to	four	hardware	channels.	Any	

PANNING	AND	SPATIALIZATION

444

unrequired	channels	still	have	to	be	given	an	audio	signal.	A	typical	
workaround	would	be	to	give	them	'silence'.	For	example	if	only	5	
channels	were	required:

nchnls			=		6

;	--snip--

aSilence	=				0
									outh	a1,	a2,	a3,	a4,	a5,	aSilence

These	opcodes	only	address	very	specific	loudspeaker	arrangements	
(although	workarounds	are	possible)	and	have	been	superseded,	to	a	
large	extent,	by	newer	opcodes	that	allow	greater	flexibility	in	the	
number	and	routing	of	audio	to	a	multichannel	output.

outc	allows	us	to	address	any	number	of	output	audio	channels,	but	
they	still	need	to	be	addressed	sequentially.	For	example	our	5-
channel	audio	could	be	design	as	follows:

nchnls			=		5

;	--snip--

				outc	a1,	a2,	a3,	a4,	a5

outch	allows	us	to	direct	audio	to	a	specific	channel	or	list	of	
channels	and	takes	the	form:

outch	kchan1,	asig1	[,	kchan2]	[,	asig2]	[...]

For	example,	our	5-channel	audio	system	could	be	designed	using	
outch	as	follows:

nchnls			=		5

;	--snip--

				outch	1,a1,	2,a2,	3,a3,	4,a4,	5,a5

Note	that	channel	numbers	can	be	changed	at	k-rate	thereby	opening	
the	possibility	of	changing	the	speaker	configuration	dynamically	
during	performance.	Channel	numbers	do	not	need	to	be	sequential	
and	unrequired	channels	can	be	left	out	completely.	This	can	make	
life	much	easier	when	working	with	complex	systems	employing	
many	channels.

PANNING	AND	SPATIALIZATION

445

		

FLEXIBLY	MOVING	BETWEEN	STEREO
AND	MULTICHANNEL

It	may	be	useful	to	be	able	to	move	between	working	in	multichannel	
(beyond	stereo)	and	then	moving	back	to	stereo	(when,	for	example,	a	
multichannel	setup	is	not	available).	It	won't	be	sufficient	to	simple	
change	nchnls	=	2.	It	will	also	be	necessary	to	change	all	outq,	outo,	
outch	etc	to	outs.	In	complex	orchestras	this	could	laboursome	and	
particularly	so	if	it	is	required	to	go	back	to	a	multichannel	
configuration	later	on.	In	this	situation	conditional	outputs	based	on	
the	nchnls	value	are	useful.	For	example:

	if	nchnls==4	then
					outq		a1,a2,a3,a4
	elseif	nchnls==2	then
					outs		a1+a3,	a2+a4
	endif

Using	this	method	it	will	only	be	required	to	change	nchnls	=	...	in	the	
orchestra	header.	In	stereo	mode,	if	nchnls	=	2,	at	least	all	audio	
streams	will	be	monitored,	even	if	the	results	do	not	reflect	the	four	
channel	spatial	arrangement.
		

RENDERING	MULTICHANNEL	AUDIO
STREAMS	AS	SOUND	FILES

So	far	we	have	referred	to	outs,	outo	etc.	as	a	means	to	send	audio	to	
the	speakers	but	strictly	speaking	they	are	only	sending	audio	to	
Csound's	output	(as	specified	by	nchnls)	and	the	final	destination	will	
be	defined	using	a	command	line	flag	in	<CsOptions></CsOptions>.	
-odac	will	indeed	instruct	Csound	to	send	audio	to	the	audio	hardware	
and	then	onto	the	speakers	but	we	can	alternatively	send	audio	to	a	
sound	file	using	-oSoundFile.wav.	Provided	a	file	type	that	supports	
multichannel	interleaved	data	is	chosen	(wav	will	work),	a	
multichannel	file	will	be	created	that	can	be	used	in	some	other	audio	

PANNING	AND	SPATIALIZATION

446

applications	or	can	be	re-read	by	Csound	later	on	by	using,	for	
example,	diskin2.	This	method	is	useful	for	rendering	audio	that	is	
too	complex	to	be	monitored	in	real-time.	Only	single	interleaved	
sound	files	can	be	created,	separate	mono	files	cannot	be	created	
using	this	method.	Simultaneously	monitoring	the	audio	generated	by	
Csound	whilst	rendering	will	not	be	possible	when	using	this	method;	
we	must	choose	one	or	the	other.
		

An	alternative	method	of	rendering	audio	in	Csound,	and	one	that	
will	allow	simulatenous	monitoring	in	real-time,	is	to	use	the	fout	
opcode.	For	example:

fout		"FileName.wav",	8,	a1,	a2,	a3,	a4
outq		a1,	a2,	a3,	a4

will	render	an	interleaved,	24-bit,	4-channel	sound	file	whilst	
simultaneously	sending	the	quadrophonic	audio	to	the	loudspeakers.

If	we	wanted	to	de-interleave	an	interleaved	sound	file	into	multiple	
mono	sound	files	we	could	use	the	code:

a1,	a2,	a3,	a4			soundin			"4ChannelSoundFile.wav"
																	fout						"Channel1.wav",	8,	a1
																	fout						"Channel2.wav",	8,	a2
																	fout						"Channel3.wav",	8,	a3
																	fout						"Channel4.wav",	8,	a4	

VBAP

Vector	Base	Amplitude	Panning1		can	be	described	as	a	method	
which	extends	stereo	panning	to	more	than	two	speakers.	The	number	
of	speakers	is,	in	general,	arbitrary.	You	can	configure	for	standard	
layouts	such	as	quadrophonic,	octophonic	or	5.1	configuration,	but	in	
fact	any	number	of	speakers	can	be	positioned	even	in	irregular	
distances	from	each	other.	If	you	are	fortunate	enough	to	have	
speakers	arranged	at	different	heights,	you	can	even	configure	VBAP	
for	three	dimensions.

PANNING	AND	SPATIALIZATION

447

BASIC	STEPS

First	you	must	tell	VBAP	where	your	loudspeakers	are	positioned.	Let	
us	assume	you	have	seven	speakers	in	the	positions	and	numberings	
outlined	below	(M	=	middle/centre):

The	opcode	vbaplsinit,	which	is	usually	placed	in	the	header	of	a	
Csound	orchestra,	defines	these	positions	as	follows:

vbaplsinit	2,	7,	-40,	40,	70,	140,	180,	-110,	-70

The	first	number	determines	the	number	of	dimensions	(here	2).	The	
second	number	states	the	overall	number	of	speakers,	then	followed	
by	the	positions	in	degrees	(clockwise).

All	that	is	required	now	is	to	provide	vbap	with	a	monophonic	sound	
source	to	be	distributed	amongst	the	speakers	according	to	
information	given	about	the	position.	Horizontal	position	(azimuth)	is	
expressed	in	degrees	clockwise	just	as	the	initial	locations	of	the	
speakers	were.	The	following	would	be	the	Csound	code	to	play	the	
sound	file	"ClassGuit.wav"	once	while	moving	it	counterclockwise:
		

PANNING	AND	SPATIALIZATION

448

			EXAMPLE	05B05_VBAP_circle.csd

<CsoundSynthesizer>
<CsOptions>
-odac	-d	;for	the	next	line,	change	to	your	folder
--env:SSDIR+=/home/jh/Joachim/Csound/FLOSS/audio
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32	
0dbfs	=	1
nchnls	=	7

vbaplsinit	2,	7,	-40,	40,	70,	140,	180,	-110,	-70

		instr	1
Sfile						=										"ClassGuit.wav"
iFilLen				filelen				Sfile
p3									=										iFilLen
aSnd,	a0			soundin				Sfile
kAzim						line							0,	p3,	-360	;counterclockwise
a1,	a2,	a3,	a4,	a5,	a6,	a7,	a8	vbap8	aSnd,	kAzim
outch	1,	a1,	2,	a2,	3,	a3,	4,	a4,	5,	a5,	6,	a6,	7,	a7
		endin
</CsInstruments>
<CsScore>
i	1	0	1
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

In	the	CsOptions	tag,	you	see	the	option	--env:SSDIR+=	...	as	a	
possibility	to	add	a	folder	to	the	path	in	which	Csound	usually	looks	
for	your	samples	(SSDIR	=	Sound	Sample	Directory)	if	you	call	them	
only	by	name,	without	the	full	path.	To	play	the	full	length	of	the	
sound	file	(without	prior	knowledge	of	its	duration)	the	filelen	opcode	
is	used	to	derive	this	duration,	and	then	the	duration	of	this	instrument	
(p3)	is	set	to	this	value.	The	p3	given	in	the	score	section	(here	1)	is	
overwritten	by	this	value.

The	circular	movement	is	a	simple	k-rate	line	signal,	from	0	to	-360	
across	the	duration	of	the	sound	file	(in	this	case	the	same	as	p3).	
Note	that	we	have	to	use	the	opcode	vbap8	here,	as	there	is	no	vbap7.	
Just	give	the	eighth	channel	a	variable	name	(a8)	and	thereafter	
ignore	it.

THE	SPREAD	PARAMETER	

PANNING	AND	SPATIALIZATION

449

As	VBAP	derives	from	a	panning	paradigm,	it	has	one	problem	which	
becomes	more	serious	as	the	number	of	speakers	increases.	Panning	
between	two	speakers	in	a	stereo	configuration	means	that	all	
speakers	are	active.	Panning	between	two	speakers	in	a	quadro	
configuration	means	that	half	of	the	speakers	are	active.	Panning	
between	two	speakers	in	an	octo	configuration	means	that	only	a	
quarter	of	the	speakers	are	active	and	so	on;	so	that	the	actual	
perceived	extent	of	the	sound	source	becomes	unintentionally	smaller	
and	smaller.
		

	To	alleviate	this	tendency,	Ville	Pulkki	has	introduced	an	additional	
parameter,	called	'spread',	which	has	a	range	of	zero	to	hundred	
percent.2		The	'ascetic'	form	of	VBAP	we	have	seen	in	the	previous	
example,	means:	no	spread	(0%).	A	spread	of	100%	means	that	all	
speakers	are	active,	and	the	information	about	where	the	sound	comes	
from	is	nearly	lost.

As	the	kspread	input	to	the	vbap8	opcode	is	the	second	of	two	
optional	parameters,	we	first	have	to	provide	the	first	one.	kelev	
defines	the	elevation	of	the	sound	-	it	is	always	zero	for	two	
dimensions,	as	in	the	speaker	configuration	in	our	example.	The	next	
example	adds	a	spread	movement	to	the	previous	one.	The	spread	
starts	at	zero	percent,	then	increases	to	hundred	percent,	and	then	
decreases	back	down	to	zero.
		

			EXAMPLE	05B06_VBAP_spread.csd

<CsoundSynthesizer>
<CsOptions>
-odac	-d	;for	the	next	line,	change	to	your	folder
--env:SSDIR+=/home/jh/Joachim/Csound/FLOSS/audio
</CsOptions>
<CsInstruments>
sr	=	44100

PANNING	AND	SPATIALIZATION

450

ksmps	=	32	
0dbfs	=	1
nchnls	=	7

vbaplsinit	2,	7,	-40,	40,	70,	140,	180,	-110,	-70

		instr	1
Sfile						=										"ClassGuit.wav"
iFilLen				filelen				Sfile
p3									=										iFilLen
aSnd,	a0			soundin				Sfile
kAzim						line							0,	p3,	-360
kSpread				linseg					0,	p3/2,	100,	p3/2,	0
a1,	a2,	a3,	a4,	a5,	a6,	a7,	a8	vbap8	aSnd,	kAzim,	0,	kSpread
outch	1,	a1,	2,	a2,	3,	a3,	4,	a4,	5,	a5,	6,	a6,	7,	a7
		endin
</CsInstruments>
<CsScore>
i	1	0	1
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

NEW	VBAP	OPCODES	

As	a	response	to	a	number	of	requests,	John	fFitch	has	written	new	
VBAP	opcodes	in	2012	whose	main	goal	is	to	allow	more	than	one	
loudspeaker	configuration	within	a	single	orchestra	(so	that	you	can	
switch	between	them	during	performance)	and	to	provide	more	
flexibility	in	the	number	of	output	channels	used.	Here	is	an	example	
for	three	different	configurations	which	are	called	in	three	different	
instruments:
		

			EXAMPLE	05B07_VBAP_new.csd

<CsoundSynthesizer>
<CsOptions>
-odac	-d	;for	the	next	line,	change	to	your	folder
--env:SSDIR+=/home/jh/Joachim/Csound/FLOSS/audio
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32	
0dbfs	=	1
nchnls	=	7

vbaplsinit	2.01,	7,	-40,	40,	70,	140,	180,	-110,	-70
vbaplsinit	2.02,	2,	-40,	40
vbaplsinit	2.03,	3,	-70,	180,	70

		instr	1
aSnd,	a0			soundin				"ClassGuit.wav"

PANNING	AND	SPATIALIZATION

451

kAzim						line							0,	p3,	-360
a1,	a2,	a3,	a4,	a5,	a6,	a7	vbap	aSnd,	kAzim,	0,	0,	1
outch	1,	a1,	2,	a2,	3,	a3,	4,	a4,	5,	a5,	6,	a6,	7,	a7
		endin

		instr	2
aSnd,	a0			soundin				"ClassGuit.wav"
kAzim						line							0,	p3,	-360
a1,	a2					vbap							aSnd,	kAzim,	0,	0,	2
											outch						1,	a1,	2,	a2
		endin

		instr	3
aSnd,	a0			soundin				"ClassGuit.wav"
kAzim						line							0,	p3,	-360
a1,	a2,	a3	vbap							aSnd,	kAzim,	0,	0,	3
											outch						7,	a1,	3,	a2,	5,	a3
		endin

</CsInstruments>
<CsScore>
i	1	0	6
i	2	6	6
i	3	12	6
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

Instead	of	just	one	loudspeaker	configuration,	as	in	the	previous	
examples,	there	are	now	three	configurations:

vbaplsinit	2.01,	7,	-40,	40,	70,	140,	180,	-110,	-70
vbaplsinit	2.02,	2,	-40,	40
vbaplsinit	2.03,	3,	-70,	180,	70

The	first	parameter	(the	number	of	dimensions)	now	has	an	additional	
fractional	part,	with	a	range	from	.01	to	.99,	specifying	the	number	of	
the	speaker	layout.	So	2.01	means:	two	dimensions,	layout	number	
one,	2.02	is	layout	number	two,	and	2.03	is	layout	number	three.	The	
new	vbap	opcode	has	now	these	parameters:

	ar1[,	ar2...]	vbap	asig,	kazim	[,	kelev]	[,	kspread]	[,	ilayout]

The	last	parameter	ilayout	refers	to	the	speaker	layout	number.	In	the	
example	above,	instrument	1	uses	layout	1,	instrument	2	uses	layout	
2,	and	instrument	3	uses	layout	3.	Even	if	you	do	not	have	more	than	
two	speakers	you	should	see	in	Csound's	output	that	instrument	1	goes	
to	all	seven	speakers,	instrument	2	only	to	the	first	two,	and	
instrument	3	goes	to	speaker	3,	5,	and	7.

PANNING	AND	SPATIALIZATION

452

In	addition	to	the	new	vbap	opcode,	vbapg	has	been	written.	The	idea	
is	to	have	an	opcode	which	returns	the	gains	(amplitudes)	of	the	
speakers	instead	of	the	audio	signal:

k1[,	k2...]	vbapg	kazim	[,kelev]	[,	kspread]	[,	ilayout]

AMBISONICS	

Ambisonics	is	another	technique	to	distribute	a	virtual	sound	source	
in	space.

There	are	excellent	sources	for	the	discussion	of	Ambisonics	
online3	and	the	following	chapter	will	give	a	step	by	step	introduction.	We	will	focus	just	on	the	
basic	practicalities	of	using	the	Ambisonics	opcodes	of	Csound,	
without	going	into	too	much	detail	of	the	concepts	behind	them.	

	Ambisonics	works	using	two	basic	steps.	In	the	first	step	you	encode	
the	sound	and	the	spatial	information	(its	localisation)	of	a	virtual	
sound	source	in	a	so-called	B-format.	In	the	second	step	you	decode	
the	B-format	to	match	your	loudspeaker	setup.

It	is	possible	to	save	the	B-format	as	its	own	audio	file,	to	preserve	
the	spatial	information	or	you	can	immediately	do	the	decoding	after	
the	encoding	thereby	dealing	directly	only	with	audio	signals	instead	
of	Ambisonic	files.	The	next	example	takes	the	latter	approach	by	
implementing	a	transformation	of	the	VBAP	circle	example	to	
Ambisonics.
		

			EXAMPLE	05B08_Ambi_circle.csd

<CsoundSynthesizer>
<CsOptions>
-odac	-d	;for	the	next	line,	change	to	your	folder
--env:SSDIR+=/home/jh/Joachim/Csound/FLOSS/Release01/Csound_Floss_Release01/audio
</CsOptions>

PANNING	AND	SPATIALIZATION

453

<CsInstruments>
sr	=	44100
ksmps	=	32	
0dbfs	=	1
nchnls	=	8

		instr	1
Sfile						=										"ClassGuit.wav"
iFilLen				filelen				Sfile
p3									=										iFilLen
aSnd,	a0			soundin				Sfile
kAzim						line							0,	p3,	360	;counterclockwise	(!)
iSetup					=										4	;octogon
aw,	ax,	ay,	az	bformenc1	aSnd,	kAzim,	0
a1,	a2,	a3,	a4,	a5,	a6,	a7,	a8	bformdec1	iSetup,	aw,	ax,	ay,	az
outch	1,	a1,	2,	a2,	3,	a3,	4,	a4,	5,	a5,	6,	a6,	7,	a7,	8,	a8
		endin
</CsInstruments>
<CsScore>
i	1	0	1
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

	The	first	thing	to	note	is	that	for	a	counterclockwise	circle,	the	
azimuth	now	has	the	line	0	->	360,	instead	of	0	->	-360	as	was	used	in	
the	VBAP	example.	This	is	because	Ambisonics	usually	reads	the	
angle	in	a	mathematical	way:	a	positive	angle	is	counterclockwise.	
Next,	the	encoding	process	is	carried	out	in	the	line:

aw,	ax,	ay,	az	bformenc1	aSnd,	kAzim,	0

Input	arguments	are	the	monophonic	sound	source	aSnd,	the	xy-angle	
kAzim,	and	the	elevation	angle	which	is	set	to	zero.	Output	signals	are	
the	spatial	information	in	x-,	y-	and	z-	direction	(ax,	ay,	az),	and	also	
an	omnidirectional	signal	called	aw.	

Decoding	is	performed	by	the	line:
		

a1,	a2,	a3,	a4,	a5,	a6,	a7,	a8	bformdec1	iSetup,	aw,	ax,	ay,	az

	The	inputs	for	the	decoder	are	the	same	aw,	ax,	ay,	az,	which	were	
the	results	of	the	encoding	process,	and	an	additional	iSetup	
parameter.	Currently	the	Csound	decoder	only	works	with	some	
standard	setups	for	the	speaker:	iSetup	=	4	refers	to	an	octogon.4	So	
the	final	eight	audio	signals	a1,	...,	a8	are	being	produced	using	this	
decoder,	and	are	then	sent	to	the	speakers	in	the	same	way	using	the	
outch	opcode.

PANNING	AND	SPATIALIZATION

454

		

DIFFERENT	ORDERS	

What	we	have	seen	in	this	example	is	called	'first	order'	ambisonics.	
This	means	that	the	encoding	process	leads	to	the	four	basic	
dimensions	w,	x,	y,	z	as	described	above.5	In	"second	order"	
ambisonics,	there	are	additional	"directions"	called	r,	s,	t,	u,	v.	And	in	
"third	order"	ambisonics	again	the	additional	k,	l,	m,	n,	o,	p,	q.	The	
final	example	in	this	section	shows	the	three	orders,	each	of	them	in	
one	instrument.	If	you	have	eight	speakers	in	octophonic	setup,	you	
can	compare	the	results.
		

			EXAMPLE	05B09_Ambi_orders.csd

<CsoundSynthesizer>
<CsOptions>
-odac	-d	;for	the	next	line,	change	to	your	folder
--env:SSDIR+=/home/jh/Joachim/Csound/FLOSS/Release01/Csound_Floss_Release01/audio
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32	
0dbfs	=	1
nchnls	=	8

		instr	1	;first	order
aSnd,	a0			soundin				"ClassGuit.wav"
kAzim						line							0,	p3,	360
iSetup					=										4	;octogon
aw,	ax,	ay,	az	bformenc1	aSnd,	kAzim,	0
a1,	a2,	a3,	a4,	a5,	a6,	a7,	a8	bformdec1	iSetup,	aw,	ax,	ay,	az
outch	1,	a1,	2,	a2,	3,	a3,	4,	a4,	5,	a5,	6,	a6,	7,	a7,	8,	a8
		endin

		instr	2	;second	order
aSnd,	a0			soundin				"ClassGuit.wav"
kAzim						line							0,	p3,	360
iSetup					=										4	;octogon
aw,	ax,	ay,	az,	ar,	as,	at,	au,	av	bformenc1	aSnd,	kAzim,	0
a1,	a2,	a3,	a4,	a5,	a6,	a7,	a8	bformdec1	iSetup,	aw,	ax,	ay,	az,	ar,	as,	at,	au,	av
outch	1,	a1,	2,	a2,	3,	a3,	4,	a4,	5,	a5,	6,	a6,	7,	a7,	8,	a8
		endin

		instr	3	;third	order
aSnd,	a0			soundin				"ClassGuit.wav"
kAzim						line							0,	p3,	360
iSetup					=										4	;octogon
aw,	ax,	ay,	az,	ar,	as,	at,	au,	av,	ak,	al,	am,	an,	ao,	ap,	aq	bformenc1	aSnd,	kAzim,	

PANNING	AND	SPATIALIZATION

455

0
a1,	a2,	a3,	a4,	a5,	a6,	a7,	a8	bformdec1	iSetup,	aw,	ax,	ay,	az,	ar,	as,	at,	au,	av,	
ak,	al,	am,	an,	ao,	ap,	aq
outch	1,	a1,	2,	a2,	3,	a3,	4,	a4,	5,	a5,	6,	a6,	7,	a7,	8,	a8
		endin
</CsInstruments>
<CsScore>
i	1	0	6
i	2	6	6
i	3	12	6
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

In	theory,	first-order	ambisonics	need	at	least	4	speakers	to	be	
projected	correctly.	Second-order	ambisonics	needs	at	least	6	
speakers	(9,	if	3	dimensions	are	employed).	Third-order	ambisonics	
need	at	least	8	speakers	(or	16	for	3d).	So,	although	higher	order	
should	in	general	lead	to	a	better	result	in	space,	you	cannot	expect	it	
to	work	unless	you	have	a	sufficient	number	of	speakers.	Of	course	
practice	over	theory	may	prove	to	be	a	better	judge	in	many	cases.

AMBISONICS	UDOS

USAGE	OF	THE	AMBISONICS	UDOS	

This	chapter	gives	an	overview	of	the	UDOs	explained	below.
		

The	channels	of	the	B-format	are	stored	in	a	zak	space.	Call	zakinit	
only	once	and	put	it	outside	of	any	instrument	definition	in	the	
orchestra	file	after	the	header.	zacl	clears	the	za	space	and	is	called	
after	decoding.	The	B	format	of	order	n	can	be	decoded	in	any	order	
<=	n.	
		

The	text	files	"ambisonics_udos.txt",	"ambisonics2D_udos.txt",	
"AEP_udos.txt"	and	"utilities.txt"	must	be	located	in	the	same	folder	
as	the	csd	files	or	included	with	full	path.

These	files	can	be	downloaded	together	with	the	entire	examples	

PANNING	AND	SPATIALIZATION

456

(some	of	them	for	CsoundQt)	
from:http://www.icst.net/research/downloads/
		

zakinit	isizea,	isizek				(isizea	=	(order	+	1)^2	in	ambisonics	(3D);	isizea	=	
2·order	+	1	in	ambi2D;	isizek	=	1)

;#include	"ambisonics_udos.txt"	(order	<=	8)
k0	 ambi_encode	 asnd,	iorder,	kazimuth,	kelevation	(azimuth,	elevation	in	
degrees)
k0	 ambi_enc_dist	asnd,	iorder,	kazimuth,	kelevation,	kdistance	
a1	[,	a2]	...	[,	a8]	 ambi_decode	 iorder,	ifn	
a1	[,	a2]	...	[,	a8]	 ambi_dec_inph	 iorder,	ifn	
f	ifn		0		n		-2	p1	az1	el1	az2	el2	...	(n	is	a	power	of	2	greater	than	
3·number_of_spekers	+	1)	(p1	is	not	used)
k0	 ambi_write_B	 "name",	iorder,	ifile_format	 (ifile_format	see	fout	in	the	
csound	help)	
k0	 ambi_read_B	 "name",	iorder	(only	<=	5)
kaz,	kel,	kdist	xyz_to_aed	 kx,	ky,	kz

;#include	"ambisonics2D_udos.txt"	
k0	 ambi2D_encode	 asnd,	iorder,	kazimuth	 (any	order)	(azimuth	in	degrees)
k0	 ambi2D_enc_dist	asnd,	iorder,	kazimuth,	kdistance	
a1	[,	a2]	...	[,	a8]	 ambi2D_decode	 iorder,	iaz1	[,	iaz2]	...	 [,	iaz8]	 	
a1	[,	a2]	...	[,	a8]	 ambi2D_dec_inph	iorder,	iaz1	[,	iaz2]	...	 [,	iaz8]	
(order	<=	12)
k0	 ambi2D_write_B	 "name",	iorder,	ifile_format
k0	 ambi2D_read_B	 "name",	iorder	 (order	<=	19)
kaz,	kdist	 xy_to_ad	 kx,	ky	

#include	"AEP_udos.txt"	(any	order	integer	or	fractional)
a1	[,	a2]	...	[,	a16]	AEP_xyz	 asnd,	korder,	ifn,	kx,	ky,	kz,	kdistance
f	ifn		0		64		-2		max_speaker_distance	x1	y1	z1	x2	y2	z2	...
a1	[,	a2]	...	[,	a8]	AEP	 asnd,	korder,	ifn,	kazimuth,	kelevation,	kdistance	
(azimuth,	elevation	in	degrees)
f	ifn		0		64		-2		max_speaker_distance	az1	el1	dist1	az2	el2	dist2	...		(azimuth,	
elevation	in	degrees)

;#include	"ambi_utilities.txt"
kdist	 dist	 kx,	ky
kdist	 dist	 kx,	ky,	kz
ares	 Doppler	asnd,	kdistance
ares	 absorb	 asnd,	kdistance
kx,	ky,	kz	 aed_to_xyz	 kazimuth,	kelevation,	kdistance
ix,	iy,	iz	 aed_to_xyz	 iazimuth,	ielevation,	idistance
a1	[,	a2]	...	[,	a16]	 dist_corr	 a1	[,	a2]	...	[,	a16],	ifn
f	ifn		0		32		-2		max_speaker_distance	dist1,	dist2,	...	(distances	in	m)
irad	 radiani	idegree	
krad	 radian	 kdegree
arad	 radian	 adegree
idegree	degreei	irad
kdegree	degree	 krad
adegree	degree	 arad

INTRODUCTION	

In	the	following	introduction	we	will	explain	the	principles	of	
ambisonics	step	by	step	and	write	an	opcode	for	every	step.	The	
opcodes	above	combine	all	of	the	functionality	described.	Since	the	
two-dimensional	analogy	to	Ambisonics	is	easier	to	understand	and	to	

PANNING	AND	SPATIALIZATION

457

implement	with	a	simple	equipment,	we	shall	fully	explain	it	first.

Ambisonics	is	a	technique	of	three-dimensional	sound	projection.	The	
information	about	the	recorded	or	synthesized	sound	field	is	encoded	
and	stored	in	several	channels,	taking	no	account	of	the	arrangement	
of	the	loudspeakers	for	reproduction.	The	encoding	of	a	signal's	
spatial	information	can	be	more	or	less	precise,	depending	on	the	so-
called	order	of	the	algorithm	used.	Order	zero	corresponds	to	the	
monophonic	signal	and	requires	only	one	channel	for	storage	and	
reproduction.	In	first-order	Ambisonics,	three	further	channels	are	
used	to	encode	the	portions	of	the	sound	field	in	the	three	orthogonal	
directions	x,	y	and	z.	These	four	channels	constitute	the	so-called	
first-order	B-format.	When	Ambisonics	is	used	for	artificial	
spatialisation	of	recorded	or	synthesized	sound,	the	encoding	can	be	
of	an	arbitrarily	high	order.	The	higher	orders	cannot	be	interpreted	as	
easily	as	orders	zero	and	one.	

In	a	two-dimensional	analogy	to	Ambisonics	(called	Ambisonics2D	
in	what	follows),	only	sound	waves	in	the	horizontal	plane	are	
encoded.

The	loudspeaker	feeds	are	obtained	by	decoding	the	B-format	signal.	
The	resulting	panning	is	amplitude	panning,	and	only	the	direction	to	
the	sound	source	is	taken	into	account.

The	illustration	below	shows	the	principle	of	Ambisonics.	First	a	
sound	is	generated	and	its	position	determined.	The	amplitude	and	
spectrum	are	adjusted	to	simulate	distance,	the	latter	using	a	low-pass	
filter.	Then	the	Ambisonic	encoding	is	computed	using	the	sound's	
coordinates.	Encoding	mth	order	B-format	requires	n	=	(m+1)^2	
channels	(n	=	2m	+	1	channels	in	Ambisonics2D).	By	decoding	the	B-
format,	one	can	obtain	the	signals	for	any	number	(>=	n)	of	
loudspeakers	in	any	arrangement.	Best	results	are	achieved	with	
symmetrical	speaker	arrangements.	

If	the	B-format	does	not	need	to	be	recorded	the	speaker	signals	can	

PANNING	AND	SPATIALIZATION

458

be	calculated	at	low	cost	and	arbitrary	order	using	so-called	
ambisonics	equivalent	panning	(AEP).	

	

Ambisonics2D	

Introduction	We	will	first	explain	the	encoding	process	in	
Ambisonics2D.	The	position	of	a	sound	source	in	the	horizontal	plane	
is	given	by	two	coordinates.	In	Cartesian	coordinates	(x,	y)	the	
listener	is	at	the	origin	of	the	coordinate	system	(0,	0),	and	the	x-
coordinate	points	to	the	front,	the	y-coordinate	to	the	left.	The	
position	of	the	sound	source	can	also	be	given	in	polar	coordinates	by	
the	angle	ψ	between	the	line	of	vision	of	the	listener	(front)	and	the	
direction	to	the	sound	source,	and	by	their	distance	r.	Cartesian	
coordinates	can	be	converted	to	polar	coordinates	by	the	formulae:	

		r	=				and		ψ	=	arctan(x,	y),	

polar	to	Cartesian	coordinates	by	

		x	=	r·cos(ψ)	and	y	=	r·sin(ψ).		

	

PANNING	AND	SPATIALIZATION

459

	

	

The	0th	order	B-Format	of	a	signal	S	of	a	sound	source	on	the	unit	
circle	is	just	the	mono	signal:	W0	=	W	=	S.	The	first	order	B-Format	
contains	two	additional	channels:	W1,1	=	X	=	S·cos(ψ)	=	S·x	and	W1,2	=	
Y	=	S·sin(ψ)	=	S·y,	i.e.	the	product	of	the	Signal	S	with	the	sine	and	
the	cosine	of	the	direction	ψ	of	the	sound	source.	The	B-Format	
higher	order	contains	two	additional	channels	per	order	m:	Wm,	1	=	
S·cos(mψ)	and	Wm,	2	=	S·sin(mψ).

		

	W0	=	S

	W1,1	=	X	=	S·cos(ψ)	=	S·x	W1,2	=	Y	=	S·sin(ψ)	=	S·y

	W2,1	=	S·cos(2ψ)	W2,2	=	S·sin(2ψ)

	...

	Wm,1	=	S·cos(mψ)				Wm,2	=	S·sin(mψ)	

From	the	n	=	2m	+	1	B-Format	channels	the	loudspeaker	signals	pi	of	
n	loudspeakers	which	are	set	up	symmetrically	on	a	circle	(with	angle	

PANNING	AND	SPATIALIZATION

460

ϕi)	are:

			pi	=	1/n(W0	+	2W1,1cos(ϕi)	+	2W1,2sin(ϕi)	+	2W2,1cos(2ϕi)	+	
2W2,2sin(2ϕi)	+	...)

		=	2/n(1/2	W0	+	W1,1cos(ϕi)	+	W1,2sin(ϕi)	+	W2,1cos(2ϕi)	+	W2,2sin(2ϕi)	
+	...)

(If	more	than	n	speakers	are	used,	we	can	use	the	same	formula)

In	the	Csound	example	udo_ambisonics2D_1.csd	the	opcode	
ambi2D_encode_1a	produces	the	3	channels	W,	X	and	Y	(a0,	a11,	a12)	
from	an	input	sound	and	the	angle	ψ	(azmuth	kaz),	the	opcode	
ambi2D_decode_1_8	decodes	them	to	8	speaker	signals	a1,	a2,	...,	a8.	
The	inputs	of	the	decoder	are	the	3	channels	a0,	a11,	a12	and	the	8	angles	
of	the	speakers.	

		EXAMPLE	05B10_udo_ambisonics2D_1.csd

<CsoundSynthesizer>
<CsInstruments>
sr						=		44100
ksmps			=		32
nchnls		=		8
0dbfs		 	=	1

;	ambisonics2D	first	order	without	distance	encoding
;	decoding	for	8	speakers	symmetrically	positioned	on	a	circle

;	produces	the	3	channels	1st	order;	input:	asound,	kazimuth
opcode	 ambi2D_encode_1a,	aaa,	ak	
asnd,kaz	 xin
kaz	=	$M_PI*kaz/180
a0	 =	 asnd
a11	 =	 cos(kaz)*asnd
a12	 =	 sin(kaz)*asnd
	 	 xout	 	 a0,a11,a12
endop

;	decodes	1st	order	to	a	setup	of	8	speakers	at	angles	i1,	i2,	...
opcode	 ambi2D_decode_1_8,	aaaaaaaa,	aaaiiiiiiii	 	
a0,a11,a12,i1,i2,i3,i4,i5,i6,i7,i8	 xin
i1	=	$M_PI*i1/180
i2	=	$M_PI*i2/180
i3	=	$M_PI*i3/180

PANNING	AND	SPATIALIZATION

461

i4	=	$M_PI*i4/180
i5	=	$M_PI*i5/180
i6	=	$M_PI*i6/180
i7	=	$M_PI*i7/180
i8	=	$M_PI*i8/180
a1	 =	 (.5*a0	+	cos(i1)*a11	+	sin(i1)*a12)*2/3		 	
a2	 =	 (.5*a0	+	cos(i2)*a11	+	sin(i2)*a12)*2/3	
a3	 =	 (.5*a0	+	cos(i3)*a11	+	sin(i3)*a12)*2/3	
a4	 =	 (.5*a0	+	cos(i4)*a11	+	sin(i4)*a12)*2/3	
a5	 =	 (.5*a0	+	cos(i5)*a11	+	sin(i5)*a12)*2/3	
a6	 =	 (.5*a0	+	cos(i6)*a11	+	sin(i6)*a12)*2/3	
a7	 =	 (.5*a0	+	cos(i7)*a11	+	sin(i7)*a12)*2/3	
a8	 =	 (.5*a0	+	cos(i8)*a11	+	sin(i8)*a12)*2/3		 	 	
	 	 xout	 	 	 a1,a2,a3,a4,a5,a6,a7,a8
endop

instr	1
asnd	 rand	 .05
kaz				 line	 0,p3,3*360	;turns	around	3	times	in	p3	seconds
a0,a11,a12	ambi2D_encode_1a	asnd,kaz
a1,a2,a3,a4,a5,a6,a7,a8	\
								ambi2D_decode_1_8		a0,a11,a12,
																											0,45,90,135,180,225,270,315
								outc				a1,a2,a3,a4,a5,a6,a7,a8
endin

</CsInstruments>
<CsScore>
i1	0	40
</CsScore>
</CsoundSynthesizer>
;example	by	martin	neukom

The	B-format	of	all	events	of	all	instruments	can	be	summed	before	
decoding.	Thus	in	the	example	udo_ambisonics2D_2.csd	we	create	a	
zak	space	with	21	channels	(zakinit	21,	1)	for	the	2D	B-format	up	to	
10th	order	where	the	encoded	signals	are	accumulated.	The	opcode	
ambi2D_encode_3	shows	how	to	produce	the	7	B-format	channels	a0,	
a11,	a12,	...,	a32	for	third	order.	The	opcode	ambi2D_encode_n	
produces	the	2(n+1)	channels	a0,	a11,	a12,	...,	a32	for	any	order	n	
(needs	zakinit	2(n+1),	1).	The	opcode	ambi2D_decode_basic	is	an	
overloaded	function	i.e.	it	decodes	to	n	speaker	signals	depending	on	
the	number	of	in-	and	outputs	given	(in	this	example	only	for	1	or	2	
speakers).	Any	number	of	instruments	can	play	arbitrary	often.	
Instrument	10	decodes	for	the	first	4	speakers	of	an	18	speaker	setup.	

		EXAMPLE	05B11_udo_ambisonics2D_2.csd	

<CsoundSynthesizer>
<CsInstruments>

PANNING	AND	SPATIALIZATION

462

sr						=		44100
ksmps			=		32
nchnls		=		4
0dbfs		 	=	1

;	ambisonics2D	encoding	fifth	order
;	decoding	for	8	speakers	symmetrically	positioned	on	a	circle
;	all	instruments	write	the	B-format	into	a	buffer	(zak	space)
;	instr	10	decodes

;	zak	space	with	the	21	channels	of	the	B-format	up	to	10th	order
zakinit	21,	1	

;explicit	encoding	third	order
opcode	 ambi2D_encode_3,	k,	ak	
asnd,kaz	 xin	

kaz	=	$M_PI*kaz/180

	 	 zawm	 	 asnd,0
	 	 zawm	 	 cos(kaz)*asnd,1		 ;a11
	 	 zawm	 	 sin(kaz)*asnd,2		 ;a12
	 	 zawm	 	 cos(2*kaz)*asnd,3	 ;a21
	 	 zawm	 	 sin(2*kaz)*asnd,4	 ;a22
	 	 zawm	 	 cos(3*kaz)*asnd,5	 ;a31
	 	 zawm	 	 sin(3*kaz)*asnd,6	 ;a32
	 	 xout	 	 0
endop

;	encoding	arbitrary	order	n(zakinit	2*n+1,	1)
opcode	 ambi2D_encode_n,	k,	aik		
asnd,iorder,kaz	xin
kaz	=	$M_PI*kaz/180
kk	=	 iorder
c1:
				 zawm	 cos(kk*kaz)*asnd,2*kk-1
				 zawm	 sin(kk*kaz)*asnd,2*kk
kk	=	 	 kk-1

if	 kk	>	0	goto	c1
	 zawm	 asnd,0	
	 xout	 0
endop

;	basic	decoding	for	arbitrary	order	n	for	1	speaker
opcode	 ambi2D_decode_basic,	a,	ii	 	
iorder,iaz	 xin
iaz	=	$M_PI*iaz/180
igain	 =	 2/(2*iorder+1)
kk	=	 iorder
a1	 =	 .5*zar(0)
c1:
a1	+=	 cos(kk*iaz)*zar(2*kk-1)
a1	+=	 sin(kk*iaz)*zar(2*kk)
kk	=	 	 kk-1
if	 kk	>	0	goto	c1
	 	 xout	 	 	 igain*a1
endop

;	decoding	for	2	speakers
opcode	 ambi2D_decode_basic,	aa,	iii	
iorder,iaz1,iaz2	 xin
iaz1	=	$M_PI*iaz1/180
iaz2	=	$M_PI*iaz2/180
igain	 =	 2/(2*iorder+1)
kk	=	 iorder
a1	 =	 .5*zar(0)
c1:
a1	+=	 cos(kk*iaz1)*zar(2*kk-1)
a1	+=	 sin(kk*iaz1)*zar(2*kk)
kk	=	 	 kk-1
if	 kk	>	0	goto	c1

PANNING	AND	SPATIALIZATION

463

kk	=	 iorder
a2	 =	 .5*zar(0)
c2:
a2	+=	 cos(kk*iaz2)*zar(2*kk-1)
a2	+=	 sin(kk*iaz2)*zar(2*kk)
kk	=	 	 kk-1
if	 kk	>	0	goto	c2
	 	 xout	 	 	 igain*a1,igain*a2
endop

instr	1
asnd	 rand	 	 p4
ares		 reson	 	 asnd,p5,p6,1
kaz				 line	 	 0,p3,p7*360	 	 ;turns	around	p7	times	in	p3	seconds
k0		 	 ambi2D_encode_n	asnd,10,kaz
endin

instr	2
asnd	 oscil	 	 p4,p5,1
kaz				 line	 	 0,p3,p7*360	 	 ;turns	around	p7	times	in	p3	seconds
k0		 	 ambi2D_encode_n	asnd,10,kaz
endin

instr	10	 ;decode	all	insruments	(the	first	4	speakers	of	a	18	speaker	setup)
a1,a2	 	 ambi2D_decode_basic		 10,0,20
a3,a4	 	 ambi2D_decode_basic		 10,40,60
	 	 outc	 a1,a2,a3,a4	 	 	
	 	 zacl		 0,20	 	 ;	clear	the	za	variables
endin

</CsInstruments>
<CsScore>
f1	0	32768	10	1
;	 	 	 amp	 	cf		 bw	 	 turns
i1	0	3		.7		 	1500		 12		 	 1
i1	2	18		 .1		2234		 34		 	 -8
;	 	 	 amp	 	 fr	 0	 turns
i2	0	3			.1	 		 440	 0	 2
i10	0	3
</CsScore>
</CsoundSynthesizer>
;example	by	martin	neukom

IN-PHASE	DECODING

The	left	figure	below	shows	a	symmetrical	arrangement	
of	7	loudspeakers.	If	the	virtual	sound	source	is	
precisely	in	the	direction	of	a	loudspeaker,	only	this	
loudspeaker	gets	a	signal	(center	figure).	If	the	virtual	
sound	source	is	between	two	loudspeakers,	these	
loudspeakers	receive	the	strongest	signals;	all	other	
loudspeakers	have	weaker	signals,	some	with	negative	
amplitude,	that	is,	reversed	phase	(right	figure).		

PANNING	AND	SPATIALIZATION

464

To	avoid	having	loudspeaker	sounds	that	are	far	away	
from	the	virtual	sound	source	and	to	ensure	that	
negative	amplitudes	(inverted	phase)	do	not	arise,	the	
B-format	channels	can	be	weighted	before	being	
decoded.	The	weighting	factors	depend	on	the	highest	
order	used	(M)	and	the	order	of	the	particular	channel	
being	decoded	(m).	

		gm	=		(M!)^2/((M	+	m)!·(M	-	m)!)	

The	decoded	signal	can	be	normalised	with	the	factor	gnorm(M)	=	(2M	
+	1)	!/(4^M	(M!)^2)		

The	illustration	below	shows	a	third-order	B-format	
signal	decoded	to	13	loudspeakers	first	uncorrected	(so-
called	basic	decoding,	left),	then	corrected	by	weighting	
(so-called	in-phase	decoding,	right).

PANNING	AND	SPATIALIZATION

465

Example	udo_ambisonics2D_3.csd	shows	in-phase	
decoding.	The	weights	and	norms	up	to	12th	order	are	
saved	in	the	arrays	iWeight2D[][]	and	iNorm2D[]	
respectively.	Instrument	11	decodes	third	order	for	4	
speakers	in	a	square.

		EXAMPLE	05B12_udo_ambisonics2D_3.csd	

<CsoundSynthesizer>
<CsInstruments>

sr						=		44100
ksmps			=		32
nchnls		=		4
0dbfs		 	=	1

opcode	 ambi2D_encode_n,	k,	aik		
asnd,iorder,kaz	xin
kaz	=	$M_PI*kaz/180
kk	=	 iorder
c1:
				 zawm	 cos(kk*kaz)*asnd,2*kk-1
				 zawm	 sin(kk*kaz)*asnd,2*kk
kk	=	 	 kk-1

if	 kk	>	0	goto	c1
	 zawm	 asnd,0	
	 xout	 0
endop

;in-phase-decoding
opcode	 ambi2D_dec_inph,	a,	ii	
;	weights	and	norms	up	to	12th	order
iNorm2D[]	array	1,0.75,0.625,0.546875,0.492188,0.451172,0.418945,
	 	 	 	 	 0.392761,0.370941,0.352394,0.336376,0.322360
iWeight2D[][]	init			12,12
iWeight2D					array		0.5,0,0,0,0,0,0,0,0,0,0,0,
	 0.666667,0.166667,0,0,0,0,0,0,0,0,0,0,
	 0.75,0.3,0.05,0,0,0,0,0,0,0,0,0,
	 0.8,0.4,0.114286,0.0142857,0,0,0,0,0,0,0,0,
	 0.833333,0.47619,0.178571,0.0396825,0.00396825,0,0,0,0,0,0,0,
	 0.857143,0.535714,0.238095,0.0714286,0.012987,0.00108225,0,0,0,0,0,0,
	 0.875,0.583333,0.291667,0.1060601,0.0265152,0.00407925,0.000291375,0,0,0,0,0,
	 0.888889,0.622222,0.339394,0.141414,0.043512,0.009324,0.0012432,
	 0.0000777,0,0,0,0,
	 0.9,0.654545,0.381818,0.176224,0.0629371,0.0167832,0.00314685,
	 0.000370218,0.0000205677,0,0,0,
	 0.909091,0.681818,0.41958,0.20979,0.0839161,0.0262238,0.0061703,
	 0.00102838,0.000108251,0.00000541254,0,0,
	 0.916667,0.705128,0.453297,0.241758,0.105769,0.0373303,0.0103695,
	 0.00218306,0.000327459,0.0000311866,0.00000141757,0,
	 0.923077,0.725275,0.483516,0.271978,0.12799,0.0497738,0.015718,
	 0.00392951,0.000748478,0.000102065,0.00000887523,0.000000369801

iorder,iaz1	 xin

PANNING	AND	SPATIALIZATION

466

iaz1	=	$M_PI*iaz1/180
kk	=	 iorder
a1	 =	 .5*zar(0)
c1:
a1	+=	 cos(kk*iaz1)*iWeight2D[iorder-1][kk-1]*zar(2*kk-1)
a1	+=	 sin(kk*iaz1)*iWeight2D[iorder-1][kk-1]*zar(2*kk)
kk	=	 	 kk-1
if	 kk	>	0	goto	c1
	 	 xout	 	 	 iNorm2D[iorder-1]*a1
endop

zakinit	7,	1	 	

instr	1
asnd	 rand	 	 p4
ares		 reson	 	 asnd,p5,p6,1
kaz				 line	 	 0,p3,p7*360	 	 ;turns	around	p7	times	in	p3	seconds
k0	 	 ambi2D_encode_n		 asnd,3,kaz
endin

instr	11	 	

a1		 	 ambi2D_dec_inph		 3,0
a2		 	 ambi2D_dec_inph		 3,90
a3		 	 ambi2D_dec_inph		 3,180
a4		 	 ambi2D_dec_inph		 3,270
	 	 outc	 a1,a2,a3,a4
	 	 zacl		 0,6	 	 ;	clear	the	za	variables
endin

</CsInstruments>
<CsScore>
;	 	 	 amp	 	cf		 bw	 	 turns
i1	0	3		.1		 	1500		 12		 	 1
i11	0	3
</CsScore>
</CsoundSynthesizer>
;example	by	martin	neukom

Distance

In	order	to	simulate	distances	and	movements	of	sound	
sources,	the	signals	have	to	be	treated	before	being	
encoded.	The	main	perceptual	cues	for	the	distance	of	a	
sound	source	are	reduction	of	the	amplitude,	filtering	
due	to	the	absorbtion	of	the	air	and	the	relation	between	
direct	and	indirect	sound.	We	will	implement	the	first	
two	of	these	cues.	The	amplitude	arriving	at	a	listener	is	
inversely	proportional	to	the	distance	of	the	sound	
source.	If	the	distance	is	larger	than	the	unit	circle	(not	
necessarily	the	radius	of	the	speaker	setup,	which	does	
not	need	to	be	known	when	encoding	sounds)	we	can	
simply	divide	the	sound	by	the	distance.	With	this	
calculation	inside	the	unit	circle	the	amplitude	is	
amplified	and	becomes	infinite	when	the	distance	

PANNING	AND	SPATIALIZATION

467

becomes	zero.	Another	problem	arises	when	a	virtual	
sound	source	passes	the	origin.	The	amplitude	of	the	
speaker	signal	in	the	direction	of	the	movement	
suddenly	becomes	maximal	and	the	signal	of	the	
opposite	speaker	suddenly	becomes	zero.	A	simple	
solution	for	these	problems	is	to	limit	the	gain	of	the	
channel	W	inside	the	unit	circle	to	1	(f1	in	the	figure	
below)	and	to	fade	out	all	other	channels	(f2).	By	fading	
out	all	channels	except	channel	W	the	information	about	
the	direction	of	the	sound	source	is	lost	and	all	speaker	
signals	are	the	same	and	the	sum	of	the	speaker	signals	
reaches	its	maximum	when	the	distance	is	0.	

	

	

Now,	we	are	looking	for	gain	functions	that	are	smoother	at	d	=	1.	
The	functions	should	be	differentiable	and	the	slope	of	f1	at	distance	
d	=	0	should	be	0.	For	distances	greater	than	1	the	functions	should	be	
approximately	1/d.	In	addition	the	function	f1	should	continuously	
grow	with	decreasing	distance	and	reach	its	maximum	at	d	=	0.	The	
maximal	gain	must	be	1.	The	function	atan(d·π/2)/(d·π/2)	fulfills	
these	constraints.	We	create	a	function	f2	for	the	fading	out	of	the	
other	channels	by	multiplying	f1	by	the	factor	(1	–	E^(-d)).

PANNING	AND	SPATIALIZATION

468

	

In	example	udo_ambisonics2D_4	the	UDO	
ambi2D_enc_dist_n	encodes	a	sound	at	any	order	with	
distance	correction.	The	inputs	of	the	UDO	are	asnd,	
iorder,	kazimuth	and	kdistance.	If	the	distance	becomes	
negative	the	azimuth	angle	is	turned	to	its	opposite	(kaz	
+=	π)	and	the	distance	taken	positive.	

EXAMPLE	05B13_udo_ambisonics2D_4.csd	

<CsoundSynthesizer>
<CsInstruments>

sr						=		44100
ksmps			=		32
nchnls		=		8
0dbfs		 	=	1

#include	"ambisonics2D_udos.txt"

;	distance	encoding
;	with	any	distance	(includes	zero	and	negative	distance)

opcode	 ambi2D_enc_dist_n,	k,	aikk	 	
asnd,iorder,kaz,kdist	 xin
kaz	=	$M_PI*kaz/180
kaz	 =	 	 	 (kdist	<	0	?	kaz	+	$M_PI	:	kaz)
kdist	=		 abs(kdist)+0.0001
kgainW	 =	 	 taninv(kdist*1.5707963)	/	(kdist*1.5708)	 	 ;pi/2
kgainHO	=	 (1	-	exp(-kdist))	;*kgainW
kk	=	 iorder
asndW	 =	 kgainW*asnd
asndHO	 =	 kgainHO*asndW
c1:
				 zawm	 cos(kk*kaz)*asndHO,2*kk-1
				 zawm	 sin(kk*kaz)*asndHO,2*kk
kk	=	 	 kk-1

if	 kk	>	0	goto	c1
	 zawm	 asndW,0	
	 xout	 0
endop

zakinit	17,	1	 	

instr	1
asnd	 rand	 	 p4
;asnd	 soundin	"/Users/user/csound/ambisonic/violine.aiff"

PANNING	AND	SPATIALIZATION

469

kaz				 line	 	 0,p3,p5*360	 	 ;turns	around	p5	times	in	p3	seconds
kdist	 line	 	 p6,p3,p7	 	 	
k0	 	 ambi2D_enc_dist_n	 	 asnd,8,kaz,kdist
endin

instr	10	 	
a1,a2,a3,a4,
a5,a6,a7,a8		 	 ambi2D_decode	 	 8,0,45,90,135,180,225,270,315
	 	 outc	 a1,a2,a3,a4,a5,a6,a7,a8
	 	 zacl		 0,16	 	
endin

</CsInstruments>
<CsScore>
f1	0	32768	10	1
;								amp	turns	dist1	dist2
i1	0	4			1			0					2					-2
;i1	0	4		1			1					1					1
i10	0	4
</CsScore>
</CsoundSynthesizer>
;example	by	martin	neukom

In	order	to	simulate	the	absorption	of	the	air	we	
introduce	a	very	simple	lowpass	filter	with	a	distance	
depending	cutoff	frequency.	We	produce	a	Doppler-shift	
with	a	distance	dependent	delay	of	the	sound.	Now,	we	
have	to	determine	our	unit	since	the	delay	of	the	sound	
wave	is	calculated	as	distance	divided	by	sound	
velocity.	In	our	example	udo_ambisonics2D_5.csd	we	
set	the	unit	to	1	metre.	These	procedures	are	performed	
before	the	encoding.	In	instrument	1	the	movement	of	
the	sound	source	is	defined	in	Cartesian	coordinates.	
The	UDO	xy_to_ad	transforms	them	into	polar	
coordinates.	The	B-format	channels	can	be	written	to	a	
sound	file	with	the	opcode	fout.	The	UDO	
write_ambi2D_2	writes	the	channels	up	to	second	order	
into	a	sound	file.	

		EXAMPLE	05B14_udo_ambisonics2D_5.csd		

<CsoundSynthesizer>
<CsInstruments>
sr						=		44100
ksmps			=		32
nchnls		=		8
0dbfs		 	=	1

PANNING	AND	SPATIALIZATION

470

#include	"ambisonics2D_udos.txt"
#include	"ambisonics_utilities.txt"	;opcodes	Absorb	and	Doppler

/*	these	opcodes	are	included	in	"ambisonics2D_udos.txt"
opcode	xy_to_ad,	kk,	kk
kx,ky	 	 xin
kdist	=	sqrt(kx*kx+ky*ky)
kaz		 	 taninv2	ky,kx
	 	 	 xout	 	 180*kaz/$M_PI,	kdist
endop

opcode	Absorb,	a,	ak
asnd,kdist	 xin
aabs		 	 tone		 	 5*asnd,20000*exp(-.1*kdist)	
	 	 	 xout		 	 aabs
endop

opcode	Doppler,	a,	ak
asnd,kdist	 xin
abuf	 	 delayr		.5
adop	 	 deltapi	interp(kdist)*0.0029137529	+	.01	;	1/343.2
	 	 	 delayw		asnd		
	 	 	 xout	 	 adop
endop
*/
opcode	 write_ambi2D_2,	k,	 S	 	
Sname	 	 	 xin
fout		 Sname,12,zar(0),zar(1),zar(2),zar(3),zar(4)
	 	 	 	 xout	 0
endop

zakinit	17,	1	 	 ;	zak	space	with	the	17	channels	of	the	B-format

instr	1
asnd				buzz					p4,p5,50,1
;asnd			soundin		"/Users/user/csound/ambisonic/violine.aiff"
kx						line					p7,p3,p8	 	
ky						line					p9,p3,p10	 	
kaz,kdist	xy_to_ad	kx,ky
aabs				absorb			asnd,kdist
adop				Doppler		.2*aabs,kdist
k0						ambi2D_enc_dist	adop,5,kaz,kdist
endin

instr	10	 	 ;decode	all	insruments
a1,a2,a3,a4,
a5,a6,a7,a8					ambi2D_dec_inph	5,0,45,90,135,180,225,270,315
																outc												a1,a2,a3,a4,a5,a6,a7,a8
;															fout	"B_format2D.wav",12,zar(0),zar(1),zar(2),zar(3),zar(4),
;																																zar(5),zar(6),zar(7),zar(8),zar(9),zar(10)
k0														write_ambi2D_2		"ambi_ex5.wav"	
																zacl												0,16	;	clear	the	za	variables
endin

</CsInstruments>
<CsScore>
f1	0	32768	10	1
;	 	 	 amp	 		 f		 	 0	 	 x1	 x2	
y1	 y2
i1	0	5		.8		200		 	 0		 	 40	 -20	 1	 .1
i10	0	5
</CsScore>
</CsoundSynthesizer>
;example	by	martin	neukom

The	position	of	a	point	in	space	can	be	given	by	its	Cartesian
coordinates	x,	y	and	z	or	by	its	spherical	coordinates	the	radial
distance	r	from	the	origin	of	the	coordinate	system,	the	elevation	δ
(which	lies	between	–π	and	π)	and	the	azimuth	angle	θ.

PANNING	AND	SPATIALIZATION

471

The	formulae	for	transforming	coordinates	are	as	follows:

	

The	channels	of	the	Ambisonic	B-format	are	computed	as	the	product
of	the	sounds	themselves	and	the	so-called	spherical	harmonics
representing	the	direction	to	the	virtual	sound	sources.	The	spherical
harmonics	can	be	normalised	in	various	ways.	We	shall	use	the	so-
called	semi-normalised	spherical	harmonics.	The	following	table
shows	the	encoding	functions	up	to	the	third	order	as	function	of
azimuth	and	elevation	Ymn(θ,δ)	and	as	function	of	x,	y	and	z
Ymn(x,y,z)	for	sound	sources	on	the	unit	sphere.	The	decoding
formulae	for	symmetrical	speaker	setups	are	the	same.

PANNING	AND	SPATIALIZATION

472

	

In	the	first	3	of	the	following	examples	we	will	not	
produce	sound	but	display	in	number	boxes	(for	
example	using	CsoundQt	widgets)	the	amplitude	of	3	
speakers	at	positions	(1,	0,	0),	(0,	1,	0)	and	(0,	0,	1)	in	
Cartesian	coordinates.	The	position	of	the	sound	source	
can	be	changed	with	the	two	scroll	numbers.	The	
example	udo_ambisonics_1.csd	shows	encoding	up	to	
second	order.	The	decoding	is	done	in	two	steps.	First	
we	decode	the	B-format	for	one	speaker.	In	the	second	
step,	we	create	a	overloaded	opcode	for	n	speakers.	
The	number	of	output	signals	determines	which	version	
of	the	opcode	is	used.	The	opcodes	ambi_encode	and	
ambi_decode	up	to	8th	order	are	saved	in	the	text	file	
"ambisonics_udos.txt".

PANNING	AND	SPATIALIZATION

473

		EXAMPLE	05B15_udo_ambisonics_1.csd		

<CsoundSynthesizer>
<CsInstruments>
sr						=		44100
ksmps			=		32
nchnls		=		1
0dbfs		 	=	1

zakinit	9,	1	 ;	zak	space	with	the	9	channel	B-format	second	order

opcode	 ambi_encode,	k,	aikk	 	
asnd,iorder,kaz,kel	 xin
kaz	=	$M_PI*kaz/180
kel	=	$M_PI*kel/180
kcos_el	=	cos(kel)
ksin_el	=	sin(kel)
kcos_az	=	cos(kaz)
ksin_az	=	sin(kaz)

	 zawm	 asnd,0	 	 	 	 	 	 	 ;	W
	 zawm	 kcos_el*ksin_az*asnd,1	 	 ;	Y	 	=	Y(1,-1)
	 zawm	 ksin_el*asnd,2			 	 	 ;	Z	 	=	Y(1,0)
	 zawm	 kcos_el*kcos_az*asnd,3	 	 ;	X	 	=	Y(1,1)

	 if	 	 iorder	<	2	goto	end

i2	 =	sqrt(3)/2
kcos_el_p2	=	kcos_el*kcos_el
ksin_el_p2	=	ksin_el*ksin_el
kcos_2az	=	cos(2*kaz)
ksin_2az	=	sin(2*kaz)
kcos_2el	=	cos(2*kel)
ksin_2el	=	sin(2*kel)

	 zawm	i2*kcos_el_p2*ksin_2az*asnd,4	 ;	V	=	Y(2,-2)
	 zawm	i2*ksin_2el*ksin_az*asnd,5		 ;	S	=	Y(2,-1)
	 zawm	.5*(3*ksin_el_p2	-	1)*asnd,6	 	 ;	R	=	Y(2,0)
	 zawm	i2*ksin_2el*kcos_az*asnd,7		 ;	S	=	Y(2,1)
	 zawm	i2*kcos_el_p2*kcos_2az*asnd,8	 ;	U	=	Y(2,2)
end:
	 	 xout	 0
endop

;	decoding	of	order	iorder	for	1	speaker	at	position	iaz,iel,idist
opcode	 ambi_decode1,	a,	iii	 	
iorder,iaz,iel	 xin
iaz	=	$M_PI*iaz/180
iel	=	$M_PI*iel/180
a0=zar(0)
	 if	 iorder	>	0	goto	c0
aout	=	a0
	 goto	 end
c0:
a1=zar(1)
a2=zar(2)
a3=zar(3)
icos_el	=	cos(iel)
isin_el	=	sin(iel)
icos_az	=	cos(iaz)
isin_az	=	sin(iaz)
i1	 =	 icos_el*isin_az		 	 ;	Y	 	=	Y(1,-1)
i2	 =	 isin_el		 	 	 	 ;	Z	 	=	Y(1,0)
i3	 =	 icos_el*icos_az		 	 ;	X	 	=	Y(1,1)
	 if	iorder	>	1	goto	c1
aout	 =	 (1/2)*(a0	+	i1*a1	+	i2*a2	+	i3*a3)
	 goto	end
c1:
a4=zar(4)
a5=zar(5)
a6=zar(6)
a7=zar(7)

PANNING	AND	SPATIALIZATION

474

a8=zar(8)

ic2	 =	sqrt(3)/2

icos_el_p2	=	icos_el*icos_el
isin_el_p2	=	isin_el*isin_el
icos_2az	=	cos(2*iaz)
isin_2az	=	sin(2*iaz)
icos_2el	=	cos(2*iel)
isin_2el	=	sin(2*iel)

i4	=	ic2*icos_el_p2*isin_2az	 ;	V	=	Y(2,-2)
i5	 =	ic2*isin_2el*isin_az	 	 ;	S	=	Y(2,-1)
i6	=	.5*(3*isin_el_p2	-	1)	 	 ;	R	=	Y(2,0)
i7	=	ic2*isin_2el*icos_az	 	 ;	S	=	Y(2,1)
i8	=	ic2*icos_el_p2*icos_2az	 ;	U	=	Y(2,2)
	
aout	 =	 (1/9)*(a0	+	3*i1*a1	+	3*i2*a2	+	3*i3*a3	+	5*i4*a4	+	5*i5*a5	+	5*i6*a6	
+	5*i7*a7	+	5*i8*a8)

end:
	 	 xout	 	 	 aout
endop

;	overloaded	opcode	for	decoding	of	order	iorder
;	speaker	positions	in	function	table	ifn
opcode	 ambi_decode,	 a,ii
iorder,ifn	xin
	 	 xout	 	 ambi_decode1(iorder,table(1,ifn),table(2,ifn))
endop
opcode	 ambi_decode,	 aa,ii
iorder,ifn	xin
	 	 xout	 	 	 	
ambi_decode1(iorder,table(1,ifn),table(2,ifn)),
	 	 ambi_decode1(iorder,table(3,ifn),table(4,ifn))
endop
opcode	 ambi_decode,	 aaa,ii
iorder,ifn	xin
	 	 xout	 	 ambi_decode1(iorder,table(1,ifn),table(2,ifn)),
	 	 ambi_decode1(iorder,table(3,ifn),table(4,ifn)),
	 	 ambi_decode1(iorder,table(5,ifn),table(6,ifn))
endop

instr	1
asnd	 init	 	 1
;kdist	 init	 	 1
kaz	 	 invalue	"az"
kel	 	 invalue	"el"

k0	 ambi_encode	 	 asnd,2,kaz,kel

ao1,ao2,ao3		 ambi_decode	 2,17
	 	 outvalue	"sp1",	downsamp(ao1)
	 	 outvalue	"sp2",	downsamp(ao2)	
	 	 outvalue	"sp3",	downsamp(ao3)	
	 	 zacl		 0,8
endin

</CsInstruments>
<CsScore>
;f1	0	1024	10	1
f17	0	64	-2	0		0	0			90	0			0	90			0	0		0	0		0	0
i1	0	100
</CsScore>
</CsoundSynthesizer>
;example	by	martin	neukom

Example	udo_ambisonics_2.csd	shows	in-phase	decoding.	The
weights	up	to	8th	order	are	stored	in	the	arrays	iWeight3D[][].	

PANNING	AND	SPATIALIZATION

475

		EXAMPLE	05B16_udo_ambisonics_2.csd	

<CsoundSynthesizer>
<CsInstruments>
sr						=		44100
ksmps			=		32
nchnls		=		1
0dbfs		 	=	1

zakinit	81,	1	;	zak	space	for	up	to	81	channels	of	the	8th	order	B-format

;	the	opcodes	used	below	are	safed	in	"ambisonics_udos.txt"
#include	"ambisonics_udos.txt"

;	in-phase	decoding	up	to	third	order	for	one	speaker
opcode	 ambi_dec1_inph3,	a,	iii		
;	weights	up	to	8th	order
iWeight3D[][]	init			8,8
iWeight3D					array		0.333333,0,0,0,0,0,0,0,
	 0.5,0.1,0,0,0,0,0,0,
	 0.6,0.2,0.0285714,0,0,0,0,0,
	 0.666667,0.285714,0.0714286,0.0079365,0,0,0,0,
	 0.714286,0.357143,0.119048,0.0238095,0.0021645,0,0,0,
	 0.75,0.416667,0.166667,0.0454545,0.00757576,0.00058275,0,0,
	 0.777778,0.466667,0.212121,0.0707071,0.016317,0.002331,0.0001554,0,
			 0.8,0.509091,0.254545,0.0979021,0.027972,0.0055944,0.0006993,0.00004114

iorder,iaz,iel	 xin
iaz	=	$M_PI*iaz/180
iel	=	$M_PI*iel/180
a0=zar(0)
	 if	 iorder	>	0	goto	c0
aout	=	a0
	 goto	 end
c0:
a1=iWeight3D[iorder-1][0]*zar(1)
a2=iWeight3D[iorder-1][0]*zar(2)
a3=iWeight3D[iorder-1][0]*zar(3)
icos_el	=	cos(iel)
isin_el	=	sin(iel)
icos_az	=	cos(iaz)
isin_az	=	sin(iaz)
i1	 =	 icos_el*isin_az		 	 ;	Y	 	=	Y(1,-1)
i2	 =	 isin_el		 	 	 	 ;	Z	 	=	Y(1,0)
i3	 =	 icos_el*icos_az		 	 ;	X	 	=	Y(1,1)
	 if	iorder	>	1	goto	c1
aout	 =	 (3/4)*(a0	+	i1*a1	+	i2*a2	+	i3*a3)
	 goto	end
c1:
a4=iWeight3D[iorder-1][1]*zar(4)
a5=iWeight3D[iorder-1][1]*zar(5)
a6=iWeight3D[iorder-1][1]*zar(6)
a7=iWeight3D[iorder-1][1]*zar(7)
a8=iWeight3D[iorder-1][1]*zar(8)

ic2	 =	sqrt(3)/2

icos_el_p2	=	icos_el*icos_el
isin_el_p2	=	isin_el*isin_el
icos_2az	=	cos(2*iaz)
isin_2az	=	sin(2*iaz)
icos_2el	=	cos(2*iel)
isin_2el	=	sin(2*iel)

i4	=	ic2*icos_el_p2*isin_2az	 ;	V	=	Y(2,-2)
i5	 =	ic2*isin_2el*isin_az	 	 ;	S	=	Y(2,-1)
i6	=	.5*(3*isin_el_p2	-	1)	 	 ;	R	=	Y(2,0)
i7	=	ic2*isin_2el*icos_az	 	 ;	S	=	Y(2,1)
i8	=	ic2*icos_el_p2*icos_2az	 ;	U	=	Y(2,2)
aout	 =	 (1/3)*(a0	+	3*i1*a1	+	3*i2*a2	+	3*i3*a3	+	5*i4*a4	+	5*i5*a5	+	5*i6*a6	
+	5*i7*a7	+	5*i8*a8)

PANNING	AND	SPATIALIZATION

476

end:
	 	 xout	 	 	 aout
endop

;	overloaded	opcode	for	decoding	for	1	or	2	speakers
;	speaker	positions	in	function	table	ifn
opcode	 ambi_dec2_inph,	a,ii
iorder,ifn	xin
	 	 xout	 	 ambi_dec1_inph(iorder,table(1,ifn),table(2,ifn))
endop
opcode	 ambi_dec2_inph,	aa,ii
iorder,ifn	xin
	 	 xout	 	 ambi_dec1_inph(iorder,table(1,ifn),table(2,ifn)),
	 	 ambi_dec1_inph(iorder,table(3,ifn),table(4,ifn))
endop
opcode	 ambi_dec2_inph,	aaa,ii
iorder,ifn	xin
	 	 xout	 	 ambi_dec1_inph(iorder,table(1,ifn),table(2,ifn)),
	 	 ambi_dec1_inph(iorder,table(3,ifn),table(4,ifn)),
	 	 ambi_dec1_inph(iorder,table(5,ifn),table(6,ifn))
endop

instr	1
asnd				init							1
kdist			init							1
kaz					invalue				"az"
kel					invalue				"el"

k0						ambi_encode	asnd,8,kaz,kel
ao1,ao2,ao3	ambi_dec_inph	8,17
								outvalue			"sp1",	downsamp(ao1)
								outvalue			"sp2",	downsamp(ao2)
								outvalue			"sp3",	downsamp(ao3)
								zacl							0,80
endin

</CsInstruments>
<CsScore>
f1	0	1024	10	1
f17	0	64	-2	0		0	0			90	0			0	90		0	0		0	0		0	0		0	0		0	0
i1	0	100
</CsScore>
</CsoundSynthesizer>
;example	by	martin	neukom

The	weighting	factors	for	in-phase	decoding	of
Ambisonics	(3D)	are:

Example	udo_ambisonics_3.csd	shows	distance	encoding.	

		EXAMPLE	05B17_udo_ambisonics_3.csd	

PANNING	AND	SPATIALIZATION

477

<CsoundSynthesizer>
<CsInstruments>
sr						=		44100
ksmps			=		32
nchnls		=		2
0dbfs		 	=	1

zakinit	81,	1	 	 ;	zak	space	with	the	11	channels	of	the	B-format

#include	"ambisonics_udos.txt"

opcode	 ambi3D_enc_dist1,	k,	aikkk	 	
asnd,iorder,kaz,kel,kdist	 xin
kaz	=	$M_PI*kaz/180
kel	=	$M_PI*kel/180
kaz	 =	 	 (kdist	<	0	?	kaz	+	$M_PI	:	kaz)
kel	 =	 	 (kdist	<	0	?	-kel	:	kel)
kdist	=	abs(kdist)+0.00001
kgainW	 =	 taninv(kdist*1.5708)	/	(kdist*1.5708)	 	
kgainHO	=	 (1	-	exp(-kdist))	;*kgainW
	 outvalue	"kgainHO",	kgainHO
	 outvalue	"kgainW",	kgainW
kcos_el	=	cos(kel)
ksin_el	=	sin(kel)
kcos_az	=	cos(kaz)
ksin_az	=	sin(kaz)
asnd	=	 	 kgainW*asnd
	 zawm	 asnd,0	 	 	 	 	 	 	 ;	W
asnd	=		kgainHO*asnd
	 zawm	 kcos_el*ksin_az*asnd,1	 	 ;	Y	 	=	Y(1,-1)
	 zawm	 ksin_el*asnd,2			 	 	 ;	Z	 	=	Y(1,0)
	 zawm	 kcos_el*kcos_az*asnd,3	 	 ;	X	 	=	Y(1,1)
	 if	 	 iorder	<	2	goto	end
/*
...
*/
end:
	 	 xout	 0
endop

instr	1
asnd				init						1
kaz					invalue	"az"
kel					invalue	"el"
kdist			invalue	"dist"
k0	ambi_enc_dist	asnd,5,kaz,kel,kdist
ao1,ao2,ao3,ao4	ambi_decode	5,17
								outvalue	"sp1",	downsamp(ao1)
								outvalue	"sp2",	downsamp(ao2)
								outvalue	"sp3",	downsamp(ao3)
								outvalue	"sp4",	downsamp(ao4)
								outc						0*ao1,0*ao2;,2*ao3,2*ao4
								zacl						0,80
endin
</CsInstruments>
<CsScore>
f17	0	64	-2	0		0	0		90	0			180	0		 	0	90		0	0	 0	0
i1	0	100
</CsScore>
</CsoundSynthesizer>
;example	by	martin	neukom

In	example	udo_ambisonics_4.csd	a	buzzer	with	the
three-dimensional	trajectory	shown	below	is	encoded	in
third	order	and	decoded	for	a	speaker	setup	in	a	cube
(f17).

		EXAMPLE	05B18_udo_ambisonics_4.csd		

PANNING	AND	SPATIALIZATION

478

<CsoundSynthesizer>
<CsInstruments>
sr						=		44100
ksmps			=		32
nchnls		=		8
0dbfs		 	=	1

zakinit	16,	1	

#include	"ambisonics_udos.txt"
#include	"ambisonics_utilities.txt"

instr	1
asnd				buzz				p4,p5,p6,1
kt						line				0,p3,p3
kaz,kel,kdist	xyz_to_aed	10*sin(kt),10*sin(.78*kt),10*sin(.43*kt)
adop	Doppler	asnd,kdist
k0	ambi_enc_dist	adop,3,kaz,kel,kdist
a1,a2,a3,a4,a5,a6,a7,a8	ambi_decode	3,17
;k0	 	 ambi_write_B	 "B_form.wav",8,14
								outc				a1,a2,a3,a4,a5,a6,a7,a8
								zacl				0,15
endin

</CsInstruments>
<CsScore>
f1	0	32768	10	1
f17	0	64	-2	0	-45	35.2644		45	35.2644		135	35.2644		225	35.2644		-45	-35.2644		.7854	
-35.2644		135	-35.2644		225	-35.2644
i1	0	40	.5	300	40
</CsScore>
</CsoundSynthesizer>
;example	by	martin	neukom

Ambisonics	Equivalent	Panning	(AEP)		

If	we	combine	encoding	and	in-phase	decoding,	we	obtain	the	
following	panning	function	(a	gain	function	for	a	speaker	depending	
on	its	distance	to	a	virtual	sound	source):

		P(γ,	m)	=	(1/2+	1/2	cos	γ)^m	

where	γ	denotes	the	angle	between	a	sound	source	and	a	speaker	and	
m	denotes	the	order.	If	the	speakers	are	positioned	on	a	unit	sphere	
the	cosine	of	the	angle	γ	is	calculated	as	the	scalar	product	of	the	
vector	to	the	sound	source	(x,	y,	z)	and	the	vector	to	the	speaker	(xs,	
ys,	zs).	

In	contrast	to	Ambisonics	the	order	indicated	in	the	function	does	not	
have	to	be	an	integer.	This	means	that	the	order	can	be	continuously	
varied	during	decoding.	The	function	can	be	used	in	both	Ambisonics	
and	Ambisonics2D.

PANNING	AND	SPATIALIZATION

479

This	system	of	panning	is	called	Ambisonics	Equivalent	Panning.	It	
has	the	disadvantage	of	not	producing	a	B-format	representation,	but	
its	implementation	is	straightforward	and	the	computation	time	is	
short	and	independent	of	the	Ambisonics	order	simulated.	Hence	it	is	
particularly	useful	for	real-time	applications,	for	panning	in	
connection	with	sequencer	programs	and	for	experimentation	with	
high	and	non-integral	Ambisonic	orders.

The	opcode	AEP1	in	the	example	udo_AEP.csd	shows	the	calculation	
of	ambisonics	equivalent	panning	for	one	speaker.	The	opcode	AEP	
then	uses	AEP1	to	produce	the	signals	for	several	speakers.	In	the	text	
file	"AEP_udos.txt"	AEP	ist	implemented	for	up	to	16	speakers.	The	
position	of	the	speakers	must	be	written	in	a	function	table.	As	the	
first	parameter	in	the	function	table	the	maximal	speaker	distance	
must	be	given.

		EXAMPLE	05B19_udo_AEP.csd			

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
sr						=		44100
ksmps			=		32
nchnls		=		4
0dbfs		 	=	1

;#include	"ambisonics_udos.txt"

;	opcode	AEP1	is	the	same	as	in	udo_AEP_xyz.csd

opcode	 AEP1,	a,	akiiiikkkkkk	;	soundin,	order,	ixs,	iys,	izs,	idsmax,	kx,	ky,	kz
ain,korder,ixs,iys,izs,idsmax,kx,ky,kz,kdist,kfade,kgain	 xin
idists	=	 	 sqrt(ixs*ixs+iys*iys+izs*izs)
kpan	=	 	 	 kgain*((1-kfade+kfade*
(kx*ixs+ky*iys+kz*izs)/(kdist*idists))^korder)
	 	 xout	 ain*kpan*idists/idsmax
endop

;	opcode	AEP	calculates	ambisonics	equivalent	panning	for	n	speaker
;	the	number	n	of	output	channels	defines	the	number	of	speakers	(overloaded	
function)
;	inputs:	sound	ain,	order	korder	(any	real	number	>=	1)
;	ifn	=	number	of	the	function	containing	the	speaker	positions
;	position	and	distance	of	the	sound	source	kaz,kel,kdist	in	degrees

opcode	AEP,	aaaa,	akikkk
ain,korder,ifn,kaz,kel,kdist	 xin
kaz	=	$M_PI*kaz/180
kel	=	$M_PI*kel/180
kx	=	kdist*cos(kel)*cos(kaz)
ky	=	kdist*cos(kel)*sin(kaz)
kz	=	kdist*sin(kel)
ispeaker[]	array	0,
		table(3,ifn)*cos(($M_PI/180)*table(2,ifn))*cos(($M_PI/180)*table(1,ifn)),

PANNING	AND	SPATIALIZATION

480

		table(3,ifn)*cos(($M_PI/180)*table(2,ifn))*sin(($M_PI/180)*table(1,ifn)),
		table(3,ifn)*sin(($M_PI/180)*table(2,ifn)),
		table(6,ifn)*cos(($M_PI/180)*table(5,ifn))*cos(($M_PI/180)*table(4,ifn)),
		table(6,ifn)*cos(($M_PI/180)*table(5,ifn))*sin(($M_PI/180)*table(4,ifn)),
		table(6,ifn)*sin(($M_PI/180)*table(5,ifn)),
		table(9,ifn)*cos(($M_PI/180)*table(8,ifn))*cos(($M_PI/180)*table(7,ifn)),
		table(9,ifn)*cos(($M_PI/180)*table(8,ifn))*sin(($M_PI/180)*table(7,ifn)),
		table(9,ifn)*sin(($M_PI/180)*table(8,ifn)),
		table(12,ifn)*cos(($M_PI/180)*table(11,ifn))*cos(($M_PI/180)*table(10,ifn)),
		table(12,ifn)*cos(($M_PI/180)*table(11,ifn))*sin(($M_PI/180)*table(10,ifn)),
		table(12,ifn)*sin(($M_PI/180)*table(11,ifn))

idsmax			table			0,ifn
kdist				=							kdist+0.000001
kfade				=							.5*(1	-	exp(-abs(kdist)))
kgain				=							taninv(kdist*1.5708)/(kdist*1.5708)

a1							AEP1				ain,korder,ispeaker[1],ispeaker[2],ispeaker[3],
																			idsmax,kx,ky,kz,kdist,kfade,kgain
a2							AEP1				ain,korder,ispeaker[4],ispeaker[5],ispeaker[6],
																			idsmax,kx,ky,kz,kdist,kfade,kgain
a3							AEP1				ain,korder,ispeaker[7],ispeaker[8],ispeaker[9],
																			idsmax,kx,ky,kz,kdist,kfade,kgain
a4							AEP1				ain,korder,ispeaker[10],ispeaker[11],ispeaker[12],
																			idsmax,kx,ky,kz,kdist,kfade,kgain	
									xout				a1,a2,a3,a4
endop

instr	1
ain						rand				1
;ain	 	 soundin	"/Users/user/csound/ambisonic/violine.aiff"
kt							line				0,p3,360
korder			init				24
;kdist		Dist	kx,	ky,	kz	
a1,a2,a3,a4	AEP		ain,korder,17,kt,0,1
									outc				a1,a2,a3,a4
endin

</CsInstruments>
<CsScore>

;fuction	for	speaker	positions
;	GEN	-2,	parameters:	max_speaker_distance,	xs1,ys1,zs1,xs2,ys2,zs2,...
;octahedron
;f17	0	32	-2	1	1	0	0		-1	0	0		0	1	0		0	-1	0		0	0	1		0	0	-1
;cube
;f17	0	32	-2	1,732	1	1	1		1	1	-1		1	-1	1		-1	1	1
;octagon
;f17	0	32	-2	1	0.924	-0.383	0	0.924	0.383	0	0.383	0.924	0	-0.383	0.924	0	-0.924	0.383	
0	-0.924	-0.383	0	-0.383	-0.924	0	0.383	-0.924	0
;f17	0	32	-2	1		0	0	1		45	0	1		90	0	1		135	0	1		180	0	1		225	0	1		270	0	1		315	0	1
;f17	0	32	-2	1		0	-90	1		0	-70	1		0	-50	1		0	-30	1		0	-10	1		0	10	1		0	30	1		0	50	1
f17	0	32	-2	1			-45	0	1			45	0	1			135	0	1		225	0	1
i1	0	2

</CsScore>
</CsoundSynthesizer>
;example	by	martin	neukom

Utilities	

The	file	utilities.txt	contains	the	following	opcodes:

dist	computes	the	distance	from	the	origin	(0,	0)	or	(0,	0,	0)	to	a	point	

PANNING	AND	SPATIALIZATION

481

(x,	y)	or	(x,	y,	z)

kdist	dist	kx,	ky

kdist	dist	kx,	ky,	kz

	

Doppler	simulates	the	Doppler-shift

ares	Doppler		asnd,	kdistance		

	

absorb	is	a	very	simple	simulation	of	the	frequency	dependent	
absorption

ares	absorb	asnd,	kdistance

		

aed_to_xyz	converts	polar	coordinates	to	Cartesian	coordinates

kx,	ky,	kz	aed_to_xyz	kazimuth,	kelevation,	
kdistance

ix,	iy,	iz	aed_to_xyz	iazimuth,	ielevation,	
idistance

		

dist_corr	induces	a	delay	and	reduction	of	the	speaker	signals	relative	
to	the	most	distant	speaker.

a1	[,	a2]	...	[,	a16]	dist_corr	a1	[,	a2]	...	[,	
a16],	ifn

PANNING	AND	SPATIALIZATION

482

	f	ifn		0		32		-2		max_speaker_distance	dist1,	
dist2,	...	;distances	in	m

		

radian	(radiani)	converts	degrees	to	radians.

irad	radiani	idegree	

krad	radian	kdegree

arad	radian	adegree

degree	(degreei)	converts	radian	to	degrees

idegree	degreei	irad

kdegree	degree	krad

adegree	degree	arad	

VBAP	OR	AMBISONICS?	

Csound	offers	a	simple	and	reliable	way	to	access	two	standard	
methods	for	multi-channel	spatialisation.	Both	have	different	
qualities	and	follow	different	aesthetics.	VBAP	can	perhaps	be	
described	as	clear,	rational	and	direct.	It	combines	simplicity	with	
flexibility.	It	gives	a	reliable	sound	projection	even	for	rather	
asymmetric	speaker	setups.	Ambisonics	on	the	other	hand	offers	a	
very	soft	sound	image,	in	which	the	single	speaker	becomes	part	of	a	
coherent	sound	field.	The	B-format	offers	the	possibility	to	store	the	
spatial	information	independently	from	any	particular	speaker	
configuration.	
		

The	composer,	or	spatial	interpreter,	can	choose	one	or	the	other	

PANNING	AND	SPATIALIZATION

483

technique	depending	on	the	music	and	the	context.	Or	(s)he	can	
design	a	personal	approach	to	spatialisation	by	combining	the	
different	techniques	described	in	this	chapter.

		

1.	 First	described	by	Ville	Pulkki	in	1997:	Ville	Pulkki,	Virtual	
source	positioning	using	vector	base	amplitude	panning,	in:	
Journal	of	the	Audio	Engeneering	Society,	45(6),	456-466^

2.	 Ville	Pulkki,	Uniform	spreading	of	amplitude	panned	virtual	
sources,	in:	Proceedings	of	the	1999	IEEE	Workshop	on	
Applications	of	Signal	Processing	to	Audio	and	Acoustics,	
Mohonk	Montain	House,	New	Paltz^

3.	 For	instance	www.ambisonic.net	or	
www.icst.net/research/projects/ambisonics-theory^

4.	 See	www.csounds.com/manual/html/bformdec1.html	for	more	
details.^

5.	 Which	in	turn	then	are	taken	by	the	decoder	as	input.^

PANNING	AND	SPATIALIZATION

484

FILTERS

485

FILTERS

Audio	filters	can	range	from	devices	that	subtly	shape	the	tonal	
characteristics	of	a	sound	to	ones	that	dramatically	remove	whole	
portions	of	a	sound	spectrum	to	create	new	sounds.	Csound	includes	
several	versions	of	each	of	the	commonest	types	of	filters	and	some	
more	esoteric	ones	also.	The	full	list	of	Csound's	standard	filters	can	
be	found	here.	A	list	of	the	more	specialised	filters	can	be	found	here.
		

LOWPASS	FILTERS

The	first	type	of	filter	encountered	is	normally	the	lowpass	filter.	As	
its	name	suggests	it	allows	lower	frequencies	to	pass	through	
unimpeded	and	therefore	filters	higher	frequencies.	The	crossover		
frequency	is	normally	referred	to	as	the	'cutoff'	frequency.	Filters	of	
this	type	do	not	really	cut	frequencies	off	at	the	cutoff	point	like	a	
brick	wall	but	instead	attenuate	increasingly	according	to	a	cutoff	
slope.	Different	filters	offer	cutoff	slopes	of	different	of	steepness.	
Another	aspect	of	a	lowpass	filter	that	we	may	be	concerned	with	is	a	
ripple	that	might	emerge	at	the	cutoff	point.	If	this	is	exaggerated	
intentionally	it	is	referred	to	as	resonance	or	'Q'.
		

In	the	following	example,	three	lowpass	filters	filters	are	
demonstrated:	tone,	butlp	and	moogladder.	tone	offers	a	quite	gentle	
cutoff	slope	and	therefore	is	better	suited	to	subtle	spectral	
enhancement	tasks.	butlp	is	based	on	the	Butterworth	filter	design	and
produces	a	much	sharper	cutoff	slope	at	the	expense	of	a	slightly	
greater	CPU	overhead.	moogladder	is	an	interpretation	of	an	analogue
filter	found	in	a	moog	synthesizer	–	it	includes	a	resonance	control.
		

In	the	example	a	sawtooth	waveform	is	played	in	turn	through	each	
filter.	Each	time	the	cutoff	frequency	is	modulated	using	an	envelope,	

FILTERS

486

starting	high	and	descending	low	so	that	more	and	more	of	the	
spectral	content	of	the	sound	is	removed	as	the	note	progresses.	A	
sawtooth	waveform	has	been	chosen	as	it	contains	strong	higher	
frequencies	and	therefore	demonstrates	the	filters	characteristics	well;
a	sine	wave	would	be	a	poor	choice	of	source	sound	on	account	of	its	
lack	of	spectral	richness.
		

			EXAMPLE	05C01_tone_butlp_moogladder.csd

<CsoundSynthesizer>

<CsOptions>
-odac	;	activates	real	time	sound	output
</CsOptions>

<CsInstruments>
;	Example	by	Iain	McCurdy

sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

		instr	1
								prints							"tone%n"				;	indicate	filter	type	in	console
aSig				vco2									0.5,	150				;	input	signal	is	a	sawtooth	waveform
kcf					expon								10000,p3,20	;	descending	cutoff	frequency
aSig				tone									aSig,	kcf			;	filter	audio	signal
								out										aSig								;	filtered	audio	sent	to	output
		endin

		instr	2
								prints							"butlp%n"			;	indicate	filter	type	in	console
aSig				vco2									0.5,	150				;	input	signal	is	a	sawtooth	waveform
kcf					expon								10000,p3,20	;	descending	cutoff	frequency
aSig				butlp								aSig,	kcf			;	filter	audio	signal
								out										aSig								;	filtered	audio	sent	to	output
		endin

		instr	3
								prints							"moogladder%n"	;	indicate	filter	type	in	console
aSig				vco2									0.5,	150							;	input	signal	is	a	sawtooth	waveform
kcf					expon								10000,p3,20				;	descending	cutoff	frequency
aSig				moogladder			aSig,	kcf,	0.9	;	filter	audio	signal
								out										aSig											;	filtered	audio	sent	to	output
		endin

</CsInstruments>

<CsScore>
;	3	notes	to	demonstrate	each	filter	in	turn
i	1	0		3;	tone
i	2	4		3;	butlp
i	3	8		3;	moogladder
e
</CsScore>

</CsoundSynthesizer>

HIGHPASS	FILTERS

FILTERS

487

A	highpass	filter	is	the	converse	of	a	lowpass	filter;	frequencies	
higher	than	the	cutoff	point	are	allowed	to	pass	whilst	those	lower	are	
attenuated.	atone	and	buthp	are	the	analogues	of	tone	and	butlp.	
Resonant	highpass	filters	are	harder	to	find	but	Csound	has	one	in	
bqrez.	bqrez	is	actually	a	multi-mode	filter	and	could	also	be	used	as	
a	resonant	lowpass	filter	amongst	other	things.	We	can	choose	which	
mode	we	want	by	setting	one	of	its	input	arguments	appropriately.	
Resonant	highpass	is	mode	1.	In	this	example	a	sawtooth	waveform	is	
again	played	through	each	of	the	filters	in	turn	but	this	time	the	cutoff	
frequency	moves	from	low	to	high.	Spectral	content	is	increasingly	
removed	but	from	the	opposite	spectral	direction.
		

			EXAMPLE	05C02_atone_buthp_bqrez.csd
		

<CsoundSynthesizer>

<CsOptions>
-odac	;	activates	real	time	sound	output
</CsOptions>

<CsInstruments>
;	Example	by	Iain	McCurdy

sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

		instr	1
								prints							"atone%n"					;	indicate	filter	type	in	console
aSig				vco2									0.2,	150						;	input	signal	is	a	sawtooth	waveform
kcf					expon								20,	p3,	20000	;	define	envelope	for	cutoff	frequency
aSig				atone								aSig,	kcf					;	filter	audio	signal
								out										aSig										;	filtered	audio	sent	to	output
		endin

		instr	2
								prints							"buthp%n"					;	indicate	filter	type	in	console
aSig				vco2									0.2,	150						;	input	signal	is	a	sawtooth	waveform
kcf					expon								20,	p3,	20000	;	define	envelope	for	cutoff	frequency
aSig				buthp								aSig,	kcf					;	filter	audio	signal
								out										aSig										;	filtered	audio	sent	to	output
		endin

		instr	3
								prints							"bqrez(mode:1)%n"	;	indicate	filter	type	in	console
aSig				vco2									0.03,	150									;	input	signal	is	a	sawtooth	waveform
kcf					expon								20,	p3,	20000					;	define	envelope	for	cutoff	frequency
aSig				bqrez								aSig,	kcf,	30,	1		;	filter	audio	signal
								out										aSig														;	filtered	audio	sent	to	output
		endin

</CsInstruments>

<CsScore>

FILTERS

488

;	3	notes	to	demonstrate	each	filter	in	turn
i	1	0		3	;	atone
i	2	5		3	;	buthp
i	3	10	3	;	bqrez(mode	1)
e
</CsScore>

</CsoundSynthesizer>

BANDPASS	FILTERS

A	bandpass	filter	allows	just	a	narrow	band	of	sound	to	pass	through	
unimpeded	and	as	such	is	a	little	bit	like	a	combination	of	a	lowpass	
and	highpass	filter	connected	in	series.	We	normally	expect	at	least	
one	additional	parameter	of	control:	control	over	the	width	of	the	
band	of	frequencies	allowed	to	pass	through,	or	'bandwidth'.
		

In	the	next	example	cutoff	frequency	and	bandwidth	are	
demonstrated	independently	for	two	different	bandpass	filters	offered	
by	Csound.	First	of	all	a	sawtooth	waveform	is	passed	through	a	reson	
filter	and	a	butbp	filter	in	turn	while	the	cutoff	frequency	rises	
(bandwidth	remains	static).	Then	pink	noise	is	passed	through	reson	
and	butbp	in	turn	again	but	this	time	the	cutoff	frequency	remains	
static	at	5000Hz	while	the	bandwidth	expands	from	8	to	5000Hz.	In	
the	latter	two	notes	it	will	be	heard	how	the	resultant	sound	moves	
from	almost	a	pure	sine	tone	to	unpitched	noise.	butbp	is	obviously	
the	Butterworth	based	bandpass	filter.	reson	can	produce	dramatic	
variations	in	amplitude	depending	on	the	bandwidth	value	and	
therefore	some	balancing	of	amplitude	in	the	output	signal	may	be	
necessary	if	out	of	range	samples	and	distortion	are	to	be	avoided.	
Fortunately	the	opcode	itself	includes	two	modes	of	amplitude	
balancing	built	in	but	by	default	neither	of	these	methods	are	active	
and	in	this	case	the	use	of	the	balance	opcode	may	be	required.	Mode	
1	seems	to	work	well	with	spectrally	sparse	sounds	like	harmonic	
tones	while	mode	2	works	well	with	spectrally	dense	sounds	such	as	
white	or	pink	noise.
		

			EXAMPLE	05C03_reson_butbp.csd

FILTERS

489

<CsoundSynthesizer>

<CsOptions>
-odac	;	activates	real	time	sound	output
</CsOptions>

<CsInstruments>
;	Example	by	Iain	McCurdy

sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

		instr	1
								prints							"reson%n"										;	indicate	filter	type	in	console
aSig				vco2									0.5,	150											;	input	signal:	sawtooth	waveform
kcf					expon								20,p3,10000								;	rising	cutoff	frequency
aSig				reson								aSig,kcf,kcf*0.1,1	;	filter	audio	signal
								out										aSig															;	send	filtered	audio	to	output
		endin

		instr	2
								prints							"butbp%n"										;	indicate	filter	type	in	console
aSig				vco2									0.5,	150											;	input	signal:	sawtooth	waveform
kcf					expon								20,p3,10000								;	rising	cutoff	frequency
aSig				butbp								aSig,	kcf,	kcf*0.1	;	filter	audio	signal
								out										aSig															;	send	filtered	audio	to	output
		endin

		instr	3
								prints							"reson%n"										;	indicate	filter	type	in	console
aSig				pinkish						0.5																;	input	signal:	pink	noise
kbw					expon								10000,p3,8									;	contracting	bandwidth
aSig				reson								aSig,	5000,	kbw,	2	;	filter	audio	signal
								out										aSig															;	send	filtered	audio	to	output
		endin

		instr	4
								prints							"butbp%n"										;	indicate	filter	type	in	console
aSig				pinkish						0.5																;	input	signal:	pink	noise
kbw					expon								10000,p3,8									;	contracting	bandwidth
aSig				butbp								aSig,	5000,	kbw				;	filter	audio	signal
								out										aSig															;	send	filtered	audio	to	output
		endin

</CsInstruments>

<CsScore>
i	1	0		3	;	reson	-	cutoff	frequency	rising
i	2	4		3	;	butbp	-	cutoff	frequency	rising
i	3	8		6	;	reson	-	bandwidth	increasing
i	4	15	6	;	butbp	-	bandwidth	increasing
e
</CsScore>

</CsoundSynthesizer>

COMB	FILTERING

A	comb	filter	is	a	special	type	of	filter	that	creates	a	harmonically	
related	stack	of	resonance	peaks	on	an	input	sound	file.	A	comb	filter	
is	really	just	a	very	short	delay	effect	with	feedback.	Typically	the	
delay	times	involved	would	be	less	than	0.05	seconds.	Many	of	the	
comb	filters	documented	in	the	Csound	Manual	term	this	delay	time,	

FILTERS

490

'loop	time'.	The	fundamental	of	the	harmonic	stack	of	resonances	
produced	will	be	1/loop	time.	Loop	time	and	the	frequencies	of	the	
resonance	peaks	will	be	inversely	proportionsl	–	as	loop	time	get	
smaller,	the	frequencies	rise.	For	a	loop	time	of	0.02	seconds	the	
fundamental	resonance	peak	will	be	50Hz,	the	next	peak	100Hz,	the	
next	150Hz	and	so	on.	Feedback	is	normally	implemented	as	reverb	
time	–	the	time	taken	for	amplitude	to	drop	to	1/1000	of	its	original	
level	or	by	60dB.	This	use	of	reverb	time	as	opposed	to	feedback	
alludes	to	the	use	of	comb	filters	in	the	design	of	reverb	algorithms.	
Negative	reverb	times	will	result	in	only	the	odd	numbered	partials	of	
the	harmonic	stack	being	present.
		

The	following	example	demonstrates	a	comb	filter	using	the	vcomb	
opcode.	This	opcode	allows	for	performance	time	modulation	of	the	
loop	time	parameter.	For	the	first	5	seconds	of	the	demonstration	the	
reverb	time	increases	from	0.1	seconds	to	2	while	the	loop	time	
remains	constant	at	0.005	seconds.	Then	the	loop	time	decreases	to	
0.0005	seconds	over	6	seconds	(the	resonant	peaks	rise	in	frequency),	
finally	over	the	course	of	10	seconds	the	loop	time	rises	to	0.1	
seconds	(the	resonant	peaks	fall	in	frequency).	A	repeating	noise	
impulse	is	used	as	a	source	sound	to	best	demonstrate	the	qualities	of	
a	comb	filter.
		

			EXAMPLE	05C04_comb.csd

<CsoundSynthesizer>

<CsOptions>
-odac	;activates	real	time	sound	output
</CsOptions>

<CsInstruments>
;Example	by	Iain	McCurdy

sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

		instr	1
;	--	generate	an	input	audio	signal	(noise	impulses)	--
;	repeating	amplitude	envelope:
kEnv									loopseg			1,0,	0,1,0.005,1,0.0001,0,0.9949,0

FILTERS

491

aSig									pinkish			kEnv*0.6																					;	pink	noise	pulses

;	apply	comb	filter	to	input	signal
krvt				linseg		0.1,	5,	2																											;	reverb	time
alpt				expseg		0.005,5,0.005,6,0.0005,10,0.1,1,0.1	;	loop	time
aRes				vcomb			aSig,	krvt,	alpt,	0.1															;	comb	filter
								out					aRes																																;	audio	to	output
		endin

</CsInstruments>

<CsScore>
i	1	0	25
e
</CsScore>

</CsoundSynthesizer>

OTHER	FILTERS	WORTH	INVESTIGATING	

In	addition	to	a	wealth	of	low	and	highpass	filters	Csound	several	
more	unique	filters.	Multimode	such	as	bqrez	provide	several	
different	filter	types	within	a	single	opcode.	Filter	type	is	normally	
chosen	using	an	i-rate	input	argument	that	functions	like	a	switch.	
Another	multimode	filter,	clfilt,	offers	addition	filter	controls	such	as	
'filter	design'	and	'number	of	poles'	to	create	unusual	sound	filters.	
unfortunately	some	parts	of	this	opcode	are	not	implemented	yet.

eqfil	is	essentially	a	parametric	equaliser	but	multiple	iterations	could	
be	used	as	modules	in	a	graphic	equaliser	bank.	In	addition	to	the	
capabilities	of	eqfil,	pareq	adds	the	possibility	of	creating	low	and	
high	shelving	filtering	which	might	prove	useful	in	mastering	or	in	
spectral	adjustment	of	more	developed	sounds.

rbjeq	offers	a	quite	comprehensive	multimode	filter	including	
highpass,	lowpass,	bandpass,	bandreject,	peaking,	low-shelving	and	
high-shelving,	all	in	a	single	opcode

statevar	offers	the	outputs	from	four	filter	types	-	highpass,	lowpass,	
bandpass	and	bandreject	-	simultaneously	so	that	the	user	can	morph	
between	them	smoothly.	svfilter	does	a	similar	thing	but	with	just	
highpass,	lowpass	and	bandpass	filter	types.	

	phaser1	and	phaser2	offer	algorithms	containing	chains	of	first	order	
and	second	order	allpass	filters	respectively.	These	algorithms	could	

FILTERS

492

conceivably	be	built	from	individual	allpass	filters	but	these	ready-
made	versions	provide	convenience	and	added	efficiency
		

	hilbert	is	a	specialist	IIR	filter	that	implements	the	Hilbert	
transformer.

For	those	wishing	to	devise	their	own	filter	using	coefficients	Csound	
offers	filter2	and	zfilter2.
		

DELAY	AND	FEEDBACK

493

DELAY	AND	FEEDBACK

A	delay	in	DSP	is	a	special	kind	of	buffer	sometimes	called	a	circular	
buffer.	The	length	of	this	buffer	is	finite	and	must	be	declared	upon	
initialization	as	it	is	stored	in	RAM.	One	way	to	think	of	the	circular	
buffer	is	that	as	new	items	are	added	at	the	beginning	of	the	buffer	the
oldest	items	at	the	end	of	the	buffer	are	being	'shoved'	out.

Besides	their	typical	application	for	creating	echo	effects,	delays	can	
also	be	used	to	implement	chorus,	flanging,	pitch	shifting	and	
filtering	effects.

Csound	offers	many	opcodes	for	implementing	delays.	Some	of	these	
offer	varying	degrees	of	quality	-	often	balanced	against	varying	
degrees	of	efficiency	whilst	some	are	for	quite	specialized	purposes.

To	begin	with	this	section	is	going	to	focus	upon	a	pair	of	opcodes,	
delayr	and	delayw.	Whilst	not	the	most	efficient	to	use	in	terms	of	the	
number	of	lines	of	code	required,	the	use	of	delayr	and	delayw	helps	
to	clearly	illustrate	how	a	delay	buffer	works.	Besides	this,	delayr	and	
delayw	actually	offer	a	lot	more	flexibility	and	versatility	than	many	
of	the	other	delay	opcodes.

When	using	delayr	and	delayw	the	establishement	of	a	delay	buffer	is	
broken	down	into	two	steps:	reading	from	the	end	of	the	buffer	using	
delayr	(and	by	doing	this	defining	the	length	or	duration	of	the	buffer)
and	then	writing	into	the	beginning	of	the	buffer	using	delayw.

The	code	employed	might	look	like	this:

aSigOut		delayr		1
									delayw		aSigIn

where	'aSigIn'	is	the	input	signal	written	into	the	beginning	of	the	
buffer	and	'aSigOut'	is	the	output	signal	read	from	the	end	of	the	

DELAY	AND	FEEDBACK

494

buffer.	The	fact	that	we	declare	reading	from	the	buffer	before	
writing	to	it	is	sometimes	initially	confusing	but,	as	alluded	to	before,	
one	reason	this	is	done	is	to	declare	the	length	of	the	buffer.	The	
buffer	length	in	this	case	is	1	second	and	this	will	be	the	apparent	
time	delay	between	the	input	audio	signal	and	audio	read	from	the	
end	of	the	buffer.

The	following	example	implements	the	delay	described	above	in	a	
.csd	file.	An	input	sound	of	sparse	sine	tone	pulses	is	created.	This	is	
written	into	the	delay	buffer	from	which	a	new	audio	signal	is	created	
by	read	from	the	end	of	this	buffer.	The	input	signal	(sometimes	
referred	to	as	the	dry	signal)	and	the	delay	output	signal	(sometimes	
referred	to	as	the	wet	signal)	are	mixed	and	set	to	the	output.	The	
delayed	signal	is	attenuated	with	respect	to	the	input	signal.

			EXAMPLE	05D01_delay.csd

<CsoundSynthesizer>

<CsOptions>
-odac	;	activates	real	time	sound	output
</CsOptions>

<CsInstruments>
;	Example	by	Iain	McCurdy

sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1
giSine			ftgen			0,	0,	2^12,	10,	1	;	a	sine	wave

		instr	1
;	--	create	an	input	signal:	short	'blip'	sounds	--
kEnv				loopseg		0.5,	0,	0,	0,0.0005,	1	,	0.1,	0,	1.9,	0,	0
kCps				randomh		400,	600,	0.5
aEnv				interp			kEnv
aSig				poscil			aEnv,	kCps,	giSine

;	--	create	a	delay	buffer	--
aBufOut	delayr			0.3
								delayw			aSig

;	--	send	audio	to	output	(input	and	output	to	the	buffer	are	mixed)
								out						aSig	+	(aBufOut*0.4)
		endin

</CsInstruments>

<CsScore>
i	1	0	25
e
</CsScore>

DELAY	AND	FEEDBACK

495

</CsoundSynthesizer>

If	we	mix	some	of	the	delayed	signal	into	the	input	signal	that	is	
written	into	the	buffer	then	we	will	delay	some	of	the	delayed	signal	
thus	creating	more	than	a	single	echo	from	each	input	sound.	
Typically	the	sound	that	is	fed	back	into	the	delay	input	is	attenuated	
so	that	sound	cycle	through	the	buffer	indefinitely	but	instead	will	
eventually	die	away.	We	can	attenuate	the	feedback	signal	by	
multiplying	it	by	a	value	in	the	range	zero	to	1.	The	rapidity	with	
which	echoes	will	die	away	is	defined	by	how	close	the	zero	this	
value	is.	The	following	example	implements	a	simple	delay	with	
feedback.

			EXAMPLE	05D02_delay_feedback.csd

<CsoundSynthesizer>

<CsOptions>
-odac	;activates	real	time	sound	output
</CsOptions>

<CsInstruments>
;Example	by	Iain	McCurdy

sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

giSine			ftgen			0,	0,	2^12,	10,	1		;	a	sine	wave

		instr	1
;	--	create	an	input	signal:	short	'blip'	sounds	--
kEnv				loopseg		0.5,0,0,0,0.0005,1,0.1,0,1.9,0,0	;	repeating	envelope
kCps				randomh		400,	600,	0.5																				;	'held'	random	values
aEnv				interp			kEnv																													;	a-rate	envelope
aSig				poscil			aEnv,	kCps,	giSine															;	generate	audio

;	--	create	a	delay	buffer	--
iFdback	=								0.7																				;	feedback	ratio
aBufOut	delayr			0.3																				;	read	audio	from	end	of	buffer
;	write	audio	into	buffer	(mix	in	feedback	signal)
								delayw			aSig+(aBufOut*iFdback)

;	send	audio	to	output	(mix	the	input	signal	with	the	delayed	signal)
								out						aSig	+	(aBufOut*0.4)
		endin

</CsInstruments>

<CsScore>
i	1	0	25
e
</CsScore>

</CsoundSynthesizer>

Constructing	a	delay	effect	in	this	way	is	rather	limited	as	the	delay	

DELAY	AND	FEEDBACK

496

time	is	static.	If	we	want	to	change	the	delay	time	we	need	to	
reinitialise	the	code	that	implements	the	delay	buffer.	A	more	flexible
approach	is	to	read	audio	from	within	the	buffer	using	one	of	Csounds	
opcodes	for	'tapping'	a	delay	buffer,	deltap,	deltapi,	deltap3	or	
deltapx.	The	opcodes	are	listed	in	order	of	increasing	quality	which	
also	reflects	an	increase	in	computational	expense.	In	the	next	
example	a	delay	tap	is	inserted	within	the	delay	buffer	(between	the	
delayr	and	the	delayw)	opcodes.	As	our	delay	time	is	modulating	
quite	quickly	we	will	use	deltapi	which	uses	linear	interpolation	as	it	
rebuilds	the	audio	signal	whenever	the	delay	time	is	moving.	Note	
that	this	time	we	are	not	using	the	audio	output	from	the	delayr	
opcode	as	we	are	using	the	audio	output	from	deltapi	instead.	The	
delay	time	used	by	deltapi	is	created	by	randomi	which	creates	a	
random	function	of	straight	line	segments.	A-rate	is	used	for	the	delay	
time	to	improve	the	accuracy	of	its	values,	use	of	k-rate	would	result	
in	a	noticeably	poorer	sound	quality.	You	will	notice	that	as	well	as	
modulating	the	time	gap	between	echoes,	this	example	also	
modulates	the	pitch	of	the	echoes	–	if	the	delay	tap	is	static	within	the	
buffer	there	would	be	no	change	in	pitch,	if	is	moving	towards	the	
beginning	of	the	buffer	then	pitch	will	rise	and	if	it	is	moving	towards	
the	end	of	the	buffer	then	pitch	will	drop.	This	side	effect	has	led	to	
digital	delay	buffers	being	used	in	the	design	of	many	pitch	shifting	
effects.

The	user	must	take	care	that	the	delay	time	demanded	from	the	delay	
tap	does	not	exceed	the	length	of	the	buffer	as	defined	in	the	delayr	
line.	If	it	does	it	will	attempt	to	read	data	beyond	the	end	of	the	RAM	
buffer	–	the	results	of	this	are	unpredictable.	The	user	must	also	take	
care	that	the	delay	time	does	not	go	below	zero,	in	fact	the	minumum	
delay	time	that	will	be	permissible	will	be	the	duration	of	one	k	cycle	
(ksmps/sr).

			EXAMPLE	05D03_deltapi.csd

<CsoundSynthesizer>

<CsOptions>
-odac	;	activates	real	time	sound	output

DELAY	AND	FEEDBACK

497

</CsOptions>

<CsInstruments>
;	Example	by	Iain	McCurdy

sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

giSine			ftgen			0,	0,	2^12,	10,	1		;	a	sine	wave

		instr	1
;	--	create	an	input	signal:	short	'blip'	sounds	--
kEnv										loopseg		0.5,0,0,0,0.0005,1,0.1,0,1.9,0,0
aEnv										interp			kEnv
aSig										poscil			aEnv,	500,	giSine

aDelayTime				randomi		0.05,	0.2,	1						;	modulating	delay	time
;	--	create	a	delay	buffer	--
aBufOut							delayr			0.2															;	read	audio	from	end	of	buffer
aTap										deltapi		aDelayTime								;	'tap'	the	delay	buffer
														delayw			aSig	+	(aTap*0.9)	;	write	audio	into	buffer

;	send	audio	to	the	output	(mix	the	input	signal	with	the	delayed	signal)
														out						aSig	+	(aTap*0.4)
		endin

</CsInstruments>

<CsScore>
i	1	0	30
e
</CsScore>

</CsoundSynthesizer>

We	are	not	limited	to	inserting	only	a	single	delay	tap	within	the	
buffer.	If	we	add	further	taps	we	create	what	is	known	as	a	multi-tap	
delay.	The	following	example	implements	a	multi-tap	delay	with	
three	delay	taps.	Note	that	only	the	final	delay	(the	one	closest	to	the	
end	of	the	buffer)	is	fed	back	into	the	input	in	order	to	create	
feedback	but	all	three	taps	are	mixed	and	sent	to	the	output.	There	is	
no	reason	not	to	experiment	with	arrangements	other	than	this	but	this	
one	is	most	typical.

			EXAMPLE	05D04_multi-tap_delay.csd

<CsoundSynthesizer>

<CsOptions>
-odac	;	activates	real	time	sound	output
</CsOptions>

<CsInstruments>
;	Example	by	Iain	McCurdy

sr	=	44100

DELAY	AND	FEEDBACK

498

ksmps	=	32
nchnls	=	1
0dbfs	=	1

giSine			ftgen			0,	0,	2^12,	10,	1	;	a	sine	wave

		instr	1
;	--	create	an	input	signal:	short	'blip'	sounds	--
kEnv				loopseg		0.5,0,0,0,0.0005,1,0.1,0,1.9,0,0;	repeating	envelope
kCps				randomh		400,	1000,	0.5																	;	'held'	random	values
aEnv				interp			kEnv																											;	a-rate	envelope
aSig				poscil			aEnv,	kCps,	giSine													;	generate	audio

;	--	create	a	delay	buffer	--
aBufOut	delayr			0.5																				;	read	audio	end	buffer
aTap1			deltap			0.1373																	;	delay	tap	1
aTap2			deltap			0.2197																	;	delay	tap	2
aTap3			deltap			0.4139																	;	delay	tap	3
								delayw			aSig	+	(aTap3*0.4)					;	write	audio	into	buffer

;	send	audio	to	the	output	(mix	the	input	signal	with	the	delayed	signals)
								out						aSig	+	((aTap1+aTap2+aTap3)*0.4)
		endin

</CsInstruments>

<CsScore>
i	1	0	25
e
</CsScore>

</CsoundSynthesizer>

As	mentioned	at	the	top	of	this	section	many	familiar	effects	are	
actually	created	from	using	delay	buffers	in	various	ways.	We	will	
briefly	look	at	one	of	these	effects:	the	flanger.	Flanging	derives	from	
a	phenomenon	which	occurs	when	the	delay	time	becomes	so	short	
that	we	begin	to	no	longer	perceive	individual	echoes	but	instead	a	
stack	of	harmonically	related	resonances	are	perceived	the	
frequencies	of	which	are	in	simple	ratio	with	1/delay_time.	This	
effect	is	known	as	a	comb	filter.	When	the	delay	time	is	slowly	
modulated	and	the	resonances	shifting	up	and	down	in	sympathy	the	
effect	becomes	known	as	a	flanger.	In	this	example	the	delay	time	of	
the	flanger	is	modulated	using	an	LFO	that	employs	a	U-shaped	
parabola	as	its	waveform	as	this	seems	to	provide	the	smoothest	comb	
filter	modulations.

			EXAMPLE	05D05_flanger.csd

<CsoundSynthesizer>

<CsOptions>
-odac	;	activates	real	time	sound	output
</CsOptions>

<CsInstruments>
;Example	by	Iain	McCurdy

DELAY	AND	FEEDBACK

499

sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

giSine			ftgen			0,	0,	2^12,	10,	1																	;	a	sine	wave
giLFOShape		ftgen			0,	0,	2^12,	19,	0.5,	1,	180,	1	;	u-shaped	parabola

		instr	1
aSig				pinkish		0.1																															;	pink	noise

aMod				poscil			0.005,	0.05,	giLFOShape											;	delay	time	LFO
iOffset	=								ksmps/sr																										;	minimum	delay	time
kFdback	linseg			0.8,(p3/2)-0.5,0.95,1,-0.95							;	feedback

;	--	create	a	delay	buffer	--
aBufOut	delayr			0.5																			;	read	audio	from	end	buffer
aTap				deltap3		aMod	+	iOffset								;	tap	audio	from	within	buffer
								delayw			aSig	+	(aTap*kFdback)	;	write	audio	into	buffer

;	send	audio	to	the	output	(mix	the	input	signal	with	the	delayed	signal)
								out						aSig	+	aTap
		endin

</CsInstruments>

<CsScore>
i	1	0	25
e
</CsScore>

</CsoundSynthesizer>

Delay	buffers	can	be	used	to	implement	a	wide	variety	of	signal
processing	effects	beyond	simple	echo	effects.	This	chapter	has
introduced	the	basics	of	working	with	Csound's	delay	opcodes	and
also	hinted	at	some	of	the	further	possibilities	available.	

DELAY	AND	FEEDBACK

500

REVERBERATION

501

REVERBERATION

Reverb	is	the	effect	a	room	or	space	has	on	a	sound	where	the	sound	
we	perceive	is	a	mixture	of	the	direct	sound	and	the	dense	
overlapping	echoes	of	that	sound	reflecting	off	walls	and	objects	
within	the	space.

Csound's	earliest	reverb	opcodes	are	reverb	and	nreverb.	By	today's	
standards	these	sound	rather	crude	and	as	a	consequence	modern	
Csound	users	tend	to	prefer	the	more	recent	opcodes	freeverb	and	
reverbsc.

The	typical	way	to	use	a	reverb	is	to	run	as	a	effect	throughout	the	
entire	Csound	performance	and	to	send	it	audio	from	other	
instruments	to	which	it	adds	reverb.	This	is	more	efficient	than	
initiating	a	new	reverb	effect	for	every	note	that	is	played.	This	
arrangement	is	a	reflection	of	how	a	reverb	effect	would	be	used	with	
a	mixing	desk	in	a	conventional	studio.	There	are	several	methods	of	
sending	audio	from	sound	producing	instruments	to	the	reverb	
instrument,	three	of	which	will	be	introduced	in	the	coming	examples

The	first	method	uses	Csound's	global	variables	so	that	an	audio	
variable	created	in	one	instrument	and	be	read	in	another	instrument.	
There	are	several	points	to	highlight	here.	First	the	global	audio	
variable	that	is	use	to	send	audio	the	reverb	instrument	is	initialized	
to	zero	(silence)	in	the	header	area	of	the	orchestra.

This	is	done	so	that	if	no	sound	generating	instruments	are	playing	at	
the	beginning	of	the	performance	this	variable	still	exists	and	has	a	
value.	An	error	would	result	otherwise	and	Csound	would	not	run.	
When	audio	is	written	into	this	variable	in	the	sound	generating	
instrument	it	is	added	to	the	current	value	of	the	global	variable.

This	is	done	in	order	to	permit	polyphony	and	so	that	the	state	of	this	
variable	created	by	other	sound	producing	instruments	is	not	
overwritten.	Finally	it	is	important	that	the	global	variable	is	cleared	

REVERBERATION

502

(assigned	a	value	of	zero)	when	it	is	finished	with	at	the	end	of	the	
reverb	instrument.	If	this	were	not	done	then	the	variable	would	
quickly	'explode'	(get	astronomically	high)	as	all	previous	instruments
are	merely	adding	values	to	it	rather	that	redeclaring	it.	Clearing	
could	be	done	simply	by	setting	to	zero	but	the	clear	opcode	might	
prove	useful	in	the	future	as	it	provides	us	with	the	opportunity	to	
clear	many	variables	simultaneously.

This	example	uses	the	freeverb	opcode	and	is	based	on	a	plugin	of	the	
same	name.	Freeverb	has	a	smooth	reverberant	tail	and	is	perhaps	
similar	in	sound	to	a	plate	reverb.	It	provides	us	with	two	main	
parameters	of	control:	'room	size'	which	is	essentially	a	control	of	the	
amount	of	internal	feedback	and	therefore	reverb	time,	and	'high	
frequency	damping'	which	controls	the	amount	of	attenuation	of	high	
frequencies.	Both	there	parameters	should	be	set	within	the	range	0	to	
1.	For	room	size	a	value	of	zero	results	in	a	very	short	reverb	and	a	
value	of	1	results	in	a	very	long	reverb.	For	high	frequency	damping	a	
value	of	zero	provides	minimum	damping	of	higher	frequencies	
giving	the	impression	of	a	space	with	hard	walls,	a	value	of	1	
provides	maximum	high	frequency	damping	thereby	giving	the	
impression	of	a	space	with	soft	surfaces	such	as	thick	carpets	and	
heavy	curtains.

			EXAMPLE	05E01_freeverb.csd

<CsoundSynthesizer>

<CsOptions>
-odac	;	activates	real	time	sound	output
</CsOptions>

<CsInstruments>
;Example	by	Iain	McCurdy

sr	=		44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

gaRvbSend				init						0	;	global	audio	variable	initialized	to	zero

REVERBERATION

503

		instr	1	;	sound	generating	instrument	(sparse	noise	bursts)
kEnv									loopseg			0.5,0,0,1,0.003,1,0.0001,0,0.9969,0,0;	amp.	env.
aSig									pinkish			kEnv														;	noise	pulses
													outs						aSig,	aSig								;	audio	to	outs
iRvbSendAmt		=									0.8															;	reverb	send	amount	(0	-	1)
;	add	some	of	the	audio	from	this	instrument	to	the	global	reverb	send	variable
gaRvbSend				=									gaRvbSend	+	(aSig	*	iRvbSendAmt)
		endin

		instr	5	;	reverb	-	always	on
kroomsize				init						0.85										;	room	size	(range	0	to	1)
kHFDamp						init						0.5											;	high	freq.	damping	(range	0	to	1)
;	create	reverberated	version	of	input	signal	(note	stereo	input	and	output)
aRvbL,aRvbR		freeverb		gaRvbSend,	gaRvbSend,kroomsize,kHFDamp
													outs						aRvbL,	aRvbR	;	send	audio	to	outputs
													clear					gaRvbSend				;	clear	global	audio	variable
		endin

</CsInstruments>

<CsScore>
i	1	0	300	;	noise	pulses	(input	sound)
i	5	0	300	;	start	reverb
e
</CsScore>

</CsoundSynthesizer>

The	next	example	uses	Csound's	zak	patching	system	to	send	audio	
from	one	instrument	to	another.	The	zak	system	is	a	little	like	a	patch	
bay	you	might	find	in	a	recording	studio.	Zak	channels	can	be	a,	k	or	
i-rate.	These	channels	will	be	addressed	using	numbers	so	it	will	be	
important	to	keep	track	of	what	each	numbered	channel	is	used	for.	
Our	example	will	be	very	simple	in	that	we	will	only	be	using	one	
zak	audio	channel.	Before	using	any	of	the	zak	opcodes	for	reading	
and	writing	data	we	must	initialize	zak	storage	space.	This	is	done	in	
the	orchestra	header	area	using	the	zakinit	opcode.	This	opcode	
initializes	both	a	and	k	rate	channels;	we	must	intialize	at	least	one	of	
each	even	if	we	don't	require	both.

zakinit				1,	1

The	audio	from	the	sound	generating	instrument	is	mixed	into	a	zak	
audio	channel	the	zawm	opcode	like	this:

zawm				aSig	*	iRvbSendAmt,	1

This	channel	is	read	from	in	the	reverb	instrument	using	the	zar	
opcode	like	this:

REVERBERATION

504

aInSig		zar			1

Because	audio	is	begin	mixed	into	our	zak	channel	but	it	is	never	
redefined	(only	mixed	into)	it	needs	to	be	cleared	after	we	have	
finished	with	it.	This	is	accomplished	at	the	bottom	of	the	reverb	
instrument	using	the	zacl	opcode	like	this:

zacl						0,	1

This	example	uses	the	reverbsc	opcode.	It	too	has	a	stereo	input	and	
output.	The	arguments	that	define	its	character	are	feedback	level	and	
cutoff	frequency.	Feedback	level	should	be	in	the	range	zero	to	1	and	
controls	reverb	time.	Cutoff	frequency	should	be	within	the	range	of	
human	hearing	(20Hz	-20kHz)	and	less	than	the	Nyqvist	frequency	
(sr/2)	-	it	controls	the	cutoff	frequencies	of	low	pass	filters	within	the	
algorithm.

			EXAMPLE	05E02_reverbsc.csd

<CsoundSynthesizer>

<CsOptions>
-odac	;	activates	real	time	sound	output
</CsOptions>

<CsInstruments>
;	Example	by	Iain	McCurdy

sr	=		44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

;	initialize	zak	space		-	one	a-rate	and	one	k-rate	variable.
;	We	will	only	be	using	the	a-rate	variable.
													zakinit			1,	1

		instr	1	;	sound	generating	instrument	-	sparse	noise	bursts
kEnv									loopseg			0.5,0,	0,1,0.003,1,0.0001,0,0.9969,0,0;	amp.	env.
aSig									pinkish			kEnv							;	pink	noise	pulses
													outs						aSig,	aSig	;	send	audio	to	outputs
iRvbSendAmt		=									0.8								;	reverb	send	amount	(0	-	1)
;	write	to	zak	audio	channel	1	with	mixing
													zawm						aSig*iRvbSendAmt,	1
		endin

		instr	5	;	reverb	-	always	on
aInSig							zar							1				;	read	first	zak	audio	channel
kFblvl							init						0.88	;	feedback	level	-	i.e.	reverb	time
kFco									init						8000	;	cutoff	freq.	of	a	filter	within	the	reverb

REVERBERATION

505

;	create	reverberated	version	of	input	signal	(note	stereo	input	and	output)
aRvbL,aRvbR		reverbsc		aInSig,	aInSig,	kFblvl,	kFco
													outs						aRvbL,	aRvbR	;	send	audio	to	outputs
													zacl						0,	1									;	clear	zak	audio	channels
		endin

</CsInstruments>

<CsScore>
i	1	0	10	;	noise	pulses	(input	sound)
i	5	0	12	;	start	reverb
e
</CsScore>

</CsoundSynthesizer>

reverbsc	contains	a	mechanism	to	modulate	delay	times	internally
which	has	the	effect	of	harmonically	blurring	sounds	the	longer	they
are	reverberated.	This	contrasts	with	freeverb's	rather	static
reverberant	tail.	On	the	other	hand	screverb's	tail	is	not	as	smooth	as
that	of	freeverb,	inidividual	echoes	are	sometimes	discernible	so	it
may	not	be	as	well	suited	to	the	reverberation	of	percussive	sounds.
Also	be	aware	that	as	well	as	reducing	the	reverb	time,	the	feedback
level	parameter	reduces	the	overall	amplitude	of	the	effect	to	the
point	where	a	setting	of	1	will	result	in	silence	from	the	opcode.

A	more	recent	option	for	sending	sound	from	instrument	to	
instrument	in	Csound	is	to	use	the	chn...	opcodes.	These	opcodes	can	
also	be	used	to	allow	Csound	to	interface	with	external	programs	
using	the	software	bus	and	the	Csound	API.

			EXAMPLE	05E03_reverb_with_chn.csd

<CsoundSynthesizer>

<CsOptions>
-odac	;	activates	real	time	sound	output
</CsOptions>

<CsInstruments>
;	Example	by	Iain	McCurdy

sr	=		44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

		instr	1	;	sound	generating	instrument	-	sparse	noise	bursts
kEnv									loopseg			0.5,0,	0,1,0.003,1,0.0001,0,0.9969,0,0	;	amp.	envelope
aSig									pinkish			kEnv																																	;	noise	pulses
													outs						aSig,	aSig																											;	audio	to	outs
iRvbSendAmt		=									0.4																								;	reverb	send	amount	(0	-	1)
;write	audio	into	the	named	software	channel:
													chnmix				aSig*iRvbSendAmt,	"ReverbSend"
		endin

REVERBERATION

506

		instr	5	;	reverb	(always	on)
aInSig							chnget				"ReverbSend"			;	read	audio	from	the	named	channel
kTime								init						4														;	reverb	time
kHDif								init						0.5												;	'high	frequency	diffusion'	(0	-	1)
aRvb									nreverb			aInSig,	kTime,	kHDif	;	create	reverb	signal
outs									aRvb,	aRvb															;	send	audio	to	outputs
													chnclear		"ReverbSend"			;	clear	the	named	channel
endin

</CsInstruments>

<CsScore>
i	1	0	10	;	noise	pulses	(input	sound)
i	5	0	12	;	start	reverb
e
</CsScore>

</CsoundSynthesizer>

THE	SCHROEDER	REVERB	DESIGN

	Many	reverb	algorithms	including	Csound's	freeverb,	reverb	and	
reverbn	are	based	on	what	is	known	as	the	Schroeder	reverb	design.	
This	was	a	design	proposed	in	the	early	1960s	by	the	physicist	
Manfred	Schroeder.	In	the	Schroeder	reverb	a	signal	is	passed	into	
four	parallel	comb	filters	the	outputs	of	which	are	summed	and	then	
passed	through	two	allpass	filters	as	shown	in	the	diagram	below.	
Essentially	the	comb	filters	provide	the	body	of	the	reverb	effect	and	
the	allpass	filters	smear	their	resultant	sound	to	reduce	ringing	
artefacts	the	comb	filters	might	produce.	More	modern	designs	might	
extent	the	number	of	filters	used	in	an	attempt	to	create	smoother	
results.	The	freeverb	opcode	employs	eight	parallel	comb	filters	
followed	by	four	series	allpass	filters	on	each	channel.	The	two	main	
indicators	of	poor	implementations	of	the	Schoeder	reverb	are	
individual	echoes	being	excessively	apparent	and	ringing	artefacts.	
The	results	produced	by	the	freeverb	opcode	are	very	smooth	but	a	
criticism	might	be	that	it	is	lacking	in	character	and	is	more	
suggestive	of	a	plate	reverb	than	of	a	real	room.

REVERBERATION

507

The	next	example	implements	the	basic	Schroeder	reverb	with	four	
parallel	comb	filters	followed	by	three	series	allpass	filters.	This	also	
proves	a	useful	exercise	in	routing	audio	signals	within	Csound.	
Perhaps	the	most	crucial	element	of	the	Schroeder	reverb	is	the	
choice	of	loop	times	for	the	comb	and	allpass	filters	–	careful	choices	
here	should	obviate	the	undesirable	artefacts	mentioned	in	the	
previous	paragraph.	If	loop	times	are	too	long	individual	echoes	will	
become	apparent,	if	they	are	too	short	the	characteristic	ringing	of	
comb	filters	will	become	apparent.	If	loop	times	between	filters	differ	
too	much	the	outputs	from	the	various	filters	will	not	fuse.	It	is	also	
important	that	the	loop	times	are	prime	numbers	so	that	echoes	
between	different	filters	do	not	reinforce	each	other.	It	may	also	be	
necessary	to	adjust	loop	times	when	implementing	very	short	reverbs	
or	very	long	reverbs.	The	duration	of	the	reverb	is	effectively	
determined	by	the	reverb	times	for	the	comb	filters.	There	is	certainly	
scope	for	experimentation	with	the	design	of	this	example	and	
exploration	of	settings	other	than	the	ones	suggested	here.
		

This	example	consists	of	five	instruments.	The	fifth	instrument	
implements	the	reverb	algorithm	described	above.	The	first	four	
instruments	act	as	a	kind	of	generative	drum	machine	to	provide	
source	material	for	the	reverb.	Generally	sharp	percussive	sounds	
provide	the	sternest	test	of	a	reverb	effect.	Instrument	1	triggers	the	
various	synthesized	drum	sounds	(bass	drum,	snare	and	closed	hi-hat)	
produced	by	instruments	2	to	4.

REVERBERATION

508

		

		EXAMPLE	05E04_schroeder_reverb.csd	

<CsoundSynthesizer>

<CsOptions>
-odac	-m0
;	activate	real	time	sound	output	and	suppress	note	printing
</CsOptions>

<CsInstruments>
;Example	by	Iain	McCurdy

sr	=		44100
ksmps	=	1
nchnls	=	2
0dbfs	=	1

giSine							ftgen							0,	0,	2^12,	10,	1	;	a	sine	wave
gaRvbSend				init								0																	;	global	audio	variable	initialized
giRvbSendAmt	init								0.4															;	reverb	send	amount	(range	0	-	1)

		instr	1	;	trigger	drum	hits
ktrigger				metro							5																		;	rate	of	drum	strikes
kdrum							random						2,	4.999											;	randomly	choose	which	drum	to	hit
												schedkwhen		ktrigger,	0,	0,	kdrum,	0,	0.1	;	strike	a	drum
		endin

		instr	2	;	sound	1	-	bass	drum
iamp								random						0,	0.5															;	amplitude	randomly	chosen
p3										=											0.2																		;	define	duration	for	this	sound
aenv								line								1,p3,0.001											;	amplitude	envelope	(percussive)
icps								exprand					30																			;	cycles-per-second	offset
kcps								expon							icps+120,p3,20							;	pitch	glissando
aSig								oscil							aenv*0.5*iamp,kcps,giSine		;	oscillator
												outs								aSig,	aSig											;	send	audio	to	outputs
gaRvbSend			=											gaRvbSend	+	(aSig	*	giRvbSendAmt)	;	add	to	send
		endin

		instr	3	;	sound	3	-	snare
iAmp								random						0,	0.5																			;	amplitude	randomly	chosen
p3										=											0.3																						;	define	duration
aEnv								expon							1,	p3,	0.001													;	amp.	envelope	(percussive)
aNse								noise							1,	0																					;	create	noise	component
iCps								exprand					20																							;	cps	offset
kCps								expon							250	+	iCps,	p3,	200+iCps	;	create	tone	component	gliss.
aJit								randomi					0.2,	1.8,	10000										;	jitter	on	freq.
aTne								oscil							aEnv,	kCps*aJit,	giSine		;	create	tone	component
aSig								sum									aNse*0.1,	aTne											;	mix	noise	and	tone	components
aRes								comb								aSig,	0.02,	0.0035							;	comb	creates	a	'ring'
aSig								=											aRes	*	aEnv	*	iAmp							;	apply	env.	and	amp.	factor
												outs								aSig,	aSig															;	send	audio	to	outputs
gaRvbSend			=											gaRvbSend	+	(aSig	*	giRvbSendAmt);	add	to	send
		endin

		instr	4	;	sound	4	-	closed	hi-hat
iAmp								random						0,	1.5															;	amplitude	randomly	chosen
p3										=											0.1																		;	define	duration	for	this	sound
aEnv								expon							1,p3,0.001											;	amplitude	envelope	(percussive)
aSig								noise							aEnv,	0														;	create	sound	for	closed	hi-hat
aSig								buthp							aSig*0.5*iAmp,	12000	;	highpass	filter	sound
aSig								buthp							aSig,										12000	;	-and	again	to	sharpen	cutoff
												outs								aSig,	aSig											;	send	audio	to	outputs
gaRvbSend			=											gaRvbSend	+	(aSig	*	giRvbSendAmt)	;	add	to	send
		endin

		instr	5	;	schroeder	reverb	-	always	on

REVERBERATION

509

;	read	in	variables	from	the	score
kRvt								=											p4
kMix								=											p5

;	print	some	information	about	current	settings	gleaned	from	the	score
												prints						"Type:"
												prints						p6
												prints						"\\nReverb	Time:%2.1f\\nDry/Wet	Mix:%2.1f\\n\\n",p4,p5

;	four	parallel	comb	filters
a1										comb								gaRvbSend,	kRvt,	0.0297;	comb	filter	1
a2										comb								gaRvbSend,	kRvt,	0.0371;	comb	filter	2
a3										comb								gaRvbSend,	kRvt,	0.0411;	comb	filter	3
a4										comb								gaRvbSend,	kRvt,	0.0437;	comb	filter	4
asum								sum									a1,a2,a3,a4	;	sum	(mix)	the	outputs	of	all	comb	filters

;	two	allpass	filters	in	series
a5										alpass						asum,	0.1,	0.005	;	send	mix	through	first	allpass	filter
aOut								alpass						a5,	0.1,	0.02291	;	send	1st	allpass	through	2nd	allpass

amix								ntrpol						gaRvbSend,	aOut,	kMix		;	create	a	dry/wet	mix
												outs								amix,	amix													;	send	audio	to	outputs
												clear							gaRvbSend														;	clear	global	audio	variable
		endin

</CsInstruments>

<CsScore>
;	room	reverb
i	1		0	10																					;	start	drum	machine	trigger	instr
i	5		0	11	1	0.5	"Room	Reverb"	;	start	reverb

;	tight	ambience
i	1	11	10																										;	start	drum	machine	trigger	instr
i	5	11	11	0.3	0.9	"Tight	Ambience"	;	start	reverb

;	long	reverb	(low	in	the	mix)
i	1	22	10																																						;	start	drum	machine
i	5	22	15	5	0.1	"Long	Reverb	(Low	In	the	Mix)"	;	start	reverb

;	very	long	reverb	(high	in	the	mix)
i	1	37	10																																												;	start	drum	machine
i	5	37	25	8	0.9	"Very	Long	Reverb	(High	in	the	Mix)"	;	start	reverb
e
</CsScore>

</CsoundSynthesizer>

This	chapter	has	introduced	some	of	the	more	recent	Csound	opcodes	
for	delay-line	based	reverb	algorithms	which	in	most	situations	can	
be	used	to	provide	high	quality	and	efficient	reverberation.	
Convolution	offers	a	whole	new	approach	for	the	creation	of	realistic	
reverbs	that	imitate	actual	spaces	-	this	technique	is	demonstrated	in	
the	Convolution	chapter.
		

REVERBERATION

510

AM	/	RM	/	WAVESHAPING

511

AM	/	RM	/	WAVESHAPING

An	introduction	as	well	as	some	background	theory	of	amplitude	
modulation,	ring	modulation	and	waveshaping	is	given	in	the	fourth	
chapter	entitled	"sound-synthesis".	As	all	of	these	techniques	merely	
modulate	the	amplitude	of	a	signal	in	a	variety	of	ways,	they	can	also	
be	used	for	the	modification	of	non-synthesized	sound.	In	this	chapter	
we	will	explore	amplitude	modulation,	ring	modulation	and	
waveshaping	as	applied	to	non-synthesized	sound.1	
		

AMPLITUDE	MODULATION	

With	"sound-synthesis",	the	principle		of	AM	was	shown	as	a	
amplitude	multiplication	of	two	sine	oscillators.	Later	we've	used	a	
more	complex	modulators,	to	generate	more	complex	spectrums.	The	
principle	also	works	very	well	with	sound-files	(samples)	or	live-
audio-input.
		

Karlheinz	Stockhausens	"Mixtur	fu ̈r	Orchester,	vier	Sinusgeneratoren	
und	vier	Ringmodulatoren”	(1964)	was	the	first	piece	which	used	
analog	ringmodulation	(AM	without	DC-offset)	to	alter	the	acoustic	
instruments	pitch	in	realtime	during	a	live-performance.	The	word	
ringmodulation	inherites	from	the	analog	four-diode	circuit	which	
was	arranged	in	a	"ring".
		

In	the	following	example	shows	how	this	can	be	done	digitally	in	
Csound.	In	this	case	a	sound-file	works	as	the	carrier	which	is	
modulated	by	a	sine-wave-osc.	The	result	sounds	like	old	'Harald	
Bode'	pitch-shifters	from	the	1960's.

Example:	05F01_RM_modification.csd
		

AM	/	RM	/	WAVESHAPING

512

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>

sr	=	48000
ksmps	=	32
nchnls	=	1
0dbfs	=	1

instr	1			;	Ringmodulation
aSine1					poscil					0.8,	p4,	1
aSample				diskin2				"fox.wav",	1,	0,	1,	0,	32
											out								aSine1*aSample
endin

</CsInstruments>
<CsScore>
f	1	0	1024	10	1	;	sine

i	1	0	2	400
i	1	2	2	800
i	1	4	2	1600
i	1	6	2	200
i	1	8	2	2400
e
</CsScore>
</CsoundSynthesizer>
;	written	by	Alex	Hofmann	(Mar.	2011)

WAVESHAPING

In	chapter	04E	waveshaping	has	been	described	as	a	method	of	
applying	a	transfer	function	to	an	incoming	signal.	It	has	been	
discussed	that	the	table	which	stores	the	transfer	function	must	be	
read	with	an	interpolating	table	reader	to	avoid	degradation	of	the	
signal.	On	the	other	hand,	degradation	can	be	a	nice	thing	for	sound	
modification.	So	let	us	start	with	this	branch	here.

BIT	DEPTH	REDUCTION	

If	the	transfer	function	itself	is	linear,	but	the	table	of	the	function	is	
small,	and	no	interpolation	is	applied	to	the	amplitude	as	index	to	the	
table,	in	effect	the	bit	depth	is	reduced.	For	a	function	table	of	size	4,	
a	line	becomes	a	staircase:

	Bit	Depth	=	high																																																
		

AM	/	RM	/	WAVESHAPING

513

	Bit	Depth	=	2

AM	/	RM	/	WAVESHAPING

514

	

This	is	the	sounding	result:

	EXAMPLE	05F02_Wvshp_bit_crunch.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giTrnsFnc	ftgen	0,	0,	4,	-7,	-1,	3,	1

instr	1
aAmp						soundin			"fox.wav"
aIndx					=									(aAmp	+	1)	/	2
aWavShp			table					aIndx,	giTrnsFnc,	1
										outs						aWavShp,	aWavShp
endin

</CsInstruments>
<CsScore>
i	1	0	2.767
</CsScore>
</CsoundSynthesizer>

AM	/	RM	/	WAVESHAPING

515

;example	by	joachim	heintz

TRANSFORMATION	AND	DISTORTION	

In	general,	the	transformation	of	sound	in	applying	waveshaping	
depends	on	the	transfer	function.	The	following	example	applies	at	
first	a	table	which	does	not	change	the	sound	at	all,	because	the	
function	just	says	y	=	x.	The	second	one	leads	aready	to	a	heavy	
distortion,	though	"just"	the	samples	between	an	amplitude	of	-0.1	
and	+0.1	are	erased.	Tables	3	to	7	apply	some	chebychev	functions	
which	are	well	known	from	waveshaping	synthesis.	Finally,	tables	8	
and	9	approve	that	even	a	meaningful	sentence	and	a	nice	music	can	
regarded	as	noise	...

	EXAMPLE	05F03_Wvshp_different_transfer_funs.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

giNat			ftgen	1,	0,	2049,	-7,	-1,	2048,	1
giDist		ftgen	2,	0,	2049,	-7,	-1,	1024,	-.1,	0,	.1,	1024,	1
giCheb1	ftgen	3,	0,	513,	3,	-1,	1,	0,	1
giCheb2	ftgen	4,	0,	513,	3,	-1,	1,	-1,	0,	2
giCheb3	ftgen	5,	0,	513,	3,	-1,	1,	0,	3,	0,	4
giCheb4	ftgen	6,	0,	513,	3,	-1,	1,	1,	0,	8,	0,	4
giCheb5	ftgen	7,	0,	513,	3,	-1,	1,	3,	20,	-30,	-60,	32,	48
giFox			ftgen	8,	0,	-121569,	1,	"fox.wav",	0,	0,	1
giGuit		ftgen	9,	0,	-235612,	1,	"ClassGuit.wav",	0,	0,	1

instr	1
iTrnsFnc		=									p4
kEnv						linseg				0,	.01,	1,	p3-.2,	1,	.01,	0
aL,	aR				soundin			"ClassGuit.wav"
aIndxL				=									(aL	+	1)	/	2
aWavShpL		tablei				aIndxL,	iTrnsFnc,	1
aIndxR				=									(aR	+	1)	/	2
aWavShpR		tablei				aIndxR,	iTrnsFnc,	1
										outs						aWavShpL*kEnv,	aWavShpR*kEnv
endin

</CsInstruments>
<CsScore>
i	1	0	7	1	;natural	though	waveshaping
i	1	+	.	2	;rather	heavy	distortion
i	1	+	.	3	;chebychev	for	1st	partial
i	1	+	.	4	;chebychev	for	2nd	partial
i	1	+	.	5	;chebychev	for	3rd	partial
i	1	+	.	6	;chebychev	for	4th	partial

AM	/	RM	/	WAVESHAPING

516

i	1	+	.	7	;after	dodge/jerse	p.136
i	1	+	.	8	;fox
i	1	+	.	9	;guitar
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

Instead	of	using	the	"self-built"	method	which	has	been	described	
here,	you	can	use	the	Csound	opcode	distort.	It	performs	the	actual	
waveshaping	process	and	gives	a	nice	control	about	the	amount	of	
distortion	in	the	kdist	parameter.	Here	is	a	simple	example:2	

	EXAMPLE	05F04_distort.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr					=	44100
ksmps		=	32
nchnls	=	2
0dbfs		=	1

gi1	ftgen	1,0,257,9,.5,1,270	;sinoid	(also	the	next)
gi2	ftgen	2,0,257,9,.5,1,270,1.5,.33,90,2.5,.2,270,3.5,.143,90
gi3	ftgen	3,0,129,7,-1,128,1	;actually	natural
gi4	ftgen	4,0,129,10,1	;sine
gi5	ftgen	5,0,129,10,1,0,1,0,1,0,1,0,1	;odd	partials
gi6	ftgen	6,0,129,21,1	;white	noise
gi7	ftgen	7,0,129,9,.5,1,0	;half	sine
gi8	ftgen	8,0,129,7,1,64,1,0,-1,64,-1	;square	wave

instr	1
ifn							=									p4
ivol						=									p5
kdist					line						0,	p3,	1	;increase	the	distortion	over	p3
aL,	aR				soundin			"ClassGuit.wav"
aout1					distort			aL,	kdist,	ifn
aout2					distort			aR,	kdist,	ifn
										outs						aout1*ivol,	aout2*ivol
endin
</CsInstruments>
<CsScore>
i	1	0	7	1	1
i	.	+	.	2	.3
i	.	+	.	3	1
i	.	+	.	4	.5
i	.	+	.	5	.15
i	.	+	.	6	.04
i	.	+	.	7	.02
i	.	+	.	8	.02
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

		

AM	/	RM	/	WAVESHAPING

517

1.	 This	is	the	same	for	Granular	Synthesis	which	can	either	be	
"pure"	synthesis	or	applied	so	sampled	sound.^

2.	 Have	a	look	at	Iain	McCurdy's	Realtime	example	(which	has	
also	been	ported	to	CsoundQt	by	René	Jopi)	for	'distort'	for	a	
more	interactive	exploration	of	the	opcode.^

AM	/	RM	/	WAVESHAPING

518

GRANULAR	SYNTHESIS

519

GRANULAR	SYNTHESIS

	This	chapter	will	focus	upon	granular	synthesis	used	as	a	DSP	
technique	upon	recorded	sound	files	and	will	introduce	techniques	
including	time	stretching,	time	compressing	and	pitch	shifting.	The	
emphasis	will	be	upon	asynchronous	granulation.	For	an	introduction	
to	synchronous	granular	synthesis	using	simple	waveforms	please	
refer	to	chapter	04F.

Csound	offers	a	wide	range	of	opcodes	for	sound	granulation.	Each	
has	its	own	strengths	and	weaknesses	and	suitability	for	a	particular	
task.	Some	are	easier	to	use	than	others,	some,	such	as	granule	and	
partikkel,	are	extremely	complex	and	are,	at	least	in	terms	of	the	
number	of	input	arguments	they	demand,	amongst	Csound's	most	
complex	opcodes.

SNDWARP	-	TIME	STRETCHING	AND	PITCH
SHIFTING

sndwarp	may	not	be	Csound's	newest	or	most	advanced	opcode	for	
sound	granulation	but	it	is	quite	easy	to	use	and	is	certainly	up	to	the	
task	of	time	stretching	and	pitch	shifting.	sndwarp	has	two	modes	by	
which	we	can	modulate	time	stretching	characteristics,	one	in	which	
we	define	a	'stretch	factor',	a	value	of	2	defining	a	stretch	to	twice	the	
normal	length,	and	the	other	in	which	we	directly	control	a	pointer	
into	the	file.	The	following	example	uses	sndwarp's	first	mode	to	
produce	a	sequence	of	time	stretches	and	pitch	shifts.	An	overview	of	
each	procedure	will	be	printed	to	the	terminal	as	it	occurs.	sndwarp	
does	not	allow	for	k-rate	modulation	of	grain	size	or	density	so	for	
this	level	we	need	to	look	elsewhere.

You	will	need	to	make	sure	that	a	sound	file	is	available	to	sndwarp	
via	a	GEN01	function	table.	You	can	replace	the	one	used	in	this	
example	with	one	of	your	own	by	replacing	the	reference	to	
'ClassicalGuitar.wav'.	This	sound	file	is	stereo	therefore	instrument	1	

GRANULAR	SYNTHESIS

520

uses	the	stereo	version	of	sndwarp.	'sndwarpst'.	A	mismatch	between	
the	number	of	channels	in	the	sound	file	and	the	version	of	sndwarp	
used	will	result	in	playback	at	an	unexpected	pitch.	You	will	also	
need	to	give	GEN01	an	appropriate	size	that	will	be	able	to	contain	
your	chosen	sound	file.	You	can	calculate	the	table	size	you	will	need	
by	multiplying	the	duration	of	the	sound	file	(in	seconds)	by	the	
sample	rate	-	for	stereo	files	this	value	should	be	doubled	-	and	then	
choose	the	next	power	of	2	above	this	value.	You	can	download	the	
sample	used	in	the	example	at	
http://www.iainmccurdy.org/csoundrealtimeexamples/sourcematerial
s/ClassicalGuitar.wav.
		

sndwarp	describes	grain	size	as	'window	size'	and	it	is	defined	in	
samples	so	therefore	a	window	size	of	44100	means	that	grains	will	
last	for	1s	each	(when	sample	rate	is	set	at	44100).	Window	size	
randomization	(irandw)	adds	a	random	number	within	that	range	to	
the	duration	of	each	grain.	As	these	two	parameters	are	closely	
related	it	is	sometime	useful	to	set	irandw	to	be	a	fraction	of	window	
size.	If	irandw	is	set	to	zero	we	will	get	artefacts	associated	with	
synchronous	granular	synthesis.

sndwarp	(along	with	many	of	Csound's	other	granular	synthesis	
opcodes)	requires	us	to	supply	it	with	a	window	function	in	the	form	
of	a	function	table	according	to	which	it	will	apply	an	amplitude	
envelope	to	each	grain.	By	using	different	function	tables	we	can	
alternatively	create	softer	grains	with	gradual	attacks	and	decays	(as	
in	this	example),	with	more	of	a	percussive	character	(short	attack,	
long	decay)	or	'gate'-like	(short	attack,	long	sustain,	short	decay).

			EXAMPLE	05G01_sndwarp.csd

<CsoundSynthesizer>

GRANULAR	SYNTHESIS

521

<CsOptions>
-odac	-m0
;	activate	real-time	audio	output	and	suppress	printing
</CsOptions>

<CsInstruments>
;	example	written	by	Iain	McCurdy

sr	=	44100
ksmps	=	16
nchnls	=	2
0dbfs	=	1

;	waveform	used	for	granulation
giSound		ftgen	1,0,2097152,1,"ClassGuit.wav",0,0,0

;	window	function	-	used	as	an	amplitude	envelope	for	each	grain
;	(first	half	of	a	sine	wave)
giWFn			ftgen	2,0,16384,9,0.5,1,0

		instr	1
kamp								=										0.1
ktimewarp			expon						p4,p3,p5		;	amount	of	time	stretch,	1=none	2=double
kresample			line							p6,p3,p7		;	pitch	change	1=none	2=+1oct
ifn1								=										giSound			;	sound	file	to	be	granulated
ifn2								=										giWFn					;	window	shaped	used	to	envelope	every	grain
ibeg								=										0
iwsize						=										3000						;	grain	size	(in	sample)
irandw						=										3000						;	randomization	of	grain	size	range
ioverlap				=										50								;	density
itimemode			=										0									;	0=stretch	factor	1=pointer
												prints					p8								;	print	a	description
aSigL,aSigR	sndwarpst		kamp,ktimewarp,kresample,ifn1,ibeg,	\
																																	iwsize,irandw,ioverlap,ifn2,itimemode
												outs							aSigL,aSigR
		endin

</CsInstruments>

<CsScore>
;p3	=	stretch	factor	begin	/	pointer	location	begin
;p4	=	stretch	factor	end	/	pointer	location	end
;p5	=	resample	begin	(transposition)
;p6	=	resample	end	(transposition)
;p7	=	procedure	description
;p8	=	description	string
;	p1	p2			p3	p4	p5		p6				p7				p8
i	1		0				10	1		1			1					1					"No	time	stretch.	No	pitch	shift."
i	1		10.5	10	2		2			1					1					"%nTime	stretch	x	2."
i	1		21			20	1		20		1					1					\
																	"%nGradually	increasing	time	stretch	factor	from	x	1	to	x	20."
i	1		41.5	10	1		1			2					2					"%nPitch	shift	x	2	(up	1	octave)."
i	1		52			10	1		1			0.5			0.5			"%nPitch	shift	x	0.5	(down	1	octave)."
i	1		62.5	10	1		1			4					0.25		\
	"%nPitch	shift	glides	smoothly	from	4	(up	2	octaves)	to	0.25	(down	2	octaves)."
i	1		73			15	4		4			1					1					\
"%nA	chord	containing	three	transpositions:	unison,	+5th,	+10th.	(x4	time	stretch.)"
i	1		73			15	4		4			[3/2]	[3/2]	""
i	1		73			15	4		4			3					3					""
e
</CsScore>

</CsoundSynthesizer>

The	next	example	uses	sndwarp's	other	timestretch	mode	with	which	
we	explicitly	define	a	pointer	position	from	where	in	the	source	file	
grains	shall	begin.	This	method	allows	us	much	greater	freedom	with	
how	a	sound	will	be	time	warped;	we	can	even	freeze	movement	an	

GRANULAR	SYNTHESIS

522

go	backwards	in	time	-	something	that	is	not	possible	with	
timestretching	mode.

This	example	is	self	generative	in	that	instrument	2,	the	instrument	
that	actually	creates	the	granular	synthesis	textures,	is	repeatedly	
triggered	by	instrument	1.	Instrument	2	is	triggered	once	every	12.5s	
and	these	notes	then	last	for	40s	each	so	will	overlap.	Instrument	1	is	
played	from	the	score	for	1	hour	so	this	entire	process	will	last	that	
length	of	time.	Many	of	the	parameters	of	granulation	are	chosen	
randomly	when	a	note	begins	so	that	each	note	will	have	unique	
characteristics.	The	timestretch	is	created	by	a	line	function:	the	start	
and	end	points	of	which	are	defined	randomly	when	the	note	begins.	
Grain/window	size	and	window	size	randomization	are	defined	
randomly	when	a	note	begins	-	notes	with	smaller	window	sizes	will	
have	a	fuzzy	airy	quality	wheres	notes	with	a	larger	window	size	will	
produce	a	clearer	tone.	Each	note	will	be	randomly	transposed	
(within	a	range	of	+/-	2	octaves)	but	that	transposition	will	be	
quantized	to	a	rounded	number	of	semitones	-	this	is	done	as	a	
response	to	the	equally	tempered	nature	of	source	sound	material	
used.

Each	entire	note	is	enveloped	by	an	amplitude	envelope	and	a	
resonant	lowpass	filter	in	each	case	encasing	each	note	under	a	
smooth	arc.	Finally	a	small	amount	of	reverb	is	added	to	smooth	the	
overall	texture	slightly
		

			EXAMPLE	05G02_selfmade_grain.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

GRANULAR	SYNTHESIS

523

<CsInstruments>
;example	written	by	Iain	McCurdy

sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

;	the	name	of	the	sound	file	used	is	defined	as	a	string	variable	-
;	-	as	it	will	be	used	twice	in	the	code.
;	This	simplifies	adapting	the	orchestra	to	use	a	different	sound	file
gSfile	=	"ClassGuit.wav"

;	waveform	used	for	granulation
giSound		ftgen	1,0,2097152,1,gSfile,0,0,0

;	window	function	-	used	as	an	amplitude	envelope	for	each	grain
giWFn			ftgen	2,0,16384,9,0.5,1,0

seed	0	;	seed	the	random	generators	from	the	system	clock
gaSendL	init	0		;	initialize	global	audio	variables
gaSendR	init	0

		instr	1	;	triggers	instrument	2
ktrigger		metro			0.08									;metronome	of	triggers.	One	every	12.5s
schedkwhen	ktrigger,0,0,2,0,40	;trigger	instr.	2	for	40s
		endin

		instr	2	;	generates	granular	synthesis	textures
;define	the	input	variables
ifn1								=										giSound
ilen								=										nsamp(ifn1)/sr
iPtrStart			random					1,ilen-1
iPtrTrav				random					-1,1

GRANULAR	SYNTHESIS

524

ktimewarp			line							iPtrStart,p3,iPtrStart+iPtrTrav
kamp								linseg					0,p3/2,0.2,p3/2,0
iresample			random					-24,24.99
iresample			=										semitone(int(iresample))
ifn2								=										giWFn
ibeg								=										0
iwsize						random					400,10000
irandw						=										iwsize/3
ioverlap				=										50
itimemode			=										1
;	create	a	stereo	granular	synthesis	texture	using	sndwarp
aSigL,aSigR	sndwarpst		kamp,ktimewarp,iresample,ifn1,ibeg,\
																														iwsize,irandw,ioverlap,ifn2,itimemode
;	envelope	the	signal	with	a	lowpass	filter
kcf									expseg					50,p3/2,12000,p3/2,50
aSigL							moogvcf2				aSigL,	kcf,	0.5
aSigR							moogvcf2				aSigR,	kcf,	0.5
;	add	a	little	of	our	audio	signals	to	the	global	send	variables	-
;	-	these	will	be	sent	to	the	reverb	instrument	(2)
gaSendL					=										gaSendL+(aSigL*0.4)
gaSendR					=										gaSendR+(aSigR*0.4)
												outs							aSigL,aSigR
		endin

		instr	3	;	reverb	(always	on)
aRvbL,aRvbR	reverbsc			gaSendL,gaSendR,0.85,8000
												outs							aRvbL,aRvbR
;clear	variables	to	prevent	out	of	control	accumulation
												clear						gaSendL,gaSendR
		endin

</CsInstruments>

<CsScore>
;	p1	p2	p3

GRANULAR	SYNTHESIS

525

i	1		0		3600	;	triggers	instr	2
i	3		0		3600	;	reverb	instrument
e
</CsScore>

</CsoundSynthesizer>

GRANULE	-	CLOUDS	OF	SOUND

The	granule	opcode	is	one	of	Csound's	most	complex	opcodes	
requiring	up	to	22	input	arguments	in	order	to	function.	Only	a	few	of	
these	arguments	are	available	during	performance	(k-rate)	so	it	is	less	
well	suited	for	real-time	modulation,	for	real-time	a	more	nimble	
implementation	such	as	syncgrain,	fog,	or	grain3	would	be	
recommended.	For	more	complex	realtime	granular	techniques,	the	partikkel	opcode	can	be	used.	The	

granule	opcode	as	used	here,	proves	itself	ideally	suited	at	the	
production	of	massive	clouds	of	granulated	sound	in	which	individual	
grains	are	often	completed	indistinguishable.	There	are	still	two	
important	k-rate	variables	that	have	a	powerful	effect	on	the	texture	
created	when	they	are	modulated	during	a	note,	they	are:	grain	gap	-	
effectively	density	-	and	grain	size	which	will	affect	the	clarity	of	the	
texture	-	textures	with	smaller	grains	will	sound	fuzzier	and	airier,	
textures	with	larger	grains	will	sound	clearer.	In	the	following	
example	transeg	envelopes	move	the	grain	gap	and	grain	size	
parameters	through	a	variety	of	different	states	across	the	duration	of	
each	note.

With	granule	we	define	a	number	a	grain	streams	for	the	opcode	
using	its	'ivoice'	input	argument.	This	will	also	have	an	effect	on	the	
density	of	the	texture	produced.	Like	sndwarp's	first	timestretching	
mode,	granule	also	has	a	stretch	ratio	parameter.	Confusingly	it	works	
the	other	way	around	though,	a	value	of	0.5	will	slow	movement	
through	the	file	by	1/2,	2	will	double	is	and	so	on.	Increasing	grain	
gap	will	also	slow	progress	through	the	sound	file.	granule	also	
provides	up	to	four	pitch	shift	voices	so	that	we	can	create	chord-like	
structures	without	having	to	use	more	than	one	iteration	of	the	

GRANULAR	SYNTHESIS

526

opcode.	We	define	the	number	of	pitch	shifting	voices	we	would	like	
to	use	using	the	'ipshift'	parameter.	If	this	is	given	a	value	of	zero,	all	
pitch	shifting	intervals	will	be	ignored	and	grain-by-grain	
transpositions	will	be	chosen	randomly	within	the	range	+/-1	octave.	
granule	contains	built-in	randomizing	for	several	of	it	parameters	in	
order	to	easier	facilitate	asynchronous	granular	synthesis.	In	the	case	
of	grain	gap	and	grain	size	randomization	these	are	defined	as	
percentages	by	which	to	randomize	the	fixed	values.

Unlike	Csound's	other	granular	synthesis	opcodes,	granule	does	not	
use	a	function	table	to	define	the	amplitude	envelope	for	each	grain,	
instead	attack	and	decay	times	are	defined	as	percentages	of	the	total	
grain	duration	using	input	arguments.	The	sum	of	these	two	values	
should	total	less	than	100.
		

Five	notes	are	played	by	this	example.	While	each	note	explores	
grain	gap	and	grain	size	in	the	same	way	each	time,	different	
permutations	for	the	four	pitch	transpositions	are	explored	in	each	
note.	Information	about	what	these	transpositions	are,	are	printed	to	
the	terminal	as	each	note	begins.
		

			EXAMPLE	05G03_granule.csd
		

<CsoundSynthesizer>

<CsOptions>
-odac	-m0
;	activate	real-time	audio	output	and	suppress	note	printing
</CsOptions>

<CsInstruments>
;	example	written	by	Iain	McCurdy

sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

;waveforms	used	for	granulation
giSoundL	ftgen	1,0,1048576,1,"ClassGuit.wav",0,0,1
giSoundR	ftgen	2,0,1048576,1,"ClassGuit.wav",0,0,2

GRANULAR	SYNTHESIS

527

seed	0;	seed	the	random	generators	from	the	system	clock
gaSendL	init	0
gaSendR	init	0

		instr	1	;	generates	granular	synthesis	textures
												prints					p9
;define	the	input	variables
kamp								linseg					0,1,0.1,p3-1.2,0.1,0.2,0
ivoice						=										64
iratio						=										0.5
imode							=										1
ithd								=										0
ipshift					=										p8
igskip						=										0.1
igskip_os			=										0.5
ilength					=										nsamp(giSoundL)/sr
kgap								transeg				0,20,14,4,							5,8,8,					8,-10,0,				15,0,0.1
igap_os					=										50
kgsize						transeg				0.04,20,0,0.04,		5,-4,0.01,	8,0,0.01,			15,5,0.4
igsize_os			=										50
iatt								=										30
idec								=										30
iseedL						=										0
iseedR						=										0.21768
ipitch1					=										p4
ipitch2					=										p5
ipitch3					=										p6
ipitch4					=										p7
;create	the	granular	synthesis	textures;	one	for	each	channel
aSigL		granule		kamp,ivoice,iratio,imode,ithd,giSoundL,ipshift,igskip,\
					igskip_os,ilength,kgap,igap_os,kgsize,igsize_os,iatt,idec,iseedL,\
					ipitch1,ipitch2,ipitch3,ipitch4
aSigR		granule		kamp,ivoice,iratio,imode,ithd,giSoundR,ipshift,igskip,\
					igskip_os,ilength,kgap,igap_os,kgsize,igsize_os,iatt,idec,iseedR,\
					ipitch1,ipitch2,ipitch3,ipitch4
;send	a	little	to	the	reverb	effect
gaSendL					=										gaSendL+(aSigL*0.3)
gaSendR					=										gaSendR+(aSigR*0.3)
												outs							aSigL,aSigR
		endin

		instr	2	;	global	reverb	instrument	(always	on)
;	use	reverbsc	opcode	for	creating	reverb	signal
aRvbL,aRvbR	reverbsc			gaSendL,gaSendR,0.85,8000
												outs							aRvbL,aRvbR
;clear	variables	to	prevent	out	of	control	accumulation
												clear						gaSendL,gaSendR
		endin

</CsInstruments>

<CsScore>
;	p4	=	pitch	1
;	p5	=	pitch	2
;	p6	=	pitch	3
;	p7	=	pitch	4
;	p8	=	number	of	pitch	shift	voices	(0=random	pitch)
;	p1	p2		p3			p4		p5				p6				p7				p8				p9
i	1		0			48			1			1					1					1					4				"pitches:	all	unison"
i	1		+			.				1			0.5			0.25		2					4				\
		"%npitches:	1(unison)	0.5(down	1	octave)	0.25(down	2	octaves)	2(up	1	octave)"
i	1		+			.				1			2					4					8					4				"%npitches:	1	2	4	8"
i	1		+			.				1			[3/4]	[5/6]	[4/3]	4				"%npitches:	1	3/4	5/6	4/3"
i	1		+			.				1			1					1					1					0				"%npitches:	all	random"

i	2	0	[48*5+2];	reverb	instrument
e
</CsScore>

</CsoundSynthesizer>

GRANULAR	SYNTHESIS

528

GRAIN	DELAY	EFFECT

Granular	techniques	can	be	used	to	implement	a	flexible	delay	effect,	
where	we	can	do	transposition,	time	modification	and	disintegration	
of	the	sound	into	small	particles,	all	within	the	delay	effect	itself.	To	
implement	this	effect,	we	record	live	audio	into	a	buffer	(Csound	
table),	and	let	the	granular	synthesizer/generator	read	sound	for	the	
grains	from	this	buffer.	We	need	a	granular	synthesizer	that	allows	
manual	control	over	the	read	start	point	for	each	grain,	since	the	
relationship	between	the	write	position	and	the	read	position	in	the	
buffer	determines	the	delay	time.	We've	used	the	fof2	opcode	for	this	
purpose	here.	

			EXAMPLE	05G04_grain_delay.csd	

<CsoundSynthesizer>
<CsOptions>
;	activate	real-time	audio	output	and	suppress	note	printing
-odac	-d	-m128
</CsOptions>

<CsInstruments>
;example	by	Oeyvind	Brandtsegg

sr	=	44100
ksmps	=	512
nchnls	=	2
0dbfs	=	1

;	empty	table,	live	audio	input	buffer	used	for	granulation
giTablen		=	131072
giLive				ftgen	0,0,giTablen,2,0

;	sigmoid	rise/decay	shape	for	fof2,	half	cycle	from	bottom	to	top
giSigRise	ftgen	0,0,8192,19,0.5,1,270,1		

;	test	sound
giSample		ftgen	0,0,524288,1,"fox.wav",	0,0,0

instr	1
;	test	sound,	replace	with	live	input
		a1						loscil	1,	1,	giSample,	1
			 		outch	1,	a1
										chnmix	a1,	"liveAudio"
endin

instr	2
;	write	live	input	to	buffer	(table)
		a1						chnget	"liveAudio"
		gkstart	tablewa	giLive,	a1,	0
		if	gkstart	<	giTablen	goto	end
		gkstart	=	0
		end:
		a0						=	0
										chnset	a0,	"liveAudio"
endin

instr	3

GRANULAR	SYNTHESIS

529

;	delay	parameters
		kDelTim	=	0.5		 	 ;	delay	time	in	seconds	(max	2.8	seconds)
		kFeed			=	0.8
;	delay	time	random	dev
		kTmod			=	0.2
		kTmod			rnd31	kTmod,	1
		kDelTim	=	kDelTim+kTmod
;	delay	pitch	random	dev
		kFmod			linseg	0,	1,	0,	1,	0.1,	2,	0,	1,	0
		kFmod			rnd31	kFmod,	1
	;	grain	delay	processing
		kamp	 		=	ampdbfs(-8)
		kfund			=	25	;	grain	rate
		kform			=	(1+kFmod)*(sr/giTablen)	;	grain	pitch	transposition
		koct				=	0
		kband			=	0
		kdur				=	2.5	/	kfund	;	duration	relative	to	grain	rate
		kris				=	0.5*kdur
		kdec				=	0.5*kdur
		kphs				=	(gkstart/giTablen)-(kDelTim/(giTablen/sr))	;	calculate	grain	phase	based	
on	delay	time
		kgliss		=	0
		a1					fof2	1,	kfund,	kform,	koct,	kband,	kris,	kdur,	kdec,	100,	\
						giLive,	giSigRise,	86400,	kphs,	kgliss
										outch					2,	a1*kamp
										chnset	a1*kFeed,	"liveAudio"
endin

</CsInstruments>
<CsScore>
i	1	0	20
i	2	0	20
i	3	0	20
e
</CsScore>
</CsoundSynthesizer>

In	the	last	example	we	will	use	the	grain	opcode.	This	opcode	is	part	
of	a	little	group	of	opcodes	which	also	includes	grain2	and	grain3.	
Grain	is	the	oldest	opcode,	Grain2	is	a	more	easy-to-use	opcode,	
while	Grain3	offers	more	control.	

EXAMPLE	05G05_grain.csd

<CsoundSynthesizer>
<CsOptions>
	-o	dac	-d
</CsOptions>
<CsInstruments>
;	Example	by	Bjørn	Houdorf,	february	2013

sr					=	44100
ksmps		=	128
nchnls	=	2
0dbfs		=	1

;	First	we	hear	each	grain,	but	later	on	it	sounds	more	like	a	drum	roll.
;	If	your	computer	have	problems	with	running	this	CSD-file	in	real-time,
;	you	can	render	to	a	soundfile.	Just	write	"-o	filename"	in	the	<CsOptions>,
;	instead	of	"-o	dac"
gareverbL		init							0
gareverbR		init							0
giFt1						ftgen						0,	0,	1025,	20,	2,	1	;	GEN20,	Hanning	window	for	grain	envelope
;	The	soundfile(s)	you	use	should	be	in	the	same	folder	as	your	csd-file
;	The	soundfile	"fox.wav"	can	be	downloaded	at	http://csound-tutorial.net/node/1/58
giFt2						ftgen						0,	0,	524288,	1,	"fox.wav",	0,	0,	0

GRANULAR	SYNTHESIS

530

;	Instead	you	can	use	your	own	soundfile(s)

instr	1	;	Granular	synthesis	of	soundfile
ipitch					=										sr/ftlen(giFt2)	;	Original	frequency	of	the	input	sound
kdens1					expon						3,	p3,	500
kdens2					expon						4,	p3,	400
kdens3					expon						5,	p3,	300
kamp							line							1,	p3,	0.05
a1									grain						1,	ipitch,	kdens1,	0,	0,	1,	giFt2,	giFt1,	1
a2									grain						1,	ipitch,	kdens2,	0,	0,	1,	giFt2,	giFt1,	1
a3									grain						1,	ipitch,	kdens3,	0,	0,	1,	giFt2,	giFt1,	1
aleft						=										kamp*(a1+a2)
aright					=										kamp*(a2+a3)
											outs							aleft,	aright	;	Output	granulation
gareverbL		=										gareverbL	+	a1+a2	;	send	granulation	to	Instr	2	(Reverb)
gareverbR		=										gareverbR	+	a2+a3
endin

instr	2	;	Reverb
kkamp						line							0,	p3,	0.08
aL									reverb					gareverbL,	10*kkamp	;	reverberate	what	is	in	gareverbL
aR									reverb					gareverbR,	10*kkamp	;	and	garaverbR
											outs							kkamp*aL,	kkamp*aR	;	and	output	the	result
gareverbL		=										0	;	empty	the	receivers	for	the	next	loop
gareverbR		=										0
endin
</CsInstruments>
<CsScore>
i1	0	20	;	Granulation
i2	0	21	;	Reverb
</CsScore>
</CsoundSynthesizer>

CONCLUSION

Several	opcodes	for	granular	synthesis	have	been	considered	in	this	
chapter	but	this	is	in	no	way	meant	to	suggest	that	these	are	the	best,	
in	fact	it	is	strongly	recommended	to	explore	all	of	Csound's	other	
opcodes	as	they	each	have	their	own	unique	character.	The	syncgrain	
family	of	opcodes	(including	also	syncloop	and	diskgrain)	are	
deceptively	simple	as	their	k-rate	controls	encourages	further	
abstractions	of	grain	manipulation,	fog	is	designed	for	FOF	synthesis	
type	synchronous	granulation	but	with	sound	files	and	partikkel	offers	
a	comprehensive	control	of	grain	characteristics	on	a	grain-by-grain	
basis	inspired	by	Curtis	Roads'	encyclopedic	book	on	granular	
synthesis	'Microsound'.
		

CONVOLUTION

531

CONVOLUTION

Convolution	is	a	mathematical	procedure	whereby	one	function	is	
modified	by	another.	Applied	to	audio,	one	of	these	functions	might	
be	a	sound	file	or	a	stream	of	live	audio	whilst	the	other	will	be,	what	
is	referred	to	as,	an	impulse	response	file;	this	could	actually	just	be	
another	shorter	sound	file.	The	longer	sound	file	or	live	audio	stream	
will	be	modified	by	the	impulse	response	so	that	the	sound	file	will	be
imbued	with	certain	qualities	of	the	impulse	response.	It	is	important	
to	be	aware	that	convolution	is	a	far	from	trivial	process	and	that	
realtime	performance	may	be	a	frequent	consideration.	Effectively	
every	sample	in	the	sound	file	to	be	processed	will	be	multiplied	in	
turn	by	every	sample	contained	within	the	impulse	response	file.	
Therefore,	for	a	1	second	impulse	response	at	a	sampling	frequency	
of	44100	hertz,	each	and	every	sample	of	the	input	sound	file	or	
sound	stream	will	undergo	44100	multiplication	operations.	
Expanding	upon	this	even	further,	for	1	second's	worth	of	a	
convolution	procedure	this	will	result	in	44100	x	44100	(or	
1,944,810,000)	multiplications.	This	should	provide	some	insight	into	
the	processing	demands	of	a	convolution	procedure	and	also	draw	
attention	to	the	efficiency	cost	of	using	longer	impulse	response	files.
		

The	most	common	application	of	convolution	in	audio	processing	is	
reverberation	but	convolution	is	equally	adept	at,	for	example,	
imitating	the	filtering	and	time	smearing	characteristics	of	vintage	
microphones,	valve	amplifiers	and	speakers.	It	is	also	used	sometimes	
to	create	more	unusual	special	effects.	The	strength	of	convolution	
based	reverbs	is	that	they	implement	acoustic	imitations	of	actual	
spaces	based	upon	'recordings'	of	those	spaces.	All	the	quirks	and	
nuances	of	the	original	space	will	be	retained.	Reverberation	
algorithms	based	upon	networks	of	comb	and	allpass	filters	create	
only	idealised	reverb	responses	imitating	spaces	that	don't	actually	
exist.	The	impulse	response	is	a	little	like	a	'fingerprint'	of	the	space.	
It	is	perhaps	easier	to	manipulate	characteristics	such	as	reverb	time	

CONVOLUTION

532

and	high	frequency	diffusion	(i.e.	lowpass	filtering)	of	the	reverb	
effect	when	using	a	Schroeder	derived	algorithm	using	comb	and	
allpass	filters	but	most	of	these	modification	are	still	possible,	if	not	
immediately	apparent,	when	implementing	reverb	using	convolution.	
The	quality	of	a	convolution	reverb	is	largely	dependent	upon	the	
quality	of	the	impulse	response	used.	An	impulse	response	recording	
is	typically	achieved	by	recording	the	reverberant	tail	that	follows	a	
burst	of	white	noise.	People	often	employ	techniques	such	as	bursting	
balloons	to	achieve	something	approaching	a	short	burst	of	noise.	
Crucially	the	impulse	sound	should	not	excessively	favour	any	
particular	frequency	or	exhibit	any	sort	of	resonance.	More	modern	
techniques	employ	a	sine	wave	sweep	through	all	the	audible	
frequencies	when	recording	an	impulse	response.	Recorded	results	
using	this	technique	will	normally	require	further	processing	in	order	
to	provide	a	usable	impulse	response	file	and	this	approach	will	
normally	be	beyond	the	means	of	a	beginner.	
		

Many	commercial,	often	expensive,	implementations	of	convolution	
exist	both	in	the	form	of	software	and	hardware	but	fortunately	
Csound	provides	easy	access	to	convolution	for	free.	Csound	
currently	lists	six	different	opcodes	for	convolution,	convolve	
(convle),	cross2,	dconv,	ftconv,	ftmorf	and	pconvolve.	convolve	
(convle)	and	dconv	are	earlier	implementations	and	are	less	suited	to	
realtime	operation,	cross2	relates	to	FFT-based	cross	synthesis	and	
ftmorf	is	used	to	morph	between	similar	sized	function	table	and	is	
less	related	to	what	has	been	discussed	so	far,	therefore	in	this	chapter	
we	shall	focus	upon	just	two	opcodes,	pconvolve	and	ftconv.

PCONVOLVE

	pconvolve	is	perhaps	the	easiest	of	Csound's	convolution	opcodes	to	
use	and	the	most	useful	in	a	realtime	application.	It	uses	the	
uniformly	partitioned	(hence	the	'p')	overlap-save	algorithm	which	
permits	convolution	with	very	little	delay	(latency)	in	the	output	
signal.	The	impulse	response	file	that	it	uses	is	referenced	directly,	

CONVOLUTION

533

i.e.	it	does	not	have	to	be	previously	loaded	into	a	function	table,	and	
multichannel	files	are	permitted.	The	impulse	response	file	can	be	
any	standard	sound	file	acceptable	to	Csound	and	does	not	need	to	be	
pre-analysed	as	is	required	by	convolve.	Convolution	procedures	
through	their	very	nature	introduce	a	delay	in	the	output	signal	but	
pconvolve	minimises	this	using	the	algorithm	mentioned	above.	It	
will	still	introduce	some	delay	but	we	can	control	this	using	the	
opcode's	'ipartitionsize'	input	argument.	What	value	we	give	this	will	
require	some	consideration	and	perhaps	some	experimentation	as	
choosing	a	high	partition	size	will	result	in	excessively	long	delays	
(only	an	issue	in	realtime	work)	whereas	very	low	partition	sizes	
demand	more	from	the	CPU	and	too	low	a	size	may	result	in	buffer	
under-runs	and	interrupted	realtime	audio.	Bear	in	mind	still	that	
realtime	CPU	performance	will	depend	heavily	on	the	length	of	the	
impulse	file.	The	partition	size	argument	is	actually	an	optional	
argument	and	if	omitted	it	will	default	to	whatever	the	software	
buffer	size	is	as	defined	by	the	-b	command	line	flag.	If	we	specify	
the	partition	size	explicitly	however,	we	can	use	this	information	to	
delay	the	input	audio	(after	it	has	been	used	by	pconvolve)	so	that	it	
can	be	realigned	in	time	with	the	latency	affected	audio	output	from	
pconvolve	-	this	will	be	essential	in	creating	a	'wet/dry'	mix	in	a	
reverb	effect.	Partition	size	is	defined	in	sample	frames	therefore	if	
we	specify	a	partition	size	of	512,	the	delay	resulting	from	the	
convolution	procedure	will	be	512/sr	(sample	rate).

In	the	following	example	a	monophonic	drum	loop	sample	undergoes	
processing	through	a	convolution	reverb	implemented	using	
pconvolve	which	in	turn	uses	two	different	impulse	files.	The	first	file	
is	a	more	conventional	reverb	impulse	file	taken	in	a	stairwell	
whereas	the	second	is	a	recording	of	the	resonance	created	by	striking	
a	terracota	bowl	sharply.	If	you	wish	to	use	the	three	sound	files	I	
have	used	in	creating	this	example	the	mono	input	sound	file	is	here	
and	the	two	stereo	sound	files	used	as	impulse	responses	are	here	and	
here.	You	can,	of	course,	replace	them	with	ones	of	your	own	but	
remain	mindful	of	mono/stereo/multichannel	integrity.

CONVOLUTION

534

EXAMPLE	05H01_pconvolve.csd	

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>

sr					=		44100
ksmps		=		512
nchnls	=		2
0dbfs		=		1

gasig	init	0

	instr	1	;	sound	file	player
gasig											diskin2			p4,1,0,1
	endin

	instr	2	;	convolution	reverb
;	Define	partion	size.
;	Larger	values	require	less	CPU	but	result	in	more	latency.
;	Smaller	values	produce	lower	latency	but	may	cause	-
;	-	realtime	performance	issues
ipartitionsize	 =	 		256
ar1,ar2									pconvolve	gasig,	p4,ipartitionsize
;	create	a	delayed	version	of	the	input	signal	that	will	sync	-
;	-	with	convolution	output
adel												delay					gasig,ipartitionsize/sr
;	create	a	dry/wet	mix
aMixL											ntrpol				adel,ar1*0.1,p5
aMixR											ntrpol				adel,ar2*0.1,p5
																outs						aMixL,aMixR
gasig	 								=									0
	endin

</CsInstruments>

<CsScore>
;	instr	1.	sound	file	player
;				p4=input	soundfile
;	instr	2.	convolution	reverb
;				p4=impulse	response	file
;				p5=dry/wet	mix	(0	-	1)

i	1	0	8.6	"loop.wav"
i	2	0	10	"Stairwell.wav"	0.3

i	1	10	8.6	"loop.wav"
i	2	10	10	"Dish.wav"	0.8
e
</CsScore>

</CsoundSynthesizer>

FTCONV

ftconv	(abbreviated	from	'function	table	convolution)	is	perhaps	
slightly	more	complicated	to	use	than	pconvolve	but	offers	additional	
options.	The	fact	that	ftconv	utilises	an	impulse	response	that	we	
must	first	store	in	a	function	table	rather	than	directly	referencing	a	

CONVOLUTION

535

sound	file	stored	on	disk	means	that	we	have	the	option	of	performing	
transformations	upon	the	audio	stored	in	the	function	table	before	it	is	
employed	by	ftconv	for	convolution.	This	example	begins	just	as	the	
previous	example:	a	mono	drum	loop	sample	is	convolved	first	with	a	
typical	reverb	impulse	response	and	then	with	an	impulse	response	
derived	from	a	terracotta	bowl.	After	twenty	seconds	the	contents	of	
the	function	tables	containing	the	two	impulse	responses	are	reversed	
by	calling	a	UDO	(instrument	3)	and	the	convolution	procedure	is	
repeated,	this	time	with	a	'backwards	reverb'	effect.	When	the	
reversed	version	is	performed	the	dry	signal	is	delayed	further	before	
being	sent	to	the	speakers	so	that	it	appears	that	the	reverb	impulse	
sound	occurs	at	the	culmination	of	the	reverb	build-up.	This	
additional	delay	is	switched	on	or	off	via	p6	from	the	score.	As	with	
pconvolve,	ftconv	performs	the	convolution	process	in	overlapping	
partitions	to	minimise	latency.	Again	we	can	minimise	the	size	of	
these	partitions	and	therefore	the	latency	but	at	the	cost	of	CPU	
efficiency.	ftconv's	documentation	refers	to	this	partition	size	as	
'iplen'	(partition	length).	ftconv	offers	further	facilities	to	work	with	
multichannel	files	beyond	stereo.	When	doing	this	it	is	suggested	that	
you	use	GEN52	which	is	designed	for	this	purpose.	GEN01	seems	to	
work	fine,	at	least	up	to	stereo,	provided	that	you	do	not	defer	the	
table	size	definition	(size=0).	With	ftconv	we	can	specify	the	actual	
length	of	the	impulse	response	-	it	will	probably	be	shorter	than	the	
power-of-2	sized	function	table	used	to	store	it	-	and	this	action	will	
improve	realtime	efficiency.	This	optional	argument	is	defined	in	
sample	frames	and	defaults	to	the	size	of	the	impulse	response	
function	table.

EXAMPLE	05H02_ftconv.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>

sr					=		44100
ksmps		=		512
nchnls	=		2

CONVOLUTION

536

0dbfs		=		1

;	impulse	responses	stored	as	stereo	GEN01	function	tables
giStairwell	 ftgen	 1,0,131072,1,"Stairwell.wav",0,0,0
giDish	 	 ftgen	 2,0,131072,1,"Dish.wav",0,0,0

gasig	init	0

;	reverse	function	table	UDO
	opcode	tab_reverse,0,i
ifn													xin
iTabLen									=															ftlen(ifn)
iTableBuffer				ftgentmp								0,0,-iTabLen,-2,	0
icount										=															0
loop:
ival												table											iTabLen-icount-1,	ifn
																tableiw									ival,icount,iTableBuffer
																loop_lt									icount,1,iTabLen,loop
icount										=															0
loop2:
ival												table											icount,iTableBuffer
																tableiw		 ival,icount,ifn
																loop_lt									icount,1,iTabLen,loop2
	endop

	instr	3	;	reverse	the	contents	of	a	function	table
										tab_reverse	p4
	endin

	instr	1	;	sound	file	player
gasig											diskin2			p4,1,0,1
	endin

	instr	2	;	convolution	reverb
;	buffer	length
iplen	 =	 1024
;	derive	the	length	of	the	impulse	response
iirlen	 =	 nsamp(p4)
ar1,ar2	ftconv	 gasig,	p4,	iplen,0,	iirlen
;	delay	compensation.	Add	extra	delay	if	reverse	reverb	is	used.
adel												delay					gasig,(iplen/sr)	+	((iirlen/sr)*p6)
;	create	a	dry/wet	mix
aMixL			ntrpol				adel,ar1*0.1,p5
aMixR			ntrpol				adel,ar2*0.1,p5
								outs						aMixL,aMixR
gasig	 								=									0
	endin

</CsInstruments>

<CsScore>
;	instr	1.	sound	file	player
;				p4=input	soundfile
;	instr	2.	convolution	reverb
;				p4=impulse	response	file
;				p5=dry/wet	mix	(0	-	1)
;				p6=reverse	reverb	switch	(0=off,1=on)
;	instr	3.	reverse	table	contents
;				p4=function	table	number

;	'stairwell'	impulse	response
i	1	0	8.5	"loop.wav"
i	2	0	10	1	0.3	0

;	'dish'	impulse	response
i	1	10	8.5	"loop.wav"
i	2	10	10	2	0.8	0

;	reverse	the	impulse	responses
i	3	20	0	1
i	3	20	0	2

;	'stairwell'	impulse	response	(reversed)

CONVOLUTION

537

i	1	21	8.5	"loop.wav"
i	2	21	10	1	0.5	1

;	'dish'	impulse	response	(reversed)
i	1	31	8.5	"loop.wav"
i	2	31	10	2	0.5	1

e
</CsScore>

</CsoundSynthesizer

Suggested	avenues	for	further	exploration	with	ftconv	could	be	
applying	envelopes	to,	filtering	and	time	stretching	and	compressing	
the	function	table	stored	impulse	files	before	use	in	convolution.

The	impulse	responses	I	have	used	here	are	admittedly	of	rather	low	
quality	and	whilst	it	is	always	recommended	to	maintain	as	high	
standards	of	sound	quality	as	possible	the	user	should	not	feel	
restricted	from	exploring	the	sound	transformation	possibilities	
possible	form	whatever	source	material	they	may	have	lying	around.	
Many	commercial	convolution	algorithms	demand	a	proprietary	
impulse	response	format	inevitably	limiting	the	user	to	using	the	
impulse	responses	provided	by	the	software	manufacturers	but	with	
Csound	we	have	the	freedom	to	use	any	sound	we	like.
		

CONVOLUTION

538

FOURIER	TRANSFORMATION	/	SPECTRAL	PROCESSING

539

FOURIER	TRANSFORMATION	/	SPECTRAL
PROCESSING

A	Fourier	Transformation	(FT)	is	used	to	transfer	an	audio-signal	
from	the	time-domain	to	the	frequency-domain.	This	can,	for	
instance,	be	used	to	analyze	and	visualize	the	spectrum	of	the	signal	
appearing	in	a	certain	time	span.	Fourier	transform	and	subsequent	
manipulations	in	the	frequency	domain	open	a	wide	area	of	
interesting	sound	transformations,	like	time	stretching,	pitch	shifting	
and	much	more.
		

HOW	DOES	IT	WORK?

	The	mathematician	J.B.	Fourier	(1768-1830)	developed	a	method	to	
approximate	unknown	functions	by	using	trigonometric	functions.	
The	advantage	of	this	was	that	the	properties	of	the	trigonometric	
functions	(sin	&	cos)	were	well-known	and	helped	to	describe	the	
properties	of	the	unknown	function.

In	audio	DSP,	a	fourier	transformed	signal	is	decomposed	into	its	sum	
of	sinoids.	Put	simply,	Fourier	transform	is	the	opposite	of	additive	
synthesis.	Ideally,	a	sound	can	be	dissected	by	Fourier	transformation	
into	its	partial	components,	and	resynthesized	again	by	adding	these	
components	back	together	again.
		

On	account	of	the	fact	that	sound	is	represented	as	discrete	samples	in	
the	computer,	the	computer	implementation	of	the	FT	calculates	a	
discrete	Fourier	transform	(DFT).	As	each	transformation	needs	a	
certain	number	of	samples,	one	key	decision	in	performing	DFT	is	
about	the	number	of	samples	used.	The	analysis	of	the	frequency	
components	will	be	more	accurate	if	more	samples	are	used,	but	as	
samples	represent	a	progression	of	time,	a	caveat	must	be	found	for	
each	FT	between	either	better	time	resolution	(fewer	samples)	or	

FOURIER	TRANSFORMATION	/	SPECTRAL	PROCESSING

540

better	frequency	resolution	(more	samples).	A	typical	value	for	FT	in	
music	is	to	have	about	20-100	"snapshots"	per	second	(which	can	be	
compared	to	the	single	frames	in	a	film	or	video).

At	a	sample	rate	of	48000	samples	per	second,	these	are	about	500-
2500	samples	for	one	frame	or	window.	It	is	normal	in	DFT	in	
computer	music	to	use	window	sizes	which	are	a	power-of-two	in	
size,	such	as	512,	1024	or	2048	samples.	The	reason	for	this	
restriction	is	that	DFT	for	these	power-of-two	sized	frames	can	be	
calculated	much	faster.	This	is	called	Fast	Fourier	Transform	(FFT),	
and	this	is	the	standard	implementation	of	the	Fourier	transform	in	
audio	applications.
		

HOW	IS	FFT	DONE	IN	CSOUND?

	As	usual,	there	is	not	just	one	way	to	work	with	FFT	and	spectral	
processing	in	Csound.	There	are	several	families	of	opcodes.	Each	
family	can	be	very	useful	for	a	specific	approach	to	working	in	the	
frequency	domain.	Have	a	look	at	the	Spectral	Processing	overview	
in	the	Csound	Manual.	This	introduction	will	focus	on	the	so-called	
"Phase	Vocoder	Streaming"	opcodes.	All	of	these	opcodes	begin	with	
the	charcters	"pvs".	These	opcodes	became	part	of	Csound	through	
the	work	of	Richard	Dobson,	Victor	Lazzarini	and	others.	They	are	
designed	to	work	in	realtime	in	the	frequency	domain	in	Csound	and	
indeed	they	are	not	just	very	fast	but	also	easier	to	use	than	FFT	
implementations	in	many	other	applications.

CHANGING	FROM	TIME-DOMAIN	TO
FREQUENCY-DOMAIN	

For	dealing	with	signals	in	the	frequency	domain,	the	pvs	opcodes	
implement	a	new	signal	type,	the	f-signals.	Csound	shows	the	type	of	
a	variable	in	the	first	letter	of	its	name.	Each	audio	signal	starts	with	

FOURIER	TRANSFORMATION	/	SPECTRAL	PROCESSING

541

an	a,	each	control	signal	with	a	k,	and	so	each	signal	in	the	frequency	
domain	used	by	the	pvs-opcodes	starts	with	an	f.

There	are	several	ways	to	create	an	f-signal.	The	most	common	way	
is	to	convert	an	audio	signal	to	a	frequency	signal.	The	first	example	
covers	two	typical	situations:

	the	audio	signal	derives	from	playing	back	a	soundfile	from	
the	hard	disc	(instr	1)
the	audio	signal	is	the	live	input	(instr	2)

(Caution	-	this	example	can	quickly	start	feeding	back.	Best	results	
are	with	headphones.)

EXAMPLE	05I01_pvsanal.csd	1	
		

<CsoundSynthesizer>
<CsOptions>
-i	adc	-o	dac
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
;uses	the	file	"fox.wav"	(distributed	with	the	Csound	Manual)
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

;general	values	for	fourier	transform
gifftsiz		=									1024
gioverlap	=									256
giwintyp		=									1	;von	hann	window

instr	1	;soundfile	to	fsig
asig						soundin			"fox.wav"
fsig						pvsanal			asig,	gifftsiz,	gioverlap,	gifftsiz*2,	giwintyp
aback					pvsynth			fsig
										outs						aback,	aback
endin

instr	2	;live	input	to	fsig
										prints				"LIVE	INPUT	NOW!%n"
ain							inch						1	;live	input	from	channel	1
fsig						pvsanal			ain,	gifftsiz,	gioverlap,	gifftsiz,	giwintyp
alisten			pvsynth			fsig
										outs						alisten,	alisten
endin

</CsInstruments>
<CsScore>
i	1	0	3
i	2	3	10
</CsScore>
</CsoundSynthesizer>	

FOURIER	TRANSFORMATION	/	SPECTRAL	PROCESSING

542

You	should	hear	first	the	"fox.wav"	sample,	and	then,	the	slightly	
delayed	live	input	signal.	The	delay	(or	latency)	that	you	will	observe	
will	depend	first	of	all	on	the	general	settings	for	realtime	input	
(ksmps,	-b	and	-B:	see	chapter	2D),	but	it	will	also	be	added	to	by	the	
FFT	process.	The	window	size	here	is	1024	samples,	so	the	additional	
delay	is	1024/44100	=	0.023	seconds.	If	you	change	the	window	size	
gifftsiz	to	2048	or	to	512	samples,	you	should	notice	a	larger	or	
shorter	delay.	For	realtime	applications,	the	decision	about	the	FFT	
size	is	not	only	a	question	of	better	time	resolution	versus	better	
frequency	resolution,	but	it	will	also	be	a	question	concerning	
tolerable	latency.

What	happens	in	the	example	above?	Firstly,	the	audio	signal	(asig,	
ain)	is	being	analyzed	and	transformed	to	an	f-signal.	This	is	done	via	
the	opcode	pvsanal.	Then	nothing	more	happens	than	the	f-signal	
being	transformed	from	the	frequency	domain	signal	back	into	the	
time	domain	(an	audio	signal).	This	is	called	inverse	Fourier	
transformation	(IFT	or	IFFT)	and	is	carried	out	by	the	opcode	
pvsynth.2		In	this	case,	it	is	just	a	test:	to	see	if	everything	works,	to	
hear	the	results	of	different	window	sizes	and	to	check	the	latency,	
but	potentially	you	can	insert	any	other	pvs	opcode(s)	in	between	this	
analysis	and	resynthesis:

	

		

PITCH	SHIFTING

Simple	pitch	shifting	can	be	carried	out	by	the	opcode	pvscale.	All	
the	frequency	data	in	the	f-signal	are	scaled	by	a	certain	value.	

FOURIER	TRANSFORMATION	/	SPECTRAL	PROCESSING

543

Multiplying	by	2	results	in	transposing	by	an	octave	upwards;	
multiplying	by	0.5	in	transposing	by	an	octave	downwards.	For	
accepting	cent	values	instead	of	ratios	as	input,	the	cent	opcode	can	
be	used.

EXAMPLE	05I02_pvscale.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;example	by	joachim	heintz
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

gifftsize	=									1024
gioverlap	=									gifftsize	/	4
giwinsize	=									gifftsize
giwinshape	=								1;	von-Hann	window

instr	1	;scaling	by	a	factor
ain							soundin		"fox.wav"
fftin					pvsanal		ain,	gifftsize,	gioverlap,	giwinsize,	giwinshape
fftscal			pvscale		fftin,	p4
aout						pvsynth		fftscal
										out						aout
endin

instr	2	;scaling	by	a	cent	value
ain							soundin		"fox.wav"
fftin					pvsanal		ain,	gifftsize,	gioverlap,	giwinsize,	giwinshape
fftscal			pvscale		fftin,	cent(p4)
aout						pvsynth		fftscal
										out						aout/3
endin

</CsInstruments>
<CsScore>
i	1	0	3	1;	original	pitch
i	1	3	3	.5;	octave	lower
i	1	6	3	2	;octave	higher
i	2	9	3	0
i	2	9	3	400	;major	third
i	2	9	3	700	;fifth
e
</CsScore>
</CsoundSynthesizer>

Pitch	shifting	via	FFT	resynthesis	is	very	simple	in	general,	but	rather	
more	complicated	in	detail.	With	speech	for	instance,	there	is	a	
problem	because	of	the	formants.	If	you	simply	scale	the	frequencies,	
the	formants	are	shifted,	too,	and	the	sound	gets	the	typical	'helium	
voice'	effect.	There	are	some	parameters	in	the	pvscale	opcode,	and	
some	other	pvs-opcodes	which	can	help	to	avoid	this,	but	the	quality	
of	the	results	will	always	depend	to	an	extend	upon	the	nature	of	the	

FOURIER	TRANSFORMATION	/	SPECTRAL	PROCESSING

544

input	sound.

TIME-STRETCH/COMPRESS	

As	the	Fourier	transformation	separates	the	spectral	information	from	
its	progression	in	time,	both	elements	can	be	varied	independently.	
Pitch	shifting	via	the	pvscale	opcode,	as	in	the	previous	example,	is	
independent	of	the	speed	of	reading	the	audio	data.	The	complement	
is	changing	the	time	without	changing	the	pitch:	time-stretching	or	
time-compression.

The	simplest	way	to	alter	the	speed	of	a	sampled	sound	is	using	
pvstanal	(new	in	Csound	5.13).	This	opcode	transforms	a	sound	stored	
in	a	function	table	(transformation	to	an	f-signal	is	carried	out	
internally	by	the	opcode)	with	time	manipulations	simply	being	done	
by	altering	its	ktimescal	parameter.

Example	05I03_pvstanal.csd
		

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;example	by	joachim	heintz
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

;store	the	sample	"fox.wav"	in	a	function	table	(buffer)
gifil					ftgen					0,	0,	0,	1,	"fox.wav",	0,	0,	1

;general	values	for	the	pvstanal	opcode
giamp					=									1	;amplitude	scaling
gipitch			=									1	;pitch	scaling
gidet					=									0	;onset	detection
giwrap				=									0	;no	loop	reading
giskip				=									0	;start	at	the	beginning
gifftsiz		=									1024	;fft	size
giovlp				=									gifftsiz/8	;overlap	size
githresh		=									0	;threshold

instr	1	;simple	time	stretching	/	compressing
fsig						pvstanal		p4,	giamp,	gipitch,	gifil,	gidet,	giwrap,	giskip,
																				gifftsiz,	giovlp,	githresh
aout						pvsynth			fsig
										out							aout
endin

instr	2	;automatic	scratching
kspeed				randi					2,	2,	2	;speed	randomly	between	-2	and	2
kpitch				randi					p4,	2,	2	;pitch	between	2	octaves	lower	or	higher

FOURIER	TRANSFORMATION	/	SPECTRAL	PROCESSING

545

fsig						pvstanal		kspeed,	1,	octave(kpitch),	gifil
aout						pvsynth			fsig
aenv						linen					aout,	.003,	p3,	.1
										out							aout
endin

</CsInstruments>
<CsScore>
;									speed
i	1	0	3			1
i	.	+	10			.33
i	.	+	2			3
s
i	2	0	10	0;random	scratching	without	...
i	.	11	10	2	;...	and	with	pitch	changes
</CsScore>
</CsoundSynthesizer>

CROSS	SYNTHESIS	

	Working	in	the	frequency	domain	makes	it	possible	to	combine	or	
'cross'	the	spectra	of	two	sounds.	As	the	Fourier	transform	of	an	
analysis	frame	results	in	a	frequency	and	an	amplitude	value	for	each	
frequency	'bin',	there	are	many	different	ways	of	performing	cross	
synthesis.	The	most	common	methods	are:

Combine	the	amplitudes	of	sound	A	with	the	frequencies	of	
sound	B.	This	is	the	classical	phase	vocoder	approach.	If	the	
frequencies	are	not	completely	from	sound	B,	but	represent	an	
interpolation	between	A	and	B,	the	cross	synthesis	is	more	
flexible	and	adjustable.	This	is	what	pvsvoc	does.	
Combine	the	frequencies	of	sound	A	with	the	amplitudes	of	
sound	B.	Give	user	flexibility	by	scaling	the	amplitudes	
between	A	and	B:	pvscross.
Get	the	frequencies	from	sound	A.	Multiply	the	amplitudes	of	
A	and	B.	This	can	be	described	as	spectral	filtering.	pvsfilter	
gives	a	flexible	portion	of	this	filtering	effect.
		

This	is	an	example	of	phase	vocoding.	It	is	nice	to	have	speech	as	
sound	A,	and	a	rich	sound,	like	classical	music,	as	sound	B.	Here	the	
"fox"	sample	is	being	played	at	half	speed	and	'sings'	through	the	
music	of	sound	B:	
		

FOURIER	TRANSFORMATION	/	SPECTRAL	PROCESSING

546

	EXAMPLE	05I04_phase_vocoder.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;example	by	joachim	heintz
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

;store	the	samples	in	function	tables	(buffers)
gifilA				ftgen					0,	0,	0,	1,	"fox.wav",	0,	0,	1
gifilB				ftgen					0,	0,	0,	1,	"ClassGuit.wav",	0,	0,	1

;general	values	for	the	pvstanal	opcode
giamp					=									1	;amplitude	scaling
gipitch			=									1	;pitch	scaling
gidet					=									0	;onset	detection
giwrap				=									1	;loop	reading
giskip				=									0	;start	at	the	beginning
gifftsiz		=									1024	;fft	size
giovlp				=									gifftsiz/8	;overlap	size
githresh		=									0	;threshold

instr	1
;read	"fox.wav"	in	half	speed	and	cross	with	classical	guitar	sample
fsigA					pvstanal		.5,	giamp,	gipitch,	gifilA,	gidet,	giwrap,	giskip,\
																					gifftsiz,	giovlp,	githresh
fsigB					pvstanal		1,	giamp,	gipitch,	gifilB,	gidet,	giwrap,	giskip,\
																					gifftsiz,	giovlp,	githresh
fvoc						pvsvoc				fsigA,	fsigB,	1,	1	
aout						pvsynth			fvoc
aenv						linen					aout,	.1,	p3,	.5
										out							aout
endin

</CsInstruments>
<CsScore>
i	1	0	11
</CsScore>
</CsoundSynthesizer>

The	next	example	introduces	pvscross:

EXAMPLE	05I05_pvscross.csd
		

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;example	by	joachim	heintz
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

;store	the	samples	in	function	tables	(buffers)

FOURIER	TRANSFORMATION	/	SPECTRAL	PROCESSING

547

gifilA				ftgen					0,	0,	0,	1,	"BratscheMono.wav",	0,	0,	1
gifilB				ftgen					0,	0,	0,	1,	"fox.wav",	0,	0,	1

;general	values	for	the	pvstanal	opcode
giamp					=									1	;amplitude	scaling
gipitch			=									1	;pitch	scaling
gidet					=									0	;onset	detection
giwrap				=									1	;loop	reading
giskip				=									0	;start	at	the	beginning
gifftsiz		=									1024	;fft	size
giovlp				=									gifftsiz/8	;overlap	size
githresh		=									0	;threshold

instr	1
;cross	viola	with	"fox.wav"	in	half	speed
fsigA					pvstanal		1,	giamp,	gipitch,	gifilA,	gidet,	giwrap,	giskip,\
																				gifftsiz,	giovlp,	githresh
fsigB					pvstanal		.5,	giamp,	gipitch,	gifilB,	gidet,	giwrap,	giskip,\
																					gifftsiz,	giovlp,	githresh
fcross				pvscross		fsigA,	fsigB,	0,	1	
aout						pvsynth			fcross
aenv						linen					aout,	.1,	p3,	.5
										out							aout
endin

</CsInstruments>
<CsScore>
i	1	0	11
</CsScore>
</CsoundSynthesizer>

The	last	example	shows	spectral	filtering	via	pvsfilter.	The	well-
known	"fox"	(sound	A)	is	now	filtered	by	the	viola	(sound	B).	Its	
resulting	intensity	is	dependent	upon	the	amplitudes	of	sound	B,	and	
if	the	amplitudes	are	strong	enough,	you	will	hear	a	resonating	effect:
		

EXAMPLE	05I06_pvsfilter.csd
		

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;example	by	joachim	heintz
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

FOURIER	TRANSFORMATION	/	SPECTRAL	PROCESSING

548

;store	the	samples	in	function	tables	(buffers)
gifilA				ftgen					0,	0,	0,	1,	"fox.wav",	0,	0,	1
gifilB				ftgen					0,	0,	0,	1,	"BratscheMono.wav",	0,	0,	1

;general	values	for	the	pvstanal	opcode
giamp					=									1	;amplitude	scaling
gipitch			=									1	;pitch	scaling
gidet					=									0	;onset	detection
giwrap				=									1	;loop	reading
giskip				=									0	;start	at	the	beginning
gifftsiz		=									1024	;fft	size
giovlp				=									gifftsiz/4	;overlap	size
githresh		=									0	;threshold

instr	1
;filters	"fox.wav"	(half	speed)	by	the	spectrum	of	the	viola	(double	
speed)
fsigA					pvstanal		.5,	giamp,	gipitch,	gifilA,	gidet,	giwrap,	giskip,\
																					gifftsiz,	giovlp,	githresh
fsigB					pvstanal		2,	5,	gipitch,	gifilB,	gidet,	giwrap,	giskip,\
																					gifftsiz,	giovlp,	githresh
ffilt					pvsfilter	fsigA,	fsigB,	1	
aout						pvsynth			ffilt
aenv						linen					aout,	.1,	p3,	.5
										out							aout
endin

</CsInstruments>
<CsScore>
i	1	0	11
</CsScore>
</CsoundSynthesizer>	

There	are	many	more	tools	and	opcodes	for	transforming	FFT	signals	
in	Csound.	Have	a	look	at	the	Signal	Processing	II	section	of	the	

FOURIER	TRANSFORMATION	/	SPECTRAL	PROCESSING

549

Opcodes	Overview	for	some	hints.
		

1.	 All	soundfiles	used	in	this	manual	are	free	and	can	be	
downloaded	at	www.csound-tutorial.net^

2.	 In	some	cases	it	might	be	interesting	to	use	pvsadsyn	instead	of	
pvsynth.	It	employs	a	bank	of	oscillators	for	resynthesis,	the	
details	of	which	can	be	controlled	by	the	user.^

FOURIER	TRANSFORMATION	/	SPECTRAL	PROCESSING

550

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS

551

K.	ANALYSIS	TRANSFORMATION
SYNTHESIS

1.	THE	ATS	TECHNIQUE.

		

GENERAL	OVERVIEW.

The	ATS	technique	(Analysis-Transformation-Synthesis)	was	
developed	by	Juan	Pampin.	A	comprehensive	explanation	of	this	
technique	can	be	found	in	his	ATS	Theory1	but,	essentially,	it	may	be	
said	that	it	represents	two	aspects	of	the	analyzed	signal:	the	
deterministic	part	and	the	stochastic	or	residual	part.	This	model	was	
initially	conceived	by	Julius	Orion	Smith	and	Xavier	Serra,2	but	ATS	
refines	certain	aspects	of	it,	such	as	the	weighting	of	the	spectral	
components	on	the	basis	of	their	Signal-to-Mask-Ratio	(SMR).3	

	The	deterministic	part	consists	in	sinusoidal	trajectories	with	varying	
amplitude,	frequency	and	phase.	It	is	achieved	by	means	of	the	
depuration	of	the	spectral	data	obtained	using	STFT	(Short-Time	
Fourier	Transform)	analysis.

The	stochastic	part	is	also	termed	residual,	because	it	is	achieved	by	
subtracting	the	deterministic	signal	from	the	original	signal.	For	such	
purposes,	the	deterministic	part	is	synthesized	preserving	the	phase	
alignment	of	its	components	in	the	second	step	of	the	analysis.	The	
residual	part	is	represented	with	noise	variable	energy	values	along	
the	25	critical	bands.4	

The	ATS	technique	has	the	following	advantages:
		

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS

552

1.	 The	splitting	between	deterministic	and	stochastic	parts	allows	
an	independent	treatment	of	two	different	qualitative	aspects	of	
an	audio	signal.

2.	 The	representation	of	the	deterministic	part	by	means	of	
sinusoidal	trajectories	improves	the	information	and	presents	it	
on	a	way	that	is	much	closer	to	the	way	that	musicians	think	of	
sound.	Therefore,	it	allows	many	'classical'	spectral	
transformations	(such	as	the	suppression	of	partials	or	their	
frequency	warping)	in	a	more	flexible	and	conceptually	clearer	
way.

3.	 The	representation	of	the	residual	part	by	means	of	noise	
values	among	the	25	critical	bands	simplifies	the	information	
and	its	further	reconstruction.	Namely,	it	is	possible	to	
overcome	the	common	artifacts	that	arise	in	synthesis	using	
oscillator	banks	or	IDFT,	when	the	time	of	a	noisy	signal	
analyzed	using	a	FFT	is	warped.
		

THE	ATS	FILE	FORMAT

Instead	of	storing	the	'crude'	data	of	the	FFT	analysis,	the	ATS	files	
store	a	representation	of	a	digital	sound	signal	in	terms	of	sinusoidal	
trajectories	(called	partials)	with	instantaneous	frequency,	amplitude,	
and	phase	changing	along	temporal	frames.	Each	frame	has	a	set	of	
partials,	each	having	(at	least)	amplitude	and	frequency	values	(phase	
information	might	be	discarded	from	the	analysis).	Each	frame	might	
also	contain	noise	information,	modeled	as	time-varying	energy	in	
the	25	critical	bands	of	the	analysis	residual.	All	the	data	is	stored	as	
64	bits	floats	in	the	host's	byte	order.

The	ATS	files	start	with	a	header	at	which	their	description	is	stored	
(such	as	frame	rate,	duration,	number	of	sinusoidal	trajectories,	etc.).	
The	header	of	the	ATS	files	contains	the	following	information:

1.	 ats-magic-number	(just	the	arbitrary	number	123.	for	
consistency	checking)

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS

553

2.	 sampling-rate	(samples/sec)
3.	 frame-size	(samples)
4.	 window-size	(samples)
5.	 partials	(number	of	partials)
6.	 frames	(number	of	frames)
7.	 ampmax	(max.	amplitude)
8.	 frqmax	(max.	frequency)
9.	 dur	(duration	in	sec.)
10.	 type	(frame	type,	see	below)

The	ATS	frame	type	may	be,	at	present,	one	of	the	four	following:

Type	1:	only	sinusoidal	trajectories	with	amplitude	and	frequency	
data.
		
Type	2:	only	sinusoidal	trajectories	with	amplitude,	frequency	and	
phase	data.
		
Type	3:	sinusoidal	trajectories	with	amplitude,	and	frequency	data	as	
well	as	residual	data.
		
Type	4:	sinusoidal	trajectories	with	amplitude,	frequency	and	phase	
data	as	well	as	residual	data.	

So,	after	the	header,	an	ATS	file	with	frame	type	4,		np	number	of	
partials	and	nf	frames	will	have:

Frame	1:
	 	 Amp.of	partial	1,			Freq.	of	partial	1,	Phase	of	partial	1
	 	
...
..
	 	
...
..
	 	 Amp.of	partial	np,			Freq.	of	partial	np,	Phase	of	partial	np	

	 	 Residual	energy		value	for		critical	band	1
	 	 ..
	 	 ..
	 	 Residual	energy		value	for		critical	band	25

...

...................

Frame	nf:
	 	 Amp.of	partial	1,			Freq.	of	partial	1,	Phase	of	partial	1
	 	

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS

554

...

..
	 	
...
..
	 	 Amp.of	partial	np,			Freq.	of	partial	np,	Phase	of	partial	np	

	 	 Residual	energy		value	for		critical	band	1
	 	 ..
	 	 ..
	 	 Residual	energy		value	for		critical	band	25

As	an	example,	an	ATS	file	of	frame	type	4,	with	100	frames	and	10	
partials	will	need:

A	header	with	10	double	floats	values.
		
100*10*3	double	floats	for	storing	the	Amplitude,	Frequency	and	
Phase	values	of	10	partials	along	100	frames.
		
25*100	double	floats	for	storing	the	noise	information	of	the	25	
critical	bands	along	100	frames.

Header:																10*8					=							80	bytes
Deterministic	data:		3000*8					=				24000	bytes
Residual	data:							2500*8					=				20000	bytes			

Total:							80	+	24000	+	20000	=				44080	bytes

The	following	Csound	code	shows	how	to	retrieve	the	data	of	the	
header	of	an	ATS	file.

		EXAMPLE	05K01_ats_header.csd

<CsoundSynthesizer>
<CsOptions>
-n	-m0
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

;Some	macros
#define	ATS_SR	 #	0	#		 ;sample	rate			 (Hz)
#define	ATS_FS	 #	1	#		 ;frame	size		 (samples)
#define	ATS_WS	 #	2	#	 ;window	Size		 (samples)
#define	ATS_NP	 #	3	#	 ;number	of	Partials
#define	ATS_NF	 #	4	#	 ;number	of	Frames
#define	ATS_AM	 #	5	#	 ;maximum	Amplitude
#define	ATS_FM	 #	6	#	 ;maximum	Frequency	(Hz)
#define	ATS_DU	 #	7	#	 ;duration		 (seconds)
#define	ATS_TY	 #	8	#	 ;ATS	file	Type

instr	1	
iats_file=p4

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS

555

;instr1	just	reads	the	file	header	and	loads	its	data	into	several	variables
;and	prints	the	result	in	the	Csound	prompt.
i_sampling_rate		 ATSinfo	iats_file,		$ATS_SR
i_frame_size		 	 ATSinfo	iats_file,		$ATS_FS
i_window_size		 	 ATSinfo	iats_file,		$ATS_WS
i_number_of_partials		 ATSinfo	iats_file,		$ATS_NP
i_number_of_frames		 ATSinfo	iats_file,		$ATS_NF
i_max_amp		 	 ATSinfo	iats_file,		$ATS_AM
i_max_freq		 	 ATSinfo	iats_file,		$ATS_FM
i_duration		 	 ATSinfo	iats_file,		$ATS_DU
i_ats_file_type		 ATSinfo	iats_file,		$ATS_TY

print	i_sampling_rate
print	i_frame_size
print	i_window_size
print	i_number_of_partials
print	i_number_of_frames
print	i_max_amp
print	i_max_freq
print	i_duration
print	i_ats_file_type

endin

</CsInstruments>
<CsScore>
;change	to	put	any	ATS	file	you	like
#define	ats_file	#"../ats-files/basoon-C4.ats"#
;	 st	 dur	 atsfile
i1		 0	 0		 $ats_file
e
</CsScore>
</CsoundSynthesizer>
;Example	by	Oscar	Pablo	Di	Liscia

2.	PERFORMING	ATS	ANALYSIS	WITH	THE
ATSA	COMMAND-LINE	UTILITY	OF
CSOUND.

All	the	Csound	Opcodes	devoted	to	ATS	Synthesis	need	to	read	an	
ATS	Analysis	file.	ATS	was	initially	developed	for	the	CLM	
environment	(Common	Lisp	Music),	but	at	present	there	exist	several	
GNU	applications	that	can	perform	ATS	analysis,	among	them	the	
Csound	Package	command-line	utility	ATSA	which	is	based	on	the	
ATSA	program	(Di	Liscia,	Pampin,	Moss)	and	was	ported	to	Csound	
by	Istvan	Varga.	The	ATSA	program	(Di	Liscia,	Pampin,	Moss)	may	
be	obtained	at:
		
https://github.com/jamezilla/ats/tree/master/ats

GRAPHICAL	RESOURCES	FOR	DISPLAYING	ATS
ANALYSIS	FILES.

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS

556

If	a	plot	of	the	ATS	files	is	required,	the	ATSH	software	(Di	Liscia,	
Pampin,	Moss)	may	be	used.	ATSH	is	a	C	program	that	uses	the	GTK	
graphic	environment.	The	source	code	and	compilation	directives	can	
be	obtained	at:
		
https://github.com/jamezilla/ats/tree/master/ats

Another	very	good	GUI	program	that	can	be	used	for	such	purposes	is	
Qatsh,	a	Qt	4	port	by	Jean-Philippe	Meuret.	This	one	can	be	obtained	
at:
		
http://sourceforge.net/apps/trac/speed-
dreams/browser/subprojects/soundeditor/trunk?rev=5250

		

PARAMETERS	EXPLANATION.	HOW	TO	GET	A
GOOD	ANALYSIS.	WHAT	A	GOOD	ANALYSIS	IS.

The	analysis	parameters	are	somewhat	numerous,	and	must	be	
carefully	tuned	in	order	to	obtain	good	results.		A	detailed	
explanation	of	the	meaning	of	these	parameters	can	be	found	at:
		
http://musica.unq.edu.ar/personales/odiliscia/software/ATSH-doc.htm	

In	order	to	get	a	good	analysis,	the	sound	to	be	analysed	should	meet	
the	following	requirements:

1.	 The	ATS	analysis	was	meant	to	analyse	isolated,	individual	
sounds.	This	means	that	the	analysis	of	sequences	and/or	
superpositions	of	sounds,	though	possible,	is	not	likely	to	
render	optimal	results.

2.	 Must	have	been	recorded	with	a	good	signal-to-noise	ratio,	and	
should	not	contain	unwanted	noises.

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS

557

3.	 Must	have	been	recorded	without	reverberation	and/or	echoes.

A	good	ATS	analysis	should	meet	the	following	requirements:

1.	 Must	have	a	good	temporal	resolution	of	the	frequency,	
amplitude,	phase	and	noise	(if	any)	data.	The	tradeoff	between	
temporal	and	frequency	resolution	is	a	very	well	known	issue	
in	FFT	based	spectral	analysis.

2.	 The	Deterministic	and	Stochastic	(also	termed	"residual")	data	
must	be	reasonably	separated	in	their	respective	ways	of	
representation.	This	means	that,	if	a	sound		has	both,	
deterministic	and	stochastic	data,	the	former	must	be	
represented	by	sinusoidal	trajectories,	whilst	the	latter	must	be	
represented	by	energy	values	among	the	25	critical	bands.	This	
allows	a	more	effective	treatment	of	both	types	of	data	in	the	
synthesis	and	transformation	processes.

3.	 If	the	analysed	sound	is	pitched,	the	sinusoidal	trajectories	
(Deterministic)	should		be	as	stable	as	possible	and	ordered	
according	the	original	sound	harmonics.	This	means	that	the	
trajectory	#1	should	represent	the	first	(fundamental)	
harmonic,		the	trajectory	#2	should					represent	the	second	
harmonic,	and	so	on.	This	allow	to	perform	easily	further	
transformation	processes	during	resynthesis	(such	as,	for	
example,	selecting	the	odd	harmonics	to	give	them	a	different	
treatment	than	the	others).

Whilst	the	first	requirement	is	unavoidable,	in	order	to	get	a	useful	
analysis,	the	second	and	third	ones	are	sometimes	almost	impossible	
to	meet	in	full	and	their	accomplishment	depends	often	on	the	user	
objectives.
		

	

3.	SYNTHESIZING	ATS	ANALYSIS	FILES.

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS

558

SYNTHESIS	TECHNIQUES	APPLIED	TO	ATS.

The	synthesis	techniques	that	are	usually	applied	in	order	to	get	a	
synthesized	sound	that	resembles	the	original	sound	as	much	as	
possible	are	detailed	explained	in	Pampin	20115		and	di	Liscia	
20136	.	However,	it	is	worth	pointing	out	that	once	the	proper	data	is	
stored	in	an	analysis	file,	the	user	is	free	to	read	and	apply	to	this	data	
any	reasonable	transformation/synthesis	technique/s,	thereby	
facilitating	the	creation	of	new	and	interesting	sounds	that	need	not	
be	similar	nor	resemble	the	original	sound.
		

CSOUND	OPCODES	FOR	READING	ATS	FILES	DATA:

ATSread,	ATSreadnz,	ATSbufread,	ATSinterpread,	ATSpartialtap.
		
The	former	Csound		opcodes	were	essentially	developed	to	read	ATS	
data	from	ATS	files	and	were	written	by	Alex	Norman.

ATSREAD

This	opcode	reads	the	deterministic	ATS	data	from	an	ATS	file.	It	
outputs	frequency/amplitude	pairs	of	a	sinusoidal	trajectory	
corresponding	to	a	specific	partial	number,	according	to	a	time	
pointer	that	must	be	delivered.	As	the	unit	works	at	k-rate,	the	
frequency	and	amplitude	data	must	be	interpolated	in	order	to	avoid	
unwanted	clicks	in	the	resynthesis.

The	following	example	reads	and	synthesizes	the	10	partials	of	an	
ATS	analysis	corresponding	to	a	steady	440	cps	flute	sound.	Since	the	
instrument	is	designed	to	synthesize	only	one	partial	of	the	ATS	file,	
the	mixing	of	several	of	them	must	be	obtained	performing	several	
notes	in	the	score	(the	use	of	Csound's	macros	is	strongly	
recommended	in	this	case).	Though	not	the	most	practical	way	of	
synthesizing	ATS	data,	this	method	facilitates	individual	control	of	
the	frequency	and	amplitude	values	of	each	one	of	the	partials,	which	

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS

559

is	not	possible	any	other	way.	In	the	example	that	follows,	even	
numbered	partials	are	attenuated	in	amplitude,	resulting	in	a	sound	
that	resembles	a	clarinet.	Amplitude	and	frequency	envelopes	could	
also	be	used	in	order	to	affect	a	time	changing	weighting	of	the	
partials.	Finally,	the	amplitude	and	frequency	values	could	be	used	to	
drive	other	synthesis	units,	such	as	filters	or	FM	synthesis	networks	of	
oscillators.

		EXAMPLE	05K02_atsread.csd

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

instr	1	
iamp	=	p4																							;amplitude	scaler
ifreq	=	p5																						;frequency	scaler
ipar	=	p6																							;partial	required
itab	=	p7																							;audio	table
iatsfile	=	p8																			;ats	file

idur	ATSinfo	iatsfile,	7								;get	duration

ktime	line	0,	p3,	idur										;time	pointer

kfreq,	kamp	ATSread	ktime,	iatsfile,	ipar								;get	frequency	and	amplitude	values
aamp								interp		kamp																									;interpolate	amplitude	values
afreq							interp		kfreq																								;interpolate	frequency	values
aout								oscil3		aamp*iamp,	afreq*ifreq,	itab	;synthesize	with	amp	and	freq	
scaling
	
												out					aout
endin

</CsInstruments>
<CsScore>
;	sine	wave	table
f	1	0	16384	10	1
#define	atsfile	#"../ats-files/flute-A5.ats"#

;	 start	 dur	 amp	 freq	 par	 tab	 atsfile
i1		 0		 3		 1	 1	 1	 1	 $atsfile	
i1		 0		 .		 .1	 .	 2	 .	 $atsfile
i1		 0		 .		 1	 .	 3	 .	 $atsfile
i1		 0		 .		 .1	 .	 4	 .	 $atsfile
i1		 0		 .		 1	 .	 5	 .	 $atsfile
i1		 0		 .		 .1	 .	 6	 .	 $atsfile
i1		 0		 .		 1	 .	 7	 .	 $atsfile
i1		 0		 .		 .1	 .	 8	 .	 $atsfile
i1		 0		 .		 1	 .	 9	 .	 $atsfile
i1		 0		 .		 .1	 .	 10	 .	 $atsfile
e
</CsScore>
</CsoundSynthesizer>
;example	by	Oscar	Pablo	Di	Liscia

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS

560

In	Csound6,	you	can	use	arrays	to	simplify	the	code,	and	to	choose	
different	numbers	of	partials:

		EXAMPLE	05K03_atsread2.csd

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
sr						=	44100
ksmps			=	32
nchnls		=	1
0dbfs			=	1

gS_ATS_file	=									"../ats-files/flute-A5.ats"	;ats	file
giSine					ftgen						0,	0,	16384,	10,	1	;	sine	wave	table

instr	Master	;call	instr	"Play"	for	each	partial
iNumParts		=										p4	;how	many	partials	to	synthesize
idur							ATSinfo				gS_ATS_file,	7	;get	ats	file	duration

iAmps[]				array						1,	.1	;array	for	even	and	odd	partials
iParts[]			genarray			1,iNumParts	;creates	array	[1,	2,	...,	iNumParts]

indx							=										0	;initialize	index
	;loop	for	number	of	elements	in	iParts	array
until	indx	==	iNumParts	do
		;call	an	instance	of	instr	"Play"	for	each	partial
											event_i				"i",	"Play",	0,	p3,	iAmps[indx%2],	iParts[indx],	idur
indx							+=									1	;increment	index
od	;end	of	do	...	od	block

											turnoff	;turn	this	instrument	off	as	job	has	been	done
endin

instr	Play
iamp							=										p4	;amplitude	scaler
ipar							=										p5	;partial	required
idur							=										p6	;ats	file	duration

ktime						line							0,	p3,	idur	;time	pointer

kfreq,	kamp	ATSread			ktime,	gS_ATS_file,	ipar	;get	frequency	and	amplitude	values
aamp							interp					kamp	;interpolate	amplitude	values
afreq						interp					kfreq	;interpolate	frequency	values
aout							oscil3					aamp*iamp,	afreq,	giSine	;synthesize	with	amp	scaling

											out								aout
endin
</CsInstruments>
<CsScore>
;											strt	dur	number	of	partials
i	"Master"		0				3			1
i	.									+				.			3
i	.									+				.			10
</CsScore>
</CsoundSynthesizer>
;example	by	Oscar	Pablo	Di	Liscia	and	Joachim	Heintz

ATSREADNZ

This	opcode	is	similar	to	ATSread	in	the	sense	that	it	reads	the	noise	

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS

561

data	of	an	ATS	file,	delivering	k-rate	energy	values	for	the	requested	
critical	band.	In	order	to	this	Opcode	to	work,	the	input	ATS	file	must	
be	either	type	3	or	4	(types	1	and	2	do	not	contain	noise	data).	
ATSreadnz	is	simpler	than	ATSread,	because	whilst	the	number	of	
partials	of	an	ATS	file	is	variable,	the	noise	data	(if	any)	is	stored	
always	as	25	values	per	analysis	frame	each	value	corresponding	to	
the	energy	of	the	noise	in	each	one	of	the	critical	bands.	The	three	
required	arguments	are:	a	time	pointer,	an	ATS	file	name	and	the	
number	of	critical	band	required	(which,	of	course,	must	have	a	value	
between	1	and	25).

The	following	example	is	similar	to	the	previous.	The	instrument	is	
designed	to	synthesize	only	one	noise	band	of	the	ATS	file,	the	
mixing	of	several	of	them	must	be	obtained	performing	several	notes	
in	the	score.	In	this	example	the	synthesis	of	the	noise	band	is	done	
using	Gaussian	noise	filtered	with	a	resonator	(i.e.,	band-pass)	filter.	
This	is	not	the	method	used	by	the	ATS	synthesis	Opcodes	that	will	
be	further	shown,	but	its	use	in	this	example	is	meant	to	lay	stress	
again	on	the	fact	that	the	use	of	the	ATS	analysis	data	may	be	
completely	independent	of	its	generation.	In	this	case,	also,	a	macro	
that	performs	the	synthesis	of	the	25	critical	bands	was	programmed.	
The	ATS	file	used	correspond	to	a	female	speech	sound	that	lasts	for	
3.633	seconds,	and	in	the	examples	is	stretched	to	10.899	seconds,	
that	is	three	times	its	original	duration.	This	shows	one	of	the	
advantages	of	the	Deterministic	plus	Stochastic	data	representation	of	
ATS:	the	stochastic	("noisy")	part	of	a	signal	may	be	stretched	in	the	
resynthesis	without	the	artifacts	that	arise	commonly	when	the	same	
data	is	represented	by	cosine	components	(as	in	the	FFT	based	
resynthesis).	Note	that,	because	the	Stochastic	noise	values	
correspond	to	energy	(i.e.,	intensity),		in	order	to	get	the	proper	
amplitude	values,	the	square	root	of		them	must	be	computed.	

		EXAMPLE	05K04_atsreadnz.csd
		

<CsoundSynthesizer>
<CsOptions>

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS

562

-o	dac
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

instr	1	
itabc	=	p7																						;table	with	the	25	critical	band	frequency	edges
iscal	=	1																							;reson	filter	scaling	factor	 	
iamp	=	p4																							;amplitude	scaler
iband	=	p5																						;energy	band	required
if1					table			iband-1,	itabc		;lower	edge
if2					table			iband,	itabc				;upper	edge
idif				=	if2-if1	 	
icf					=	if1	+	idif*.5									;center	frequency	value
ibw					=	icf*p6																;bandwidth
iatsfile	=	p8																			;ats	file	name

idur				ATSinfo	iatsfile,	7					;get	duration

ktime			line				0,	p3,	idur					;time	pointer

ken					ATSreadnz	ktime,	iatsfile,	iband								;get	frequency	and	amplitude	values
anoise		gauss	1
aout				reson	anoise*sqrt(ken),	icf,	ibw,	iscal	;synthesize	with	amp	and	freq	scaling

								out	aout*iamp
endin

</CsInstruments>
<CsScore>
;	sine	wave	table
f1	0	16384	10	1
;the	25	critical	bands	edge's	frequencies
f2	0	32	-2	0	100	200	300	400	510	630	770	920	1080	1270	1480	1720	2000	2320	\
											2700	3150	3700	4400	5300	6400	7700	9500	12000	15500	20000

;an	ats	file	name
#define	atsfile	#"../ats-files/female-speech.ats"#

;a	macro	that	synthesize	the	noise	data	along	all	the	25	critical	bands
#define	all_bands(start'dur'amp'bw'file)
#
i1		 $start		$dur		 $amp	 1	 $bw	 2	 $file	
i1		 .		 .		 .	 2	 .	 .	 $file
i1		 .		 .		 .	 3	 .	 .	 .
i1		 .		 .		 .	 4	 .	 .	 .
i1		 .		 .		 .	 5	 .	 .	 .
i1		 .		 .		 .	 6	 .	 .	 .
i1		 .		 .		 .	 7	 .	 .	 .
i1		 .		 .		 .	 8	 .	 .	 .
i1		 .		 .		 .	 9	 .	 .	 .
i1		 .		 .		 .	 10	 .	 .	 .
i1		 .		 .		 .	 11	 .	 .	 .
i1		 .		 .		 .	 12	 .	 .	 .
i1		 .		 .		 .	 13	 .	 .	 .
i1		 .		 .		 .	 14	 .	 .	 .
i1		 .		 .		 .	 15	 .	 .	 .
i1		 .		 .		 .	 16	 .	 .	 .
i1		 .		 .		 .	 17	 .	 .	 .
i1		 .		 .		 .	 18	 .	 .	 .
i1		 .		 .		 .	 19	 .	 .	 .
i1		 .		 .		 .	 20	 .	 .	 .
i1		 .		 .		 .	 21	 .	 .	 .
i1		 .		 .		 .	 22	 .	 .	 .
i1		 .		 .		 .	 23	 .	 .	 .
i1		 .		 .		 .	 24	 .	 .	 .
i1		 .		 .		 .	 25	 .	 .	 .
#

;ditto...original	sound	duration	is	3.633	secs.

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS

563

;stretched	300%
$all_bands(0'10.899'1'.05'$atsfile)

e
</CsScore>
</CsoundSynthesizer>
;example	by	Oscar	Pablo	Di	Liscia

ATSBUFREAD,	ATSINTERPREAD,	ATSPARTIALTAP.

The	ATSbufread	opcode	reads	an	ATS	file	and	stores	its	frequency	
and	amplitude	data	into	an	internal	table.	The	first	and	third	input	
arguments	are	the	same	as	in	the	ATSread	and	the		ATSreadnz	
Opcodes:	a	time	pointer	and	an	ATS	file	name.	The	second	input	
argument	is	a	frequency	scaler.	The	fourth	argument	is	the	number	of	
partials	to	be	stored.	Finally,	this	Opcode	may	take	two	optional	
arguments:	the		first	partial	and	the	increment	of	partials	to	be	read,	
which	default	to	0	and	1	respectively.

Although	this	opcode	does	not	have	any	output,	the	ATS	frequency	
and	amplitude	data	is	available	to	be	used	by	other	opcode.	In	this	
case,	two	examples	are	provided,	the	first	one	uses	the	ATSinterpread	
opcode	and	the	second	one	uses	the	ATSpartialtap	opcode.

The		ATSinterpread	opcode	reads	an	ATS	table	generated	by	the	
ATSbufread	opcode	and	outputs	amplitude	values	interpolating	them	
between	the	two	amplitude	values	of	the	two	frequency	trajectories	
that	are	closer	to	a	given	frequency	value.	The	only	argument	that	
this	opcode	takes	is	the	desired	frequency	value.

The	following	example	synthesizes	five	sounds.	All	the	data	is	taken	
from	the	ATS	file	"test.ats".	The	first	and	final	sounds	match	the	two	
frequencies	closer	to	the	first	and	the	second	partials	of	the	analysis	
file	and	have	their	amplitude	values	closer	to	the	ones	in	the	original	
ATS	file.	The	other	three	sounds	(second,	third	and	fourth),	have	
frequencies	that	are	in-between	the	ones	of	the	first	and	second	
partials	of	the	ATS	file,	and	their	amplitudes	are	scaled	by	an	
interpolation	between	the	amplitudes	of	the	first	and	second	partials.	
The	more	the	frequency	requested	approaches	the	one	of	a	partial,	the	
more	the	amplitude	envelope	rendered	by		ATSinterpread	is	similar	

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS

564

to	the	one	of	this	partial.	So,	the	example	shows	a	gradual	"morphing"	
beween	the	amplitude	envelope	of	the	first	partial	to	the	amplitude	
envelope	of	the	second	according	to	their	frequency	values.

		EXAMPLE	05K05_atsinterpread.csd

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

instr	1	

iamp	=						p4																		;amplitude	scaler
ifreq	=					p5																		;frequency	scaler
iatsfile	=		p7																		;atsfile
itab	=						p6																		;audio	table
ifreqscal	=	1																			;frequency	scaler
ipars			ATSinfo	iatsfile,	3					;how	many	partials
idur				ATSinfo	iatsfile,	7					;get	duration
ktime			line				0,	p3,	idur					;time	pointer

								ATSbufread	ktime,	ifreqscal,	iatsfile,	ipars	;reads	an	ATS	buffer	 	 	
kamp				ATSinterpread	ifreq									;get	the	amp	values	according	to	freq
aamp				interp	kamp																															;interpolate	amp	values
aout				oscil3	aamp,	ifreq,	itab																		;synthesize
	
								out	aout*iamp
endin

</CsInstruments>
<CsScore>
;	sine	wave	table
f	1	0	16384	10	1
#define	atsfile	#"../ats-files/test.ats"#

;		start	dur	amp	freq	atab	atsfile
i1	0					3			1			440		1				$atsfile					;first	partial
i1	+					3			1			550		1				$atsfile					;closer	to	first	partial
i1	+					3			1			660		1				$atsfile					;half	way	between	both
i1	+					3			1			770		1				$atsfile					;closer	to	second	partial
i1	+					3			1			880		1				$atsfile					;second	partial
e
</CsScore>
</CsoundSynthesizer>
;example	by	Oscar	Pablo	Di	Liscia

The		ATSpartialtap	Opcode	reads	an	ATS	table	generated	by	the	
ATSbufread	Opcode	and	outputs	the	frequency	and	amplitude	k-rate	
values	of	a	specific	partial	number.	The	example	presented	here	uses	
four	of	these	opcodes	that	read	from	a	single	ATS	buffer	obtained	
using	ATSbufread	in	order	to	drive	the	frequency	and	amplitude	of	
four	oscillators.	This	allows	the	mixing	of		different	combinations	of	
partials,	as	shown	by	the	three	notes	triggered	by	the	designed	

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS

565

instrument.

		EXAMPLE	05K06_atspartialtap.csd

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

instr	1	
iamp	=		p4/4												;amplitude	scaler
ifreq	=	p5														;frequency	scaler
itab	=		p6														;audio	table
ip1	=			p7														;first	partial	to	be	synthesized
ip2	=			p8														;second	partial	to	be	synthesized
ip3	=			p9														;third	partial	to	be	synthesized
ip4	=			p10													;fourth	partial	to	be	synthesized
iatsfile	=	p11										;atsfile

ipars			ATSinfo	iatsfile,	3					;get	how	many	partials
idur				ATSinfo	iatsfile,	7					;get	duration

ktime			line				0,	p3,	idur					;time	pointer

								ATSbufread	ktime,	ifreq,	iatsfile,	ipars	;reads	an	ATS	buffer	 	

kf1,ka1	ATSpartialtap	ip1							;get	the	amp	values	according	each	partial	number
af1					interp	kf1
aa1					interp	ka1	 	 	
kf2,ka2	ATSpartialtap	ip2							;ditto
af2					interp	kf2
aa2					interp	ka2	 	 	
kf3,ka3	ATSpartialtap	ip3							;ditto
af3					interp	kf3
aa3					interp	ka3	 	 	
kf4,ka4	ATSpartialtap	ip4							;ditto
af4					interp	kf4
aa4					interp	ka4	 	 	

a1						oscil3		aa1,	af1*ifreq,	itab				;synthesize	each	partial
a2						oscil3		aa2,	af2*ifreq,	itab				;ditto
a3						oscil3		aa3,	af3*ifreq,	itab				;ditto
a4						oscil3		aa4,	af4*ifreq,	itab				;ditto	
	
								out	(a1+a2+a3+a4)*iamp
endin

</CsInstruments>
<CsScore>
;	sine	wave	table
f	1	0	16384	10	1
#define	atsfile	#"../ats-files/oboe-A5.ats"#

;			start	dur	amp	freq	atab	part#1	part#2	part#3	part#4	atsfile
i1		0					3			10		1				1				1						5						11					13					$atsfile	 	
i1		+					3			7			1				1				1						6						14					17					$atsfile
i1		+					3			400	1				1				15					16					17					18					$atsfile
	
e
</CsScore>
</CsoundSynthesizer>

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS

566

;example	by	Oscar	Pablo	Di	Liscia

SYNTHESIZING	ATS	DATA:	ATSADD,	ATSADDNZ,	
ATSSINNOI.	ATSCROSS.

The	four	opcodes	that	will	be	presented	in	this	section	synthesize	
ATS	analysis	data	internally	and	allow	for	some	modifications	of	
these	data	as	well.	A	significant	difference	to	the	preceding	opcodes	
is	that	the	synthesis	method	cannot	be	chosen	by	the	user.	The	
synthesis	methods	used	by	all	of	these	opcodes	are	fully	explained	in:
		
[1]	Juan	Pampin,	2011.	ATS_theory
		
http://wiki.dxarts.washington.edu/groups/general/wiki/39f07/attachm
ents/55bd6/ATS_theory.pdf
		
[2]	Oscar	Pablo	Di	Liscia,	2013.	A	Pure	Data	toolkit	for	real-time	
synthesis	of	ATS	spectral	data
		
http://lac.linuxaudio.org/2013/papers/26.pdf
		

The	ATSadd	opcode	synthesizes	deterministic	data	from	an	ATS	file	
using	an	array	of	table	lookup	oscillators	whose	amplitude	and	
frequency	values	are	obtained	by	linear	interpolation	of	the	ones	in	
the	ATS	file	according	to	the	time	of	the	analysis	requested	by	a	time	
pointer	(see	[2]	for	more	details).	The	frequency	of	all	the	partials	
may	be	modified	at	k-rate,	allowing	shifting	and/or	frequency	
modulation.	An	ATS	file,	a	time	pointer	and	a	function	table	are	
required.	The	table	is	supposed	to	contain	either	a	cosine	or	a	sine	
function,	but	nothing	prevents	the	user	from	experimenting	with	other	
functions.	Some	care	must	be	taken	in	the	last	case,	so	as	not	to	
produce	foldover	(frequency	aliasing).		The	user	may	also	request	a	
number	of	partials	smaller	than	the	number	of	partials	of	the	ATS	file	
(by	means	of	the	inpars	variable	in	the	example	below).	There	are	
also	two	optional	arguments:	a	partial	offset	(i.e.,	the	first	partial	that	

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS

567

will	be	taken	into	account	for	the	synthesis,	by	means	of	the	ipofst	
variable		in	the	example	below)	and	a	step	to	select	the	partials	(by	
means	of	the	inpincr	variable	in	the	example	below).	Default	values	
for	these	arguments	are	0	and	1	respectively.	Finally,	the	user	may	
define	a	final	optional	argument	that	references	a	function	table	that	
will	be	used	to	rescale	the	amplitude	values	during	the	resynthesis.	
The	amplitude	values	of	all	the	partials	along	all	the	frames	are	
rescaled	to	the	table	length	and	used	as	indexes	to	lookup	a	scaling	
amplitude	value	in	the	table.	For	example,	in	a	table	of	size	1024,	the	
scaling	amplitude	of	all	the	0.5	amplitude	values		(-6	dBFS)		that	are	
found	in	the	ATS	file	is	in	the	position	512	(1024*0.5).	Very	complex	
filtering	effects	can	be	obtained	by	carefully	setting	these	gating	
tables	according	to	the	amplitude	values	of	a	particular	ATS	analysis.

		EXAMPLE	05K07_atsadd.csd

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>

sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

;Some	macros
#define	ATS_NP	#	3	#				;number	of	Partials
#define	ATS_DU	#	7	#				;duration

instr	1	

/*read	some	ATS	data	from	the	file	header*/
iatsfile	=	p11
i_number_of_partials				ATSinfo	iatsfile,		$ATS_NP
i_duration														ATSinfo	iatsfile,		$ATS_DU

iamp					=						p4														;amplitude	scaler
ifreqdev	=						2^(p5/12)							;frequency	deviation	(p5=semitones	up	or	down)
itable			=						p6														;audio	table

/*here	we	deal	with	number	of	partials,	offset	and	increment	issues*/
inpars		=							(p7	<	1	?	i_number_of_partials	:	p7)				;inpars	can	not	be	<=0
ipofst		=							(p8	<	0	?	0	:	p8)																							;partial	offset	can	not	be	<	
0
ipincr		=							(p9	<	1	?	1	:	p9)																							;partial	increment	can	not	be	
<=	0
imax				=							ipofst	+	inpars*ipincr																		;max.	partials	allowed

if	imax	<=	i_number_of_partials	igoto	OK		
;if	we	are	here,	something	is	wrong!
;set	npars	to	zero,	so	as	the	output	will	be	zero	and	the	user	knows
print	imax,	i_number_of_partials
inpars		=	0
ipofst		=	0

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS

568

ipincr		=	1
OK:	;data	is	OK
/**/
igatefn	=						p10															;amplitude	scaling	table

ktime			linseg	0,	p3,	i_duration
asig				ATSadd	ktime,	ifreqdev,	iatsfile,	itable,	inpars,	ipofst,	ipincr,	igatefn

								out				asig*iamp
endin

</CsInstruments>
<CsScore>

;change	to	put	any	ATS	file	you	like
#define	ats_file	#"../ats-files/basoon-C4.ats"#

;audio	table	(sine)
f1						0							16384			10						1
;some	tables	to	test	amplitude	gating
;f2	reduce	progressively	partials	with	amplitudes	from	0.5	to	1	(-6dBFs	to	0	dBFs)
;and	eliminate	partials	with	amplitudes	below	0.5	(-6dBFs)
f2						0							1024					7						0	512	0	512	1	 	
;f3	boost	partials	with	amplitudes	from	0	to	0.125	(-12dBFs)
;and	attenuate	partials	with	amplitudes	from	0.125	to	1	(-12dBFs	to	0dBFs)
f3						0							1024					-5					8	128	8	896	.001

;			start	dur		amp		freq	atable	npars	offset	pincr	gatefn	atsfile
i1		0					2.82	1				0				1						0					0						1					0						$ats_file
i1		+					.				1				0				1						0					0						1					2						$ats_file
i1		+					.				.8			0				1						0					0						1					3						$ats_file

e
</CsScore>
</CsoundSynthesizer>
;example	by	Oscar	Pablo	Di	Liscia

The	ATSaddnz	opcode	synthesizes	residual	("noise")	data	from	an	
ATS	file	using	the	method	explained	in	[1]	and	[2].	This	opcode	
works	in	a	similar	fashion	to	ATSadd	except	that	frequency	warping	
of	the	noise	bands	is	not	permitted	and	the	maximum	number	of	noise	
bands	will	always	be	25	(the	25	critical	bands,	see	Zwiker/Fastl,	
footnote	3).	The	optional	arguments	offset	and	increment	work	in	a	
similar	fashion	to	that	in	ATSadd.	The	ATSaddnz	opcode	allows	the	
synthesis	of	several	combinations	of	noise	bands,	but	individual	
amplitude	scaling	of	them	is	not	possible.	

		EXAMPLE	05K08_atsaddnz.csd

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>

sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

;Some	macros

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS

569

#define	NB						#	25	#		;number	noise	bands
#define	ATS_DU		#	7	#			;duration

instr	1	
/*read	some	ATS	data	from	the	file	header*/
iatsfile	=	p8
i_duration	ATSinfo	iatsfile,	$ATS_DU

iamp				=							p4																;amplitude	scaler

/*here	we	deal	with	number	of	partials,	offset	and	increment	issues*/
inb					=							(p5	<	1	?	$NB	:	p5)					;inb	can	not	be	<=0
ibofst		=							(p6	<	0	?	0	:	p6)							;band	offset	cannot	be	<	0
ibincr		=							(p7	<	1	?	1	:	p7)							;band	increment	cannot	be	<=	0
imax				=							ibofst	+	inb*ibincr					;max.	bands	allowed

if	imax	<=	$NB	igoto	OK		
;if	we	are	here,	something	is	wrong!
;set	nb	to	zero,	so	as	the	output	will	be	zero	and	the	user	knows
print	imax,	$NB
inb		=	0
ibofst	 =	0
ibincr	 =	1
OK:	;data	is	OK
/**/
ktime			linseg			0,	p3,	i_duration
asig				ATSaddnz	ktime,	iatsfile,	inb,	ibofst,	ibincr

								out						asig*iamp
endin

</CsInstruments>
<CsScore>

;change	to	put	any	ATS	file	you	like
#define	ats_file	#"../ats-files/female-speech.ats"#

;			start	dur		amp	nbands	bands_offset	bands_incr	atsfile	
i1		0					7.32	1			25					0												1										$ats_file					;all	bands
i1		+					.				.			15					10											1										$ats_file					;from	10	to	25	step	1
i1		+					.				.			8						1												3										$ats_file					;from	1	to	24	step	3
i1		+					.				.			5						15											1										$ats_file					;from	15	to	20	step	1
	
e
</CsScore>
</CsoundSynthesizer>
;example	by	Oscar	Pablo	Di	Liscia

The	ATSsinnoi	opcode	synthesizes	both	deterministic	and	residual	
("noise")	data	from	an	ATS	file	using	the	method	explained	in	[1]	and	
[2].	This	opcode	may	be	regarded	as	a	combination	of	the	two	
previous	opcodes	but	with	the	allowance	of	individual	amplitude	
scaling	of	the	mixes	of	deterministic	and	residual	parts.	All	the	
arguments	of	ATSsinnoi	are	the	same	as	those	for	the	two	previous	
opcodes,	except	for	the	two	k-rate	variables	ksinlev	and	knoislev	that	
allow	individual,	and	possibly	time-changing,	scaling	of	the	
deterministic	and	residual	parts	of	the	synthesis.	

		EXAMPLE	05K09_atssinnoi.csd

<CsoundSynthesizer>

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS

570

<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>

sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

;Some	macros
#define	ATS_NP		#	3	#			;number	of	Partials
#define	ATS_DU		#	7	#			;duration

instr	1	
iatsfile	=	p11
/*read	some	ATS	data	from	the	file	header*/
i_number_of_partials				ATSinfo	iatsfile,	$ATS_NP
i_duration														ATSinfo	iatsfile,	$ATS_DU
print	i_number_of_partials

iamp					=						p4														;amplitude	scaler
ifreqdev	=						2^(p5/12)							;frequency	deviation	(p5=semitones	up	or	down)
isinlev		=						p6														;deterministic	part	gain
inoislev	=						p7														;residual	part	gain

/*here	we	deal	with	number	of	partials,	offset	and	increment	issues*/
inpars			=						(p8	<	1	?	i_number_of_partials	:	p8)	;inpars	can	not	be	<=0
ipofst			=						(p9	<	0	?	0	:	p9)																				;partial	offset	can	not	be	<	0
ipincr			=						(p10	<	1	?	1	:	p10)																		;partial	increment	can	not	be	<=	
0
imax					=						ipofst	+	inpars*ipincr															;max.	partials	allowed

if	imax	<=	i_number_of_partials	igoto	OK		
;if	we	are	here,	something	is	wrong!
;set	npars	to	zero,	so	as	the	output	will	be	zero	and	the	user	knows
prints	"wrong	number	of	partials	requested",	imax,	i_number_of_partials
inpars		=	0
ipofst	 =	0
ipincr	 =	1
OK:	;data	is	OK
/**/

ktime			linseg					0,	p3,	i_duration
asig				ATSsinnoi		ktime,	isinlev,	inoislev,	ifreqdev,	iatsfile,	inpars,	ipofst,	
ipincr

								out								asig*iamp
endin

</CsInstruments>
<CsScore>
;change	to	put	any	ATS	file	you	like
#define	ats_file	#"../ats-files/female-speech.ats"#

;							start			dur					amp					freqdev	sinlev		noislev	npars			offset		pincr			
atsfile	
i1						0							3.66				.79					0							1							0							0							0							1							
$ats_file
;deterministic	only
i1						+							3.66				.79					0							0							1							0							0							1							
$ats_file	
;residual	only
i1						+							3.66				.79					0							1							1							0							0							1							
$ats_file	
;deterministic	and	residual
;							start			dur					amp					freqdev	sinlev		noislev	npars			offset		pincr			
atsfile	
i1						+							3.66				2.5					0							1							0							80						60						1							
$ats_file
;from	partial	60	to	partial	140,	deterministic	only
i1						+							3.66				2.5					0							0							1							80						60						1							
$ats_file

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS

571

;from	partial	60	to	partial	140,	residual	only
i1						+							3.66				2.5					0							1							1							80						60						1							
$ats_file
;from	partial	60	to	partial	140,	deterministic	and	residual
e
</CsScore>
</CsoundSynthesizer>
;example	by	Oscar	Pablo	Di	Liscia	

	ATScross	is	an	opcode	that	performs	some	kind	of	"interpolation"	of	
the	amplitude	data	between	two	ATS	analyses.	One	of	these	two	ATS	
analyses	must	be	obtained	using	the	ATSbufread	opcode	(see	above)	
and	the	other	is	to	be	loaded	by	an	ATScross	instance.	Only	the	
deterministic	data	of	both	analyses	is	used.	The	ATS	file,	time	
pointer,	frequency	scaling,	number	of	partials,	partial	offset	and	
partial	increment	arguments	work	the	same	way	as	usages	in	
previously	described	opcodes.	Using	the	arguments	kmylev	and	
kbuflev	the	user	may	define	how	much	of	the	amplitude	values	of	the	
file	read	by	ATSbufread	is	to	be	used	to	scale	the	amplitude	values	
corresponding	to	the	frequency	values	of	the	analysis	read	by		
ATScross.	So,	a	value	of	0	for	kbuflev	and	1	for		kmylev	will	retain	the	
original	ATS	analysis	read	by	ATScross	unchanged	whilst	the	
converse	(kbuflev	=1	and		kmylev=0)	will	retain	the	frequency	values	
of	the	ATScross	analysis	but	scaled	by	the	amplitude	values	of	the	
ATSbufread	analysis.	As	the	time	pointers	of	both	units	need	not	be	
the	same,	and	frequency	warping	and	number	of	partials	may	also	be	
changed,	very	complex	cross	synthesis	and	sound	hybridation	can	be	
obtained	using	this	opcode.
		

		EXAMPLE	05K10_atscross.csd

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>

sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS

572

;ATS	files
#define	ats1	#"../ats-files/flute-A5.ats"#
#define	ats2	#"../ats-files/oboe-A5.ats"#

instr	1	
iamp				=	p4												;general	amplitude	scaler

ilev1			=	p5												;level	of	iats1	partials
ifd1				=	2^(p6/12)					;frequency	deviation	for	iats1	partials

ilev2			=	p7												;level	of	ats2	partials
ifd2				=	2^(p8/12)					;frequency	deviation	for	iats2	partials	

itau				=	p9												;audio	table

/*get	ats	file	data*/
inp1		ATSinfo	$ats1,	3
inp2		ATSinfo	$ats2,	3
idur1	ATSinfo	$ats1,	7
idur2	ATSinfo	$ats2,	7

ktime			line				0,	p3,	idur1
ktime2		line				0,	p3,	idur2

								ATSbufread	ktime,		ifd1,	$ats1,	inp1
aout				ATScross			ktime2,	ifd2,	$ats2,	itau,	ilev2,	ilev1,	inp2

								out								aout*iamp

endin

</CsInstruments>
<CsScore>

;	sine	wave	for	the	audio	table
f1		 0		 16384		 10		 1

;		start	dur	amp	lev1	f1		lev2	f2	table
i1	0					2.3	.75	0				0			1				0		1					;original	oboe	
i1	+					.			.			0.25	.			.75		.		.					;oboe	75%,	flute	25%
i1	+					.			.			0.5		.			0.5		.		.					;oboe	50%,	flute	50%
i1	+					.			.			.75		.			.25		.		.					;oboe	25%,	flute	75%
i1	+					.			.			1				.			0				.		.					;oboe	partials	with	flute's	amplitudes

e
</CsScore>
</CsoundSynthesizer>
;example	by	Oscar	Pablo	Di	Liscia		

		

1.	 Juan	Pampin.	2011.	ATS_theory,	
http://wiki.dxarts.washington.edu/groups/general/wiki/39f07/at
tachments/55bd6/ATS_theory.pdf^

2.	 Xavier	Serra	and	Julius	O.	Smith	III.	1990.	A	Sound	
Analysis/Synthesis	System	Based	on	a	Deterministic	plus	
Stochastic	Decomposition,	Computer	Music	Journal,	Vol.14	
#4,	MIT	Press,	USA.^

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS

573

3.	 Ernst	Zwiker	and	Hugo	Fastl.	1990.	Psychoacoustics	Facts	and	
Models.	Springer,	Berlin,	Heidelberg.^

4.	 Cf.	Zwiker/Fastl	(above	footnote).^
5.	 Juan	Pampin.	2011.	ATS_theory,	

http://wiki.dxarts.washington.edu/groups/general/wiki/39f07/at
tachments/55bd6/ATS_theory.pdf^

6.	 Oscar	Pablo	Di	Liscia,	2013.	A	Pure	Data	toolkit	for	real-time	
synthesis	of	ATS	spectral	data	
http://lac.linuxaudio.org/2013/papers/26.pdf^

K.	ANALYSIS	TRANSFORMATION	SYNTHESIS

574

AMPLITUDE	AND	PITCH	TRACKING

575

AMPLITUDE	AND	PITCH	TRACKING

Tracking	the	amplitude	of	an	audio	signal	is	a	relatively	simple	
procedure	but	simply	following	the	amplitude	values	of	the	waveform	
is	unlikely	to	be	useful.	An	audio	waveform	will	be	bipolar,	
expressing	both	positive	and	negative	values,	so	to	start	with,	some	
sort	of	rectifying	of	the	negative	part	of	the	signal	will	be	required.	
The	most	common	method	of	achieving	this	is	to	square	it	(raise	to	
the	power	of	2)	and	then	to	then	take	the	square	root.	Squaring	any	
negative	values	will	provide	positive	results	(-2	squared	equals	4).	
Taking	the	square	root	will	restore	the	absolute	values.

An	audio	signal	is	an	oscillating	signal,	periodically	passing	through	
amplitude	zero	but	these	zero	amplitudes	do	not	necessarily	imply	
that	the	signal	has	decayed	to	silence	as	our	brain	perceives	it.	Some	
sort	of	averaging	will	be	required	so	that	a	tracked	amplitude	of	close	
to	zero	will	only	be	output	when	the	signal	has	settled	close	to	zero	
for	some	time.	Sampling	a	set	of	values	and	outputting	their	mean	
will	produce	a	more	acceptable	sequence	of	values	over	time	for	a	
signal's	change	in	amplitude.	Sample	group	size	will	be	important:	
too	small	a	sample	group	may	result	in	some	residual	ripple	in	the	
output	signal,	particularly	in	signals	with	only	low	frequency	content,	
whereas	too	large	a	group	may	result	in	a	sluggish	response	to	sudden	
changes	in	amplitude.	Some	judgement	and	compromise	is	required.

The	procedure	described	above	is	implemented	in	the	following	
example.	A	simple	audio	note	is	created	that	ramps	up	and	down	
according	to	a	linseg	envelope.	In	order	to	track	its	amplitude,	audio	
values	are	converted	to	k-rate	values	and	are	then	squared,	then	
square	rooted	and	then	written	into	sequential	locations	of	an	array	31	
values	long.	The	mean	is	calculated	by	summing	all	values	in	the	
array	and	dividing	by	the	length	of	the	array.	This	procedure	is	
repeated	every	k-cycle.	The	length	of	the	array	will	be	critical	in	fine	
tuning	the	response	for	the	reasons	described	in	the	preceding	
paragraph.	Control	rate	(kr)	will	also	be	a	factor	therefore	is	taken	

AMPLITUDE	AND	PITCH	TRACKING

576

into	consideration	when	calculating	the	size	of	the	array.	Changing	
control	rate	(kr)	or	number	of	audio	samples	in	a	control	period	
(ksmps)	will	then	no	longer	alter	response	behaviour.
		

EXAMPLE	05L01_Amplitude_Tracking_First_Principles.csd	
		

<CsoundSynthesizer>

<CsOptions>
-dm0	-odac
</CsOptions>

<CsInstruments>

sr	=	44100
ksmps	=	16
nchnls	=	1
0dbfs	=	1

;	a	rich	waveform
giwave	ftgen	1,0,	512,	10,	1,1/2,1/3,1/4,1/5

instr			1
	;	create	an	audio	signal
	aenv				linseg					0,p3/2,1,p3/2,0		;	triangle	shaped	envelope
	aSig				poscil					aenv,300,giwave		;	audio	oscillator
									out								aSig													;	send	audio	to	output

	;	track	amplitude
	kArr[]			init		500	/	ksmps					;	initialise	an	array
	kNdx					init		0															;	initialise	index	for	writing	to	array
	kSig					downsamp								aSig		;	create	k-rate	version	of	audio	signal
	kSq						=					kSig	^	2								;	square	it	(negatives	become	positive)
	kRoot				=					kSq	^	0.5							;	square	root	it	(restore	absolute	values)
	kArr[kNdx]	=			kRoot											;	write	result	to	array
	kMean						=			sumarray(kArr)	/	lenarray(kArr)	;	calculate	mean	of	array
																printk		0.1,kMean			;	print	mean	to	console
;	increment	index	and	wrap-around	if	end	of	the	array	is	met
	kNdx											wrap				kNdx+1,	0,	lenarray(kArr)
endin

</CsInstruments>

<CsScore>
i	1	0	5
</CsScore>

</CsoundSynthesizer>

In	practice	it	is	not	necessary	for	us	to	build	our	own	amplitude
tracker	as	Csound	already	offers	several	opcodes	for	the	task.	rms
outputs	a	k-rate	amplitude	tracking	signal	by	employing	mathematics
similar	to	those	described	above.	follow	outputs	at	a-rate	and	uses	a
sample	and	hold	method	as	it	outputs	data,	probably	necessitating
some	sort	of	low-pass	filtering	of	the	output	signal.	follow2	also
outputs	at	a-rate	but	smooths	the	output	signal	by	different	amounts
depending	on	whether	the	amplitude	is	rising	or	falling.

AMPLITUDE	AND	PITCH	TRACKING

577

A	quick	comparison	of	these	three	opcodes	and	the	original	method	
from	first	principles	is	given	below:

The	sound	file	used	in	all	three	comparisons	is	'fox.wav'	which	can	be	
found	as	part	of	the	Csound	HTML	Manual	download.	This	sound	is	
someone	saying:	“the	quick	brown	fox	jumps	over	the	lazy	dog”.

First	of	all	by	employing	the	the	technique	exemplified	in	example	
05L01,	the	amplitude	following	signal	is	overlaid	upon	the	source	
signal:

It	can	be	observed	that	the	amplitude	tracking	signal	follows	the	
amplitudes	of	the	input	signal	reasonably	well.	A	slight	delay	in	
response	at	sound	onsets	can	be	observed	as	the	array	of	values	used	
by	the	averaging	mechanism	fills	with	appropriately	high	values.	As	
discussed	earlier,	reducing	the	size	of	the	array	will	improve	response	
at	the	risk	of	introducing	ripple.	Another	approach	to	dealing	with	the	
issue	of	ripple	is	to	low-pass	filter	the	signal	output	by	the	amplitude	
follower.	This	is	an	approach	employed	by	the	follow2	opcode.	The	

AMPLITUDE	AND	PITCH	TRACKING

578

second	thing	that	is	apparent	is	that	the	amplitude	following	signal	
does	not	attain	the	peak	value	of	the	input	signal.	At	its	peaks,	the	
amplitude	following	signal	is	roughly	1/3	of	the	absolute	peak	value	
of	the	input	signal.	How	close	it	gets	to	the	absolute	peak	amplitude	
depends	somewhat	on	the	dynamic	nature	of	the	input	signal.	If	an	
input	signal	sustains	a	peak	amplitude	for	some	time	then	the	
amplitude	following	signal	will	tend	to	this	peak	value.

The	rms	opcode	employs	a	method	similar	to	that	used	in	the	
previous	example	but	with	the	convenience	of	an	encapsulated	
opcode.	Its	output	superimposed	upon	the	waveform	is	shown	below:

	

Its	method	of	averaging	uses	filtering	rather	than	simply	taking	a	
mean	of	a	buffer	of	amplitude	values.	rms	allows	us	to	set	the	cutoff	
frequency(kCf)	of	its	internal	filter:

kRms		rms		aSig,	kCf	

This	is	an	optional	argument	which	defaults	to	10.	Lowering	this	
value	will	dampen	changes	in	rms	and	smooth	out	ripple,	raising	it	
will	improve	the	response	but	increase	the	audibility	of	ripple.	A	
choice	can	be	made	based	on	some	foreknowledge	of	the	input	audio	
signal:	dynamic	percussive	input	audio	might	demand	faster	response	
whereas	audio	that	dynamically	evolves	gradually	might	demand	
greater	smoothing.

AMPLITUDE	AND	PITCH	TRACKING

579

		
The	follow	opcode	uses	a	sample-and-hold	mechanism	when	
outputting	the	tracked	amplitude.	This	can	result	in	a	stepped	output	
that	might	require	addition	lowpass	filtering	before	use.	We	actually	
defined	the	period,	the	duration	for	which	values	are	held,	using	its	
second	input	argument.	The	update	rate	will	be	one	over	the	period.		
In	the	following	example	the	audio	is	amplitude	tracked	using	the	
following	line:

aRms				follow				aSig,	0.01

	with	the	following	result:

	The	
hump	over	the	word	spoken	during	the	third	and	fourth	time	divisions	
initially	seem	erroneous	but	it	is	a	result	of	greater	amplitude	
excursion	into	the	negative	domain.	follow	provides	a	better	
reflection	of	absolute	peak	amplitude.	
		

follow2	uses	a	different	algorithm	with	smoothing	on	both	upward	
and	downward	slopes	of	the	tracked	amplitude.	We	can	define	
different	values	for	attack	and	decay	time.	In	the	following	example	
the	decay	time	is	much	longer	than	the	attack	time.	The	relevant	line	
of	code	is:
		

iAtt		=								0.04
iRel		=								0.5
aTrk		follow2		aSig,	0.04,	0.5

and	the	result	of	amplitude	tracking	is:

AMPLITUDE	AND	PITCH	TRACKING

580

This	technique	can	be	used	to	extend	the	duration	of	short	input	sound
events	or	triggers.	Note	that	the	attack	and	release	times	for	follow2	
can	also	be	modulated	at	k-rate.
		

Dynamic	Gating	and	Amplitude	Triggering

581

DYNAMIC	GATING	AND	AMPLITUDE
TRIGGERING

Once	we	have	traced	the	changing	amplitude	of	an	audio	signal	it	is	
straightforward	to	use	specific	changes	in	that	function	to	trigger	
other	events	within	Csound.	The	simplest	technique	would	be	to	
simply	define	a	threshold	above	which	one	thing	happens	and	below	
which	something	else	happens.	A	crude	dynamic	gating	of	the	signal	
above	could	be	implemented	thus:

EXAMPLE	05L02_Simple_Dynamic_Gate.csd

<CsoundSynthesizer>

<CsOptions>		
-dm0	-odac
</CsOptions>

<CsInstruments>

ksmps	=	32
0dbfs	=	1	
;	this	is	a	necessary	definition,
;									otherwise	amplitude	will	be	-32768	to	32767

instr				1
	aSig				diskin		"fox.wav",	1								;	read	sound	file
	kRms				rms					aSig																;	scan	rms
	iThreshold	=				0.1																	;	rms	threshold
	kGate			=							kRms	>	iThreshold	?	1	:	0		;	gate	either	1	or	zero
	aGate			interp		kGate			;	interpolate	to	create	smoother	on->off->on	switching
	aSig				=							aSig	*	aGate								;	multiply	signal	by	gate
									out					aSig																;	send	to	output
endin

</CsInstruments>

<CsScore>
i	1	0	10
</CsScore>

</CsoundSynthesizer>

Once	a	dynamic	threshold	has	been	defined,	in	this	case	0.1,	the	RMS	
value	is	interrogated	every	k-cycle	as	to	whether	it	is	above	or	below	
this	value.	If	it	is	above,	then	the	variable	kGate	adopts	a	value	of	'1'	
(open)	or	if	below,	kGate	is	zero	(closed).	This	on/off	switch	could	
just	be	multiplied	to	the	audio	signal	to	turn	it	on	or	off	according	to	
the	status	of	the	gate	but	clicks	would	manifest	each	time	the	gates	

Dynamic	Gating	and	Amplitude	Triggering

582

opens	or	closes	so	some	sort	of	smoothing	or	ramping	of	the	gate	
signal	is	required.	In	this	example	I	have	simply	interpolated	it	using	
the	'interp'	opcode	to	create	an	a-rate	signal	which	is	then	multiplied	
to	the	original	audio	signal.	This	means	that	a	linear	ramp	with	be	
added	across	the	duration	of	a	k-cycle	in	audio	samples	–	in	this	case	
32	samples.	A	more	elaborate	approach	might	involve	portamento	
and	low-pass	filtering.
		
The	results	of	this	dynamic	gate	are	shown	below:

	

The	threshold	is	depicted	as	a	red	line.	It	can	be	seen	that	each	time	
the	RMS	value	(the	black	line)	drops	below	the	threshold	the	audio	
signal	(blue	waveform)	is	muted.

The	simple	solution	described	above	can	prove	adequate	in	
applications	where	the	user	wishes	to	sense	sound	event	onsets	and	
convert	them	to	triggers	but	in	more	complex	situations,	in	particular	
when	a	new	sound	event	occurs	whilst	the	previous	event	is	still	
sounding	and	pushing	the	RMS	above	the	threshold,	this	mechanism	
will	fail.	In	these	cases	triggering	needs	to	depend	upon	dynamic	
change	rather	than	absolute	RMS	values.	If	we	consider	a	two-event	
sound	file	where	two	notes	sound	on	a	piano,	the	second	note	
sounding	while	the	first	is	still	decaying,	triggers	generated	using	the	
RMS	threshold	mechanism	from	the	previous	example	will	only	sense
the	first	note	onset.	(In	the	diagram	below	this	sole	trigger	is	

Dynamic	Gating	and	Amplitude	Triggering

583

illustrated	by	the	vertical	black	line.)	Raising	the	threshold	might	
seem	to	be	remedial	action	but	is	not	ideal	as	this	will	prevent	quietly	
played	notes	from	generating	triggers.

It	will	often	be	more	successful	to	use	magnitudes	of	amplitude	
increase	to	decide	whether	to	generate	a	trigger	or	not.	The	two	
critical	values	in	implementing	such	a	mechanism	are	the	time	across	
which	a	change	will	be	judged	('iSampTim'	in	the	example)	and	the	
amount	of	amplitude	increase	that	will	be	required	to	generate	a	
trigger	(iThresh).	An	additional	mechanism	to	prevent	double	
triggerings	if	an	amplitude	continues	to	increase	beyond	the	time	
span	of	a	single	sample	period	will	also	be	necessary.	What	this	
mechanism	will	do	is	to	bypass	the	amplitude	change	interrogation	
code	for	a	user-definable	time	period	immediately	after	a	trigger	has	
been	generated	(iWait).	A	timer	which	counts	elapsed	audio	samples	
(kTimer)	is	used	to	time	how	long	to	wait	before	retesting	amplitude	
changes.

If	we	pass	our	piano	sound	file	through	this	instrument,	the	results	
look	like	this:

This	time	we	correctly	receive	two	triggers,	one	at	the	onset	of	each	
note.

The	example	below	tracks	audio	from	the	sound-card	input	channel	1	
using	this	mechanism.

Dynamic	Gating	and	Amplitude	Triggering

584

EXAMPLE	05L03_Dynamic_Trigger.csd
		

<CsoundSynthesizer>

<CsOptions>		
-dm0	-iadc	-odac
</CsOptions>

<CsInstruments>

sr					=		44100
ksmps		=		32
nchnls	=		2
0dbfs		=		1

instr			1
	iThresh		=							0.1																;	change	threshold
	aSig					inch				1																		;	live	audio	in
	iWait				=							1000														;	prevent	repeats	wait	time	(in	samples)
	kTimer			init				1001															;	initial	timer	value
	kRms					rms					aSig,	20											;	track	amplitude
	iSampTim	=							0.01				;	time	across	which	change	in	RMS	will	be	measured
	kRmsPrev	delayk		kRms,	iSampTim					;	delayed	RMS	(previous)
	kChange		=							kRms	-	kRmsPrev				;	change
	if(kTimer>iWait)	then															;	if	we	are	beyond	the	wait	time...
		kTrig			=							kChange	>	iThresh	?	1	:	0	;	trigger	if	threshold	exceeded
		kTimer		=							kTrig	==	1	?	0	:	kTimer	;	reset	timer	when	a	trigger	generated
	else																					;	otherwise	(we	are	within	the	wait	time	buffer)
		kTimer		+=						ksmps														;	increment	timer
		kTrig			=							0																		;	cancel	trigger
	endif
										schedkwhen	kTrig,0,0,2,0,0.1	;	trigger	a	note	event
endin

instr			2
	aEnv					transeg			0.2,	p3,	-4,	0					;	decay	envelope
	aSig					poscil				aEnv,	400										;	'ping'	sound	indicator
										out							aSig															;	send	audio	to	output
endin

</CsInstruments>

<CsScore>
i	1	0	[3600*24*7]
</CsScore>

</CsoundSynthesizer>	

Pitch	Tracking

585

PITCH	TRACKING
Csound	currently	provides	five	opcode	options	for	pitch	tracking.	In
ascending	order	of	newness	they	are:	pitch,	pitchamdf,	pvspitch,
ptrack	and	plltrack.	Related	to	these	opcodes	are	pvscent	and	centroid
but	rather	than	track	the	harmonic	fundemental,	they	track	the
spectral	centroid	of	a	signal.	An	example	and	suggested	application
for	centroid	is	given	a	little	later	on	in	this	chapter.

Each	offers	a	slightly	different	set	of	features	–	some	offer	
simultaneous	tracking	of	both	amplitude	and	pitch,	some	only	pitch	
tracking.	None	of	these	opcodes	provide	more	than	one	output	for	
tracked	frequency	therefore	none	offer	polyphonic	tracking	although	
in	a	polyphonic	tone	the	fundamental	of	the	strongest	tone	will	most	
likely	be	tracked.	Pitch	tracking	presents	many	more	challenges	than	
amplitude	tracking	therefore	a	degree	of	error	can	be	expected	and	
will	be	an	issue	than	demands	addressing.	To	get	the	best	from	any	
pitch	tracker	it	is	important	to	consider	preparation	of	the	input	signal	
–	either	through	gating	or	filtering	–	and	also	processing	of	the	output	
tracking	data,	for	example	smoothing	changes	through	the	use	of	
filtering	opcode	such	as	port,	median	filtering	to	remove	erratic	and	
erroneous	data	and	a	filter	to	simply	ignore	obviously	incorrect	data.	
Parameters	for	these	procedures	will	rely	upon	some	prior	knowledge	
of	the	input	signal,	the	pitch	range	of	an	instrument	for	instance.	A	
particularly	noisy	environment	or	a	distant	microphone	placement	
might	demand	more	aggressive	noise	gating.	In	general	some	low-
pass	filtering	of	the	input	signal	will	always	help	in	providing	a	more	
stable	frequency	tracking	signal.	Something	worth	considering	is	that	
the	attack	portion	of	a	note	played	on	an	acoustic	instrument	
generally	contains	a	lot	of	noisy,	harmonically	chaotic	material.	This	
will	tend	to	result	in	slightly	chaotic	movement	in	the	pitch	tracking	
signal,	we	may	therefore	wish	to	sense	the	onset	of	a	note	and	only	
begin	tracking	pitch	once	the	sustain	portion	has	begin.	This	may	be	
around	0.05	seconds	after	the	note	has	begun	but	will	vary	from	
instrument	to	instrument	and	from	note	to	note.	In	general	lower	

Pitch	Tracking

586

notes	will	have	a	longer	attack.	However	we	do	not	really	want	to	
overestimate	the	duration	of	this	attack	stage	as	this	will	result	in	a	
sluggish	pitch	tracker.	Another	specialised	situation	is	the	tracking	of	
pitch	in	singing	–	we	may	want	to	gate	sibilant	elements	('sss',	't'	etc.).	
pvscent	can	be	useful	in	detecting	the	difference	between	vowels	and	
sibilants.

'pitch'	is	the	oldest	of	the	pitch	tracking	opcodes	on	offer	and	provides	
the	widest	range	of	input	parameters.

koct,	kamp	pitch	asig,	iupdte,	ilo,	ihi,	idbthresh	[,	ifrqs]	[,	iconf]	\
						[,	istrt]	[,	iocts]	[,	iq]	[,	inptls]	[,	irolloff]	[,	iskip]

This	makes	it	somewhat	more	awkward	to	use	initially	(although	
many	of	its	input	parameters	are	optional)	but	some	of	its	options	
facilitate	quite	specialised	effects.	Firstly	it	outputs	its	tracking	signal	
in	'oct'	format.	This	might	prove	to	be	a	useful	format	but	conversion	
to	other	formats	is	easy	anyway.	Apart	from	a	number	of	parameters	
intended	to	fine	tune	the	production	of	an	accurate	signal	it	allows	us	
to	specify	the	number	of	octave	divisions	used	in	quantising	the	
output.	For	example	if	we	give	this	a	value	of	12	we	have	created	the	
basis	of	a	simple	chromatic	'autotune'	device.	We	can	also	quantise	
the	procedure	in	the	time	domain	using	its	'update	period'	input.	
Material	with	quickly	changing	pitch	or	vibrato	will	require	a	shorter	
update	period	(which	will	demand	more	from	the	CPU).	It	has	an	
input	control	for	'threshold	of	detection'	which	can	be	used	to	filter	
out	and	disregard	pitch	and	amplitude	tracking	data	beneath	this	
limit.	Pitch	is	capable	of	very	good	pitch	and	amplitude	tracking	
results	in	real-time.
		
pitchamdf	uses	the	so-called	'Average	Magnitude	Difference	
Function'	method.	It	is	perhaps	slightly	more	accurate	than	pitch	as	a	
general	purpose	pitch	tracker	but	its	CPU	demand	is	higher.
		

pvspitch	uses	streaming	FFT	technology	to	track	pitch.	It	takes	an	f-
signal	as	input	which	will	have	to	be	created	using	the	pvsanal	

Pitch	Tracking

587

opcode.	At	this	step	the	choice	of	FFT	size	will	have	a	bearing	upon	
the	performance	of	the	pvspitch	pitch	tracker.	Smaller	FFT	sizes	will	
allow	for	faster	tracking	but	with	perhaps	some	inaccuracies,	
particularly	with	lower	pitches	whereas	larger	FFT	sizes	are	likely	to	
provide	for	more	accurate	pitch	tracking	at	the	expense	of	some	time	
resolution.	pvspitch	tries	to	mimic	certain	functions	of	the	human	ear	
in	how	it	tries	to	discern	pitch.	pvspitch	works	well	in	real-time	but	it	
does	have	a	tendency	to	jump	its	output	to	the	wrong	octave	–	an	
octave	too	high	–	particularly	when	encountering	vibrato.
		

ptrack	also	makes	uses	of	streaming	FFT	but	takes	an	normal	audio	
signal	as	input,	performing	the	FFT	analysis	internally.	We	still	have	
to	provide	a	value	for	FFT	size	with	the	same	considerations	
mentioned	above.	ptrack	is	based	on	an	algorithm	by	Miller	Puckette,	
the	co-creator	of	MaxMSP	and	creator	of	PD.	ptrack	also	works	well	
in	real-time	but	it	does	have	a	tendency	to	jump	to	erroneous	pitch	
tracking	values	when	pitch	is	changing	quickly	or	when	encountering	
vibrato.	Median	filtering	(using	the	mediank	opcode)	and	filtering	of	
outlying	values	might	improve	the	results.
		

plltrack	uses	a	phase-locked	loop	algorithm	in	detecting	pitch.	
plltrack	is	another	efficient	real-time	option	for	pitch	tracking.	It	has	
a	tendency	to	gliss	up	and	down	from	very	low	frequency	values	at	
the	start	and	end	of	notes,	i.e.	when	encountering	silence.	This	effect	
can	be	minimised	by	increasing	its	'feedback'	parameter	but	this	can	
also	make	pitch	tracking	unstable	over	sustained	notes.
		
In	conclusion,	pitch	is	probably	still	the	best	choice	as	a	general	
purpose	pitch	tracker,	pitchamdf	is	also	a	good	choice.	pvspitch,	
ptrack	and	plltrack	all	work	well	in	real-time	but	might	demand	
additional	processing	to	remove	errors.

Pitch	Tracking

588

		
pvscent	and	centroid	are	a	little	different	to	the	other	pitch	trackers	in	
that,	rather	than	try	to	discern	the	fundemental	of	a	harmonic	tone,	
they	assess	what	the	centre	of	gravity	of	a	spectrum	is.	An	application	
for	this	is	in	the	identification	of	different	instruments	playing	the	
same	note.	Softer,	darker	instruements,	such	as	the	french	horn,	will	
be	characterised	by	a	lower	centroid	to	that	of	more	shrill	
instruments,	such	as	the	violin.	Both	opcodes	use	FFT.	centroid	works	
directly	with	an	audio	signal	input	whereas	pvscent	requires	an	f-sig	
input.	centroid	also	features	a	trigger	input	which	allows	us	to	
manually	trigger	it	to	update	its	output.	In	the	following	example	we	
use	centroid	to	detect	individual	drums	sounds	–	bass	drum,	snare	
drum,	cymbal	–	within	a	drum	loop.	We	will	use	the	dynamic	
amplitude	trigger	from	earlier	on	in	this	chapter	to	detect	when	sound	
onsets	are	occurring	and	use	this	trigger	to	activate	centroid	and	also	
then	to	trigger	another	instrument	with	a	replacement	sound.	Each	
percussion	instrument	in	the	original	drum	loop	will	be	replaced	with	
a	different	sound:	bass	drums	will	be	replaced	with	a	kalimba/thumb	
piano	sound,	snare	drums	will	be	replaced	by	hand	claps	(a	la	TR-
808),	and	cymbal	sounds	will	be	replaced	with	tambourine	sounds.	
The	drum	loop	used	is	beats.wav	which	can	be	found	with	the	
download	of	the	Csound	HTML	manual	(and	within	the	Csound	
download	itself).	This	loop	is	not	ideal	as	some	of	the	instruments	
coincide	with	one	another	–	for	example,	the	first	consists	of	a	bass	
drum	and	a	snare	drum	played	together.	The	'beat	replacer'	will	
inevitably	make	a	decision	one	way	or	the	other	but	is	not	advanced	
enough	to	detect	both	instruments	playing	simultaneously.	The	
critical	stage	is	the	series	of	if...	elseifs...	at	the	bottom	of	instrument	
1	where	decision	are	made	about	instruments'	identities	according	to	
what	centroid	band	they	fall	into.	The	user	can	fine	tune	the	boundary	
division	values	to	modify	the	decision	making	process.	centroid	
values	are	also	printed	to	the	terminal	when	onsets	are	detected	which	
might	assist	in	this	fine	tuning.

EXAMPLE	05L04_Drum_Replacement.csd

Pitch	Tracking

589

<CsoundSynthesizer>

<CsOptions>
-dm0	-odac
</CsOptions>

<CsInstruments>

sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

instr			1
	asig			diskin		"beats.wav",1

	iThreshold	=	0.05
	iWait						=	0.1*sr
	kTimer					init	iWait+1
	iSampTim	=							0.02																;	time	across	which	RMS	change	is	measured
	kRms			rms					asig	,20
	kRmsPrev							delayk		kRms,iSampTim	;	rms	from	earlier
	kChange	=						kRms	-	kRmsPrev							;	change	(+ve	or	-ve)

	if	kTimer	>	iWait	then															;	prevent	double	triggerings

		;	generate	a	trigger
		kTrigger			=		kChange	>	iThreshold	?	1	:	0
		;	if	trigger	is	generated,	reset	timer
		kTimer		=			kTrigger	==	1	?	0	:	kTimer

	else

		kTimer		+=		ksmps																			;	increment	timer
		kTrigger	=	0																								;	clear	trigger
	endif

	ifftsize	=	1024
	;	centroid	triggered	0.02	after	sound	onset	to	avoid	noisy	attack
	kDelTrig	delayk	kTrigger,0.02
	kcent		centroid	asig,	kDelTrig,	ifftsize		;	scan	centroid
								printk2		kcent												;	print	centroid	values
	if	kDelTrig==1	then
		if	kcent>0	&&	kcent<2500	then			;	first	freq.	band
			event	"i","Cowbell",0,0.1
		elseif	kcent<8000	then										;	second	freq.	band
			event	"i","Clap",0,0.1
		else																												;	third	freq.	band
			event	"i","Tambourine",0,0.5
		endif
	endif

endin

instr			Cowbell
	kenv1		transeg	1,p3*0.3,-30,0.2,	p3*0.7,-30,0.2
	kenv2		expon			1,p3,0.0005
	kenv			=							kenv1*kenv2
	ipw				=							0.5
	a1					vco2				0.65,562,2,0.5
	a2					vco2				0.65,845,2,0.5
	amix			=							a1+a2
	iLPF2		=							10000
	kcf				expseg		12000,0.07,iLPF2,1,iLPF2
	alpf			butlp			amix,kcf
	abpf			reson			amix,	845,	25
	amix			dcblock2								(abpf*0.06*kenv1)+(alpf*0.5)+(amix*0.9)
	amix			buthp			amix,700
	amix			=							amix*0.5*kenv
								out					amix
endin

Pitch	Tracking

590

instr			Clap
	if	frac(p1)==0	then
		event_i							"i",	p1+0.1,	0,					0.02
		event_i							"i",	p1+0.1,	0.01,		0.02
		event_i							"i",	p1+0.1,	0.02,		0.02
		event_i							"i",	p1+0.1,	0.03,		2
	else
		kenv		transeg	1,p3,-25,0
		iamp		random		0.7,1
		anoise								dust2			kenv*iamp,	8000
		iBPF										=							1100
		ibw											=							2000
		iHPF										=							1000
		iLPF										=							1
		kcf			expseg		8000,0.07,1700,1,800,2,500,1,500
		asig		butlp			anoise,kcf*iLPF
		asig		buthp			asig,iHPF
		ares		reson			asig,iBPF,ibw,1
		asig		dcblock2								(asig*0.5)+ares
								out					asig
	endif
endin

instr			Tambourine
								asig				tambourine						0.3,0.01	,32,	0.47,	0,	2300	,	5600,	8000
																out					asig				;SEND	AUDIO	TO	OUTPUTS
endin

</CsInstruments>

<CsScore>
i	1	0	10
</CsScore>

</CsoundSynthesizer>

		

RECORD	AND	PLAY	SOUNDFILES

591

RECORD	AND	PLAY	SOUNDFILES

PLAYING	SOUNDFILES	FROM	DISK	-
DISKIN21	

The	simplest	way	of	playing	a	sound	file	from	Csound	is	to	use	the	
diskin2	opcode.	This	opcode	reads	audio	directly	from	the	hard	drive	
location	where	it	is	stored,	i.e.	it	does	not	pre-load	the	sound	file	at	
initialisation	time.	This	method	of	sound	file	playback	is	therefore	
good	for	playing	back	very	long,	or	parts	of	very	long,	sound	files.	It	
is	perhaps	less	well	suited	to	playing	back	sound	files	where	dense	
polyphony,	multiple	iterations	and	rapid	random	access	to	the	file	is	
required.	In	these	situations	reading	from	a	function	table	or	buffer	is	
preferable.

diskin2	has	additional	parameters	for	speed	of	playback,	and	
interpolation.

			EXAMPLE	06A01_Play_soundfile.csd		
		

<CsoundSynthesizer>

<CsOptions>
-odac	;	activate	real-time	audio	output
</CsOptions>

<CsInstruments>
;	example	written	by	Iain	McCurdy

sr		 =		 44100
ksmps		 =		 32
nchnls		=		 1	

		instr	1	;	play	audio	from	disk
kSpeed		init					1											;	playback	speed
iSkip			init					0											;	inskip	into	file	(in	seconds)
iLoop			init					0											;	looping	switch	(0=off	1=on)
;	read	audio	from	disk	using	diskin2	opcode
a1						diskin2		"loop.wav",	kSpeed,	iSkip,	iLoop
								out						a1										;	send	audio	to	outputs
		endin

</CsInstruments>

<CsScore>

RECORD	AND	PLAY	SOUNDFILES

592

i	1	0	6
e
</CsScore>

</CsoundSynthesizer>

WRITING	AUDIO	TO	DISK

The	traditional	method	of	rendering	Csound's	audio	to	disk	is	to	
specify	a	sound	file	as	the	audio	destination	in	the	Csound	command	
or	under	<CsOptions>,	in	fact	before	real-time	performance	became	a	
possibility	this	was	the	only	way	in	which	Csound	was	used.	With	this	
method,	all	audio	that	is	piped	to	the	output	using	out,	outs	etc.	will	
be	written	to	this	file.	The	number	of	channels	that	the	file	will	
conatain	will	be	determined	by	the	number	of	channels	specified	in	
the	orchestra	header	using	'nchnls'.	The	disadvantage	of	this	method	
is	that	we	cannot	simultaneously	listen	to	the	audio	in	real-time.

			EXAMPLE	06A02_Write_soundfile.csd			
		

<CsoundSynthesizer>

<CsOptions>
;	audio	output	destination	is	given	as	a	sound	file	(wav	format	specified)
;	this	method	is	for	deferred	time	performance,
;	simultaneous	real-time	audio	will	not	be	possible
-oWriteToDisk1.wav	-W
</CsOptions>

<CsInstruments>
;	example	written	by	Iain	McCurdy

sr					=		44100
ksmps		=		32
nchnls	=		1	
0dbfs		=		1

giSine		ftgen		0,	0,	4096,	10,	1													;	a	sine	wave

		instr	1	;	a	simple	tone	generator
aEnv				expon				0.2,	p3,	0.001														;	a	percussive	envelope
aSig				poscil			aEnv,	cpsmidinn(p4),	giSine	;	audio	oscillator
								out						aSig																								;	send	audio	to	output
		endin

</CsInstruments>

<CsScore>
;	two	chords

RECORD	AND	PLAY	SOUNDFILES

593

i	1			0	5	60
i	1	0.1	5	65
i	1	0.2	5	67
i	1	0.3	5	71

i	1			3	5	65
i	1	3.1	5	67
i	1	3.2	5	73
i	1	3.3	5	78
e
</CsScore>

</CsoundSynthesizer>

WRITING	AUDIO	TO	DISK	WITH
SIMULTANEOUS	REAL-TIME	AUDIO
OUTPUT	-	FOUT	AND	MONITOR	

Recording	audio	output	to	disk	whilst	simultaneously	monitoring	in	
real-time	is	best	achieved	through	combining	the	opcodes	monitor	
and	fout.	'monitor'	can	be	used	to	create	an	audio	signal	that	consists	
of	a	mix	of	all	audio	output	from	all	instruments.	This	audio	signal	
can	then	be	rendered	to	a	sound	file	on	disk	using	'fout'.	'monitor'	can	
read	multi-channel	outputs	but	its	number	of	outputs	should	
correspond	to	the	number	of	channels	defined	in	the	header	using	
'nchnls'.	In	this	example	it	is	reading	just	in	mono.	'fout'	can	write	
audio	in	a	number	of	formats	and	bit	depths	and	it	can	also	write	
multi-channel	sound	files.	

			EXAMPLE	06A03_Write_RT.csd			
		

<CsoundSynthesizer>

<CsOptions>
-odac	;	activate	real-time	audio	output
</CsOptions>

<CsInstruments>
;example	written	by	Iain	McCurdy

sr						=							44100
ksmps			=							32
nchnls		=							1	
0dbfs			=							1

RECORD	AND	PLAY	SOUNDFILES

594

giSine		ftgen		0,	0,	4096,	10,	1	;	a	sine	wave
gaSig			init			0;	set	initial	value	for	global	audio	variable	(silence)

		instr	1	;	a	simple	tone	generator
aEnv				expon				0.2,	p3,	0.001														;	percussive	amplitude	envelope
aSig				poscil			aEnv,	cpsmidinn(p4),	giSine	;	audio	oscillator
								out						aSig
		endin

		instr	2	;	write	to	a	file	(always	on	in	order	to	record	everything)
aSig				monitor																														;	read	audio	from	output	bus
								fout					"WriteToDisk2.wav",4,aSig			;	write	audio	to	file	(16bit	mono)
		endin

</CsInstruments>

<CsScore>
;	activate	recording	instrument	to	encapsulate	the	entire	performance
i	2	0	8.3

;	two	chords
i	1			0	5	60
i	1	0.1	5	65
i	1	0.2	5	67
i	1	0.3	5	71

i	1			3	5	65
i	1	3.1	5	67
i	1	3.2	5	73
i	1	3.3	5	78
e
</CsScore>

</CsoundSynthesizer

1.	 diskin2	is	an	improved	version	of	diskin.	In	Csound	6,	both	will
use	the	same	code,	so	it	should	make	no	difference	whether	
you	use	diskin	or	diskin2.^

RECORD	AND	PLAY	BUFFERS

595

RECORD	AND	PLAY	BUFFERS

PLAYING	AUDIO	FROM	RAM	-	FLOOPER2

Csound	offers	many	opcodes	for	playing	back	sound	files	that	have	
first	been	loaded	into	a	function	table	(and	therefore	are	loaded	into	
RAM).	Some	of	these	offer	higher	quality	at	the	expense	of	
computation	speed	some	are	simpler	and	less	fully	featured.

One	of	the	newer	and	easier	to	use	opcodes	for	this	task	is	flooper2.	
As	its	name	might	suggest	it	is	intended	for	the	playback	of	files	with	
looping.	'flooper2'	can	also	apply	a	cross-fade	between	the	end	and	
the	beginning	of	the	loop	in	order	to	smooth	the	transition	where	
looping	takes	place.

In	the	following	example	a	sound	file	that	has	been	loaded	into	a	
GEN01	function	table	is	played	back	using	'flooper2'.	'flooper2'	also	
includes	a	parameter	for	modulating	playback	speed/pitch.	There	is	
also	the	option	of	modulating	the	loop	points	at	k-rate.	In	this	
example	the	entire	file	is	simply	played	and	looped.	You	can	replace	
the	sound	file	with	one	of	your	own	or	you	can	download	the	one	used
in	the	example	from	here:
		

SOME	NOTES	ABOUT	GEN01	AND	FUNCTION
TABLE	SIZES:

When	storing	sound	files	in	GEN01	function	tables	we	must	ensure	
that	we	define	a	table	of	sufficient	size	to	store	our	sound	file.	
Normally	function	table	sizes	should	be	powers	of	2	(2,	4,	8,	16,	32	
etc.).	If	we	know	the	duration	of	our	sound	file	we	can	derive	the	
required	table	size	by	multiplying	this	duration	by	the	sample	rate	
and	then	choosing	the	next	power	of	2	larger	than	this.	For	example	

RECORD	AND	PLAY	BUFFERS

596

when	the	sampling	rate	is	44100,	we	will	require	44100	table	
locations	to	store	1	second	of	audio;	but	44100	is	not	a	power	of	2	so	
we	must	choose	the	next	power	of	2	larger	than	this	which	is	65536.	
(Hint:	you	can	discover	a	sound	file's	duration	by	using	Csound's	
'sndinfo'	utility.)
		

There	are	some	'lazy'	options	however:	if	we	underestimate	the	table	
size,	when	we	then	run	Csound	it	will	warn	us	that	this	table	size	is	
too	small	and	conveniently	inform	us	via	the	terminal	what	the	
minimum	size	required	to	store	the	entire	file	would	be	-	we	can	then	
substitute	this	value	in	our	GEN01	table.	We	can	also	overestimate	
the	table	size	in	which	case	Csound	won't	complain	at	all,	but	this	is	a	
rather	inefficient	approach.

If	we	give	table	size	a	value	of	zero	we	have	what	is	referred	to	as	
'deferred	table	size'.	This	means	that	Csound	will	calculate	the	exact	
table	size	needed	to	store	our	sound	file	and	use	this	as	the	table	size	
but	this	will	probably	not	be	a	power	of	2.	Many	of	Csound's	opcodes	
will	work	quite	happily	with	non-power	of	2	function	table	sizes,	but	
not	all!	It	is	a	good	idea	to	know	how	to	deal	with	power	of	2	table	
sizes.	We	can	also	explicitly	define	non-power	of	2	table	sizes	by	
prefacing	the	table	size	with	a	minus	sign	'-'.
		

All	of	the	above	discussion	about	required	table	sizes	assumed	that	
the	sound	file	was	mono,	to	store	a	stereo	sound	file	will	naturally	
require	twice	the	storage	space,	for	example,	1	second	of	stereo	audio	
will	require	88200	storage	locations.	GEN01	will	indeed	store	stereo	
sound	files	and	many	of	Csound's	opcodes	will	read	from	stereo	
GEN01	function	tables,	but	again	not	all!	We	must	be	prepared	to	
split	stereo	sound	files,	either	to	two	sound	files	on	disk	or	into	two	
function	tables	using	GEN01's	'channel'	parameter	(p8),	depending	on	
the	opcodes	we	are	using.

Storing	audio	in	GEN01	tables	as	mono	channels	with	non-deferred	

RECORD	AND	PLAY	BUFFERS

597

and	power	of	2	table	sizes	will	ensure	maximum	compatibility.
		

			EXAMPLE	06B01_flooper2.csd		

<CsoundSynthesizer>

<CsOptions>
-odac	;	activate	real-time	audio
</CsOptions>

<CsInstruments>
;	example	written	by	Iain	McCurdy

sr		 =		 44100
ksmps		 =		 32
nchnls		=		 1	
0dbfs			=							1

;	STORE	AUDIO	IN	RAM	USING	GEN01	FUNCTION	TABLE
giSoundFile			ftgen			0,	0,	262144,	1,	"loop.wav",	0,	0,	0

		instr	1	;	play	audio	from	function	table	using	flooper2	opcode
kAmp									=									1			;	amplitude
kPitch							=									p4		;	pitch/speed
kLoopStart			=									0			;	point	where	looping	begins	(in	seconds)
kLoopEnd					=									nsamp(giSoundFile)/sr;	loop	end	(end	of	file)
kCrossFade			=									0			;	cross-fade	time
;	read	audio	from	the	function	table	using	the	flooper2	opcode
aSig									flooper2		kAmp,kPitch,kLoopStart,kLoopEnd,kCrossFade,giSoundFile
													out							aSig	;	send	audio	to	output
		endin

</CsInstruments>

<CsScore>
;	p4	=	pitch
;	(sound	file	duration	is	4.224)
i	1	0	[4.224*2]	1
i	1	+	[4.224*2]	0.5
i	1	+	[4.224*1]	2
e
</CsScore>

</CsoundSynthesizer>

CSOUND'S	BUILT-IN	RECORD-PLAY
BUFFER	-	SNDLOOP

Csound	has	an	opcode	called	sndloop	which	provides	a	simple	
method	of	recording	some	audio	into	a	buffer	and	then	playing	it	back
immediately.	The	duration	of	audio	storage	required	is	defined	when	
the	opcode	is	initialized.	In	the	following	example	two	seconds	is	

RECORD	AND	PLAY	BUFFERS

598

provided.	Once	activated,	as	soon	as	two	seconds	of	live	audio	has	
been	recorded	by	'sndloop',	it	immediately	begins	playing	it	back	in	a	
loop.	'sndloop'	allows	us	to	modulate	the	speed/pitch	of	the	played	
back	audio	as	well	as	providing	the	option	of	defining	a	crossfade	
time	between	the	end	and	the	beginning	of	the	loop.	In	the	example	
pressing	'r'	on	the	computer	keyboard	activates	record	followed	by	
looped	playback,	pressing	's'	stops	record	or	playback,	pressing	'+'	
increases	the	speed	and	therefore	the	pitch	of	playback	and	pressing	'-'
decreases	the	speed/pitch	of	playback.	If	playback	speed	is	reduced	
below	zero	it	enters	the	negative	domain	in	which	case	playback	will	
be	reversed.

You	will	need	to	have	a	microphone	connected	to	your	computer	in	
order	to	use	this	example.
		

				EXAMPLE	06B02_sndloop.csd		

<CsoundSynthesizer>

<CsOptions>
;	real-time	audio	in	and	out	are	both	activated
-iadc	-odac
</CsOptions>

<CsInstruments>
;example	written	by	Iain	McCurdy

sr		 =		 44100
ksmps		 =		 32
nchnls		=		 1	

		instr	1
;	PRINT	INSTRUCTIONS
											prints		"Press	'r'	to	record,	's'	to	stop	playback,	"
											prints		"'+'	to	increase	pitch,	'-'	to	decrease	pitch.\\n"
;	SENSE	KEYBOARD	ACTIVITY
kKey	sensekey;	sense	activity	on	the	computer	keyboard
aIn								inch				1													;	read	audio	from	first	input	channel
kPitch					init				1													;	initialize	pitch	parameter
iDur							init				2													;	inititialize	duration	of	loop	parameter
iFade						init				0.05										;	initialize	crossfade	time	parameter
	if	kKey	=	114	then														;	if	'r'	has	been	pressed...
kTrig						=							1													;	set	trigger	to	begin	record-playback
	elseif	kKey	=	115	then										;	if	's'	has	been	pressed...
kTrig						=							0													;	set	trigger	to	turn	off	record-playback
	elseif	kKey	=	43	then											;	if	'+'	has	been	pressed...
kPitch					=							kPitch	+	0.02	;	increment	pitch	parameter
	elseif	kKey	=	45	then											;	if	'-'	has	been	pressed
kPitch					=							kPitch	-	0.02	;	decrement	pitch	parameter
	endif																											;	end	of	conditional	branches
;	CREATE	SNDLOOP	INSTANCE

RECORD	AND	PLAY	BUFFERS

599

aOut,	kRec	sndloop	aIn,	kPitch,	kTrig,	iDur,	iFade	;	(kRec	output	is	not	used)
											out					aOut										;	send	audio	to	output
		endin

</CsInstruments>

<CsScore>
i	1	0	3600	;	instr	1	plays	for	1	hour
</CsScore>

</CsoundSynthesizer>

RECORDING	TO	AND	PLAYBACK	FROM	A
FUNCTION	TABLE

Writing	to	and	reading	from	buffers	can	also	be	achieved	through	the	
use	of	Csound's	opcodes	for	table	reading	and	writing	operations.	
Although	the	procedure	is	a	little	more	complicated	than	that	required
for	'sndloop'	it	is	ultimately	more	flexible.	In	the	next	example	
separate	instruments	are	used	for	recording	to	the	table	and	for	
playing	back	from	the	table.	Another	instrument	which	runs	
constantly	scans	for	activity	on	the	computer	keyboard	and	activates	
the	record	or	playback	instruments	accordingly.	For	writing	to	the	
table	we	will	use	the	tablew	opcode	and	for	reading	from	the	table	we	
will	use	the	table	opcode	(if	we	were	to	modulate	the	playback	speed	
it	would	be	better	to	use	one	of	Csound's	interpolating	variations	of	
'table'	such	as	tablei	or	table3.	Csound	writes	individual	values	to	
table	locations,	the	exact	table	locations	being	defined	by	an	'index'.	
For	writing	continuous	audio	to	a	table	this	index	will	need	to	be	
continuously	moving	1	location	for	every	sample.	This	moving	index	
(or	'pointer')	can	be	created	with	an	a-rate	line	or	a	phasor.	The	next	
example	uses	'line'.	When	using	Csound's	table	operation	opcodes	we	
first	need	to	create	that	table,	either	in	the	orchestra	header	or	in	the	
score.	The	duration	of	the	audio	buffer	can	be	calculated	from	the	
size	of	the	table.	In	this	example	the	table	is	2^17	points	long,	that	is	
131072	points.	The	duration	in	seconds	is	this	number	divided	by	the	
sample	rate	which	in	our	example	is	44100Hz.	Therefore	maximum	
storage	duration	for	this	example	is	131072/44100	which	is	around	
2.9	seconds.

RECORD	AND	PLAY	BUFFERS

600

			EXAMPLE	06B03_RecPlayToTable.csd				

<CsoundSynthesizer>

<CsOptions>
;	real-time	audio	in	and	out	are	both	activated
-iadc	-odac	-d	-m0
</CsOptions>

<CsInstruments>
;	example	written	by	Iain	McCurdy

sr		 =		 44100
ksmps		 =		 32
nchnls		=		 1

giBuffer	ftgen		0,	0,	2^17,	7,	0;	table	for	audio	data	storage
maxalloc	2,1	;	allow	only	one	instance	of	the	recording	instrument	at	a	time!

		instr	1	;	Sense	keyboard	activity.	Trigger	record	or	playback	accordingly.
											prints		"Press	'r'	to	record,	'p'	for	playback.\\n"
iTableLen		=							ftlen(giBuffer)		;	derive	buffer	function	table	length
idur							=							iTableLen	/	sr			;	derive	storage	time	in	seconds
kKey	sensekey																							;	sense	activity	on	the	computer	keyboard
		if	kKey=114	then																		;	if	ASCCI	value	of	114	('r')	is	output
event	 "i",	2,	0,	idur,	iTableLen		;	activate	recording	instrument	(2)
		endif
	if	kKey=112	then																			;	if	ASCCI	value	of	112	('p)	is	output
event	 "i",	3,	0,	idur,	iTableLen		;	activate	playback	instrument
	endif
		endin

		instr	2	;	record	to	buffer
iTableLen		=								p4														;	table/recording	length	in	samples
;	--	print	progress	information	to	terminal	--
											prints			"recording"
											printks		".",	0.25							;	print	'.'	every	quarter	of	a	second
krelease			release																		;	sense	when	note	is	in	final	k-rate	pass...
	if	krelease=1	then																	;	then	..
											printks		"\\ndone\\n",	0	;	...	print	a	message
	endif
;	--	write	audio	to	table	--
ain								inch					1															;	read	audio	from	live	input	channel	1
andx							line					0,p3,iTableLen		;	create	an	index	for	writing	to	table
											tablew			ain,andx,giBuffer	;	write	audio	to	function	table
endin

		instr	3	;	playback	from	buffer
iTableLen		=								p4														;	table/recording	length	in	samples
;	--	print	progress	information	to	terminal	--
											prints			"playback"
											printks		".",	0.25							;	print	'.'	every	quarter	of	a	second
krelease			release																		;	sense	when	note	is	in	final	k-rate	pass
	if	krelease=1	then																	;	then	...
											printks		"\\ndone\\n",	0	;	...	print	a	message
	endif;	end	of	conditional	branch
;	--	read	audio	from	table	--
aNdx							line					0,	p3,	iTableLen;	create	an	index	for	reading	from	table
a1									table				aNdx,	giBuffer		;	read	audio	to	audio	storage	table
											out						a1														;	send	audio	to	output
		endin

</CsInstruments>

<CsScore>
i	1	0	3600	;	Sense	keyboard	activity.	Start	recording	-	playback.
</CsScore>

RECORD	AND	PLAY	BUFFERS

601

</CsoundSynthesizer>

ENCAPSULATING	RECORD	AND	PLAY
BUFFER	FUNCTIONALITY	TO	A	UDO

Recording	and	playing	back	of	buffers	can	also	be	encapsulated	into	a	
User	Defined	Opcode.	This	time	the	tabw	opcode	will	be	used	for	
writing	audio	data	to	a	buffer.	tabw	is	slightly	faster	than	tablew	but	
doesn't	offer	the	same	number	of	protections	for	out	of	range	index	
values.
		
An	empty	table	(buffer)	of	any	size	can	be	created	with	a	negative	
number	as	size.	A	table	for	recording	10	seconds	of	audio	data	can	be	
created	in	this	way:
		

giBuf1				ftgen				0,	0,	-(10*sr),	2,	0

The	user	can	decide	whether	they	want	to	assign	a	certain	number	to	
the	table,	or	whether	to	allow	Csound	do	assign	one	automatically,	
thereafter	calling	the	table	via	its	variable	name,	in	this	case	giBuf1.	
Below	follows	a	UDO	for	creating	a	mono	buffer,	and	another	UDO	
for	creating	a	stereo	buffer:
		

	opcode	BufCrt1,	i,	io
ilen,	inum	xin
ift							ftgen					inum,	0,	-(ilen*sr),	2,	0
										xout						ift
	endop

	opcode	BufCrt2,	ii,	io
ilen,	inum	xin
iftL						ftgen					inum,	0,	-(ilen*sr),	2,	0
iftR						ftgen					inum,	0,	-(ilen*sr),	2,	0
										xout						iftL,	iftR
	endop	

This	simplifies	the	procedure	of	creating	a	record/play	buffer,	
because	the	user	is	just	asked	for	the	length	of	the	buffer.	A	number	
can	be	given,	but	by	default	Csound	will	assign	this	number.	This	
statement	will	create	an	empty	stereo	table	for	5	seconds	of	
recording:

RECORD	AND	PLAY	BUFFERS

602

		

iBufL,iBufR	BufCrt2			5

A	first,	simple	version	of	a	UDO	for	recording	will	just	write	the	
incoming	audio	to	sequential	locations	of	the	table.	This	can	be	done	
by	setting	the	ksmps	value	to	1	inside	this	UDO	(setksmps	1),	so	that	
each	audio	sample	has	its	own	discrete	k-value.	In	this	way	the	write	
index	for	the	table	can	be	assigned	via	the	statement	andx=kndx,	and	
increased	by	one	for	the	next	k-cycle.	An	additional	k-input	turns	
recording	on	and	off:
		

	opcode	BufRec1,	0,	aik
ain,	ift,	krec		xin
										setksmps		1
if	krec	==	1	then	;record	as	long	as	krec=1
kndx						init						0
andx						=									kndx
										tabw						ain,	andx,	ift
kndx						=									kndx+1
endif
	endop

The	reading	procedure	is	just	as	simple.	In	fact	the	same	code	can	be	
used;	it	will	be	sufficient	just	to	replace	the	opcode	for	writing	(tabw)	
with	the	opcode	for	reading	(tab):
		

	opcode	BufPlay1,	a,	ik
ift,	kplay		xin
										setksmps		1
if	kplay	==	1	then	;play	as	long	as	kplay=1
kndx						init						0
andx						=									kndx
aout						tab							andx,	ift
kndx						=									kndx+1
endif
	endop

Next	we	will	use	these	first	simple	UDOs	in	a	Csound	instrument.	
Press	the	"r"	key	as	long	as	you	want	to	record,	and	the	"p"	key	for	
playing	back.	Note	that	you	must	disable	the	key	repeats	on	your	
computer	keyboard	for	this	example	(in	QuteCsound,	disable	"Allow	
key	repeats"	in	Configuration	->	General).
		

			EXAMPLE	06B04_BufRecPlay_UDO.csd	

RECORD	AND	PLAY	BUFFERS

603

		

<CsoundSynthesizer>
<CsOptions>
-i	adc	-o	dac	-d	-m0
</CsOptions>
<CsInstruments>
;example	written	by	Joachim	Heintz
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

		opcode	BufCrt1,	i,	io
ilen,	inum	xin
ift							ftgen					inum,	0,	-(ilen*sr),	2,	0
										xout						ift
		endop

		opcode	BufRec1,	0,	aik
ain,	ift,	krec		xin
										setksmps		1
imaxindx		=									ftlen(ift)-1	;max	index	to	write
knew						changed			krec
if	krec	==	1	then	;record	as	long	as	krec=1
	if	knew	==	1	then	;reset	index	if	restarted
kndx						=									0
	endif
kndx						=									(kndx	>	imaxindx	?	imaxindx	:	kndx)
andx						=									kndx
										tabw						ain,	andx,	ift
kndx						=									kndx+1
endif
		endop

		opcode	BufPlay1,	a,	ik
ift,	kplay		xin
										setksmps		1
imaxindx		=									ftlen(ift)-1	;max	index	to	read
knew						changed			kplay
if	kplay	==	1	then	;play	as	long	as	kplay=1
	if	knew	==	1	then	;reset	index	if	restarted
kndx						=									0
	endif
kndx						=									(kndx	>	imaxindx	?	imaxindx	:	kndx)
andx						=									kndx
aout						tab							andx,	ift
kndx						=									kndx+1
endif
										xout						aout
		endop

		opcode	KeyStay,	k,	kkk
;returns	1	as	long	as	a	certain	key	is	pressed
key,	k0,	kascii				xin	;ascii	code	of	the	key	(e.g.	32	for	space)
kprev					init						0	;previous	key	value
kout						=									(key	==	kascii	||	(key	==	-1	&&	kprev	==	kascii)	?	1	:	0)
kprev					=									(key	>	0	?	key	:	kprev)
kprev					=									(kprev	==	key	&&	k0	==	0	?	0	:	kprev)
										xout						kout
		endop

		opcode	KeyStay2,	kk,	kk
;combines	two	KeyStay	UDO's	(this	way	is	necessary
;because	just	one	sensekey	opcode	is	possible	in	an	orchestra)
kasci1,	kasci2	xin	;two	ascii	codes	as	input
key,k0				sensekey
kout1					KeyStay			key,	k0,	kasci1
kout2					KeyStay			key,	k0,	kasci2
										xout						kout1,	kout2
		endop

RECORD	AND	PLAY	BUFFERS

604

instr	1
ain								inch						1	;audio	input	on	channel	1
iBuf							BufCrt1			3	;buffer	for	3	seconds	of	recording
kRec,kPlay	KeyStay2		114,	112	;define	keys	for	record	and	play
											BufRec1			ain,	iBuf,	kRec	;record	if	kRec=1
aout							BufPlay1		iBuf,	kPlay	;play	if	kPlay=1
											out							aout	;send	out
endin

</CsInstruments>
<CsScore>
i	1	0	1000
</CsScore>
</CsoundSynthesizer>

	Next	we	will	create	an	extended	and	easier	to	use	version	of	these	
two	UDOs	for	recording	and	playing	back	a	buffer.	The	requirements	
of	a	user	might	be	the	following:

Recording:
		

allow	recording	not	just	from	the	beginning	of	the	buffer,	but	
also	from	any	arbitrary	starting	point	kstart
		
allow	circular	recording	(wrap	around)	if	the	end	of	the	buffer	
has	been	reached:	kwrap=1
		

	Playing:

play	back	with	different	speed	kspeed	(negative	speed	means	
playing	backwards)
		
start	playback	at	any	point	of	the	buffer	kstart
		
end	playback	at	any	point	of	the	buffer	kend
		
allow	certain	modes	of	wraparound	kwrap	while	playing:

kwrap=0	stops	at	the	defined	end	point	of	the	buffer
kwrap=1	repeats	playback	between	defined	end	and	start	
points
kwrap=2	starts	at	a	defined	starting	point	but	wraps	
between	end	point	and	beginning	of	the	buffer

RECORD	AND	PLAY	BUFFERS

605

kwrap=3	wraps	between	kstart	and	the	end	of	the	table

The	following	example	provides	versions	of	BufRec	and	BufPlay	
which	do	this	job.	We	will	use	the	table3	opcode	instead	of	the	simple
tab	or	table	opcodes	in	this	case,	because	we	want	to	translate	any	
number	of	samples	in	the	table	to	any	number	of	output	samples	using
different	speed	values.	In	short,	we	will	need	to	read	amplitude	values	
that	must	be	'imagined'	between	two	existing	table	value.

	

For	higher	or	lower	speed	values	than	the	original	record	speed,	
interpolation	must	be	used	in	between	certain	sample	values	if	the	
original	shape	of	the	wave	is	to	be	reproduced	as	accurately	as	
possible.	This	job	is	performed	with	high	quality	by	table3	which	

RECORD	AND	PLAY	BUFFERS

606

employs	cubic	interpolation.

In	a	typical	application	of	recording	and	playing	buffer	buffers,	the	
ability	to	interact	with	the	process	will	be	paramount.	We	can	benefit	
from	having	interactive	access	to	the	following:

starting	and	stopping	record

adjusting	the	start	and	end	points	of	recording
use	or	prevent	wraparound	while	recording
starting	and	stopping	playback
adjusting	the	start	and	end	points	of	playback
adjusting	wraparound	in	playback	using	one	of	the	specified	
modes	(1	-	4)	
applying	volume	control	to	the	playback	signal
		

These	interactions	could	be	carried	out	via	widgets,	MIDI,	OSC	or	
something	else.	As	we	want	to	provide	examples	which	can	be	used	
with	any	Csound	frontend	here,	we	are	restricted	to	triggering	the	
record	and	play	events	by	hitting	the	space	bar	of	the	computer	
keyboard.	(See	the	CsoundQt	version	of	this	example	for	a	more	
interactive	version.)

			EXAMPLE	06B05_BufRecPlay_complex.csd		
		

<CsoundSynthesizer>
<CsOptions>
-i	adc	-o	dac	-d
</CsOptions>
<CsInstruments>
;example	written	by	joachim	heintz
sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

		opcode	BufCrt2,	ii,	io	;creates	a	stereo	buffer
ilen,	inum	xin	;ilen	=	length	of	the	buffer	(table)	in	seconds
iftL						ftgen					inum,	0,	-(ilen*sr),	2,	0
iftR						ftgen					inum,	0,	-(ilen*sr),	2,	0
										xout						iftL,	iftR
		endop

		opcode	BufRec1,	k,	aikkkk	;records	to	a	buffer
ain,	ift,	krec,	kstart,	kend,	kwrap	xin
	 	 setksmps	 1
kendsmps	 =	 	 kend*sr	;end	point	in	samples

RECORD	AND	PLAY	BUFFERS

607

kendsmps	 =	 	 (kendsmps	==	0	||	kendsmps	>	ftlen(ift)	?	ftlen(ift)	
:	kendsmps)
kfinished	 =	 	 0
knew	 	 changed	krec	;1	if	record	just	started
	if	krec	==	1	then
		if	knew	==	1	then
kndx	 	 =	 	 kstart	*	sr	-	1	;first	index	to	write
		endif
		if	kndx	>=	kendsmps-1	&&	kwrap	==	1	then
kndx	 	 =	 	 -1
		endif
		if	kndx	<	kendsmps-1	then
kndx	 	 =	 	 kndx	+	1
andx	 	 =	 	 kndx
	 	 tabw	 	 ain,	andx,	ift
		else
kfinished	 =	 	 1
		endif
	endif
		 	 xout	 	 kfinished
		endop

		opcode	BufRec2,	k,	aaiikkkk	;records	to	a	stereo	buffer
ainL,	ainR,	iftL,	iftR,	krec,	kstart,	kend,	kwrap	xin
kfin						BufRec1					ainL,	iftL,	krec,	kstart,	kend,	kwrap
kfin						BufRec1					ainR,	iftR,	krec,	kstart,	kend,	kwrap
										xout								kfin
		endop

		opcode	BufPlay1,	ak,	ikkkkkk
ift,	kplay,	kspeed,	kvol,	kstart,	kend,	kwrap	xin
;kstart	=	begin	of	playing	the	buffer	in	seconds
;kend	=	end	of	playing	in	seconds.	0	means	the	end	of	the	table
;kwrap	=	0:	no	wrapping.	stops	at	kend	(positive	speed)	or	kstart
;		(negative	speed).this	makes	just	sense	if	the	direction	does	not
;		change	and	you	just	want	to	play	the	table	once
;kwrap	=	1:	wraps	between	kstart	and	kend
;kwrap	=	2:	wraps	between	0	and	kend
;kwrap	=	3:	wraps	between	kstart	and	end	of	table
;CALCULATE	BASIC	VALUES
kfin	 	 init	 	 0
iftlen	 	 =	 	 ftlen(ift)/sr	;ftlength	in	seconds
kend	 	 =	 	 (kend	==	0	?	iftlen	:	kend)	;kend=0	means	end	of	
table
kstart01	 =	 	 kstart/iftlen	;start	in	0-1	range
kend01	 	 =	 	 kend/iftlen	;end	in	0-1	range
kfqbas	 	 =	 	 (1/iftlen)	*	kspeed	;basic	phasor	frequency
;DIFFERENT	BEHAVIOUR	DEPENDING	ON	WRAP:
if	kplay	==	1	&&	kfin	==	0	then
	;1.	STOP	AT	START-	OR	ENDPOINT	IF	NO	WRAPPING	REQUIRED	(kwrap=0)
	if	kwrap	==	0	then
;	--	phasor	freq	so	that	0-1	values	match	distance	start-end
kfqrel	 	 =	 	 kfqbas	/	(kend01-kstart01)
andxrel	phasor		kfqrel	;index	0-1	for	distance	start-end
;	--	final	index	for	reading	the	table	(0-1)
andx	 	 =	 	 andxrel	*	(kend01-kstart01)	+	(kstart01)
kfirst	 	 init	 	 1	;don't	check	condition	below	at	the	first	k-cycle	
(always	true)
kndx	 	 downsamp	 andx
kprevndx	 init	 	 0
	;end	of	table	check:
		;for	positive	speed,	check	if	this	index	is	lower	than	the	previous	one
		if	kfirst	==	0	&&	kspeed	>	0	&&	kndx	<	kprevndx	then
kfin	 	 =	 	 1
	;for	negative	speed,	check	if	this	index	is	higher	than	the	previous	one
		else
kprevndx	 =	 	 (kprevndx	==	kstart01	?	kend01	:	kprevndx)
			if	kfirst	==	0	&&	kspeed	<	0	&&	kndx	>	kprevndx	then
kfin	 	 =	 	 1
			endif
kfirst	 	 =	 	 0	;end	of	first	cycle	in	wrap	=	0
		endif
	;sound	out	if	end	of	table	has	not	yet	reached

RECORD	AND	PLAY	BUFFERS

608

asig	 	 table3	 	 andx,	ift,	1	
kprevndx	 =	 	 kndx	;next	previous	is	this	index
	;2.	WRAP	BETWEEN	START	AND	END	(kwrap=1)
	elseif	kwrap	==	1	then
kfqrel	 	 =	 	 kfqbas	/	(kend01-kstart01)	;same	as	for	kwarp=0
andxrel	phasor		kfqrel
andx	 	 =	 	 andxrel	*	(kend01-kstart01)	+	(kstart01)
asig	 	 table3	 	 andx,	ift,	1	 ;sound	out
	;3.	START	AT	kstart	BUT	WRAP	BETWEEN	0	AND	END	(kwrap=2)
	elseif	kwrap	==	2	then
kw2first	 init	 	 1
		if	kw2first	==	1	then	;at	first	k-cycle:
	 	 reinit	 	 wrap3phs	;reinitialize	for	getting	the	correct	start	
phase
kw2first	 =	 	 0
		endif
kfqrel	 	 =	 	 kfqbas	/	kend01	;phasor	freq	so	that	0-1	values	match	
distance	start-end
wrap3phs:
andxrel	phasor		kfqrel,	i(kstart01)	;index	0-1	for	distance	start-end
	 	 rireturn	 ;end	of	reinitialization
andx	 	 =	 	 andxrel	*	kend01	;final	index	for	reading	the	table
asig	 	 table3	 	 andx,	ift,	1	 ;sound	out
	;4.	WRAP	BETWEEN	kstart	AND	END	OF	TABLE(kwrap=3)
	elseif	kwrap	==	3	then
kfqrel	 	 =	 	 kfqbas	/	(1-kstart01)	;phasor	freq	so	that	0-1	values	
match	distance	start-end
andxrel	phasor		kfqrel	;index	0-1	for	distance	start-end
andx	 	 =	 	 andxrel	*	(1-kstart01)	+	kstart01	;final	index	for	
reading	the	table
asig	 	 table3	 	 andx,	ift,	1	
	endif
else	;if	either	not	started	or	finished	at	wrap=0
asig	 	 =	 	 0	;don't	produce	any	sound
endif
			 	 xout	 	 asig*kvol,	kfin
		endop

		opcode	BufPlay2,	aak,	iikkkkkk	;plays	a	stereo	buffer
iftL,	iftR,	kplay,	kspeed,	kvol,	kstart,	kend,	kwrap	xin
aL,kfin			BufPlay1					iftL,	kplay,	kspeed,	kvol,	kstart,	kend,	kwrap
aR,kfin			BufPlay1					iftR,	kplay,	kspeed,	kvol,	kstart,	kend,	kwrap
										xout									aL,	aR,	kfin
		endop

		opcode	In2,	aa,	kk	;stereo	audio	input
kchn1,	kchn2	xin
ain1						inch						kchn1
ain2						inch						kchn2
										xout						ain1,	ain2
		endop

		opcode	Key,	kk,	k
;returns	'1'	just	in	the	k-cycle	a	certain	key	has	been	pressed	(kdown)
;		or	released	(kup)
kascii				xin	;ascii	code	of	the	key	(e.g.	32	for	space)
key,k0				sensekey
knew						changed			key
kdown					=									(key	==	kascii	&&	knew	==	1	&&	k0	==	1	?	1	:	0)
kup							=									(key	==	kascii	&&	knew	==	1	&&	k0	==	0	?	1	:	0)
										xout						kdown,	kup
		endop

instr	1
giftL,giftR	BufCrt2			3	;creates	a	stereo	buffer	for	3	seconds
gainL,gainR	In2					1,2	;read	input	channels	1	and	2	and	write	as	global	audio
										prints				"PLEASE	PRESS	THE	SPACE	BAR	ONCE	AND	GIVE	AUDIO	INPUT
																					ON	CHANNELS	1	AND	2.\n"
										prints				"AUDIO	WILL	BE	RECORDED	AND	THEN	AUTOMATICALLY	PLAYED
																					BACK	IN	SEVERAL	MANNERS.\n"
krec,k0			Key							32
	if	krec	==	1	then
										event					"i",	2,	0,	10

RECORD	AND	PLAY	BUFFERS

609

	endif
endin

instr	2
;	--	records	the	whole	buffer	and	returns	1	at	the	end
kfin						BufRec2			gainL,	gainR,	giftL,	giftR,	1,	0,	0,	0
		if	kfin	==	0	then
										printks			"Recording!\n",	1
		endif
	if	kfin	==	1	then
ispeed				random				-2,	2
istart				random				0,	1
iend						random				2,	3
iwrap					random				0,	1.999
iwrap					=									int(iwrap)
printks	"Playing	back	with	speed	=	%.3f,	start	=	%.3f,	end	=	%.3f,
																				wrap	=	%d\n",	p3,	ispeed,	istart,	iend,	iwrap
aL,aR,kf		BufPlay2		giftL,	giftR,	1,	ispeed,	1,	istart,	iend,	iwrap
		if	kf	==	0	then
										printks			"Playing!\n",	1
		endif
	endif
krel						release
	if	kfin	==	1	&&	kf	==	1	||	krel	==	1	then
										printks			"PRESS	SPACE	BAR	AGAIN!\n",	p3
										turnoff
	endif
										outs						aL,	aR
endin

</CsInstruments>
<CsScore>
i	1	0	1000
e
</CsScore>
</CsoundSynthesizer>

FURTHER	OPCODES	FOR	INVESTIGATION

Csound	contains	a	wide	range	of	opcodes	that	offer	a	variety	of	
'ready-made'	methods	of	playing	back	audio	held	in	a	function	table.	
The	oldest	group	of	these	opcodes	are	loscil	and	loscil3.	Despite	their	
age	they	offer	some	unique	features	such	as	the	ability	implement	
both	sustain	and	release	stage	looping	(in	a	variety	of	looping	modes),	
their	ability	to	read	from	stereo	as	well	as	mono	function	tables	and	
their	ability	to	read	looping	and	base	frequency	data	from	the	sound	
file	stored	in	the	function	table.	loscil	and	loscil3	were	originally	
intended	as	the	kernel	mechanism	for	building	a	sampler.

For	reading	multichannel	files		of	more	than	two	channels,	the	more	
recent	loscilx	exists	as	an	option.

loscil	and	loscil3	will	only	allow	looping	points	to	be	defined	at	i-

RECORD	AND	PLAY	BUFFERS

610

time.	lposcil,	lposcil3,	lposcila,	lposcilsa	and	lposcilsa2	will	allow	
looping	points	to	be	changed	a	k-rate,	while	the	note	is	playing.

It	is	worth	not	forgetting	Csound's	more	exotic	methods	of	playback	
of	sample	stored	in	function	tables.	mincer	and	temposcal	use	
streaming	vocoder	techniques	to	faciliate	independent	pitch	and	time-
stretch	control	during	playback	(this	area	is	covered	more	fully	in	the	
chapter	FOURIER	ANALYSIS	/	SPECTRAL	PROCESSING.	
sndwarp	and	sndwarpst	similiarly	faciliate	independent	pitch	and	
playback	speed	control	but	through	the	technique	of	granular	
synthesis	this	area	is	covered	in	detail	in	the	chapter	GRANULAR	
SYNTHESIS.
		

RECEIVING	EVENTS	BY	MIDIIN

611

RECEIVING	EVENTS	BY	MIDIIN

Csound	provides	a	variety	of	opcodes,	such	as	cpsmidi,	ampmidi	and	
ctrl7,	which	facilitate	the	reading	of	incoming	midi	data	into	Csound	
with	minimal	fuss.	These	opcodes	allow	us	to	read	in	midi	
information	without	us	having	to	worry	about	parsing	status	bytes	and	
so	on.	Occasionally	though	when	more	complex	midi	interaction	is	
required,	it	might	be	advantageous	for	us	to	scan	all	raw	midi	
information	that	is	coming	into	Csound.	The	midiin	opcode	allows	us	
to	do	this.

In	the	next	example	a	simple	midi	monitor	is	constructed.	Incoming	
midi	events	are	printed	to	the	terminal	with	some	formatting	to	make	
them	readable.	We	can	disable	Csound's	default	instrument	triggering	
mechanism	(which	in	this	example	we	don't	want	to	use)	by	writing	
the	line:

massign	0,0	

just	after	the	header	statement	(sometimes	referred	to	as	instrument	
0).

For	this	example	to	work	you	will	need	to	ensure	that	you	have	
activated	live	midi	input	within	Csound,	either	by	using	the	-M	flag	
or	from	within	the	QuteCsound	configuration	menu.	You	will	also	
need	to	make	sure	that	you	have	a	midi	keyboard	or	controller	
connected.	You	may	also	want	to	include	the	-m0	flag	which	will	
disable	some	of	Csound's	additional	messaging	output	and	therefore	
allow	our	midi	printout	to	be	presented	more	clearly.
		

The	status	byte	tells	us	what	sort	of	midi	information	has	been	
received.	For	example,	a	value	of	144	tells	us	that	a	midi	note	event	
has	been	received,	a	value	of	176	tells	us	that	a	midi	controller	event	
has	been	received,	a	value	of	224	tells	us	that	pitch	bend	has	been	
received	and	so	on.

RECEIVING	EVENTS	BY	MIDIIN

612

The	meaning	of	the	two	data	bytes	depends	on	what	sort	of	status	byte
has	been	received.	For	example	if	a	midi	note	event	has	been	
received	then	data	byte	1	gives	us	the	note	velocity	and	data	byte	2	
gives	us	the	note	number.	If	a	midi	controller	event	has	been	received	
then	data	byte	1	gives	us	the	controller	number	and	data	byte	2	gives	
us	the	controller	value.	
		

			EXAMPLE	07A01_midiin_print.csd
		

<CsoundSynthesizer>

<CsOptions>
-Ma	-m0
;	activates	all	midi	devices,	suppress	note	printings
</CsOptions>

<CsInstruments>
;	Example	by	Iain	McCurdy

;	no	audio	so	'sr'	or	'nchnls'	aren't	relevant
ksmps	=	32

;	using	massign	with	these	arguments	disables	default	instrument	triggering
massign	0,0

		instr	1
kstatus,	kchan,	kdata1,	kdata2		midiin												;read	in	midi
ktrigger		changed		kstatus,	kchan,	kdata1,	kdata2	;trigger	if	midi	data	changes
	if	ktrigger=1	&&	kstatus!=0	then										;if	status	byte	is	non-zero...
;	--	print	midi	data	to	the	terminal	with	formatting	--
	printks	"status:%d%tchannel:%d%tdata1:%d%tdata2:%d%n"\
																																				,0,kstatus,kchan,kdata1,kdata2
	endif
		endin

</CsInstruments>

<CsScore>
i	1	0	3600	;	instr	1	plays	for	1	hour
</CsScore>

</CsoundSynthesizer>

	The	principle	advantage	of	using	the	midiin	opcode	is	that,	unlike	
opcodes	such	as	cpsmidi,	ampmidi	and	ctrl7	which	only	receive	
specific	midi	data	types	on	a	specific	channel,	midiin	'listens'	to	
all	incoming	data	including	system	exclusive	messages.	In	situations	
where	elaborate	Csound	instrument	triggering	mappings	that	are	
beyond	the	capabilities	of	the	default	triggering	mechanism	are	
required,	then	the	use	of	midiin	might	be	beneficial.
		

RECEIVING	EVENTS	BY	MIDIIN

613

RECEIVING	EVENTS	BY	MIDIIN

614

TRIGGERING	INSTRUMENT	INSTANCES

615

TRIGGERING	INSTRUMENT	INSTANCES

CSOUND'S	DEFAULT	SYSTEM	OF
INSTRUMENT	TRIGGERING	VIA	MIDI	

Csound	has	a	default	system	for	instrument	triggering	via	midi.	
Provided	a	midi	keyboard	has	been	connected	and	the	appropriate	
commmand	line	flags	for	midi	input	have	been	set	(see	configuring	
midi	for	further	information)	or	the	appropriate		settings	have	been	
made	in	QuteCsound's	configuration	menu,	then	midi	notes	received	
on	midi	channel	1	will	trigger	instrument	1,	notes	on	channel	2	will	
trigger	instrument	2	and	so	on.	Instruments	will	turn	on	and	off	in	
sympathy	with	notes	being	pressed	and	released	on	the	midi	keyboard	
and	Csound	will	correctly	unravel	polyphonic	layering	and	turn	on	
and	off	only	the	correct	layer	of	the	same	instrument	begin	played.	
Midi	activated	notes	can	be	thought	of	as	'held'	notes,	similar	to	notes	
activated	in	the	score	with	a	negative	duration	(p3).	Midi	activated	
notes	will	sustain	indefinitely	as	long	as	the	performance	time	will	
allow	until	a	corresponding	note	off	has	been	received	-	this	is	unless	
this	infinite	p3	duration	is	overwritten	within	the	instrument	itself	by	
p3	begin	explicitly	defined.

The	following	example	confirms	this	default	mapping	of	midi	
channels	to	instruments.	You	will	need	a	midi	keyboard	that	allows	
you	to	change	the	midi	channel	on	which	it	is	transmmitting.	Besides	
a	written	confirmation	to	the	console	of	which	instrument	is	begin	
triggered,	there	is	an	audible	confirmation	in	that	instrument	1	plays	
single	pulses,	instrument	2	plays	sets	of	two	pulses	and	instrument	3	
plays	sets	of	three	pulses.	The	example	does	not	go	beyond	three	
instruments.	If	notes	are	received	on	midi	channel	4	and	above,	
because	corresonding	instruments	do	not	exist,	notes	on	any	of	these	
channels	will	be	directed	to	instrument	1.
		

			EXAMPLE	07B01_MidiInstrTrigger.csd

TRIGGERING	INSTRUMENT	INSTANCES

616

		

<CsoundSynthesizer>

<CsOptions>
-Ma	-odac	-m0
;activates	all	midi	devices,	real	time	sound	output,	and	suppress	note	printings
</CsOptions>

<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

gisine	ftgen	0,0,2^12,10,1

		instr	1	;	1	impulse	(midi	channel	1)
prints	"instrument/midi	channel:	%d%n",p1	;	print	instrument	number	to	terminal
reset:																																				;	label	'reset'
					timout	0,	1,	impulse																	;	jump	to	'impulse'	for	1	second
					reinit	reset																									;	reninitialise	pass	from	'reset'
impulse:																																		;	label	'impulse'
aenv	expon					1,	0.3,	0.0001													;	a	short	percussive	envelope
aSig	poscil				aenv,	500,	gisine										;	audio	oscillator
					out							aSig																							;	audio	to	output
		endin

		instr	2	;	2	impulses	(midi	channel	2)
prints	"instrument/midi	channel:	%d%n",p1
reset:
					timout	0,	1,	impulse
					reinit	reset
impulse:
aenv	expon					1,	0.3,	0.0001
aSig	poscil				aenv,	500,	gisine
a2			delay					aSig,	0.15																	;	short	delay	adds	another	impulse
					out							aSig+a2																				;	mix	two	impulses	at	output
		endin

		instr	3	;	3	impulses	(midi	channel	3)
prints	"instrument/midi	channel:	%d%n",p1
reset:
					timout	0,	1,	impulse
					reinit	reset
impulse:
aenv	expon					1,	0.3,	0.0001
aSig	poscil				aenv,	500,	gisine
a2			delay					aSig,	0.15																	;	delay	adds	a	2nd	impulse
a3			delay					a2,	0.15																			;	delay	adds	a	3rd	impulse
					out							aSig+a2+a3																	;	mix	the	three	impulses	at	output
		endin

</CsInstruments>
<CsScore>
f	0	300
e
</CsScore>
<CsoundSynthesizer>

USING	MASSIGN	TO	MAP	MIDI	CHANNELS
TO	INSTRUMENTS

We	can	use	the	massign	opcode,	which	is	used	just	after	the	header	
statement,	to	explicitly	map	midi	channels	to	specific	instruments	and

TRIGGERING	INSTRUMENT	INSTANCES

617

thereby	overrule	Csound's	default	mappings.	massign	takes	two	input	
arguments,	the	first	defines	the	midi	channel	to	be	redirected	and	the	
second	defines	which	instrument	it	should	be	directed	to.	The	
following	example	is	identical	to	the	previous	one	except	that	the	
massign	statements	near	the	top	of	the	orchestra	jumbles	up	the	
default	mappings.	Midi	notes	on	channel	1	will	be	mapped	to	
instrument	3,	notes	on	channel	2	to	instrument	1	and	notes	on	channel	
3	to	instrument	2.	Undefined	channel	mappings	will	be	mapped	
according	to	the	default	arrangement	and	once	again	midi	notes	on	
channels	for	which	an	instrument	does	not	exist	will	be	mapped	to	
instrument	1.
		

			EXAMPLE	07B02_massign.csd
		

<CsoundSynthesizer>

<CsOptions>
-Ma	-odac	-m0
;	activate	all	midi	devices,	real	time	sound	output,	and	suppress	note	printing
</CsOptions>

<CsInstruments>
;	Example	by	Iain	McCurdy

sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

gisine	ftgen	0,0,2^12,10,1

massign	1,3		;	channel	1	notes	directed	to	instr	3
massign	2,1		;	channel	2	notes	directed	to	instr	1
massign	3,2		;	channel	3	notes	directed	to	instr	2

		instr	1	;	1	impulse	(midi	channel	1)
iChn	midichn																																		;	discern	what	midi	channel
prints	"channel:%d%tinstrument:	%d%n",iChn,p1	;	print	instr	num	and	midi	channel
reset:																																								;	label	'reset'
					timout	0,	1,	impulse																					;	jump	to	'impulse'	for	1	second
					reinit	reset																													;	reninitialize	pass	from	'reset'
impulse:																																						;	label	'impulse'
aenv	expon					1,	0.3,	0.0001																	;	a	short	percussive	envelope
aSig	poscil				aenv,	500,	gisine														;	audio	oscillator
					out							aSig																											;	send	audio	to	output
		endin

		instr	2	;	2	impulses	(midi	channel	2)
iChn	midichn
prints	"channel:%d%tinstrument:	%d%n",iChn,p1
reset:
					timout	0,	1,	impulse
					reinit	reset
impulse:
aenv	expon					1,	0.3,	0.0001

TRIGGERING	INSTRUMENT	INSTANCES

618

aSig	poscil				aenv,	500,	gisine
a2			delay					aSig,	0.15																						;	delay	generates	a	2nd	impulse
					out							aSig+a2																									;	mix	two	impulses	at	the	output
		endin

		instr	3	;	3	impulses	(midi	channel	3)
iChn	midichn
prints	"channel:%d%tinstrument:	%d%n",iChn,p1
reset:
					timout	0,	1,	impulse
					reinit	reset
impulse:
aenv	expon					1,	0.3,	0.0001
aSig	poscil				aenv,	500,	gisine
a2			delay					aSig,	0.15																						;	delay	generates	a	2nd	impulse
a3			delay					a2,	0.15																								;	delay	generates	a	3rd	impulse
					out							aSig+a2+a3																						;	mix	three	impulses	at	output
		endin

</CsInstruments>

<CsScore>
f	0	300
e
</CsScore>

<CsoundSynthesizer>

massign	also	has	a	couple	of	additional	functions	that	may	come	in	
useful.	A	channel	number	of	zero	is	interpreted	as	meaning	'any'.	The	
following	instruction	will	map	notes	on	any	and	all	channels	to	
instrument	1.

massign	0,1

	An	instrument	number	of	zero	is	interpreted	as	meaning	'none'	so	the	
following	instruction	will	instruct	Csound	to	ignore	triggering	for	
notes	received	on	all	channels.

massign	0,0

The	above	feature	is	useful	when	we	want	to	scan	midi	data	from	an	
already	active	instrument	using	the	midiin	opcode,	as	we	did	in	
EXAMPLE	0701.csd.

USING	MULTIPLE	TRIGGERING	

Csound's	event/event_i	opcode	(see	the	Triggering	Instrument	Events	
chapter)	makes	it	possible	to	trigger	any	other	instrument	from	a	
midi-triggered	one.	As	you	can	assign	a	fractional	number	to	an	
instrument,	you	can	distinguish	the	single	instances	from	each	other.	

TRIGGERING	INSTRUMENT	INSTANCES

619

Below	is	an	example	of	using	fractional	instrument	numbers.

			EXAMPLE	07B03_MidiTriggerChain.csd

<CsoundSynthesizer>
<CsOptions>
-Ma
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz,	using	code	of	Victor	Lazzarini
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

										massign			0,	1	;assign	all	incoming	midi	to	instr	1

		instr	1	;global	midi	instrument,	calling	instr	2.cc.nnn	
										;(c=channel,	n=note	number)
inote					notnum				;get	midi	note	number
ichn						midichn			;get	midi	channel
instrnum		=									2	+	ichn/100	+	inote/100000	;make	fractional	instr	number
					;	--	call	with	indefinite	duration
											event_i			"i",	instrnum,	0,	-1,	ichn,	inote
kend						release			;get	a	"1"	if	instrument	is	turned	off
	if	kend	==	1	then
										event					"i",	-instrnum,	0,	1	;then	turn	this	instance	off
	endif
		endin

		instr	2
ichn						=									int(frac(p1)*100)
inote					=									round(frac(frac(p1)*100)*1000)
										prints				"instr	%f:	ichn	=	%f,	inote	=	%f%n",	p1,	ichn,	inote
										printks			"instr	%f	playing!%n",	1,	p1
		endin

</CsInstruments>
<CsScore>
f	0	36000
e
</CsScore>
</CsoundSynthesizer>

	This	example	merely	demonstrates	a	technique	for	passing	
information	about	MIDI	channel	and	note	number	from	the	directly	
triggered	instrument	to	a	sub-instrument.	A	practical	application	for	
this	would	be	for	creating	keygroups	-	triggering	different	instruments	
by	playing	in	different	regions	of	the	keyboard.	In	this	case	you	could	
change	just	the	line:

instrnum		=									2	+	ichn/100	+	inote/100000

to	this:

	if	inote	<	48	then

TRIGGERING	INSTRUMENT	INSTANCES

620

instrnum		=									2
	elseif	inote	<	72	then
instrnum		=									3
	else
instrnum		=									4
	endif
instrnum		=									instrnum	+	ichn/100	+	inote/100000

In	this	case	for	any	key	below	C3	instrument	2	will	be	called,	for	any	
key	between	C3	and	B4	instrument	3,	and	for	any	higher	key	
instrument	4.

Using	this	multiple	triggering	you	are	also	able	to	trigger	more	than	
one	instrument	at	the	same	time	(which	is	not	possible	using	the	
massign	opcode).	Here	is	an	example	using	a	user	defined	opcode	
(see	the	UDO	chapter	of	this	manual):

			EXAMPLE	07B04_MidiMultiTrigg.csd

<CsoundSynthesizer>
<CsOptions>
-Ma
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz,	using	code	of	Victor	Lazzarini
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

										massign			0,	1	;assign	all	incoming	midi	to	instr	1
giInstrs		ftgen					0,	0,	-5,	-2,	2,	3,	4,	10,	100	;instruments	to	be	triggered

	opcode	MidiTrig,	0,	io
;triggers	the	first	inum	instruments	in	the	function	table	ifn	by	a	midi	event,
;	with	fractional	numbers	containing	channel	and	note	number	information

;	--	if	inum=0	or	not	given,	all	instrument	numbers	in	ifn	are	triggered
ifn,	inum		xin
inum						=									(inum	==	0	?	ftlen(ifn)	:	inum)
inote					notnum
ichn						midichn
iturnon			=									0
turnon:
iinstrnum	tab_i					iturnon,	ifn
if	iinstrnum	>	0	then
ifracnum		=									iinstrnum	+	ichn/100	+	inote/100000
									event_i			"i",	ifracnum,	0,	-1
endif
									loop_lt			iturnon,	1,	inum,	turnon
kend						release
if	kend	==	1	then
kturnoff		=									0
turnoff:
kinstrnum	tab							kturnoff,	ifn
	if	kinstrnum	>	0	then
kfracnum		=									kinstrnum	+	ichn/100	+	inote/100000
									event					"i",	-kfracnum,	0,	1
									loop_lt			kturnoff,	1,	inum,	turnoff
	endif
endif
	endop

TRIGGERING	INSTRUMENT	INSTANCES

621

	instr	1	;global	midi	instrument
;	--	trigger	the	first	two	instruments	in	the	giInstrs	table
									MidiTrig		giInstrs,	2
	endin

	instr	2
ichn						=									int(frac(p1)*100)
inote					=									round(frac(frac(p1)*100)*1000)
									prints				"instr	%f:	ichn	=	%f,	inote	=	%f%n",	p1,	ichn,	inote
									printks			"instr	%f	playing!%n",	1,	p1
	endin

	instr	3
ichn						=									int(frac(p1)*100)
inote					=									round(frac(frac(p1)*100)*1000)
									prints				"instr	%f:	ichn	=	%f,	inote	=	%f%n",	p1,	ichn,	inote
									printks			"instr	%f	playing!%n",	1,	p1
	endin

</CsInstruments>
<CsScore>
f	0	36000
e
</CsScore>
</CsoundSynthesizer>

		

TRIGGERING	INSTRUMENT	INSTANCES

622

WORKING	WITH	CONTROLLERS

623

WORKING	WITH	CONTROLLERS

SCANNING	MIDI	CONTINUOUS
CONTROLLERS

	The	most	useful	opcode	for	reading	in	midi	continuous	controllers	is	
ctrl7.	ctrl7's	input	arguments	allow	us	to	specify	midi	channel	and	
controller	number	of	the	controller	to	be	scanned	in	addition	to	giving	
us	the	option	of	rescaling	the	received	midi	values	between	a	new	
minimum	and	maximum	value	as	defined	by	the	3rd	and	4th	input	
arguments.	Further	possibilities	for	modifying	the	data	output	are	
provided	by	the	5th	(optional)	argument	which	is	used	to	point	to	a	
function	table	that	reshapes	the	controller's	output	response	to	
something	possibly	other	than	linear.	This	can	be	useful	when	
working	with	parameters	which	are	normally	expressed	on	a	
logarithmic	scale	such	as	frequency.
		

The	following	example	scans	midi	controller	1	on	channel	1	and	
prints	values	received	to	the	console.	The	minimum	and	maximum	
values	are	given	as	0	and	127	therefore	they	are	not	rescaled	at	all.	
Controller	1	is	also	the	modulation	wheel	on	a	midi	keyboard.

		EXAMPLE	07C01_ctrl7_print.csd
		

<CsoundSynthesizer>

<CsOptions>
-Ma	-odac
;	activate	all	MIDI	devices
</CsOptions>

<CsInstruments>
;	'sr'	and	'nchnls'	are	irrelevant	so	are	omitted
ksmps	=	32

		instr	1
kCtrl				ctrl7				1,1,0,127				;	read	in	controller	1	on	channel	1
kTrigger	changed		kCtrl								;	if	'kCtrl'	changes	generate	a	trigger	('bang')
	if	kTrigger=1	then
;	Print	kCtrl	to	console	with	formatting,	but	only	when	its	value	changes.
printks	"Controller	Value:	%d%n",	0,	kCtrl
	endif
		endin

WORKING	WITH	CONTROLLERS

624

</CsInstruments>

<CsScore>
i	1	0	3600
e
</CsScore>

<CsoundSynthesizer>

	There	are	also	14	bit	and	21	bit	versions	of	ctrl7	(ctrl14	and	ctrl21)	
which	improve	upon	the	7	bit	resolution	of	'ctrl7'	but	hardware	that	
outputs	14	or	21	bit	controller	information	is	rare	so	these	opcodes	are
seldom	used.

SCANNING	PITCH	BEND	AND
AFTERTOUCH

We	can	scan	pitch	bend	and	aftertouch	in	a	similar	way	by	using	the	
opcodes	pchbend	and	aftouch.	Once	again	we	can	specify	minimum	
and	maximum	values	with	which	to	rescale	the	output.	In	the	case	of	
'pchbend'	we	specify	the	value	it	outputs	when	the	pitch	bend	wheel	is	
at	rest	followed	by	a	value	which	defines	the	entire	range	from	when	
it	is	pulled	to	its	minimum	to	when	it	is	pushed	to	its	maximum.	In	
this	example,	playing	a	key	on	the	keyboard	will	play	a	note,	the	
pitch	of	which	can	be	bent	up	or	down	two	semitones	by	using	the	
pitch	bend	wheel.	Aftertouch	can	be	used	to	modify	the	amplitude	of	
the	note	while	it	is	playing.	Pitch	bend	and	aftertouch	data	is	also	
printed	at	the	terminal	whenever	they	change.	One	thing	to	bear	in	
mind	is	that	for	'pchbend'	to	function	the	Csound	instrument	that	
contains	it	needs	to	have	been	activated	by	a	MIDI	event,	i.e.	you	will	
need	to	play	a	midi	note	on	your	keyboard	and	then	move	the	pitch	
bend	wheel.

		EXAMPLE	07C02_pchbend_aftouch.csd

<CsoundSynthesizer>

<CsOptions>
-odac	-Ma
</CsOptions>

WORKING	WITH	CONTROLLERS

625

<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

giSine		ftgen		0,0,2^10,10,1		;	a	sine	wave

		instr	1
;	--	pitch	bend	--
kPchBnd		pchbend		0,4																;	read	in	pitch	bend	(range	-2	to	2)
kTrig1			changed		kPchBnd												;	if	'kPchBnd'	changes	generate	a	trigger
	if	kTrig1=1	then
printks	"Pitch	Bend:%f%n",0,kPchBnd		;	print	kPchBnd	to	console	when	it	changes
	endif

;	--	aftertouch	--
kAfttch		aftouch	0,0.9															;	read	in	aftertouch	(range	0	to	0.9)
kTrig2			changed	kAfttch													;	if	'kAfttch'	changes	generate	a	trigger
	if	kTrig2=1	then
printks	"Aftertouch:%d%n",0,kAfttch		;	print	kAfttch	to	console	when	it	changes
	endif

;	--	create	a	sound	--
iNum					notnum																						;	read	in	MIDI	note	number
;	MIDI	note	number	+	pitch	bend	are	converted	to	cycles	per	seconds
aSig					poscil			0.1,cpsmidinn(iNum+kPchBnd),giSine
									out						aSig															;	audio	to	output
		endin

</CsInstruments>

<CsScore>
f	0	300
e
</CsScore>

<CsoundSynthesizer>

INITIALISING	MIDI	CONTROLLERS

It	may	be	useful	to	be	able	to	define	the	initial	value	of	a	midi	
controller,	that	is,	the	value	any	ctrl7s	will	adopt	until	their	
corresponding	hardware	controls	have	been	moved.	Midi	hardware	
controls	only	send	messages	when	they	change	so	until	this	happens	
their	values	in	Csound	defaults	to	their	minimum	settings	unless	
additional	initialisation	has	been	carried	out.	As	an	example,	if	we	
imagine	we	have	a	Csound	instrument	in	which	the	output	volume	is	
controlled	by	a	midi	controller	it	might	prove	to	be	slightly	
frustrating	that	each	time	the	orchestra	is	launched,	this	instrument	
will	remain	silent	until	the	volume	control	is	moved.	This	frustration	
might	become	greater	when	many	midi	controllers	are	begin	utilised.	
It	would	be	more	useful	to	be	able	to	define	the	starting	value	for	
each	of	these	controllers.	The	initc7	opcode	allows	us	to	do	this.	If	
initc7	is	placed	within	the	instrument	itself	it	will	be	reinitialised	

WORKING	WITH	CONTROLLERS

626

each	time	the	instrument	is	called,	if	it	is	placed	in	instrument	0	(just	
after	the	header	statements)	then	it	will	only	be	initialised	when	the	
orchestra	is	first	launched.	The	latter	case	is	probably	most	useful.

In	the	following	example	a	simple	synthesizer	is	created.	Midi	
controller	1	controls	the	output	volume	of	this	instrument	but	the	
initc7	statement	near	the	top	of	the	orchestra	ensures	that	this	control	
does	not	default	to	its	minimum	setting.	The	arguments	that	initc7	
takes	are	for	midi	channel,	controller	number	and	initial	value.	Initial	
value	is	defined	within	the	range	0-1,	therefore	a	value	of	1	will	set	
this	controller	to	its	maximum	value	(midi	value	127),	and	a	value	of	
0.5	will	set	it	to	its	halfway	value	(midi	value	64),	and	so	on.

Additionally	this	example	uses	the	cpsmidi	opcode	to	scan	midi	pitch	
(basically	converting	midi	note	numbers	to	cycles-per-second)	and	
the	ampmidi	opcode	to	scan	and	rescale	key	velocity.

		EXAMPLE	07C03_cpsmidi_ampmidi.csd

<CsoundSynthesizer>

<CsOptions>
-Ma	-odac
;	activate	all	midi	inputs	and	real-time	audio	output
</CsOptions>

<CsInstruments>
;	Example	by	Iain	McCurdy

sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

giSine	ftgen	0,0,2^12,10,1	;	a	sine	wave
initc7	1,1,1															;	initialize	CC	1	on	chan.	1	to	its	max	level

		instr	1
iCps	cpsmidi															;	read	in	midi	pitch	in	cycles-per-second
iAmp	ampmidi	1													;	read	in	key	velocity.	Rescale	to	be	from	0	to	1
kVol	ctrl7			1,1,0,1							;	read	in	CC	1,	chan	1.	Rescale	to	be	from	0	to	1
aSig	poscil		iAmp*kVol,	iCps,	giSine	;	an	audio	oscillator
					out					aSig										;	send	audio	to	output
		endin

</CsInstruments>

<CsScore>
f	0	3600
e
</CsScore>

<CsoundSynthesizer>

WORKING	WITH	CONTROLLERS

627

You	will	maybe	hear	that	this	instrument	produces	'clicks'	as	notes	
begin	and	end.	To	find	out	how	to	prevent	this	see	the	section	on	
envelopes	with	release	sensing	in	the	chapter	Sound	Modification:	
Envelopes.
		

SMOOTHING	7-BIT	QUANTISATION	IN	MIDI
CONTROLLERS

	A	problem	we	encounter	with	7	bit	midi	controllers	is	the	poor	
resolution	that	they	offer	us.	7	bit	means	that	we	have	2	to	the	power	
of	7	possible	values;	therefore	128	possible	values,	which	is	rather	
inadequate	for	defining,	for	example,	the	frequency	of	an	oscillator	
over	a	number	of	octaves,	the	cutoff	frequency	of	a	filter	or	a	quickly	
moving	volume	control.	We	soon	become	aware	of	the	parameter	that	
is	being	changed	moving	in	steps	-	so	not	really	a	'continuous'	
controller.	We	may	also	experience	clicking	artefacts,	sometimes	
called	'zipper	noise',	as	the	value	changes.	The	extent	of	this	will	
depend	upon	the	parameter	being	controlled.	There	are	some	things	
we	can	do	to	address	this	problem.	We	can	filter	the	controller	signal	
within	Csound	so	that	the	sudden	changes	that	occur	between	steps	
along	the	controller's	travel	are	smoothed	using	additional	
interpolating	values	-	we	must	be	careful	not	to	smooth	excessively	
otherwise	the	response	of	the	controller	will	become	sluggish.	Any	k-
rate	compatible	lowpass	filter	can	be	used	for	this	task	but	the	portk	
opcode	is	particularly	useful	as	it	allows	us	to	define	the	amount	of	
smoothing	as	a	time	taken	to	glide	to	half	the	required	value	rather	
than	having	to	specify	a	cutoff	frequency.	Additionally	this	'half	time'	
value	can	be	varied	at	k-rate	which	provides	an	advantage	availed	of	
in	the	following	example.

This	example	takes	the	simple	synthesizer	of	the	previous	example	as	
its	starting	point.	The	volume	control,	which	is	controlled	by	midi	
controller	1	on	channel	1,	is	passed	through	a	'portk'	filter.	The	'half	
time'	for	'portk'	ramps	quickly	up	to	its	required	value	of	0.01	through	

WORKING	WITH	CONTROLLERS

628

the	use	of	a	linseg	statement	in	the	previous	line.	This	ensures	that	
when	a	new	note	begins	the	volume	control	immediately	jumps	to	its	
required	value	rather	than	gliding	up	from	zero	as	would	otherwise	be	
affected	by	the	'portk'	filter.	Try	this	example	with	the	'portk'	half	
time	defined	as	a	constant	to	hear	the	difference.	To	further	smooth	
the	volume	control,	it	is	converted	to	an	a-rate	variable	through	the	
use	of	the	interp	opcode	which,	as	well	as	performing	this	conversion,	
interpolates	values	in	the	gaps	between	k-cycles.

		EXAMPLE	07C04_smoothing.csd

<CsoundSynthesizer>
<CsOptions>
-Ma	-odac
</CsOptions>
<CsInstruments>
;Example	by	Iain	McCurdy

sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

giSine			ftgen				0,0,2^12,10,1
									initc7			1,1,1										;	initialize	CC	1	to	its	max.	level

		instr	1
iCps						cpsmidi																;	read	in	midi	pitch	in	cycles-per-second
iAmp						ampmidi	1														;	read	in	note	velocity	-	re-range	0	to	1
kVol						ctrl7			1,1,0,1								;	read	in	CC	1,	chan.	1.	Re-range	from	0	to	1
kPortTime	linseg		0,0.001,0.01			;	create	a	value	that	quickly	ramps	up	to	0.01
kVol						portk			kVol,kPortTime	;	create	a	filtered	version	of	kVol
aVol						interp		kVol											;	create	an	a-rate	version	of	kVol
aSig						poscil		iAmp*aVol,iCps,giSine
										out					aSig
		endin

</CsInstruments>
<CsScore>
f	0	300
e
</CsScore>
<CsoundSynthesizer>

All	of	the	techniques	introduced	in	this	section	are	combined	in	the	
final	example	which	includes	a	2-semitone	pitch	bend	and	tone	
control	which	is	controlled	by	aftertouch.	For	tone	generation	this	
example	uses	the	gbuzz	opcode.

		EXAMPLE	07C05_MidiControlComplex.csd

<CsoundSynthesizer>

<CsOptions>
-Ma	-odac

WORKING	WITH	CONTROLLERS

629

</CsOptions>

<CsInstruments>
;Example	by	Iain	McCurdy

sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

giCos			ftgen				0,0,2^12,11,1	;	a	cosine	wave
									initc7			1,1,1								;	initialize	controller	to	its	maximum	level

		instr	1
iNum						notnum																			;	read	in	midi	note	number
iAmp						ampmidi	0.1														;	read	in	note	velocity	-	range	0	to	0.2
kVol						ctrl7			1,1,0,1										;	read	in	CC	1,	chan.	1.	Re-range	from	0	to	1
kPortTime	linseg		0,0.001,0.01					;	create	a	value	that	quickly	ramps	up	to	0.01
kVol						portk			kVol,	kPortTime		;	create	filtered	version	of	kVol
aVol						interp		kVol													;	create	an	a-rate	version	of	kVol.
iRange				=							2																;	pitch	bend	range	in	semitones
iMin						=							0																;	equilibrium	position
kPchBnd			pchbend	iMin,	2*iRange			;	pitch	bend	in	semitones	(range	-2	to	2)
kPchBnd			portk			kPchBnd,kPortTime;	create	a	filtered	version	of	kPchBnd
aEnv						linsegr	0,0.005,1,0.1,0		;	amplitude	envelope	with	release	stage
kMul						aftouch	0.4,0.85									;	read	in	aftertouch
kMul						portk			kMul,kPortTime			;	create	a	filtered	version	of	kMul
;	create	an	audio	signal	using	the	'gbuzz'	additive	synthesis	opcode
aSig						gbuzz			iAmp*aVol*aEnv,cpsmidinn(iNum+kPchBnd),70,0,kMul,giCos
										out					aSig													;	audio	to	output
		endin

</CsInstruments>

<CsScore>
f	0	300
e
</CsScore>

<CsoundSynthesizer>

	RECORDING	CONTROLLER	DATA

Data	performed	on	a	controller	or	controllers	can	be	recorded	into	
GEN	tables	or	arrays	so	that	a	real-time	interaction	with	a	Csound	
instrument	can	be	replayed	at	a	later	time.	This	can	be	preferable	to	
recording	the	audio	output,	as	this	will	allow	the	controller	data	to	be	
modified.	The	simplest	approach	is	to	simply	store	each	controller	
value	every	k-cycle	into	sequential	locations	in	a	function	table	but	
this	is	rather	wasteful	as	controllers	will	frequently	remain	unchanged	
from	k-cycle	to	k-cycle.
		
A	more	efficient	approach	is	to	store	values	only	when	they	change	
and	to	time	stamp	those	events	to	that	they	can	be	replayed	later	on	in	
the	right	order	and	at	the	right	speed.	In	this	case	data	will	be	written	
to	a	function	table	in	pairs:	time-stamp	followed	by	a	value	for	each	

WORKING	WITH	CONTROLLERS

630

new	event	('event'	refers	to	when	a	controller	changes).	This	method	
does	not	store	durations	of	each	event,	merely	when	they	happen,	
therefore	it	will	not	record	how	long	the	final	event	lasts	until	
recording	stopped.	This	may	or	may	not	be	critical	depending	on	how	
the	recorded	controller	data	is	used	later	on	but	in	order	to	get	around	
this,	the	following	example	stores	the	duration	of	the	complete	
recording	at	index	location	0	so	that	we	can	derive	the	duration	of	the	
last	event.	Additionally	the	first	event	stored	at	index	location	1	is	
simply	a	value:	the	initial	value	of	the	controller	(the	time	stamp	for	
this	would	always	be	zero	anyway).	Thereafter	events	are	stored	as	
time-stamped	pairs	of	data:	index	2=time	stamp,	index	3=associated	
value	and	so	on.
		
To	use	the	following	example,	activate	'Record',	move	the	slider	
around	and	then	deactivate	'Record'.	This	gesture	can	now	be	
replayed	using	the	'Play'	button.	As	well	as	moving	the	GUI	slider,	a	
tone	is	produced,	the	pitch	of	which	is	controlled	by	the	slider.
		
Recorded	data	in	the	GEN	table	can	also	be	backed	up	onto	the	hard	
drive	using	ftsave	and	recalled	in	a	later	session	using	ftload.	Note	
that	ftsave	also	has	the	capability	of	storing	multiple	function	tables	
in	a	single	file.

	EXAMPLE	07C06_RecordingController.csd

<CsoundSynthesizer>

<CsOptions>
-odac	-dm0
</CsOptions>

<CsInstruments>

sr					=	44100
ksmps		=	8
nchnls	=	1
0dbfs		=	1

FLpanel	"Record	Gesture",500,90,0,0
gkRecord,gihRecord	FLbutton	"Rec/Stop",1,0,22,100,25,		5,	5,-1
gkPlay,gihPlay		FLbutton	"Play",				1,0,22,100,25,110,	5,-1
gksave,ihsave		FLbutton	"Save	to	HD",	1,0,21,100,25,290,5,0,4,0,0
gkload,ihload		FLbutton	"Load	from	HD",	1,0,21,100,25,395,5,0,5,0,0
gkval,	gihval		FLslider	"Control",	0,1,	0,23,	-1,490,25,	5,35
FLpanel_end
FLrun

gidata	ftgen	1,0,1048576,-2,0	;	Table	for	controller	data.

WORKING	WITH	CONTROLLERS

631

opcode	RecordController,0,Ki
	kval,ifn								xin
	i_						ftgen			1,0,ftlen(ifn),-2,0													;	erase	table
	tableiw	i(kval),1,ifn											;	write	initial	value	at	index	1.
									;(Index	0	will	be	used	be	storing	the	complete	gesture	duration.)
	kndx				init				2									;	Initialise	index
	kTime			timeinsts									;	time	since	this	instrument	started	in	seconds
;	Write	a	data	event	only	when	the	input	value	changes
if	changed(kval)==1	&&	kndx<=(ftlen(ifn)-2)	&&	kTime>0	then
;	Write	timestamp	to	table	location	defined	by	current	index.
		tablew	kTime,	kndx,	ifn
;	Write	slider	value	to	table	location	defined	by	current	index.
		tablew	kval,	kndx	+	1,	ifn
;	Increment	index	2	steps	(one	for	time,	one	for	value).
		kndx			=							kndx	+	2
	endif
;	sense	note	release
	krel				release
;	if	we	are	in	the	final	k-cycle	before	the	note	ends
	if(krel==1)	then
;	write	total	gesture	duration	into	the	table	at	index	0
		tablew	kTime,0,ifn
	endif
endop

opcode	PlaybackController,k,i
	ifn					xin
	;	read	first	value
;	initial	controller	value	read	from	index	1
	ival				table			1,ifn
;	initial	value	for	k-rate	output
	kval				init				ival
;	Initialise	index	to	first	non-zero	timestamp
	kndx				init				2
;	time	in	seconds	since	this	note	started
	kTime			timeinsts
;	first	non-zero	timestamp
	iTimeStamp						tablei		2,ifn
;	initialise	k-variable	for	first	non-zero	timestamp
	kTimeStamp						init				iTimeStamp
;	if	we	have	reached	the	timestamp	value...
	if	kTime>=kTimeStamp	&&	kTimeStamp>0	then
;	...Read	value	from	table	defined	by	current	index.
		kval			table			kndx+1,ifn
		kTimeStamp					table			kndx+2,ifn														;	Read	next	timestamp
;	Increment	index.	(Always	2	steps:	timestamp	and	value.)
		kndx			limit			kndx+2,	0,	ftlen(ifn)-2
	endif
									xout				kval
endop

;	cleaner	way	to	start	instruments	than	using	FLbutton	built-in	mechanism
instr			1
;	trigger	when	button	value	goes	from	off	to	on
	kOnTrig	trigger	gkRecord,0.5,0
;	start	instrument	with	a	held	note	when	trigger	received
	schedkwhen						kOnTrig,0,0,2,0,-1
;	trigger	when	button	value	goes	from	off	to	on
	kOnTrig	trigger	gkPlay,0.5,0
;	start	instrument	with	a	held	note	when	trigger	received
	schedkwhen						kOnTrig,0,0,3,0,-1
endin

instr			2							;	Record	gesture
	if	gkRecord==0	then												;	If	record	button	is	deactivated...
		turnoff																							;	...turn	this	instrument	off.
	endif
;	call	UDO
									RecordController								gkval,gidata
;	Generate	a	sound.
	kporttime							linseg		0,0.001,0.02
	kval				portk			gkval,kporttime

WORKING	WITH	CONTROLLERS

632

	asig				poscil		0.2,cpsoct((kval*2)+7)
									out					asig

endin

instr			3							;	Playback	recorded	gesture
	if	gkPlay==0	then																	;	if	play	button	is	deactivated...
		turnoff																										;	...turn	this	instrument	off.
	endif
	kval				PlaybackController						gidata
;	send	initial	value	to	controller
									FLsetVal_i						i(kval),gihval
;	Send	values	to	slider	when	needed.
									FLsetVal								changed(kval),kval,gihval
	;	Generate	a	sound.
	kporttime							linseg		0,0.001,0.02
	kval				portk			gkval,kporttime
	asig				poscil		0.2,cpsoct((kval*2)+7)
									out					asig
	;	stop	note	when	end	of	table	reached
	kTime			timeinsts														;	time	in	seconds	since	this	note	began
;	read	complete	gesture	duration	from	index	zero
	iRecTime								tablei		0,gidata
;	if	we	have	reach	complete	duration	of	gesture...
	if	kTime>=iRecTime	then
;	deactivate	play	button	(which	will	in	turn,	turn	off	this	note.)
		FLsetVal							1,0,gihPlay
	endif
endin

instr			4							;	save	table
	ftsave	"ControllerData.txt",	0,	gidata
endin

instr			5							;	load	table
	ftload	"ControllerData.txt",	0,	gidata
endin

</CsInstruments>

<CsScore>
i	1	0	3600
</CsScore>

</CsoundSynthesizer>

	

		

	

		

READING	MIDI	FILES

633

READING	MIDI	FILES

	Instead	of	using	either	the	standard	Csound	score	or	live	midi	events	
as	input	for	a	orchestra	Csound	can	read	a	midi	file	and	use	the	data	
contained	within	it	as	if	it	were	a	live	midi	input.

The	command	line	flag	to	instigate	reading	from	a	midi	file	is	'-F'	
followed	by	the	name	of	the	file	or	the	complete	path	to	the	file	if	it	is
not	in	the	same	directory	as	the	.csd	file.	Midi	channels	will	be	
mapped	to	instrument	according	to	the	rules	and	options	discussed	in	
Triggering	Instrument	Instances	and	all	controllers	can	be	interpretted
as	desired	using	the	techniques	discussed	in	Working	with	
Controllers.	One	thing	we	need	to	be	concerned	with	is	that	without	
any	events	in	our	standard	Csound	score	our	performance	will	
terminate	immedately.	To	circumvent	this	problem	we	need	some	
sort	of	dummy	event	in	our	score	to	fool	Csound	into	keeping	going	
until	our	midi	file	has	completed.	Something	like	the	following,	
placed	in	the	score,	is	often	used.

f	0	3600

This	dummy	'f'	event	will	force	Csound	to	wait	for	3600	second	(1	
hour)	before	terminating	performance.	It	doesn't	really	matter	what	
number	of	seconds	we	put	in	here,	as	long	as	it	is	more	than	the	
number	of	seconds	duration	of	the	midi	file.	Alternatively	a	
conventional	'i'	score	event	can	also	keep	performance	going;	
sometimes	we	will	have,	for	example,	a	reverb	effect	running	
throughout	the	performance	which	can	also	prevent	Csound	from	
terminating.	Performance	can	be	interrupted	at	any	time	by	typing	
ctrl+c	in	the	terminal	window.	

The	following	example	plays	back	a	midi	file	using	Csound's	
'fluidsynth'	family	of	opcodes	to	facilitate	playing	soundfonts	(sample	
libraries).	For	more	information	on	these	opcodes	please	consult	the	
Csound	Reference	Manual.	In	order	to	run	the	example	you	will	need	
to	download	a	midi	file	and	two	(ideally	contrasting)	soundfonts.	

READING	MIDI	FILES

634

Adjust	the	references	to	these	files	in	the	example	accordingly.	Free	
midi	files	and	soundfonts	are	readily	available	on	the	internet.	I	am	
suggesting	that	you	use	contrasting	soundfonts,	such	as	a	marimba	
and	a	trumpet,	so	that	you	can	easily	hear	the	parsing	of	midi	
channels	in	the	midi	file	to	different	Csound	instruments.	In	the	
example	channels	1,3,5,7,9,11,13	and	15	play	back	using	soundfont	1	
and	channels	2,4,6,8,10,12,14	and	16	play	back	using	soundfont	2.	
When	using	fluidsynth	in	Csound	we	normally	use	an	'always	on'	
instrument	to	gather	all	the	audio	from	the	various	soundfonts	(in	this	
example	instrument	99)	which	also	conveniently	keeps	performance	
going	while	our	midi	file	plays	back.

		EXAMPLE	07D01_ReadMidiFile.csd		

<CsoundSynthesizer>

<CsOptions>
;'-F'	flag	reads	in	a	midi	file
-F	AnyMIDIfile.mid
</CsOptions>

<CsInstruments>
;Example	by	Iain	McCurdy

sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1

sr	=	44100
ksmps	=	32
nchnls	=	2

giEngine					fluidEngine;	start	fluidsynth	engine
;	load	a	soundfont
iSfNum1						fluidLoad										"ASoundfont.sf2",	giEngine,	1
;	load	a	different	soundfont
iSfNum2						fluidLoad										"ADifferentSoundfont.sf2",	giEngine,	1
;	direct	each	midi	channels	to	a	particular	soundfonts
													fluidProgramSelect	giEngine,	1,	iSfNum1,	0,	0
													fluidProgramSelect	giEngine,	3,	iSfNum1,	0,	0
													fluidProgramSelect	giEngine,	5,	iSfNum1,	0,	0
													fluidProgramSelect	giEngine,	7,	iSfNum1,	0,	0
													fluidProgramSelect	giEngine,	9,	iSfNum1,	0,	0
													fluidProgramSelect	giEngine,	11,	iSfNum1,	0,	0
													fluidProgramSelect	giEngine,	13,	iSfNum1,	0,	0
													fluidProgramSelect	giEngine,	15,	iSfNum1,	0,	0
													fluidProgramSelect	giEngine,	2,	iSfNum2,	0,	0
													fluidProgramSelect	giEngine,	4,	iSfNum2,	0,	0
													fluidProgramSelect	giEngine,	6,	iSfNum2,	0,	0
													fluidProgramSelect	giEngine,	8,	iSfNum2,	0,	0
													fluidProgramSelect	giEngine,	10,	iSfNum2,	0,	0
													fluidProgramSelect	giEngine,	12,	iSfNum2,	0,	0
													fluidProgramSelect	giEngine,	14,	iSfNum2,	0,	0
													fluidProgramSelect	giEngine,	16,	iSfNum2,	0,	0

		instr	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16	;	fluid	synths	for	channels	1-16
iKey									notnum																	;	read	in	midi	note	number
iVel									ampmidi												127	;	read	in	key	velocity

READING	MIDI	FILES

635

;	create	a	note	played	by	the	soundfont	for	this	instrument
													fluidNote										giEngine,	p1,	iKey,	iVel
		endin

		instr	99	;	gathering	of	fluidsynth	audio	and	audio	output
aSigL,	aSigR	fluidOut											giEngine						;	read	all	audio	from	soundfont
													outs															aSigL,	aSigR		;	send	audio	to	outputs
		endin
</CsInstruments>

<CsScore>
i	99	0	3600	;	audio	output	instrument	also	keeps	performance	going
e
</CsScore>

<CsoundSynthesizer>

Midi	file	input	can	be	combined	with	other	Csound	inputs	from	the	
score	or	from	live	midi	and	also	bear	in	mind	that	a	midi	file	doesn't	
need	to	contain	midi	note	events,	it	could	instead	contain,	for	
example,	a	sequence	of	controller	data	used	to	automate	parameters	
of	effects	during	a	live	performance.

Rather	than	to	directly	play	back	a	midi	file	using	Csound	
instruments	it	might	be	useful	to	import	midi	note	events	as	a	
standard	Csound	score.	This	way	events	could	be	edited	within	the	
Csound	editor	or	several	scores	could	be	combined.	The	following	
example	takes	a	midi	file	as	input	and	outputs	standard	Csound	.sco	
files	of	the	events	contained	therein.	For	convenience	each	midi	
channel	is	output	to	a	separate	.sco	file,	therefore	up	to	16	.sco	files	
will	be	created.	Multiple	.sco	files	can	be	later	recombined	by	using	
#include...	statements	or	simply	by	using	copy	and	paste.

The	only	tricky	aspect	of	this	example	is	that	note-ons	followed	by	
note-offs	need	to	be	sensed	and	calculated	as	p3	duration	values.	This	
is	implemented	by	sensing	the	note-off	by	using	the	release	opcode	
and	at	that	moment	triggering	a	note	in	another	instrument	with	the	
required	score	data.	It	is	this	second	instrument	that	is	responsible	for	
writing	this	data	to	a	score	file.	Midi	channels	are	rendered	as	p1	
values,	midi	note	numbers	as	p4	and	velocity	values	as	p5.
		

		EXAMPLE	07D02_MidiToScore.csd
		

READING	MIDI	FILES

636

<CsoundSynthesizer>

<CsOptions>
;	enter	name	of	input	midi	file
-F	InputMidiFile.mid
</CsOptions>

<CsInstruments>
;	Example	by	Iain	McCurdy

;ksmps	needs	to	be	10	to	ensure	accurate	rendering	of	timings
ksmps	=	10

massign	0,1

		instr	1
iChan							midichn
iCps								cpsmidi												;	read	pitch	in	frequency	from	midi	notes
iVel								veloc	 0,	127	;	read	in	velocity	from	midi	notes
kDur								timeinsts										;	running	total	of	duration	of	this	note
kRelease				release												;	sense	when	note	is	ending
	if	kRelease=1	then												;	if	note	is	about	to	end
;											p1		p2		p3				p4					p5				p6
event	"i",		2,		0,	kDur,	iChan,	iCps,	iVel	;	send	full	note	data	to	instr	2
	endif
		endin

		instr	2
iDur								=								p3
iChan							=								p4
iCps								=								p5
iVel								=								p6
iStartTime		times								;	read	current	time	since	the	start	of	performance
;	form	file	name	for	this	channel	(1-16)	as	a	string	variable
SFileName			sprintf		"Channel%d.sco",iChan
;	write	a	line	to	the	score	for	this	channel's	.sco	file
												fprints		SFileName,	"i%d\\t%f\\t%f\\t%f\\t%d\\n",\
	 																									iChan,iStartTime-iDur,iDur,iCps,iVel
		endin

</CsInstruments>

<CsScore>
f	0	480	;	ensure	this	duration	is	as	long	or	longer	that	duration	of	midi	file
e
</CsScore>

</CsoundSynthesizer>

The	example	above	ignores	continuous	controller	data,	pitch	bend	
and	aftertouch.	The	second	example	on	the	page	in	the	Csound	
Manual	for	the	opcode	fprintks	renders	all	midi	data	to	a	score	file.
		

MIDI	OUTPUT

637

MIDI	OUTPUT
Csound's	ability	to	output	midi	data	in	real-time	can	open	up	many	possibilities.	We	can	relay	the	Csound	score	to
a	hardware	synthesizer	so	that	it	plays	the	notes	in	our	score,	instead	of	a	Csound	instrument.	We	can
algorithmically	generate	streams	of	notes	within	the	orchestra	and	have	these	played	by	the	external	device.	We
could	even	route	midi	data	internally	to	another	piece	of	software.	Csound	could	be	used	as	a	device	to	transform
incoming	midi	data,	transforming,	transposing	or	arpeggiating	incoming	notes	before	they	are	output	again.	Midi
output	could	also	be	used	to	preset	faders	on	a	motorized	fader	box	to	desired	initial	locations.

Initiating	Realtime	MIDI	Output
The	command	line	flag	for	realtime	midi	output	is	-Q.	Just	as	when	setting	up	an	audio	input	or	output	device	or	a
midi	input	device	we	must	define	the	desired	device	number	after	the	flag.	When	in	doubt	what	midi	output
devices	we	have	on	our	system	we	can	always	specify	an	'out	of	range'	device	number	(e.g.	-Q999)	in	which	case
Csound	will	not	run	but	will	instead	give	an	error	and	provide	us	with	a	list	of	available	devices	and	their
corresponding	numbers.	We	can	then	insert	an	appropriate	device	number.

midiout	-	Outputting	Raw	MIDI	Data		
The	analog	of	the	opcode	for	the	input	of	raw	midi	data,	midiin,	is	midiout.	midiout	will	output	a	midi	message
with	its	given	input	arguments	once	every	k	period	-	this	could	very	quickly	lead	to	clogging	of	incoming	midi	data
in	the	device	to	which	midi	is	begin	sent	unless	measures	are	taken	to	restrain	its	output.	In	the	following
example	this	is	dealt	with	by	turning	off	the	instrument	as	soon	as	the	midiout	line	has	been	executed	just	once
by	using	the	turnoff	opcode.	Alternative	approaches	would	be	to	set	the	status	byte	to	zero	after	the	first	k	pass
or	to	embed	the	midiout	within	a	conditional	(if...	then...)	so	that	its	rate	of	execution	can	be	controlled	in	some
way.		

Another	thing	we	need	to	be	aware	of	is	that	midi	notes	do	not	contain	any	information	about	note	duration;
instead	the	device	playing	the	note	waits	until	it	receives	a	corresponding	note-off	instruction	on	the	same	midi
channel	and	with	the	same	note	number	before	stopping	the	note.	We	must	be	mindful	of	this	when	working
with	midiout.	The	status	byte	for	a	midi	note-off	is	128	but	it	is	more	common	for	note-offs	to	be	expressed	as	a
note-on	(status	byte	144)	with	zero	velocity.	In	the	following	example	two	notes	(and	corresponding	note	offs)
are	send	to	the	midi	output	-	the	first	note-off	makes	use	of	the	zero	velocity	convention	whereas	the	second
makes	use	of	the	note-off	status	byte.	Hardware	and	software	synths	should	respond	similarly	to	both.	One
advantage	of	the	note-off	message	using	status	byte	128	is	that	we	can	also	send	a	note-off	velocity,	i.e.	how
forcefully	we	release	the	key.	Only	more	expensive	midi	keyboards	actually	sense	and	send	note-off	velocity	and	it
is	even	rarer	for	hardware	to	respond	to	received	note-off	velocities	in	a	meaningful	way.	Using	Csound	as	a
sound	engine	we	could	respond	to	this	data	in	a	creative	way	however.		

In	order	for	the	following	example	to	work	you	must	connect	a	midi	sound	module	or	keyboard	receiving	on
channel	1	to	the	midi	output	of	your	computer.	You	will	also	need	to	set	the	appropriate	device	number	after	the
'-Q'	flag.

No	use	is	made	of	audio	so	sample	rate	(sr),	and	number	of	channels	(nchnls)	are	left	undefined	-	nonetheless
they	will	assume	default	values.		

		EXAMPLE	07E01_midiout.csd	

<CsoundSynthesizer>

<CsOptions>
;	amend	device	number	accordingly
-Q999
</CsOptions>

<CsInstruments>
ksmps	=	32	;no	audio	so	sr	and	nchnls	irrelevant

		instr	1
;	arguments	for	midiout	are	read	from	p-fields
istatus			init						p4
ichan					init						p5
idata1				init						p6
idata2				init						p7

MIDI	OUTPUT

638

										midiout			istatus,	ichan,	idata1,	idata2;	send	raw	midi	data
										turnoff			;	turn	instrument	off	to	prevent	reiterations	of	midiout
		endin

</CsInstruments>

<CsScore>
;p1	p2	p3			p4	p5	p6	p7
i	1	0	0.01	144	1		60	100	;	note	on
i	1	2	0.01	144	1		60			0	;	note	off	(using	velocity	zero)

i	1	3	0.01	144	1		60	100	;	note	on
i	1	5	0.01	128	1		60	100	;	note	off	(using	'note	off'	status	byte)
</CsScore>

</CsoundSynthesizer>

The	use	of	separate	score	events	for	note-ons	and	note-offs	is	rather	cumbersome.	It	would	be	more	sensible	to
use	the	Csound	note	duration	(p3)	to	define	when	the	midi	note-off	is	sent.	The	next	example	does	this	by
utilising	a	release	flag	generated	by	the	release	opcode	whenever	a	note	ends	and	sending	the	note-off	then.		

		EXAMPLE	07E02_score_to_midiout.csd			

<CsoundSynthesizer>

<CsOptions>
;	amend	device	number	accordingly
-Q999
</CsOptions>

<CsInstruments>
ksmps	=	32	;no	audio	so	sr	and	nchnls	omitted

		instr	1
;arguments	for	midiout	are	read	from	p-fields
istatus			init						p4
ichan					init						p5
idata1				init						p6
idata2				init						p7
kskip					init						0
	if	kskip=0	then
										midiout			istatus,	ichan,	idata1,	idata2;	send	raw	midi	data	(note	on)
kskip					=									1;	ensure	that	the	note	on	will	only	be	executed	once
	endif
krelease		release;	normally	output	is	zero,	on	final	k	pass	output	is	1
	if	krelease=1	then;	i.e.	if	we	are	on	the	final	k	pass...
							midiout			istatus,	ichan,	idata1,	0;	send	raw	midi	data	(note	off)
	endif
		endin

</CsInstruments>

<CsScore>
;p1	p2	p3			p4	p5	p6	p7
i	1	0				4	144	1		60	100
i	1	1				3	144	1		64	100
i	1	2				2	144	1		67	100
f	0	5;	extending	performance	time	prevents	note-offs	from	being	lost
</CsScore>

</CsoundSynthesizer>

MIDI	OUTPUT

639

Obviously	midiout	is	not	limited	to	only	sending	only	midi	note	information	but	instead	this	information	could
include	continuous	controller	information,	pitch	bend,	system	exclusive	data	and	so	on.	The	next	example,	as	well
as	playing	a	note,	sends	controller	1	(modulation)	data	which	rises	from	zero	to	maximum	(127)	across	the
duration	of	the	note.	To	ensure	that	unnessessary	midi	data	is	not	sent	out,	the	output	of	the	line	function	is	first
converted	into	integers,	and	midiout	for	the	continuous	controller	data	is	only	executed	whenever	this	integer
value	changes.	The	function	that	creates	this	stream	of	data	goes	slightly	above	this	maximum	value	(it	finishes
at	a	value	of	127.1)	to	ensure	that	a	rounded	value	of	127	is	actually	achieved.

In	practice	it	may	be	necessary	to	start	sending	the	continuous	controller	data	slightly	before	the	note-on	to	allow
the	hardware	time	to	respond.		

		EXAMPLE	07E03_midiout_cc.csd			

<CsoundSynthesizer>

<CsOptions>
;	amend	device	number	accordingly
-Q999
</CsOptions>

<CsInstruments>
ksmps	=	32	;	no	audio	so	sr	and	nchnls	irrelevant

		instr	1
;	play	a	midi	note
;	read	in	values	from	p-fields
ichan					init						p4
inote					init						p5
iveloc				init						p6
kskip					init						0	;	'skip'	flag	ensures	that	note-on	is	executed	just	once
	if	kskip=0	then
										midiout			144,	ichan,	inote,	iveloc;	send	raw	midi	data	(note	on)
kskip					=									1			;	flip	flag	to	prevent	repeating	the	above	line
	endif
krelease		release							;	normally	zero,	on	final	k	pass	this	will	output	1
	if	krelease=1	then					;	if	we	are	on	the	final	k	pass...
										midiout			144,	ichan,	inote,	0		;	send	a	note	off
	endif

;	send	continuous	controller	data
iCCnum				=									p7
kCCval				line						0,	p3,	127.1		;	continuous	controller	data	function
kCCval				=									int(kCCval)			;	convert	data	function	to	integers
ktrig					changed			kCCval								;	generate	a	trigger	each	time	kCCval	changes
	if	ktrig=1	then																		;	if	kCCval	has	changed...
										midiout			176,	ichan,	iCCnum,	kCCval		;	...send	a	controller	message
	endif
		endin

</CsInstruments>

<CsScore>
;p1	p2	p3			p4	p5	p6		p7
i	1	0		5				1		60	100	1
f	0	7	;	extending	performance	time	prevents	note-offs	from	being	lost
</CsScore>

</CsoundSynthesizer>

midion	-	Outputting	MIDI	Notes	Made	Easier
midiout	is	the	most	powerful	opcode	for	midi	output	but	if	we	are	only	interested	in	sending	out	midi	notes	from

MIDI	OUTPUT

640

an	instrument	then	the	midion	opcode	simplifies	the	procedure	as	the	following	example	demonstrates	by	playing
a	simple	major	arpeggio.

		EXAMPLE	07E04_midion.csd

<CsoundSynthesizer>

<CsOptions>
;	amend	device	number	accordingly
-Q999
</CsOptions>

<CsInstruments>
;	Example	by	Iain	McCurdy

ksmps	=	32	;no	audio	so	sr	and	nchnls	irrelevant

		instr	1
;	read	values	in	from	p-fields
kchn				=							p4
knum				=							p5
kvel				=							p6
								midion		kchn,	knum,	kvel	;	send	a	midi	note
		endin

</CsInstruments>

<CsScore>
;p1	p2		p3		p4	p5	p6
i	1	0			2.5	1	60		100
i	1	0.5	2			1	64		100
i	1	1			1.5	1	67		100
i	1	1.5	1			1	72		100
f	0	30	;	extending	performance	time	prevents	note-offs	from	being	missed
</CsScore>

</CsoundSynthesizer>

Changing	any	of	midion's	k-rate	input	arguments	in	realtime	will	force	it	to	stop	the	current	midi	note	and	send
out	a	new	one	with	the	new	parameters.

midion2	allows	us	to	control	when	new	notes	are	sent	(and	the	current	note	is	stopped)	through	the	use	of	a
trigger	input.	The	next	example	uses	'midion2'	to	algorithmically	generate	a	melodic	line.	New	note	generation	is
controlled	by	a	metro,	the	rate	of	which	undulates	slowly	through	the	use	of	a	randomi	function.

		EXAMPLE	07E05_midion2.csd

<CsoundSynthesizer>

<CsOptions>
;	amend	device	number	accordingly
-Q999
</CsOptions>

<CsInstruments>
;	Example	by	Iain	McCurdy

ksmps	=	32	;	no	audio	so	sr	and	nchnls	irrelevant

		instr	1
;	read	values	in	from	p-fields
kchn				=								p4
knum				random			48,72.99		;	note	numbers	chosen	randomly	across	a	2	octaves

MIDI	OUTPUT

641

kvel				random			40,	115			;	velocities	are	chosen	randomly
krate			randomi		1,2,1					;	rate	at	which	new	notes	will	be	output
ktrig			metro				krate^2			;	'new	note'	trigger
								midion2		kchn,	int(knum),	int(kvel),	ktrig	;	send	midi	note	if	ktrig=1
		endin

</CsInstruments>

<CsScore>
i	1	0	20	1
f	0	21	;	extending	performance	time	prevents	the	final	note-off	being	lost
</CsScore>

</CsoundSynthesizer>

'midion'	and	'midion2'	generate	monophonic	melody	lines	with	no	gaps	between	notes.

moscil	works	in	a	slightly	different	way	and	allows	us	to	explicitly	define	note	durations	as	well	as	the	pauses
between	notes	thereby	permitting	the	generation	of	more	staccato	melodic	lines.	Like	'midion'
and	'midion2',	'moscil'	will	not	generate	overlapping	notes	(unless	two	or	more	instances	of	it	are	concurrent).
The	next	example	algorithmically	generates	a	melodic	line	using	'moscil'.

		EXAMPLE	07E06_moscil.csd

<CsoundSynthesizer>

<CsOptions>
;	amend	device	number	accordingly
-Q999
</CsOptions>

<CsInstruments>
;	Example	by	Iain	McCurdy

ksmps	=	32	;no	audio	so	sr	and	nchnls	omitted

seed	0;	random	number	generators	seeded	by	system	clock

		instr	1
;	read	value	in	from	p-field
kchn				=									p4
knum				random				48,72.99		;	note	numbers	chosen	randomly	across	a	2	octaves
kvel				random				40,	115			;	velocities	are	chosen	randomly
kdur				random				0.2,	1				;	note	durations	chosen	randomly	from	0.2	to	1
kpause		random				0,	0.4				;	pauses	betw.	notes	chosen	randomly	from	0	to	0.4
								moscil				kchn,	knum,	kvel,	kdur,	kpause	;	send	a	stream	of	midi	notes
		endin

</CsInstruments>

<CsScore>
;p1	p2	p3	p4
i	1	0		20	1
f	0	21	;	extending	performance	time	prevents	final	note-off	from	being	lost
</CsScore>

</CsoundSynthesizer>

MIDI	File	Output
As	well	as	(or	instead	of)	outputting	midi	in	realtime,	Csound	can	render	data	from	all	of	its	midi	output	opcodes

MIDI	OUTPUT

642

to	a	midi	file.	To	do	this	we	use	the	'--midioutfile='	flag	followed	by	the	desired	name	for	our	file.	For	example:

<CsOptions>
-Q2	--midioutfile=midiout.mid
</CsOptions>

will	simultaneously	stream	realtime	midi	to	midi	output	device	number	2	and	render	to	a	file	named	'midiout.mid'
which	will	be	saved	in	our	home	directory.	

OPEN	SOUND	CONTROL	-	NETWORK	COMMUNICATION

643

OPEN	SOUND	CONTROL	-	NETWORK
COMMUNICATION

Open	Sound	Control	(OSC)	is	a	network	protocol	format	for	musical	
control	data	communication.	A	few	of	its	advantages	compared	to	
MIDI	are,	that	it's	more	accurate,	quicker	and	much	more	flexible.	
With	OSC	you	can	easily	send	messages	to	other	software	
independent	if	it's	running	on	the	same	machine	or	over	network.	
There	is	OSC	support	in	software	like	PD,	Max/Msp,	Chuck	or	
SuperCollider.	A	nice	screencast	of	Andrés	Cabrera	shows	
communication	between	PD	and	Csound	via	OSC.1	
		

OSC	messages	contain	an	IP	adress	with	port	information	and	the	
data-package	which	will	be	send	over	network.	In	Csound,	there	are	
two	opcodes,	which	provide	access	to	network	communication	called	
OSCsend,	OSClisten.

Example	08A01_osc.csd
		

<CsoundSynthesizer>
<CsOptions>
-o	dac
</CsOptions>
<CsInstruments>
sr	=	48000
ksmps	=	32
nchnls	=	2
0dbfs	=	1

;	localhost	means	communication	on	the	same	machine,	otherwise	you	need
;	an	IP	adress
#define	IPADDRESS	 #	"localhost"	#
#define	S_PORT			 #	47120	#
#define	R_PORT			 #	47120	#

turnon	1000		;	starts	instrument	1000	immediately
turnon	1001		;	starts	instrument	1001	immediately
	

instr	1000		;	this	instrument	sends	OSC-values
	 kValue1	randomh	0,	0.8,	4
	 kNum	randomh	0,	8,	8
	 kMidiKey	tab	(int(kNum)),	2
	 kOctave	randomh	0,	7,	4
	 kValue2	=	cpsmidinn	(kMidiKey*kOctave+33)
	 kValue3	randomh	0.4,	1,	4
	 Stext	sprintf	"%i",	$S_PORT
	 OSCsend			kValue1+kValue2,	$IPADDRESS,	$S_PORT,	"/QuteCsound",

OPEN	SOUND	CONTROL	-	NETWORK	COMMUNICATION

644

																		"fff",	kValue1,	kValue2,	kValue3
endin

instr	1001		;	this	instrument	receives	OSC-values	
	 kValue1Received	init	0.0
	 kValue2Received	init	0.0
	 kValue3Received	init	0.0
	 Stext	sprintf	"%i",	$R_PORT
	 ihandle	OSCinit	$R_PORT
	 kAction		OSClisten	 ihandle,	"/QuteCsound",	"fff",
																	kValue1Received,	kValue2Received,	kValue3Received
	 	 if	(kAction	==	1)	then	
	 	 	 printk2	kValue2Received
	 	 	 printk2	kValue1Received
	 	 	
	 	 endif
	 aSine	poscil3	kValue1Received,	kValue2Received,	1
	 ;	a	bit	reverbration
	 aInVerb	=	aSine*kValue3Received
	 aWetL,	aWetR	freeverb	aInVerb,	aInVerb,	0.4,	0.8
outs	aWetL+aSine,	aWetR+aSine
endin

</CsInstruments>
<CsScore>
f	1	0	1024	10	1
f	2	0	8	-2						0	2	4	7	9	11	0	2
e	3600
</CsScore>
</CsoundSynthesizer>
;	example	by	Alex	Hofmann	(Mar.	2011)

1.	 As	another	example	you	can	communicate	via	OSC	between	
Csound	and	Grame's	Inscore.	Find	the	code	at	
https://github.com/joachimheintz/cs_inscore	and	video	
tutorials	at
		
http://vimeo.com/54160283	(installation)
		
http://vimeo.com/54160405	(examples)	^

CSOUND	AND	ARDUINO

645

CSOUND	AND	ARDUINO

It	is	the	intention	of	this	chapter	to	suggest	a	number	of	ways	in	
which	Csound	can	be	paired	with	an	Arduino	prototyping	circuit	
board.	It	is	not	the	intention	of	this	chapter	to	go	into	any	detail	about	
how	to	use	an	Arduino,	there	is	already	a	wealth	of	information	
available	elsewhere	online	about	this.	It	is	common	to	use	an	Arduino	
and	Csound	with	another	program	functioning	as	an	interpreter	so	
therefore	some	time	is	spent	discussing	these	other	programs.
		

An	Arduino	is	a	simple	microcontroller	circuit	board	that	has	become	
enormously	popular	as	a	component	in	multidisciplinary	and	
interactive	projects	for	musicians	and	artists	since	its	introduction	in	
2005.	An	Arduino	board	can	be	programmed	to	do	many	things	and	to
send	and	receive	data	to	and	from	a	wide	variety	of	other	components	
and	devices.	As	such	it	is	impossible	to	specifically	define	its	
function	here.	An	Arduino	is	normally	programmed	using	its	own	
development	environment	(IDE).	A	program	is	written	on	a	computer	
which	is	then	uploaded	to	the	Arduino;	the	Arduino	then	runs	this	
program,	independent	of	the	computer	if	necessary.	Arduino's	IDE	is	
based	on	that	used	by	Processing	and	Wiring.	Arduino	programs	are	
often	referred	to	as	"sketches".	There	now	exists	a	plethora	of	
Arduino	variants	and	even	a	number	of	derivatives	and	clones	but	all	
function	in	more	or	less	the	same	way.
		

Interaction	between	an	Arduino	and	Csound	is	essentially	a	question	
of	communication	and	as	such	a	number	of	possible	solutions	exist.	
This	chapter	will	suggest	several	possibilities	and	it	will	then	be	up	to	
the	user	to	choose	the	one	most	suitable	for	their	requirements.	Most	
Arduino	boards	communicate	using	serial	communication	(normally	
via	a	USB	cable).	A	number	of	Arduino	programs,	called	"Firmata",	
exist	that	are	intended	to	simplify	and	standardise	communication	
between	Arduinos	and	software.	Through	the	use	of	a	Firmata	the	

CSOUND	AND	ARDUINO

646

complexity	of	Arduino's	serial	communication	is	shielded	from	the	
user	and	a	number	of	simpler	objects,	ugens	or	opcodes	(depending	
on	what	the	secondary	software	is)	can	instead	be	used	to	establish	
communication.	Unfortunately	Csound	is	rather	poorly	served	with	
facilities	to	communicate	using	the	Firmata	(although	this	will	
hopefully	improve	in	the	future)	so	it	might	prove	easiest	to	use	
another	program	(such	as	Pd	or	Processing)	as	an	intermediary	
between	the	Arduino	and	Csound.

ARDUINO	-	PD	-	CSOUND

	First	we	will	consider	communication	between	an	Arduino	(running	
a	Standard	Firmata)	and	Pd.	Later	we	can	consider	the	options	for	
further	communication	from	Pd	to	Csound.

Assuming	that	the	Arduino	IDE	(integrated	development	
environment)	has	been	installed	and	that	the	Arduino	has	been	
connected,	we	should	then	open	and	upload	a	Firmata	sketch.	One	
can	normally	be	found	by	going	to	File	->	Examples	->	Firmata	->	...	
There	will	be	a	variety	of	flavours	from	which	to	choose	but	
"StandardFirmata"	should	be	a	good	place	to	start.	Choose	the	
appropriate	Arduino	board	type	under	Tools	->	Board	->	...	and	then	
choose	the	relevant	serial	port	under	Tools	->	Serial	Port	->	...	
Choosing	the	appropriate	serial	port	may	require	some	trial	and	error	
but	if	you	have	chosen	the	wrong	one	this	will	become	apparent	when	
you	attempt	to	upload	the	sketch.	Once	you	have	established	the	
correct	serial	port	to	use,	it	is	worth	taking	a	note	of	which	number	on	
the	list	(counting	from	zero)	this	corresponds	to	as	this	number	will	
be	used	by	Pd	to	communicate	with	the	Arduino.	Finally	upload	the	
sketch	by	clicking	on	the	right-pointing	arrow	button.
		

CSOUND	AND	ARDUINO

647

Assuming	that	Pd	is	already	installed,	it	will	also	be	necessary	to	
install	an	add-on	library	for	Pd	called	Pduino.	Follow	its	included	
instructions	about	where	to	place	this	library	on	your	platform	and	
then	reopen	Pd.	You	will	now	have	access	to	a	set	of	Pd	objects	for	
communicating	with	your	Arduino.	The	Pduino	download	will	also	
have	included	a	number	of	examples	Pd.	"arduino-test.pd"	will	
probably	be	the	best	patch	to	start.	First	set	the	appropriate	serial	port	
number	to	establish	communication	and	then	set	Arduino	pins	as	
"input",	"output"	etc.	as	you	desire.	It	is	beyond	the	scope	of	this	
chapter	to	go	into	further	detail	regarding	setting	up	an	Arduino	with	
sensors	and	auxiliary	components,	suffice	to	say	that	communication	
to	an	Arduino	is	normally	tested	by	'blinking'	digital	pin	13	and	
communication	from	an	Arduino	is	normally	tested	by	connecting	a	
10	kilo-ohm	(10k)	potentiometer	to	analog	pin	zero.	For	the	sake	of	
argument,	we	shall	assume	in	this	tutorial	that	we	are	setting	the	

CSOUND	AND	ARDUINO

648

Arduino	as	a	hardware	controller	and	have	a	potentiometer	connected	
to	pin	0.

	

This	picture	below	demonstrates	a	simple	Pd	patch	that	uses	Pduino's	
objects	to	receive	communication	from	Arduino's	analog	and	digital	
inputs.	(Note	that	digital	pins	0	and	1	are	normally	reserved	for	serial	
communication	if	the	USB	serial	communication	is	unavailable.)	In	
this	example	serial	port	'5'	has	been	chosen.	Once	the	analogIns	
enable	box	for	pin	0	is	checked,	moving	the	potentiometer	will	
change	the	values	in	the	left-most	number	box	(and	move	the	slider	
connected	to	it).	Arduino's	analog	inputs	output	integers	with	10-bit	
resolution	(0	-	1023)	but	these	values	will	often	be	rescaled	as	floats	
within	the	range	0	-	1	in	the	host	program	for	convenience.
		

CSOUND	AND	ARDUINO

649

Having	established	communication	between	the	Arduino	and	Pd	we	
can	now	consider	the	options	available	to	us	for	communicating	
between	Pd	and	Csound.	The	most	obvious	(but	not	necessarily	the	
best	or	most	flexible)	method	is	to	use	Pd's	csoundapi~	object	
(csound6~	in	Csound6).	The	above	example	could	be	modified	to	
employ	csoundapi~	as	shown	below.
		

CSOUND	AND	ARDUINO

650

The	outputs	from	the	first	two	Arduino	analog	controls	are	passed	
into	Csound	using	its	API.	Note	that	we	should	use	the	unpegged	(not	
quantised	in	time)	values	directly	from	the	'route'	object.	The	Csound	
.csd	file	'control.csd'	is	called	upon	by	Pd	and	it	should	reside	in	the	
same	directory	as	the	Pd	patch.	Establishing	communication	to	and	
from	Pd	could	employ	code	such	as	that	shown	below.	Data	from	
controller	one	(Arduino	analog	0)	is	used	to	modulate	the	amplitude	
of	an	oscillator	and	data	from	controller	two	(Arduino	analog	1)	
varies	its	pitch	across	a	four	octave	range.

EXAMPLE	08B01_Pd_to_Csound.csd

<CsoundSynthesizer>

<CsOptions>
</CsOptions>

<CsInstruments>

sr	=	44100
nchnls	=	2
0dbfs	=	1
ksmps	=	32

	instr	1
;	read	in	controller	data	from	Pd	via	the	API	using	'invalue'
kctrl1		invalue		"ctrl1"

CSOUND	AND	ARDUINO

651

kctrl2		invalue		"ctrl2"
;	re-range	controller	values	from	0	-	1	to	7	-	11
koct				=								(kctrl2*4)+7
;	create	an	oscillator
a1						vco2					kctrl1,cpsoct(koct),4,0.1
								outs					a1,a1	
	endin
</CsInstruments>

<CsScore>
i	1	0	10000
e
</CsScore>

</CsoundSynthesizer>

Communication	from	Pd	into	Csound	is	established	using	the	invalue	
opcodes	and	audio	is	passed	back	to	Pd	from	Csound	using	outs.	Note	
that	Csound	does	not	address	the	computer's	audio	hardware	itself	but	
merely	passes	audio	signals	back	to	Pd.	Greater	detail	about	using	
Csound	within	Pd	can	be	found	in	the	chapter	Csound	in	Pd.
		

A	disadvantage	of	using	the	method	is	that	in	order	to	modify	the	
Csound	patch	it	will	require	being	edited	in	an	external	editor,	re-
saved,	and	then	the	Pd	patch	will	need	to	be	reloaded	to	reflect	these	
changes.	This	workflow	might	be	considered	rather	inefficient.

Another	method	of	data	communication	between	PD	and	Csound	
could	be	to	use	MIDI.	In	this	case	some	sort	of	MIDI	connection	node	
or	virtual	patchbay	will	need	to	be	employed.	On	Mac	this	could	be	
the	IAC	driver,	on	Windows	this	could	be	MIDI	Yoke	and	on	Linux	
this	could	be	Jack.	This	method	will	have	the	disadvantage	that	the	
Arduino's	signal	might	have	to	be	quantised	in	order	to	match	the	7-
bit	MIDI	controller	format	but	the	advantage	is	that	Csound's	audio	
engine	will	be	used	(not	Pd's;	in	fact	audio	can	be	disabled	in	Pd)	so	
that	making	modifications	to	the	Csound	.csd	and	hearing	the	changes	
should	require	fewer	steps.

A	final	method	for	communication	between	Pd	and	Csound	is	to	use	
OSC.	This	method	would	have	the	advantage	that	analog	10	bit	signal	
would	not	have	to	be	quantised.	Again	workflow	should	be	good	with	
this	method	as	Pd's	interaction	will	effectively	be	transparent	to	the	
user	and	once	started	it	can	reside	in	the	background	during	working.	

CSOUND	AND	ARDUINO

652

Communication	using	OSC	is	also	used	between	Processing	and	
Csound	so	is	described	in	greater	detail	below.
		

ARDUINO	-	PROCESSING	-	CSOUND

It	is	easy	to	communicate	with	an	Arduino	using	a	Processing	sketch	
and	any	data	within	Processing	can	be	passed	to	Csound	using	OSC.

	The	following	method	makes	use	of	the	Arduino	and	P5	(glove)	
libraries	for	processing.	Again	these	need	to	be	copied	into	the	
appropriate	directory	for	your	chosen	platform	in	order	for	Processing	
to	be	able	to	use	them.	Once	again	there	is	no	requirement	to	actually	
know	very	much	about	Processing	beyond	installing	it	and	running	a	
patch	(sketch).	The	following	sketch	will	read	all	Arduino	inputs	and	
output	them	as	OSC.
		

CSOUND	AND	ARDUINO

653

Start	the	Processing	sketch	by	simply	clicking	the	triangle	button	at	
the	top-left	of	the	GUI.	Processing	is	now	reading	serial	data	from	the	
Arduino	and	transmitting	this	as	OSC	data	within	the	computer.
		

The	OSC	data	sent	by	Processing	can	be	read	by	Csound	using	its	
own	OSC	opcodes.	The	following	example	simply	reads	in	data	
transmitted	by	Arduino's	analog	pin	0	and	prints	changed	values	to	
the	terminal.	To	read	in	data	from	all	analog	and	digital	inputs	you	
can	use	this	example	.csd.

EXAMPLE	08B02_Processing_to_Csound.csd

<CsoundSynthesizer>

<CsOptions>
-o	dac
</CsOptions>

CSOUND	AND	ARDUINO

654

<CsInstruments>

sr	=	44100
ksmps	=	8
nchnls	=	1
0dbfs	=	1

;	handle	used	to	reference	osc	stream
gihandle	OSCinit	12001

	instr	1
;	initialise	variable	used	for	analog	values
gkana0						init							0
;	read	in	OSC	channel	'/analog/0'
gktrigana0		OSClisten		gihandle,	"/analog/0",	"i",	gkana0
;	print	changed	values	to	terminal
												printk2				gkana0
	endin

</CsInstruments>

<CsScore>
i	1	0	3600
e
</CsScore>

</CsoundSynthesizer>

Also	worth	in	investigating	is	Jacob	Joaquin's	Csoundo	-	a	Csound	
library	for	Processing.	This	library	will	allow	closer	interaction	
between	Processing	and	Csound	in	the	manner	of	the	csoundapi~	
object	in	Pd.	This	project	has	more	recently	been	developed	by	Rory	
Walsh.
		

ARDUINO	AS	A	MIDI	DEVICE

Some	users	might	find	it	most	useful	to	simply	set	the	Arduino	up	as	a
MIDI	device	and	to	use	that	protocol	for	communication.	In	order	to	
do	this	all	that	is	required	is	to	connect	MIDI	pin	4	to	the	Arduino's	
5v	via	a	200k	resistor,	to	connect	MIDI	pin	5	to	the	Arduino's	TX	
(serial	transmit)	pin/pin	1	and	to	connect	MIDI	pin	2	to	ground,	as	
shown	below.	In	order	to	program	the	Arduino	it	will	be	necessary	to	
install	Arduino's	MIDI	library.
		

CSOUND	AND	ARDUINO

655

Programming	an	Arduino	to	generate	a	MIDI	controller	signal		from	
analog	pin	0	could	be	done	using	the	following	code:

//	example	written	by	Iain	McCurdy
//	import	midi	library
#include	<MIDI.h>

const	int	analogInPin	=	A0;	//	choose	analog	input	pin
int	sensorValue	=	0;								//	sensor	value	variable
int	oldSensorValue	=	0;					//	sensor	value	from	previous	pass
int	midiChannel	=	1;								//	set	MIDI	channel

void	setup()
{
	MIDI.begin(1);
}

void	loop()
{
		sensorValue	=	analogRead(analogInPin);

		//	only	send	out	a	MIDI	message	if	controller	has	changed
		if	(sensorValue!=oldSensorValue)
				{
				//	controller	1,	rescale	value	from	0-1023	(Arduino)	to	0-127	(MIDI)
				MIDI.sendControlChange(1,sensorValue/8,midiChannel);		
				oldSensorValue	=	sensorValue;	//	set	old	sensor	value	to	current
				}
		}

		delay(10);
}

Data	from	the	Arduino	can	now	be	read	using	Csound's	ctrl7	opcodes	
for	reading	MIDI	controller	data.
		

CSOUND	AND	ARDUINO

656

THE	SERIAL	OPCODES

Serial	data	can	also	be	read	directly	from	the	Arduino	by	Csound	by	
using	Matt	Ingalls'	opcodes	for	serial	communication:	serialBegin	and
serialRead.

An	example	Arduino	sketch	for	serial	communication	could	be	as	
simple	as	this:
		

//	Example	written	by	Matt	Ingalls
//	ARDUINO	CODE:

void	setup()		{
		//	enable	serial	communication
		Serial.begin(9600);

		//	declare	pin	9	to	be	an	output:
		pinMode(9,	OUTPUT);
}

void	loop()		
{
		//	only	do	something	if	we	received	something	(this	should	be	at	csound's	k-rate)
		if	(Serial.available())
		{

									//	set	the	brightness	of	LED	(connected	to	pin	9)	to	our	input	value
							int	brightness	=	Serial.read();
							analogWrite(9,	brightness);

							//	while	we	are	here,	get	our	knob	value	and	send	it	to	csound
							int	sensorValue	=	analogRead(A0);
							Serial.write(sensorValue/4);	//	scale	to	1-byte	range	(0-255)
		}				
}

It	will	be	necessary	to	provide	the	correct	address	of	the	serial	port	to	
which	the	Arduino	is	connected	(in	the	given	example	the	Windows	
platform	was	being	used	and	the	port	address	was	/COM4).

It	will	be	necessary	to	scale	the	value	to	correspond	to	the	range	
provided	by	a	single	byte	(0-255)	so	therefore	the	Arduino's	10	bit	
analog	input	range	(0-1023)	will	have	to	be	divided	by	four.

EXAMPLE	08B03_Serial_Read.csd

;	Example	written	by	Matt	Ingalls
;	CSOUND	CODE:
;	run	with	a	commandline	something	like:
;	csound	--opcode-lib=serialOpcodes.dylib	serialdemo.csd	-odac	-iadc

<CsoundSynthesizer>

CSOUND	AND	ARDUINO

657

<CsOptions>

</CsOptions>
;--opcode-lib=serialOpcodes.dylib	-odac
<CsInstruments>

ksmps	=	500	;	the	default	krate	can	be	too	fast	for	the	arduino	to	handle
0dbfs	=	1

instr	1
	 iPort	 serialBegin	 "/COM4",	9600
	 kVal	 serialRead		 iPort
	 	 printk2		 kVal
endin

</CsInstruments>
<CsScore>
i	1	0	3600
e
</CsScore>
</CsoundSynthesizer>

This	example	will	read	serial	data	from	the	Arduino	and	print	it	to	the	
terminal.	Reading	output	streams	from	several	of	Arduino's	sensor	
inputs	simultaneously	will	require	more	complex	parsing	of	data	
within	Csound	as	well	as	more	complex	packaging	of	data	from	the	
Arduino.	This	is	demonstrated	in	the	following	example	which	also	
shows	how	to	handle	serial	transmission	of	integers	larger	than	255	
(the	Arduino	analog	inputs	have	10	bit	resolution).

	First	the	Arduino	sketch,	in	this	case	reading	and	transmitting	two	
analog	and	one	digital	input:

//	Example	written	by	Sigurd	Saue
//	ARDUINO	CODE:

//	Analog	pins
int	potPin	=	0;
int	lightPin	=	1;

//	Digital	pin
int	buttonPin	=	2;

//	Value	IDs	(must	be	between	128	and	255)
byte	potID	=	128;
byte	lightID	=	129;
byte	buttonID	=	130;

//	Value	to	toggle	between	inputs
int	select;

/*
**	Two	functions	that	handles	serial	send	of	numbers	of	varying	length
*/

//	Recursive	function	that	sends	the	bytes	in	the	right	order
void	serial_send_recursive(int	number,	int	bytePart)
{
		if	(number	<	128)	{								//	End	of	recursion
				Serial.write(bytePart);		//	Send	the	number	of	bytes	first
		}

CSOUND	AND	ARDUINO

658

		else	{
				serial_send_recursive((number	>>	7),	(bytePart	+	1));
		}
		Serial.write(number	%	128);		//	Sends	one	byte
}

void	serial_send(byte	id,	int	number)
{
		Serial.write(id);
		serial_send_recursive(number,	1);
}

void	setup()		{
		//	enable	serial	communication
		Serial.begin(9600);
		pinMode(buttonPin,	INPUT);
}

void	loop()
{
		//	Only	do	something	if	we	received	something	(at	csound's	k-rate)
		if	(Serial.available())
		{
						//	Read	the	value	(to	empty	the	buffer)
							int	csound_val	=	Serial.read();

							//	Read	one	value	at	the	time	(determined	by	the	select	variable)
							switch	(select)	{
									case	0:	{
											int	potVal	=	analogRead(potPin);
											serial_send(potID,	potVal);
									}
									break;
									case	1:	{
											int	lightVal	=	analogRead(lightPin);
											serial_send(lightID,	lightVal);
									}
									break;
									case	2:	{
											int	buttonVal	=	digitalRead(buttonPin);
											serial_send(buttonID,	buttonVal);
									}
									break;
							}

							//	Update	the	select	(0,	1	and	2)
							select	=	(select+1)%3;
		}
}

The	solution	is	similar	to	MIDI	messages.	You	have	to	define	an	ID	
(a	unique	number	>=	128)	for	every	sensor.	The	ID	behaves	as	a	
status	byte	that	clearly	marks	the	beginning	of	a	message	received	by	
Csound.	The	remaining	bytes	of	the	message	will	all	have	a	most	
significant	bit	equal	to	zero	(value	<	128).	The	sensor	values	are	
transmitted	as	ID,	length	(number	of	data	bytes),	and	the	data	itself.	
The	recursive	function	serial_send_recursive	counts	the	number	of	
data	bytes	necessary	and	sends	the	bytes	in	the	correct	order.	Only	
one	sensor	value	is	transmitted	for	each	run	through	the	Arduino	loop.

The	Csound	code	receives	the	values	with	the	ID	first.	Of	course	you	

CSOUND	AND	ARDUINO

659

have	to	make	sure	that	the	IDs	in	the	Csound	code	matches	the	ones	
in	the	Arduino	sketch.	Here's	an	example	of	a	Csound	orchestra	that	
handles	the	messages	sent	from	the	Arduino	sketch:

EXAMPLE	08B04_Serial_Read_multiple.csd

;	Example	written	by	Sigurd	Saue
;	CSOUND	CODE:
<CsoundSynthesizer>
<CsOptions>
-d	-odac
</CsOptions>
<CsInstruments>

sr		=	44100
ksmps	=	500	;	the	default	krate	can	be	too	fast	for	the	arduino	to	handle
nchnls	=	2
0dbfs		=	1

giSaw		ftgen	0,	0,	4096,	10,	1,	1/2,	1/3,	1/4,	1/5,	1/6,	1/7,	1/8

instr	1

;	Initialize	the	three	variables	to	read
kPot		 init	0
kLight		init	0
kButton	init	0

iPort	 serialBegin	"/COM5",	9600	;connect	to	the	arduino	with	baudrate	=	9600
	 serialWrite	iPort,	1	 ;Triggering	the	Arduino	(k-rate)

kValue		=	0
kType		 serialRead	iPort	 ;	Read	type	of	data	(pot,	light,	button)

if	(kType	>=	128)	then

	 kIndex	=	0
	 kSize		serialRead	iPort
	
	 loopStart:
	 				kValue		 =	kValue	<<	7
	 				kByte	 serialRead	iPort
	 				kValue		 =	kValue	+	kByte
	 				loop_lt	kIndex,	1,	kSize,	loopStart
endif

if	(kValue	<	0)	kgoto	continue

if	(kType	==	128)	then	 	 ;	This	is	the	potmeter
	 kPot		 =	kValue
elseif	(kType	==	129)	then	 ;	This	is	the	light	
	 kLight		=	kValue
elseif	(kType	==	130)	then	 ;	This	is	the	button	(on/off)
	 kButton	=	kValue
endif

continue:

;	Here	you	can	do	something	with	the	variables	kPot,	kLight	and	kButton
;	printks	"Pot	%f\n",	1,	kPot
;	printks	"Light	%f\n",	1,	kLight
;	printks	"Button	%d\n",	1,	kButton

;	Example:	A	simple	oscillater	controlled	by	the	three	parameters
kAmp	 port	 kPot/1024,	0.1
kFreq	 port	 (kLight	>	100	?	kLight	:	100),	0.1
aOut		 oscil		 kAmp,	kFreq,	giSaw

CSOUND	AND	ARDUINO

660

if	(kButton	==	0)	then	
	 out		 aOut	
endif
	
endin

</CsInstruments>
<CsScore>
i	1	0	60	 ;	Duration	one	minute
e
</CsScore>
</CsoundSynthesizer>

Remember	to	provide	the	correct	address	of	the	serial	port	to	which	
the	Arduino	is	connected	(the	example	uses	"/COM5").

HID

Another	option	for	communication	has	been	made	available	by	a	new	
Arduino	board	called	"Leonardo".	It	pairs	with	a	computer	as	if	it	
were	an	HID	(Human	Interface	Device)	such	as	a	mouse,	keyboard	or	
a	gamepad.	Sensor	data	can	therefore	be	used	to	imitate	the	actions	of	
a	mouse	connected	to	the	computer	or	keystrokes	on	a	keyboard.	
Csound	is	already	equipped	with	opcodes	to	make	use	of	this	data.	
Gamepad-like	data	is	perhaps	the	most	useful	option	though	and	there	
exist	opcodes	(a	least	in	the	Linux	version)	for	reading	gamepad	data.	
It	is	also	possible	to	read	in	data	from	a	gamepad	using	pygame	and	
Csound's	python	opcodes.
		

CSOUND	IN	PD

661

CSOUND	IN	PD

INSTALLING		

You	can	embed	Csound	in	PD	via	the	external	csound6~,1		which	has	
been	written	by	Victor	Lazzarini.	This	external	is	part	of	the	Csound	
distribution.

On	Ubuntu	Linux,	you	can	install	the	csound6~	via	the	Synaptic	
package	manager.	Just	look	for	"csound6~"	or	"pd-csound",	check	
"install",	and	your	system	will	install	the	library	at	the	appropriate	
location.	If	you	build	Csound	from	sources,	you	should	also	be	able	to	
get	the	csound6~	via	the	cmake	option	
BUILD_PD_CLASS:BOOL=ON.	It	will	appear	as	csound6~.pd_linux	
and	should	be	copied	to	/usr/lib/pd/extra,	so	that	PD	can	find	it.	If	not,	
add	it	to	PD's	search	path	(File->Path...).
		

On	Mac	OSX,	you	find	the	csound6~	external	in	the	following	path:
		
	/Library/Frameworks/CsoundLib64.framework/Versions/6.0/Resourc
es/PD/csound6~.pd_darwin
		
	The	help	file	is
		
	/Library/Frameworks/CsoundLib64.framework/Versions/6.0/Resourc
es/PD/csound6~-help.pd

Put	these	files	in	a	folder	which	is	in	PD's	search	path.	For	PD-
extended,	it's	by	default	~/Library/Pd.	But	you	can	put	it	anywhere.	
Just	make	sure	that	the	location	is	specified	in	PD's	Preferences	>	
Path...	menu.

On	Windows,	while	installing	Csound,	open	up	the	"Front	ends"	
component	in	the	Installer	box	and	make	sure	the	item	"csound6~"	is	

CSOUND	IN	PD

662

checked:

	

After	having	finished	the	installation,	you	will	find	csound6~.dll	in	
the	csound/bin	folder.	Copy	this	file	into	the	pd/extra	folder,	or	in	any	
other	location	in	PD's	search	path.	Due	to	the	dependencies	in	Csound	
6,	you	may	find	that	it	works	better	to	add	the	Csound/bin	directory	to	
the	search	paths	in	Pd's	Preferences	window.

When	you	have	installed	the	"csound6~"	extension	on	any	platform,	
and	included	the	file	in	PD's	search	path	if	necessary,	you	should	be	
able	to	call	the	csound6~	object	in	PD.	Just	open	a	PD	window,	put	a	
new	object,	and	type	in	"csound6~":
		

CSOUND	IN	PD

663

	
		

CONTROL	DATA

You	can	send	control	data	from	PD	to	your	Csound	instrument	via	the	
keyword	"control"	in	a	message	box.	In	your	Csound	code,	you	must	
receive	the	data	via	invalue	or	chnget.	This	is	a	simple	example:

EXAMPLE	09A01_pdcs_control_in.csd	
		

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz

sr	=	44100
nchnls	=	2
0dbfs	=	1
ksmps	=	8

giSine				ftgen					0,	0,	2^10,	10,	1

instr	1
kFreq					invalue			"freq"
kAmp						invalue			"amp"
aSin						oscili				kAmp,	kFreq,	giSine
										outs						aSin,	aSin
endin

</CsInstruments>
<CsScore>
i	1	0	10000
</CsScore>
</CsoundSynthesizer>

Save	this	file	under	the	name	"control.csd".	Save	a	PD	window	in	the	

CSOUND	IN	PD

664

same	folder	and	create	the	following	patch:

	

Note	that	for	invalue	channels,	you	first	must	register	these	channels	
by	a	"set"	message.

As	you	see,	the	first	two	outlets	of	the	csound6~	object	are	the	signal	
outlets	for	the	audio	channels	1	and	2.	The	third	outlet	is	an	outlet	for	
control	data	(not	used	here,	see	below).	The	rightmost	outlet	sends	a	
bang	when	the	score	has	been	finished.

LIVE	INPUT

Audio	streams	from	PD	can	be	received	in	Csound	via	the	inch	
opcode.	As	many	input	channels	there	are,	as	many	audio	inlets	are	
created	in	the	csound6~	object.	The	following	CSD	uses	two	audio	
inputs:

EXAMPLE	09A02_pdcs_live_in.csd		
		

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
0dbfs	=	1
ksmps	=	8
nchnls	=	2

CSOUND	IN	PD

665

instr	1
aL								inch						1
aR								inch						2
kcfL						randomi			100,	1000,	1;	center	frequency
kcfR						randomi			100,	1000,	1;	for	band	pass	filter
aFiltL				butterbp		aL,	kcfL,	kcfL/10
aoutL					balance			aFiltL,	aL
aFiltR				butterbp		aR,	kcfR,	kcfR/10
aoutR					balance			aFiltR,	aR
										outch					1,	aoutL
										outch					2,	aoutR
endin

</CsInstruments>
<CsScore>
i	1	0	10000
</CsScore>
</CsoundSynthesizer>

The	corresponding	PD	patch	is	extremely	simple:

	

MIDI

The	csound6~	object	receives	MIDI	data	via	the	keyword	"midi".	
Csound	is	able	to	trigger	instrument	instances	in	receiving	a	"note	on"	
message,	and	turning	them	off	in	receiving	a	"note	off"	message	(or	a	
note-on	message	with	velocity=0).	So	this	is	a	very	simple	way	to	
build	a	synthesizer	with	arbitrary	polyphonic	output:

CSOUND	IN	PD

666

This	is	the	corresponding	midi.csd.	It	must	contain	the	options	-
+rtmidi=null	-M0	in	the	<CsOptions>	tag.	It's	an	FM	synth	which	
changes	the	modulation	index	according	to	the	verlocity:	the	more	
you	press	a	key,	the	higher	the	index,	and	the	more	partials	you	get.	
The	ratio	is	calculated	randomly	between	two	limits	which	can	be	
adjusted.

EXAMPLE	09A03_pdcs_midi.csd		
		

<CsOptions>
-+rtmidi=null	-M0
</CsOptions>
<CsoundSynthesizer>
<CsInstruments>
;Example	by	Joachim	Heintz
sr						=		44100
ksmps			=		8
nchnls		=		2
0dbfs	=	1

giSine				ftgen					0,	0,	2^10,	10,	1

instr	1
iFreq					cpsmidi			;gets	frequency	of	a	pressed	key
iAmp						ampmidi			8;gets	amplitude	and	scales	0-8
iRatio				random				.9,	1.1;	ratio	randomly	between	0.9	and	1.1
aTone					foscili			.1,	iFreq,	1,	iRatio/5,	iAmp+1,	giSine;	fm
aEnv						linenr				aTone,	0,	.01,	.01;	avoiding	clicks	at	the	end	of	a	note
										outs						aEnv,	aEnv
endin

</CsInstruments>
<CsScore>
f	0	36000;	play	for	10	hours
e

CSOUND	IN	PD

667

</CsScore>
</CsoundSynthesizer>

SCORE	EVENTS

Score	events	can	be	sent	from	PD	to	Csound	by	a	message	with	the	
keyword	event.	You	can	send	any	kind	of	score	events,	like	
instrument	calls	or	function	table	statements.	The	following	example	
triggers	Csound's	instrument	1	whenever	you	press	the	message	box	
on	the	top.	Different	sounds	can	be	selected	by	sending	f	events	
(building/replacing	a	function	table)	to	Csound.

	

EXAMPLE	09A04_pdcs_events.csd	

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz
sr	=	44100
ksmps	=	8
nchnls	=	2
0dbfs	=	1

										seed						0;	each	time	different	seed
giSine				ftgen					1,	0,	2^10,	10,	1;	function	table	1

instr	1
iDur						random				0.5,	3
p3								=									iDur
iFreq1				random				400,	1200
iFreq2				random				400,	1200
idB							random				-18,	-6

CSOUND	IN	PD

668

kFreq					linseg				iFreq1,	iDur,	iFreq2
kEnv						transeg			ampdb(idB),	p3,	-10,	0
aTone					oscili				kEnv,	kFreq,	1
										outs						aTone,	aTone
endin

</CsInstruments>
<CsScore>
f	0	36000;	play	for	10	hours
e
</CsScore>
</CsoundSynthesizer>

CONTROL	OUTPUT

If	you	want	Csound	to	give	any	sort	of	control	data	to	PD,	you	can	use
the	opcodes	outvalue	or	chnset.	You	will	receive	this	data	at	the	
second	outlet	from	the	right	of	the	csound6~	object.	The	data	are	sent	
as	a	list	with	two	elements.	The	name	of	the	control	channel	is	the	
first	element,	and	the	value	is	the	second	element.	You	can	get	the	
values	by	a	route	object	or	by	a	send/receive	chain.	This	is	a	simple	
example:
		

	

EXAMPLE	09A05_pdcs_control_out.csd		
		

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
;Example	by	Joachim	Heintz

sr	=	44100

CSOUND	IN	PD

669

nchnls	=	2
0dbfs	=	1
ksmps	=	8

instr	1
ktim						times
kphas					phasor				1
										outvalue		"time",	ktim
										outvalue		"phas",	kphas*127
endin

</CsInstruments>
<CsScore>
i	1	0	30
</CsScore>
</CsoundSynthesizer>	

SEND/RECEIVE	BUFFERS	FROM	PD	TO
CSOUND	AND	BACK	

A	PD	array	can	be	sent	directly	to	Csound,	and	a	Csound	function	
table	to	PD.	The	message	tabset	[tabset	array-name	ftable-number]	
copies	a	PD	array	into	a	Csound	function	table.	The	message	tabget	
[tabget	array-name	ftable-number]	copies	a	Csound	function	table	
into	a	PD	array.	The	example	below	should	explain	everything.	Just	
choose	another	soundfile	instead	of	"stimme.wav".
		

CSOUND	IN	PD

670

	
		

EXAMPLE	06A06_pdcs_tabset_tabget.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	8
nchnls	=	1
0dbfs	=	1

giCopy	ftgen	1,	0,	-88200,	2,	0	;"empty"	table
giFox		ftgen	2,	0,	0,	1,	"fox.wav",	0,	0,	1

		opcode	BufPlay1,	a,	ipop
ifn,	ispeed,	iskip,	ivol	xin
icps						=									ispeed	/	(ftlen(ifn)	/	sr)
iphs						=									iskip	/	(ftlen(ifn)	/	sr)
asig						poscil3			ivol,	icps,	ifn,	iphs
										xout						asig
		endop

		instr	1
itable				=									p4
aout						BufPlay1		itable
										out							aout
		endin

</CsInstruments>
<CsScore>
f	0	99999

CSOUND	IN	PD

671

</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

SETTINGS

Make	sure	that	the	Csound	vector	size	given	by	the	ksmps	value,	is	
not	larger	than	the	internal	PD	vector	size.	It	should	be	a	power	of	2.	
I'd	recommend	to	start	with	ksmps=8.	If	there	are	performance	
problems,	try	to	increase	this	value	to	16,	32,	or	64.

The	csound6~	object	runs	by	default	if	you	turn	on	audio	in	PD.	You	
can	stop	it	by	sending	a	"run	0"	message,	and	start	it	again	with	a	"run	
1"	message.

You	can	recompile	the	.csd	file	of	a	csound6~	object	by	sending	a	
"reset"	message.

By	default,	you	see	all	the	messages	of	Csound	in	the	PD	window.	If	
you	don't	want	to	see	them,	send	a	"message	0"	message.	"message	1"	
prints	the	output	again.

If	you	want	to	open	a	new	.csd	file	in	the	csound6~	object,	send	the	
message	"open",	followed	by	the	path	of	the	.csd	file	you	want	to	
load.

A	"rewind"	message	rewinds	the	score	without	recompilation.	The	
message	"offset",	followed	by	a	number,	offsets	the	score	playback	by
an	amount	of	seconds.
		

CSOUND	IN	PD

672

1.	 This	is	the	new	name	for	Csound	6.	In	Csound	5	the	name	was	
csoundapi~.	The	different	names	make	it	possible	to	have	both	
versions	installed.	Wherever	in	this	chapter	"csoundapi~"	is	
used,	it	should	work	the	same	way	as	"csound6~"	for	Csound	6.	
^

CSOUND	IN	MAXMSP

673

CSOUND	IN	MAXMSP
Csound	can	be	embedded	in	a	Max	patch	using	the	csound~	object.
This	allows	you	to	synthesize	and	process	audio,	MIDI,	or	control
data	with	Csound.	

INSTALLING

The	csound~	requires	an	installation	of	Csound.	For	Csound6,	it	
should	be	a	part	of	the	main	installer.	If	this	is	not	the	case,	you	
should	find	an	installer	in	Csound's	file	release	folder,	for	instance	as	
to	Csound	6.02	here:	
http://sourceforge.net/projects/csound/files/csound6/Csound6.02/csou
nd%7E_v1.1.1.pkg/download.

The	next	paragraphs	were	instructions	for	Csound5.	They	may	now	be
obsolete.
		

INSTALLING	ON	MAC	OS	X

1.	 Expand	the	zip	file	and	navigate	to	binaries/MacOSX/.
2.	 Choose	an	mxo	file	based	on	what	kind	of	CPU	you	have	(intel	

or	ppc)	and	which	type	of	floating	point	numbers	are	used	in	
your	Csound5	version	(double	or	float).	The	name	of	the	
Csound5	installer	may	give	a	hint	with	the	letters	"f"	or	"d"	or	
explicitly	with	the	words	"double"	or	"float".	However,	if	you	
do	not	see	a	hint,	then	that	means	the	installer	contains	both,	in	
which	case	you	only	have	to	match	your	CPU	type.

CSOUND	IN	MAXMSP

674

3.	 Copy	the	mxo	file	to:
		

Max	4.5:	/Library/Application	Support/Cycling	
'74/externals/

				
Max	4.6:	/Applications/MaxMSP	
4.6/Cycling'74/externals/

				
Max	5:	/Applications/Max5/Cycling	'74/msp-externals/

		
4.	 Rename	the	mxo	file	to	"csound~.mxo".
5.	 If	you	would	like	to	install	the	help	patches,	navigate	to	the	

help_files	folder	and	copy	all	files	to:
		

Max	4.5:	/Applications/MaxMSP	4.5/max-help/

				
Max	4.6:	/Applications/MaxMSP	4.6/max-help/

				
Max	5:	/Applications/Max5/Cycling	'74/msp-help/

		

INSTALLING	ON	WINDOWS

1.	 Expand	the	zip	file	and	navigate	to	binaries\Windows\.
2.	 Choose	an	mxe	file	based	on	the	type	of	floating	point	numbers	

used	in	your	Csound5	version	(double	or	float).	The	name	of	
the	Csound5	installer	may	give	a	hint	with	the	letters	"f"	or	"d"	
or	explicitly	with	the	words	"double"	or	"float".

CSOUND	IN	MAXMSP

675

3.	 Copy	the	mxe	file	to:
		

Max	4.5:	C:\Program	Files\Common	Files\Cycling	
'74\externals\

				
Max	4.6:	C:\Program	Files\Cycling	'74\MaxMSP	
4.6\Cycling	'74\externals\

				
Max	5:	C:\Program	Files\Cycling	'74\Max	5.0\Cycling	
'74\msp-externals\

		
4.	 Rename	the	mxe	file	to	"csound~.mxe".
5.	 If	you	would	like	to	install	the	help	patches,	navigate	to	the	

help_files	folder	and	copy	all	files	to:
		

Max	4.5:	C:\Program	Files\Cycling	'74\MaxMSP	
4.5\max-help\

				
Max	4.6:	C:\Program	Files\Cycling	'74\MaxMSP	
4.6\max-help\

				
Max	5:	C:\Program	Files\Cycling	'74\Max	5.0\Cycling	
'74\msp-help\

		

KNOWN	ISSUES

	On	Windows	(only),	various	versions	of	Csound5	have	a	known	
incompatibility	with	csound~	that	has	to	do	with	the	fluid	opcodes.	
How	can	you	tell	if	you're	affected?	Here's	how:	if	you	stop	a	Csound	
performance	(or	it	stops	by	itself)	and	you	click	on	a	non-MaxMSP	or	

CSOUND	IN	MAXMSP

676

non-Live	window	and	it	crashes,	then	you	are	affected.	Until	this	is	
fixed,	an	easy	solution	is	to	remove/delete	fluidOpcodes.dll	from	your
plugins	or	plugins64	folder.	Here	are	some	common	locations	for	that	
folder:

C:\Program	Files\Csound\plugins
C:\Program	Files\Csound\plugins64
		

CREATING	A	CSOUND~	PATCH

1.	 Create	the	following	patch:
		

	
2.	 Save	as	"helloworld.maxpat"	and	close	it.
3.	 Create	a	text	file	called	"helloworld.csd"	within	the	same	

folder	as	your	patch.

CSOUND	IN	MAXMSP

677

4.	 Add	the	following	to	the	text	file:	
		

EXAMPLE	09B01_maxcs_helloworld.csd		
				

		
<CsoundSynthesizer>
<CsInstruments>
;Example	by	Davis	Pyon
sr					=	44100
ksmps		=	32
nchnls	=	2
0dbfs		=	1

instr	1
aNoise	noise	.1,	0
							outch	1,	aNoise,	2,	aNoise
endin

</CsInstruments>
<CsScore>
f0	86400
i1	0	86400
e
</CsScore>
</CsoundSynthesizer>
				

5.	 Open	the	patch,	press	the	bang	button,	then	press	the	speaker	
icon.

At	this	point,	you	should	hear	some	noise.	Congratulations!	You	
created	your	first	csound~	patch.

	You	may	be	wondering	why	we	had	to	save,	close,	and	reopen	the	
patch.	This	is	needed	in	order	for	csound~	to	find	the	csd	file.	In	
effect,	saving	and	opening	the	patch	allows	csound~	to	"know"	where	
the	patch	is.	Using	this	information,	csound~	can	then	find	csd	files	
specified	using	a	relative	pathname	(e.g.	"helloworld.csd").	Keep	in	
mind	that	this	is	only	necessary	for	newly	created	patches	that	have	
not	been	saved	yet.	By	the	way,	had	we	specified	an	absolute	
pathname	(e.g.	"C:/Mystuff/helloworld.csd"),	the	process	of	saving	
and	reopening	would	have	been	unnecessary.

CSOUND	IN	MAXMSP

678

	The	"@scale	0"	argument	tells	csound~	not	to	scale	audio	data	
between	Max	and	Csound.	By	default,	csound~	will	scale	audio	to	
match	0dB	levels.	Max	uses	a	0dB	level	equal	to	one,	while	Csound	
uses	a	0dB	level	equal	to	32768.	Using	"@scale	0"	and	adding	the	
statement	"0dbfs	=	1"	within	the	csd	file	allows	you	to	work	with	a	
0dB	level	equal	to	one	everywhere.	This	is	highly	recommended.

AUDIO	I/O

	All	csound~	inlets	accept	an	audio	signal	and	some	outlets	send	an	
audio	signal.	The	number	of	audio	outlets	is	determined	by	the	
arguments	to	the	csound~	object.	Here	are	four	ways	to	specify	the	
number	of	inlets	and	outlets:

[csound~	@io	3]
[csound~	@i	4	@o	7]
[csound~	3]
[csound~	4	7]

	"@io	3"	creates	3	audio	inlets	and	3	audio	outlets.	"@i	4	@o	7"	
creates	4	audio	inlets	and	7	audio	outlets.	The	third	and	fourth	lines	
accomplish	the	same	thing	as	the	first	two.	If	you	don't	specify	the	
number	of	audio	inlets	or	outlets,	then	csound~	will	have	two	audio	
inlets	and	two	audio	oulets.	By	the	way,	audio	outlets	always	appear	
to	the	left	of	non-audio	outlets.	Let's	create	a	patch	called	
audio_io.maxpat	that	demonstrates	audio	i/o:

	Here	is	the	corresponding	text	file	(let's	call	it	audio_io.csd):

CSOUND	IN	MAXMSP

679

EXAMPLE	09B02_maxcs_audio_io.csd		

<CsoundSynthesizer>
<CsInstruments>
;Example	by	Davis	Pyon
sr					=	44100
ksmps		=	32
nchnls	=	3
0dbfs		=	1

instr	1
aTri1	inch	1
aTri2	inch	2
aTri3	inch	3
aMix		=	(aTri1	+	aTri2	+	aTri3)	*	.2
						outch	1,	aMix,	2,	aMix
endin

</CsInstruments>
<CsScore>
f0	86400
i1	0	86400
e
</CsScore>
</CsoundSynthesizer>

	In	audio_io.maxpat,	we	are	mixing	three	triangle	waves	into	a	stereo	
pair	of	outlets.	In	audio_io.csd,	we	use	inch	and	outch	to	receive	and	
send	audio	from	and	to	csound~.	inch	and	outch	both	use	a	
numbering	system	that	starts	with	one	(the	left-most	inlet	or	outlet).

	Notice	the	statement	"nchnls	=	3"	in	the	orchestra	header.	This	tells	
the	Csound	compiler	to	create	three	audio	input	channels	and	three	
audio	output	channels.	Naturally,	this	means	that	our	csound~	object	
should	have	no	more	than	three	audio	inlets	or	outlets.

CONTROL	MESSAGES

	Control	messages	allow	you	to	send	numbers	to	Csound.	It	is	the	
primary	way	to	control	Csound	parameters	at	i-rate	or	k-rate.	To	
control	a-rate	(audio)	parameters,	you	must	use	and	audio	inlet.	Here	
are	two	examples:

control	frequency	2000
c	resonance	.8

Notice	that	you	can	use	either	"control"	or	"c"	to	indicate	a	control

CSOUND	IN	MAXMSP

680

message.	The	second	argument	specifies	the	name	of	the	channel	you
want	to	control	and	the	third	argument	specifies	the	value.

	The	following	patch	and	text	file	demonstrates	control	messages:

	

EXAMPLE	09B03_maxcs_control_in.csd		

<CsoundSynthesizer>
<CsInstruments>
;Example	by	Davis	Pyon
sr					=	44100
ksmps		=	32
nchnls	=	2
0dbfs		=	1

giSine	ftgen	1,	0,	16384,	10,	1	;	Generate	a	sine	wave	table.

instr	1
kPitch	chnget	"pitch"
kMod			invalue	"mod"
aFM				foscil	.2,	cpsmidinn(kPitch),	2,	kMod,	1.5,	giSine
							outch	1,	aFM,	2,	aFM
endin
</CsInstruments>
<CsScore>
f0	86400
i1	0	86400
e
</CsScore>
</CsoundSynthesizer>

	In	the	patch,	notice	that	we	use	two	different	methods	to	construct	
control	messages.	The	"pak"	method	is	a	little	faster	than	the	message	

CSOUND	IN	MAXMSP

681

box	method,	but	do	whatever	looks	best	to	you.	You	may	be	
wondering	how	we	can	send	messages	to	an	audio	inlet	(remember,	
all	inlets	are	audio	inlets).	Don't	worry	about	it.	In	fact,	we	can	send	a	
message	to	any	inlet	and	it	will	work.

	In	the	text	file,	notice	that	we	use	two	different	opcodes	to	receive	
the	values	sent	in	the	control	messages:	chnget	and	invalue.	chnget	is
more	versatile	(it	works	at	i-rate	and	k-rate,	and	it	accepts	strings)	and
is	a	tiny	bit	faster	than	invalue.	On	the	other	hand,	the	limited	nature	
of	invalue	(only	works	at	k-rate,	never	requires	any	declarations	in	
the	header	section	of	the	orchestra)	may	be	easier	for	newcomers	to	
Csound.

MIDI

	csound~	accepts	raw	MIDI	numbers	in	it's	first	inlet.	This	allows	you	
to	create	Csound	instrument	instances	with	MIDI	notes	and	also	
control	parameters	using	MIDI	Control	Change.	csound~	accepts	all	
types	of	MIDI	messages,	except	for:	sysex,	time	code,	and	sync.	Let's	
look	at	a	patch	and	text	file	that	uses	MIDI:

CSOUND	IN	MAXMSP

682

EXAMPLE	09B04_maxcs_midi.csd		

<CsoundSynthesizer>
<CsInstruments>
;Example	by	Davis	Pyon
sr					=	44100
ksmps		=	32
nchnls	=	2
0dbfs		=	1

massign	0,	0	;	Disable	default	MIDI	assignments.
massign	1,	1	;	Assign	MIDI	channel	1	to	instr	1.

giSine	ftgen	1,	0,	16384,	10,	1	;	Generate	a	sine	wave	table.

instr	1
iPitch	cpsmidi
kMod			midic7	1,	0,	10
aFM				foscil	.2,	iPitch,	2,	kMod,	1.5,	giSine
							outch	1,	aFM,	2,	aFM
endin
</CsInstruments>
<CsScore>
f0	86400
e
</CsScore>
</CsoundSynthesizer>

	In	the	patch,	notice	how	we're	using	midiformat	to	format	note	and	
control	change	lists	into	raw	MIDI	bytes.	The	"1"	argument	for	
midiformat	specifies	that	all	MIDI	messages	will	be	on	channel	one.

	In	the	text	file,	notice	the	massign	statements	in	the	header	of	the	
orchestra.	"massign	0,0"	tells	Csound	to	clear	all	mappings	between	
MIDI	channels	and	Csound	instrument	numbers.	This	is	highly	
recommended	because	forgetting	to	add	this	statement	may	cause	
confusion	somewhere	down	the	road.	The	next	statement	"massign	
1,1"	tells	Csound	to	map	MIDI	channel	one	to	instrument	one.

	To	get	the	MIDI	pitch,	we	use	the	opcode	cpsmidi.	To	get	the	FM	
modulation	factor,	we	use	midic7	in	order	to	read	the	last	known	
value	of	MIDI	CC	number	one	(mapped	to	the	range	[0,10]).

	Notice	that	in	the	score	section	of	the	text	file,	we	no	longer	have	the	
statement	"i1	0	86400"	as	we	had	in	earlier	examples.	This	is	a	good	
thing	as	you	should	never	instantiate	an	instrument	via	both	MIDI	and	
score	events	(at	least	that	has	been	this	writer's	experience).

CSOUND	IN	MAXMSP

683

EVENTS

To	send	Csound	events	(i.e.	score	statements),	use	the	"event"	or	"e"	
message.	You	can	send	any	type	of	event	that	Csound	understands.	
The	following	patch	and	text	file	demonstrates	how	to	send	events:
		

		

EXAMPLE	09B05_maxcs_events.csd		

<CsoundSynthesizer>
<CsInstruments>
;Example	by	Davis	Pyon
sr					=	44100
ksmps		=	32
nchnls	=	2
0dbfs		=	1

instr	1
		iDur	=	p3
		iCps	=	cpsmidinn(p4)
	iMeth	=	1
							print	iDur,	iCps,	iMeth
aPluck	pluck	.2,	iCps,	iCps,	0,	iMeth	
							outch	1,	aPluck,	2,	aPluck
endin
</CsInstruments>
<CsScore>
f0	86400
e
</CsScore>
</CsoundSynthesizer>

	In	the	patch,	notice	how	the	arguments	to	the	pack	object	are	
declared.	The	"i1"	statement	tells	Csound	that	we	want	to	create	an	

CSOUND	IN	MAXMSP

684

instance	of	instrument	one.	There	is	no	space	between	"i"	and	"1"	
because	pack	considers	"i"	as	a	special	symbol	signifying	an	integer.	
The	next	number	specifies	the	start	time.	Here,	we	use	"0"	because	
we	want	the	event	to	start	right	now.	The	duration	"3."	is	specified	as	
a	floating	point	number	so	that	we	can	have	non-integer	durations.	
Finally,	the	number	"64"	determines	the	MIDI	pitch.	You	might	be	
wondering	why	the	pack	object	output	is	being	sent	to	a	message	box.	
This	is	good	practice	as	it	will	reveal	any	mistakes	you	made	in	
constructing	an	event	message.
		

In	the	text	file,	we	access	the	event	parameters	using	p-statements.	
We	never	access	p1	(instrument	number)	or	p2	(start	time)	because	
they	are	not	important	within	the	context	of	our	instrument.	Although	
p3	(duration)	is	not	used	for	anything	here,	it	is	often	used	to	create	
audio	envelopes.	Finally,	p4	(MIDI	pitch)	is	converted	to	cycles-per-
second.	The	print	statement	is	there	so	that	we	can	verify	the	
parameter	values.

		

CSOUND	IN	ABLETON	LIVE

685

CSOUND	IN	ABLETON	LIVE

Csound	can	be	used	in	Ableton	Live	through	Max4Live.	Max4Live	is	
a	toolkit	which	allows	users	to	build	devices	for	Live	using	
Max/MSP.		Please	see	the	previous	section	on	using	Csound	in	
Max/MSP	for	more	details	on	how	to	use	Csound	in	Live.

Cabbage	can	also	be	used	to	run	Csound	in	Live,	or	any	other	audio	
plugin	host.	Please	refer	to	the	section	titled	'Cabbage'	in	chapter	10.		

CSOUND	IN	ABLETON	LIVE

686

D.	CSOUND	AS	A	VST	PLUGIN

687

D.	CSOUND	AS	A	VST	PLUGIN

Csound	can	be	built	into	a	VST	or	AU	plugin	through	the	use	of	the	
Csound	host	API.	Refer	to	the	section	on	using	the	Csound	API	for	
more	details.	

If	you	are	not	well	versed	in	low	level	computer	programming	you	
can	just	use	Cabbage	to	create	Csound	based	plugins.		See	the	section	
titled	'Cabbage'	in	Chapter	10.	

D.	CSOUND	AS	A	VST	PLUGIN

688

CsoundQt

689

CSOUNDQT

CsoundQt	is	a	free,	cross-platform	graphical	frontend	to	Csound.	It	
features	syntax	highlighting,	code	completion	and	a	graphical	widget	
editor	for	realtime	control	of	Csound.	It	comes	with	many	useful	code	
examples,	from	basic	tutorials	to	complex	synthesizers	and	pieces	
written	in	Csound.	It	also	features	an	integrated	Csound	language	
help	display.

CsoundQt	(named	QuteCsound	until	automn	2011)	can	be	used	as	a	
code	editor	tailored	for	Csound,	as	it	facilitates	running	and	rendering	
Csound	files	without	the	need	of	typing	on	the	command	line	using	
the	Run	and	Render	buttons.

	

In	the	widget	editor	panel,	you	can	create	a	variety	of	widgets	to	
control	Csound.	To	link	the	value	from	a	widget,	you	first	need	to	set	
its	channel,	and	then	use	the	Csound	opcodes	invalue	or	chnget.	To	
send	values	to	widgets,	e.g.	for	data	display,	you	need	to	use	the	
outvalue	or	chnset	opcode.

CsoundQt

690

	CsoundQt	also	now	implements	the	use	of	HTML	and	JavaScript	
code	embedded	in	the	optional	<html>	element	of	the	CSD	file.	If	
this	element	is	detected,	CsoundQt	will	parse	it	out	as	a	Web	page,	
compile	it,	and	display	it	in	the	'HTML5	Gui'	window.	HTML	code	in	
this	window	can	control	Csound	via	a	selected	part	of	the	Csound	API	
that	is	exposed	in	JavaScript.	This	can	be	used	to	define	custom	user	
interfaces,	display	video	and	3D	graphics,	generate	Csound	scores,	
and	much	more.	See	Chapter	12,	Section	H,	Csound	and	Html	for	
more	information.

CsoundQt	also	offers	convenient	facilities	for	score	editing	in	a	
spreadsheet	like	environment	which	can	be	transformed	using	Python	
scripting	(see	also	chapter	12C).

CsoundQt

691

You	will	find	more	detailed	information	and	video	tutorials	in	the	
CsoundQt	home	page	at	http://qutecsound.sourceforge.net.

CONFIGURING	CSOUNDQT	

CsoundQt	gives	easy	access	to	the	most	important	Csound	options	
and	to	many	specific	CsoundQt	settings	via	its	Configuration	Panel.	
In	particular	the	'Run'	tab	offers	many	choices	which	have	to	be	
understood	and	set	carefully.

The	current	version	of	CsoundQt's	configuration	settings	should	be	
found	at	
http://qutecsound.sourceforge.net/pages/documentation.html.	So	the	
following	descriptions	may	be	outdated.
		

To	open	the	configuration	panel	simply	push	the	'Configure'	button.	
The	configuration	panel	comprises	7	tabs.	The	available	configurable	
parameters	in	each	tab	are	described	below	for	each	tab.

CsoundQt

692

RUN	

The	settings	at	the	top	of	the	“Run”	tab	allow	the	user	to	define	the	
command-line	flags	with	which	Csound	is	invoked.

Buffer	Size	(-b)

This	defines	the	software	buffer	size	(corresponding	with	the
-b	flag).	
If	you	do	not	tick,	CsoundQt	will	use	the	defaults.1		
If	you	tick	to	enter	an	own	value,	these	are	some	hints:	

	Always	use	power-of-two	values.
Usually	the	ksmps	block	size	is	1/4	or	1/2	of	the	
software	buffer	size.	If	you	use	live	input	and	output,	it	
is	most	effective	to	set	the	software	buffer	size	to	an	
integer	multiple	of	ksmps	("full	duplex	audio").

CsoundQt

693

Use	smaller	values	(e.g.	128)	for	live	performance	(in	
particular	with	live	input),	as	it	will	reduce	the	latency.	
Use	larger	values	(e.g.	1024)	for	other	cases,	for	
instance	playing	sound	files.
				

HW	Buffer	Size	(-B)

This	defines	the	hardware	buffer	size	(corresponding	with	the
-B	flag).	
If	you	do	not	tick,	CsoundQt	will	use	the	defaults.2		
If	you	tick	to	enter	an	own	value,	these	are	some	hints:	

	Always	use	a	multiple	integer	of	the	software	buffer	
size.	A	common	relation	is:	Hardware	Buffer	Size	=	4	
*	Software	Buffer	Size.
				
The	relation	between	software	buffer	size	and	
hardware	buffer	size	depends	on	the	audio	module.3
				

Use	new	parser

Tick	this	if	you	use	Csound	5.14	or	higher.	This	option	has
been	introduced	during	the	transition	between	the	old	and	the
new	parser,	and	will	disappear	in	future.	

Use	multicore	/Number	of	threads

This	option	is	only	available	when	the	new	parser	is	enabled,
and	corresponds	with	the	-j	flag.	For	instance,	‘-j	2‘	will	tell
Csound	to	use	2	parallel	processors	when	possible.	
You	should	use	this	option	with	care.	It	may	be	also	worth	to
state	that	using	multiple	threads	will	not	in	each	case
improve	the	performance.	Whether	it	does	or	not	depends	on
the	structure	of	the	csd	file	you	run.	

Dither

Switches	on	dithering	(the	--dither	flag)	for	the	conversion	of

CsoundQt

694

audio	from	the	internal	resolution	(now	mostly	64	bit	double
precision	float)	to	the	output	sample	format	(see	below).	

Additional	command	line	flags

This	enables	the	user	to	add	any	additional	options	not	listed
here.	Only	use	if	you	know	what	you	are	doing!

	

File	(offline	render)

These	options	determine	CsoundQt's	behaviour	if	you	render	to	file	
(by	pushing	the	Render	button	or	selecting	the	menu	item	Control	->	
Render	to	file).

Use	CsoundQt	options

Tick	this	to	activate	the	CsoundQT	options	configured	here.

Ignore	CsOptions

Use	this	to	ignore	the	option	embedded	in	the	<CsOptions>
section	of	the	csd	files	you	are	rendering.	
NOTE	that	care	must	be	taken	to	avoid	inconsistencies
between	CsOptions	and	CsoundQt	options.	For	beginners,	it
is	recommended	to	tick	"Ignore	CsOptions"	when	the
CsoundQT	options	are	enabled.	If	you	are	a	more
experienced	user,	you	can	leave	this	unchecked	to	allow
some	additional	options	like	-m128	to	reduce	Csound's
printout.	
NOTE	that	if	you	have	checked	"Use	CsoundQt	options"	and
have	not	checked	"Ignore	CsOptions",	in	the	case	of	a
conflict	between	both	the	CsoundQt	options	set	in	the
configure	panel	will	have	the	priority.	

CsoundQt

695

Ask	for	filename	every	time

Ask	for	a	filename	to	render	the	performance	to.

File	type	/	Sample	format

Use	this	to	set	the	output	file	format.

Input	Filename

Corresponds	with	the	-i	flag	(Input	soundfile	name).

Output	Filename

Corresponds	with	the	-o	flag	for	defining	the	output	file	name
to	which	the	sound	is	written.	

Realtime	Play

These	options	determine	CsoundQt's	behaviour	if	you	push	the	Run	
button	(or	select	the	menu	item	Control	->	Run	Csound).

Use	CsoundQt	options

Tick	this	to	activate	the	CsoundQT	options	configured	here.

Ignore	CsOptions

CsoundQt

696

Use	this	to	ignore	the	option	embedded	in	the	<CsOptions>
section	of	the	csd	files	you	are	running.	
NOTE	that	care	must	be	taken	to	avoid	inconsistencies
between	CsOptions	and	CsoundQt	options.	For	beginners,	it
is	recommended	to	disable	CsOptions	when	the	CsoundQT
options	are	enabled.	If	you	are	a	more	experienced	user,	you
can	leave	this	unchecked	to	allow	some	additional	options
like	-m128	to	reduce	Csound's	printout.	
NOTE	that	if	you	have	checked	"Use	CsoundQt	options"	and
have	not	checked	"Ignore	CsOptions",	in	the	case	of	a
conflict	between	both	the	CsoundQt	options	set	in	the
configure	panel	will	have	the	priority.	

RT	Audio	Module

This	option	is	very	much	dependent	on	your	operating
system.	
In	case	you	experience	crashes	or	have	problems	with	the	real
time	performance,	it	is	worth	to	try	another	module.	
The	most	common	choices	on	the	different	operating	systems
are	probably:	

For	Linux,	use	alsa	or	jack.
				
For	OSX,	use	coreaudio	or	portaudio.
				
For	Windows,	use	portaudio.

Input	device

This	option	selects	the	device	you	are	using	for	real-time
input,	for	instance	from	a	microphone.	(Note	that	you	must
have	ticked	"Use	CsoundQt	options"	if	you	want	Csound	to
use	your	selection.)	
The	usual	(and	most	stable)	choice	here	is	adc.	In	this	case
Csound	will	use	the	device	which	has	been	selected	as

CsoundQt

697

standard	by	your	operating	system.	
If	you	want	to	use	another	device	instead,	click	on	the	button
at	the	right	side.	You	will	find	a	list	of	available	devices	and
can	choose	one	of	them.

Output	device

This	option	selects	the	device	you	are	using	for	real-time
output.	(Note	that	you	must	have	ticked	"Use	CsoundQt
options"	if	you	want	Csound	to	use	your	selection.)	
The	usual	(and	most	stable)	choice	here	is	dac.	In	this	case
Csound	will	use	the	device	which	has	been	selected	as
standard	by	your	operating	system.	
If	you	want	to	use	another	device	instead,	click	on	the	button
at	the	right	side.	You	will	find	a	list	of	available	devices	and
can	choose	one	of	them.

RT	MIDI	Module

This	option	is	very	much	dependent	on	your	operating
system.	
In	case	you	experience	problems	with	MIDI,	it	is	worth	to	try
another	module.	In	case	you	do	not	use	any	MIDI	at	all,
select	none	to	get	rid	of	one	possible	source	of	trouble.	
The	most	common	choices	on	the	different	operating	systems
are	probably:	

For	Linux,	use	alsa	or	portmidi.
				
For	OSX,	use	coremidi4	or	portmidi.
				
For	Windows,	use	portmidi.

Input	device

CsoundQt

698

This	option	selects	the	device	you	are	using	for	real-time
MIDI	input.	(Note	that	you	must	have	ticked	"Use	CsoundQt
options"	if	you	want	Csound	to	use	your	selection.)	
The	usual	choice	here	is	a.	In	this	case	Csound	will	use	all
MIDI	devices.	
In	case	your	RT	MIDI	Module	does	not	support	this	option,
click	on	the	button	at	the	right	side.	You	will	find	a	list	of
available	devices	and	can	choose	one	of	them.

Output	device

This	option	selects	the	device	you	are	using	for	real-time
MIDI	output.	(Note	that	you	must	have	ticked	"Use	CsoundQt
options"	if	you	want	Csound	to	use	your	selection.)	

Jack	client	name

This	option	specifies	the	name	for	communicating	with	a
Jack	audio	client.	The	default	'*'	means	'all'	clients.	

	

GENERAL

CsoundQt

699

		

Run	Utilities	using:

This	should	be	self-explanatory	and	is	only	meaningful	if	you	run	any	
of	the	Csound	Utilities	like	sndinfo	or	the	FFT	analysis	tool	pvanal.

Interface	language

Self-explanatory.

Performance	tweaks

These	are	very	important	options	in	case	you	use	CsoundQt	for	real-
time	usage	and	experience	performance	problems.
		

CsoundQt

700

No	messages	to	consoles

Tick	this	to	disable	any	printout.	

Disable	recording	and	scopes

This	refers	to	CsoundQt's	internal	Record	facility	and	to	the
Scope	widget.	

Disable	realtime	score	events

If	you	check	this,	you	will	not	be	able	to	send	any	live	score
event,	for	instance	from	a	Button	widget	or	the	Live	Event
Sheet.	

Disable	python	callback

If	you	do	not	use	CsoundQt's	internal	Python	scripting	facility
in	real-time,	you	should	check	this	to	improve	the	overall
performance.	

Internal	MIDI	interface

The	"Internal	MIDI	interface"	is	the	MIDI	device	from	which	MIDI	
control	messages	are	sent	directly	to	the	CsoundQt	widgets.	Have	a	
look,	for	instance,	in	the	properties	of	a	Slider	widget	to	see	the	MIDI	
CC	number	and	the	MIDI	Channel	to	be	specified.							
		
Note	that	this	does	not	set	the	input	MIDI	device	for	Csound	itself	
(which	has	be	explained	above	in	Run	->	RT	MIDI	Module	->	Input	
device).

CsoundQt

701

		

Record	sample	format

Defines	the	bit	depth	of	the	audio	file	to	which	CsoundQt	records	its
real-time	output,	when	using	the	Record	button	(or	the	'record'	option
from	the	Control	menu).	For	most	cases	32bit	float	or	24bit	formats
are	recommended.	The	former	is	particularly	useful	as	it	can	hold
‘clipped‘	sample	values,	which	can	be	later	normalised.

Console

You	can	choose	here	how	the	Csound	output	console	looks	like.

Control	message	buffer	size

If	you	do	not	not	want	to	prevent	CsoundQt	from	printing
anything	to	the	console	at	all	(see	above)	but	want	to	reduce
this	output	for	performance's	sake,	you	can	set	here	a	limit.	

There	are	some	mixed	options	at	the	bottom	of	this	tab:

Allow	key	repeats	for	sensekey

If	you	press	a	key	on	your	computer	for	a	long	time,	the	key
is	repeated.	This	may	or	may	not	be	useful	for	the	sensekey
opcode	and	can	be	decided	here.	

Debug	mode	for	Live	Event	Sheet

Self-explanatory.	

CsoundQt

702

Allow	simultaneous	play

If	checked,	it	allows	you	to	play	more	than	one	csd	tab
simultansously.	

Theme

Allows	you	to	choose	between	the	traditional	("fun")
CsoundQt	look,	and	a	more	serious	("boring")	one.	

	

Widgets

CsoundQt

703

Enable	Widgets

If	not	checked,	you	cannot	use	any	of	CsoundQt's	widgets.	

Save	Widgets	in	csd	file

Each	csd	file	has	a	section	for	widgets	and	presets.	These
sections	are	hidden	when	you	open	your	csd	file	in	CsoundQt,
but	are	visible	in	any	text	editor.	So	if	you	do	not	have
checked	this	option,	you	will	not	see	any	of	your	widgets	the
next	time	you	open	your	csd.	So,	only	useful	if	you	want	to
export	a	csd	without	the	widget	tags.	

Show	Widgets	on	play

If	checked,	the	widget	panel	will	pop	up	each	time	you	push
the	Play	button.	

Show	tooltips	for	widgets

Enables	a	useful	feature	which	lets	you	see	the	channel	name
of	a	widget	if	you	stay	a	moment	on	it	with	the	computer
mouse.	

Enable	FLTK

FLTK	means	a	built-in	(and	somehow	outdated)	method	of
using	widgets	in	Csound.	As	these	widgets	could	conflict
with	CsoundQt's	own	widgets,	you	will	usually	uncheck	this.	

Run	FLTK	csds	in	Terminal

This	lets	you	execute	csd	files	which	contain	FLTK	widgets
without	conflicting	with	CsoundQt.	

Store	Old	Widget	Format

CsoundQt

704

CsoundQt	started	in	using	the	file	format	for	widgets	from
Matt	Ingall's	'Mac	Csound'	for	the	sake	of	compatibility.
Later	it	decided	to	use	an	own	format;	mainly	for	the	build-in
presets	facility.	When	you	check	this	option,	CsoundQt	will
save	the	old	Mac	Csound	widgets	format	in	addition	to	the
new	proper	CsoundQt	widget	format.	

Open	properties	when	creating	widgets

Usually	you	will	this	have	ticked,	to	enter	your	channel	name
and	other	properties	when	you	create	a	widget.	

Widgets	are	an	independent	window

CsoundQt	consists	of	many	subwindows	except	the	main
Editor	panel:	the	Console,	the	Help	(Manual),	the	Inspector,
and	so	on.	If	you	check	this	option,	the	widget	panel	will	not
be	considered	as	one	of	them,	but	as	independent	window.
This	means	that	you	cannot	dock	it	by	double-clicking	on	the
top,	like	all	the	other	subwindows,	but	it	may	have
advantages	anyhow,	depending	on	your	operating	system	and
your	configuration.	

Font	scaling	/	Font	offset

Affects	the	way	the	fonts	are	shown	for	instance	in	a	Label
widget.	

	
		

Editor

CsoundQt

705

		

Only	one	option	needs	some	explanation:
		

Autoplay	files	when	launched	from	file

If	ticked,	a	csd	file	will	play	immediately	when	opened.	

	

ENVIRONMENT

CsoundQt

706

	
		

There	are	some	important	settings	here,	along	with	some	only	for	
developers.	We	will	focus	on	the	options	which	can	be	important	for	
all	users.

Html	doc	directory

This	refers	to	the	folder	containing	the	Canonical	Csound
Manual.	If	you	choose	View	->	Help	Panel,	and	see	nothing
but	a	message	like	"not	found!",	you	will	have	to	set	here	the
directory	for	the	manual.	Click	on	the	browse	button	on	the
right	side,	and	choose	the	folder	where	it	is	on	your
computer.5		

SADIR	(Sound	Analysis	Directory)

CsoundQt

707

You	can	set	here	the	directory	in	which	Csound	will	seek	for
analysis	files	like	.pvx	files.	

SSDIR	(Sound	Sample	Directory)

This	is	very	useful	to	set	a	folder	for	sound	samples,	for
instance	used	by	diskin.	You	can	then	refer	to	the	sample
only	by	name.	

SFDIR	(Sound	File	Directory)

To	specify	a	directory	for	output	files.	This	is	usually	be	done
in	the	'Run'	tab,	as	explained	above	(Output	Filename).	

INCDIR	(Include	Directory)

Specifies	a	directory	for	files	which	all	called	by	the	#include
statement.	

Favorite	dir

Specifies	a	directory	which	will	then	appear	under	the	menu
as	'Favorites'.	

Python	script	dir

Usually	you	will	leave	this	empty	so	that	CsoundQt	links	to
the	Python	Scripts	it	comes	with.	Only	specify	if	you	build
CsoundQt	or	want	to	change	the	scipts	folder.	

CsoundQt

708

	

EXTERNAL	PROGRAMS

	

Should	be	self-explanatory.	'Dot'	is	the	executable	from	
www.graphviz.org.	It	is	used	in	CsoundQt	for	the	Code	Graph	Viewer	
(View	->	View	Code	Graph).	

	

TEMPLATE

This	tab	is	useful	as	it	allows	the	user	to	define	a	default	template	for	
new	CSDs.	Something	like	this	can	be	a	great	timesaver:

CsoundQt

709

	

		

1.	 According	to	the	relevant	manual	page,	the	defaults	are	256	for	
Linux,	1024	for	OSX	and	4096	for	Windows.^

2.	 According	to	the	manual,	1024	for	Linux,	4096	for	OSX	and	
16384	for	Windows.^

CsoundQt

710

3.	 In	the	explanation	of	Victor	Lazzarini	(mail	to	Joachim	Heintz,	
19	march	2013):
		
"1.	For	portaudio,	-B	is	only	used	to	suggest	a	latency	to	the	
backend,	whereas	-b	is	used	to	set	the	actual	buffersize.
		
2.	For	coreaudio,	-B	is	used	as	the	size	of	the	internal	circular	
buffer,	and	-b	is	used	for	the	actual	IO	buffer	size.
		
3.	For	jack,	-B		is	used	to	determine	the	number	of	buffers	used	
in	conjunction	with	-b		,	num	=	(N	+	M	+	1)	/	M.	-b	is	the	size	
of	each	buffer.
		
4.	For	alsa,	-B	is	the	size	of	the	buffer	size,	-b	is	the	period	size	
(a	buffer	is	divided	into	periods).
		
5.	For	pulse,	-b	is	the	actual	buffersize	passed	to	the	device,	-B	
is	not	used.
		
In	other	words,	-B	is	not	too	significant	in	1),	not	used	in	5),	
but	has	a	part	to	play	in	2),	3)	and	4),	which	is	functionally	
similar."	^

4.	 This	options	is	only	available	in	CsoundQt	0.7.3	or	higher.	For	
older	versions,	you	must	use	the	command	line	flag	-
+rtmidi=coremidi.^

5.	 Or	download	the	manual,	if	necessary,	from	sourceforge	
(currently	
http://sourceforge.net/projects/csound/files/csound5/csound5.1
9/manual/).^

Cabbage	is	a	Csound	frontend	that	provides	users	with	the	means	to
work	with	Csound,	to	develop	audio	plugins	and	standalone	software
across	the	three	major	operating	systems.	Whilst	Cabbage	makes	use
of	underlying	plugin	technologies,	such	as	Steinberg's	VST	SDK,
ASIO,	etc,	Csound	is	used	to	process	all	incoming	and	outgoing

CsoundQt

711

audio,	therefore	existing	Csound	instruments	can	be	adapted	to	work
with	Cabbage	with	relative	ease.	Cabbage	also	provides	a	growing
palette	of	GUI	widgets	ranging	from	simple	sliders	to	XY-pads	and
graph	tables.	All	GUI	widgets	in	a	Cabbage	plugin	can	be	controlled
via	host	automation	in	a	plugin	host,	thereby	providing	a	quick	and
effective	means	of	automating	Csound	instrument	parameters	in	both
commercial	and	non-commercial	DAWs.	A	user-forum	exists	at
www.thecabbagefoundation.org,	and	users	are	invited	to	discuss,
contribute,	and	share	instruments	and	music.	

THE	CABBAGE	STANDALONE	HOST.

The	main	Cabbage	application	that	launches	when	you	open	Cabbage
is	known	as	the	standalone	host.	This	simple	application	'hosts'
Cabbage	plugins	in	the	same	way	any	DAW	hosts	a	plugin,	but	it	is
restricted	to	one	plugin	at	a	time	(the	host	can	be	instantiated
multiple	times	however).	The	host	also	features	a	source	code	editor
for	editing	your	code,	and	it	also	allows	users	to	enter	a	GUI	designer
mode	within	which	they	can	design	interfaces	using	a	simple	drag-
and-drop	system.	Access	to	the	Csound	output	console	and	Reference
Manual	through	the	Cabbage	host	facilitate	debugging	and	learning
and	the	host	also	facilitates	control	of	audio	and	MIDI	settings	used
by	Csound.	If	a	user	wishes	to	make	their	Cabbage	patch	available	as
a	plugin	for	use	within	other	software	they	can	use	the	'Export'	option
which	will	prompt	them	to	export	their	instrument	as	an	audio	plugin.
In	addition	to	interacting	with	hosts	via	audio	and	MIDI	connections,
Cabbage	plugins	can	also	respond	to	host	controls	such	as	tempo,
song	position	and	play/stop	status.	The	plugin	formats	are	currently
restricted	to	VST	and	Linux	Native	VST.	Whilst	the	main	purpose	of
the	Cabbage	standalone	host	is	for	prototyping	and	development,	it
can	also	be	used	as	a	fully	blown	production	environment	depending
on	the	complexity	of	the	hosted	instrument.	

CsoundQt

712

An	example	of	the	GUI	and	source	code	editor.	

CABBAGE	INSTRUMENTS.

Cabbage	instruments	are	nothing	more	than	Csound	instruments	with
an	additional	<Cabbage></Cabbage>	section	that	exists	outside	of
the	<CsoundSynthesizer>	tags.	Each	line	of	text	in	this	section
defines	a	GUI	widget.	Special	identifiers	can	be	used	to	control	the
look	and	behavior	of	each	widget.	This	text	ultimately	defines	how
the	graphical	interface	will	look	but	recent	innovations	facilitate	the
modification	of	widget	appearance	from	within	the	Csound	orchestra.
This	opens	up	interesting	possibilities	including	dynamically	hiding
and	showing	parts	of	the	GUI	and	moving	and	resizing	widgets	during
performance	time.	Instruments	can	be	exported	as	either	effects	or
synths.	Effects	process	incoming	audio,	while	synths	won't	produce
any	sound	until	they	are	triggered	via	the	MIDI	widget,	or	a	MIDI
keyboard.	Cabbage	makes	no	differentiation	between	synths	and
effects,	but	VST	hosts	do,	so	one	must	be	careful	when	exporting
instruments.	A	full	list	of	available	widgets,	identifiers	and
parameters	can	be	found	in	the	Cabbage	reference	manual	that	comes
with	all	Cabbage	binaries.	

A	BASIC	CABBAGE	SYNTHESISER

Example	code	to	create	the	most	basic	Cabbage	synthesiser	is
presented	below.	This	instrument	uses	the	MIDI	interop	command
line	flags	to	pipe	MIDI	data	directly	to	p-fields	in	instrument	1.	In
this	case	all	MIDI	pitch	data	is	sent	directly	to	p4,	and	all	MIDI

CsoundQt

713

amplitude	data	is	sent	to	p5.	(An	alternative	approach	is	to	use
Csounds	opcodes	cpsmidi,	ampmidi	etc.	to	read	midi	data	into	an
instrument.)	MIDI	data	sent	on	channel	1	will	cause	instrument	1	to
play.	Data	sent	on	channel	2	will	cause	instrument	2	to	play.	If	one
prefers	they	may	use	the	massign	opcode	rather	than	the	MIDI	interop
flags,	but	regardless	of	what	mechanism	is	used,	you	still	need	to
declare	"-+RTMIDI=NULL	-M0"	in	the	CsOptions.	

<Cabbage>
form	size(400,	120),	caption("Simple	Synth"),	pluginID("plu1")
keyboard	bounds(0,	0,	380,	100)
</Cabbage>
<CsoundSynthesizer>
<CsOptions>
-n	-d	-+rtmidi=NULL	-M0	--midi-key-cps=4	--midi-velocity-amp=5
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	64
nchnls	=	2
0dbfs=1

instr	1
kenv	linenr	p5,	0.1,	.25,	0.01
a1	oscil	kenv*k1,	p4,	1
outs	a1,	a1
endin

</CsInstruments>
<CsScore>
f1	0	1024	10	1
f0	3600
</CsScore>
</CsoundSynthesizer>									

You	will	notice	that	a	-n	and	-d	are	passed	to	Csound	in	the
<CsOptions>	section.	-n	stops	Csound	from	writing	audio	to	disk.
This	must	be	used	when	Cabbage	is	managing	audio.	If	users	wish	to
use	Csound	audio	IO	modules	they	need	to	disable	Cabbage	audio
from	the	settings	menu.	The	-d	prevents	any	FLTK	widgets	from
displaying.	You	will	also	notice	that	our	instrument	is	stereo.	ALL
Cabbage	instruments	operate	in	stereo.	

CONTROLLING	YOUR	INSTRUMENT

The	most	obvious	limitation	to	the	above	instrument	is	that	users
cannot	interact	directly	with	Csound.	In	order	to	do	this	one	can	use	a
Csound	channel	opcode	and	a	Cabbage	control	such	as	a	slider.	Any

CsoundQt

714

control	that	is	to	interact	with	Csound	must	have	a	channel	identifier.	

When	one	supplies	a	channel	name	to	the	channel()	identifier	Csound
will	listen	for	data	being	sent	on	that	channel	through	the	use	of	the
named	channel	opcodes.	In	order	to	retrieve	data	from	the	named
channel	bus	in	Csound	one	can	use	the	chnget	opcode.	It	is	defined	in
the	Csound	reference	manual	as:	

kval	chnget	Sname

Sname	is	the	name	of	the	channel.	This	same	name	must	be	passed	to
the	channel()	identifier	in	the	corresponding	<Cabbage>	section.
Cabbage	only	works	with	the	chnget/chnset	method	of	sending	and
receiving	channel	data.	The	invalue	and	outvalue	opcodes	are	not
supported.	

The	previous	example	can	be	modified	so	that	a	slider	now	controls
the	volume	of	our	oscillator.	

<Cabbage>
form	size(400,	170),	caption("Simple	Synth"),	pluginID("plu1")
hslider		bounds(0,	110,	380,	50),	channel("gain"),	range(0,	1,	.5),	textBox(1)
keyboard	bounds(0,	0,	380,	100)
</Cabbage>
<CsoundSynthesizer>
<CsOptions>
-n	-d	-+rtmidi=NULL	-M0	--midi-key-cps=4	--midi-velocity-amp=5
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	64
nchnls	=	2
0dbfs=1

instr	1
k1	chnget	"gain"
kenv	linenr	p5,	0.1,	1,	0.1
a1	oscil	kenv*k1,	p4,	1
outs	a1,	a1
endin

</CsInstruments>
<CsScore>
f1	0	1024	10	1
f0	3600
</CsScore>
</CsoundSynthesizer>

CsoundQt

715

In	the	example	above	we	use	a	hslider	control	which	is	a	horizontal
slider.	The	bounds()	identifier	sets	up	the	position	and	size	of	the
widget.	The	most	important	identifier	is	channel().	It	is	passed	a
string	"gain".	This	is	the	same	string	we	pass	to	chnget	in	our	Csound
code.	When	a	user	moves	the	slider,	the	current	position	of	the	slider
is	sent	to	Csound	on	a	channel	named	"gain".	Without	the	channel()
identifier	no	communication	would	take	place	between	the	Cabbage
control	and	Csound.	The	keyboard	widget	can	be	used	en	lieu	of	a
real	MIDI	keyboard	when	testing	plugins.	It	is	also	possible	to	move
Cabbage	widgets	from	within	the	Csound	orchestra	using	the	chnset
opcode.

A	BASIC	CABBAGE	EFFECT

Cabbage	effects	are	used	to	process	incoming	audio.	To	do	so	one
must	make	sure	they	can	access	the	incoming	audio	stream.	Any	of
Csound's	signal	input	opcodes	can	be	used	for	this.	The	examples	that
come	with	Cabbage	use	both	the	ins	and	inch	opcodes	to	retrieve	the
incoming	audio	signal.	The	following	code	is	for	a	simple	reverb	unit.
It	accepts	a	stereo	input	and	outputs	a	stereo	signal.	

<Cabbage>
form	caption("Reverb")	size(230,	130)
groupbox	text("Stereo	Reverb"),	bounds(0,	0,	200,	100)
rslider	channel("size"),	bounds(10,	25,	70,	70),	text("Size"),	range(0,	2,	0.2)
rslider	channel("fco"),	bounds(70,	25,	70,	70),	text("Cut-off"),	range(0,	22000,	
10000)
rslider	channel("gain"),	bounds(130,	25,	70,	70),	text("Gain"),	range(0,	1,	0.5)
</Cabbage>
<CsoundSynthesizer>
<CsOptions>
-d	-n
</CsOptions>
<CsInstruments>
;	Initialize	the	global	variables.
sr	=	44100
ksmps	=	32
nchnls	=	2

CsoundQt

716

instr	1
kfdback	chnget	"size"
kfco	chnget	"fco"
kgain	chnget	"gain"
ainL	inch	1
ainR	inch	2
aoutL,	aoutR	reverbsc	ainL,	ainR,	kfdback,	kfco
outs	aoutL*kgain,	aoutR*kgain
endin

</CsInstruments>
<CsScore>
f1	0	4096	10	1
i1	0	1000
</CsScore>
</CsoundSynthesizer>	

The	above	instrument	uses	3	sliders	to	control	the	reverb	size,	the	cut-
off	frequency	for	the	internal	low-pass	filters,	and	the	overall	gain.
The	range()	identifier	is	used	with	each	slider	to	specify	the	min,	max
and	starting	value	of	the	sliders.	If	you	compare	the	two	score
sections	in	the	above	instruments	you	will	notice	that	the	synth
instrument	does	not	use	any	i-statement.	Instead	it	uses	an	f0	3600.
This	tells	Csound	to	wait	for	3600	seconds	before	exiting.	(In	recent
versions	of	Csound	this	step	is	no	longer	necessary	to	sustain
performance.)	Because	synth	instruments	are	controlled	via	MIDI	we
don’t	need	to	use	an	i-statement	in	the	score.	In	the	audio	effect
example	we	use	an	i-statement	with	a	long	duration	so	that	the	effect
runs	without	stopping	for	a	long	time,	typically	longer	than	a	user
session	in	a	DAW.	

RECENT	INNOVATIONS

GENTABLE	WIDGET

The	gentable	widget	can	be	used	to	display	any	Csound	function	
table.

CsoundQt

717

gentable	views	can	be	updated	during	performance	in	order	to	reflect	
any	changes	that	may	have	been	made	to	their	contents	by	the	Csound
orchestra.	Updating	is	actuated	by	using	the	gentable	widget's	so-
called	'ident'	channel	(a	channel	that	is	used	exclusively	for	changing	
the	appearance	of	widgets	and	that	is	channel	separate	from	the	
normal	value	channel).

It	is	also	possible	to	modify	the	contents	of	a	some	function	tables	
that	are	represented	using	gentable	by	clicking	and	dragging	upon	
their	GUI	representations.	This	feature	is	a	work	in	progress	and	is	
currently	only	available	with	GEN	02,	05	and	07.	

SOUNDFILER	WIDGET

Whilst	audio	files	stored	in	GEN	01	function	tables	can	be	viewed	
using	gentable	it	is	more	efficient	(particularly	with	longer	files)	to	
do	this	using	the	'soundfiler'	widget.

soundfiler	also	facilitates	zooming	into	and	out	of	the	viewed	

CsoundQt

718

waveform	and	a	portion	of	the	waveform	can	be	highlighted	using	
click	and	drag.	The	start	and	end	points	of	this	highlighted	region	can	
be	read	into	Csound	and	used,	for	example,	as	loop	points.	An	
example	of	this	can	be	found	in	the	Table3FilePlayer	example	in	
Cabbage's	built-in	examples	in	the	File	Players	subsection.	A	
'scrubber'	(a	vertical	line	through	the	waveform)	can	also	be	displayed
to	indicate	playback	position.

Using	soundfiler	in	combination	with	a	button	widget,	we	can	open	a	
browser	and	browse	for	a	new	sound	file	during	performance.	All	of	
the	examples	in	Examples>FilePlayers	make	use	of	this	possibility.

WIDGETARRAY

The	widgetarray	identifier	can	be	used	with	most	widgets	to	generate	
large	numbers	of	widgets	in	a	single	step.

The	screenshot	from	the	example	shown	above	(which	can	be	found	
in	Cabbage's	built-in	examples	in	the	'FunAndGames'	subsection)	
employs	300	image	widgets	to	create	the	stars	and	the	UFO	and	these	
are	generated	in	a	single	line	of	code.	Each	individual	widget	can	be	
addressed	from	within	the	Csound	orchestra	using	a	numbered	

CsoundQt

719

identity	channel,	thereby	they	can	be	individually	repositioned	or	
modified	in	any	other	way.	This	process	can	be	simplified	by	using	
looping	procedures.

TEXTEDITOR

The	texteditor	widget	can	be	used	to	directly	type	in	a	string	on	the	
computer	keyboard	which	can	then	be	sent	to	Csound.	An	example	
use	of	this	is	to	type	in	score	events	in	real	time	(exemplified	in	the	
example	RealTimeScoreEvents	in	the	the	'Instructional'	subsection	in	
Cabbage's	built-in	examples.)

PLANTS	AND	POPUPS	

Cabbage	'plants'	provides	a	convenient	mechanism	with	which	GUI	
elements	which	belong	together	in	some	way	can	be	grouped.	An	
example	of	this	might	be	the	various	widgets	pertaining	to	the	values	
used	by	an	envelope.	Thereafter	if	becomes	easier	to	modify	the	
grouped	widgets	en	masse:	to	move	them	somewhere	else	in	the	gui	
or	to	hide	or	reveal	them	completely.

An	more	elaborate	function	is	to	hold	a	plant	in	a	completely	separate	
GUI	window	that	can	be	launched	using	a	'pop-up'	button.	An	
example	of	this	is	the	'Clavinet'	instrument	in	the	'Synths'	subsection	
in	Cabbage's	built-in	examples.

RANGE	SLIDERS

A	special	type	of	slider	(horizontal	or	vertical	but	not	rotary	'r'	type)	
employs	two	control	knobs	so	that	it	can	output	two	values.

	

This	widget	can	be	seen	in	action	in	the	example	DelayGrain	in	the	
'Effects'	subsection	in	Cabbage's	built-in	examples.

CsoundQt

720

RESERVED	CHANNELS

Reserved	channels	in	Cabbage	provide	a	means	of	reading	in	a	
variety	of	data	beyond	that	of	the	Cabbage	GUI	widgets.	This	
includes	providing	a	means	of	reading	in	mouse	position	and	mouse	
button	activations	and	also	tempo,	song	position	and	start/stop/record	
status	(if	used	as	a	plugin	within	a	host).	These	channels	are	read	
using	the	chnset	opcode.	

More	information	on	any	of	these	features	can	be	found	in	the	
Cabbage	reference	manual	which	comes	built	into	Cabbage	or	can	be	
found	here.		

Where	can	I	Download	Cabbage?	

Cabbage	is	hosted	on	GitHub,	and	pre-compiled	binaries	for	
Windows	and	OSX	can	be	found	at:
				
https://github.com/cabbageaudio/cabbage/releases
				
If	you	run	Linux	you	will	need	to	build	Cabbage	yourself,	but	
instructions	are	included	with	the	source	code.	You	will	need	to	have	
Csound	installed.
		

BLUE

721

BLUE
		

GENERAL	OVERVIEW	

Blue	is	a	graphical	computer	music	environment	for	composition,	a
versatile	front-end	to	Csound.	It	is	written	in	Java,	platform-
independent,	and	uses	Csound	as	its	audio	engine.	It	provides	higher
level	abstractions	such	as	a	graphical	timeline	for	composition,	GUI-
based	instruments,	score	generating	SoundObjects	like	PianoRolls,
python	scripting,	Cmask,	Jmask	and	more.		It	is	available	for	free
(donation	appreciated)	at:	
http://blue.kunstmusik.com	
		

ORGANIZATION	OF	TABS	AND	WINDOWS

Blue	organizes	all	tasks	that	may	arise	while	working	with	Csound
within	a	single	environment.	Each	task,	be	it	score	generation,
instrument	design,	or	composition	is	done	in	its	own	window.	All	the
different	windows	are	organized	in	tabs	so	that	you	can	flip	through
easily	and	access	them	quickly.	
In	several	places	you	will	find	lists	and	trees:	All	of	your	instruments
used	in	a	composition	are	numbered,	named	and	listed	in	the
Orchestra-window.	
You	will	find	the	same	for	UDOs	(User	Defined	Opcodes).	
From	this	list	you	may	export	or	import	Instruments	and	UDOs	from	a
library	to	the	piece	and	vice	versa.	You	may	also	bind	several	UDOs
to	a	particular	Instrument	and	export	this	instrument	along	with	the
UDOs	it	needs.	
			

EDITOR

Blue	holds	several	windows	where	you	can	enter	code	in	an	editor-
like	window.	The	editor-like	windows	are	found	for	example	in	the	
Orchestra-window,	the	window	to	enter	global	score	or	the	Tables-

BLUE

722

window	to	collect	all	the	functions.	There	you	may	type	in,	import	or	
paste	text-based	information.	It	gets	displayed	with	syntax	
highlighting	of	Csound	code.
		

	

	Image:	The	Orchestra-window

	

THE	SCORE	TIMELINE	AS	A	GRAPHICAL
REPRESENTATION	OF	THE	COMPOSITION

The	Score	timeline	allows	for	visual	organization	of	all	the	used
SoundObjects	in	a	composition.	
In	the	Score-window,	which	is	the	main	graphical	window	that
represents	the	composition,	you	may	arrange	the	composition	by
arranging	the	various	SoundObjects	in	the	timeline.	A	SoundObject	is
an	object	that	holds	or	even	generates	a	certain	amount	of	score-
events.	SoundObjects	are	the	building	blocks	within	blue's	score
timeline.	SoundObjects	can	be	lists	of	notes,	algorithmic	generators,
python	script	code,	Csound	instrument	definitions,	PianoRolls,
Pattern	Editors,	Tracker	interfaces,	and	more.	These	SoundObjects
may	be	text	based	or	GUI-based	as	well,	depending	on	their	facilities
and	purposes.

BLUE

723

Image:	The	timeline	holding	several	Sound	Objects.	One	
SoundObject	is	selected	and	opened	in	the	SoundObject-Editor-
window
		

	

SOUNDOBJECTS	

To	enable	every	kind	of	music	production	style	and	thus	every	kind	of
electronic	music,	blue	holds	a	set	of	different	SoundObjects.
SoundObjects	in	blue	can	represent	many	things,	whether	it	is	a	single
sound,	a	melody,	a	rhythm,	a	phrase,	a	section	involving	phrases	and
multiple	lines,	a	gesture,	or	anything	else	that	is	a	perceived	sound
idea.	
Just	as	there	are	many	ways	to	think	about	music,	each	with	their	own
model	for	describing	sound	and	vocabulary	for	explaining	music,
there	are	a	number	of	different	SoundObjects	in	blue.	Each
SoundObject	in	blue	is	useful	for	different	purposes,	with	some	being
more	appropriate	for	expressing	certain	musical	ideas	than	others.	For
example,	using	a	scripting	object	like	the	PythonObject	or
RhinoObject	would	serve	a	user	who	is	trying	to	express	a	musical
idea	that	may	require	an	algorithmic	basis,	while	the	PianoRoll	would

BLUE

724

be	useful	for	those	interested	in	notating	melodic	and	harmonic	ideas.
The	variety	of	different	SoundObjects	allows	for	users	to	choose	what
tool	will	be	the	most	appropriate	to	express	their	musical	ideas.	
Since	there	are	many	ways	to	express	musical	ideas,	to	fully	allow	the
range	of	expression	that	Csound	offers,	blue's	SoundObjects	are
capable	of	generating	different	things	that	Csound	will	use.	Although
most	often	they	are	used	for	generating	Csound	SCO	text,
SoundObjects	may	also	generate	ftables,	instruments,	user-defined
opcodes,	and	everything	else	that	would	be	needed	to	express	a
musical	idea	in	Csound.	
		

MEANS	OF	MODIFICATION	OF	A	SOUNDOBJECT

First,	you	may	set	the	start	time	and	duration	of	every	SoundObject
"by	hand"	by	typing	in	precise	numbers	or	drag	it	more	intuitively
back	and	fourth	on	the	timeline.	This	modifies	and	the	position	in
time	of	a	SoundObject,	while	stretching	it	modifies	the	outer
boundaries	of	it	and	may	even	change	the	density	of	events	it
generates	inside.	
If	you	want	to	enter	information	into	a	SoundObject,	you	can	open
and	edit	it	in	a	SoundObject	editor-window.	
But	there	is	also	a	way	to	modify	the	“output”	of	a	SoundObject,
without	having	to	change	its	content.	The	way	to	do	this	is	using
NoteProcessors.	
By	using	NoteProcessors,	several	operations	may	be	applied	onto	the
parameters	of	a	SoundObject.	NoteProcessors	allow	for	modifying	the
SoundObjects	score	results,	i.e.	adding	2	to	all	p4	values,	multiplying
all	p5	values	by	6,	etc.	These	NoteProcessors	can	be	chained	together
to	manipulate	and	modify	objects	to	achieve	things	like	transposition,
serial	processing	of	scores,	and	more.	
Finally	the	SoundObjects	may	be	grouped	together	and	organized	in
larger-scale	hierarchy	by	combining	them	to	PolyObjects.	
Polyobject	are	objects,	which	hold	other	SoundObjects,	and	have
timelines	in	themselves.	Working	within	them	on	their	timelines	and
outside	of	them	on	the	parent	timeline	helps	organize	and	understand
the	concepts	of	objective	time	and	relative	time	between	different
objects.	
		

BLUE

725

INSTRUMENTS	WITH	A	GRAPHICAL
INTERFACE

Instruments	and	effects	with	a	graphical	interface	may	help	to
increase	musical	workflow.	Among	the	instruments	with	a	graphical
user	interface	there	are	BlueSynthBuilder	(BSB)-Instruments,
BlueEffects	and	the	blue	Mixer.	
		

BLUESYNTHBUILDER	(BSB)-INSTRUMENTS

The	BlueSynthBuilder	(BSB)-Instruments	and	the	BlueEffects	work
like	conventional	Csound	instruments,	but	there	is	an	additional
opportunity	to	add	and	design	a	GUI	that	may	contain	sliders,	knobs,
textfields,	pull-down	menus	and	more.	You	may	convert	any
conventional	Csound	Instrument	automatically	to	a	BSB-Instrument
and	then	add	and	design	a	GUI.	

Image:	The	interface	of	a	BSB-Instrument.	
		

BLUE	MIXER

Blue's	graphical	mixer	system	allows	signals	generated	by	
instruments	to	be	mixed	together	and	further	processed	by	Blue	

BLUE

726

Effects.	The	GUI	follows	a	paradigm	commonly	found	in	music	
sequencers	and	digital	audio	workstations.
		
The	mixer	UI	is	divided	into	channels,	sub-channels,	and	the	master	
channel.	Each	channel	has	a	fader	for	applying	level	adjustments	to	
the	channel's	signal,	as	well	as	bins	pre-	and	post-fader	for	adding	
effects.	Effects	can	be	created	on	the	mixer,	or	added	from	the	Effects
Library.
		
Users	can	modify	the	values	of	widgets	by	manipulating	them	in	real-
time,	but	they	can	also	draw	automation	curves	to	compose	value	
changes	over	time.

Image:	The	BlueMixer

		

AUTOMATION

For	BSB-Instruments,	blueMixer	and	blueEffects	it	is	possible	to
use	Lines	and	Graphs	within	the	score	timeline	to	enter	and	edit
parameters	via	a	line.	In	Blue,	most	widgets	in	BlueSynthBuilder	and

BLUE

727

Effects	can	have	automation	enabled.	Faders	in	the	Mixer	can	also	be
automated.	
Editing	automation	is	done	in	the	Score	timeline.	This	is	done	by	first
selecting	a	parameter	for	automation	from	the	SoundLayer's	“A”
button's	popup	menu,	then	selecting	the	Single	Line	mode	in	the
Score	for	editing	individual	line	values.	
Using	Multi-Line	mode	in	the	score	allows	the	user	to	select	blocks	of
SoundObjects	and	automations	and	move	them	as	a	whole	to	other
parts	of	the	Score.	
Thus	the	parameters	of	these	instruments	with	a	GUI	may	be
automatized	and	controlled	via	an	editable	graph	in	the	Score-
window.	
		

LIBRARIES

blue	features	also	libraries	for	instruments,	SoundObjects,	UDOs,
Effects	(for	the	blueMixer)	and	the	CodeRepository	for	code
snippets.	All	these	libraries	are	organized	as	lists	or	trees.	Items	of	the
library	may	be	imported	to	the	current	composition	or	exported	from
it	to	be	used	later	in	other	pieces.

The	SoundObject	library	allows	for	instantiating	multiple	copies	of	a	
SoundObject,	which	allows	for	editing	the	original	object	and	
updating	all	copies.	If	NoteProcessors	are	applied	to	the	instances	in	
the	composition	representing	the	general	structure	of	the	composition	
you	may	edit	the	content	of	a	SoundObject	in	the	library	while	the	
structure	of	the	composition	remains	unchanged.	That	way	you	may	
work	on	a	SoundObject	while	all	the	occurrences	in	the	composition	
of	that	very	SoundObject	are	updated	automatically	according	the	
changes	done	in	the	library.
		
The	Orchestra	manager	organizes	instruments	and	functions	as	an	
instrument	librarian.
		
There	is	also	an	Effects	Library	and	a	Library	for	the	UDOs

BLUE

728

		
	
		

OTHER	FEATURES

-			blueLive	-	work	with	SoundObjects	in	realtime	to	experiment	with
musical	ideas	or	performance.	
-			SoundObject	freezing	-	frees	up	CPU	cycles	by	pre-rendering
SoundObjects	
-			Microtonal	support	using	scales	defined	in	the	Scala	scale	format,
including	a	microtonal	PianoRoll,	Tracker,	NoteProcessors,	and
more.

WinXound

729

WINXOUND
WinXound	Description:	
WinXound	is	a	free	and	open-source	Front-End	GUI	Editor	for
CSound	6,	CSoundAV,	
CSoundAC,	with	Python	and	Lua	support,	developed	by	Stefano
Bonetti.	
It	runs	on	Microsoft	Windows,	Apple	Mac	OsX	and	Linux.	
WinXound	is	optimized	to	work	with	the	CSound	6	compiler.	

WinXound	Features:

Edit	CSound,	Python	and	Lua	files	(csd,	orc,	sco,	py,	lua)	with	
Syntax	Highlight	and	Rectangular	Selection;
Run	CSound,	CSoundAV,	CSoundAC,	Python	and	Lua	
compilers;
Run	external	language	tools	(QuteCsound,	Idle,	or	other	GUI	
Editors);
CSound	analysis	user	friendly	GUI;
Integrated	CSound	manual	help;
Possibilities	to	set	personal	colors	for	the	syntax	highlighter;
Convert	orc/sco	to	csd	or	csd	to	orc/sco;
Split	code	into	two	windows	horizontally	or	vertically;
CSound	csd	explorer	(File	structure	for	Tags	and	Instruments);
CSound	Opcodes	autocompletion	menu;
Line	numbers;
Bookmarks;
...and	much	more	...	(Download	it!)	

WinXound

730

	

	

Web	Site	and	Contacts:
		
-	Web:	winxound.codeplex.com
		
-	Email:	stefano_bonetti@tin.it	(or	stefano_bonetti@alice.it)

	
		
REQUIREMENTS
		

		
System	requirements	for	Microsoft	Windows:

Supported:	Xp,	Vista,	Seven	(32/64	bit	versions);
(Note:	For	Windows	Xp	you	also	need	the	Microsoft	
Framework	.Net	version	2.0	or	major.	You	can	download	it	
from	www.microsoft.com	site);
CSound	6:	http://sourceforge.net/projects/csound	-	(needed	for	
CSound	and	LuaJit	compilers);	
Not	requested	but	suggested:	CSoundAV	by	Gabriel	
Maldonado	(http://www.csounds.com/maldonado/);	

WinXound

731

Requested	to	work	with	Python:	Python	compiler	
(http://www.python.org/download/)
		

System	requirements	for	Apple	Mac	OsX:

Osx	10.5	or	major;
CSound	6:	http://sourceforge.net/projects/csound	-	(needed	for	
CSound	compiler);

System	requirements	for	Linux:

Gnome	environment	or	libraries;
Please,	read	carefully	the	"ReadMe"	file	in	the	source	code.
		

INSTALLATION	AND	USAGE	

Microsoft	Windows	Installation	and	Usage:

Download	and	install	the	Microsoft	Framework	.Net	version	
2.0	or	major	(only	for	Windows	Xp);
Download	and	install	the	latest	version	of	CSound	6	
(http://sourceforge.net/projects/csound);	
Download	the	WinXound	zipped	file,	decompress	it	where	you	
want	(see	the	(*)note	below),	and	double-click	on	
"WinXound_Net"	executable;
(*)note:	THE	WINXOUND	FOLDER	MUST	BE	LOCATED	
IN	A	PATH	WHERE	YOU	HAVE	FULL	READ	AND	WRITE	
PERMISSION	(for	example	in	your	User	Personal	folder).
		

Apple	Mac	OsX	Installation	and	Usage:

Download	and	install	the	latest	version	of	CSound	6	
(http://sourceforge.net/projects/csound);	

WinXound

732

Download	the	WinXound	zipped	file,	decompress	it	and	drag	
WinXound.app	to	your	Applications	folder	(or	where	you	
want).	Launch	it	from	there.

Linux	Installation	and	Usage:

Download	and	install	the	latest	version	of	CSound	6	for	your	
distribution;
Ubuntu	(32/64	bit):	Download	the	WinXound	zipped	file,	
decompress	it	in	a	location	where	you	have	the	full	read	and	
write	permissions;

WinXound

733

To	compile	the	source	code:
		
1)	Before	to	compile	WinXound	you	need	to	install:
		
-	gtkmm-2.4	(libgtkmm-2.4-dev)	>=	2.12
		
-	vte	(libvte-dev)
		
-	webkit-1.0	(libwebkit-dev)
		

2)	To	compile	WinXound	open	the	terminal	window,	go	into	
the	uncompressed	"winxound_gtkmm"	directory	and	type:
		
./preconfigure
		
./configure
		
(make	clean)
		
make
		

3)	To	use	WinXound	without	installing	it:
		
make	standalone
		
./bin/winxound
		
[Note:	WinXound	folder	must	be	located	in	a	path	where	you	
have	full	read	and	write	permission.]
		

4)	To	install	WinXound:
		
make	install

WinXound

734

		
Source	Code:

Windows:	The	source	code	is	written	in	C#	using	Microsoft	
Visual	Studio	C#	Express	Edition	2008.
OsX:	The	source	code	is	written	in	Cocoa	and	Objective-C	
using	XCode	3.2	version.
Linux:	The	source	code	is	written	in	C++	(Gtkmm)	using	
Anjuta.

		
Note:	The	TextEditor	is	entirely	based	on	the	wonderful	SCINTILLA	
text	control	by	Neil	Hodgson	(http://www.scintilla.org).
		

		

Screenshots:
		

Look	at:	winxound.codeplex.com	

WinXound

735

		

Credits:	
Many	thanks	for	suggestions	and	debugging	help	to	Roberto	Doati,
Gabriel	Maldonado,	Mark	Jamerson,	Andreas	Bergsland,	Oeyvind
Brandtsegg,	Francesco	Biasiol,	Giorgio	Klauer,	Paolo	Girol,
Francesco	Porta,	Eric	Dexter,	Menno	Knevel,	Joseph	Alford,	Panos
Katergiathis,	James	Mobberley,	Fabio	Macelloni,	Giuseppe	Silvi,
Maurizio	Goina,	Andrés	Cabrera,	Peiman	Khosravi,	Rory	Walsh	and
Luis	Jure.	

WinXound

736

CSOUND	VIA	TERMINAL

737

CSOUND	VIA	TERMINAL

Whilst	many	of	us	now	interact	with	Csound	through	one	of	its	many	
front-ends	which	provide	us	with	an	experience	more	akin	the	that	of	
mainstream	software,	new-comers	to	Csound	should	bear	in	mind	that	
there	was	a	time	when	the	only	way	running	Csound	was	from	the	
command	line	using	the	Csound	command.	In	fact	we	must	still	run	
Csound	in	this	way	but	front-ends	do	this	for	us	usually	via	some	
toolbar	button	or	widget.	Many	people	still	prefer	to	interact	with	
Csound	from	a	terminal	window	and	feel	this	provides	a	more	'naked'	
and	honest	interfacing	with	the	program.	Very	often	these	people	
come	from	the	group	of	users	who	have	been	using	Csound	for	many	
years,	form	the	time	before	front-ends.	It	is	still	important	for	all	
users	to	be	aware	of	how	to	run	Csound	from	the	terminal	as	it	
provides	a	useful	backup	if	problems	develop	with	a	preferred	front-
end.

THE	CSOUND	COMMAND	

The	Csound	command	follows	the	format:

csound	[performance_flags]	[input_orc/sco/csd]

Executing	'csound'	with	no	additional	arguments	will	run	the	program	
but	after	a	variety	of	configuration	information	is	printed	to	the	
terminal	we	will	be	informed	that	we	provided	"insufficient	
arguments"	for	Csound	to	do	anything	useful.	This	action	can	still	be	
valid	for	first	testing	if	Csound	is	installed	and	configured	for	
terminal	use,	for	checking	what	version	is	installed	and	for	finding	
out	what	performance	flags	are	available	without	having	to	refer	to	
the	manual.

Performance	flags	are	controls	that	can	be	used	to	define	how	Csound	
will	run.	All	of	these	flags	have	defaults	but	we	can	make	explicitly	
use	flags	and	change	these	defaults	to	do	useful	things	like	controlling
the	amount	of	information	that	Csound	displays	for	us	while	running,	

CSOUND	VIA	TERMINAL

738

activating	a	MIDI	device	for	input,	or	altering	buffer	sizes	for	fine	
tuning	realtime	audio	performance.	Even	if	you	are	using	a	front-end,	
command	line	flags	can	be	manipulated	in	a	familiar	format	usually	
in	'settings'	or	'preferences'	menu.	Adding	flags	here	will	have	the	
same	effect	as	adding	them	as	part	of	the	Csound	command.	To	learn	
more	about	Csound's	command	line	flags	it	is	best	to	start	on	the	page	
in	the	reference	manual	where	they	are	listed	and	described	by	
category.

Command	line	flags	can	also	be	defined	within	the	<CsOptions>	
</CsOptions>	part	of	a	.csd	file	and	also	in	a	file	called	.csoundrc	
which	can	be	located	in	the	Csound	home	program	directory	and/or	in	
the	current	working	directory.	Having	all	these	different	options	for	
where	esentially	the	same	information	is	stored	might	seem	excessive	
but	it	is	really	just	to	allow	flexibiliy	in	how	users	can	make	changes	
to	how	Csound	runs,	depending	on	the	situation	and	in	the	most	
efficient	way	possible.	This	does	however	bring	up	one	one	issue	in	
that	if	a	particular	command	line	flag	has	been	set	in	two	different	
places,	how	does	Csound	know	which	one	to	choose?	There	is	an	
order	of	precedence	that	allows	us	to	find	out.

Beginning	from	its	own	defaults	the	first	place	Csound	looks	for	
additional	flag	options	is	in	the	.csoundrc	file	in	Csound's	home	
directory,	the	next	is	in	a	.csoundrc	file	in	the	current	working	
directory	(if	it	exists),	the	next	is	in	the	<CsOptions>	of	the	.csd	and	
finally	the	Csound	command	itself.	Flags	that	are	read	later	in	this	list	
will	overwrite	earlier	ones.	Where	flags	have	been	set	within	a	front-
end's	options,	these	will	normally	overwrite	any	previous	instructions	
for	that	flag	as	they	form	part	of	the	Csound	command.	Often	a	front-
end	will	incorporate	a	check-box	for	disabling	its	own	inclusion	of	
flag	(without	actually	having	to	delete	them	from	the	dialogue	
window).

After	the	command	line	flags	(if	any)	have	been	declared	in	the	
Csound	command,	we	provide	the	name(s)	of	out	input	file(s)	-	
originally	this	would	have	been	the	orchestra	(.orc)	and	score	(.sco)	

CSOUND	VIA	TERMINAL

739

file	but	this	arrangement	has	now	all	but	been	replaced	by	the	more	
recently	introduced	.csd	(unified	orchestra	and	score)	file.	The	
facility	to	use	a	separate	orchestra	and	score	file	remains	however.

For	example:

Csound	-d	-W	-osoundoutput.wav	inputfile.csd

will	run	Csound	and	render	the	input	.csd	'inputfile.csd'	as	a	wav	file	
('-W'	flag)	to	the	file	'soundoutput.wav'	('-o'	flag).	Additionally	
displays	will	be	suppressed	as	dictated	by	the	'-d'	flag.	The	input	.csd	
file	will	need	to	be	in	the	current	working	directory	as	no	full	path	has
been	provided.	the	output	file	will	be	written	to	the	current	working	
directory	of	SFDIR	if	specified.
		

		

CSOUND	VIA	TERMINAL

740

WEB	BASED	CSOUND

741

WEB	BASED	CSOUND

USING	CSOUND	VIA	UDP	WITH	THE	--PORT
OPTION

	The	--port=N	option	allows	users	to	send	orchestras	to	be	compiled	
on-the-fly	by	Csound	via	UDP	connection.	This	way,	Csound	can	be	
started	with	no	instruments,	and	will	listen	to	messages	sent	to	it.	
Many	programs	are	capable	of	sending	UDP	messages,	and	scripting	
languages,	such	as	Python,	can	also	be	used	for	this	purpose.	The	
simplest	way	of	trying	out	this	option	is	via	the	netcat	program,	which
can	be	used	in	the	terminal	via	the	nc	command.

Let's	explore	this	as	an	example	of	the	--port	option.	First,	Csound	is	
started	with	the	following	command:

$	csound	-odac	--port=1234

Alternatively,	if	using	a	frontend	such	as	CsoundQT,	it	is	possible	run	
an	empty	CSD,	with	the	--port	in	its	CsOptions	field:

<CsoundSynthesizer>
<CsOptions>
--port=1234
</CsOptions>
<CsInstruments>
</CsInstruments>
<CsScore>
</CsScore>
</CsoundSynthesizer>

This	will	start	Csound	in	a	daemon	mode,	waiting	for	any	UDP	
messages	in	port	1234.	Now	with	netcat,	orchestra	code	can	be	sent	to	
Csound.	A	basic	option	is	to	use	it	interactively	in	the	terminal,	with	a
heredocument	command	(<<)	to	indicate	the	end	of	the	orchestra	we	
are	sending:

$	nc	-u	127.0.0.1	1234	<<	EOF
>	instr	1
>	a1	oscili	p4*0dbfs,p5
>	out	a1
>	endin
>	schedule	1,0,1,0.5,440
>	EOF

WEB	BASED	CSOUND

742

Csound	will	respond	with	a	440Hz	sinewave.	The	ctl-c	key	
combination	can	be	used	to	close	nc	and	go	back	to	the	shell	prompt.	
Alternatively,	we	could	write	our	orchestra	code	to	a	file	and	then	
send	it	to	Csound	via
		
the	following	command	(orch	is	the	name	of	our	file):

$	nc	-u	127.0.0.1	1234	<	orch

Csound	performance	can	be	stopped	in	the	usual	way	via	ctl-c	in	the	
terminal,	or	through	the	dedicated
		
transport	controls	in	a	frontend.	We	can	also	close	the	server	it	via	a	
special	UDP	message:

ERROR	WITH	MACRO	close

However,	this	will	not	close	Csound,	but	just	stop	the	UDP	server.

		

PNACL	-	CSOUND	FOR	PORTABLE	NATIVE
CLIENT

Native	Client	(NaCl)	is	a	sandboxing	technology	developed	by	
Google	that	allows	C/C++	modules	to	extend	the	support	provided	by	
HTML5.	Portable	Native	Client	(pNaCl)	is	one	of	the	toolchains	in	
the	NaCl	SDK	(the	others	are	newlib	and	glibc).	The	advantage	of	
pNaCl	over	the	other	options	is	that	it	only	requires	a	single	module	
to	be	built	for	all	supported	architectures.

The	other	major	advantage	is	that	pNaCl	is,	as	of	Google	Chrome	31,	
enabled	by	default	in	the	browser.	This	means	that	users	just	need	to	
load	a	page	containing	the	pNaCl	application	and	it	will	work.	pNaCl	
modules	are	compiled	to	llvm	bytecode	that	is	translated	to	a	native	
binary	by	the	browser.	To	check	whether	your	version	of	Chrome	
supports	pNaCl,	use	the	following	address:	

WEB	BASED	CSOUND

743

chrome://nacl

The	pNaCl	Csound	implementation	allows	users	to	embed	the	system	
in	web	pages.	With	a	minimal	use	of	Javascript,	it	is	possible	to	
create	applications	and	frontends	for	Csound,	to	be	run	inside	a	web	
browser	(Chrome,	Chromium).	

A	binary	package	for	pNaCl-Csound	can	be	found	in	the	Csound	
releases	http://sourceforge.net/projects/csound/files/csound6

Running	the	example	application
				

NaCl	pages	need	to	be	served	over	http,	which	means	they	will	not	
work	when	opened	as	local	files.	For	this	you	will	need	a	http	server.	
A	minimal	one,	written	in	Python,	can	be	found	in	the	NaCl	SDK	
https://developer.chrome.com/native-client/sdk/download.	

CSOUND	PNACL	MODULE	REFERENCE

The	interface	to	Csound	is	found	in	the	csound.js	javascript	file.	
Csound	is	ready	on	module	load,	and	can	accept	control	messages	
from	then	on.	

Control	functions

The	following	control	functions	can	be	used	to	interact	with	Csound:

csound.Play()	-	starts	performance
csound.PlayCsd(s)	-	starts	performance	from	a	CSD	file	s,	
which	can	be	in	./http/	(ORIGIN	server)	or	./local/	(local	
sandbox).
csound.RenderCsd(s)	-	renders	a	CSD	file	s,	which	can	be	in	
./http/	(ORIGIN	server)	or	./local/	(local	sandbox),	with	no	RT	
audio	output.	The	“finished	render”	message	is	issued	on	
completion.
csound.Pause()	-	pauses	performance

WEB	BASED	CSOUND

744

csound.StartAudioInput()	-	switches	on	audio	input	(available	
in	Chrome	version	36	onwards)
csound.CompileOrc(s)	-	compiles	the	Csound	code	in	the	
string	s
csound.ReadScore(s)	-	reads	the	score	in	the	string	s	(with	
preprocessing	support)
csound.Event(s)	-	sends	in	the	line	events	contained	in	the	
string	s	(no	preprocessing)
csound.SetChannel(name,	value)	-	sends	the	control	channel	
name	the	value	value.
csound.SetStringChannel(name,	string)	-	sends	the	string	
channel	name	the	string	string.
csound.SetTable(num,	pos,	value)	-	sets	the	table	name	at	
index	pos	the	value	value.
csound.RequestTable(num)	-	requests	the	table	data	for	table	
num.	The	“Table::Complete”	message	is	issued	on	completion.
csound.GetTableData()	-	returns	the	most	recently	requested	
table	data	as	an	ArrayObject.
MIDIin(byte1,	byte2,	byte3)	-	sends	a	MIDI	in	message	to	
Csound.
NoteOn(channel,number,velocity)	-	sends	a	Note	ON	
message	to	Csound.
NoteOff(channel,number,velocity)	-	sends	a	Note	OFF	
message	to	Csound.
PolyAftertouch(channel,number,aftertouch)	-	sends	a	
polyphonic	aftertouch	message	to	Csound.
ControlChange(channel,control,amount)	-	sends	a	control	
change	message	to	Csound.
ProgramChange(channel,control)	-	sends	a	program	change	
message	to	Csound.
Aftertouch(channel,amount)	-	sends	a	mono	aftertouch	
message	to	Csound.
PitchBend(channel,fine,coarse)	-	sends	a	pitchbend	message	
to	Csound

Filesystem	functions	

In	order	to	facilitate	access	to	files,	the	following	filesystem	functions	
can	be	used:	

WEB	BASED	CSOUND

745

csound.CopyToLocal(src,	dest)	-	copies	the	file	src	in	the	
ORIGIN	directory	to	the	local	file	dest,	which	can	be	accessed	
at	./local/dest.	The	“Complete”	message	is	issued	on	
completion.
csound.CopyUrlToLocal(url,dest)	-	copies	the	url	url	to	the	
local	file	dest,	which	can	be	accessed	at	./local/dest.	Currently	
only	ORIGIN	and	CORS	urls	are	allowed	remotely,	but	local	
files	can	also	be	passed	if	encoded	as	urls	with	the	
webkitURL.createObjectURL()	javascript	method.	The	
“Complete”	message	is	issued	on	completion.
csound.RequestFileFromLocal(src)	-	requests	the	data	from	
the	local	file	src.	The	“Complete”	message	is	issued	on	
completion.
csound.GetFileData()	-	returns	the	most	recently	requested	
file	data	as	an	ArrayObject.
		

Callbacks

	The	csound.js	module	will	call	the	following	window	functions	when	
it	starts:

function	moduleDidLoad():	this	is	called	as	soon	as	the	
module	is	loaded
function	handleMessage(message):	called	when	there	are	
messages	from	Csound	(pnacl	module).	The	string	
message.data	contains	the	message.
function	attachListeners():	this	is	called	when	listeners	for	
different	events	are	to	be	attached.
		

You	should	implement	these	functions	in	your	HTML	page	script,	in	
order	to	use	the	Csound	javascript	interface.	In	addition	to	the	above,	
Csound	javascript	module	messages	are	always	sent	to	the	HTML	
element	with	id=‘console’,	which	is	normally	of	type	<div>	or	
<textarea>.	

EXAMPLE

WEB	BASED	CSOUND

746

Here	is	a	minimal	HTML	example	showing	the	use	of	Csound.

<!DOCTYPE	html>
<html>
<!--
	Csound	pnacl	minimal	example
	Copyright	(C)	2013	V	Lazzarini
-->
<head>
	<title>Minimal	Csound	Example</title>
	<script	type="text/javascript"	src="csound.js"></script>
	<script	type="text/javascript">
	//	called	by	csound.js
function	moduleDidLoad()	{
		csound.Play();
		csound.CompileOrc(
		"instr	1	\n"	+
		"icps	=	440+rnd(440)	\n"	+
		"chnset	icps,	\"freq\"	\n"	+
		"a1	oscili	0.1,	icps\n"	+
		"outs	a1,a1	\n"	+
		"endin");
		document.getElementById("tit").innerHTML	=	"Click	on	the	page	below	to	play";
	}
	function	attachListeners()	{
			document.getElementById("mess").
							addEventListener("click",Play);
	}
	function	handleMessage(message)	{
			var	mess	=	message.data;
			if(mess.slice(0,11)	==	"::control::")	{
			var	messField	=	document.getElementById("console")
			messField.innerText	=	mess.slice(11);
			}
			else	{
			var	messField	=	document.getElementById("mess")
			messField.innerText	+=	mess;
			csound.RequestChannel("freq");
		}
	}

	//	click	handler
	function	Play()	{
			csound.Event("i	1	0	5");
	}
	</script>
</head>
<body>
		<div	id="console"></div>
			<h3	id="tit">	</h3>
		<div	id="mess">

		</div>
		<!--pNaCl	csound	module-->
		<div	id="engine"></div>
</body>
</html>

LIMITATIONS	

The	following	limitations	apply:

MIDI	is	implemented	so	that	Csound	MIDI	opcodes	can	be	
used.	MIDI	hardware	interface	needs	to	be	provided	in	
Javascript	by	another	library	(e.g.	WebMIDI).

WEB	BASED	CSOUND

747

no	plugins,	as	pNaCl	does	not	support	dlopen()	and	friends.	
This	means	some	opcodes	are	not	available	as	they	reside	in	
plugin	libraries.	It	might	be	possible	to	add	some	of	these	
opcodes	statically	to	the	Csound	pNaCl	library	in	the	future.
		

More	information	on	Csound	for	pNaCl	can	be	found	
http://vlazzarini.github.io/.

	

	

LIBCSOUND.JS	-	CSOUND	AS	A
JAVASCRIPT	LIBRARY

INTRODUCTION

THE	JAVASCRIPT	BUILD	OF	CSOUND	ALLOWS	ANY	STANDARDS	COMPLIANT	WEB	BROWSER	TO	RUN	AN
INSTANCE	OF	CSOUND	IN	A	WEB	PAGE	WITHOUT	THE	NEED	FOR	PLUGINS	OR	ADD	ONS.	THIS	IS	MADE
POSSIBLE	BY	USING	EMSCRIPTEN,	A	PROGRAM	THAT	CAN	CONVERT	SOFTWARE	WRITTEN	IN	C	(SUCH	AS
CSOUND)	INTO	JAVASCRIPT,	ALLOWING	IT	TO	BE	RUN	NATIVELY	WITHIN	ANY	WEB	BROWSER	THAT	SUPPORTS
MODERN	WEB	STANDARDS.

CAVEATS

The	javascript	build	of	Csound	is	currently	in	early	stages	of	

WEB	BASED	CSOUND

748

development	and	therefore	there	are	a	number	of	caveats	and	
limitations	with	its	current	implementation	which	should	be	noted.

		

Emscripten	generates	a	highly	optimisable	subset	of	Javascript	
called	asm.js.	This	allows	Javascript	engines	which	have	been	
optimised	for	this	subset	to	achieve	substantial	performance	
increases	over	other	Javascript	engines.	At	this	time	the	only	
Javascript	engine	that	supports	asm.js	optimisations	is	the	
Spider	Monkey	engine	which	is	part	of	Firefox.	Therefore	the	
Emscripten	build	of	Csound	will	perform	best	on	the	current	
version	of	Firefox.
		

		

At	this	time,	due	to	the	design	of	the	Web	Audio	API,	the	
Csound	javascript	library	can	only	execute	within	the	main	
thread	of	a	web	page.	This	means	that	it	must	pause	execution	
of	any	performance	when	any	other	process	that	uses	the	main	
thread	(such	as	the	UI)	needs	to	execute.	This	can	cause	
dropouts	and/or	glitching	of	the	audio	during	a	performance.
		

		

As	this	project	is	in	its	infancy,	there	are	a	minimal	number	of	
routines	implemented	so	far	in	order	to	instantiate,	compile	
and	perform	a	.csd	file.	Additional	routines	will	be	added	over	
time	as	the	project	matures.
		

GETTING	LIBCSOUND.JS

WEB	BASED	CSOUND

749

The	javascript	build	of	Csound	now	comes	as	part	of	the	regular	
distribution	of	the	Csound	source	code.	It	can	be	found	in	the	
emscripten	folder	which	also	contains	a	markdown	file	that	gives	the	
instructions	on	how	to	compile	the	javascript	library.	

USING	LIBCSOUND.JS

In	order	to	demonstrate	how	to	use	the	Csound	javascript	library,	
what	follows	is	a	tutorial	which	shows	the	steps	necessary	to	create	a	
simple	website	that	can	open	.csd	files,	compile	them,	and	play	them	
back	from	the	browser.

Create	a	simple	website

First	create	a	new	folder	for	the	website	and	copy	the	libcsound.js	and	
libcsound.js.mem		files	from	the	emscripten/dist	directory	into	the	
new	websites	directory.	Next,	create	an	index.html	file	at	the	top	
level	of	the	new	websites	directory	that	contains	the	following	
minimal	html	code:

<html>
<head>
<meta	http-equiv="content-type"	content="text/html;	charset=utf-8">
</head>
<body>
</body>
</html>

Instantiate	Csound

We	need	to	write	some	Javascript	to	create	an	instance	of	CsoundObj,	
so	within	the	body	tags	ad	new	script	tags	and	insert	the	following	
code:

<html>
<head>
<meta	http-equiv="content-type"	content="text/html;	charset=utf-8">
</head>
<body>
<script	src="libcsound.js"></script>
<script>
Module['noExitRuntime']	=	true;
Module['_main']	=	function()	{

WEB	BASED	CSOUND

750

				var	csoundObj	=	new	CsoundObj();

};
</script>
</body>
</html>

The	Module	functions	within	this	code	are	related	to	how	emscripten	
built	javascript	libraries	execute	when	a	webpage	is	loaded.	The	
noExitRuntime	variable	sets	whether	the	emscripten	runtime	
environment	is	exited	once	the	main	function	has	finished	executing.	
The	_main	variable	is	actually	a	function	that	is	executed	as	soon	as	
the	webpage	has	finished	loading.	Csound	itself	is	instantiated	using	a	
constructor	for	the	CsoundObj	object.	This	object	provides	all	the	
methods	for	directly	interacting	with	the	current	running	instance	of	
csound.

The	Javascript	console	of	the	web	browser	should	now	show	some	
messages	that	give	the	version	number	of	Csound,	the	build	date	and	
the	version	of	libsndfile	being	used	by	Csound.

	Upload	.csd	file	to	Javascript	File	System

In	order	to	run	a	.csd	file	from	the	Csound	javascript	library,	we	first	
need	to	upload	the	file	from	the	local	file	system	to	the	javascript	
virtual	file	system.	In	the	emscripten/examples	directory	there	is	the	
FileManager.js	file	that	provides	an	object	which	greatly	simplifies	
the	process	of	uploading	files	to	the	virtual	file	system.	Copy	
FileManager.js	to	the	root	directory	of	the	web	page.

<html>
<head>
<meta	http-equiv="content-type"	content="text/html;	charset=utf-8">
</head>
<body>
<script	src="libcsound.js"></script>
<script	src="FileManager.js"></script>
<script>
Module['noExitRuntime']	=	true;
Module['_main']	=	function()	{

				var	csoundObj	=	new	CsoundObj();

				var	fileManger	=	new	FileManager(['csd'],	console.log);

				fileManger.fileUploadFromServer("test.csd",	function()	{

								csoundObj.compileCSD("test.csd");
				});

WEB	BASED	CSOUND

751

};
</script>
</body>
</html>

As	can	be	seen	in	the	code	above,	the	file	manager	is	instantiated	
with	two	arguments.	The	first	argument	is	an	array	of	strings	which	
tells	the	file	manager	instance	which	file	extensions	that	are	
permitted	to	be	uploaded.	The	second	argument	is	the	function	with	
which	the	file	manger	will	print	error	messages,	in	this	case	it	will	
print	to	the	javascript	console.	The	file	managers	upload	method	also	
takes	two	arguments.	The	first	argument	is	the	files	path	relative	to	
the	website	root	directory	and	the	second	is	the	function	to	execute	
when	the	file	has	been	successfully	uploaded.	In	this	case	when	the	
file	has	been	uploaded	csound	will	compile	the	.csd	file.

If	the	web	page	is	reloaded	now,	the	file	test.csd	will	be	uploaded	to	
the	javascript	file	system	and	csound	will	compile	it	making	it	ready	
for	performance.

RUNNING	CSOUND	

Once	the	.csd	file	has	been	compiled	csound	can	execute	a	
performance.	In	the	following	code	we	will	create	an	html	button	and	
add	some	code	to	the	button	so	that	when	pressed	it	will	run	a	
performance	of	csound.	

<html>
<head>
<meta	http-equiv="content-type"	content="text/html;	charset=utf-8">
</head>
<body>
<script	src="libcsound.js"></script>
<script	src="FileManager.js"></script>
<script>
Module['noExitRuntime']	=	true;
Module['_main']	=	function()	{

				var	csoundObj	=	new	CsoundObj();

				var	fileManger	=	new	FileManager(['csd'],	console.log);

				fileManger.fileUploadFromServer("test.csd",	function()	{

								csoundObj.compileCSD("test.csd");
				});

				var	startButton	=	document.createElement("BUTTON");
				startButton.innerHTML	=	"Start	Csound";
				startButton.onclick	=	function()	{

WEB	BASED	CSOUND

752

								csoundObj.start();
				};

				document.body.appendChild(startButton);
};
</script>
</body>
</html>	

Here	we	can	see	that	the	button	startButton	is	instantiated	using	the	
document.createElement	method.	The	buttons	label	is	set	using	the	
innerHTML	method,	and	we	can	set	the	buttons	action	by	defining	a	
function	and	assigning	it	to	the	buttons	onclick	method.	The	function	
simply	calls	the	start	method	from	CsoundObj.	The	button	is	then	
added	to	the	DOM	using	document.body.appendChild.	

If	the	page	is	reloaded	there	should	now	be	a	button	present	that	is	
labelled	with	the	text	"Start	Csound".	When	the	button	is	pressed	
csound	should	perform	the	.csd	file	which	was	uploaded	to	the	
javascript	file	system.	

CsoundObj.js	Reference

CsoundObj.compileCSD(fileName)

This	method	takes	as	its	argument	the	address	of	a	CSD	file	fileName	
and	compiles	it	for	performance.	The	CSD	file	must	be	present	in	
Emscripten's	javascript	virtual	filesystem.

CsoundObj.disableAudioInput()

This	method	disables	audio	input	to	the	web	browser.	Audio	input	
will	not	be	available	to	the	running	Csound	instance

CsoundObj.enableAudioInput()

This	method	enables	audio	input	to	the	web	browser.	When	called,	it	
triggers	a	permissions	dialogue	in	the	host	web	browser	requesting	
permission	to	allow	audio	input.	If	permission	is	granted,	audio	input	
is	available	for	the	running	Csound	instance.	

WEB	BASED	CSOUND

753

CsoundObj.enableMidiInput()

This	method	enables	Midi	input	to	the	web	browser.	When	activated	
on	supported	browsers	(currently	only	Chrome	supports	web	midi)	it	
is	possible	for	the	running	instance	of	Csound	to	receive	midi	
messages	from	a	compatible	input	device.

CsoundObj.evaluateCode()

This	method	takes	a	string	of	Csound	orchestra	code	and	evaluates	it	
on	the	fly.	Any	instruments	contained	in	the	code	will	be	created	and	
added	to	the	running	Csound	process.

CsoundObj.readScore()

This	method	takes	a	string	of	Csound	score	code	and	evaluates	it.

CsoundObj.render()

This	method	renders	the	currently	compiled	.csd	file	as	quickly	as	
possible.	This	method	is	currently	only	used	to	evaluate	the	
performance	of	libcsound.js	and	is	of	no	practical	use	to	end	users.

CsoundObj.reset()

This	method	resets	the	currently	running	instance	of	Csound.	This	
method	should	be	called	before	a	new	.csd	file	needs	to	be	read	and	
compiled	for	performance.

CsoundObj.setControlChannel()

WEB	BASED	CSOUND

754

This	method	sets	a	named	Csound	control	channel	to	a	specified	
value.

CsoundObj.setControlChannel()

This	method	gets	the	current	value	of	a	named	Csound	control	
channel.	

CsoundObj.start()

This	method	starts	a	performance	of	a	compiled	.csd	file.

CSOUND	UTILITIES

755

CSOUND	UTILITIES

Csound	comes	bundled	with	a	variety	of	additional	utility	
applications.	These	are	small	programs	that	perform	a	single	function,
very	often	with	a	sound	file,	that	might	be	useful	just	before	or	just	
after	working	with	the	main	Csound	program.	Originally	these	were	
programs	that	were	run	from	the	command	line	but	many	of	Csound	
front-ends	now	offer	direct	access	to	many	of	these	utilities	through	
their	own	utilities	menus.	It	is	useful	to	still	have	access	to	these	
programs	via	the	command	line	though,	if	all	else	fails.

The	standard	syntax	for	using	these	programs	from	the	command	line	
is	to	type	the	name	of	the	utility	followed	optionally	by	one	or	more	
command	line	flags	which	control	various	performance	options	of	the	
program	-	all	of	these	will	have	useable	defaults	anyway	-	and	finally	
the	name	of	the	sound	file	upon	which	the	utility	will	operate.

utility_name	[flag(s)]	[file_name(s)]

	If	we	require	some	help	or	information	about	a	utility	and	don't	want	
to	be	bothered	hunting	through	the	Csound	Manual	we	can	just	type	
the	the	utility's	name	with	no	additional	arguments,	hit	enter	and	the	
commmand	line	response	will	give	us	some	information	about	that	
utility	and	what	command	line	flags	it	offers.	We	can	also	run	the	
utility	through	Csound	-	perhaps	useful	if	there	are	problems	running	
the	utility	directly	-	by	calling	Csound	with	the	-U	flag.	The	-U	flag	
will	instruct	Csound	to	run	the	utility	and	to	interpret	subsequent	flags
as	those	of	the	utility	and	not	its	own.
		

Csound	-U	utility_name	[flag(s)]	[file_name(s)]

SNDINFO	

As	an	example	of	invoking	one	of	these	utilities	form	the	command	
line	we	shall	look	at	the	utility	'sndinfo'	(sound	information)	which	
provides	the	user	with	some	information	about	one	or	more	sound	

CSOUND	UTILITIES

756

files.	'sndinfo'	is	invoked	and	provided	with	a	file	name	thus:

sndinfo	/Users/iainmccurdy/sounds/mysound.wav

If	you	are	unsure	of	the	file	address	of	your	sound	file	you	can	always	
just	drag	and	drop	it	into	the	terminal	window.	The	output	should	be	
something	like:
		

util	sndinfo:
/Users/iainmccurdy/sounds/mysound.wav:
	 srate	44100,	stereo,	24	bit	WAV,	3.335	seconds
	 (147078	sample	frames)

'sndinfo'	will	accept	a	list	of	file	names	and	provide	information	on	
all	of	them	in	one	go	so	it	may	prove	more	efficient	gleaning	the	
same	information	from	a	GUI	based	sample	editor.	We	also	have	the	
advantage	of	begin	able	to	copy	and	paste	from	the	terminal	window	
into	a	.csd	file.
		

ANALYSIS	UTILITIES	

Although	many	of	Csound's	opcodes	already	operate	upon	commonly	
encountered	sound	file	formats	such	as	'wav'	and	'aiff',	a	number	of	
them	require	sound	information	in	more	specialised	and	pre-analysed	
formats	and	for	this	Csound	provides	the	sound	analysis	utilities	atsa,	
cvanal,	hetro,	lpanal	and	pvanal.	By	far	the	most	commonly	used	of	
these	is	pvanal	which,	although	originally	written	to	provide	analysis	
files	for	pvoc	and	its	generation	of	opcodes,	has	now	been	extended	to
be	able	to	generate	files	in	the	pvoc-ex	(.pvx)	format	for	use	with	the	
newer	'pvs'	streaming	pvoc	opcodes.

This	time	as	well	as	requiring	an	input	sound	file	for	analysis	we	will	
need	to	provide	a	name	(and	optionally	the	full	address)	for	the	output
file.	Using	pvanal's	command	flags	we	can	have	full	control	over	
typical	FFT	conversion	parameters	such	as	FFT	size,	overlap,	window	
type	etc.	as	well	as	additional	options	that	may	prove	useful	such	as	
the	ability	to	select	a	fragment	of	a	larger	sound	file	for	the	analysis.	

CSOUND	UTILITIES

757

In	the	following	illustration	we	shall	make	use	of	just	one	flag,	-s,	for	
selecting	which	channel	of	the	input	sound	file	to	analyse,	all	other	
flag	values	shall	assume	their	default	values	which	should	work	fine	
in	most	situations.

	pvanal	-s1	mysound.wav	myanalysis.pvx

pvanal	will	analyse	the	first	(left	if	stereo)	channel	of	the	input	sound	
file	'mysound.wav'	(and	in	this	case	as	no	full	address	has	been	
provided	it	will	need	to	be	in	either	the	current	working	directory	or	
SSDIR),	and	a	name	has	been	provided	for	the	output	file	
'myanalysis.pvx',	which,	as	no	full	address	has	been	given,	will	be	
placed	in	the	current	working	directory.	While	pvanal	is	running	it	
will	print	a	running	momentary	and	finally	inform	us	once	the	process
is	complete.

If	you	use	CsoundQT	you	can	have	direct	access	to	pvanal	with	all	its	
options	through	the	'utilities'	button	in	the	toolbar.	Once	opened	it	
will	reveal	a	dialogue	window	looking	something	like	this:

Especially	helpful	is	the	fact	that	we	are	also	automatically	provided	
with	pvanal's	manual	page.

FILE	CONVERSION	UTILITIES

The	next	group	of	utilities,	het_import,	het_export,	pvlook,	

CSOUND	UTILITIES

758

pv_export,	pv_import,	sdif2ad	and	srconv	facilitate	file	conversions	
between	various	types.	Perhaps	the	most	interesting	of	these	are	
pvlook,	which	prints	to	the	terminal	a	formatted	text	version	of	a	
pvanal	file	-	useful	to	finding	out	exactly	what	is	going	on	inside	
individual	analysis	bins,	something	that	may	be	of	use	when	working	
with	the	more	advanced	resynthesis	opcodes	such	as	pvadd	or	pvsbin.	
srconv	can	be	used	to	convert	the	sample	rate	of	a	sound	file.

MISCELLANEOUS	UTILITIES

A	final	grouping	gathers	together	various	unsorted	utilities:	cs,	
csb64enc,	envext,	extractor,	makecsd,	mixer,	scale	and	mkdb.	Most	
interesting	of	these	are	perhaps	extractor	which	will	extract	a	user	
defined	fragment	of	a	sound	file	which	it	will	then	write	to	a	new	file,	
mixer	which	mixes	together	any	number	of	sound	files	and	with	gain	
control	over	each	file	and	scale	which	will	scale	the	amplitude	of	an	
individual	sound	file.

CONCLUSION

It	has	been	seen	that	the	Csound	utilities	offer	a	wealth	of	useful,	but	
often	overlooked,	tools	to	augment	our	work	with	Csound.	Whilst	
some	of	these	utilities	may	seem	redundant	now	that	most	of	us	have	
access	to	fully	featured	3rd-party	sound	editing	software,	it	should	be	
borne	in	mind	that	many	of	these	utilities	were	written	in	the	1980s	
and	early	90s	when	such	tools	were	less	readily	available.
		

THE	CSOUND	API

759

THE	CSOUND	API
An	application	programming	interface	(API)	is	an	interface	provided
by	a	computer	system,	library	or	application	that	allows	users	to
access	functions	and	routines	for	a	particular	task.	It	gives	developers
a	way	to	harness	the	functionality	of	existing	software	within	a
host	application.	The	Csound	API	can	be	used	to	control	an	instance
of	Csound	through	a	series	of	different	functions	thus	making	it
possible	to	harness	all	the	power	of	Csound	in	one’s	own	applications.
In	other	words,	almost	anything	that	can	be	done	within	Csound	can
be	done	with	the	API.	The	API	is	written	in	C,	but	there	are	interfaces
to	other	languages	as	well,	such	as	Python,	C++		and	Java.	

Though	it	is	written	in	C,	the	Csound	API	uses	an	object	structure.	
This	is	achieved	through	an	opaque	pointer	representing	a	Csound	
instance.	This	opaque	pointer	is	passed	as	the	first	argument	when	an	
API	function	is	called	from	the	host	program.
		

To	use	the	Csound	C	API,	you	have	to	include	csound.h	in	your	
source	file	and	to	link	your	code	with	libcsound64	(or	libcsound	if	
using	the	32	bit	version	of	the	library).	Here	is	an	example	of	the	
csound	command	line	application	written	in	C,	using	the	Csound	C	
API:

#include	<csound/csound.h>

int	main(int	argc,	char	**argv)
{
		CSOUND	*csound	=	csoundCreate(NULL);
		int	result	=	csoundCompile(csound,	argc,	argv);
		if	(result	==	0)	{
				result	=	csoundPerform(csound);
		}
		csoundDestroy(csound);
		return	(result	>=	0	?	0	:	result);
}

	First	we	create	an	instance	of	Csound.	To	do	this	we	call	
csoundCreate()	which	returns	the	opaque	pointer	that	will	be	
passed	to	most	Csound	API	functions.	Then	we	compile	the	orc/sco	
files	or	the	csd	file	given	as	input	arguments	through	the	argv	
parameter	of	the	main	function.	If	the	compilation	is	successful	

THE	CSOUND	API

760

(result	==	0),	we	call	the	csoundPerform()	function.	
csoundPerform()	will	cause	Csound	to	perform	until	the	end	of	the	
score	is	reached.	When	this	happens	csoundPerform()	returns	a	non-
zero	value	and	we	destroy	our	instance	before	ending	the	program.

On	a	linux	system,	using	libcsound64	(double	version	of	the	csound	
library),	supposing	that	all	include	and	library	paths	are	set	correctly,	
we	would	build	the	above	example	with	the	following	command	
(notice	the	use	of	the	-DUSE_DOUBLE	flag	to	signify	that	we	
compile	against	the	64	bit	version	of	the	csound	library):

gcc	-DUSE_DOUBLE	-o	csoundCommand	csoundCommand.c	-lcsound64

	The	command	for	building	with	a	32	bit	version	of	the	library	would	
be:

gcc	-o	csoundCommand	csoundCommand.c	-lcsound

Within	the	C	or	C++	examples	of	this	chapter,	we	will	use	the	
MYFLT	type	for	the	audio	samples.	Doing	so,	the	same	source	files	
can	be	used	for	both	development	(32	bit	or	64	bit),	the	compiler	
knowing	how	to	interpret	MYFLT	as	double	if	the	macro	
USE_DOUBLE	is	defined,	or	as	float	if	the	macro	is	not	defined.
		

The	C	API	has	been	wrapped	in	a	C++	class	for	convenience.	This	
gives	the	Csound	basic	C++	API.	With	this	API,	the	above	example	
would	become:

#include	<csound/csound.hpp>

int	main(int	argc,	char	**argv)
{
		Csound	*cs	=	new	Csound();
		int	result	=	cs->Compile(argc,	argv);
		if	(result	==	0)	{
				result	=	cs->Perform();
		}
		return	(result	>=	0	?	0	:	result);
}

Here,	we	get	a	pointer	to	a	Csound	object	instead	of	the	csound	

THE	CSOUND	API

761

opaque	pointer.	We	call	methods	of	this	object	instead	of	C	functions,	
and	we	don't	need	to	call	csoundDestroy	in	the	end	of	the	program,	
because	the	C++	object	destruction	mechanism	takes	care	of	this.	On	
our	linux	system,	the	example	would	be	built	with	the	following	
command:

g++	-DUSE_DOUBLE	-o	csoundCommandCpp	csoundCommand.cpp	-lcsound64

THREADING

Before	we	begin	to	look	at	how	to	control	Csound	in	real	time	we	
need	to	look	at	threads.	Threads	are	used	so	that	a	program	can	
split	itself	into	two	or	more	simultaneously	running	tasks.	Multiple	
threads	can	be	executed	in	parallel	on	many	computer	systems.	The	
advantage	of	running	threads	is	that	you	do	not	have	to	wait	for	one	
part	of	your	software	to	finish	executing	before	you	start	another.

In	order	to	control	aspects	of	your	instruments	in	real	time	your	will	
need	to	employ	the	use	of	threads.	If	you	run	the	first	example	found	
on	this	page	you	will	see	that	the	host	will	run	for	as	long	
as	csoundPerform()	returns	0.	As	soon	as	it	returns	non-zero	it	will	
exit	the	loop	and	cause	the	application	to	quit.	Once	
called,	csoundPerform()	will	cause	the	program	to	hang	until	it	is	
finished.	In	order	to	interact	with	Csound	while	it	is	performing	you	
will	need	to	call	csoundPerform()	in	a	separate	unique	thread.	

When	implementing	threads	using	the	Csound	API,	we	must	define	a	
special	performance	function	thread.	We	then	pass	the	name	of	this	
performance	function	to	csoundCreateThread(),	thus	registering	
our	performance-thread	function	with	Csound.	When	defining	a	
Csound	performance-thread	routine	you	must	declare	it	to	have	a	
return	type	uintptr_t,	hence	it	will	need	to	return	a	value	when	called.	
The	thread	function	will	take	only	one	parameter,	a	pointer	to	void.	
This	pointer	to	void	is	quite	important	as	it	allows	us	to	pass	
important	data	from	the	main	thread	to	the	performance	thread.	As	
several	variables	are	needed	in	our	thread	function	the	best	approach	
is	to	create	a	user	defined	data	structure	that	will	hold	all	the	

THE	CSOUND	API

762

information	your	performance	thread	will	need.	For	example:

typedef	struct	{	
		int	result;								/*	result	of	csoundCompile()	*/	
		CSOUND	*csound;				/*	instance	of	csound	*/
		bool	PERF_STATUS;		/*	performance	status	*/	
}	userData;	

Below	is	a	basic	performance-thread	routine.	*data	is	cast	as	a	
userData	data	type	so	that	we	can	access	its	members.	

uintptr_t	csThread(void	*data)
{
		userData	*udata	=	(userData	*)data;
		if	(!udata->result)	{
				while	((csoundPerformKsmps(udata->csound)	==	0)	&&
											(udata->PERF_STATUS	==	1));
				csoundDestroy(udata->csound);
		}
		udata->PERF_STATUS	=	0;
		return	1;
}										

In	order	to	start	this	thread	we	must	call	the	csoundCreateThread()	
API	function	which	is	declared	in	csound.h	as:		

void	*csoundCreateThread(uintptr_t	(*threadRoutine	(void	*),
																									void	*userdata);		

If	you	are	building	a	command	line	program	you	will	need	to	use	
some	kind	of	mechanism	to	prevent	int	main()	from	returning	until	
after	the	performance	has	taken	place.	A	simple	while	loop	will	
suffice.	

The	first	example	presented	above	can	now	be	rewritten	to	include	a	
unique	performance	thread:

#include	<stdio.h>	
#include	<csound/csound.h>	

uintptr_t	csThread(void	*clientData);	

typedef	struct	{	
		int	result;	
		CSOUND	*csound;	
		int	PERF_STATUS;	
}	userData;	

int	main(int	argc,	char	*argv[])	
{

THE	CSOUND	API

763

		int	finish;
		void	*ThreadID;	
		userData	*ud;	
		ud	=	(userData	*)malloc(sizeof(userData));		
		MYFLT	*pvalue;	
		ud->csound	=	csoundCreate(NULL);		
		ud->result	=	csoundCompile(ud->csound,	argc,	argv);	

		if	(!ud->result)	{		
				ud->PERF_STATUS	=	1;	
				ThreadID	=	csoundCreateThread(csThread,	(void	*)ud);	
		}	
		else	{	
				return	1;	
		}		

		/*	keep	performing	until	user	types	a	number	and	presses	enter	*/
		scanf("%d",	&finish);
		ud->PERF_STATUS	=	0;	
		csoundDestroy(ud->csound);	
		free(ud);		
		return	0;	
}	

/*	performance	thread	function	*/
uintptr_t	csThread(void	*data)	
{	
		userData	*udata	=	(userData	*)data;	
		if	(!udata->result)	{
				while	((csoundPerformKsmps(udata->csound)	==	0)	&&
											(udata->PERF_STATUS	==	1));
				csoundDestroy(udata->csound);	
		}								
		udata->PERF_STATUS	=	0;				
		return	1;	
}		

The	application	above	might	not	appear	all	that	interesting.	In	fact	it's	
almost	the	exact	same	as	the	first	example	presented	except	that	users	
can	now	stop	Csound	by	hitting	'enter'.		The	real	worth	of	threads	can	
only	be	appreciated	when	you	start	to	control	your	instrument	in	real	
time.

	

Channel	I/O

The	big	advantage	to	using	the	API	is	that	it	allows	a	host	to	control	
your	Csound	instruments	in	real	time.	There	are	several	mechanisms	

THE	CSOUND	API

764

provided	by	the	API	that	allow	us	to	do	this.	The	simplest	mechanism	
makes	use	of	a	'software	bus'.

The	term	bus	is	usually	used	to	describe	a	means	of	communication	
between	hardware	components.	Buses	are	used	in	mixing	consoles	to	
route	signals	out	of	the	mixing	desk	into	external	devices.	Signals	get	
sent	through	the	sends	and	are	taken	back	into	the	console	through	the	
returns.	The	same	thing	happens	in	a	software	bus,	only	instead	of	
sending	analog	signals	to	different	hardware	devices	we	send	data	to	
and	from	different	software.	

Using	one	of	the	software	bus	opcodes	in	Csound	we	can	provide	an	
interface	for	communication	with	a	host	application.	An	example	of	
one	such	opcode	is	chnget.	The	chnget	opcode	reads	data	that	is	being	
sent	from	a	host	Csound	API	application	on	a	particular	named	
channel,	and	assigns	it	to	an	output	variable.	In	the	following	
example	instrument	1	retrieves	any	data	the	host	may	be	sending	on	a	
channel	named	"pitch":

instr	1	
kfreq	chnget	"pitch"	
asig		oscil		10000,	kfreq,	1	
						out				asig
endin	

One	way	in	which	data	can	be	sent	from	a	host	application	to	an	
instance	of	Csound	is	through	the	use	of	the	csoundGetChannelPtr()	
API	function	which	is	defined	in	csound.h	as:			

int	csoundGetChannelPtr(CSOUND	*,	MYFLT	**p,	
const	char	*name,		int	type);	

CsoundGetChannelPtr()	stores	a	pointer	to	the	specified	channel	of	
the	bus	in	p.	The	channel	pointer	p	is	of	type	MYFLT	*.	The	
argument	name	is	the	name	of	the	channel	and	the	argument	type	is	a	
bitwise	OR	of	exactly	one	of	the	following	values:		

CSOUND_CONTROL_CHANNEL	-	control	data	(one	MYFLT	value)	
		

THE	CSOUND	API

765

CSOUND_AUDIO_CHANNEL	-	audio	data	(ksmps	MYFLT	values)	
		
CSOUND_STRING_CHANNEL	-	string	data	(MYFLT	values	with	
enough	space	to	store	csoundGetChannelDatasize()	characters,	
including	the	NULL	character	at	the	end	of	the	string)			

and	at	least	one	of	these:		

CSOUND_INPUT_CHANNEL	-	when	you	need	Csound	to	accept	
incoming	values	from	a	host
		
CSOUND_OUTPUT_CHANNEL	-	when	you	need	Csound	to	send	
outgoing	values	to	a	host	

If	the	call	to	csoundGetChannelPtr()	is	successful	the	function	will	
return	zero.	If	not,	it	will	return	a	negative	error	code.	We	can	now	
modify	our	previous	code	in	order	to	send	data	from	our	application	
on	a	named	software	bus	to	an	instance	of	Csound	using	
csoundGetChannelPtr().

#include	<stdio.h>	
#include	<csound/csound.h>

/*	performance	thread	function	prototype	*/
uintptr_t	csThread(void	*clientData);

/*	userData	structure	declaration	*/
typedef	struct	{
		int	result;
		CSOUND	*csound;
		int	PERF_STATUS;
}	userData;

/*---
	*	main	function
	---/
int	main(int	argc,	char	*argv[])
{
		int	userInput	=	200;
		void	*ThreadID;
		userData	*ud;
		ud	=	(userData	*)malloc(sizeof(userData));
		MYFLT	*pvalue;
		ud->csound	=	csoundCreate(NULL);
		ud->result	=	csoundCompile(ud->csound,	argc,	argv);

THE	CSOUND	API

766

MYFLT	csoundGetControlChannel(CSOUND	*csound,	const	char	*name,	int	*err)	
void	csoundSetControlChannel(CSOUND	*csound,	const	char	*name,	MYFLT	val)	

		if	(csoundGetChannelPtr(ud->csound,	&pvalue,	"pitch",
										CSOUND_INPUT_CHANNEL	|	CSOUND_CONTROL_CHANNEL)	!=	0)	{
				printf("csoundGetChannelPtr	could	not	get	the	\"pitch\"	channel");
				return	1;
		}
		if	(!ud->result)	{
				ud->PERF_STATUS	=	1;
				ThreadID	=	csoundCreateThread(csThread,	(void*)ud);
		}
		else	{
				printf("csoundCompiled	returned	an	error");
				return	1;
		}
		printf("\nEnter	a	pitch	in	Hz(0	to	Exit)	and	type	return\n");
		while	(userInput	!=	0)	{
				*pvalue	=	(MYFLT)userInput;
				scanf("%d",	&userInput);
		}
		ud->PERF_STATUS	=	0;
		csoundDestroy(ud->csound);
		free(ud);
		return	0;
}

/*---
	*	definition	of	our	performance	thread	function
	---/
uintptr_t	csThread(void	*data)
{
		userData	*udata	=	(userData	*)data;
		if	(!udata->result)	{
				while	((csoundPerformKsmps(udata->csound)	==	0)	&&
											(udata->PERF_STATUS	==	1));
				csoundDestroy(udata->csound);
		}
		udata->PERF_STATUS	=	0;
		return	1;
}	

There	are	several	ways	of	sending	data	to	and	from	Csound	through	
software	buses.	They	are	divided	in	two	categories:
		

Named	Channels	with	no	Callback

This	category	uses	csoundGetChannelPtr()	to	get	a	pointer	to	the	data	
of	the	named	channel.	There	are	also	six	functions	to	send	data	to	and	
from	a	named	channel	in	a	thread	safe	way:

THE	CSOUND	API

767

void	csoundGetAudioChannel(CSOUND	*csound,	const	char	*name,	MYFLT	*samples)	
void	csoundSetAudioChannel(CSOUND	*csound,	const	char	*name,	MYFLT	*samples)	
void	csoundGetStringChannel(CSOUND	*csound,	const	char	*name,	char	*string)	
void	csoundSetStringChannel(CSOUND	*csound,	const	char	*name,	char	*string)	

void	csoundSetInputChannelCallback(CSOUND	*csound,	
																																																											channelCallback_t	inputChannelCalback)	
void	csoundSetOutputChannelCallback(CSOUND	*csound,
																																																														channelCallback_t	outputChannelCalback)	

	

The	opcodes	concerned	are	chani,	chano,	chnget	and	chnset.	When	
using	numbered	channels	with	chani	and	chano,	the	API	sees	those	
channels	as	named	channels,	the	name	being	derived	from	the	
channel	number	(i.e.	1	gives	"1",	17	gives	"17",	etc).
		

There	is	also	a	helper	function	returning	the	data	size	of	a	named	
channel:

int	csoundGetChannelDatasize(CSOUND	*csound,	const	char	*name)

It	is	particularly	useful	when	dealing	with	string	channels.

Named	Channels	with	Callback

Each	time	a	named	channel	with	callback	is	used	(opcodes	invalue,	
outvalue,	chnrecv,	and	chnsend),	the	corresponding	callback	
registered	by	one	of	those	functions	will	be	called:

		

Other	Channel	Functions

THE	CSOUND	API

768

int	csoundSetPvsChannel(CSOUND	*,	const	PVSDATEXT	*fin,	const	char	*name),	and	
int	csoundGetPvsChannel(CSOUND	*csound,	PVSDATEXT	*fout,	const	char	*name)	

int	csoundSetControlChannelHints(CSOUND	*,	const	char	*name,
																																																								controlChannelHints_t	hints),	and	
int	csoundGetControlChannelHints(CSOUND	*,	const	char	*name,
																																																								controlChannelHints_t	*hints)	

int	csoundKillInstance(CSOUND	*csound,	MYFLT	instr,	
																																				char	*instrName,	int	mode,	int	allow_release)	

int	csoundRegisterKeyboardCallback(CSOUND	*,	
																																				int	(*func)(void	*userData,	void	*p,	unsigned	int	type),	
																																				void	*userData,	unsigned	int	type),	and	
void	csoundRemoveKeyboardCallback(CSOUND	*csound,	
																																				int	(*func)(void	*,	void	*,	unsigned	int))	

		

		

int	*csoundGetChannelLock(CSOUND	*,	const	char	*name)

kills	off	one	or	more	running	instances	of	an	instrument.

replace	csoundSetCallback()	and	csoundRemoveCallback().	

SCORE	EVENTS	

Adding	score	events	to	the	csound	instance	is	easy	to	do.	It	requires	
that	csound	has	its	threading	done,	see	the	paragraph	above	on	
threading.	To	enter	a	score	event	into	csound,	one	calls	the	following	
function:

THE	CSOUND	API

769

void	myInputMessageFunction(void	*data,	const	char	*message)
{
		userData	*udata	=	(userData	*)data;
		csoundInputMessage(udata->csound,	message);
}

Now	we	can	call	that	function	to	insert	Score	events	into	a	running	
csound	instance.	The	formatting	of	the	message	should	be	the	same	as	
one	would	normally	have	in	the	Score	part	of	the	.csd	file.	The	
example	shows	the	format	for	the	message.	Note	that	if	you're	
allowing	csound	to	print	its	error	messages,	if	you	send	a	malformed	
message,	it	will	warn	you.	Good	for	debugging.	There's	an	example	
with	the	csound	source	code	that	allows	you	to	type	in	a	message,	and	
then	it	will	send	it.

/*																					instrNum		start		duration			p4			p5			p6		...	pN	*/
const	char	*message	=	"i1								0						1										0.5		0.3		0.1";
myInputMessageFunction((void*)udata,	message);

	

Callbacks

Csound	can	call	subroutines	declared	in	the	host	program	when	some	
special	events	occur.	This	is	done	through	the	callback	mechanism.	
One	has	to	declare	to	Csound	the	existence	of	a	callback	routine	using
an	API	setter	function.	Then	when	a	corresponding	event	occurs	
during	performance,	Csound	will	call	the	host	callback	routine,	
eventually	passing	some	arguments	to	it.

The	example	below	shows	a	very	simple	command	line	application	
allowing	the	user	to	rewind	the	score	or	to	abort	the	performance.	
This	is	achieved	by	reading	characters	from	the	keyboard:	'r'	for	
rewind	and	'q'	for	quit.	During	performance,	Csound	executes	a	loop.	
Each	pass	in	the	loop	yields	ksmps	audio	frames.	Using	the	API	
csoundSetYieldCallback	function,	we	can	tell	to	Csound	to	call	our	

THE	CSOUND	API

770

own	routine	after	each	pass	in	its	internal	loop.

The	yieldCallback	routine	must	be	non-blocking.	That's	why	it	is	a	bit	
tricky	to	force	the	C	getc	function	to	be	non-blocking.	To	enter	a	
character,	you	have	to	type	the	character	and	then	hit	the	return	key.
		

#include	<csound/csound.h>

int	yieldCallback(CSOUND	*csound)
{
		int	fd,	oldstat,	dummy;
		char	ch;

		fd	=	fileno(stdin);
		oldstat	=	fcntl(fd,	F_GETFL,	dummy);
		fcntl(fd,	F_SETFL,	oldstat	|	O_NDELAY);
		ch	=	getc(stdin);
		fcntl(fd,	F_SETFL,	oldstat);
		if	(ch	==	-1)
				return	1;
		switch	(ch)	{
		case	'r':
				csoundRewindScore(csound);
				break;
		case	'q':
				csoundStop(csound);
				break;
		}
		return	1;
}

int	main(int	argc,	char	**argv)
{
		CSOUND	*csound	=	csoundCreate(NULL);
		csoundSetYieldCallback(csound,	yieldCallback);
		int	result	=	csoundCompile(csound,	argc,	argv);
		if	(result	==	0)	{
				result	=	csoundPerform(csound);
		}
		csoundDestroy(csound);
		return	(result	>=	0	?	0	:	result);
}

The	user	can	also	set	callback	routines	for	file	open	events,	real-time	
audio	events,	real-time	MIDI	events,	message	events,	keyboards	
events,	graph	events,		and	channel	invalue	and	outvalue	events.
		

THE	CSOUND	API

771

CSOUNDPERFORMANCETHREAD:	A	SWISS
KNIFE	FOR	THE	API

Beside	the	API,	Csound	provides	a	helper	C++	class	to	facilitate	
threading	issues:	CsoundPerformanceThread.	This	class	performs	a	
score	in	a	separate	thread,	allowing	the	host	program	to	do	its	own	
processing	in	its	main	thread	during	the	score	performance.	The	host	
program	will	communicate	with	the	CsoundPerformanceThread	class	
by	sending	messages	to	it,	calling	CsoundPerformanceThread	
methods.	Those	messages	are	queued	inside	
CsoundPerformanceThread	and	are	treated	in	a	first	in	first	out	
(FIFO)	manner.

The	example	below	is	equivalent	to	the	example	in	the	callback	
section.	But	this	time,	as	the	characters	are	read	in	a	different	thread,	
there	is	no	need	to	have	a	non-blocking	character	reading	routine.
		

#include	<csound/csound.hpp>
#include	<csound/csPerfThread.hpp>

#include	<iostream>
using	namespace	std;

int	main(int	argc,	char	**argv)
{
		Csound	*cs	=	new	Csound();
		int	result	=	cs->Compile(argc,	argv);
		if	(result	==	0)	{
				CsoundPerformanceThread	*pt	=	new	CsoundPerformanceThread(cs);
				pt->Play();
				while	(pt->GetStatus()	==	0)	{
						char	c	=	cin.get();
						switch	(c)	{
						case	'r':
								cs->RewindScore();
								break;
						case	'q':
								pt->Stop();
								pt->Join();
								break;
						}
				}
		}
		return	(result	>=	0	?	0	:	result);
}

THE	CSOUND	API

772

Because	CsoundPerformanceThread	is	not	part	of	the	API,	we	have	to	
link	to	libcsnd6	to	get	it	working:
		

g++	-DUSE_DOUBLE	-o	perfThread	perfThread.cpp	-lcsound64	-lcsnd6

When	using	this	class	from	Python	or	Java,	this	is	not	an	issue	
because	the	csnd6.py	module	and	the	csnd6.jar	package	include	the	
API	functions	and	classes,	and	the	CsoundPerformanceThread	class	
as	well	(see	below).

Here	is	a	more	complete	example	which	could	be	the	base	of	a	frontal	
application	to	run	Csound.	The	host	application	is	modeled	through	
the	CsoundSession	class	which	has	its	own	event	loop	(mainLoop).	
CsoundSession	inherits	from	the	API	Csound	class	and	it	embeds	an	
object	of	type	CsoundPerformanceThread.	Most	of	the	
CsoundPerformanceThread	class	methods	are	used.

#include	<csound/csound.hpp>
#include	<csound/csPerfThread.hpp>

#include	<iostream>
#include	<string>
using	namespace	std;

class	CsoundSession	:	public	Csound
{
public:
		CsoundSession(string	const	&csdFileName	=	"")	:	Csound()	{
				m_pt	=	NULL;
				m_csd	=	"";
				if	(!csdFileName.empty())	{
						m_csd	=	csdFileName;
						startThread();
				}
		};

		void	startThread()	{
				if	(Compile((char	*)m_csd.c_str())	==	0)	{
						m_pt	=	new	CsoundPerformanceThread(this);
						m_pt->Play();
				}
		};

		void	resetSession(string	const	&csdFileName)	{
				if	(!csdFileName.empty())
						m_csd	=	csdFileName;
				if	(!m_csd.empty())	{
						stopPerformance();
						startThread();

THE	CSOUND	API

773

				}
		};

		void	stopPerformance()	{
				if	(m_pt)	{
						if	(m_pt->GetStatus()	==	0)
								m_pt->Stop();
						m_pt->Join();
						m_pt	=	NULL;
				}
				Reset();
		};

		void	mainLoop()	{
				string	s;
				bool	loop	=	true;
				while	(loop)	{
						cout	<<	endl	<<	"l)oad	csd;	e(vent;	r(ewind;	t(oggle	pause;	s(top;	p(lay;	q(uit:	";
						char	c	=	cin.get();
						switch	(c)	{
						case	'l':
								cout	<<	"Enter	the	name	of	csd	file:";
								cin	>>	s;
								resetSession(s);
								break;
						case	'e':
								cout	<<	"Enter	a	score	event:";
								cin.ignore(1000,	'\n');	//a	bit	tricky,	but	well,	this	is	C++!
								getline(cin,	s);
								m_pt->InputMessage(s.c_str());
								break;
						case	'r':
								RewindScore();
								break;
						case	't':
								if	(m_pt)
										m_pt->TogglePause();
								break;
						case	's':
								stopPerformance();
								break;
						case	'p':
								resetSession("");
								break;
						case	'q':
								if	(m_pt)	{
										m_pt->Stop();
										m_pt->Join();
								}
								loop	=	false;
								break;
						}
						cout	<<	endl;
				}
		};

private:
		string	m_csd;
		CsoundPerformanceThread	*m_pt;
};

THE	CSOUND	API

774

int	main(int	argc,	char	**argv)
{
		string	csdName	=	"";
		if	(argc	>	1)
				csdName	=	argv[1];
		CsoundSession	*session	=	new	CsoundSession(csdName);
		session->mainLoop();
}

	The	application	is	built	with	the	following	command:
		

g++	-o	csoundSession	csoundSession.cpp	-lcsound64	-lcsnd6

When	using	this	class	from	Python	or	Java,	this	is	not	an	issue
because	the	csnd6.py	module

There	are	also	methods	in	CsoundPerformanceThread	for	sending	
score	events	(ScoreEvent),	for	moving	the	time	pointer	
(SetScoreOffsetSeconds),	for	setting	a	callback	function	
(SetProcessCallback)	to	be	called	at	the	end	of	each	pass	in	the	
process	loop,	and	for	flushing	the	message	queue	
(FlushMessageQueue).

As	an	exercise,	the	user	should	complete	this	example	using	the	
methods	above	and	then	try	to	rewrite	the	example	in	Python	and/or	
in	Java	(see	below).
		

CSOUND	API	REVIEW

The	best	source	of	information	is	the	csound.h	header	file.	Let	us	
review	some	important	API	functions	in	a	C++	example:
		

#include	<csound/csound.hpp>
#include	<csound/csPerfThread.hpp>

#include	<iostream>
#include	<string>
#include	<vector>
using	namespace	std;

string	orc1	=
"instr	1														\n"
"idur	=	p3												\n"

THE	CSOUND	API

775

"iamp	=	p4												\n"
"ipch	=	cpspch(p5)				\n"
"kenv	linen		iamp,	0.05,	idur,	0.1	\n"
"a1			poscil	kenv,	ipch	\n"
"					out				a1									\n"
"endin";

string	orc2	=
"instr	1				\n"
"idur	=	p3		\n"
"iamp	=	p4		\n"
"ipch	=	cpspch(p5)		\n"
"a1	foscili	iamp,	ipch,	1,	1.5,	1.25		\n"
"			out					a1						\n"
"endin\n";

string	orc3	=
"instr	1				\n"
"idur	=	p3		\n"
"iamp	=	p4		\n"
"ipch	=	cpspch(p5-1)									\n"
"kenv		linen				iamp,	0.05,	idur,	0.1		\n"
"asig		rand					0.45									\n"
"afilt	moogvcf2	asig,	ipch*4,	ipch/(ipch	*	1.085)		\n"
"asig		balance		afilt,	asig		\n"
"						out						kenv*asig				\n"
"endin\n";

string	sco1	=
"i	1	0	1				0.5	8.00\n"
"i	1	+	1				0.5	8.04\n"
"i	1	+	1.5		0.5	8.07\n"
"i	1	+	0.25	0.5	8.09\n"
"i	1	+	0.25	0.5	8.11\n"
"i	1	+	0.5		0.8	9.00\n";

string	sco2	=
"i	1	0	1				0.5	9.00\n"
"i	1	+	1				0.5	8.07\n"
"i	1	+	1				0.5	8.04\n"
"i	1	+	1				0.5	8.02\n"
"i	1	+	1				0.5	8.00\n";

string	sco3	=
"i	1	0	0.5		0.5	8.00\n"
"i	1	+	0.5		0.5	8.04\n"
"i	1	+	0.5		0.5	8.00\n"
"i	1	+	0.5		0.5	8.04\n"
"i	1	+	0.5		0.5	8.00\n"
"i	1	+	0.5		0.5	8.04\n"
"i	1	+	1.0		0.8	8.00\n";

void	noMessageCallback(CSOUND*	cs,	int	attr,	const	char	*format,	va_list	valist)
{
		//	Do	nothing	so	that	Csound	will	not	print	any	message,
		//	leaving	a	clean	console	for	our	app
		return;
}

class	CsoundSession	:	public	Csound
{

THE	CSOUND	API

776

public:
		CsoundSession(vector<string>	&	orc,	vector<string>	&	sco)	:	Csound()	{
				m_orc	=	orc;
				m_sco	=	sco;
				m_pt	=	NULL;
		};

		void	mainLoop()	{
				SetMessageCallback(noMessageCallback);
				SetOutput((char	*)"dac",	NULL,	NULL);
				GetParams(&m_csParams);
				m_csParams.sample_rate_override	=	48000;
				m_csParams.control_rate_override	=	480;
				m_csParams.e0dbfs_override	=	1.0;
				//	Note	that	setParams	is	called	before	first	compilation
				SetParams(&m_csParams);
				if	(CompileOrc(orc1.c_str())	==	0)	{
						Start(this->GetCsound());
						//	Just	to	be	sure...
						cout	<<	GetSr()	<<	",	"	<<	GetKr()	<<	",	";
						cout	<<	GetNchnls()	<<	",	"	<<	Get0dBFS()	<<	endl;
						m_pt	=	new	CsoundPerformanceThread(this);
						m_pt->Play();
				}
				else	{
						return;
				}

				string	s;
				TREE	*tree;
				bool	loop	=	true;
				while	(loop)	{
						cout	<<	endl	<<	"1)	2)	3):	orchestras,	4)	5)	6):	scores;	q(uit:	";
						char	c	=	cin.get();
						cin.ignore(1,	'\n');
						switch	(c)	{
						case	'1':
								tree	=	ParseOrc(m_orc[0].c_str());
								CompileTree(tree);
								DeleteTree(tree);
								break;
						case	'2':
								CompileOrc(m_orc[1].c_str());
								break;
						case	'3':
								EvalCode(m_orc[2].c_str());
								break;
						case	'4':
								ReadScore((char	*)m_sco[0].c_str());
								break;
						case	'5':
								ReadScore((char	*)m_sco[1].c_str());
								break;
						case	'6':
								ReadScore((char	*)m_sco[2].c_str());
								break;
						case	'q':
								if	(m_pt)	{
										m_pt->Stop();
										m_pt->Join();
								}

THE	CSOUND	API

777

								loop	=	false;
								break;
						}
				}
		};

private:
		CsoundPerformanceThread	*m_pt;
		CSOUND_PARAMS	m_csParams;
		vector<string>	m_orc;
		vector<string>	m_sco;
};

int	main(int	argc,	char	**argv)
{
		vector<string>	orc;
		orc.push_back(orc1);
		orc.push_back(orc2);
		orc.push_back(orc3);
		vector<string>	sco;
		sco.push_back(sco1);
		sco.push_back(sco2);
		sco.push_back(sco3);
		CsoundSession	*session	=	new	CsoundSession(orc,	sco);
		session->mainLoop();
}

DEPRECATED	FUNCTIONS

csoundQueryInterface(),	csoundSetInputValueCallback(),	
csoundSetOutputValueCallback(),	csoundSetChannelIOCallback(),	
and	csoundPerformKsmpsAbsolute()	are	still	in	the	header	file	but	are	
now	deprecated.

BUILTIN	WRAPPERS

The	Csound	API	has	also	been	wrapped	to	other	languages.	Usually	
Csound	is	built	and	distributed	including	a	wrapper	for	Python	and	a	
wrapper	for	Java.	Those	wrappers	are	automatically	generated	using	
the	SWIG	development	tool.
		

To	use	the	Python	Csound	API	wrapper,	you	have	to	import	the	csnd6	
module.	The	csnd6	module	is	normally	installed	in	the	site-packages	
or	dist-packages	directory	of	your	python	distribution	as	a	csnd6.py	

THE	CSOUND	API

778

file.	Our	csound	command	example	becomes:

import	sys
import	csnd6

def	csoundCommand(args):
				csound	=	csnd6.Csound()
				arguments	=	csnd6.CsoundArgVList()
				for	s	in	args:
								arguments.Append(s)
				result	=	csound.Compile(arguments.argc(),	arguments.argv())
				if	result	==	0:
								result	=	csound.Perform()
				return	result

def	main():
				csoundCommand(sys.argv)

if	__name__	=='__main__':
				main()

We	use	a	Csound	object	(remember	Python	has	OOp	features).	Note	
the	use	of	the	CsoundArgVList	helper	class	to	wrap	the	program	input	
arguments	into	a	C++	manageable	object.	In	fact,	the	Csound	class	
has	syntactic	sugar	(thanks	to	method		overloading)	for	the	Compile	
method.	If	you	have	less	than	six	string	arguments	to	pass	to	this	
method,	you	can	pass	them	directly.	But	here,	as	we	don't	know	the	
number	of	arguments	to	our	csound	command,	we	use	the	more	
general	mechanism	of	the	CsoundArgVList	helper	class.

This	example	would	be	launched	with	the	following	command:

python	csoundCommand.py	myexample.csd

To	use	the	Java	Csound	API	wrapper,	you	have	to	import	the	csnd6	
package.	The	csnd6	package	is	located	in	the	csnd6.jar	archive	which	
has	to	be	known	from	your	Java	path.	Our	csound	command	example	
becomes:

import	csnd6.*;

public	class	CsoundCommand
{
		private	Csound	csound	=	null;
		private	CsoundArgVList	arguments	=	null;

		public	CsoundCommand(String[]	args)	{
				csound	=	new	Csound();
				arguments	=	new	CsoundArgVList();
				arguments.Append("dummy");
				for	(int	i	=	0;	i	<	args.length;	i++)	{

THE	CSOUND	API

779

						arguments.Append(args[i]);
				}
				int	result	=	csound.Compile(arguments.argc(),	arguments.argv());
				if	(result	==	0)	{
						result	=	csound.Perform();
				}
				System.out.println(result);
		}

		public	static	void	main(String[]	args)	{
				CsoundCommand	csCmd	=	new	CsoundCommand(args);
		}
}

Note	the	"dummy"	string	as	first	argument	in	the	arguments	list.	C,	
C++	and	Python	expect	that	the	first	argument	in	a	program	argv	
input	array	is	implicitly	the	name	of	the	calling	program.	This	is	not	
the	case	in	Java:	the	first	location	in	the	program	argv	input	array	
contains	the	first	command	line	argument	if	any.		So	we	have	to	had	
this	"dummy"	string	value	in	the	first	location	of	the	arguments	array	
so	that	the	C	API	function	called	by	our	csound.Compile	method	is	
happy.

This	illustrates	a	fundamental	point	about	the	Csound	API.
Whichever	API	wrapper	is	used	(C++,	Python,	Java,	etc),	it	is	the	C
API	which	is	working	under	the	hood.	So	a	thorough	knowledge	of
the	Csound	C	API	is	highly	recommended	if	you	plan	to	use	the
Csound	API	in	any	of	its	different	flavours.

On	our	linux	system,	with	csnd.jar	located	in	/usr/local/lib/,	our	Java	
Program	would	be	compiled	and	run	with	the	following	commands:

javac	-cp	/usr/local/lib/csnd6.jar	CsoundCommand.java
java	-cp	/usr/local/lib/csnd6.jar:.	CsoundCommand

There	is	a	drawback	using	those	wrappers:	as	they	are	built	during	the	
Csound	build,	the	host	system	on	which	Csound	will	be	used	must	
have	the	same	version	of	Python	and	Java	than	the	ones	which	were	
on	the	system	used	to	build	Csound.	The	mechanism	presented	in	the	
next	section	can	solve	this	problem.
		

FOREIGN	FUNCTION	INTERFACES

THE	CSOUND	API

780

Modern	programming	languages	often	propose	a	mechanism	called	
Foreign	Function	Interface	(FFI)	which	allows	the	user	to	write	an	
interface	to	shared	libraries	written	in	C.
		

Python	provides	the	ctypes	module	which	can	be	used	for	this	
purpose.	Here	is	a	version	of	the	csound	command	using	ctypes:
		

#	This	is	the	wrapper	part	defining	our	python	interface	to
#	the	Csound	API	functions	that	we	will	use,	and	a	helper	function
#	called	csoundArgList,	which	makes	a	pair	of	C	argc,	argv	arguments	from
#	a	python	string	list.
#	This	wrapper	could	be	written	in	a	separate	file	and	imported
#	in	the	main	program.
import	ctypes	as	ct

libcsound	=	ct.CDLL("libcsound64.so")

csoundCreate	=	libcsound.csoundCreate
csoundCreate.restype	=	ct.c_void_p
csoundCreate.argtypes	=	[ct.c_void_p]

csoundCompile	=	libcsound.csoundCompile
csoundCompile.restype	=	ct.c_int
csoundCompile.argtypes	=	[ct.c_void_p,	ct.c_int,	ct.POINTER(ct.c_char_p)]

csoundPerform	=	libcsound.csoundPerform
csoundPerform.restype	=	ct.c_int
csoundPerform.argtypes	=	[ct.c_void_p]

csoundDestroy	=	libcsound.csoundDestroy
csoundDestroy.argtype	=	[ct.c_void_p]

def	csoundArgList(lst):
				argc	=	ct.c_int(len(lst))
				argv	=	(ct.POINTER(ct.c_char_p)	*	len(lst))()
				for	i	in	range(len(lst)):
								argv[i]	=	ct.cast(ct.pointer(ct.create_string_buffer(lst[i])),	\
																										ct.POINTER(ct.c_char_p))
				return	argc,	ct.cast(argv,	ct.POINTER(ct.c_char_p))

#	This	is	the	Csound	commandline	program	using	the	wrapper	interface
import	sys

argc,	argv	=	csoundArgList(sys.argv)
csound	=	csoundCreate(None)
result	=	csoundCompile(csound,	argc,	argv)
if	result	==	0:
				csoundPerform(csound)
csoundDestroy(csound)

	Lua	proposes	the	same	functionality	through	the	LuaJIT	project.	
Here	is	a	version	of	the	csound	command	using	LuaJIT	FFI:

--	This	is	the	wrapper	part	defining	our	LuaJIT	interface	to
--	the	Csound	API	functions	that	we	will	use,	and	a	helper	function
--	called	csoundCompile,	which	makes	a	pair	of	C	argc,	argv	arguments	from
--	the	script	input	args	and	calls	the	API	csoundCompile	function
--	This	wrapper	could	be	written	in	a	separate	file	and	imported

THE	CSOUND	API

781

--	in	the	main	program.

local	ffi	=	require("ffi")
ffi.cdef[[
typedef	void	CSOUND;
CSOUND	*csoundCreate(void	*hostData);
int	csoundCompile(CSOUND	*,	int	argc,	const	char	*argv[]);
int	csoundPerform(CSOUND	*);
void	csoundDestroy(CSOUND	*);
]]

csoundAPI	=	ffi.load("csound64.so")

string_array_t	=	ffi.typeof("const	char	*[?]")

function	csoundCompile(csound,	args)
		local	argv	=	{"dummy"}
		for	i,	v	in	ipairs(args)	do
				argv[i+1]	=	v
		end
		local	cargv	=	string_array_t(#argv	+	1,	argv)
		cargv[#argv]	=	nil
		return	csoundAPI.csoundCompile(csound,	#argv,	cargv)
end

--	This	is	the	Csound	commandline	program	using	the	wrapper	interface
csound	=	csoundAPI.csoundCreate(nil)
result	=	csoundCompile(csound,	{...})
if	result	==	0	then
		csoundAPI.csoundPerform(csound)
end
csoundAPI.csoundDestroy(csound)

The	FFI	package	of	the	Google	Go	programming	language	is	called	
cgo.	Here	is	a	version	of	the	csound	command	using	cgo:

package	main

/*	This	is	the	wrapper	part	defining	our	Go	interface	to
			the	Csound	API	functions	that	we	will	use.	It	uses	the	go	object
			model	building	methods	that	will	call	the	corresponding	API	functions.
			This	wrapper	could	be	written	in	a	separate	file	and	imported
			in	the	main	program.
*/

/*
#cgo	CFLAGS:	-DUSE_DOUBLE=1
#cgo	CFLAGS:	-I	/usr/local/include
#cgo	linux	CFLAGS:	-DLINUX=1
#cgo	LDFLAGS:	-lcsound64

#include	<csound/csound.h>
*/
import	"C"

import	(
	 "os"
	 "unsafe"
)

type	CSOUND	struct	{
	 Cs	(*C.CSOUND)
}

type	MYFLT	float64

THE	CSOUND	API

782

func	CsoundCreate(hostData	unsafe.Pointer)	CSOUND	{
	 var	cs	(*C.CSOUND)
	 if	hostData	!=	nil	{
	 	 cs	=	C.csoundCreate(hostData)
	 }	else	{
	 	 cs	=	C.csoundCreate(nil)
	 }
	 return	CSOUND{cs}
}

func	(csound	CSOUND)	Compile(args	[]string)	int	{
	 argc	:=	C.int(len(args))
	 argv	:=	make([]*C.char,	argc)
	 for	i,	arg	:=	range	args	{
	 	 argv[i]	=	C.CString(arg)
	 }
	 result	:=	C.csoundCompile(csound.Cs,	argc,	&argv[0])
	 for	_,	arg	:=	range	argv	{
	 	 C.free(unsafe.Pointer(arg))
	 }
	 return	int(result)
}

func	(csound	CSOUND)	Perform()	int	{
	 return	int(C.csoundPerform(csound.Cs))
}

func	(csound	*CSOUND)	Destroy()	{
	 C.csoundDestroy(csound.Cs)
	 csound.Cs	=	nil
}

//	This	is	the	Csound	commandline	program	using	the	wrapper	interface
func	main()	{
	 csound	:=	CsoundCreate(nil)
	 if	result	:=	csound.Compile(os.Args);	result	==	0	{
	 	 csound.Perform()
	 }
	 csound.Destroy()
}

A	complete	wrapper	to	the	Csound	API	written	in	Go	is	available	at	
https://github.com/fggp/go-csnd6.

The	different	examples	in	this	section	are	written	for	Linux.	For	other	
operating	systems,	some	adaptations	are	needed:	for	example,	for	
Windows	the	library	name	suffix	is	.dll	instead	of	.so.

The	advantage	of	FFI	over	Builtin	Wrappers	is	that	as	long	as	the	
signatures	of	the	functions	in	the	interface	are	the	same	than	the	ones	
in	the	API,	it	will	work	without	caring	about	the	version	number	of	
the	foreign	programming	language	used	to	write	the	host	program.	
Moreover,	one	need	to	include	in	the	interface	only	the	functions	used
in	the	host	program.	However	a	good	understanding	of	the	C	language
low	level	features	is	needed	to	write	the	helper	functions	needed	to	
adapt	the	foreign	language	data	structures	to	the	C	pointer	system.

THE	CSOUND	API

783

REFERENCES	&	LINKS	

Rory	Walsh	2006,	"Developing	standalone	applications	using	the	
Csound	Host	API	and	wxWidgets",	Csound	Journal	Volume	1	Issue	4	
-	Summer	2006,	
http://csoundjournal.com/2006summer/wxCsound.html

Rory	Walsh	2010,	"Developing	Audio	Software	with	the	Csound	Host	
API",		The	Audio	Programming	Book,	DVD	Chapter	35,	The	MIT	
Press
		

François	Pinot	2011,	"Real-time	Coding	Using	the	Python	API:	Score	
Events",	Csound	Journal	Issue	14	-	Winter	2011,	
http://csoundjournal.com/issue14/realtimeCsoundPython.html	

François	Pinot	2014,	"Go	Binding	for	Csound6",	
https://github.com/fggp/go-csnd6

Note:	A	collection	of	examples	in	different	languages	can	be	found	at	
http://github.com/csound/csoundAPI_examples.

THE	CSOUND	API

784

PYTHON	INSIDE	CSOUND

785

PYTHON	INSIDE	CSOUND

This	chapter	is	based	on	Andrés	Cabrera's	article	Using	Python	inside	
Csound,	An	introduction	to	the	Python	opcodes,	Csound	Journal	Issue	
6,	Spring	2007:	
http://www.csounds.com/journal/issue6/pythonOpcodes.html.	Some	
basic	knowledge	of	Python	is	required.	For	using	Csound's	Python	
opcodes,	you	must	have	Python	installed	(currently	version	2.7).	This	
should	be	the	case	on	OSX1		and	Linux.	For	Windows	there	should	be	
an	option	in	the	installer	which	lets	you	choose	to	install	Python	
(www.python.org)		and	build	Csound's	Python	opcodes.
		

STARTING	THE	PYTHON	INTERPRETER
AND	RUNNING	PYTHON	CODE	AT	I-TIME:
PYINIT	AND	PYRUNI	

To	use	the	Python	opcodes	inside	Csound,	you	must	first	start	the	
Python	interpreter.	This	is	done	using	the	pyinit	opcode.	The	pyinit	
opcode	must	be	put	in	the	header	before	any	other	Python	opcode	is	
used,	otherwise,	since	the	interpreter	is	not	running,	all	Python	
opcodes	will	return	an	error.	You	can	run	any	Python	code	by	placing	
it	within	quotes	as	argument	to	the	opcode	pyruni.	This	opcode	
executes	the	Python	code	at	init	time	and	can	be	put	in	the	heade.	The	
example	below,	shows	a	simple	csd	file	which	prints	the	text	"Hello	
Csound	world!"	to	the	terminal.2		Note	that	a	dummy	instrument	must	
be	declared	to	satisfy	the	Csound	parser.

			EXAMPLE	12B01_pyinit.csd
		

<CsoundSynthesizer>
<CsOptions>
-ndm0
</CsOptions>
<CsInstruments>

;start	python	interpreter

PYTHON	INSIDE	CSOUND

786

pyinit

;run	python	code	at	init-time
pyruni	"print	'*********************'"
pyruni	"print	'*Hello	Csound	world!*'"
pyruni	"print	'*********************'"

instr	1
endin

</CsInstruments>
<CsScore>
i	1	0	0
</CsScore>
</CsoundSynthesizer>
;Example	by	Andrés	Cabrera	and	Joachim	Heintz

Prints:

Hello	Csound	world!

PYTHON	VARIABLES	ARE	USUALLY
GLOBAL	

The	Python	interpreter	maintains	its	state	for	the	length	of	the	Csound	
run.	This	means	that	any	variables	declared	will	be	available	on	all	
calls	to	the	Python	interpreter.	In	other	words,	they	are	global.	The	
code	below	shows	variables	"c"	and	"d"	being	calculated	both	in	the	
header	("c")	and	in	instrument	2	("d"),	and	that	they	are	available	in	
all	instruments	(here	printed	out	in	instrument	1	and	3).	A	multi-line	
string	can	be	written	in	Csound	with	the	{{...}}	delimiters.	This	can	
be	useful	for	longer	Python	code	snippets.
		

EXAMPLE	12B02_python_global.csd

	<CsoundSynthesizer>
<CsOptions>
-ndm0
</CsOptions>
<CsInstruments>

pyinit

;Execute	a	python	script	in	the	header

PYTHON	INSIDE	CSOUND

787

pyruni	{{
a	=	2
b	=	3
c	=	a	+	b
}}

instr	1	;print	the	value	of	c
prints	"Instrument	%d	reports:\n",	p1
pyruni	"print	'a	+	b	=	c	=	%d'	%	c"
endin

instr	2	;calculate	d
prints	"Instrument	%d	calculates	the	value	of	d!\n",	p1
pyruni	"d	=	c**2"
endin

instr	3	;print	the	value	of	d
prints	"Instrument	%d	reports:\n",	p1
pyruni	"print	'c	squared	=	d	=	%d'	%	d"
endin

</CsInstruments>
<CsScore>
i	1	1	0
i	2	3	0
i	3	5	0
</CsScore>
</CsoundSynthesizer>
;Example	by	Andrés	Cabrera	and	Joachim	Heintz

Prints:
		
Instrument	1	reports:

		

a	+	b	=	c	=	5

		

Instrument	2	calculates	the	value	of	d!

		

Instrument	3	reports:

		

c	squared	=	d	=	25

		

RUNNING	PYTHON	CODE	AT	K-TIME	

Python	scripts	can	also	be	executed	at	k-rate	using	pyrun.	When	
pyrun	is	used,	the	script	will	be	executed	again	on	every	k-pass	for	
the	instrument,	which	means	it	will	be	executed	kr	times	per	second.	
The	example	below	shows	a	simple	example	of	pyrun.	The	number	of	
control	cycles	per	second	is	set	here	to	100	via	the	statement	kr=100.	

PYTHON	INSIDE	CSOUND

788

After	setting	the	value	of	variable	"a"	in	the	header	to	zero,	
instrument	1	runs	for	one	second,	thus	incrementing	the	value	of	"a"	
to	100	by	the	Python	statement	a	=	a	+	1.	Instrument	2,	starting	after	
the	first	second,	prints	the	value.	Instrument	1	is	then	called	again	for	
another	two	seconds,	so	the	value	of	variable	"a"	is	300	afterwards.	
Then	instrument	3	is	called	which	performs	both,	incrementing	(in	
the	'+='	short	form)	and	printing,	for	the	first	two	k-cycles.

	EXAMPLE	12B03_pyrun.csd
		

<CsoundSynthesizer>
<CsOptions>
-ndm0
</CsOptions>
<CsInstruments>

kr=100

;start	the	python	interpreter
pyinit
;set	variable	a	to	zero	at	init-time
pyruni	"a	=	0"

instr	1
;increment	variable	a	by	one	in	each	k-cycle
pyrun	"a	=	a	+	1"
endin

instr	2
;print	out	the	state	of	a	at	this	instrument's	initialization
pyruni	"print	'instr	2:	a	=	%d'	%	a"
endin

instr	3
;perform	two	more	increments	and	print	out	immediately
kCount	timeinstk
pyrun	"a	+=	1"
pyrun	"print	'instr	3:	a	=	%d'	%	a"
;;turnoff	after	k-cycle	number	two
if	kCount	==	2	then
turnoff
endif
endin
</CsInstruments>
<CsScore>
i	1	0	1		;Adds	to	a	for	1	second
i	2	1	0		;Prints	a
i	1	2	2		;Adds	to	a	for	another	two	seconds
i	3	4	1		;Prints	a	again
</CsScore>
</CsoundSynthesizer>
;Example	by	Andrés	Cabrera	and	Joachim	Heintz

Prints:
		
instr	2:	a	=	100

		

PYTHON	INSIDE	CSOUND

789

instr	3:	a	=	301

		

instr	3:	a	=	302

		

RUNNING	EXTERNAL	PYTHON	SCRIPTS:
PYEXEC	

Csound	allows	you	to	run	Python	script	files	that	exist	outside	your	
csd	file.	This	is	done	using	pyexec.	The	pyexec	opcode	will	run	the	
script	indicated,	like	this:

pyexec	"/home/python/myscript.py"

In	this	case,	the	script	"myscript.py"	will	be	executed	at	k-rate.	You	
can	give	full	or	relative	path	names.

There	are	other	versions	of	the	pyexec	opcode,	which	run	at	
initialization	only	(pyexeci)	and	others	that	include	an	additional	
trigger	argument	(pyexect).
		

PASSING	VALUES	FROM	PYTHON	TO
CSOUND:	PYEVAL(I)	

The	opcode	pyeval	and	its	relatives,	allow	you	to	pass	to	Csound	the	
value	of	a	Python	expression.	As	usual,	the	expression	is	given	as	a	
string.	So	we	expect	this	to	work:

	Not	Working	Example!
		

<CsoundSynthesizer>
<CsOptions>
-ndm0
</CsOptions>
<CsInstruments>

PYTHON	INSIDE	CSOUND

790

pyinit
pyruni	"a	=	1"
pyruni	"b	=	2"

instr	1
ival	pyevali	"a	+	b"
prints	"a	+	b	=	%d\n",	ival
endin

</CsInstruments>
<CsScore>
i	1	0	0
</CsScore>
</CsoundSynthesizer>

Running	this	code	results	in	an	error	with	this	message:
		
INIT	ERROR	in	instr	1:	pyevali:	expression	must	evaluate	in	a	float	

		

What	happens	is	that	Python	has	delivered	an	integer	to	Csound,	
which	expects	a	floating-point	number.	Csound	always	works	with	
numbers	which	are	not	integers	(to	represent	a	1,	Csound	actually	
uses	1.0).	This	is	equivalent	mathematically,	but	in	computer	memory
these	two	numbers	are	stored	in	a	different	way.	So	what	you	need	to	
do	is	tell	Python	to	deliver	a	floating-point	number	to	Csound.	This	
can	be	done	by	Python's	float()	facility.	So	this	code	should	work:

	EXAMPLE	12B04_pyevali.csd

<CsoundSynthesizer>
<CsOptions>
-ndm0
</CsOptions>
<CsInstruments>

pyinit
pyruni	"a	=	1"
pyruni	"b	=	2"

instr	1
ival	pyevali	"float(a	+	b)"
prints	"a	+	b	=	%d\n",	ival
endin

</CsInstruments>
<CsScore>
i	1	0	0
</CsScore>
</CsoundSynthesizer>
;Example	by	Andrés	Cabrera	and	Joachim	Heintz

Prints:
		

PYTHON	INSIDE	CSOUND

791

a	+	b	=	3

		

PASSING	VALUES	FROM	CSOUND	TO
PYTHON:	PYASSIGN(I)

You	can	pass	values	from	Csound	to	Python	via	the	pyassign	opcodes.	
This	is	a	very	simple	example	which	calculates	the	cent	distance	of	
the	proportion	3/2:

EXAMPLE	12B05_pyassigni.csd

<CsoundSynthesizer>
<CsOptions>
-ndm0
</CsOptions>
<CsInstruments>

pyinit

instr	1	;assign	3/2	to	the	python	variable	"x"
pyassigni	"x",	3/2
endin

instr	2	;calculate	cent	distance	of	this	proportion
pyruni	{{
from	math	import	log
cent	=	log(x,2)*1200
print	cent
}}
endin

</CsInstruments>
<CsScore>
i	1	0	0
i	2	0	0
</CsScore>
</CsoundSynthesizer>
;example	by	joachim	heintz

Unfortunately,	you	can	neither	pass	strings	from	Csound	to	Python	
via	pyassign,	nor	from	Python	to	Csound	via	pyeval.	So	the	
interchange	between	both	worlds	is	actually	limited	to	numbers.

CALLING	PYTHON	FUNCTIONS	WITH
CSOUND	VARIABLES

Apart	from	reading	and	setting	variables	directly	with	an	opcode,	you	

PYTHON	INSIDE	CSOUND

792

can	also	call	Python	functions	from	Csound	and	have	the	function	
return	values	directly	to	Csound.	This	is	the	purpose	of	the	pycall	
opcodes.	With	these	opcodes	you	specify	the	function	to	call	and	the	
function	arguments	as	arguments	to	the	opcode.	You	can	have	the	
function	return	values	(up	to	8	return	values	are	allowed)	directly	to	
Csound	i-	or	k-rate	variables.	You	must	choose	the	appropriate	
opcode	depending	on	the	number	of	return	values	from	the	function,	
and	the	Csound	rate	(i-	or	k-rate)	at	which	you	want	to	run	the	Python	
function.	Just	add	a	number	from	1	to	8	after	to	pycall,	to	select	the	
number	of	outputs	for	the	opcode.	If	you	just	want	to	execute	a	
function	without	return	value	simply	use	pycall.	For	example,	the	
function	"average"	defined	above,	can	be	called	directly	from	Csound	
using:

kave			pycall1	"average",	ka,	kb

The	output	variable	kave,	will	calculate	the	average	of	the	variable	ka
and	kb	at	k-rate.

As	you	may	have	noticed,	the	Python	opcodes	run	at	k-rate,	but	also	
have	i-rate	versions	if	an	"i"	is	added	to	the	opcode	name.	This	is	also	
true	for	pycall.	You	can	use	pycall1i,	pycall2i,	etc.	if	you	want	the	
function	to	be	evaluated	at	instrument	initialization,	or	in	the	header.	
The	following	csd	shows	a	simple	usage	of	the	pycall	opcodes:

EXAMPLE	12B06_pycall.csd

<CsoundSynthesizer>
<CsOptions>
-dnm0
</CsOptions>
<CsInstruments>

pyinit

pyruni	{{
def	average(a,b):
				ave	=	(a	+	b)/2
				return	ave
}}	;Define	function	"average"

instr	1	;call	it
iave			pycall1i	"average",	p4,	p5
prints	"a	=	%i\n",	iave
endin

</CsInstruments>
<CsScore>

PYTHON	INSIDE	CSOUND

793

i	1	0	1		100		200
i	1	1	1		1000	2000
</CsScore>
</CsoundSynthesizer>
;example	by	andrés	cabrera	and	joachim	heintz

This	csd	will	print	the	following	output:
		
a	=	150

		

a	=	1500

LOCAL	INSTRUMENT	SCOPE

Sometimes	you	want	Python	variables	to	be	global,	and	sometimes	
you	may	want	Python	variables	to	be	local	to	the	instrument	instance.	
This	is	possible	using	the	local	Python	opcodes.	These	opcodes	are	
the	same	as	the	ones	shown	above,	but	have	the	prefix	pyl	instead	of	
py.	There	are	opcodes	like	pylruni,	pylcall1t	and	pylassigni,	which	
will	behave	just	like	their	global	counterparts,	but	they	will	affect	
local	Python	variables	only.	It	is	important	to	have	in	mind	that	this	
locality	applies	to	instrument	instances,	not	instrument	numbers.	The	
next	example	shows	both,	local	and	global	behaviour.

EXAMPLE	12B07_local_vs_global.csd	
		

<CsoundSynthesizer>
<CsOptions>
-dnm0
</CsOptions>
<CsInstruments>

pyinit
giInstanceLocal	=	0
giInstanceGlobal	=	0

instr	1	;local	python	variable	'value'
kTime	timeinsts
pylassigni	"value",	p4
giInstanceLocal	=	giInstanceLocal+1
if	kTime	==	0.5	then
kvalue	pyleval	"value"
printks	"Python	variable	'value'	in	instr	%d,	instance	%d	=	%d\n",	0,	p1,	
giInstanceLocal,	kvalue
turnoff	
endif
endin

instr	2	;global	python	variable	'value'
kTime	timeinsts

PYTHON	INSIDE	CSOUND

794

pyassigni	"value",	p4
giInstanceGlobal	=	giInstanceGlobal+1
if	kTime	==	0.5	then
kvalue	pyleval	"value"
printks	"Python	variable	'value'	in	instr	%d,	instance	%d	=	%d\n",	0,	p1,	
giInstanceGlobal,	kvalue
turnoff	
endif
endin

</CsInstruments>
<CsScore>
;								p4
i	1	0	1		100
i	1	0	1		200
i	1	0	1		300
i	1	0	1		400

i	2	2	1		1000
i	2	2	1		2000
i	2	2	1		3000
i	2	2	1		4000
</CsScore>
</CsoundSynthesizer>
;Example	by	Andrés	Cabrera	and	Joachim	Heintz

Prints:
		
Python	variable	'value'	in	instr	1,	instance	4	=	100

		

Python	variable	'value'	in	instr	1,	instance	4	=	200

		

Python	variable	'value'	in	instr	1,	instance	4	=	300

		

Python	variable	'value'	in	instr	1,	instance	4	=	400

		

Python	variable	'value'	in	instr	2,	instance	4	=	4000

		

Python	variable	'value'	in	instr	2,	instance	4	=	4000

		

Python	variable	'value'	in	instr	2,	instance	4	=	4000

		

Python	variable	'value'	in	instr	2,	instance	4	=	4000

Both	instruments	pass	the	value	of	the	score	parameter	field	p4	to	the	
python	variable	"value".	The	only	difference	is	that	instrument	1	does	
this	local	(with	pylassign	and	pyleval)	and	instrument	2	does	it	global	
(with	pyassign	and	pyeval).	Four	instances	of	instrument	1	are	called	

PYTHON	INSIDE	CSOUND

795

at	the	same	time,	for	the	same	duration.	Thanks	to	the	local	variables,	
each	assignment	to	the	variable	"value"	stays	independent	from	each	
other.	This	is	shown	when	all	instances	are	adviced	to	print	out	
"value"	after	0.5	seconds.

When	the	four	instances	of	instrument	2	are	called,	each	new	instance	
overwrites	the	"value"	of	all	previous	instances	with	its	own	p4.	So	
the	second	instance	sets	"value"	to	2000	for	itself	but	only	for	the	first	
instance.	The	third	instance	sets	"value"	to	3000	also	for	instance	one	
and	two.	And	the	fourth	instance	sets	"value"	to	4000	for	all	previous	
instances,	too,	and	that	is	shown	in	the	printout,	again	after	0.5	
seconds.

TRIGGERED	VERSIONS	OF	PYTHON
OPCODES

All	of	the	python	opcodes	have	a	"triggered"	version,	which	will	only	
execute	when	its	trigger	value	is	different	to	0.	The	names	of	these	
opcodes	have	a	"t"	added	at	the	end	of	them	(e.g.	pycallt	or	
pylassignt),	and	all	have	an	additional	parameter	called	ktrig	for	
triggering	purposes.	See	the	example	in	the	next	chapter	for	usage.

SIMPLE	MARKOV	CHAINS	USING	THE
PYTHON	OPCODES

Python	opcodes	can	simplify	the	creation	of	complex	data	structures	
for	algorithmic	composition.	Below	you'll	find	a	simple	example	of	
using	the	Python	opcodes	to	generate	Markov	chains	for	a	pentatonic	
scale.	Markov	chains	require	in	practice	building	matrices,	which	
start	becoming	unwieldy	in	Csound,	especially	for	more	than	two	
dimensions.	In	Python	multi-dimensional	matrices	can	be	handled	as	
nested	lists	very	easily.	Another	advange	is	that	the	size	of	matrices	
(or	lists)	need	not	be	known	in	advance,	since	it	is	not	necessary	in	
python	to	declare	the	sizes	of	lists.
		

PYTHON	INSIDE	CSOUND

796

EXAMPLE	12B08_markov.csd

<CsoundSynthesizer>
<CsOptions>
-odac	-dm0
</CsOptions>
<CsInstruments>

sr	=	44100
ksmps	=	32
nchnls	=	2
0dbfs	=	1

pyinit

;	Python	script	to	define	probabilities	for	each	note	as	lists	within	a	list
;	Definition	of	the	get_new_note	function	which	randomly	generates	a	new
;	note	based	on	the	probabilities	of	each	note	occuring.
;	Each	note	list	must	total	1,	or	there	will	be	problems!

pyruni	{{
c	=	[0.1,	0.2,	0.05,	0.4,	0.25]
d	=	[0.4,	0.1,	0.1,	0.2,	0.2]
e	=	[0.2,	0.35,	0.05,	0.4,	0]
g	=	[0.7,	0.1,	0.2,	0,	0]
a	=	[0.1,	0.2,	0.05,	0.4,	0.25]

markov	=	[c,	d,	e,	g,	a]

from	random	import	random,	seed

seed()

def	get_new_note(previous_note):
				number	=	random()
				accum	=	0
				i	=	0
				while	accum	<	number:
								accum	=	accum	+	markov[int(previous_note)]	[int(i)]
								i	=	i	+	1
				return	i	-	1.0
}}

giSine	ftgen	0,	0,	2048,	10,	1	;sine	wave
giPenta	ftgen	0,	0,	-6,	-2,	0,	2,	4,	7,	9		;Pitch	classes	for	pentatonic	scale

instr	1		;Markov	chain	reader	and	note	spawner
;p4	=	frequency	of	note	generation
;p5	=	octave
ioct	init	p5
klastnote	init	0	;Used	to	remember	last	note	played	(start	at	first	note	of	scale)
ktrig	metro	p4	;generate	a	trigger	with	frequency	p4
knewnote	pycall1t	ktrig,	"get_new_note",	klastnote	;get	new	note	from	chain
schedkwhen	ktrig,	0,	10,	2,	0,	0.2,	knewnote,	ioct	;launch	note	on	instrument	2
klastnote	=	knewnote	;New	note	is	now	the	old	note
endin

instr	2	;A	simple	sine	wave	instrument
;p4	=	note	to	be	played
;p5	=	octave
ioct	init	p5
ipclass	table	p4,	giPenta
ipclass	=	ioct	+	(ipclass	/	100)	;	Pitch	class	of	the	note
ifreq	=	cpspch(ipclass)	;Note	frequency	in	Hertz
aenv	linen	.2,	0.05,	p3,	0.1	;Amplitude	envelope
aout	poscil		aenv,	ifreq	,	giSine	;Simple	oscillator
outs	aout,	aout
endin

</CsInstruments>
<CsScore>

PYTHON	INSIDE	CSOUND

797

;								frequency	of							Octave	of
;								note	generation				melody
i	1	0	30						3															7
i	1	5	25						6															9
i	1	10	20					7.5													10
i	1	15	15					1															8
</CsScore>
</CsoundSynthesizer>
;Example	by	Andrés	Cabrera

		

1.	 Open	a	Terminal	and	type	"python".	If	your	python	version	is	
not	2.7,	download	and	install	the	proper	version	from	
www.python.org.^

2.	 This	printing	does	not	work	in	CsoundQt.	You	should	run	all	
the	examples	here	in	the	Terminal.^

PYTHON	INSIDE	CSOUND

798

C.	PYTHON	IN	CSOUNDQT1	

799

C.	PYTHON	IN	CSOUNDQT1	

If	CsoundQt	is	built	with	PythonQt	support,2		it	enables	a	lot	of	new	
possibilities,	mostly	in	three	main	fields:	interaction	with	the	
CsoundQt	interface,	interaction	with	widgets	and	using	classes	from	
Qt	libraries	to	build	custom	interfaces	in	python.

If	you	start	CsoundQt	and	can	open	the	panels	"Python	Console"	and	
"Python	Scratch	Pad",	you	are	ready	to	go.

THE	CSOUNDQT	PYTHON	OBJECT

As	CsoundQt	has	formerly	been	called	QuteCsound,	this	name	can	
still	be	found	in	the	sources.	The	QuteCsound	object	(called	
PyQcsObject	in	the	sources)	is	the	interface	for	scripting	CsoundQt.	
All	declarations	of	the	class	can	be	found	in	the	file	pyqcsobject.h	in	
the	sources.

It	enables	the	control	of	a	large	part	of	CsoundQt's	possibilities	from	
the	python	interpreter,	the	python	scratchpad,	from	scripts	or	from	

C.	PYTHON	IN	CSOUNDQT1	

800

inside	of	a	running	Csound	file	via	Csound's	python	opcodes.3	

By	default,	a	PyQcsObject	is	already	available	in	the	python	
interpreter	of	CsoundQt	called	“q”.	To	use	any	of	its	methods,	use	
form	like

q.stopAll()

The	methods	can	be	divided	into	four	groups:

access	CsoundQt's	interface	(open	or	close	files,	start	or	stop	
performance	etc)
edit	Csound	files	which	has	already	been	opened	as	tabs	in	
CsoundQt
manage	CsoundQt's	widgets
interface	with	the	running	Csound	engine

FILE	AND	CONTROL	ACCESS	

If	you	have	CsoundQt	running	on	your	computer,	you	should	type	the	
following	code	examples	in	the	Python	Console	(if	only	one	line)	or	
the	Python	Scratch	Pad	(if	more	than	one	line	of	code).4	

CREATE	OR	LOAD	A	CSD	FILE	

Type	q.newDocument('cs_floss_1.csd')	in	your	Python	Console	and	hit	the	
Return	key.	This	will	create	a	new	csd	file	named	"cs_floss_1.csd"	in	
your	working	directory.	And	it	also	returns	an	integer	(in	the	
screenshot	below:	3)	as	index	for	this	file.

C.	PYTHON	IN	CSOUNDQT1	

801

If	you	close	this	file	and	then	execute	the	line	
q.loadDocument('cs_floss_1.csd'),	you	should	see	the	file	again	as	tab	in	
CsoundQt.

Let	us	have	a	look	how	these	two	methods	newDocument	and	loadDocument	
are	described	in	the	sources:

int	newDocument(QString	name)
int	loadDocument(QString	name,	bool	runNow	=	false)

The	method	newDocument	needs	a	name	as	string	("QString")	as	
argument,	and	returns	an	integer.	The	method	loadDocument	also	takes	a	
name	as	input	string	and	returns	an	integer	as	index	for	this	csd.	The	
additional	argument	runNow	is	optional.	It	expects	a	boolean	value	
(True/False	or	1/0).	The	default	is	"false"	which	means	"do	not	run	
immediately	after	loading".	So	if	you	type	instead	
q.loadDocument('cs_floss_1.csd',	True)	or	q.loadDocument('cs_floss_1.csd',	1),	the	
csd	file	should	start	immediately.

RUN,	PAUSE	OR	STOP	A	CSD	FILE	

For	the	next	methods,	we	first	need	some	more	code	in	our	csd.	So	let	
your	"cs_floss_1.csd"	look	like	this:

			EXAMPLE	12C01_run_pause_stop.csd

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32
0dbfs	=	1
nchnls	=	1

giSine					ftgen						0,	0,	1024,	10,	1

instr	1
kPitch					expseg					500,	p3,	1000
aSine						poscil					.2,	kPitch,	giSine
											out								aSine
endin
</CsInstruments>
<CsScore>
i	1	0	10
</CsScore>
</CsoundSynthesizer>

C.	PYTHON	IN	CSOUNDQT1	

802

This	instrument	performs	a	simple	pitch	glissando	from	500	to	1000	
Hz	in	ten	seconds.	Now	make	sure	that	this	csd	is	the	currently	active	
tab	in	CsoundQt,	and	execute	this:

	q.play()

This	starts	the	performance.	If	you	do	nothing,	the	performance	will	
stop	after	ten	seconds.	If	you	type	instead	after	some	seconds

	q.pause()

the	performance	will	pause.	The	same	task	q.pause()	will	resume	the	
performance.	Note	that	this	is	different	from	executing	q.play()	after	
q.pause()	;	this	will	start	a	new	performance.	With

q.stop()

you	can	stop	the	current	performance.

ACCESS	TO	DIFFERENT	CSD	TABS	VIA	INDICES	

The	play(),	pause()	and	stop()	method,	as	well	as	other	methods	in	
CsoundQt's	integrated	Python,	allow	also	to	access	csd	file	tabs	which	
are	not	currently	active.	As	we	saw	in	the	creation	of	a	new	csd	file	
by	q.newDocument('cs_floss_1.csd'),	each	of	them	gets	an	index.	This	index	
allows	universal	access	to	all	csd	files	in	a	running	CsoundQt	
instance.

First,	create	a	new	file	"cs_floss_2.csd",	for	instance	with	this	code:

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32
0dbfs	=	1
nchnls	=	1

giSine					ftgen						0,	0,	1024,	10,	1

instr	1
kPitch					expseg					500,	p3,	1000
aSine						poscil					.2,	kPitch,	giSine
											out								aSine
endin
</CsInstruments>
<CsScore>

C.	PYTHON	IN	CSOUNDQT1	

803

i	1	0	10
</CsScore>
</CsoundSynthesizer>

Now	get	the	index	of	these	two	tabs	in	executing	
q.getDocument('cs_floss_1.csd')	resp.	q.getDocument('cs_floss_2.csd')	.	This	will	
show	something	like	this:

So	in	my	case	the	indices	are	3	and	4.5		Now	you	can	start,	pause	and	
stop	any	of	these	files	with	tasks	like	these:

q.play(3)
q.play(4)
q.stop(3)
q.stop(4)

If	you	have	checked	"Allow	simultaneous	play"	in	CsoundQt's	
Configure->General	...

	

..	you	should	be	able	to	run	both	csds	simultaneously.	To	stop	all	
running	files,	use:

q.stopAll()

To	set	a	csd	as	active,	use	setDocument(index).	This	will	have	the	same	

C.	PYTHON	IN	CSOUNDQT1	

804

effect	as	clicking	on	the	tab.	

SEND	SCORE	EVENTS	

Now	comment	out	the	score	line	in	the	file	"cs_floss_2.csd",	or	
simply	remove	it.	When	you	now	start	Csound,	this	tab	should	run.6	
Now	execute	this	command:

q.sendEvent('i	1	0	2')

This	should	trigger	instrument	1	for	two	seconds.	
		

QUERY	FILE	NAME	OR	PATH	

In	case	you	need	to	know	the	name7		or	the	path	of	a	csd	file,	you	
have	these	functions:

getFileName()
getFilePath()

Calling	the	method	without	any	arguments,	it	refers	to	the	currently	
active	csd.	An	index	as	argument	links	to	a	specific	tab.	Here	is	a	
Python	code	snippet	which	returns	indices,	file	names	and	file	paths	
of	all	tabs	in	CsoundQt:

index	=	0
while	q.getFileName(index):
				print	'index	=	%d'	%	index
				print	'	File	Name	=	%s'	%	q.getFileName(index)
				print	'	File	Path	=	%s'	%	q.getFilePath(index)
				index	+=	1

Which	returns	for	instance:
		
index	=	0

		

	File	Name	=	/home/jh/Joachim/Stuecke/30Carin/csound/130328.csd

		

	File	Path	=	/home/jh/Joachim/Stuecke/30Carin/csound

		

C.	PYTHON	IN	CSOUNDQT1	

805

index	=	1

		

	File	Name	=	/home/jh/src/csoundmanual/examples/transegr.csd

		

	File	Path	=	/home/jh/src/csoundmanual/examples

		

index	=	2

		

	File	Name	=	/home/jh/Arbeitsfläche/test.csd

		

	File	Path	=	/home/jh/Arbeitsfläche

		

index	=	3

		

	File	Name	=	

/home/jh/Joachim/Csound/FLOSS/Release03/Chapter_12C_PythonInCsoundQt/cs_floss_1.csd

		

	File	Path	=	/home/jh/Joachim/Csound/FLOSS/Release03/Chapter_12C_PythonInCsoundQt

		

index	=	4

		

	File	Name	=	

/home/jh/Joachim/Csound/FLOSS/Release03/Chapter_12C_PythonInCsoundQt/cs_floss_2.csd

		

	File	Path	=	/home/jh/Joachim/Csound/FLOSS/Release03/Chapter_12C_PythonInCsoundQt			

		

GET	AND	SET	CSD	TEXT

One	of	the	main	features	of	Python	scripting	in	CsoundQt	is	the	
ability	to	edit	any	section	of	a	csd	file.	There	are	several	"get"	
functions,	to	query	text,	and	also	"set"	functions	to	change	or	insert	
text.

GET	TEXT	FROM	A	CSD	FILE	

C.	PYTHON	IN	CSOUNDQT1	

806

Make	sure	your	"cs_floss_2.csd"	is	the	active	tab,	and	execute	the	
following	python	code	lines:

q.getCsd()
q.getOrc()
q.getSco()

The	q.getOrc()	task	should	return	this:

	u'\nsr	=	44100\nksmps	=	32\n0dbfs	=	1\nnchnls	=	1\n\ngiSine					ftgen						0,	0,	

1024,	10,	1\n\ninstr	1\nkPitch					expseg					1000,	p3,	500\naSine						poscil					

.2,	kPitch,	giSine\n											out								aSine\nendin\n'

The	u'...'	indicates	that	a	unicode	string	is	returned.	As	usual	in	format
expressions,	newlines	are	indicated	with	the	'\n'	formatter.

You	can	also	get	the	text	for	the	<CsOptions>,	the	text	for	CsoundQt's
widgets	and	presets,	or	the	full	text	of	this	csd:

getOptionsText()
getWidgetsText()
getPresetsText()getCsd()
getFullText()

If	you	select	some	text	or	some	widgets,	you	will	get	the	selection	
with	these	commands:

getSelectedText()
getSelectedWidgetsText()

As	usual,	you	can	specify	any	of	the	loaded	csds	via	its	index.	So	
calling	q.getOrc(3)	instead	of	q.getOrc()will	return	the	orc	text	of	the	csd	
with	index	3,	instead	of	the	orc	text	of	the	currently	active	csd.

SET	TEXT	IN	A	CSD	FILE	

Set	the	cursor	anywhere	in	your	active	csd,	and	execute	the	following	
line	in	the	Python	Console:

q.insertText('my	nice	insertion')

You	will	see	your	nice	insertion	in	the	csd	file.	In	case	you	do	not	like	
it,	you	can	choose	Edit->Undo.	It	does	not	make	a	difference	for	the	

C.	PYTHON	IN	CSOUNDQT1	

807

CsoundQt	editor	whether	the	text	has	been	typed	by	hand,	or	by	the	
internal	Python	script	facility.

Text	can	also	be	inserted	to	individual	sections	using	the	functions:

setCsd(text)
setFullText(text)
setOrc(text)
setSco(text)
setWidgetsText(text)
setPresetsText(text)
setOptionsText(text)

Note	that	the	whole	section	will	be	overwritten	with	the	string	text.

OPCODE	EXISTS	

You	can	ask	whether	a	string	is	an	opcode	name,	or	not,	with	the	
function	opcodeExtists,	for	instance:

py>	q.opcodeExists('line')
True
py>	q.opcodeExists('OSCsend')
True
py>	q.opcodeExists('Line')
False
py>	q.opcodeExists('Joe')
NotYet

EXAMPLE:	SCORE	GENERATION

A	typical	application	for	setting	text	in	a	csd	is	to	generate	a	score.	
There	have	been	numerous	tools	and	programs	to	do	this,	and	it	can	
be	very	pleasant	to	use	CsoundQt's	Python	scripting	for	this	task.	Let	
us	modify	our	previous	instrument	first	to	make	it	more	flexible:

EXAMPLE	12C02_score_generated.csd

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	32
0dbfs	=	1
nchnls	=	1

giSine					ftgen						0,	0,	1024,	10,	1

instr	1
iOctStart		=										p4	;pitch	in	octave	notation	at	start
iOctEnd				=										p5	;and	end
iDbStart			=										p6	;dB	at	start

C.	PYTHON	IN	CSOUNDQT1	

808

iDbEnd					=										p7	;and	end
kPitch					expseg					cpsoct(iOctStart),	p3,	cpsoct(iOctEnd)
kEnv							linseg					iDbStart,	p3,	iDbEnd
aSine						poscil					ampdb(kEnv),	kPitch,	giSine
iFad							random					p3/20,	p3/5
aOut							linen						aSine,	iFad,	p3,	iFad
											out								aOut
endin
</CsInstruments>
<CsScore>
i	1	0	10	;will	be	overwritten	by	the	python	score	generator
</CsScore>
</CsoundSynthesizer>

The	following	code	will	now	insert	30	score	events	in	the	score	
section:

from	random	import	uniform
numScoEvents	=	30
sco	=	''
for	ScoEvent	in	range(numScoEvents):
				start	=	uniform(0,	40)
				dur	=	2**uniform(-5,	3)
				db1,	db2	=	[uniform(-36,	-12)	for	x	in	range(2)]
				oct1,	oct2	=	[uniform(6,	10)	for	x	in	range(2)]
				scoLine	=	'i	1	%f	%f	%f	%f	%d	%d\n'	%	(start,	dur,	oct1,	oct2,	db1,	db2)
				sco	=	sco	+	scoLine
q.setSco(sco)

	This	generates	a	texture	with	either	falling	or	rising	gliding	pitches.	
The	durations	are	set	in	a	way	that	shorter	durations	are	more	
frequently	than	larger	ones.	The	volume	and	pitch	ranges	allow	many	
variations	in	the	simple	shape.

WIDGETS

Creating	a	Label

Click	on	the	"Widgets"	button	to	see	the	widgets	panel.	Then	execute	
this	command	in	the	Python	Console:

q.createNewLabel()

The	properties	dialog	of	the	label	pops	up.	Type	"Hello	Label!"	or	
something	like	this	as	text.

C.	PYTHON	IN	CSOUNDQT1	

809

When	you	click	"Ok",	you	will	see	the	label	widget	in	the	panel,	and	
a	strange	unicode	string	as	return	value	in	the	Python	Console:

The	string	u'{3a171aa2-4cf8-4f05-9f30-172863909f56}'	is	a	
"universally	unique	identifier"	(uuid).	Each	widget	can	be	accessed	
by	this	ID.

SPECIFYING	THE	COMMON	PROPERTIES	AS
ARGUMENTS	

Instead	of	having	a	live	talk	with	the	properties	dialog,	we	can	
specify	all	properties	as	arguments	for	the	createNewLabel	method:

q.createNewLabel(200,	100,	"second_label")

C.	PYTHON	IN	CSOUNDQT1	

810

This	should	be	the	result:

A	new	label	has	been	created—without	opening	the	properties	dialog
—at	position	x=200	y=1008	with	the	name	"second_label".	If	you	
want	to	create	a	widget	not	in	the	active	document,	but	in	another	tab,	
you	can	also	specify	the	tab	index.	This	command	will	create	a	
widget	at	the	same	position	and	with	the	same	name	in	the	first	tab:

q.createNewLabel(200,	100,	"second_label",	0)

SETTING	THE	SPECIFIC	PROPERTIES	

Each	widget	has	a	xy	position	and	a	channel	name.9		But	the	other	
properties	depend	on	the	type	of	widget.	A	Display	has	name,	width	
and	height,	but	no	resolution	like	a	SpinBox.	The	function	
setWidgetProperty	refers	to	a	widget	via	its	ID	and	sets	a	property.	Let	us	
try	this	for	a	Display	widget.	This	command	creates	a	Display	widget	
with	channel	name	"disp_chan_01"	at	position	x=50	y=150:

q.createNewDisplay(50,	150,	"disp_chan_01")

C.	PYTHON	IN	CSOUNDQT1	

811

And	this	sets	the	text	to	a	new	string:10	

q.setWidgetProperty("disp_chan_01",	"QCS_label",	"Hey	Joe!")

The	setWidgetProperty	method	needs	the	ID	of	a	widget	first.	This	can	be	
expressed	either	as	channel	name	("disp_chan_01")	as	in	the	
command	above,	or	as	uuid.	As	I	got	the	string	u'{a71c0c67-3d54-
4d4a-88e6-8df40070a7f5}'	as	uuid,	I	can	also	write:

q.setWidgetProperty(u'{a71c0c67-3d54-4d4a-88e6-8df40070a7f5}',	"QCS_label",	"Hey	
Joeboe!")

For	humans,	referring	to	the	channel	name	as	ID	is	probably	
preferable	...11		-	But	as	the	createNew...	method	returns	the	uuid,	you	
can	use	it	implicitely,	for	instance	in	this	command:

q.setWidgetProperty(q.createNewLabel(70,	70,	"WOW"),	"QCS_fontsize",	18)

C.	PYTHON	IN	CSOUNDQT1	

812

GETTING	THE	PROPERTY	NAMES	AND	VALUES	

You	may	have	asked	how	to	know	that	the	visible	text	of	a	Display
widget	is	called	"QCS_label"	and	the	fontsize	"QCS_fontsize".	If	you
do	not	know	the	name	of	a	property,	ask	CsoundQt	for	it	via	the
function	listWidgetProperties:	
py>	q.listWidgetProperties("disp_chan_01")
(u'QCS_x',	u'QCS_y',	u'QCS_uuid',	u'QCS_visible',	u'QCS_midichan',	u'QCS_midicc',	
u'QCS_label',	u'QCS_alignment',	u'QCS_precision',	u'QCS_font',	u'QCS_fontsize',	
u'QCS_bgcolor',	u'QCS_bgcolormode',	u'QCS_color',	u'QCS_bordermode',	
u'QCS_borderradius',	u'QCS_borderwidth',	u'QCS_width',	u'QCS_height',	
u'QCS_objectName')

As	you	see,	listWidgetProperties	returns	all	properties	in	a	tuple.	You	can	
query	the	value	of	a	single	property	with	the	function	getWidgetProperty,	
which	takes	the	uuid	and	the	property	as	inputs,	and	returns	the	
property	value.	So	this	code	snippet	asks	for	all	property	values	of	our	
Display	widget:

widgetID	=	"disp_chan_01"
properties	=	q.listWidgetProperties(widgetID)
for	property	in	properties:
				propVal	=	q.getWidgetProperty(widgetID,	property)
				print	property	+	'	=	'	+	str(propVal)

Returns:
		
QCS_x	=	50

		

QCS_y	=	150

C.	PYTHON	IN	CSOUNDQT1	

813

		

QCS_uuid	=	{a71c0c67-3d54-4d4a-88e6-8df40070a7f5}

		

QCS_visible	=	True

		

QCS_midichan	=	0

		

QCS_midicc	=	-3

		

QCS_label	=	Hey	Joeboe!

		

QCS_alignment	=	left

		

QCS_precision	=	3

		

QCS_font	=	Arial

		

QCS_fontsize	=	10

		

QCS_bgcolor	=	#ffffff

		

QCS_bgcolormode	=	False

		

QCS_color	=	#000000

		

QCS_bordermode	=	border

		

QCS_borderradius	=	1

		

QCS_borderwidth	=	1

		

QCS_width	=	80

		

QCS_height	=	25

		

C.	PYTHON	IN	CSOUNDQT1	

814

QCS_objectName	=	disp_chan_01

GET	THE	UUIDS	OF	ALL	WIDGETS	

For	getting	the	uuid	strings	of	all	widgets	in	the	active	csd	tab,	type

q.getWidgetUuids()

As	always,	the	uuid	strings	of	other	csd	tabs	can	be	accessed	via	the	
index.

SOME	EXAMPLES	FOR	CREATING	AND	MODIFYING
WIDGETS	

Create	a	new	slider	with	the	channel	name	"level"	at	position	10,10	in	
the	(already	open	but	not	necessarily	active)	document	"test.csd":

q.createNewSlider(10,	10,	"level",	q.getDocument("test.csd"))

Create	ten	knobs	with	the	channel	names	"partial_1",	"partial_2"	etc,	

C.	PYTHON	IN	CSOUNDQT1	

815

and	the	according	labels	"amp_part_1",	"amp_part_2"	etc	in	the	
currently	active	document:

for	no	in	range(10):
								q.createNewKnob(100*no,	5,	"partial_"+str(no+1))
								q.createNewLabel(100*no+5,	90,	"amp_part_"+str(no+1))

Alternatively,	you	can	store	the	uuid	strings	while	creating:	
knobs,	labels	=	[],	[]
for	no	in	range(10):
								knobs.append(q.createNewKnob(100*no,	5,	"partial_"+str(no+1)))
								labels.append(q.createNewLabel(100*no+5,	90,	"amp_part_"+str(no+1)))

The	variables	knobs	and	labels	now	contain	the	IDs:

py>	knobs

		

[u'{8d10f9e3-70ce-4953-94b5-24cf8d6f6adb}',	u'{d1c98b52-a0a1-4f48-9bca-

bac55dad0de7}',	u'{b7bf4b76-baff-493f-bc1f-43d61c4318ac}',	u'{1332208d-e479-4152-

85a8-0f4e6e589d9d}',	u'{428cc329-df4a-4d04-9cea-9be3e3c2a41c}',	u'{1e691299-3e24-

46cc-a3b6-85fdd40eac15}',	u'{a93c2b27-89a8-41b2-befb-6768cae6f645}',	u'{26931ed6-

4c28-4819-9b31-4b9e0d9d0a68}',	u'{874beb70-b619-4706-a465-12421c6c8a85}',	

u'{3da687a9-2794-4519-880b-53c2f3b67b1f}']

		

py>	labels

		

[u'{9715ee01-57d5-407d-b89a-bae2fc6acecf}',	u'{71295982-b5e7-4d64-9ac5-

b8fbcffbd254}',	u'{09e924fa-2a7c-47c6-9e17-e710c94bd2d1}',	u'{2e31dbfb-f3c2-43ab-

ab6a-f47abb4875a3}',	u'{adfe3aef-4499-4c29-b94a-a9543e54e8a3}',	u'{b5760819-f750-

411d-884c-0bad16d68d09}',	u'{c3884e9e-f0d8-4718-8fcb-66e82456f0b5}',	u'{c1401878-

e7f7-4e71-a097-e92ada42e653}',	u'{a7d14879-1601-4789-9877-f636105b552c}',	

u'{ec5526c4-0fda-4963-8f18-1c7490b0a667}'

Move	the	first	knob	200	pixels	downwards:

q.setWidgetProperty(knobs[0],	"QCS_y",	q.getWidgetProperty(knobs[0],	"QCS_y")+200)

Modify	the	maximum	of	each	knob	so	that	the	higher	partials	have	
less	amplitude	range	(set	maximum	to	1,	0.9,	0.8,	...,	0.1):

for	knob	in	range(10):
								q.setWidgetProperty(knobs[knob],	"QCS_maximum",	1-knob/10.0)

C.	PYTHON	IN	CSOUNDQT1	

816

DELETING	WIDGETS

You	can	delete	a	widget	using	the	method	destroyWidget.	You	have	to	
pass	the	widget's	ID,	again	either	as	channel	name	or	(better)	as	uuid	
string.	This	will	remove	the	first	knob	in	the	example	above:

q.destroyWidget("partial_1")

This	will	delete	all	knobs:

for	w	in	knobs:
				q.destroyWidget(w)

And	this	will	delete	all	widgets	of	the	active	document:

for	w	in	q.getWidgetUuids():
				q.destroyWidget(w)

GETTING	AND	SETTING	CHANNEL	NAMES	AND
VALUES

After	this	cruel	act	of	destruction,	let	us	again	create	a	slider	and	a	
display:

py>	q.createNewSlider(10,	10,	"level")
u'{b0294b09-5c87-4607-afda-2e55a8c7526e}'
py>	q.createNewDisplay(50,	10,	"message")
u'{a51b438f-f671-4108-8cdb-982387074e4d}'

Now	we	will	ask	for	the	values	of	these	widgets12		with	the	methods	
getChannelValue	and	getChannelString:

py>	q.getChannelValue('level')
0.0
py>	q.getChannelString("level")
u''
py>	q.getChannelValue('message')
0.0
py>	q.getChannelString('message')
u'Display'

As	you	see,	it	depends	on	the	type	of	the	widget	whether	to	query	its	
value	by	getChannelValue	or	getChannelString.	Although	CsoundQt	will	not	
return	an	error,	it	makes	no	sense	to	ask	a	slider	for	its	string	(as	its	
value	is	a	number),	and	a	display	for	its	number	(as	its	value	is	a	
string).

C.	PYTHON	IN	CSOUNDQT1	

817

With	the	methods	setChannelValue	and	setChannelString	we	can	
change	the	main	content	of	a	widget	very	easily:

py>	q.setChannelValue("level",	0.5)
py>	q.setChannelString("message",	"Hey	Joe	again!")

This	is	much	more	handy	than	the	general	method	using	
setWidgetProperty:

py>	q.setWidgetProperty("level",	"QCS_value",	1)
py>	q.setWidgetProperty("message",	"QCS_label",	"Nono")

PRESETS	

Now	right-click	in	the	widget	panel	and	choose	Store	Preset	->	New	
Preset:

	

You	can	(but	need	not)	enter	a	name	for	the	preset.	The	important	
thing	here	is	the	number	of	the	preset	(here	0).	-	Now	change	the	
value	of	the	slider	and	the	text	of	the	display	widget.	Save	again	as	
preset,	now	being	preset	1.	-	Now	execute	this:

q.loadPreset(0)

You	will	see	the	content	of	the	widgets	reloaded	to	the	first	preset.	
Again,	with

q.loadPreset(1)

C.	PYTHON	IN	CSOUNDQT1	

818

you	can	switch	to	the	second	one.

Like	all	python	scripting	functions	in	CsoundQt,	you	can	not	only	use	
these	methods	from	the	Python	Console	or	the	Python	Cratch	Pad,	but	
also	from	inside	any	csd.	This	is	an	example	how	to	switch	all	the	
widgets	to	other	predefined	states,	in	this	case	controlled	by	the	score.	
You	will	see	the	widgets	for	the	first	three	seconds	in	Preset	0,	then	
for	the	next	three	seconds	in	Preset	1,	and	finally	again	in	Preset	0:

	EXAMPLE	12C03_presets.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>

pyinit

instr	loadPreset
	 index	=	p4
	 pycalli	"q.loadPreset",	index
endin

</CsInstruments>
<CsScore>
i	"loadPreset"	0	3	0
i	"loadPreset"	+	.	1
i	"loadPreset"	+	.	0
</CsScore>
</CsoundSynthesizer>
;example	by	tarmo	johannes	and	joachim	heintz	

CSOUND	FUNCTIONS

Several	functions	can	interact	with	the	Csound	engine,	for	example	to	
query	information	about	it.	Note	that	the	functions	getSampleRate,	
getKsmps,	getNumChannels	and	getCurrentCsound	refer	to	a	running	instance	of	
Csound.

py>	q.getVersion()	#	CsoundQt	API	version
u'1.0'
py>	q.getSampleRate()
44100.0
py>	q.getKsmps()
32
py>	q.getNumChannels()
1
py>	q.getCurrentCsound()
CSOUND	(C++	object	at:	0x2fb5670)

With	getCsChannel,	getCsStringChannel	and	setCsChannel	you	can	access	csound	

C.	PYTHON	IN	CSOUNDQT1	

819

channels	directly,	independently	from	widgets.	They	are	useful	when	
testing	a	csd	for	use	with	the	Csound	API	(in	another	application,	a	
csLapdsa	or	Cabbage	plugin,	Android	application)	or	similar.	These	
are	some	examples,	executed	on	a	running	csd	instance:
		

py>	q.getCsChannel('my_num_chn')
0.0
py>	q.getCsStringChannel('my_str_chn')
u''

py>	q.setCsChannel('my_num_chn',	1.1)
py>	q.setCsChannel('my_str_chn',	'Hey	Csound')

py>	q.getCsChannel('my_num_chn')
1.1
py>	q.getCsStringChannel('my_str_chn')
u'Hey	Csound'

If	you	have	a	function	table	in	your	running	Csound	instance	which	
has	for	instance	been	created	with	the	line	giSine	ftgen	1,	0,	1024,	10,	1,	
you	can	query	getTableArray	like	this:	
		

py>	q.getTableArray(1)
MYFLT	(C++	object	at:	0x35d1c58)

Finally,	you	can	register	a	Python	function	as	a	callback	to	be	
executed	in	between	processing	blocks	for	Csound.	The	first	
argument	should	be	the	text	that	should	be	called	on	every	pass.	It	can
include	arguments	or	variables	which	will	be	evaluated	every	time.	
You	can	also	set	a	number	of	periods	to	skip	to	avoid.

registerProcessCallback(QString	func,	int	skipPeriods	=	0)

You	can	register	the	python	text	to	be	executed	on	every	Csound	
control	block	callback,	so	you	can	execute	a	block	of	code,	or	call	
any	function	which	is	already	defined.

CREATING	OWN	GUIS	WITH	PYTHONQT	

One	of	the	very	powerful	features	of	using	Python	inside	CsoundQt	is	
the	ability	to	build	own	GUIs.	This	is	done	via	the	PythonQt	library	
which	gives	you	access	to	the	Qt	toolkit	via	Python.	We	will	show	

C.	PYTHON	IN	CSOUNDQT1	

820

some	examples	here.	Have	a	look	in	the	"Scripts"	menu	in	CsoundQt	
to	find	much	more	(you	will	find	the	code	in	the	"Editor"	submenu).
		

DIALOG	BOX

Sometimes	it	is	practical	to	ask	from	user	just	one	question	-	number	
or	name	of	something	and	then	execute	the	rest	of	the	code	(it	can	be	
done	also	inside	a	csd	with	python	opcodes).	In	Qt,	the	class	to	create	
a	dialog	for	one	question	is	called	QInputDialog.

To	use	this	or	any	other	Qt	classes,	it	is	necessary	to	import	the	
PythonQt	and	its	Qt	submodules.	In	most	cases	it	is	enough	to	add	this
line:

from	PythonQt.Qt	import	*

or

from	PythonQt.QtGui	import	*

At	first	an	object	of	QInputDialog	must	be	defined,	then	you	can	use	
its	methods	getInt,	getDouble,	getItem	or	getText	to	read	the	input	in	
the	form	you	need.	This	is	a	basic	example:

from	PythonQt.Qt	import	*

inpdia	=	QInputDialog()
myInt	=	inpdia.getInt(inpdia,"Example	1","How	many?")
print	myInt
#	example	by	tarmo	johannes

Note	that	the	variable	myInt	is	now	set	to	a	value	which	remains	in	
your	Python	interpreter.	Your	Python	Console	may	look	like	this	
when	executing	the	code	above,	and	then	ask	for	the	value	of	myInt:

py>
12
Evaluated	5	lines.
py>	myInt
12

Depending	on	the	value	of	myInt,	you	can	do	funny	or	serious	things.	
This	code	re-creates	the	Dialog	Box	whenever	the	user	enters	the	

C.	PYTHON	IN	CSOUNDQT1	

821

number	1:

from	PythonQt.Qt	import	*

def	again():
				inpdia	=	QInputDialog()
				myInt	=	inpdia.getInt(inpdia,"Example	1","How	many?")
				if	myInt	==	1:
								print	"If	you	continue	to	enter	'1'	I	will	come	back	again	and	again."
								again()
				else:
								print	"Thanks	-	Leaving	now."
again()
#	example	by	joachim	heintz

This	is	a	simple	example	showing	how	you	can	embed	an	own	GUI	in	
your	Csound	code.	Here,	Csound	waits	for	the	user	input,	and	the	
prints	out	the	entered	value	as	the	Csound	variable	giNumber:

				EXAMPLE	12C04_dialog.csd

<CsoundSynthesizer>
<CsOptions>
-n
</CsOptions>
<CsInstruments>

pyinit
pyruni	{{
from	PythonQt.Qt	import	*
dia	=	QInputDialog()
dia.setDoubleDecimals(4)
}}

giNumber	pyevali	{{
dia.getDouble(dia,"CS	question","Enter	number:	")
}}	;	get	the	number	from	Qt	dialog

instr	1
	 print	giNumber
endin

</CsInstruments>
<CsScore>
i	1	0	0
</CsScore>
</CsoundSynthesizer>
;example	by	tarmo	johannes

SIMPLE	GUI	WITH	BUTTONS

The	next	example	takes	the	user	input	(as	a	string)	and	transforms	it
to	a	sounding	sequence	of	notes.	First,	make	sure	that	the	following
csd	is	your	active	tab	in	CsoundQt:	

				EXAMPLE	12C05_string_sound.csd

<CsoundSynthesizer>

C.	PYTHON	IN	CSOUNDQT1	

822

<CsInstruments>

sr	=	44100
nchnls	=	2
0dbfs	=	1
ksmps	=	32

giSine	ftgen	1,	0,	4096,	10,	1	;	sine

#define	MAINJOB(INSTNO)	#
	 Sstr	strget	p4
	 ilen	strlen	Sstr
	 ipos	=	0
marker:			;	convert	every	character	in	the	string	to	pitch
				ichr	strchar	Sstr,	ipos
				icps	=	cpsmidinn(ichr)-$INSTNO*8
				;print	icps
				event_i	"i",	"sound",	0+ipos/8,	p3,	ichr,icps,	$INSTNO	;	chord	with	arpeggio
				loop_lt	ipos,	1,	ilen,	marker
#

instr	1
	 $MAINJOB(1)	
endin

instr	2
	 $MAINJOB(2)	
endin

instr	3
	 $MAINJOB(3)	
endin

instr	sound
	 ichar	=	p4
	 ifreq	=	p5
	 itype	=	p6
	 kenv	linen	0.1,0.1,	p3,0.5	
	 if	itype==	1	then
	 	 asig	pluck	kenv,ifreq,ifreq,0,	3,	0
	 elseif	itype==2	then
	 	 kenv	adsr	0.05,0.1,0.5,1
	 	 asig	poscil	kenv*0.1,ifreq,giSine
	 else
	 	 asig	 buzz	kenv,ifreq,10,	giSine
	 endif
	 outs	asig,asig
endin

</CsInstruments>
<CsScore>
f0	3600
i	1	0	4	"huhuu"
</CsScore>
</CsoundSynthesizer>
;example	by	tarmo	johannes

Now	copy	this	Python	code	into	your	Python	Scratch	Pad	and	
evaluate	it.	Then	type	anything	in	the	"type	here"	box	and	push	the	
"insert"	button.	After	pushing	"play",	the	string	will	be	played.	You	
can	also	send	the	string	as	real-time	event,	to	different	instruments,	in	
different	durations.
		

from	PythonQt.Qt	import	*

C.	PYTHON	IN	CSOUNDQT1	

823

#	FUNCTIONS==============================

def	insert():	#	read	input	from	UI	and	insert	a	line	to	score	of	csd	file,	open	in	
CsoundQt	with	index	csdIndex
				scoreLine	=	"f0	3600\n"	+	"i	"	+	instrSpinBox.text	+	"	0	"	+	durSpinBox.text	+	'	
"'	+	par1LineEdit.text	+	"\""
				print	scoreLine
				q.setSco(scoreLine,	csdIndex)
	
def	play():	#	play	file	with	index	csdIndex
				print	"PLAY"
				q.play(csdIndex)	

def	send():	#	read	input	from	UI	send	live	event
				scoreLine	=	"i	"	+	instrSpinBox.text	+	"	0	"	+	durSpinBox.text	+	'	"'	+	
par1LineEdit.text	+	"\""
				print	scoreLine
				q.sendEvent(csdIndex,	scoreLine)

def	stopAndClose():	#stop	csdIndex,	close	UI
				print	"STOP"
				q.stop(csdIndex)
				window.delete()

#	MAIN	====================================

window	=	QWidget()	#	window	as	main	widget
layout	=	QGridLayout(window)	#	use	gridLayout	-	the	most	flexible	one	-	to	place	the	
widgets	in	a	table-like	structure
window.setLayout(layout)
window.setWindowTitle("PythonQt	inteface	example")

instrLabel	=	QLabel("Select	instrument")
layout.addWidget(instrLabel,0,0)	#	first	row,	first	column

instrSpinBox	=	QSpinBox(window)
instrSpinBox.setMinimum(1)
instrSpinBox.setMaximum(3)
layout.addWidget(instrSpinBox,	0,	1)	#	first	row,	second	column

durLabel	=	QLabel("Duration:	")
layout.addWidget(durLabel,1,0)		#	etc

durSpinBox	=	QSpinBox(window)
durSpinBox.setMinimum(1)
durSpinBox.setMaximum(20)
durSpinBox.setValue(3)
layout.addWidget(durSpinBox,	1,	1)

par1Label	=	QLabel("Enter	string	for	parameter	1:	")
layout.addWidget(par1Label,2,0)

par1LineEdit	=	QLineEdit(window)
par1LineEdit.setMaxLength(30)	#	don't	allow	too	long	strings
par1LineEdit.setText("type	here")
layout.addWidget(par1LineEdit,2,1)

insertButton	=	QPushButton("Insert",window)
layout.addWidget(insertButton,	3,0)

playButton	=	QPushButton("Play",window)
layout.addWidget(playButton,	3,1)

sendButton	=	QPushButton("Send	event",window)
layout.addWidget(sendButton,	4,0)

closeButton	=	QPushButton("Close",window)
layout.addWidget(closeButton,	4,1)

#	connect	buttons	and	functions		================
#NB!	function	names	must	be		without	parenthesis!

C.	PYTHON	IN	CSOUNDQT1	

824

#	number	and	type	of	arguments	of	the	signal	and	slot	(called	function)	must	match

insertButton.connect(SIGNAL("clicked()"),insert)	#	when	clicked,	run	function	
insert()
playButton.connect(SIGNAL("clicked()"),play)		#etc
sendButton.connect(SIGNAL("clicked()"),send)
closeButton.connect(SIGNAL("clicked()"),stopAndClose)

window.show()	#	show	the	window	and	wait	for	clicks	on	buttons

A	COLOR	CONTROLLER

To	illustrate	how	to	use	power	of	Qt	together	with	CsoundQt,	the	
following	example	uses	the	color	picking	dialog	of	Qt.	When	user	
moves	the	cursor	around	in	the	RGB	palette	frame,	the	current	red-
green-blue	values	are	forwarded	to	CsoundQt	as	floats	in	0..1,	
visualized	as	colored	meters	and	used	as	controlling	parameters	for	
sound.

Qt's	object	QColorDialog	emits	the	signal	
currentColorChanged(QColor)	every	time	when	any	of	the	RGB	
values	in	the	colorbox	has	changed.	The	script	connects	the	signal	to	
a	function	that	forwards	the	color	values	to	Csound.	So	with	one	
mouse	movement,	three	parameters	can	be	controlled	instantly.

In	the	Csound	implementation	of	this	example	I	used	-	thinking	on	
the	colors	-	three	instruments	from	Richard	Boulanger's	"Trapped	in	
convert"	-	red,	green	and	blue.	The	RGB	values	of	the	dialog	box	
control	the	mix	between	these	three	instruments.

As	usual,	let	the	following	csd	be	your	active	tab	in	CsoundQt,	then	
run	the	Python	code	in	the	Python	Scratch	Pad.13	
		

				EXAMPLE	12C06_color_controller.csd

<CsoundSynthesizer>
<CsInstruments>
sr	=	44100
ksmps	=	32
nchnls	=	2

garvb		init					0
alwayson	"_reverb"

;==;
;====================================	RED	===================================;

C.	PYTHON	IN	CSOUNDQT1	

825

;==;
;	parameters	from	original	score
;i	8			15.5			3.1					3						50							4000			129				8						2.6				0.3
							instr			red
ifuncl	=							16

p4	=	2.2	;	amp
p5	=	50	;	FilterSweep	StartFreq
p6	=	4000	;	FilterSweep	EndFreq
p7=	129	;	bandwidth
p8	=	8	;	cps	of	rand1
p9	=	2.6	;	cps	of	rand2
p10	=	0.3	;	reverb	send	factor

k1					expon			p5,	p3,	p6
k2					line				p8,	p3,	p8	*	.93
k3					phasor		k2
k4					table			k3	*	ifuncl,	20
anoise	rand				8000
aflt1		reson			anoise,	k1,	20	+	(k4	*	k1	/	p7),	1

k5					linseg		p6	*	.9,	p3	*	.8,	p5	*	1.4,	p3	*	.2,	p5	*	1.4
k6					expon			p9	*	.97,	p3,	p9
k7					phasor		k6
k8					tablei		k7	*	ifuncl,	21
aflt2		reson			anoise,	k5,	30	+	(k8	*	k5	/	p7	*	.9),	1

abal			oscil			1000,	1000,	1
a3					balance	aflt1,	abal
a5					balance	aflt2,	abal

k11				linen			p4,	.15,	p3,	.5
a3					=							a3	*	k11
a5					=							a5	*	k11

k9					randh			1,	k2
aleft		=							((a3	*	k9)	*	.7)	+	((a5	*	k9)	*	.3)
k10				randh			1,	k6
aright	=							((a3	*	k10)	*	.3)+((a5	*	k10)	*	.7)
klevel	invalue	"red"
klevel	port	klevel,0.05	
							outs				aleft*klevel,	aright*klevel
garvb		=							garvb	+	(a3	*	p10)*klevel
endin

;==;
;====================================	BLUE	==================================;
;==;
;i	2			80.7			8							0						8.077				830				0.7				24					19					0.13
							instr	blue																															;	p6	=	amp

p5	=	8.077	;	pitch
p6	=	830	;	amp
p7	=	0.7	;	reverb	send	factor
p8	=	24	;	lfo	freq
p9	=	19	;	number	of	harmonic
p10	=	0.1+rnd(0.2)	;0.5	;	sweep	rate

ifreq		random	500,1000;cpspch(p5)
k1					randi				1,	30
k2					linseg			0,	p3	*	.5,	1,	p3	*	.5,	0
k3					linseg			.005,	p3	*	.71,	.015,	p3	*	.29,	.01
k4					oscil				k2,	p8,	1,.2
k5					=								k4	+	2

ksweep	linseg			p9,	p3	*	p10,	1,	p3	*	(p3	-	(p3	*	p10)),	1

kenv			expseg			.001,	p3	*	.01,	p6,	p3	*	.99,	.001
asig			gbuzz				kenv,	ifreq	+	k3,	k5,	ksweep,	k1,	15

klevel	invalue	"blue"
klevel	port	klevel,0.05	

C.	PYTHON	IN	CSOUNDQT1	

826

asig	=	asig*klevel
							outs					asig,	asig
garvb		=								garvb	+	(asig	*	p7)
							endin

;==;
;====================================	GREEN	=================================;
;==;
;	i	5			43					1.1					9.6				3.106				2500			0.4				1.0				8						3				17		34

								instr		green																													;	p6	=	amp
p5	=	3.106	;	pitch
p6	=	2500	;	amp
p7	=	0.4	;	reverb	send
p8	=	0.5	;	pan	direction
p9	=	8	;	carrier	freq
p10	=	3	;	modulator	freq
p11	=	17	;	modulation	index
p12	=	34	;	rand	freq

ifreq			=						cpspch(p5)																				;	p7	=	reverb	send	factor
																																													;	p8	=	pan	direction
k1					line				p9,	p3,	1																					;	...	(1.0	=	L	->	R,	0.1	=	R	->	L)
k2					line				1,	p3,	p10																				;	p9	=	carrier	freq
k4					expon			2,	p3,	p12																				;	p10	=	modulator	freq
k5					linseg		0,	p3	*	.8,	8,	p3	*	.2,	8					;	p11	=	modulation	index
k7					randh			p11,	k4																							;	p12	=	rand	freq
k6					oscil			k4,	k5,	1,	.3

kenv1		linen			p6,	.03,	p3,	.2
a1					foscil		kenv1,	ifreq	+	k6,	k1,	k2,	k7,	1

kenv2		linen			p6,	.1,	p3,	.1
a2					oscil			kenv2,	ifreq	*	1.001,	1

amix			=							a1	+	a2
kpan			linseg		int(p8),	p3	*	.7,	frac(p8),	p3	*	.3,	int(p8)
klevel	invalue	"green"
klevel	port	klevel,0.05
amix	=	amix*klevel
							outs				amix	*	kpan,	amix	*	(1	-	kpan)
garvb		=							garvb	+	(amix	*	p7)
							endin

	instr			_reverb
p4	=	1/10																										;	p4	=	panrate
k1					oscil			.5,	p4,	1
k2					=							.5	+	k1
k3					=							1	-	k2	
asig			reverb		garvb,	2.1
							outs				asig	*	k2,	(asig	*	k3)	*	(-1)
garvb		=							0
							endin

</CsInstruments>
<CsScore>
;==;
;=========================	FUNCTIONS	==;
;==;
f1			0		8192		10			1
;	15	-	vaja
f15		0		8192		9				1			1			90
;kasutusel	red
f16		0		2048		9				1			3			0			3			1			0			6			1			0
f20		0		16			-2				0			30		40		45		50		40		30		20		10		5		4		3		2		1		0		0		0
f21		0		16			-2				0			20		15		10		9			8			7			6			5			4		3		2		1		0		0

r	3	COUNT
i	"red"	0	20
i	"green"	0	20
i	"blue"	0	6

C.	PYTHON	IN	CSOUNDQT1	

827

i	.	+	3
i	.	+	4
i	.	+	7
s

f	0	1800

</CsScore>
</CsoundSynthesizer>
;example	by	tarmo	johannes,	after	richard	boulanger

from	PythonQt.Qt	import	*

#	write	the	current	RGB	values	as	floats	0..1	to	according	channels	of	"rgb-
widgets.csd"
def	getColors(currentColor):
				q.setChannelValue("red",currentColor.redF(),csd)
				q.setChannelValue("green",currentColor.greenF(),csd)
				q.setChannelValue("blue",currentColor.blueF(),csd)

#	main-----------
cdia	=	QColorDialog()	#create	QColorDiaog	object
cdia.connect(SIGNAL("currentColorChanged(QColor)"),getColors)	#	create	connection	
between		color	changes	in	the	dialog	window	and	function	getColors
cdia.show()	#	show	the	dialog	window,
q.play(csd)	#	and	play	the	csd

LIST	OF	PYQCSOBJECT	METHODS	IN
CSOUNDQT

LOAD/CREATE/ACTIVATE	A	CSD	FILE	
int	loadDocument(QString	name,	bool	runNow	=	false)
int	getDocument(QString	name	=	"")
int	newDocument(QString	name)
void	setDocument(int	index)	

PLAY/PAUSE/STOP	A	CSD	FILE	
void	play(int	index	=	-1,	bool	realtime	=	true)
void	pause(int	index	=	-1)
void	stop(int	index	=	-1)
void	stopAll()	

SEND	SCORE	EVENTS	
void	sendEvent(int	index,	QString	events)
void	sendEvent(QString	events)
void	schedule(QVariant	time,	QVariant	event)	

QUERY	FILE	NAME/PATH	
QString	getFileName(int	index	=	-1)
QString	getFilePath(int	index	=	-1)	

GET	CSD	TEXT	

C.	PYTHON	IN	CSOUNDQT1	

828

QString	getSelectedText(int	index	=	-1,	int	section	=	-1)
QString	getCsd(int	index	=	-1)
QString	getFullText(int	index	=	-1)
QString	getOrc(int	index	=	-1)
QString	getSco(int	index	=	-1)
QString	getWidgetsText(int	index	=	-1)
QString	getSelectedWidgetsText(int	index	=	-1)
QString	getPresetsText(int	index	=	-1)
QString	getOptionsText(int	index	=	-1)	

SET	CSD	TEXT	
void	insertText(QString	text,	int	index	=	-1,	int	section	=	-1)
void	setCsd(QString	text,	int	index	=	-1)
void	setFullText(QString	text,	int	index	=	-1)
void	setOrc(QString	text,	int	index	=	-1)
void	setSco(QString	text,	int	index	=	-1)
void	setWidgetsText(QString	text,	int	index	=	-1)
void	setPresetsText(QString	text,	int	index	=	-1)
void	setOptionsText(QString	text,	int	index	=	-1)	

OPCODE	EXISTS	
bool	opcodeExists(QString	opcodeName)	

CREATE	WIDGETS	
QString	createNewLabel(int	x	=	0,	int	y	=	0,	QString	channel	=	QString(),	int	index	=	
-1)
QString	createNewDisplay(int	x	=	0,	int	y	=	0,	QString	channel	=	QString(),	int	index	
=	-1)
QString	createNewScrollNumber(int	x	=	0,	int	y	=	0,	QString	channel	=	QString(),	int	
index	=	-1)
QString	createNewLineEdit(int	x	=	0,	int	y	=	0,	QString	channel	=	QString(),	int	
index	=	-1)
QString	createNewSpinBox(int	x	=	0,	int	y	=	0,	QString	channel	=	QString(),	int	index	
=	-1)
QString	createNewSlider(QString	channel,	int	index	=	-1)
QString	createNewSlider(int	x	=	0,	int	y	=	0,	QString	channel	=	QString(),	int	index	
=	-1)
QString	createNewButton(int	x	=	0,	int	y	=	0,	QString	channel	=	QString(),	int	index	
=	-1)
QString	createNewKnob(int	x	=	0,	int	y	=	0,	QString	channel	=	QString(),	int	index	=	
-1)
QString	createNewCheckBox(int	x	=	0,	int	y	=	0,	QString	channel	=	QString(),	int	
index	=	-1)
QString	createNewMenu(int	x	=	0,	int	y	=	0,	QString	channel	=	QString(),	int	index	=	
-1)
QString	createNewMeter(int	x	=	0,	int	y	=	0,	QString	channel	=	QString(),	int	index	=	
-1)
QString	createNewConsole(int	x	=	0,	int	y	=	0,	QString	channel	=	QString(),	int	index	
=	-1)
QString	createNewGraph(int	x	=	0,	int	y	=	0,	QString	channel	=	QString(),	int	index	=	
-1)
QString	createNewScope(int	x	=	0,	int	y	=	0,	QString	channel	=	QString(),	int	index	=	
-1)

QUERY	WIDGETS	
QVariant	getWidgetProperty(QString	widgetid,	QString	property,	int	index=	-1)
double	getChannelValue(QString	channel,	int	index	=	-1)
QString	getChannelString(QString	channel,	int	index	=	-1)
QStringList	listWidgetProperties(QString	widgetid,	int	index	=	-1)

C.	PYTHON	IN	CSOUNDQT1	

829

QStringList	getWidgetUuids(int	index	=	-1)	

MODIFY	WIDGETS	
void	setWidgetProperty(QString	widgetid,	QString	property,	QVariant	value,	int	index=	
-1)
void	setChannelValue(QString	channel,	double	value,	int	index	=	-1)
void	setChannelString(QString	channel,	QString	value,	int	index	=	-1)	

DELETE	WIDGETS	
bool	destroyWidget(QString	widgetid)	

PRESETS	
void	loadPreset(int	presetIndex,	int	index	=	-1)	

LIVE	EVENT	SHEET	
QuteSheet*	getSheet(int	index	=	-1,	int	sheetIndex	=	-1)
QuteSheet*	getSheet(int	index,	QString	sheetName)	

CSOUND	/	API	
QString	getVersion()
void	refresh()
void	setCsChannel(QString	channel,	double	value,	int	index	=	-1)
void	setCsChannel(QString	channel,	QString	value,	int	index	=	-1)
double	getCsChannel(QString	channel,	int	index	=	-1)
QString	getCsStringChannel(QString	channel,	int	index	=	-1)
CSOUND*	getCurrentCsound()
double	getSampleRate(int	index	=	-1)
int	getKsmps(int	index	=	-1)
int	getNumChannels(int	index	=	-1)
MYFLT	*getTableArray(int	ftable,	int	index	=	-1)
void	registerProcessCallback(QString	func,	int	skipPeriods	=	0,	int	index	=	-1)	

	
		

1.	 This	chapter	is	based	on	Andrés	Cabrera's	paper	Python	
Scripting	in	QuteCsound	at	the	Csound	Conference	in	
Hannover	(2011).^

2.	 This	should	be	the	case	for	CsoundQt	0.7	or	higher	on	OSX.	On
Windows,	the	corrent	version	0.7.0	is	built	with	PythonQt	
support.	You	must	have	installed	Python	2.7,	too.	For	building	
CsoundQt	with	Python	support,	have	a	look	at	the	descriptions	
in	http://sourceforge.net/apps/mediawiki/qutecsound.^

3.	 See	chapter	12B	for	more	information	on	these.^

C.	PYTHON	IN	CSOUNDQT1	

830

4.	 To	evaluate	multiple	lines	of	Python	code	in	the	Scratch	Pad,	
choose	either	Edit->Evaluate	Section	(Alt+E),	or	select	and	
choose	Edit->Evaluate	Selection	(Alt+Shift+E).^

5.	 If	you	have	less	or	more	csd	tabs	already	while	creating	the	
new	files,	the	index	will	be	lower	or	higher.^

6.	 If	not,	you	are	probably	using	an	older	version	of	Csound.	In	
this	case,	insert	the	scoreline	"f	0	99999",	and	this	csd	will	run	
and	wait	for	your	real-time	score	events	for	99999	seconds.^

7.	 Different	to	most	usages,	'name'	means	here	the	full	path	
including	the	file	name.^

8.	 Pixels	from	left	resp.	from	top.^
9.	 Only	a	label	does	not	have	a	channel	name.	So	as	we	saw,	in	

case	of	a	label	the	name	is	its	displayed	text.^
10.	 For	the	main	property	of	a	widget	(text	for	a	Display,	number	

for	Sliders,	SpinBoxes	etc)	you	can	also	use	the	setChannelString	
and	setChannelValue	method.	See	below	at	"Getting	and	Setting	
Channel	Values"	^

11.	 Note	that	two	widgets	can	share	the	same	channel	name	(for	
instance	a	slider	and	a	spinbox).	In	this	case,	referring	to	a	
widget	via	its	channel	name	is	not	possible	at	all.^

12.	 Here	again	accessed	by	the	channel	name.	Of	course	accessing	
by	uuid	would	also	be	possible	(and	more	safe,	as	explained	
above).^

13.	 The	example	should	also	be	availiable	in	CsoundQt's	Scripts	
menu.^

D.	LUA	IN	CSOUND

831

D.	LUA	IN	CSOUND

	Have	a	look	at	Michael	Gogins'	paper	Writing	Csound	Opcodes	in	
Lua	at	the	Csound	Conference	in	Hannover	(there	is	also	a	video	from
the	workshop	at	www.youtube.com/user/csconf2011).
		

D.	LUA	IN	CSOUND

832

E.	CSOUND	IN	iOS

833

E.	CSOUND	IN	IOS

Please	note	that	the	text	in	this	chapter	may	not	reflect	the	current	
state	of	Csound	in	iOS.	You	will	find	an	updated	manual	at	
http://github.com/csound/csound/blob/develop/iOS/docs/csound_ios_
manual.tex,	or	as	pdf	in	the	latest	iOS	zip	download	(for	instance	
http://sourceforge.net/projects/csound/files/csound6/Csound6.05/csou
nd-iOS-6.05.0.zip).
		

THE	TEXT	FROM	THIS	CHAPTER	IS	TAKEN	FROM	"CSOUND	FOR	IOS:	A
BEGINNER'S	GUIDE"	WRITTEN	BY	TIMOTHY	NEATE,	NICHOLAS	ARNER,	AND
ABIGAIL	RICHARDSON.	THE	ORIGINAL	TUTORIAL	DOCUMENT	CAN	BE	FOUND
HERE:	HTTP://WWW-USERS.YORK.AC.UK/~ADH2/IOS-
CSOUNDABEGINNERSGUIDE.PDF	

The	authors	are	Masters	students	at	the	University	of	York	Audio	Lab.	Each	one	is	working	on	a	separate	
interactive	audio	app	for	the	iPad,	and	has	each	been	incorporating	the	Mobile	Csound	API	for	that	purpose.
They	came	together	to	write	this	tutorial	to	make	other	developers	aware	of	the	Mobile	Csound	API,	and	
how	to	utilize	it.	

	

The	motivation	behind	this	tutorial	was	to	create	a	step	by	step	guide	to	using	the	Mobile	Csound	API.	
When	the	authors	originally	started	to	develop	with	the	API,	they	found	it	difficult	to	emulate	the	results	of	
the	examples	that	were	provided	with	the	API	download.	As	a	result,	the	authors	created	a	simple	example	
using	the	API,	and	wanted	others	to	learn	from	our	methods	and	mistakes.	The	authors	hope	that	this	tutorial

provides	clarity	in	the	use	of	the	Mobile	Csound	API.	

E.	CSOUND	IN	iOS

834

Introduction

835

INTRODUCTION

The	traditional	way	of	working	with	audio	on	both	Apple	computers	and	mobile	
devices	is	through	the	use	of	Core	Audio.	Core	Audio	is	a	low-level	API	which	Apple	
provides	to	developers	for	writing	applications	utilizing	digital	audio.	The	downside	
of	Core	Audio	being	low-level	is	that	it	is	often	considered	to	be	rather	cryptic	and	
difficult	to	implement,	making	audio	one	of	the	more	difficult	aspects	of	writing	an	
iOS	app.	

In	an	apparent	response	to	the	difficulties	of	implementing	Core	Audio,	there	have	
been	a	number	of	tools	released	to	make	audio	development	on	the	iOS	platform	
easier	to	work	with.	One	of	these	is	libpd,	an	open-source	library	released	in	2010.	
libpd	allows	developers	to	run	Pure	Data	on	both	iOS	and	Android	mobile	devices.	
Pure	Data	is	a	visual	programming	language	whose	primary	application	is	sound	

processing.

The	recent	release	of	the	Mobile	Csound	Platform	provides	an	alternative	to	the	
use	of	PD	for	mobile	audio	applications.	Csound	is	a	synthesis	program	which	
utilizes	a	toolkit	of	over	1200	signal	processing	modules,	called	opcodes.	The	
release	of	the	Mobile	Csound	Platform	now	allows	Csound	to	run	on	mobile	devices,
providing	new	opportunities	in	audio	programming	for	developers.	Developers	
unfamiliar	with	Pure	Data’s	visual	language	paradigm	may	be	more	comfortable	

with	Csound’s	‘C’-programming	based	environment.

For	those	who	are	unfamiliar,	or	need	to	refresh	themselves	on	Csound,	the	rest	of

the	chapters	in	the	FLOSS	manual	are	a	good	resource	to	look	at.	

For	more	advanced	topics	in	Csound	programming,	the	Csound	Book	(Boulanger	

ed.,	2000)	will	provide	an	in-depth	coverage.

	In	order	to	make	use	of	the	material	in	this	tutorial,	the	reader	is	assumed	to	
have	basic	knowledge	of	Objective-C	and	iOS	development.	Apple’s	Xcode	4.6.1	
IDE	(integrated	development	environment)	will	be	used	for	the	provided	example	
project.

Although	the	Mobile	Csound	API	is	provided	with	an	excellent	example	project,	it	
was	felt	that	this	tutorial	will	be	a	helpful	supplement	in	setting	up	a	basic	Csound	
for	iOS	project	for	the	first	time,	by	including	screenshots	from	the	project	set-up,	
and	a	section	on	common	errors	the	user	may	encounter	when	working	with	the	
API.	

The	example	project	provided	by	the	authors	of	the	API	includes	a	number	of	files	
illustrating	various	aspects	of	the	API,	including	audio	input/output,	recording,	
interaction	with	GUI	widgets,	and	multi-touch.	More	information	on	the	example	
project	can	be	found	in	the	API	manual,	which	is	included	in	the	example	projects	

folder.

1.1	THE	CSOUND	FOR	IOS	API

The	Mobile	Csound	Platform	allows	programmers	to	embed	the	Csound	audio	
engine	inside	of	their	iOS	project.	The	API	provides	methods	for	sending	static	
program	information	from	iOS	to	the	instance	of	Csound,	as	well	as	sending	
dynamic	value	changes	based	on	user	interaction	with	standard	UI	interface	

Introduction

836

elements,	including	multi-touch	interaction.

2.0	EXAMPLE	WALKTHROUGH

This	section	discusses	why	the	example	was	made,	and	what	can	be	learned	from	
it;	giving	an	overview	of	its	functionality,	then	going	into	a	more	detailed	
description	of	its	code.	A	copy	of	the	example	project	can	be	found	at	the	following	
link.	

		https://sourceforge.net/projects/csoundiosguide/

2.1	RUNNING	THE	EXAMPLE	PROJECT

Run	the	provided	Xcode	project,	CsoundTutorial.xcodeproj,	and	the	example	app	
should	launch	(either	on	a	simulator	or	a	hardware	device).		A	screenshot	of	the	
app	is	shown	in	Figure	2.1	below.	The	app	consists	of	two	sliders,	each	controlling	a
parameter	of	a	Csound	oscillator.	The	top	slider	controls	the	amplitude,	and	the	
bottom	slider	controls	the	frequency.

		

	

Introduction

837

		Figure	2.1

2.2	OSCILLATOR	EXAMPLE	WALKTHROUGH	

This	example	outlines	how	to	use	the	methods	in	the	Csound-iOS	API	to	send	
values	from	iOS	into	Csound.	This	example	was	made	purposefully	simple,	with	the	
intent	of	making	its	functionality	as	obvious	as	possible	to	the	reader.	This	section	
begins	by	giving	an	overview	of	both	the	iOS	and	Csound	implementation,	then	
describes	how	this	achieved	by	breaking	down	the	example	code.	The	code	to	
create	this	oscillator	example	was	done	in	the	ViewController.h	and	the	
ViewController.m	files,	which	are	discussed	below	in	sections	2.2.3.1	and	2.2.3.2.	
The	project	is	split	into	Objective-C	code,	Storyboards	for	the	user	interface	
elements,	and	a	Csound	file	for	the	audio	engine.	

2.2.1	IOS	EXAMPLE	OUTLINE

				

In	the	Xcode	project	user	interface	sliders	are	used	to	allow	a	user	to	control	the	
Csound	audio	engine	through	iOS.		Communication	begins	with	iOS	requesting	
some	memory	within	Csound;	setting	a	pointer	to	this	location.	It	updates	this	
pointer	with	values	from	the	user	interface	sliders.	Csound	references	the	same	
memory	location	by	naming	it	with	a	string,	this	named	communication	link	is	
called	a	channel.	When	sending	this	information,	iOS	uses	methods	within	the	iOS-
Csound	API	to	setup	this	channel	name,	and	update	it	dependant	on	the	control	
rate.

2.2.2.		CSOUND	EXAMPLE	OUTLINE

In	this	example,	Csound	is	not	aware	of	iOS.	All	it	knows	is	that	there	is	a	piece	of	
memory	assigned	for	it,	and	it	must	retrieve	information	from	here	dependent	on	
its	control	rate.	Csound	uses	the	chnget	opcode	to	do	this.	chnget	searches	for	
some	channel	with	a	specific	name	and	retrieves	values	from	it.

2.2.3.		THE	IOS	FILE

This	example	is	implemented	across	two	main	files:

The	.h	file	is	used	to	include	all	the	necessary	classes,	declare	properties,	and	
allow	for	user	interaction	by	connecting	the	interface	to	the	implementation.	

The	.m	file	is	used	to	implement	communication	between	the	interface	methods	
declared	in	the	.h	file,	and	the	Csound	file.		These	will	now	be	discussed	in	more	
depth,	with	code	examples.

2.2.3.1	THE	.H	FILE	

Introduction

838

The	imports	(discussed	in	detail	in	section	3.2.1)	are	declared:

839

THE	IMPORTS	(DISCUSSED	IN	DETAIL	IN	SECTION	3.2.1)	ARE	DECLARED:

#import	<UIKit/UIKit.h>
#import	"CsoundObj.h"
#import	"CsoundUI.h"
#import	"CsoundMotion.h"	

Apart	from	the	standard	UIKit.h	(which	gives	access	to	iOS	interface	widgets)	these	
ensure	that	the	code	written	can	access	the	information	in	the	other	files	in	the	
Csound	API.		

Next	comes	the	class	definition:

@interface	ViewController		:	UIViewController<CsoundObjListener>	

Every	iOS	class	definition	begins	with	the	@interface	keyword,	followed	by	the	
name	of	the	class.	So	our	class	is	called	ViewController,	and	the	colon	indicates	

that	our	class	inherits	all	the	functionality	of	the	UIViewController.

Following	this	is	the	Protocol	definition	which	is	listed	between	the	triangular	
brackets	<			>.	In	Objective-C	a	Protocol	is	a	list	of	required	functionality	(i.e.,	
methods)	that	a	class	must	implement	and	optional	functionality	that	a	class	can	
implement.	In	this	case	there	are	two	Protocols	that	are	defined	by	the	Csound	
API,	that	we	want	our	class	to	conform	to:	CsoundObjObjListener.	This	will	allow	us	
to	send	data	between	iOS	and	Csound,	and	so	is	essential	for	what	we	are	about	
to	do.	The	required	functions	that	we	have	to	implement	are	described	in	the	

section	following	this	one	(2.2.3.2).

The	Csound	object	needs	to	be	declared	as	a	property	in	the	.h	file,	which	is	what	
this	next	line	of	code	does:	

//Declare	a	Csound	object
@property	(nonatomic,	retain)	CsoundObj*	csound;	

The	next	section	of	code	allows	for	the	interface	objects	(sliders)	to	communicate	

with	the	.m	file:

	-	(IBAction)amplitudeSlider:(UISlider	*)sender;
	-	(IBAction)frequencySlider:(UISlider	*)sender;

Just	to	the	left	of	each	of	these	IBAction	methods,	you	should	see	a	little	circle.	If	
the	storyboard	is	open	(MainStoryboard.storyboard)	you	will	see	the	appropriate	

slider	being	highlighted	if	you	hover	over	one	of	the	little	circles.

		

2.2.3.2.		THE	.M	FILE

The	.m	file	imports	the	.h	file	so	that	it	can	access	the	information	within	it,	and	
the	information	that	it	accesses.	

At	the	beginning	of	the	implementation	of	the	ViewController,	the	csound	variable	

The	imports	(discussed	in	detail	in	section	3.2.1)	are	declared:

840

which	was	declared	in	the	.h	file	is	instantiated	with	@synthesize	thus:	

@implementation	ViewController
@synthesize	csound	=	mCsound;	

Note	that	the	Csound	object	must	be	released	later	in	the	dealloc	method	as	

shown	below:		

-	(void)dealloc
{
				[mCsound	release];
				[super	dealloc];
}	

For	each	parameter	you	have	in	iOS	that	you	wish	to	send	to	Csound,	you	need	to	
do	the	things	outlined	in	this	tutorial.	In	our	simple	example	we	have	an	iOS	slider	
for	Frequency,	and	one	for	Amplitude,	both	of	which	are	values	we	want	to	send	to	

Csound.

				

Some	global	variables	are	then	declared,	as	shown	in	Table	2.1,	a	holder	for	each	
iOS	parameter’s	current	value,	and	a	pointer	for	each	which	is	going	to	point	to	a	
memory	location	within	Csound.	

The	next	significant	part	of	the	.m	file	is	the	viewDidAppear	method.	When	the	
view	loads,	and	appears	in	iOS,	this	iOS	SDK	method	is	called.	In	the	example,	the	

following	code	is	used	to	locate	the	Csound	file:	

	//Locate	.csd	and	assign	create	a	string	with	its	file	path
				NSString	*tempFile	=	[[NSBundle	mainBundle]	pathForResource:@"aSimpleOscillator"	
ofType:@"csd"];

The	imports	(discussed	in	detail	in	section	3.2.1)	are	declared:

841

This	code	searches	the	main	bundle	for	a	file	called	aSimpleOscillator	of	the	type	
csd	(which	you	will	be	able	to	see	in	Xcode’s	left-hand	File	List,	under	the	folder	
Supporting	Files).	It	then	assigns	it	to	an	NSString	named	tempFile.	The	name	of	
the	string	tempFile	is	then	printed	out	to	confirm	which	file	is	running.

The	methods	shown	in	Table	2.2	are	then	called:

The	methods	that	allow	the	value	of	the	slider	to	be	assigned	to	a	variable	are	
then	implemented.	This	is	done	with	both	frequency,	and	amplitude.	As	shown	

below	for	the	amplitude	slider:

//Make	myAmplitude	value	of	slider
-	(IBAction)amplitudeSlider:(UISlider	*)sender
{
				UISlider	*ampSlider	=	(UISlider	*)sender;
				myAmplitude	=	ampSlider.value;
}		

This	method	is	called	by	iOS	every	time	the	slider	is	moved	(because	it	is	denoted	
as	an	IBAction,	i.e.	an	Interface	Builder	Action	call).	The	code	shows	that	the	
ampSlider	variable	is	of	type	UISlider,	and	because	of	that	the	current	(new)	value	
of	the	slider	is	held	in	ampSlider.value.	This	is	allocated	to	the	variable	
myAmplitude.		Similar	code	exists	for	the	frequency	slider.

THE	PROTOCOL	METHODS	ARE	THEN	IMPLEMENTED.	THE	PREVIOUS	SECTION	SHOWED
HOW	WE	SET	UP	OUR	CLASS	(VIEWCONTROLLER)	TO	CONFORM	TO	TWO	PROTOCOLS
THAT	THE	CSOUND	API	PROVIDES:	CSOUNDOBJCOMPLETIONLISTENER	AND
CSOUNDVALUECACHEABLE.

Take	a	look	at	the	place	where	these	Protocols	are	defined,	because	a	Protocol	
definition	lists	clearly	what	methods	are	required	to	be	implemented	to	use	their	

functionality.

For	CsoundValueCacheable	you	need	to	look	in	the	file	CsoundValueCacheable.h	(in	
the	folder	valueCacheable).	In	that	file	it’s	possible	to	see	the	protocol	definition,	
as	shown	below,	and	its	four	required	methods.

#import	<Foundation/Foundation.h>

The	imports	(discussed	in	detail	in	section	3.2.1)	are	declared:

842

@class	CsoundObj;
@protocol	CsoundValueCacheable	<NSObject>
-(void)setup:(CsoundObj*)csoundObj;
-(void)updateValuesToCsound;
-(void)updateValuesFromCsound;
-(void)cleanup;
@end	

Every	method	needs	at	least	an	empty	function	shell.	Some	methods,	such	as
updateValuesFromCsound	are	left	empty,	because	–	for	the	tutorial	example	–

there	is	no	need	to	get	values	from	Csound.	Other	protocol	methods	have
functionality	added.	These	are	discussed	below.

843

EVERY	METHOD	NEEDS	AT	LEAST	AN	EMPTY	FUNCTION	SHELL.	SOME	METHODS,
SUCH	 AS	 UPDATEVALUESFROMCSOUND	 ARE	 LEFT	 EMPTY,	 BECAUSE	 –	 FOR	 THE
TUTORIAL	EXAMPLE	–	THERE	IS	NO	NEED	TO	GET	VALUES	FROM	CSOUND.	OTHER
PROTOCOL	 METHODS	 HAVE	 FUNCTIONALITY	 ADDED.	 THESE	 ARE	 DISCUSSED
BELOW.

The	setup	method	is	used	to	prepare	the	updateValuesToCsound	method	for	

communication	with	Csound:

//Sets	up	communication	with	Csound
-(void)setup:(CsoundObj*)csoundObj
{			
				NSString	*freqString	=	@"freqVal";
				freqChannelPtr	=	[csoundObj	getInputChannelPtr:freqString];
				
				NSString	*ampString	=	@"ampVal";
				ampChannelPtr	=	[csoundObj	getInputChannelPtr:ampString];
				
}		

The	first	line	of	the	method	body	creates	a	string;	freqString,	to	name	the	
communication	channel	that	Csound	will	be	sending	values	to.	The	next	line	uses	
the	getInputChannelPtr	method	to	create	the	channel	pointer	for	Csound	to	
transfer	information	to.		Effectively,	iOS	has	sent	a	message	to	Csound,	asking	it	to
open	a	communication	channel	with	the	name	“freqVal”.	The	Csound	object	
allocates	memory	that	iOS	can	write	to,	and	returns	a	pointer	to	that	memory	
address.	From	this	point	onwards	iOS	could	send	data	values	to	this	address,	and	
Csound	can	retrieve	that	data	by	quoting	the	channel	name	“freqVal”.	This	is	
described	in	more	detail	in	the	next	section	(2.2.4).

	

The	next	two	lines	of	the	code	do	the	same	thing,	but	for	amplitude.	This	process	
creates	two	named	channels	for	Csound	to	communicate	through.

	

The	protocol	method	updateValuesToCsound	uses	variables	in	the	.m	file	and	
assigns	them	to	the	newly	allocated	memory	address	used	for	communication.	This	
ensures	that	when	Csound	looks	at	this	specific	memory	location,	it	will	find	the	
most	up	to	date	value	of	the	variable.	This	is	shown	below:

	-(void)updateValuesToCsound
{
				*freqChannelPtr	=	myFrequency;
				*ampChannelPtr	=	myAmplitude;
			
}

The	first	line	assigns	the	variable	myFrequency	(the	value	coming	from	the	iOS	
slider	for	Frequency)	to	the	channel	freqChannelPtr	which,	as	discussed	earlier,	is	

of	type	float*.	The	second	line	does	a	similar	thing,	but	for	amplitude.

For	the	other	Protocol	CsoundObjCompletionListener	it	is	possible	to	look	for	the	
file	CsoundObj.h	(which	is	found	in	Xcode’s	left-hand	file	list,	in	the	folder	called	

Every	method	needs	at	least	an	empty	function	shell.	Some	methods,	such	as
updateValuesFromCsound	are	left	empty,	because	–	for	the	tutorial	example	–
there	is	no	need	to	get	values	from	Csound.	Other	protocol	methods	have
functionality	added.	These	are	discussed	below.

844

classes).	In	there	is	definition	of	the	protocol.

@protocol	CsoundObjCompletionListener	
-(void)csoundObjDidStart:(CsoundObj*)csoundObj;
-(void)csoundObjComplete:(CsoundObj*)csoundObj;

In	this	example	there	is	nothing	special	that	needs	to	be	done	when	Csound	starts	
running,	or	when	it	completes,	so	the	two	methods	(csoundObjDidStart:	and	
csoundObjComplete:)	are	left	as	empty	function	shells.	In	the	example,	the	
protocol	is	left	included,	along	with	the	empty	methods,	in	case	you	wish	to	use	

them	in	your	App.

2.2.4	THE	CSOUND	FILE	

This	Csound	file	contains	all	the	code	to	allow	iOS	to	control	its	values	and	output	a	sinusoid	at	
some	frequency	and	amplitude	taken	from	the	on-screen	sliders.		There	are	three	main	
sections:	The	Options,	the	Instruments,	and	the	Score.	These	are	all	discussed	in	more	detail	
in	section	4.	Each	of	these	constituent	parts	of	the	.csd	file	will	now	be	broken	down	to	

determine	how	iOS	and	Csound	work	together.

2.2.4.1		THE	OPTIONS

There’s	only	one	feature	in	the	options	section	of	the	.csd	that	needs	to	be	
considered	here;	the	flags.	Each	flag	and	its	properties	are	summarised	in	Table	
2.3.

	

2.2.4.2	THE	INSTRUMENT

The	first	lines	of	code	in	the	instrument	set	up	some	important	values	for	the	.csd
to	use	when	processing	audio.	These	are	described	in	Table	2.4,	and	are	discussed

in	more	detail	in	the	Reference	section	of	the	Csound	Manual

845

THE	FIRST	LINES	OF	CODE	IN	THE	INSTRUMENT	SET	UP	SOME	IMPORTANT
VALUES	FOR	THE	.CSD	TO	USE	WHEN	PROCESSING	AUDIO.	THESE	ARE
DESCRIBED	IN	TABLE	2.4,	AND	ARE	DISCUSSED	IN	MORE	DETAIL	IN	THE
REFERENCE	SECTION	OF	THE	CSOUND	MANUAL

	

The	first	lines	of	code	in	the	instrument	set	up	some	important	values	for	the	.csd
to	use	when	processing	audio.	These	are	described	in	Table	2.4,	and	are	discussed
in	more	detail	in	the	Reference	section	of	the	Csound	Manual

846

The	instrument	then	takes	values	from	Csound	using	the	chnget		opcode:

847

THE	 INSTRUMENT	 THEN	 TAKES	 VALUES	 FROM	 CSOUND	 USING	 THE	 CHNGET
	OPCODE:

kfreq	chnget	"freqVal"
kamp	chnget	"ampVal"	

Here,	the	chnget	command	uses	the	“freqVal”	and	“ampVal”	channels	previously	
created	in	iOS	to	assign	a	new	control	variable.	The	variables	kfreq	and	kamp	are	
control-rate	variables	because	they	begin	with	the	letter	‘k’.	They	will	be	updated	
689.0625	times	per	second.	This	may	be	faster	or	slower	than	iOS	updates	the	
agreed	memory	addresses,	but	it	doesn’t	matter.	Csound	will	just	take	the	value	

that	is	there	when	it	accesses	the	address	via	the	named	channel.

These	control-rate	variables	are	used	to	control	the	amplitude	and	frequency	fields	
of	the	opcode	poscil;	a	Csound	opcode	for	generating	sinusoidal	waves.	This	is	then	

output	in	stereo	using	the	next	line.

asig	oscil	kamp,kfreq,1
outs	asig,asig	
endin

			

The	instrument	then	takes	values	from	Csound	using	the	chnget		opcode:

848

The	third	parameter	of	the	poscil	opcode	in	this	case	is	1.	This	means	‘use	f-table
1’.	Section	3.3	explains	f-tables	in	more	depth.

849

THE	THIRD	PARAMETER	OF	THE	POSCIL	OPCODE	IN	THIS	CASE	IS	1.	THIS	MEANS
‘USE	F-TABLE	1’.	SECTION	3.3	EXPLAINS	F-TABLES	IN	MORE	DEPTH.

2.2.4.3	THE	SCORE

The	score	is	used	to	store	the	f-tables	the	instrument	is	using	to	generate	sounds,	
and	it	allows	for	the	playing	of	an	instrument.	This	instrument	is	then	played,	as	

shown	below:

i1	0	10000		

This	line	plays	instrument	1	from	0	seconds,	to	10000	seconds.	This	means	that	the

instrument	continues	to	play	until	it	is	stopped,	or	a	great	amount	of	time	passes.	

It	is	possible	to	send	score	events	from	iOS	using	the	method	sendScore.	This	is	
discussed	in	more	depth	in	section	6.1.

The	third	parameter	of	the	poscil	opcode	in	this	case	is	1.	This	means	‘use	f-table
1’.	Section	3.3	explains	f-tables	in	more	depth.

850

3	Using	the	Mobile	Csound	API	in	an	Xcode	Project

851

3	USING	THE	MOBILE	CSOUND	API	IN
AN	XCODE	PROJECT

Section	3	provides	an	overview	of	how	to	set	up	your	Xcode	project	to	utilize	the	

Mobile	Csound	API,	as	well	as	how	to	download	the	API	and	include	it	into	your	

project.	

3.1	SETTING	UP	AN	XCODE	PROJECT
WITH	THE	MOBILE	CSOUND	API

This	section	describes	the	steps	required	to	set	up	an	Xcode	project	for	use	with	
the	Mobile	Csound	API.		Explanations	include	where	to	find	the	Mobile	Csound	API,	
how	to	include	it	into	an	Xcode	project	and	what	settings	are	needed.

3.1.2	CREATING	AN	XCODE	PROJECT

This	section	briefly	describes	the	settings	which	are	needed	to	set	up	an	Xcode	
project	for	use	with	the	Mobile	Csound	API.		Choose	the	appropriate	template	to	
suit	the	needs	of	the	project	being	created.		When	choosing	the	options	for	the	
project,	it	is	important	that	Use	Automatic	Reference	Counting	is	not	checked	

(Figure.	3.1).		It	is	also	unnecessary	to	include	unit	tests.	

	

Note:	When	including	this	API	into	a	pre-existing	project,	it	is	possible	to	turn	off	
ARC	on	specific	files	by	entering	the	compiler	sources,	and	changing	the	compiler	
flag	to:	‘-fno-objc-arc’
		

3.1.3	ADDING	THE	MOBILE	CSOUND
API	TO	AN	XCODE	PROJECT

Once	an	Xcode	project	has	been	created,	the	API	needs	to	be	added	to	the	Xcode	
project.		To	add	the	Mobile	Csound	API	to	the	project,	right	click	on	the	Xcode	
project	and	select	Add	files	to	<myProject>.		This	will	bring	up	a	navigation	window

3	Using	the	Mobile	Csound	API	in	an	Xcode	Project

852

to	search	for	the	files	to	be	added	to	the	project.		Navigate	to	the	Csound-iOS	
folder,	which	is	located	as	shown	in	Figure	3.2	below.

	

	

Select	the	whole	folder	as	shown	and	click	add.		Once	this	has	been	done,	Xcode	
will	provide	an	options	box	as	shown	in	Figure	3.3.	Check	Copy	items	into	
destination	group’s	folder	(if	needed).

	

The	options	in	Figure	3.3	are	selected	so	that	the	files	which	are	necessary	to	run	
the	project	are	copied	into	the	project	folder.	This	is	done	to	make	sure	that	there	
are	no	problems	when	the	project	folder	is	moved	to	another	location	-	ensuring	all
the	file-paths	for	the	project	files	remain	the	same.

	

Once	this	addition	from	this	section	has	been	made,	the	project	structure	displayed	
in	Xcode	should	look	similar	to	that	in	Figure	3.4.

3	Using	the	Mobile	Csound	API	in	an	Xcode	Project

853

	

3.1.4	COMPILING	SOURCES

A	list	of	compile	sources	is	found	by	clicking	on	the	blue	project	file	in	Xcode,	
navigating	to	the	Build	Phases	tab	and	opening	Compile	Sources.		Check	that	the	
required	sources	for	the	project	are	present	in	the	Compile	Sources	in	Xcode.		All	
the	files	displayed	in	Figure	3.5	should	be	present,	but	not	necessarily	in	the	same	
order	as	shown.

	

3.1.5	INCLUDING	THE	NECESSARY
FRAMEWORKS

3	Using	the	Mobile	Csound	API	in	an	Xcode	Project

854

There	are	some	additional	frameworks	which	are	required	to	allow	the	project	to	
run.		These	frameworks	are:

	

AudioToolbox.framework

CoreGraphics.framework

CoreMotion.framework

CoreMIDI.framework

To	add	these	frameworks	to	the	project,	navigate	to	the	‘Link	Binary	With	Libraries’	
section	of	Xcode.		This	is	found	by	clicking	on	the	blue	project	folder	and	navigating	
to	the	‘Build	Phases’	tab,	followed	by	opening	‘Link	Binary	With	Libraries’.		To	add	a	
framework,	click	on	the	plus	sign	and	search	for	the	framework	required.		Once	all	
the	necessary	frameworks	are	added,	the	‘Link	Binary	With	Libraries’	should	look	
similar	to	Figure	3.6	below.

	

3.1.6	THE	.CSD	FILE

The	project	is	now	set	up	for	use	with	the	Mobile	Csound	API.		The	final	file	which	
will	be	required	by	the	project	is	a	.csd	file	which	will	describe	the	Csound	
instruments	to	be	used	by	the	application.		A	description	of	what	the	.csd	file	is	and	
how	to	include	one	into	the	project	is	found	in	Section	3.3.		This	file	will	additionally	
need	to	be	referenced	appropriately	in	the	Xcode	project.		A	description	of	where	
and	how	this	reference	is	made	is	available	in	Section	2.2.3.2.

3.2	SETTING	UP	THE	VIEW
CONTROLLER

This	section	describes	how	the	ViewController.h	and	the	ViewController.m	should	
be	set	up	to	ensure	that	they	are	able	to	use	the	API.	It	will	discuss	what	imports	
are	needed;	conforming	to	the	protocols	defined	by	the	API;	giving	a	brief	
overview.	This	section	can	be	viewed	in	conjunction	with	the	example	project	
provided.

3	Using	the	Mobile	Csound	API	in	an	Xcode	Project

855

3.2.1	IMPORTING

So	that	the	code	is	able	to	access	other	code	in	the	API,	it	is	important	to	include	
the	following	imports,	along	with	imports	for	any	additional	files	required.	The	
three	imports	shown	in	Table	3.1	are	used	in	the	header	file	of	the	view	controller	
to	access	the	necessary	files	to	get	Csound-iOS	working:

In	our	example	you	can	see	these	at	the	top	of	ViewController.h

3.2.2	CONFORMING	TO	PROTOCOLS

It	is	imperative	that	the	view	controller	conforms	to	the	protocols	outlined	the	
CsoundObj.h	file;	the	file	in	the	API	that	allows	for	communication	between	iOS	
and	Csound.		This	must	then	be	declared	in	the	ViewController.h	file:

@property	(nonatomic,	retain)	CsoundObj*	csound;

The	API	authors	chose	to	use	protocols	so	that	there	is	a	defined	set	of	methods	
that	must	be	used	in	the	code.	This	ensures	that	a	consistent	design	is	adhered	to.	

They	are	defined	in	the	CsoundValueCacheable.h	file	thus:

				

@class	CsoundObj;
@protocol	CsoundValueCacheable	<NSObject>
-(void)setup:(CsoundObj*)csoundObj;
-(void)updateValuesToCsound;
-(void)updateValuesFromCsound;
-(void)cleanup;	

Each	of	these	must	then	be	implemented	in	the	ViewController.m	file.	If	it	is	
unnecessary	to	implement	one	of	these	methods,	it	still	must	appear	but	the	

method	body	can	be	left	blank,	thus:

-(void)updateValuesFromCsound
{

3	Using	the	Mobile	Csound	API	in	an	Xcode	Project

856

				//No	values	coming	from	Csound	to	iOS
}	

3.2.3	OVERVIEW	OF	PROTOCOLS

When	writing	the	code	which	allows	us	to	send	values	from	iOS	to	Csound,	it	is	

important	that	the	code	conforms	to	the	following	protocol	methods	(Table	3.2):

		

	

3.3	LOOKING	AT	THE	CSOUND	'.CSD'
FILE

The	following	section	provides	an	overview	of	the	Csound	editing	environment,	the	
structure	of	the	.csd	file,	and	how	to	include	the	.csd	file	into	your	Xcode	project.		

3.3.1	DOWNLOADING	CSOUND

A	Csound	front-end	editor,	CsoundQt,	can	be	used	for	editing	the	.csd	file	in	the	
provided	example	project.	It	is	advised	to	use	CsoundQt	with	iOS	because	it	is	an	
ideal	environment	for	developing	and	testing	the	Csound	audio	engine	–	error	
reports	for	debugging,	the	ability	to	run	the	Csound	audio	code	on	its	own,	and	
listen	to	its	results.	However,	using	CsoundQt	is	not	essential	to	use	Csound	as	an	
audio	engine	as	Csound	is	a	standalone	language.	CsoundQt	is	included	in	the	
Csound	package	download.	

In	order	to	use	Csound	in	iOS,	the	latest	version	of	Csound	(Version	5.19)	will	need	
to	be	installed.

Csound	5.19	can	be	downloaded	from	the	following	link:	

http://sourceforge.net/projects/Csound/files/Csound5/Csound5.19	

3	Using	the	Mobile	Csound	API	in	an	Xcode	Project

857

		

For	more	information	on	downloading	Csound,	please	consult	Chapter	2A	of	this	

Manual,	"MAKE	CSOUND	RUN".

		

In	order	for	Xcode	to	see	the	.csd	file,	it	must	be	imported	it	into	the	Xcode	
project.	This	is	done	by	right-clicking	on	the	‘Supporting	Files’	folder	in	the	project,	
and	clicking	on	‘Add	files	to	(project	name)’	(Figure	3.7).	

	

	

			

It	is	possible	to	edit	the	.csd	file	while	also	working	in	Xcode.	This	is	done	by	right-clicking	on	the	.csd	file	

in	Xcode,	and	clicking	on	‘Open	With	External	Editor’	(Figure	3.8).	

3	Using	the	Mobile	Csound	API	in	an	Xcode	Project

858

	

However,	it	is	important	to	remember	to	save	any	changes	to	the	.csd	file	before	the	Xcode	project	is	
recompiled.

3.3.2	THE	.CSD	FILE

When	setting	up	a	Csound	project,	it	is	important	that	various	audio	and	performance	settings	configured	
correctly	in	the	header	section	of	the	.csd	file.	These	settings	are	described	in	Table	3.3,	and	are	discussed	in	
more	detail	in	the	Csound	Manual.	The	reader	is	also	encouraged	to	review	Chapter	2B,	"CSOUND	
SYNTAX",	in	this	manual.
		

	

		

It	is	important	that	the	sample	rate	for	the	Csound	project	be	set	to	the	same	sample	rate	as	the	hardware	it	
will	be	run	on.	For	this	project,	make	sure	the	sample	rate	set	to	44100,	as	depicted	in	Figure	3.9.	This	is	
done	by	opening	the	Audio	MIDI	Setup,	which	is	easily	found	on	all	Mac	computers	by	searching	in	
Spotlight.

3	Using	the	Mobile	Csound	API	in	an	Xcode	Project

859

	

3.3.3	INSTRUMENTS

3	Using	the	Mobile	Csound	API	in	an	Xcode	Project

860

As	mentioned	previously,	Csound	instruments	are	defined	in	the	orchestra	section	of	the	.csd	file.	The
example	project	provided	by	the	authors	uses	a	simple	oscillator	that	has	two	parameters:	amplitude	and

frequency,	both	of	which	are	controlled	by	UI	sliders.

861

AS	 MENTIONED	 PREVIOUSLY,	 CSOUND	 INSTRUMENTS	 ARE	 DEFINED	 IN	 THE
ORCHESTRA	 SECTION	OF	 THE	 .CSD	 FILE.	 THE	 EXAMPLE	 PROJECT	 PROVIDED	BY	THE
AUTHORS	 USES	 A	 SIMPLE	 OSCILLATOR	 THAT	 HAS	 TWO	 PARAMETERS:	 AMPLITUDE
AND	FREQUENCY,	BOTH	OF	WHICH	ARE	CONTROLLED	BY	UI	SLIDERS.

As	mentioned	previously,	Csound	instruments	are	defined	in	the	orchestra	section	of	the	.csd	file.	The
example	project	provided	by	the	authors	uses	a	simple	oscillator	that	has	two	parameters:	amplitude	and
frequency,	both	of	which	are	controlled	by	UI	sliders.

862

Figure	3.10	shows	a	block	diagram	of	the	synthesizer	we	are	using	in	the	example	project.

863

FIGURE	3.10	SHOWS	A	BLOCK	DIAGRAM	OF	THE	SYNTHESIZER	WE	ARE	USING	IN	THE
EXAMPLE	PROJECT.

		

3.3.4	SCORE

The	score	is	the	section	of	the	.csd	file	which	provides	instruments	with	control	instruction,	for	example	
pitch,	volume,	and	duration.	However,	as	the	goal	here	is	for	users	to	be	able	to	interact	with	the	Csound	
audio	engine	in	real-time,	developers	will	most	likely	opt	instead	to	send	score	information	to	Csound	that	is	
generated	by	UI	elements	in	the	Xcode	project.	Details	of	the	instrument	and	score	can	be	found	in	the	

comments	of	the	aSimpleOscillator.csd	file.

Csound	uses	GEN	(f-table	generator)	routines	for	a	variety	of	functions.	This	project	uses	GEN10,	which	
create	composite	waveforms	by	adding	partials.	At	the	start	of	the	score	section,	a	GEN	routine	is	specified	
by	function	statements	(also	known	as	f-statements).	The	parameters	are	shown	below	in	Table	3.4:

		

In	a	Csound	score,	the	first	three	parameter	fields	(also	known	as	p-fields)	are	reserved	for	the	instrument	
number,	the	start	time,	and	duration	amount.	P-fields	4	and	5	are	conventionally	reserved	for	amplitude	and	
frequency,	however,	P-fields	beyond	3	can	be	programmed	as	desired.	

Figure	3.10	shows	a	block	diagram	of	the	synthesizer	we	are	using	in	the	example	project.

864

The	p-fields	used	in	the	example	project	are	shown	in	Table	3.5.

		

In	this	project,	the	first	three	p-fields	are	used:	the	instrument	number	(i1),	the	start	time	(time	=	0	seconds),	

and	the	duration	(time	=	1000	seconds).	Amplitude	and	frequency	are	controlled	by	UI	sliders	in	iOS.

The	reader	is	encouraged	to	review	Chapter	3D	of	this	Manual,	"FUNCTION	TABLES"	for	more	detailed	

information.		

		

4	Common	Problems

This	section	is	designed	to	document	some	common	problems	faced	during	the	creation	of	this	tutorial.	It	is	
hoped	that	by	outlining	these	common	errors,	readers	can	debug	some	common	errors	they	are	likely	to	
come	across	when	creating	applications	using	this	API.		It	discusses	each	error,	describes	the	cause	and	
outlines	a	possible	solution.

4.1	UIKNOB.H	IS	NOT	FOUND

This	is	a	problem	related	to	the	API.	The	older	versions	of	the	API	import	a	file	in	the	examples	that	
sketches	a	UIKnob	in	Core	Graphics.	This	is	not	a	part	of	the	API,	and	should	not	be	included	in	the	
project.

The	file	in	question	is	a	part	of	the	examples	library	provided	with	the	SDK.	It	is	used	in	the	file	‘AudioIn	
test’	and	is	used	to	sketch	a	radial	knob	on	the	screen.	It	gives	a	good	insight	into	how	the	user	can	generate	
an	interface	to	interact	with	the	API.

Solution:	Comment	the	line	out,	or	download	the	latest	version	of	the	API.

4.2	FEEDBACK	FROM	MICROPHONE

This	is	generally	caused	by	the	sample	rate	of	a	.csd	file	being	wrong.	

Solution:	Ensure	that	the	system’s	sample	rate	is	the	same	as	in	the	.csd	file.	Going	to	the	audio	and	MIDI	
set-up	and	checking	the	current	output	can	find	the	computer’s	sample	rate.	See	section	3.3.2	for	more	
information.

4.3	CRACKLING	AUDIO

There	are	numerous	possible	issues	here,	but	the	main	cause	of	this	happening	is	a	CPU	overload.

Figure	3.10	shows	a	block	diagram	of	the	synthesizer	we	are	using	in	the	example	project.

865

Solution:	The	best	way	to	debug	this	problem	is	to	look	through	the	code	and	ensure	that	there	are	no	
memory	intensive	processes,	especially	in	code	that	is	getting	used	a	lot.	Problem	areas	include	fast	
iterations	(loops),	and	code	where	Csound	is	calling	a	variable.	Functions	such	as	updateValuesToCsound	
and	updateValuesFromCsound	are	examples	of	frequently	called	functions.

An	example:	an	NSLog	in	the	updateValuesToCsound	method	can	cause	a	problem.	Say,	the	ksmps	in	the	
.csd	is	set	to	64.	This	means	that	the	Csound	is	calling	for	iOS	to	run	the	method	updateValuesToCsound	
every	64	samples.	Assuming	the	sample	rate	is	44.1k	this	means	that	this	CPU	intensive	NSLog	is	being	
called	~689	times	a	second;	very	computationally	expensive.	

4.4	CRACKLING	FROM	AMPLITUDE	SLIDER

When	manipulating	the	amplitude	slider	in	iOS,	a	small	amount	of	clicking	is	noticeable.	This	is	due	to	the	
fact	that	there	is	no	envelope-smoothing	function	applied	to	the	amplitude	changes.	While	this	would	be	an	
improvement	on	the	current	implementation,	however;	it	was	felt	that	the	current	implementation	would	be	
more	conducive	to	learning	for	the	novice	Csound	user.	This	would	be	implemented	by	using	a	port	
opcode.	

	

5	CSOUND	LIBRARY	METHODS
This	section	will	present	and	briefly	describe	the	methods	which	are	available	in	the	Mobile	Csound	API.	

5.1	CSOUND	BASICS	

	

Figure	3.10	shows	a	block	diagram	of	the	synthesizer	we	are	using	in	the	example	project.

866

5.2	UI	AND	HARDWARE	METHODS	

Figure	3.10	shows	a	block	diagram	of	the	synthesizer	we	are	using	in	the	example	project.

867

		

5.3	COMMUNICATING	BETWEEN	XCODE
AND	CSOUND

		

5.4	RETREIVE	CSOUND-IOS	INFORMATION

Figure	3.10	shows	a	block	diagram	of	the	synthesizer	we	are	using	in	the	example	project.

868

		

6	CONCLUSIONS
This	tutorial	provided	an	overview	of	the	Csound-iOS	API,	outlining	its	benefits,	and	describing	its	
functionality	by	means	of	an	example	project.	It	provided	the	basic	tools	for	using	the	API,	equipping	iOS	
developers	to	explore	the	potential	of	this	API	in	their	own	time.

	

APIs	such	as	this	one,	as	well	as	others	including	libpd	and	The	Amazing	Audio	Engine	provide	developers	
with	the	ability	to	integrate	interactive	audio	into	their	apps,	without	having	to	deal	with	the	low-level	
complexities	of	Core	Audio.

6.1	ADDITIONAL	RESOURCES

Upon	completion	of	this	tutorial,	the	authors	suggest	that	the	reader	look	at	the	original	Csound	for	iOS	
example	project,	written	by	Steven	Yi	and	Victor	Lazzarini.	

This	is	available	for	download	from	http://sourceforge.net/projects/csound/files/csound5/iOS/

	

F.	CSOUND	ON	ANDROID

869

F.	CSOUND	ON	ANDROID

INTRODUCTION

Now	that	we	have	spent	some	time	with	Csound	on	Android,	we	have	
come	to	realize	that	a	high	end	smartphone,	not	to	mention	a	tablet,	is	
in	every	sense	of	the	word	a	real	computer.	The	limits	to	what	can	be	
programmed	on	it	are	indefinable.	On	a	high-end	personal	computer,	
it	is	easier	to	type,	and	Csound	runs	quite	a	bit	faster;	but	there	is	
no	essential	difference	between	running	Csound	on	a	computer	and	
running	it	on	a	smartphone.

Csound	has	been	available	on	the	Android	platform	since	2012	
(Csound	5.19),	thanks	to	the	work	of	Victor	Lazzarini	and	Steven	Yi.	
Csound	6	was	ported	to	Android,	and	enhanced,	by	Michael	Gogins	
and	Steven	Yi	in	the	summer	of	2013.	This	chapter	is	about	Csound	6	
for	Android,	or	just	Csound	for	Android.

The	following	packages	are	available	for	Android:

1.	 The	CsoundAndroid	library,	which	is	intended	to	be	used	by	
developers	for	creating	apps	based	on	Csound.

2.	 The	Csound6	app,	which	is	a	self-contained	environment	for	
creating,	editing,	debugging,	and	performing	Csound	pieces	on	
Android.	(It	used	to	be	called	the	CSDPlayer,	but	has	since	
been	enhanced	to	support	editing	and	other	features.)	The	app	
includes	a	number	of	built-in	example	pieces.

These	packages	are	available	for	download	from	the	SourceForge	
site's	file	pages	
at	http://sourceforge.net/projects/csound/files/csound6/.	

For	more	information	about	these	packages,	download	them	and	
consult	the	documentation	contained	therein.

THE	CSOUND6	APP	

F.	CSOUND	ON	ANDROID

870

The	Csound6	app	(or	Csound	for	Android)	permits	the	user,	on	any	
Android	device	that	is	powerful	enough,	including	most	tablets	and	
the	most	powerful	smartphones,	to	do	most	things	that	can	be	done	
with	Csound	on	any	other	platform	such	as	OS	X,	Windows,	or	Linux.	
This	includes	creating	Csound	pieces,	editing	them,	debugging	them,	
and	performing	them,	either	in	real	time	to	audio	output	or	to	a	
soundfile	for	later	playback.	

The	app	has	a	built-in,	pre-configured	user	interface	with	five	sliders,	
five	push	buttons,	one	trackpad,	and	a	3	dimensional	accelerometer	
that	are	pre-assigned	to	control	channels	which	can	be	read	using	
Csound's	chnget	opcode.

The	app	also	contains	an	embedded	Web	browser,	based	on	WebKit,	
that	can	parse,	interpret,	and	present	HTML	and	JavaScript	code	that	
is	contained	in	the	<html>	element	of	the	CSD	file.	The	embedded	
browser	implements	most	features	of	the	HTML5	standard.	Selected	
commonly	used	functions	from	the	Csound	API	are	available	from	
JavaScript	embedded	in	this	<html>	code,	and	can	be	used	to	control	
Csound	from	HTML	user	interfaces,	generate	scores,	and	do	many	
other	things.	For	a	more	complete	introduction	to	the	use	of	HTML	
with	Csound,	see	Chapter	12,	Section	H,	Csound	and	HTML.	On	
Android,	if	the	<html>	element	is	present	in	the	CSD	file,	the	built-in	
widgets	will	be	replaced	by	a	Web	page	that	will	be	constructed	from	
the	code	in	the	<html>	element	of	the	CSD.

The	app	also	has	some	limitations	and	missing	features	compared	
with	the	longer-established	platforms.	These	include:

1.	 There	is	no	real-time	MIDI	input	or	output.
2.	 Audio	input	is	not	accurately	synchronized	with	audio	output.
3.	 Many	plugin	opcodes	are	missing,	including	most	opcodes	

involved	with	using	other	plugin	formats	or	inter-process	
communications.	

However,	some	of	the	more	useful	plugins	are	indeed	available	on	
Android:

F.	CSOUND	ON	ANDROID

871

1.	 The	signal	flow	graph	opcodes	for	routing	audio	from	
instruments	to	effects,	etc.

2.	 The	FluidSynth	opcodes	for	playing	SoundFonts.	
3.	 The	Lua	opcodes	for	running	Lua	code	in	Csound	and	even	

defining	new	Csound	opcodes	in	Lua.
4.	 The	Open	Sound	Control	(OSC)	opcodes.
5.	 The	libstdutil	library,	which	enables	Csound	to	be	used	for	

various	time/frequency	analysis	and	resynthesis	tasks,	and	for	
other	purposes.

INSTALLING	THE	APP

There	are	two	ways	to	install	the	Csound6	app.	You	can	download	it	
using	your	device,	or	you	can	download	it	to	a	computer	and	transfer	
it	to	your	device.	These	methods	are	presented	below.

PREPARING	YOUR	DEVICE	

Using	the	Csound6	app	is	similar	to	using	an	application	on	a	regular	
computer.	You	need	to	be	able	to	browse	the	file	system,	and	you	
need	to	be	able	to	edit	csd	files.

There	are	a	number	of	free	and	paid	apps	that	give	users	the	ability	to	
browse	the	Linux	file	system	that	exists	on	all	Android	devices.	If	you
don't	already	have	such	a	utility,	you	should	install	a	file	browser	that	
provides	access	to	as	much	as	possible	of	the	file	system	on	your	
device,	including	system	storage	and	external	store	such	as	an	SD	
card.	I	have	found	that	the	free	AndroZip	app	can	do	this.

There	also	is	an	increasing	number	of	free	and	paid	text	editors	for	
Android.	The	one	that	I	chose	to	use	for	developing,	testing,	and	
using	the	Csound6	app	is	the	free	version	of	the	Jota	text	editor.	There
are	also	various	enhanced	paid	versions	of	this	app,	and	of	course	you	
may	find	some	other	editor	more	suitable	to	your	purposes.	Other	
editors	should	also	be	able	to	work	with	Csound,	although	they	have	
only	very	lightly	been	tested.

F.	CSOUND	ON	ANDROID

872

When	you	use	Csound,	the	command	for	editing	csd	files	will	
transparently	invoke	the	editor,	as	though	it	was	an	integral	part	of	
the	app.	This	kind	of	integration	is	an	appealing	feature	of	the	
Android	operating	system.

If	you	render	soundfiles,	they	take	up	a	lot	of	space.	For	example,	
CD-quality	stereo	soundfiles	(44.1	KHz,	16	bit)	take	up	about	10	
megabytes	per	minute	of	sound.	Higher	quality	or	more	channels	take	
up	even	more	room.	But	even	without	extra	storage,	a	modern	
smartphone	should	have	gigabytes,	thousands	of	megabytes,	of	free	
storage.	This	is	actually	enough	to	make	an	entire	album	of	pieces.

On	most	devices,	installing	extra	storage	is	easy	and	not	very	
expensive.	I	recommend	obtaining	the	largest	possible	SD	card,	if	
your	device	supports	them.	This	will	vastly	expand	the	amount	of	
available	space,	up	to	32	or	64	gigabytes	or	even	more.

Download	to	Device

To	download	the	Csound6	app	to	your	device,	go	online	using	Google	
Search	or	a	Web	browser.	You	can	find	the	application	package	file,	
Csound6.apk,	on	SourceForge,	on	the	Csound	project	site,	on	the	File	
page	(you	may	first	have	to	allow	your	android	to	install	an	app	
which	is	not	in	Google	Play).	The	app	will	be	on	one	of	the	more	
recent	releases	of	Csound	6.	For	example,	you	can	find	it	at	
Csound6.apk.	But	you	should	look	for	the	latest	release	and	use	that.	

Click	on	the	filename	to	download	the	package.	The	download	will	
happen	in	the	background.	You	can	then	go	to	the	notifications	bar	of	
your	device	and	click	on	the	downloaded	file.	You	will	be	presented	
with	one	or	more	options	for	how	to	install	it.	The	installer	will	ask	
for	certain	permissions,	which	you	need	to	grant.

TRANSFER	FROM	A	COMPUTER

It's	also	easy	to	download	the	Csound6.apk	file	to	a	personal	
computer.	Once	you	have	downloaded	the	file	from	SourceForge,	

F.	CSOUND	ON	ANDROID

873

connect	your	device	to	the	computer	with	a	USB	cable.	The	file	
system	of	the	device	should	then	automatically	be	mounted	on	the	
file	system	of	the	computer.	Find	the	Csound6.apk	in	the	computer's	
download	directory,	and	copy	the	Csound6.apk	file.	Find	your	
device's	download	directory,	and	paste	the	Csound.apk	file	there.

Then	you	will	need	to	use	a	file	browser	that	is	actually	on	your	
device,	such	as	AndropZip.	Browse	to	your	Download	directory,	
select	the	Csound6.apk	file,	and	you	should	be	presented	with	a	
choice	of	actions.	Select	the	Install	action.	The	installer	will	ask	for	
certain	permissions,	which	you	should	give.

USER	INTERFACE

F.	CSOUND	ON	ANDROID

874

	

F.	CSOUND	ON	ANDROID

875

	

New
	 –	creates	a	blank	template	CSD	file	in	the	root	directory	
of	the
	 user's	storage	for	the	user	to	edit.	The	CSD	file	will	be	
remembered
	 and	performed	by	Csound.
Open	–
	 opens
	 an	existing	CSD	file	in	the	root	directory	of	the	user's	
storage.
	 The	user's	storage	filesystem	can	be	navigated	to	find	
other	files.
Edit
	 –	opens	a	text	editor	to	edit	the	current	CSD	file.	Be	sure	
to
	 save	the	file	before	you	perform	it!	I	recommend	the	free,	
open
	 source	Jota
	 text	editor	on	smartphones	and,	though	I	haven't	tried	Jota	
on
	 tablets,	it	probably	works	well	there	as	well.

F.	CSOUND	ON	ANDROID

876

Start/Stop
	 –	if	a	CSD	file	has	been	loaded,	pushing	the	button	starts	
running	Csound;	if	Csound
	 is	running,	pushing	the	button	stops	Csound.	If	the	
<CsOptions>
	 element	of	the	CSD	file	contains	-odac,
	 Csound's	audio	output	will	go	to	the	device	audio	output.	
If	the
	 element	contains	-osoundfilename,
	 Csound's	audio	output	will	go	to	the	file	
soundfilename,
	 which	should	be	a	valid	Linux	pathname	in	the	user's	
storage
	 filesystem.

The	widgets	are
assigned	control	channel	names	slider1
through	slider5,	butt1
through	butt5,	trackpad.x,
and	trackpad.y.	In
addition,	the	accelerometer	on	the	Android	device	is	available	as
accelerometerX,
accelerometerY,	and
accelerometerZ.
The	values	of	these
widgets	are	normalized	between	0	and	1,	and	can	be	read	into	Csound
during	performance	using	the	chnget
opcode,	like	this:
kslider1_value
chnget	“slider1”
The	area	below	the
trackpad	prints	messages	output	by	Csound	as	it	runs.

THE	SETTINGS	MENU	

F.	CSOUND	ON	ANDROID

877

The	Settings	menu	on	your	device	offers	the	following	choices:

Examples	contains	a	number	of	example	pieces	that	are	built	
in	to	the	app.	Selecting	an	example	will	load	it	into	Csound	for	
performance	or	editing.
User	guide	links	to	this	chapter	of	this	online	manual.
Csound	help	links	to	the	online	Csound	Reference	Manual.
About	Csound	links	to	the	csounds.com	Web	site,	which	acts	
as	a	portal	for	all	things	concerning	Csound.
Settings	opens	a	dialog	for	setting	environment	variables	that	
specify	default	locations	for	soundfiles,	samples,	scores,	and	so	
on.	In	the	Csound6	app,	these	environment	variables	are	
configured	by	Android	app	settings.

CONFIGURING	DEFAULT	DIRECTORIES	

Run	the	Csound6	app,	invoke	the	menu	button,	and	choose	Settings.	
You	will	be	given	choices	for	specifying	an	(additional)	Plugins	
directory,	a	soundfile	Output	directory,	a	Samples	directory,	an	
Analysis	directory,	and	an	Include	directory	for	score	and	orchestra	
files	to	be	#included	by	a	Csound	piece.

These	settings	are	not	required,	but	they	can	make	using	Csound	easier	and	faster	to	use.	

LOADING	AND	PERFORMING	A	PIECE	

EXAMPLE	PIECES	

From	the	app's	menu,	select	the	Examples	command,	then	select	one	
of	the	listed	examples,	for	example	Xanadu	by	Joseph	Kung.	You	
may	then	click	on	the	Start	button	to	perform	the	example,	or	the	
Edit	button	to	view	the	code	for	the	piece.	If	you	want	to	experiment	
with	the	piece,	you	can	use	the	Save	as...	button	to	save	a	copy	on	
your	device's	file	system	under	a	different	name.	You	can	then	edit	
the	piece	and	save	your	changes.

RUNNING	AN	EXISTING	PIECE	

F.	CSOUND	ON	ANDROID

878

If	you	have	access	to	a	mixer	and	monitor	speakers,	or	even	a	home	
stereo	system,	or	even	a	boom	box,	you	can	hook	up	your	device's	
headphone	jack	to	your	sound	system	with	an	adapter	cable.	Most	
devices	have	reasonably	high	quality	audio	playback	capabilities,	so	
this	can	work	quite	well.

Just	to	prove	that	everything	is	working,	start	the	Csound	app.	Go	to	
the	app	menu,	select	the	Examples	item,	select	the	Xanadu	example,	
and	it	will	be	loaded	into	Csound.	Then	click	on	the	Start	button.	Its	
name	should	change	to	Stop,	and	Csound's	runtime	messages	should	
begin	to	scroll	down	the	black	pane	at	the	bottom	of	the	screen.	At	
the	same	time,	you	should	hear	the	piece	play.	You	can	stop	the	
performance	at	any	time	by	selecting	the	Stop	button,	or	you	can	let	
the	performance	complete	on	its	own.	

That's	all	there	is	to	it.	You	can	scroll	up	and	down	in	the	messages	
pane	if	you	need	to	find	a	particular	message,	such	as	an	error	or	
warning.

If	you	want	to	look	at	the	text	of	the	piece,	or	edit	it,	select	the	
Edit	button.	If	you	have	installed	Jota,	that	editor	should	open	with	
the	text	of	the	piece,	which	you	can	save,	or	not.	You	can	edit	the	
piece	with	the	this	editor,	and	any	changes	you	make	and	save	will	be	
performed	the	next	time	you	start	the	piece.

CREATING	A	NEW	PIECE

This	example	will
take	you	through	the	process	of	creating	a	new	Csound	piece,	step	by
step.	Obviously,	this	piece	is	not	going	to	reveal	anything	like	the
full	power	of	Csound.	It	is	only	intended	to	get	you	to	the	point	of
being	able	to	create,	edit,	and	run	a	Csound	piece	that	will	actually
make	sound	on	your	Android	device	–	from	scratch.
Before	you	get
started,	install	the	Jota
text	editor	on	your	device.	Other	text	editors	might	work	with	the

F.	CSOUND	ON	ANDROID

879

Csound	app,	but	this	one	is	known	to	work.
Run	the	Csound6
app...
Select	the	New
button.	You	should	be	presented	with	an	input	dialog	asking	you	for	a
filename	for	your	piece.	Type	in	toot.csd,
and	select	the	Ok	button.	The	file	will	be	stored	in	the	root
directory	of	your	user	storage	on	your	device.	You	can	save	the	file
to	another	place	using	Jota's	File	menu,	if	you	like.
The	text	editor
should	open	with	a	“template”	CSD	file.	Your	job	is	to	fill	out
this	template	to	hear	something.
Create	a	blank	line
between	<CsOptions>
and	</CsOptions>,
and	type	-odac	-d	-m3.
This	means	send	audio	to	the	real-time	output	(-odac),
do	not	display	any	function	tables	(-d),
and	log	some	informative	messages	during	Csound's	performance	(-
m3).
Create	a	blank	line
between	<CsInstruments>
and	</CsInstruments>
and	type	the	following	text:
sr	=	44100
ksmps	=	32
nchnls	=	1
0dbfs	=	1
instr	1
asignal	poscil	0.2,	440
out	asignal
endin

This	is	just	about	the	simplest	possible	Csound	orchestra.	The
orchestra	header	specifies	an	audio	signal	sampling	rate	of	44,100
frames	per	second,	with	10	audio	frames	per	control	signal	sample,
and	one	channel	of	audio	output.	The	instrument	is	just	a	simple	sine
oscillator.	It	plays	a	tone	at	concert	A.

F.	CSOUND	ON	ANDROID

880

Create	a	blank	line
between	<CsScore>
and	</CsScore>	and
type:
i1	0	5

This	means	play	instrument	1	starting	at	time	0	for	5	seconds.
Select	the	text
editor's	Save	button	and	then	its	Quit	button.
Select	the	Csound
app's	Start	button.	You	should	hear	a	loud	sine	tone	for	5
seconds.
If	you	want	to	save
your	audio	output	to	a	soundfile	named	test.wav,
change	-odac	above	to
-o/sdcard/test.wav.
That's	it!

USING	THE	WIDGETS

This	chapter	shows	how	to	use	the	built-in	widgets	of	the	Csound	for	
Android	app	for	controlling	Csound	in	performance.	For	instructions	
on	how	to	use	the	<html>	element	of	the	CSD	file	to	create	custom	
user	interfaces,	see	the	"Csound	and	HTML"	chapter	of	this	book.	

The	Csound	for	Android	app	provides	access	to	a	set	of	predefined	
on-screen	widgets,	as	well	as	to	the	accelerometer	on	the	device.	All	
of	these	controllers	are	permanently	assigned	to	pre-defined	control	
channels	with	pre-defined	names,	and	mapped	to	a	pre-defined	range	
of	values,	from	0	to	1.

All	of	this	pre-definition...	this	is	both	good	and	bad.	I	have	found,	
following	the	example	of	Iain	McCurdy	who	has	graciously	
contributed	a	number	of	the	examples	for	the	app,	an	approach	that	
simplifies	using	the	controllers.	For	an	example	of	this	approach	in	

F.	CSOUND	ON	ANDROID

881

action,	look	at	the	source	code	for	the	Gogins/Drone-IV.csd	
example.

You	should	be	able	to	cut	and	paste	this	code	into	your	own	pieces	
without	many	changes.	

The	first	step	is	to	declare	one	global	variable	for	each	of	the	control	
channels,	with	the	same	name	as	the	control	channel,	at	the	top	of	the	
orchestra	header,	initialized	to	a	value	of	zero:

gkslider1	init	0
gkslider2	init	0
gkslider3	init	0
gkslider4	init	0
gkslider5	init	0
gkbutt1	init	0
gkbutt2	init	0
gkbutt3	init	0
gkbutt4	init	0
gkbutt5	init	0
gktrackpadx	init	0
gktrackpady	init	0
gkaccelerometerx	init	0
gkaccelerometery	init	0
gkaccelerometerz	init	0

Then	write	an	"always-on"	instrument	that	reads	each	of	these	control	
channels	into	each	of	those	global	variables.	At	the	top	of	the	
orchestra	header:

alwayson	"Controls"

As	the	next	to	last	instrument	in	your	orchestra:	

instr	Controls
gkslider1	chnget	"slider1"
gkslider2	chnget	"slider2"
gkslider3	chnget	"slider3"
gkslider4	chnget	"slider4"
gkslider5	chnget	"slider5"
gkbutt1	chnget	"butt1"
gkbutt2	chnget	"butt2"
gkbutt3	chnget	"butt3"
gkbutt4	chnget	"butt4"
gkbutt5	chnget	"butt5"
gktrackpadx	chnget	"trackpad.x"
gktrackpady	chnget	"trackpad.y"
gkaccelerometerx	chnget	"accelerometerX"
gkaccelerometery	chnget	"accelerometerY"
gkaccelerometerz	chnget	"accelerometerZ"
endin

So	far,	everything	is	common	to	all	pieces.	Now,	for	each	specific	
piece	and	specific	set	of	instruments,	write	another	always-on	

F.	CSOUND	ON	ANDROID

882

instrument	that	will	map	the	controller	values	to	the	names	and	
ranges	required	for	your	actual	instruments.	This	code,	in	addition,	
can	make	use	of	the	peculiar	button	widgets,	which	only	signal	
changes	of	state	and	do	not	report	continuously	whether	they	are	"on"	
or	"off."	These	examples	are	from	Gogins/Drone-IV.csd.

At	the	top	of	the	orchestra	header:

alwayson	"VariablesForControls"

As	the	very	last	instrument	in	your	orchestra:

instr	VariablesForControls
if	gkslider1	>	0	then
		 gkFirstHarmonic	=	gkslider1	*	2
	 gkgrainDensity	=	gkslider1	*	400
	 gkratio2	=	gkslider1	;1/3
endif
if	gkslider2	>	0	then
		 gkDistortFactor	=	gkslider2	*	2
	 gkgrainDuration	=	0.005	+	gkslider2	/	2
	 gkindex1	=	gkslider2	*	4
endif
if	gkslider3	>	0	then
		 gkVolume	=	gkslider3	*	5
	 gkgrainAmplitudeRange	=	gkslider3	*	300
	 gkindex2	=	gkslider3	;0.0125
endif
if	gkslider4	>	0	then
	 gkgrainFrequencyRange	=	gkslider4	/	10
endif
if	gktrackpady	>	0	then
		 gkDelayModulation	=	gktrackpady	*	2
		 ;	gkGain	=	gktrackpady	*	2	-	1
endif
if	gktrackpadx	>	0	then
		 gkReverbFeedback	=	(3/4)	+	(gktrackpadx	/	4)
		 ;	gkCenterHz	=	100	+	gktrackpadx	*	3000
endif
kbutt1	trigger	gkbutt1,	.5,	0
if	kbutt1	>	0	then
		 gkbritels	=	gkbritels	/	1.5
		 gkbritehs	=	gkbritehs	/	1.5
		 ;	gkQ	=	gkQ	/	2
endif
kbutt2	trigger	gkbutt2,	.5,	0
if	kbutt2	>	0	then
		 gkbritels	=	gkbritels	*	1.5
		 gkbritehs	=	gkbritehs	*	1.5
		 ;	gkQ	=	gkQ	*	2
endif
endin

Now,	the	controllers	are	re-mapped	to	sensible	ranges,	and	have	
names	that	make	sense	for	your	intruments.	They	can	be	used	as	
follows.	Note	particularly	that,	just	above	the	instrument	definition,	
in	other	words	actually	in	the	orchestra	header,	these	global	variables	

F.	CSOUND	ON	ANDROID

883

are	initialized	with	values	that	will	work	in	performance,	in	case	the	
user	does	not	set	up	the	widgets	in	appropriate	positions	before	
starting	Csound.	This	is	necessary	because	the	widgets	in	the	Csound6
app,	unlike	say	the	widgets	in	CsoundQt,	do	not	"remember"	their	
positions	and	values	from	performance	to	performance.
gkratio1	init	1
gkratio2	init	1/3
gkindex1	init	1
gkindex2	init	0.0125
instr	Phaser
insno	=	p1
istart	=	p2
iduration	=	p3
ikey	=	p4
ivelocity	=	p5
iphase	=	p6
ipan	=	p7
iamp	=	ampdb(ivelocity)	*	8
iattack	=	gioverlap
idecay	=	gioverlap
isustain	=	p3	-	gioverlap
p3	=	iattack	+	isustain	+	idecay
kenvelope	transeg	0.0,	iattack	/	2.0,	1.5,	iamp	/	2.0,	iattack	/	2.0,	-1.5,	iamp,	
isustain,	0.0,	iamp,	idecay	/	2.0,	1.5,	iamp	/	2.0,	idecay	/	2.0,	-1.5,	0
ihertz	=	cpsmidinn(ikey)
print	insno,	istart,	iduration,	ikey,	ihertz,	ivelocity,	iamp,	iphase,	ipan
isine	ftgenonce	0,0,65536,10,1
khertz	=	ihertz
ifunction1	=	isine
ifunction2	=	isine
a1,a2	crosspm	gkratio1,	gkratio2,	gkindex1,	gkindex2,	khertz,	ifunction1,	ifunction2
aleft,	aright	pan2	a1+a2,	ipan
adamping	linseg	0,	0.03,	1,	p3	-	0.1,	1,	0.07,	0
aleft	=	adamping	*	aleft	*	kenvelope
aright	=	adamping	*	aright	*	kenvelope
outleta	"outleft",	aleft
outleta	"outright",	aright
endin

	

	

	

	

F.	CSOUND	ON	ANDROID

884

CSOUND	AND	HASKELL

885

CSOUND	AND	HASKELL

CSOUND-EXPRESSION	

Csound-expression	is	a	framework	for	creation	of	computer	music.
		
It's	a	Haskell	library	to	make	Csound	much	more	friendly.
		
It	generates	Csound	files	out	of	Haskell	code.
		

With	the	help	of	the	library	we	can	create	our	instruments	on	the	fly.	
A	few	lines	in	the	interpreter	is	enough	to	get	the	cool	sound	going	
out	of	your	speakers.	Some	of	the	features	of	the	library	are	heavily	
inspired	by	reactive	programming.	We	can	invoke	the	instruments	
with	event	streams.	Event	streams	can	be	combined	in	the	manner	of	
reactive	programming.	The	GUI-widgets	are	producing	the	event	
streams	as	a	control	messages.	Moreover	with	Haskell	we	get	all	
standard	types	and	functions	like	lists,	maps,	trees.	It's	a	great	way	to	
organize	code	and	data.
		

Csound-expression	is	an	open	source	library.	It's	available	on	
Hackage	(the	main	base	of	Haskell	projects).
		

KEY	PRINCIPLES

Here	is	an	overview	of	the	features	and	principles:
		

Keep	it	simple	and	compact.

CSOUND	AND	HASKELL

886

Try	to	hide	low	level	Csound's	wiring	as	much	as	we	can	(no	
ids	for	ftables,	instruments,	global	variables).	The	haskell	is	a	
modern	language	with	rich	set	of	abstractions.	The	author	tried	
to	keep	the	Csound	primitives	as	close	to	the	haskell	as	
possible.	For	example,	invocation	of	the	instrument	is	just	an	
application	of	the	function.
No	distinction	between	audio	and	control	rates	on	the	type	
level.	Derive	all	rates	from	the	context.	If	the	user	plugs	signal	
to	an	opcode	that	expects	an	audio	rate	signal	the	argument	is	
converted	to	the	right	rate.
Less	typing,	more	music.	Use	short	names	for	all	types.	Make	
library	so	that	all	expressions	can	be	built	without	type	
annotations.	Make	it	simple	for	the	compiler	to	derive	all	
types.	Don't	use	complex	type	classes.
Ensure	that	output	signal	is	limited	by	amplitude.	Csound	can	
produce	signals	with	HUGE	amplitudes.	Little	typo	can	
damage	your	ears	and	your	speakers.	In	generated	code	all	
signals	are	clipped	by	0dbfs	value.	0dbfs	is	set	to	1.	Just	as	in	
Pure	Data.	So	1	is	absolute	maximum	value	for	amplitude.
Remove	score/instrument	barrier.	Let	instrument	play	a	score	
within	a	note	and	trigger	other	instruments.	Triggering	the	
instrument	is	just	an	application	of	the	function.	It	produces	the	
signal	as	output	which	can	be	used	in	another	instrument	and	
so	on.	
Set	Csound	flags	with	meaningful	(well-typed)	values.	Derive	
as	much	as	you	can	from	the	context.	This	principle	let's	us	
start	for	very	simple	expressions.	We	can	create	our	audio	
signal	apply	the	function	dac	to	it	and	we	are	ready	to	hear	the	
result	in	the	speakers.	No	need	for	XML	copy	and	paste	form.	
It's	as	easy	as	typing	the	line											~~~haskell
		
				>	dac	(osc	440)
		
~~~
		
				in	the	interpreter.



CSOUND	AND	HASKELL

887

The	standard	functions	for	musical	needs.	We	often	need	
standard	waveforms	and	filters	and	adsrs.	Some	functions	are	
not	so	easy	to	use	in	the	Csound.	So	there	are	a	lot	of	
predefined	functions	that	capture	lots	of	musical	ideas.	the	
library	strives	to	defines	audio	DSP	primitives	in	the	most	
basic	easiest	form.

There	are	audio	waves:	osc,	saw,	tri,	sqr,	pw,	ramp,	and	
their	unipolar	friends	(usefull	for	LFOs).	
There	are	filters:	lp,	hp,	bp,	br,	mlp	(moog	low	pass),	filt	
(for	packing	several	filters	in	chain),	formant	filters	with	
ppredefined	vowels.
There	are	handy	envelopes:	fades,	fadeOut,	fadeIn,	linseg	
(with	held	last	value).
There	noisy	functions:	white,	pink.
There	are	step	sequencers:	sqrSeq,	sawSeq,	adsrSeq,	and	
many	more.	Step	sequencer	can	produce	the	sequence	of	
unipolar	shapes	for	a	given	wave-form.	The	scale	factors	
are	defined	as	the	list	of	values.



CSOUND	AND	HASKELL

888

Composable	GUIs.	Interactive	instruments	should	be	easy	to	
make.	The	GUI	widget	is	a	container	for	signal.	It	carries	an	
output	alongside	with	visual	representation.	There	are	standard	
ways	of	composition	for	the	visuals	(like	horizontal	or	vertical	
grouping).	It	gives	us	the	easy	way	to	combine	GUIs.	That's	
how	we	can	create	a	filtered	saw-tooth	that	is	controlled	with	
sliders:
		
~~~haskell
		
>	dac	$	vlift2	(\cps	q	->	mlp	(100	+	5000	*	cps)	q	(saw	110))	
(uslider	0.5)	(uslider	0.5)
		
~~~
		
The	function	`uslider`	produces	slider	which	outputs	a	unipolar	
signal	(ranges	from	0	to	1).	The	single	argument	is	an	initial	
value.	The	function	vlift2	groups	visuals	vertically	and	applies	
a	function	of	two	arguments	to	the	outputs	of	the	sliders.	This	
way	we	get	a	new	widget	that	produces	the	filtered	sawtooth	
wave	and	contains	two	sliders.	It	can	become	a	part	of	another	
expression.	No	need	for	separate	declarations.
Event	streams	inspired	with	FRP	(functional	reactive	
programming).	Event	stream	can	produce	values	over	time.	It	
can	be	a	metronome	click	or	a	push	of	the	button,	switch	of	the	
toggle	button	and	so	on.	We	have	rich	set	of	functions	to	
combine	events.	We	can	map	over	events	and	filter	the	stream	
of	events,	we	can	merge	two	streams,	accumulate	the	result.
		
That's	how	we	can	count	the	number	of	clicks:
		
~~~
		
let	clicks	=		lift1	(\evt	->	appendE	(0	::	D)	(+)	$	fmap	(const	1)	
evt)	$	button	"Click	me!"
		
~~~



CSOUND	AND	HASKELL

889

There	is	a	library	that	greatly	simplifies	the	creation	of	the	
music	that	is	based	on	samples.	It's	called	csound-sampler.	
With	it	we	can	easily	create	patterns	out	of	wav-files,	we	can	
reverse	files	or	play	random	segments	of	files.	
There	is	a	novel	model	for	composition	predefined	in	the	
library.	It's	based	on	the	assumption	that	we	can	delay	a	signal	
with	an	event	stream	and	stop	it	with	an	event	stream.	There	is	
a	tiny	set	of	primitives:
		
~~~haskell
		
toSeg	--	creates	a	segment	out	of	the	signal	(it	lasts	
indefinitely)
		
slim		--	limits	a	segment	by	an	event	stream	(the	segment	lasts	
and	waits	for	the	first
		
										event	in	the	event	stream	to	stop	itself)
		
sflow	--	it	plays	a	list	of	segments	on	after	another
		
spar		--	it	plays	a	list	of	segments	at	the	same	time
		
sloop	--	it	plays	a	segment	over	and	over	again.
		
~~~	
With	the	library	we	can	create	our	own	libraries.	We	can	create
a	palette		of	instruments	and	use	it	as	a	library.	It	means	we	can	
just	import	the	instruments	o	need	for	copy	and	paste	and	
worry	for	collision	of	names	while	pasting.	In	fact	there	is	a	
library	on	hackage	that	is	called	csound-catalog.	It	defines	
some	instruments	from	the	Csound	Catalog.
		

		

LINKS



CSOUND	AND	HASKELL

890

The	library	homepage	on	hackage:	
http://hackage.haskell.org/package/csound-expression
		
The	library	homepage	on	github:	http://github.com/anton-k/csound-
expression/blob/master/tutorial/Index.md
		
The	csound-sampler	library:	http://github.com/anton-k/csound-
sampler
		
The	csound-catalog	library	homepage	on	hackage:	
http://hackage.haskell.org/package/csound-catalog
		
Music	made	with	Haskell	and	Csound:	http://soundcloud.com/anton-
kho



H.	CSOUND	AND	HTML

891

H.	CSOUND	AND	HTML



H.	CSOUND	AND	HTML

892



Introduction	

893

INTRODUCTION	

Certain	Csound	front	ends,	currently	including	CsoundQt	and	Csound	
for	Android,	have	the	ability	to	use	HTML	to	define	user	interfaces,	
to	control	Csound,	and	to	generate	Csound	scores	and	even	
orchestras.	The	HTML	code	is	embedded	in	the	optional	<html>	
element	of	the	Csound	Structured	Data	(CSD)	file.	This	element	
essentially	defines	a	Web	page	that	contains	Csound.	

This	chapter	is	organized	as	follows:

1.	 Introduction	(this	section)
2.	 Installation
3.	 Tutorial	User's	Guide
4.	 Conclusion

HTML	must	be	understood	here	to	represent	not	only	Hyper	Text	
Markup	Language,	but	also	all	of	the	other	Web	standards	that	
currently	are	supported	by	Web	browsers,	Web	servers,	and	the	
Internet,	including	cascading	style	sheets	(CSS),	HTML5	features	
such	as	drawing	on	a	graphics	canvas	visible	in	the	page,	producing	
animated	3-dimensional	graphics	with	WebGL	including	shaders	and	
GPU	acceleration,	Web	Audio,	various	forms	of	local	data	storage,	
Web	Sockets,	and	so	on	and	so	on.	This	whole	conglomeration	of	
standards	is	currently	defined	and	maintained	under	the	non-
governmental	leadership	of	the	World	Wide	Web	Consortium	(W3C)	
which	in	turn	is	primarily	driven	by	commercial	interests	belonging	
to	the	Web	Hypertext	Application	Technology	Working	Group	
(WHATWG).	Most	modern	Web	browsers	implement	almost	all	of	
the	W3C	standards	up	to	and	including	HTML5	at	an	impressive	
level	of	performance	and	consistency.	To	see	what	features	are	
available	in	your	own	Web	browser,	go	to	this	test	page.	All	of	this	



Introduction	

894

stuff	is	now	usable	in	Csound	pieces....

EXAMPLES	OF	USE	

For	an	example	of	a	few	of	the	things	are	possible	with	HTML	in	
Csound,	take	a	look	at	the	following	screen	shots.	Both	of	these	
examples	are	included	in	the	Windows	installer	for	Csound,	which	
also	includes	the	HTML-enabled	version	of	CsoundQt.

	

Figure	1.	GameOfLife3d.csd.

In	Figure	1,	GameOfLife3d.csd	demonstrates	the	following	features	
of	HTML:	style	sheets	for	formatting	the	legend,	WebGL	for	
displaying	a	rotating	3-dimensional	form	of	John	Conway's	Game	of	
Life	with	shifting	lighting,	animation	which	"tweens"	the	cubes	from	
one	state	of	the	game	to	the	next,	and	the	Csound	API.	The	JavaScript	
code	that	generates	the	display	also	builds	up	a	chunk	of	Csound	
score	that	is	sent	to	Csound.	Thus,	each	new	state	of	the	game	plays	a	
chord	using	Csound	instruments.		The	user	can	interact	with	the	
game,	rotating	it	and	zooming	it.



Introduction	

895

Figure	2.	LindenmayerCanvas.csd.

In	Figure	2,	LindenmayerCanvas.csd,	the	HTML	code	is	used	to	do	
these	things:

1.	 Define	slider	widgets	for	controlling	Csound	with	the	channel	
API,	using	HTML	input	elements	with	JavaScript	event	
handlers.

2.	 Style	the	sliders	and	the	table	containing	them	with	a	Custom	
Style	Sheet	(CSS).

3.	 Save	the	positions	of	the	widgets	when	the	'Save	control	values'
button	is	clicked,	and	restore	the	positions	of	the	widgets	when	
the	'Restore	control	values'	button	is	clicked,	using	the	Local	
Storage	feature	of	HTML5.	These	values	are	retrieved	
whenever	the	piece	is	loaded.	



Introduction	

896

4.	 Use	JavaScript	to	define	a	context-free	Lindenmayer	system	
for	generating	not	only	the	tree	image	drawn	on	the	HTML	
Canvas	at	the	bottom	of	the	screen,	but	also	a	Csound	score	
representing	the	tree,	when	the	'Generate	score'	button	is	
clicked.	Being	able	to	see	some	sort	of	graphical	representation	
of	a	score	is	very	useful	when	doing	algorithmic	composition.

It	is	true	that	LaTeX	can	do	a	better	job	of	typesetting	than	HTML	
and	CSS.	It	is	true	that	game	engines	can	do	a	better	job	for	
interactive,	3-dimensional	computer	animation	with	scene	graphs	
than	WebGL.	It	is	true	that	compiled	C	or	C++	code	runs	faster	than	
JavaScript.	It	is	true	that	Haskell	is	a	more	fully-featured	functional	
programming	language	than	JavaScript.	It	is	true	that	MySQL	is	a	
more	powerful	database	than	HTML5	storage.

But	the	fact	is,	there	is	no	single	program	except	for	a	Web	browser	
that	manages	to	be	quite	functional	in	all	of	these	categories	in	a	way	
that	beginning	to	intermediate	programmers	can	use,	and	for	which	
the	only	required	runtime	is	the	Web	browser	itself.	

For	this	reason	alone,	HTML	makes	a	very	good	front	end	for	
Csound.	Furthermore,	the	Web	standards	are	maintained	in	a	stable	
form	by	a	large	community	of	competent	developers	representing	
diverse	interests.	So	I	believe	HTML	as	a	front	end	for	Csound	should	
be	quite	stable	and	remain	backwardly	compatible,	just	as	Csound	
itself	remains	backwardly	compatible	with	old	pieces.	

HOW	IT	WORKS	

The	Web	browser	embedded	into	CsoundQt	is	the	Chromium	
Embedded	Framework.	The	Web	browser	embedded	into	Csound	for	
Android	is	the	WebView	available	in	the	Android	SDK.

	The	front	end	parses	the	<html>	element	out	of	the	CSD	file	and	
simply	saves	it	as	an	HTML	file,	in	other	words,	as	a	Web	page.	For	



Introduction	

897

example,	MyCsoundPiece.csd	will	produce	
MyCsoundPiece.csd.html.	The	front	end's	embedded	browser	then	
loads	this	Web	page,	compiles	it,	displays	it,	executes	any	scripts	
contained	in	it,	and	lets	the	user	interact	with	it.

It	is	important	to	understand	that	any	valid	HTML	code	can	be	used	
in	Csound's	<html>	element.	It	is	just	a	Web	page	like	any	other	Web	
page.	

In	general,	the	different	Web	standards	are	either	defined	as	
JavaScript	classes	and	libraries,	or	glued	together	using	JavaScript.	In	
other	words,	HTML	without	JavaScript	is	dead,	but	HTML	with	
JavaScript	handlers	for	HTML	events	and	attached	to	the	document	
elements	in	the	HTML	code,	comes	alive.	Indeed,	JavaScript	can	
itself	define	HTML	documents	by	programmatically	creating	
Document	Object	Model	objects.

JavaScript	is	the	engine	and	the	major	programming	language	of	the	
World	Wide	Web	in	general,	and	of	code	that	runs	in	Web	browsers	
in	particular.	JavaScript	is	a	standardized	language,	and	it	is	a	
functional	programming	language	not	that	dissimilar	in	concept	from	
Scheme.	JavaScript	also	allows	classes	to	be	defined	by	prototypes.

The	JavaScript	execution	context	of	a	Csound	Web	page	contains	
Csound	itself	as	a	"csound"	JavaScript	object	that	has	the	following	
methods:

getVersion	()	[returns	a	number]
compileOrc	(orchestra_code)	evalCode	(orchestra_code)	[returns	the	numeric	result	of	the	

evaluation]
readScore	(score_lines)
setControlChannel	(channel_name,	number)
getControlChannel	(channel_name)	[returns	a	number	representing	the	channel	value]
message	(text)
getSr	()	[returns	a	number]
getKsmps	()	[returns	a	number]
getNchnls	()	[returns	a	number]
isPlaying	()	[returns	1	if	Csound	is	playing,	0	if	not]

The	front	end	contains	a	mechanism	for	forwarding	JavaScript	calls	
in	the	Web	page's	JavaScript	context	to	native	functions	that	are	
defined	in	the	front	end,	which	passes	them	on	to	Csound.	This	



Introduction	

898

involves	a	small	amount	of	C++	glue	code	that	the	user	does	not	need	
to	know	about.	In	CsoundQt,	the	glue	code	uses	asynchronous	IPC	
because	the	Chromium	Embedded	Framework	forks	several	threads	
or	even	processes	to	implement	the	Web	browser,	but	again,	the	user	
does	not	need	to	know	anything	about	this.	

In	the	future,	more	functions	from	the	Csound	API	will	be	added	to	
this	JavaScript	interface,	including,	at	least	in	some	front	ends,	the	
ability	for	Csound	to	appear	as	a	Node	in	a	Web	Audio	graph	(this	
already	is	possible	in	the	Emscripten	built	of	Csound).

Also	in	the	future,	the	JavaScript	methods	of	Csound	in	Emscripten	
will	be	harmonized	with	these	methods.	

Also	in	the	future,	there	will	be	a	native	Node	extension	for	the	
NW.js	HTML5	desktop	application	framework,	providing	the	same	
JavaScript	interface	to	Csound.

INSTALLATION

On	Windows,	simply	download	the	current	Csound	installer	from	
SourceForge	and	use	it	to	install	Csound	on	your	computer.	HTML	is	
enabled	by	default	in	CsoundQt,	which	is	included	in	the	installer.

On	Android,	simply	download	the	current	Csound6.apk	from	
SourceForge	and	use	it	to	install	Csound	on	your	Android	device.	
This	can	be	any	reasonably	powerful	Android	smartphone	or	tablet.	
HTML	is	enabled	by	default,	but	the	HTML5	features	that	are	
available	will	depend	upon	your	version	of	Android.

Currently,	WebGL	may	or	may	not	be	enabled	on	Android,	
depending	on	your	versions	of	hardware	and	software.

TUTORIAL	USER	GUIDE	

Let's	get	started	and	do	a	few	things	in	the	simplest	possible	way,	in	a	
series	of	"toots."	These	pieces	also	are	included	in	the	examples/html	



Introduction	

899

directory	of	the	Windows	installation	and	can	be	found	in	the	Csound	
Git	repository	as	well.

1.	 Display	"Hello,	World,	this	is	Csound!"	in	HTML.
2.	 Create	a	button	that	will	generate	a	series	of	notes	based	on	the	

logistic	equation.
3.	 Create	a	slider	to	set	the	value	of	the	parameter	that	controls	

the	degree	of	chaos	produced	by	iterating	the	logistic	equation,	
and	two	other	sliders	to	control	the	frequency	ratio	and	
modulation	index	of	the	FM	instrument	that	plays	the	notes	
from	the	logistic	equation.

4.	 Style	the	HTML	elements	using	a	style	sheet.

01_HELLOWORLD.CSD

This	is	the	bare	minimum	CSD	that	shows	some	HTML	output.	In	its	
entirety	it	is:	

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
sr	=	44100
ksmps	=	128
nchnls	=	2
0dbfs	=	1.0
</CsInstruments>
<html>
Hello,	World,	this	is	Csound!
</html>
<CsScore>
</CsScore>
</CsoundSynthesizer>	

Not	much	to	it.	HTML	is	full	of	graceful	defaults.	In	HTML,	plain	
text	without	any	tags	is	imply	printed	as	plain	text.	

02_SCOREGENERATOR.CSD

Here	I	have	introduced	a	simple	Csound	orchestra	consisting	of	a	
single	frequency	modulation	instrument	feeding	first	into	a	
reverberation	effect,	and	then	into	a	master	output	unit.	These	are	



Introduction	

900

connected	using	the	signal	flow	graph	opcodes.	The	actual	orchestra	
is	of	little	interest	here.	And	this	piece	has	no	score,	because	the	score	
will	be	generated	at	run	time.	In	the	<html>	element,	I	also	have	
added	this	button:

<button	onclick="generate()">	Generate	score	</button>

When	this	button	is	clicked,	it	calls	a	JavaScript	function	that	uses	the	
logistic	equation,	which	is	a	simple	quadratic	dynamical	system,		to	
generate	a	Csound	score	from	a	chaotic	attractor	of	the	system.	This	
function	also	is	quite	simple.	Its	main	job,	aside	from	iterating	the	
logistic	equation	a	few	hundred	times,	is	to	translate	each	iteration	of	
the	system	into	a	musical	note	and	send	that	note	to	Csound	to	be	
played	using	the	Csound	API	function	readScore().	So	the	following	
<script>	element	is	added	to	the	body	of	the	<html>	element:

<script>
var	c	=	0.99;
var	y	=	0.5;
function	generate()	{
	 csound.message("generate()...\n");
	 for	(i	=	0;	i	<	200;	i++)	{
	 		var	t	=	i	*	(1.0	/	3.0);	
	 		var	y1	=	4.0	*	c	*	y	*	(1.0	-	y);
	 		y	=	y1;
	 		var	key	=	Math.round(36.0	+	(y	*	60.0));
	 		var	note	=	"i	1	"	+	t	+	"	2.0	"	+	key	+	"	60	0.0	0.5\n";
	 		csound.readScore(note);	 	
	 };
};
</script>	

03_SLIDERS.CSD

The	next	step	is	to	add	more	user	control	to	this	piece.	We	will	enable	
the	user	to	control	the	attractor	of	the	piece	by	varying	the	constant	c,	
and	we	will	enable	the	user	to	control	the	sound	of	the	Csound	
orchestra	by	varying	the		frequency	modulation	index,	frequency	
modulation	carrier	ratio,	reverberation	time,	and	master	output	level.

This	code	is	demonstrated	on	a	low	level,	so	that	you	can	see	all	of	
the	details	and	understand	exactly	what	is	going	on.	A	real	piece	
would	most	likely	be	written	at	a	higher	level	of	abstraction,	for	
example	by	using	a	third	party	widget	toolkit,	such	as	jQuery	UI.



Introduction	

901

A	slider	in	HTML	is	just	an	'input'	element	like	this:

<input	type=range	min=0	max=1	value=.5	id=sliderC	step=0.001	
oninput="on_sliderC(value)">

This	element	has	attributes	of	minimum	value	0,	maximum	value	1,	
which	normalizes	the	user's	possible	values	between	0	and	1.	This	
could	be	anything,	but	in	many	musical	contexts,	for	example	VST	
plugins,	user	control	values	are	always	normalized	between	0	and	1.	
The	tiny	'step'	attribute	simply	approximates	a	continuous	range	of	
values.	

The	most	important	thing	is	the	'oninput'	attribute,	which	sets	the	
value	of	a	JavaScript	event	handler	for	the	'oninput'	event.	This	
function	is	called	whenever	the	user	changes	the	value	of	the	slider.

For	ease	of	understanding,	a	naming	convention	is	used	here,	with	
'sliderC'	being	the	basic	name	and	other	names	of	objects	associated	
with	this	slider	taking	names		built	up	by	adding	prefixes	or	suffixes	
to	this	basic	name.

Normally	a	slider	has	a	label,	and	it	is	convenient	to	show	the	actual	
numerical	value	of	the	slider.	This	can	be	done	like	so:

<table>
<col	width="2*">
<col	width="5*">
<col	width="100px">
<tr>
<td>
<label	for=sliderC>c</label>
<td>
<input	type=range	min=0	max=1	value=.5	id=sliderC	step=0.001	
oninput="on_sliderC(value)">
<td>
<output	for=sliderC	id=sliderCOutput>.5</output>
</tr>
</table>

If	the	slider,	its	label,	and	its	numeric	display	are	put	into	an	HTML	
table,	that	table	will	act	like	a	layout	manager	in	a	standard	widget	
toolkit,	and	will	resize	the	contained	elements	as	required	to	get	them	
to	line	up.

For	this	slider,	the	JavaScript	handler	is:



Introduction	

902

function	on_sliderC(value)	{
	 c	=	parseFloat(value);
	 document.querySelector('#sliderCOutput').value	=	c;
}	

The	variable	c	was	declared	at	global	scope	just	above	the	generate()	
function,	so	that	variable	is	accessible	within	the	on_sliderC	function.

Keep	in	mind,	if	you	are	playing	with	this	code,	that	a	new	value	of	c	
will	only	be	heard	when	a	new	score	is	generated.	

Very	similar	logic	can	be	used	to	control	variables	in	the	Csound	
orchestra.	The	value	of	the	slider	has	to	be	sent	to	Csound	using	the	
channel	API,	like	this:

function	on_sliderFmIndex(value)	{
	 var	numberValue	=	parseFloat(value);
	 document.querySelector('#sliderFmIndexOutput').value	=	numberValue;
	 csound.setControlChannel('gk_FmIndex',	numberValue);
}	

Then,	in	the	Csound	orchestra,	that	value	has	to	be	retrieved	using	the	
chnget	opcode	and	applied	to	the	instrument	to	which	it	pertains.	It	is	
most	efficient	if	the	variables	controlled	by	channels	are	global	
variables	declared	just	above	their	respective	instrument	definitions.	
The	normalized	values	can	be	rescaled	as	required	in	the	Csound	
instrument	code.

gk_FmIndex																						init																				0.5
																																instr	 	 	 ModerateFM
...
kindex																				 =																							gk_FmIndex	*	20
...
																																endin

Also	for	the	sake	of	efficiency,	a	global,	always-on	instrument	can	be	
used	to	read	the	control	channels	and	assign	their	values	to	these	
global	variables:

instr	Controls
gk_FmIndex_	chnget	"gk_FmIndex"
if	gk_FmIndex_		!=	0	then
	gk_FmIndex	=	gk_FmIndex_
endif
gk_FmCarrier_	chnget	"gk_FmCarrier"
if	gk_FmCarrier_		!=	0	then
	gk_FmCarrier	=	gk_FmCarrier_
endif
gk_ReverberationDelay_	chnget	"gk_ReverberationDelay"
if	gk_ReverberationDelay_		!=	0	then
	gk_ReverberationDelay	=	gk_ReverberationDelay_



Introduction	

903

endif
gk_MasterLevel_	chnget	"gk_MasterLevel"
if	gk_MasterLevel_		!=	0	then
	gk_MasterLevel	=	gk_MasterLevel_
endif
endin	

Note	that	each	actual	global	variable	has	a	default	value,	which	is	
only	overridden	if	the	user	actually	operates	its	slider.

04_CUSTOMSTYLE.CSD

The	default	appearance	of	HTML	elements	is	brutally	simple.	But	
each	element	has	attributes	that	can	be	used	to	change	its	appearance,	
and	these	offer	a	great	deal	of	control.

Of	course,	setting	for	example	the	font	attribute	for	each	label	on	a	
complex	HTML	layout	is	tedious.	Therefore,	this	example	shows	how	
to	use	a	style	sheet.	We	don't	need	much	style	to	get	a	much	
improved	appearance:

<style	type="text/css">
input[type='range']	{
	 -webkit-appearance:	none;
	 border-radius:	5px;
	 box-shadow:	inset	0	0	5px	#333;
	 background-color:	#999;
	 height:	10px;
					 width:	100%;
	 vertical-align:	middle;
}
input[type=range]::-webkit-slider-thumb	{
					 -webkit-appearance:	none;
					 border:	none;
					 height:	16px;
					 width:	16px;
					 border-radius:	50%;
					 background:	yellow;
					 margin-top:	-4px;
					 border-radius:	10px;
}
table	td	{
	 border-width:	2px;
	 padding:	8px;
	 border-style:	solid;
	 border-color:	transparent;
					 color:yellow;
	 background-color:	teal;
	 font-family:	sans-serif
}
</style>

This	little	style	sheet	is	generic,	that	is,	it	applies	to	every	element	on	
the	HTML	page.	It	says,	for	example,	that	'table	td'	(table	cells)	are	to	
have	a	yellow	sans-serif	font	on	a	teal	background,	and	this	will	apply	



Introduction	

904

to	every	table	cell	on	the	page.	Style	sheets	can	be	made	more	
specialized	by	giving	them	names.	But	for	this	kind	of	application,	
that	is	not	usually	necessary.

CONCLUSION	

Most,	if	not	all	all,	of	the	functions	performed	by	other	Csound	front	
ends	could	be	encompassed	by	HTML	and	JavaScript.	However,	there
are	a	few	gotchas.	For	CsoundQt	and	other	front	ends	based	on	
Chrome,	there	may	be	extra	latency	and	processing	overhead	required	
by	inter-process	communications.	For	Emscripten	and	other	
applications	that	use	Web	Audio,	there	may	also	be	additional	
latency.

Obviously,	much	more	can	be	done	with	HTML,	JavaScript,	and	
other	Web	standards	found	in	contemporary	Web	browsers.	Full-
fledged,	three-dimensional,	interactive,	multi-player	computer	games	
are	now	being	written	with	HTML	and	JavaScript.	Other	sorts	of	Web	
applications	also	are	being	written	this	way.

Sometimes,	JavaScript	is	embedded	into	an	application	for	use	as	a	
scripting	language.	The	Csound	front	ends	discussed	here	are	
examples,	but	there	are	others.	For	example,	Max	for	Live	can	be	
programmed	in	JavaScript,	and	so	can	the	open	source	score	editor	
MuseScore.	In	fact,	in	MuseScore,	JavaScript	can	be	used	to	
algorithmically	generate	notated	scores.

		



EXTENDING	CSOUND

905

EXTENDING	CSOUND

DEVELOPING	PLUGIN	OPCODES

Csound	is	possibly	one	of	the	most	easily	extensible	of	all	modern	
music	programming	languages.	The	addition	of	unit	generators	
(opcodes)	and	function	tables	is	generally	the	most	common	type	of	
extension	to	the	language.	This	is	possible	through	two	basic	
mechanisms:	user-defined	opcodes	(UDOs),	written	in	the	Csound	
language	itself	and	pre-compiled/binary	opcodes,	written	in	C	or	
C++.	

To	facilitate	the	latter	case,	Csound	offers	a	simple	opcode	
development	API,	from	which	dynamically-loadable,	or	
\emph{plugin}	unit	generators	can	be	built.	

CSOUND	DATA	TYPES	AND	SIGNALS	

The	Csound	language	provides	four	basic	data	types:	i-,	k-,	a-	and	f-
types		(there	is	also	a	fifth	type,	w,	which	will	not	be	discussed	here).	
These	are	used	to	pass	the	data	between	opcodes,	each	opcode	input	
or	output	parameter	relating	to	one	of	these	types.	The	Csound	i-type	
variable	is	used	for	initialisation	variables,	which	will	assume	only	
one	value	in	performance.	Once	set,	they	will	remain	constant	
throughout	the	instrument	or	UDO	code,	unless	there	is	a	
reinitialisation	pass.	In	a	plugin	opcode,	parameters	that	receive	i-
type	variables	are	set	inside	the	initialisation	part	of	the	code,	because
they	will	not	change	during	processing.

The	other	types	are	used	to	hold	scalar	(k-type)	,	vectorial	(a-type)		
and	spectral-frame	(f)	signal	variables.	These	will	change	in	
performance,	so	parameters	assigned	to	these	variables	are	set	and	
modified	in	the	opcode	processing	function.	Scalars	will	hold	a	single	
value,	whereas	vectors	hold	an	array	of	values	(a	vector).	These	
values	are	floating-point	numbers,	either	32-	or	64-bit,	depending	on	



EXTENDING	CSOUND

906

the	executable	version	used,	defined	in	C/C++	as	a	custom	MYFLT	
type.

Plugin	opcodes	will	use	pointers	to	input	and	output	parameters	to	
read	and	write	their	input/output.	The	Csound	engine	will	take	care	of	
allocating	the	memory	used	for	its	variables,	so	the	opcodes	only	
need	to	manipulate	the	pointers	to	the	addresses	of	these	variables.

A	Csound	instrument	code	can	use	any	of	these	variables,	but	opcodes
will	have	to	accept	specific	types	as	input	and	will	generate	data	in	
one	of	those	types.	Certain	opcodes,	known	as	polymorphic	opcodes,	
will	be	able	to	cope	with	more	than	one	type	for	a	specific	parameter	
(input	or	output).	This	generally	implies	that	more	than	one	version	of
the	opcode	will	have	to	be	implemented,	which	will	be	called	
depending	on	the	parameter	types	used.
		

PLUGIN	OPCODES

Originally,	Csound	opcodes	could	only	be	added	to	the	system	as	
statically-linked	code.	This	required	that	the	user	recompiled	the	
whole	Csound	code	with	the	added	C	module.	The	introduction	of	a	
dynamic-loading	mechanism	has	provided	a	simpler	way	for	opcode	
addition,	which	only	requires	the	C	code	to	be	compiled	and	built	as	a	
shared,	dynamic	library.	These	are	known	in	Csound	parlance	as	
plugin	opcodes	and	the	following	sections	are	dedicated	to	their	
development	process.

Anatomy	of	an	opcode

The	C	code	for	a	Csound	opcode	has	three	main	programming	
components:	a	data	structure	to	hold	the	internal	data,	an	initialising	
function	and	a	processing	function.	From	an	object-oriented	
perspective,	an	opcode	is	a	simple	class,	with	its	attributes,	
constructor	and	perform	methods.	The	data	structure	will	hold	the	
attributes	of	the	class:	input/output	parameters	and	internal	variables	



EXTENDING	CSOUND

907

(such	as	delays,	coefficients,	counters,	indices	etc.),	which	make	up	
its	dataspace.

The	constructor	method	is	the	initialising	function,	which	sets	some	
attributes	to	certain	values,	allocates	memory	(if	necessary)	and	
anything	that	is	needed	for	an	opcode	to	be	ready	for	use.	This	
method	is	called	by	the	Csound	engine	when	an	instrument	with	its	
opcodes	is	allocated	in	memory,	just	before	performance,	or	when	a	
reinitialisation	is	required.

Performance	is	implemented	by	the	processing	function,	or	perform	
method,	which	is	called	when	new	output	is	to	be	generated.	This	
happens	at	every	control	period,	or	ksmps	samples.	This	implies	that	
signals	are	generated	at	two	different	rates:	the	control	rate,	kr,	and	
the	audio	rate,	sr,	which	is	kr	x	ksmps	samples/sec.	What	is	actually	
generated	by	the	opcode,	and	how	its	perform	method	is	
implemented,	will	depend	on	its	input	and	output	Csound	language	
data	types.

Opcoding	basics

C-language	opcodes	normally	obey	a	few	basic	rules	and	their	
development	require	very	little	in	terms	of	knowledge	of	the	actual	
processes	involved	in	Csound.	Plugin	opcodes	will	have	to	provide	
the	three	main	programming	components	outlined	above:	a	data	
structure	plus	the	initialisation	and	processing	functions.	Once	these	
elements	are	supplied,	all	we	need	to	do	is	to	add	a	line	telling	
Csound	what	type	of	opcode	it	is,	whether	it	is	an	i-,	k-	or	a-rate	based
unit	generator	and	what	arguments	it	takes.

The	data	structure	will	be	organised	in	the	following	fashion:
		
1.				The	OPDS	data	structure,	holding	the	common	components	of	all	
opcodes.
		
2.				The	output	pointers	(one	MYFLT	pointer	for	each	output)



EXTENDING	CSOUND

908

		
3.				The	input	pointers	(as	above)
		
4.				Any	other	internal	dataspace	member.

The	Csound	opcode	API	is	defined	by	csdl.h,	which	should	be	
included	at	the	top	of	the	source	file.	The	example	below	shows	a	
simple	data	structure	for	an	opcode	with	one	output	and	three	inputs,	
plus	a	couple	of	private	internal	variables:

#include	"csdl.h"

typedef	struct		_newopc	{

OPDS		h;
MYFLT	*out;/*	output	pointer		*/
MYFLT	*in1,*in2,*in3;	/*	input	pointers	*/
MYFLT		var1;		/*	internal	variables	*/
MYFLT		var2;

}	newopc;

Initialisation

The	initialisation	function	is	only	there	to	initialise	any	data,	such	as	
the	internal	variables,	or	allocate	memory,	if	needed.	The	plugin	
opcode	model	in	Csound	6	expects	both	the	initialisation	function	and	
the	perform	function	to	return	an	int	value,	either	OK	or	NOTOK.	
Both	methods		take	two	arguments:		pointers	to	the	CSOUND	data	
structure	and	the	opcode	dataspace.	The	following	example	shows	an	
example	initialisation	function.	It	initialises	one	of	the	variables	to	0	
and	the	other	to	the	third	opcode	input	parameter.

int	newopc_init(CSOUND	*csound,	newopc	*p){
	p->var1	=	(MYFLT)	0;
	p->var2	=	*p->in3;
return	OK;
}

Control-rate	performance

The	processing	function	implementation	will	depend	on	the	type	of	
opcode	that	is	being	created.	For	control	rate	opcodes,	with	k-	or	i-
type	input	parameters,	we	will	be	generating	one	output	value	at	a	



EXTENDING	CSOUND

909

time.	The	example	below	shows	an	example	of	this	type	of	processing
function.	This	simple	example	just	keeps	ramping	up	or	down	
depending	on	the	value	of	the	second	input.	The	output	is	offset	by	
the	first	input	and	the	ramping	is	reset	if	it	reaches	the	value	of	var2	
(which	is	set	to	the	third	input	argument	in	the	constructor	above).

int	newopc_process_control(CSOUND	*csound,	newopc	*p){
	MYFLT	cnt	=	p->var1	+	*(p->in2);
	if(cnt	>	p->var2)	cnt	=	(MYFLT)	0;	/*	check	bounds	*/
	*(p->out)	=	*(p->in1)	+	cnt;	/*	generate	output	*/
		p->var1	=	cnt;	/*	keep	the	value	of	cnt	*/
		return	OK;
}

Audio-rate	performance

For	audio	rate	opcodes,	because	it	will	be	generating	audio	signal	
vectors,	it	will	require	an	internal	loop	to	process	the	vector	samples.	
This	is	not	necessary	with	k-rate	opcodes,	because,	as	we	are	dealing	
with	scalar	inputs	and	outputs,		the	function	has	to	process	only	one	
sample	at	a	time.	If	we	were	to	make	an	audio	version	of	the	control	
opcode	above	(disregarding	its	usefulness),	we	would	have	to	change	
the	code	slightly.	The	basic	difference	is	that	we	have	an	audio	rate	
output	instead	of	control	rate.	In	this	case,	our	output	is	a	whole	
vector	(a	MYFLT	array)	with	ksmps	samples,	so	we	have	to	write	a	
loop	to	fill	it.	It	is	important	to	point	out	that	the	control	rate	and	
audio	rate	processing	functions	will	produce	exactly	the	same	result.	
The	difference	here	is	that	in	the	audio	case,	we	will	produce	ksmps	
samples,	instead	of	just	one		sample.	However,	all	the	vector	samples	
will	have	the	same	value	(which	actually	makes	the	audio	rate	
function	redundant,	but	we	will	use	it	just	to	illustrate	our	point).

Another	important	thing	to	consider	is	to	support	the	--sample-
accurate	mode	introduced	in	Csound	6.	For	this	we	will	need	to	add	
code	to	start	processing	at	an	offset	(when	this	is	given),	and	finish	
early	(if	that	is	required).	The	opcode	will	then	lookup	these	two	
variables	(called	"offset"	and	"early")	that	are	passed	to	it	from	the	
container	instrument,	and	act	to	ensure	these	are	taken	into	account.	
Without	this,	the	opcode	would	still	work,	but	not	support	the	sample-



EXTENDING	CSOUND

910

accurate	mode.

int	newopc_process_audio(CSOUND	*csound,	newopc	*p){
	int	i,	n	=	CS_KSMPS;
	MYFLT	*aout	=	p->out;		/*	output	signal	*/
	MYFLT	cnt	=	p->var1	+	*(p->in2);
	uint32_t	offset	=	p->h.insdshead->ksmps_offset;
	uint32_t	early		=	p->h.insdshead->ksmps_no_end;

	/*	sample-accurate	mode	mechanism	*/
	if(offset)	memset(aout,	'\0',	offset*sizeof(MYFLT));
	if(early)	{
								n	-=	early;
								memset(&aout[n],	'\0',	early*sizeof(MYFLT));
		}								

		if(cnt	>	p->var2)	cnt	=	(MYFLT)	0;	/*	check	bounds	*/
			
		/*	processing	loop				*/
		for(i=offset;	i	<	n;	i++)	aout[i]	=	*(p->in1)	+	cnt;
			
			p->var1	=	cnt;	/*	keep	the	value	of	cnt	*/
			return	OK;
}

In	order	for	Csound	to	be	aware	of	the	new	opcode,	we	will	have	to	
register	it.	This	is	done	by	filling	an	opcode	registration	structure	
OENTRY	array	called	localops	(which	is	static,	meaning	that	only	
one	such	array	exists	in	memory	at	a	time):

static	OENTRY	localops[]	=	{
{	"newopc",	sizeof(newopc),	0,	7,	"s",	"kki",(SUBR)	newopc_init,
(SUBR)	newopc_process_control,	(SUBR)	newopc_process_audio	}
};

LINKAGE

The	OENTRY	structure	defines	the	details	of	the	new	opcode:

1.	 the	opcode	name	(a	string	without	any	spaces).
2.	 the	size	of	the	opcode	dataspace,	set	using	the	macro	

S(struct_name),	in	most	cases;	otherwise	this	is	a	code	
indicating	that	the	opcode	will	have	more	than	one	
implementation,	depending	on	the	type	of	input	arguments	(a	
polymorphic	opcode).

3.	 Flags	to	control	multicore	operation	(0	for	most	cases).



EXTENDING	CSOUND

911

4.	 An	int	code	defining	when	the	opcode	is	active:	1	is	for	i-time,	
2	is	for	k-rate	and	4	is	for	a-rate.	The	actual	value	is	a	
combination	of	one	or	more	of	those.	The	value	of	7	means	
active	at	i-time	(1),	k-rate	(2)	and	a-rate	(4).	This	means	that	
the	opcode	has	an	init	function,	plus	a	k-rate		and	an	a-rate	
processing	functions.

5.	 String	definition	the	output	type(s):	a,	k,	s	(either	a	or	k),	i,	m	
(multiple	output	arguments),	w	or		f		(spectral	signals).

6.	 Same	as	above,	for	input	types:	a,	k,	s,	i,	w,	f,	o	(optional	i-rate,	
default	to	0),	p	(opt,	default	to	1),	q	(opt,	10),		v(opt,	0.5),	j(opt,	
?1),	h(opt,	127),	y	(multiple	inputs,	a-type),	z	(multiple	inputs,	
k-type),	Z	(multiple	inputs,	alternating	k-	and	a-types),	m	
(multiple	inputs,	i-type),	M	(multiple	inputs,	any	type)	and	n	
(multiple	inputs,	odd	number	of	inputs,	i-type).

7.	 I-time	function	(init),	cast	to	(SUBR).
8.	 K-rate	function.
9.	 A-rate	function.

Since	we	have	defined	our	output	as	's',	the	actual	processing	function	
called	by	csound	will	depend	on	the	output	type.	For	instance
		

k1		newopc		kin1,	kin2,	i1

will	use	newopc_process_control(),	whereas
		

a1		newopc		kin1,	kin2,	i1

		
will	use	newopc_process_audio().	This	type	of	code	is	found	for	instance	in	
the	oscillator	opcodes,	which	can	generate	control	or	audio	rate	(but	
in	that	case,	they	actually	produce	a	different	output	for	each	type	of	
signal,	unlike	our	example).

Finally,	it	is	necessary	to	add,	at	the	end	of	the	opcode	C	code	the	
LINKAGE	macro,	which	defines	some	functions	needed	for	the	



EXTENDING	CSOUND

912

dynamic	loading	of	the	opcode.

Building	opcodes

The	plugin	opcode	is	build	as	a	dynamic	module.	All	we	need	is	to	
build	the	opcode	as	a	dynamic	library,	as	demonstrated	by	the	
examples	below.

On	OSX:

gcc	-O2	-dynamiclib	-o	myopc.dylib	opsrc.c	-DUSE_DOUBLE
				-I/Library/Frameworks/CsoundLib64.framework/Headers

Linux:

gcc	-O2	-shared	-o	myopc.so	-fPIC	opsrc.c	-DUSE_DOUBLE
				-I<path	to	Csound	headers>

Windows	(MinGW+MSYS):

gcc	-O2	-shared	-o	myopc.dll	opsrc.c	-DUSE_DOUBLE
				-I<path	to	Csound	headers>

CSD	Example

To	run	Csound	with	the	new	opcodes,	we	can	use	the	--opcode-
lib=libname	option.
		

<CsoundSynthesizer>
<CsOptions>
--opcode-lib=newopc.so		;	OSX:	newopc.dylib;	Windows:	newopc.dll
</CsOptions>
<CsInstruments>

schedule	1,0,100,440

instr	1

asig			newopc		0,	0.001,	1
ksig			newopc		1,	0.001,	1.5
aosc			oscili	1000,	p4*ksig
				outs	aosc*asig

endin

</CsInstruments>
</CsoundSynthesizer>
;example	by	victor	lazzarini



EXTENDING	CSOUND

913

		



EXTENDING	CSOUND

914



OPCODE	GUIDE:	OVERVIEW

915

OPCODE	GUIDE:	OVERVIEW

If	you	run	Csound	from	the	command	line	with	the	option	-z,	you	get	
a	list	of	all	opcodes.	Currently	(Csound	5.13),	the	total	number	of	all	
opcodes	is	about	1500.	There	are	already	overviews	of	all	of	Csound's	
opcodes	in	the	Opcodes	Overview	and	the	Opcode	Quick	Reference	
of	the	Canonical	Csound	Manual.

This	chapter	is	another	attempt	to	provide	some	orientation	within	
Csound's	wealth	of	opcodes.	Unlike	the	references	mentioned	above,	
not	all	opcodes	are	listed	here,	but	the	ones	that	are,	are	commented	
upon	briefly.	Some	opcodes	appear	more	than	once	and	in	different	
sections	to	reflect	the	different	contexts	in	which	they	could	be	used.	
This	guide	intends	to	provide	insights	into	the	opcodes	listed	that	the	
other	sources	do	not.

BASIC	SIGNAL	PROCESSING

		

OSCILLATORS	AND	PHASORS
		

		



OPCODE	GUIDE:	OVERVIEW

916

				

Standard	Oscillators
				

				

(oscils)		poscil		poscil3		oscili		oscil3		more	
				

				

				

Dynamic	Sprectrum	Oscillators
				

				

		buzz		gbuzz		mpulse		vco		vco2	
						

				



OPCODE	GUIDE:	OVERVIEW

917

				

Phasors
				

				

	phasor		syncphasor
						

		

		

RANDOM	AND	NOISE	GENERATORS
		

		

		

		

	(seed)			rand		randi		randh		rnd31		random		
(randomi	/randomh)		pinkish		more		
				

		

ENVELOPES
		



OPCODE	GUIDE:	OVERVIEW

918

		

				

Simple	Standard	Envelopes
				

				

	linen			linenr		adsr		madsr		more	
						

				

				

Envelopes	By	Linear	And	Exponential	Generators	
				

				

	linseg		expseg		transeg		(linsegr		expsegr		transegr)		
more		
				

				

				

Envelopes	By	Function	Tables
				



OPCODE	GUIDE:	OVERVIEW

919

		



OPCODE	GUIDE:	OVERVIEW

920

		

DELAYS
		

		

				

Audio	Delays
				

				

	vdelay		vdelayx		vdelayw		
				

	delayr		delayw		deltap		deltapi		deltap3			deltapx		
deltapxw		deltapn			
				

				

				

Control	Signal	Delays
				

				

	delk			vdel_k	
						

		



OPCODE	GUIDE:	OVERVIEW

921

		

FILTERS
		

		

Compare	Standard	Filters	and	Specialized	Filters	overviews.
				

		

				

Low	Pass	Filters
				

				

	tone		tonex			butlp			clfilt		
						

		

				

High	Pass	Filters
				

				

	atone		atonex			buthp			clfilt		
						



OPCODE	GUIDE:	OVERVIEW

922

		

				

Band	Pass	And	Resonant	Filters
				

				

	reson		resonx		resony		resonr		resonz			butbp		
						

		

				

Band	Reject	Filters
				

				

	areson			butbr		
						

				



OPCODE	GUIDE:	OVERVIEW

923

				

Filters	For	Smoothing	Control	Signals
				

				

	port			portk	
						

		

		

REVERB
		

		

	freeverb			reverbsc			reverb			nreverb			babo		(pconvolve)
		

		

SIGNAL	MEASUREMENT,	DYNAMIC	
PROCESSING,	SAMPLE	LEVEL	OPERATIONS
		

		



OPCODE	GUIDE:	OVERVIEW

924

				

	Amplitude	Measurement	and	Amplitude	Envelope	
Following
				

				

	rms		balance			follow			follow2			peak			max_k		
						

		

				

Pitch	Estimation	(Pitch	Tracking)
						

				

	ptrack			pitch			pitchamdf			pvscent		
						

		



OPCODE	GUIDE:	OVERVIEW

925

				

Tempo	Estimation
				

				

	tempest		
						

				

				

Dynamic	Processing
				

				

	compress			dam			clip	
						

				



OPCODE	GUIDE:	OVERVIEW

926

				

Sample	Level	Operations
				

				

	limit			samphold			vaget			vaset		
						

		

		

	SPATIALIZATION
		

		

				

Panning
				

				

	pan2			pan		
						

		



OPCODE	GUIDE:	OVERVIEW

927

				

VBAP
				

				

	vbaplsinit			vbap4			vbap8			vbap16	
						

				

				

Ambisonics
				

				

	bformenc1			bformdec1		
						

				



OPCODE	GUIDE:	OVERVIEW

928

				

Binaural	/	HRTF
				

				

	hrtfstat			hrtfmove			hrtfmove2		hrtfer	
						

		

ADVANCED	SIGNAL	PROCESSING

		

MODULATION	AND	DISTORTION
		

		



OPCODE	GUIDE:	OVERVIEW

929

				

Frequency	Modulation
				

				

	foscil			foscili	
						

				

	crossfm			crossfmi			crosspm			crosspmi			crossfmpm			
crossfmpmi	
						

				

				

Distortion	And	Wave	Shaping
				

				

				

				

	distort			distort1			powershape			polynomial			
chebyshevpoly		
						



OPCODE	GUIDE:	OVERVIEW

930

				

				

Flanging,	Phasing,	Phase	Shaping
				

				

	flanger			harmon			phaser1			phaser2			pdclip			pdhalf			
pdhalfy	
						

				

				

Doppler	Shift
				

				

	doppler	
						

		



OPCODE	GUIDE:	OVERVIEW

931

		

GRANULAR	SYNTHESIS
		

		

	partikkel			sndwarp		others
		

		

CONVOLUTION
		

		

	pconvolve			ftconv			dconv		
				

		

FFT	AND	SPECTRAL	PROCESSING
		

		



OPCODE	GUIDE:	OVERVIEW

932

				

Real-time	Analysis	and	Resynthesis	
				

				

	pvsanal		pvstanal			pvsynth			pvsadsyn		
						

				

				

Writing	FFT	Data	to	A	File	and	Reading	From	it
				

				

	pvsfwrite		pvanal			pvsfread			pvsdiskin	
						

				



OPCODE	GUIDE:	OVERVIEW

933

				

Writing	FFT	Data	to	a	Buffer	and	Reading	From	it	
				

				

	pvsbuffer			pvsbufread			pvsftw			pvsftr		
						

				

				

FFT	Info	
				

				

	pvsinfo			pvsbin			pvscent		
						

				



OPCODE	GUIDE:	OVERVIEW

934

				

Manipulating	FFT	Signals	
				

				

	pvscale			pvshift			pvsbandp			pvsbandr			pvsmix			
pvscross			pvsfilter			pvsvoc			pvsmorph	pvsfreeze			
pvsmaska			pvsblur			pvstencil			pvsarp			pvsmooth	
						

		



OPCODE	GUIDE:	OVERVIEW

935

		

PHYSICAL	MODELS	AND	FM	INSTRUMENTS
		

		

				

Waveguide	Physical	Modelling
				

				

see	here		and	here	
						

				

				

FM	Instrument	Models
				

				

see	here			
						

		

DATA



OPCODE	GUIDE:	OVERVIEW

936

		

BUFFER	/	FUNCTION	TABLES
		

		

				

Creating	Function	Tables	(Buffers)
				

				

	ftgen		GEN	Routines	
						

				

				

				



OPCODE	GUIDE:	OVERVIEW

937

				

Writing	to	Tables
				

				

	tableiw		/	tablew					tabw_i		/	tabw	
				

				

				

				

				

				

				

Reading	From	Tables	
				

				

	table		/	tablei		/	table3					tab_i		/	tab	
				



OPCODE	GUIDE:	OVERVIEW

938

				

				

Saving	Tables	to	Files	
				

				

	ftsave		/	ftsavek				TableToSF			
						

				

				

Reading	Tables	From	Files
				

				

	ftload		/	ftloadk						GEN23		
						

		

		

SIGNAL	INPUT/OUTPUT,	SAMPLE	AND	LOOP	
PLAYBACK,	SOUNDFONTS
		

		



OPCODE	GUIDE:	OVERVIEW

939

				

Signal	Input	and	Output
				

				

	inch		;			outch			out			outs		;			monitor	
						

				

				

Sample	Playback	With	Optional	Looping
				

		flooper2			sndloop
				

				

				



OPCODE	GUIDE:	OVERVIEW

940

				

Soundfonts	and	Fluid	Opcodes
				

				

	fluidEngine			fluidSetInterpMethod			fluidLoad			
fluidProgramSelect			fluidNote			fluidCCi			fluidCCk			
fluidControl			fluidOut			fluidAllOut	
						

		

		

		

FILE	INPUT	AND	OUTPUT
		

		



OPCODE	GUIDE:	OVERVIEW

941

				

Sound	File	Input	
				

				

	soundin			diskin			diskin2			mp3in			(GEN01)	
						

				

				

Sound	File	Queries	
				

				

		filelen			filesr			filenchnls			filepeak			filebit		
						

				



OPCODE	GUIDE:	OVERVIEW

942

				

Sound	File	Output	
				

				

	fout	
						

				

				

Non-Soundfile	Input	And	Output	
				

				

	readk				GEN23				dumpk				fprints	/	fprintks			ftsave		/	
ftsavek				ftload		/	ftloadk	
				

		

		

CONVERTERS	OF	DATA	TYPES
				

		



OPCODE	GUIDE:	OVERVIEW

943

				

i	<-	k	
				

				

	i(k)	
						

				

				

k	<-	a	
				

				

		downsamp			max_k		
						

				



OPCODE	GUIDE:	OVERVIEW

944

				

a	<-	k
				

				

	upsamp			interp		
						

		

		

PRINTING	AND	STRINGS
				

		

				

Simple	Printing	
				

				

	print			printk			printk2		puts	
						

				



OPCODE	GUIDE:	OVERVIEW

945

				

Formatted	Printing	
				

				

	prints			printf_i			printks			printf		
						

				

				

String	Variables	
				

				

	sprintf			sprintfk			strset			strget		
						

				



OPCODE	GUIDE:	OVERVIEW

946

				

String	Manipulation	And	Conversion
				

				

see	here		and	here			
						

		

REALTIME	INTERACTION



OPCODE	GUIDE:	OVERVIEW

947

		

MIDI
		

		

				

Opcodes	for	Use	in	MIDI-Triggered	Instruments	
				

				

	massign			pgmassign			notnum			cpsmidi			veloc			
ampmidi			midichn			pchbend			aftouch			polyaft	
						

				

				

Opcodes	For	Use	In	All	Instruments
				

				

		ctrl7		(ctrl14/ctrl21)		initc7			ctrlinit		(initc14/initc21)			
midiin			midiout		
						

		



OPCODE	GUIDE:	OVERVIEW

948

		

OPEN	SOUND	CONTROL	AND	NETWORK
		

		

				

Open	Sound	Control
				

				

	OSCinit			OSClisten			OSCsend		
						

				

				

Remote	Instruments
				

				

	remoteport			insremot			insglobal			midiremot			
midiglobal		
						

				



OPCODE	GUIDE:	OVERVIEW

949

				

Network	Audio
				

				

	socksend			sockrecv			
						

		

		

HUMAN	INTERFACES
		

		

				

Widgets
				

				

FLTK	overview	here		
						

				



OPCODE	GUIDE:	OVERVIEW

950

				

Keys
				

				

	sensekey	
						

				

				

Mouse
				

				

	xyin	
						

				



OPCODE	GUIDE:	OVERVIEW

951

				

WII
				

				

	wiiconnect			wiidata			wiirange			wiisend	
						

				

				

P5	Glove
				

				

	p5gconnect			p5gdata	
				

		

INSTRUMENT	CONTROL



OPCODE	GUIDE:	OVERVIEW

952

		

SCORE	PARAMETER	ACCESS
		

		

	p(x)			pindex			pset			passign			pcount		
				

		

TIME	AND	TEMPO
		

		

				

Time	Reading
				

				

	times/timek					timeinsts/timeinstk				date/dates				
setscorepos		
						

				



OPCODE	GUIDE:	OVERVIEW

953

				

Tempo	Reading
				

				

	tempo			miditempo			tempoval		
						

				

				

Duration	Modifications
				

				

	ihold			xtratim		
				

				

				

				



OPCODE	GUIDE:	OVERVIEW

954

				

Time	Signal	Generators
				

				

	metro			mpulse	
						

		

		

CONDITIONS	AND	LOOPS
		

		

	changed			trigger			if			loop_lt/loop_le/loop_gt/loop_ge	
				

		

PROGRAM	FLOW
		

		

	init			igoto			kgoto			timout				reinit/rigoto/rireturn	
				



OPCODE	GUIDE:	OVERVIEW

955

		

EVENT	TRIGGERING
		

		

	event_i		/	event				scoreline_i		/	scoreline					schedkwhen			
seqtime	/seqtime2				timedseq		
				

		

INSTRUMENT	SUPERVISION
		

		

				

Instances	And	Allocation
				

				

		active			maxalloc			prealloc		
						

		



OPCODE	GUIDE:	OVERVIEW

956

				

Turning	On	And	Off
				

				

		turnon				turnoff/turnoff2				mute				remove				exitnow		
						

				

				

Named	Instruments
				

				

	nstrnum
						

		



OPCODE	GUIDE:	OVERVIEW

957

		

SIGNAL	EXCHANGE	AND	MIXING
		

		

				

chn	opcodes
				

				

				

				

	chn_k		/	chn_a		/	chn_S					chnset				chnget				chnmix				
chnclear	
						

				

				

zak?	
						

		



OPCODE	GUIDE:	OVERVIEW

958

MATHS

		

MATHEMATICAL	CALCULATIONS
		

		

				

Arithmetic	Operations
				

				

	+					-					*					/					^				%	
						

				

	exp(x)					log(x)				log10(x)				sqrt(x)	
						

				

		abs(x)			int(x)			frac(x)	
						

		round(x)			ceil(x)			floor(x)	
				

				



OPCODE	GUIDE:	OVERVIEW

959

				

Trigonometric	Functions
				

				

	sin(x)				cos(x)				tan(x)	
						

				

	sinh(x)				cosh(x)				tanh(x)	
						

		sininv(x)				cosinv(x)				taninv(x)				taninv2(x)	
				

				

				

Logic	Operators
				

				

	&&					||		
						

		

		



OPCODE	GUIDE:	OVERVIEW

960

CONVERTERS
		

		

				

MIDI	To	Frequency	
				

				

	cpsmidi			cpsmidinn			more	
				

		



OPCODE	GUIDE:	OVERVIEW

961

				

Frequency	To	MIDI
				

				

F2M			F2MC		(UDO's)
						

				

				

				

				

				



OPCODE	GUIDE:	OVERVIEW

962

				

Cent	Values	To	Frequency	
				

				

	cent		
						

				

				

				

				

Amplitude	Converters
				

				

	ampdb			ampdbfs			dbamp			dbfsamp	
						

				

				



OPCODE	GUIDE:	OVERVIEW

963

				

				

Scaling	
				

				

Scali			Scalk			Scala		(UDO's)
						

		

PYTHON	AND	SYSTEM

		

PYTHON	OPCODES
		

		

		

		

	pyinit			pyrun			pyexec			pycall			pyeval			pyassign	
				



OPCODE	GUIDE:	OVERVIEW

964

		

SYSTEM	OPCODES
		

		

	getcfg				system/system_i	
				

PLUGINS	



OPCODE	GUIDE:	OVERVIEW

965

		

PLUGIN	HOSTING
		

		

				

LADSPA
				

				

	dssiinit			dssiactivate			dssilist			dssiaudio			dssictls		
						

				

				

VST
				

				

		vstinit				vstaudio/vstaudiog				vstmidiout				
vstparamset/vstparamget				vstnote				vstinfo			
vstbankload				vstprogset			vstedit	
						

		



OPCODE	GUIDE:	OVERVIEW

966

		

EXPORTING	CSOUND	FILES	TO	PLUGINS
				

		



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

967

OPCODE	GUIDE:	BASIC	SIGNAL
PROCESSING

	

		

OSCILLATORS	AND	PHASORS
		

		

				

STANDARD	OSCILLATORS
				

				

oscils	is	a	very	simple	sine	oscillator	which	is	ideally	
suited	for	quick	tests.	It	needs	no	function	table,	but	
offers	just	i-rate	input	arguments.
				

				

ftgen	generates	a	function	table,	which	is	needed	by	any	
oscillator	except	oscils.	The	GEN	Routines	fill	the	
function	table	with	any	desired	waveform,	either	a	sine	
wave	or	any	other	curve.	Refer	to	the	function	table	
chapter	of	this	manual	for	more	information.
						



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

968

				

poscil	can	be	recommended	as	standard	oscillator	
because	it	is	very	precise,	in	particular	for	long	tables	
and	low	frequencies.	It	provides	linear	interpolation,	any	
rate	its	amplitude	and	frequency	input	arguments,	and	
works	also	for	non-power-of-two	tables.	poscil3	provides
cubic	interpolation,	but	has	just	k-rate	input.	Other	
common	oscillators	are	oscili	and	oscil3.	They	are	less	
precise	than	poscil/poscili,	but	you	can	skip	the	
initialization	which	can	be	useful	in	certain	situations.	
The	oscil	opcode	does	not	provide	any	interpolation,	so	
it	should	usually	be	avoided.	More	Csound	oscillators	
can	be	found	here.
				

				

				

				



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

969

				

DYNAMIC	SPECTRUM	OSCILLATORS
				

				

		
				

				

buzz	and	gbuzz	generate	a	set	of	harmonically	related	
cosine	partials.
				

				

	mpulse	generates	a	set	of	impulses	of	user-definable	
amplitude	and	interval	gap	between	impulses.
				

				

vco	and	vco2	implement	band-limited,	analogue	
modelled	oscillators	that	can	use	variety	of	standard	
waveforms.
				

				

				



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

970

				

				

Phasors
				

				

	phasor	produces	the	typical	moving	phase	values	
between	0	and	1.	The	more	complex	syncphasor	lets	you	
synchronize	more	than	one	phasor	precisely.
				

		

		

RANDOM	AND	NOISE	GENERATORS
		

		

		

		

	
		



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

971

		

seed	sets	the	seed	value	for	the	majority	of	the	Csound	
(pseudo)	random	number	generators.	A	seed	value	of	zero	will	
seed	random	number	generators	from	the	system	clock	thereby	
guaranteeing	a	different	result	each	time	Csound	is	run,	while	
any	other	seed	value	generates	the	same	random	values	each	
time.
				

		

rand	is	the	usual	opcode	for	uniformly	distributed	bipolar	
random	values.	If	you	give	1	as	input	argument	(called	"amp"),	
you	will	get	values	between	-1	and	+1.	randi	interpolates	
between	values	which	are	generated	with	a	variable	frequency.	
randh	holds	the	value	until	the	next	one	is	generated	(sample	
and	hold).	You	can	control	the	seed	value	by	an	input	argument
(a	value	greater	than	1	seeds	from	current	time),	you	can	
decide	whether	to	generate	16bit	or	31bit	random	numbers	and	
you	can	add	an	offset.
				

		

		

		

rnd31	can	output	all	rates	of	variables	(i-rate	variables	are	not	
supported	by	rand).	It	also	gives	the	user	control	over	the	
random	distribution,	but	has	no	offset	parameter.
		



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

972

		

random	provides	extra	conveniece	in	that	the	user	can	define	
both	the	minimum	and	a	maximum	of	the	distribution	as	input	
argument;	rand	and	rnd31	only	output	bipolar	ranges	and	we	
define	amplitude.	It	can	also	be	used	for	all	rates,	but	you	have	
no	direct	seed	input,	and	the	randomi/randomh	variants	always	
start	from	the	lower	border,	instead	anywhere	between	the	
borders.
		

		

pinkish	produces	pink	noise	at	audio-rate	(white	noise	can	be	
produced	using	rand	or	noise).
		

		

There	are	many	more	random	opcodes	worth	investigating.	
Here	is	an	overview.	A	number	of	GEN	routines	are	also	used	
for	generating	random	distributions.	They	can	be	found	in	the	
GEN	Routines	overview.
		

		

		

		

ENVELOPES



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

973

		

		

				

SIMPLE	STANDARD	ENVELOPES
				

				

	
				

				

linen	applies	a	linear	rise	(fade	in)	and	decay	(fade	out)	
to	a	signal.	It	is	very	easy	to	use,	as	you	put	the	raw	
audio	signal	in	and	get	the	enveloped	signal	out.
				

				

linenr	does	the	same	for	any	note	whose	duration	is	not	
known	when	they	begin.	This	could	mean	MIDI	notes	or	
events	triggered	in	real	time.	linenr	begins	the	final	
stage	of	the	envelope	only	when	that	event	is	turned	off	
(released).	The	penultimate	value	is	held	until	this	
release	is	received.
				

				



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

974

adsr	calculates	the	classic	attack-decay-sustain-release	
envelope.	The	result	is	to	be	multiplied	with	the	audio	
signal	to	get	the	enveloped	signal.
				

				

madsr	does	the	same	for	notes	triggered	in	real	time	
(functioning	in	a	similar	way	to	linenr	explained	above).
				

				

Other	standard	envelope	generators	can	be	found	in	the	
Envelope	Generators	overview	of	the	Canonical	Csound	
Manual.
				

				

				

				

				

ENVELOPES	BY	LINEAR	AND	
EXPONENTIAL	GENERATORS	
				

				



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

975

				

				

linseg	creates	one	or	more	segments	of	lines	between	
specified	points.
				

				

expseg	does	the	same	but	with	exponential	segments.	
Note	that	zero	values	or	crossing	the	zero	axis	are	
illegal.
				

				

transeg	is	particularly	flexible	as	you	can	specify	the	
shape	of	each	segment	individually	(continuously	from	
convex	to	linear	to	concave).
				

				

All	of	these	opcodes	have	'r'	variants	(linsegr,	expsegr,	
transegr)	for	MIDI	or	other	real	time	triggered	events.	('r'
stands	for	'release'.)
						

				

More	opcodes	for	generating	envelopes	can	be	found	in	
this	overview.



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

976

				

				

				

				

				

ENVELOPES	BY	FUNCTION	TABLES
				

				

Any	function	table	(or	part	of	it)	can	be	used	as	
envelope.	Once	a	function	table	has	been	created	using	
ftgen	or	a	GEN	Routine	it	can	then	be	read	using	an	
oscillator,	and	multiply	the	result	with	the	audio	signal	
you	want	to	envelope.	
						

		

		

DELAYS
		

		



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

977

				

AUDIO	DELAYS
				

				

The	vdelay	family	of	opcodes	are	easy	to	use	and	
implement	all	the	necessary	features	expected	when	
working	with	delays:
				

				

vdelay	implements	a	variable	delay	at	audio	rate	with	
linear	interpolation.
				

				

	vdelay3	offers	cubic	interpolation.
				

				

vdelayx	has	an	even	higher	quality	interpolation	(and	is	
for	this	reason	slower).	vdelayxs	lets	you	input	and	
output	two	channels,	and	vdelayxq	four.
				

				

vdelayw	changes	the	position	of	the	write	tap	in	the	
delay	line	instead	of	the	read	tap.	vdelayws	is	for	stereo,	



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

978

and	vdelaywq	for	quadro.
				

				

The	delayr/delayw	opcodes	establishes	a	delay	line	in	a	
more	complicated	way.	The	advantage	is	that	you	can	
have	as	many	taps	in	one	delay	line	as	you	need.
				

				

delayr	establishes	a	delay	line	and	reads	from	the	end	of	
it.
				

				

delayw	writes	an	audio	signal	to	the	delay	line.
				

				

deltap,	deltapi,	deltap3,	deltapx	and	deltapxw	function	
in	a	similar	manner	to	the	relevant	opcodes	of	the	vdelay
family	(see	above)	bearing	the	same	suffixes.
				

	deltapn	offers	a	tap	delay	measured	in	samples,	not	
seconds.	This	might	be	more	useful	in	the	design	of	
filters
				

				



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

979

				

CONTROL	DELAYS
				

				

	delk	and	vdel_k	let	you	delay	any	k-signal	by	some	
time	interval	(useful,	for	instance,	as	a	kind	of	'wait'	
function).
				

		

		

FILTERS
		

		

Csound	boasts	an	extensive	range	of	filters	and	they	can	all	be	
perused	on	the	Csound	Manual	pages	for	Standard	Filters	and	
Specialized	Filters.	Here,	some	of	the	most	frequently	used	
filters	are	mentioned,	and	some	tips	are	given.	Note	that	filters	
usually	change	the	signal	level,	so	you	may	also	find	the	
balance	opcode	useful.
		

		



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

980

				

LOW	PASS	FILTERS
				

				

	
				

				

tone	is	a	first	order	recursive	low	pass	filter.	tonex	
implements	a	series	of	tone	filters.
						

				

butlp	is	a	second	order	low	pass	Butterworth	filter.
				

	clfilt	lets	you	choose	between	different	filter	types	and	
different	numbers	of	poles	in	the	design.
				

				

		



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

981

				

HIGH	PASS	FILTERS
				

				

	
				

				

atone	is	a	first	order	recursive	high	pass	filter.	atonex	
implements	a	series	of	atone	filters.
						

				

buthp	is	a	second	order	high	pass	Butterworth	filter.
				

clfilt	lets	you	choose	between	different	filter	types	and	
different	numbers	of	poles	in	the	design.
				

				

		



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

982

				

BAND	PASS	AND	RESONANT	FILTERS
				

				

	
				

				

reson	is	a	second	order	resonant	filter.	resonx	
implements	a	series	of	reson	filters,	while	resony	
emulates	a	bank	of	second	order	bandpass	filters	in	
parallel.	resonr	and	resonz	are	variants	of	reson	with	
variable	frequency	response.
						

	butbp	is	a	second	order	band-pass	Butterworth	filter.
				

				

		



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

983

				

BAND	REJECT	FILTERS
				

				

	
				

				

areson	is	the	complement	of	the	reson	filter.		
				

				

	butbr	is	a	band-reject	butterworth	filter.
				

				

				

				



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

984

				

FILTERS	FOR	SMOOTHING	CONTROL	
SIGNALS
				

				

	port	and	portk	are	very	frequently	used	to	smooth	
control	signals	which	are	received	by	MIDI	or	widgets.
				

		



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

985

		

REVERB
		

		

Note	that	you	can	easily	work	in	Csound	with	convolution	
reverbs	based	on	impulse	response	files,	for	instance	with	
pconvolve.	
		

		

freeverb	is	the	implementation	of	Jezar's	well-known	free	
(stereo)	reverb.
		

		

	reverbsc	is	a	stereo	FDN	reverb,	based	on	work	of	Sean	
Costello.
		

		

reverb	and	nreverb	are	the	traditional	Csound	reverb	units.
		

	babo	is	a	physical	model	reverberator	("ball	within	the	box").

		



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

986

SIGNAL	MEASUREMENT,	DYNAMIC	
PROCESSING,	SAMPLE	LEVEL	
OPERATIONS
		

		

				

	AMPLITUDE	MEASUREMENT	AND	
AMPLITUDE	ENVELOPE	FOLLOWING
				

				

rms	determines	the	root-mean-square	amplitude	of	an	
audio	signal.
				

				

	balance	adjusts	the	amplitudes	of	an	audio	signal	
according	to	the	rms	amplitudes	of	another	audio	signal.
						

				

follow	/	follow2	are	envelope	followers	which	report	the	
average	amplitude	in	a	certain	time	span	(follow)	or	
according	to	an	attack/decay	rate	(follow2).
						



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

987

				

peak	reports	the	highest	absolute	amplitude	value	
received.
						

	max_k	outputs	the	local	maximum	or	minimum	value	
of	an	incoming	audio	signal,	checked	in	a	certain	time	
interval.
				

				

		



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

988

				

PITCH	ESTIMATION
				

				

	
				

				

ptrack,	pitch	and	pitchamdf	track	the	pitch	of	an	
incoming	audio	signal,	using	different	methods.
						

	pvscent	calculates	the	spectral	centroid	for	FFT	
streaming	signals	(see	below	under	"FFT	And	Spectral	
Processing")
				

				

		



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

989

				

TEMPO	ESTIMATION
				

				

	tempest	estimates	the	tempo	of	beat	patterns	in	a	
control	signal.		
				

				



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

990

				

DYNAMIC	PROCESSING
				

				

	
				

				

compress	compresses,	limits,	expands,	ducks	or	gates	an	
audio	signal.
						

				

dam	is	a	dynamic	compressor/expander.
						

	clip	clips	an	a-rate	signal	to	a	predefined	limit,	in	a	
“soft”	manner.
				

				

				



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

991

				

SAMPLE	LEVEL	OPERATIONS
				

				

	
				

				

limit	sets	the	lower	and	upper	limits	of	an	incoming	
value	(all	rates).
						

				

samphold	performs	a	sample-and-hold	operation	on	its	
a-	or	k-input.
						

	vaget	/	vaset	allow	getting	and	setting	certain	samples	
of	an	audio	vector	at	k-rate.

		

		

	SPATIALIZATION
		

		



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

992

				

PANNING
				

				

	
				

				

pan2	distributes	a	mono	audio	signal	across	two	
channels	according	to	a	variety	of	panning	laws.
						

	pan	distributes	a	mono	audio	signal	amongst	four	
channels.
				

				

		



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

993

				

VBAP
				

				

	
				

				

vbaplsinit	configures	VBAP	output	according	to	
loudspeaker	parameters	for	a	2-	or	3-dimensional	space.
						

	vbap4	/	vbap8	/	vbap16	distributes	an	audio	signal	
among	up	to	16	channels,	with	k-rate	control	over	
azimut,	elevation	and	spread.
				

				

				



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

994

				

AMBISONICS
				

				

	
				

				

bformenc1	encodes	an	audio	signal	to	the	Ambisonics	B	
format.
						

	bformdec1	decodes	Ambisonics	B	format	signals	to	
loudspeaker	signals	in	different	possible	configurations.

				

				

BINAURAL	/	HRTF
				

				

	hrtfstat,	hrtfmove	and	hrtfmove2	are	opcodes	for	
creating	3d	binaural	audio	for	headphones.	hrtfer	is	an	
older	implementation.	All	of	these	opcodes	require	data	
files	containing	information	about	the	sound	shadowing	
qualities	of	the	human	head	and	ears.
				



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

995

		



OPCODE	GUIDE:	BASIC	SIGNAL	PROCESSING

996



OPCODE	GUIDE:	ADVANCED	SIGNAL	PROCESSING

997

OPCODE	GUIDE:	ADVANCED	SIGNAL
PROCESSING

	

		

MODULATION	AND	DISTORTION
		

		

				

FREQUENCY	MODULATION
				

				

foscil	and	foscili	implement	composite	units	for	FM	in	
the	Chowning	setup.
						

				

crossfm,	crossfmi,	crosspm,	crosspmi,	crossfmpm	and	
crossfmpmi	are	different	units	for	cross-frequency	and	
cross-phase	modulation.
				

				



OPCODE	GUIDE:	ADVANCED	SIGNAL	PROCESSING

998

				

DISTORTION	AND	WAVE	SHAPING
				

				

				

				

	
				

				

distort	and	distort1	perform	waveshaping	using	a	
function	table	(distort)	or	by	modified	hyperbolic	
tangent	distortion	(distort1).
						

				

				

				

powershape	waveshapes	a	signal	by	raising	it	to	a	
variable	exponent.
				



OPCODE	GUIDE:	ADVANCED	SIGNAL	PROCESSING

999

				

	polynomial	efficiently	evaluates	a	polynomial	of	
arbitrary	order.
				

				

chebyshevpoly	efficiently	evaluates	the	sum	of	
Chebyshev	polynomials	of	arbitrary	order.
						

GEN03,	GEN13,	GEN14	and	GEN15	are	also	used	for	
waveshaping.
				

				

				



OPCODE	GUIDE:	ADVANCED	SIGNAL	PROCESSING

1000

				

FLANGING,	PHASING,	PHASE	SHAPING
				

				

	
				

				

flanger	implements	a	user	controllable	flanger.
				

				

harmon	analyzes	an	audio	input	and	generates	
harmonizing	voices	in	synchrony.
						

				

phaser1	and	phaser2	implement	first-	or	second-order	
allpass	filters	arranged	in	a	series.
						

	pdclip,	pdhalf	and	pdhalfy	are	useful	for	phase	
distortion	synthesis.
				

				



OPCODE	GUIDE:	ADVANCED	SIGNAL	PROCESSING

1001

				

				

DOPPLER	SHIFT
				

				

	doppler		lets	you	calculate	the	doppler	shift	depending	
on	the	position	of	the	sound	source	and	the	microphone.
				

		

		

GRANULAR	SYNTHESIS
		

		

	
		

		

partikkel	is	the	most	flexible	opcode	for	granular	synthesis.	
You	should	be	able	to	do	everything	you	like	in	this	field.	The	
only	drawback	is	the	large	number	of	input	arguments,	so	you	
may	want	to	use	other	opcodes	for	certain	purposes.
		



OPCODE	GUIDE:	ADVANCED	SIGNAL	PROCESSING

1002

		

You	can	find	a	list	of	other	relevant	opcodes	here.	
		

		

sndwarp	focusses	granular	synthesis	on	time	stretching	and/or	
pitch	modifications.	Compare	waveset	and	the	pvs-opcodes	
pvsfread,	pvsdiskin,	pvscale,	pvshift	for	other	implementations	
of	time	and/or	pitch	modifications.
		

		

		



OPCODE	GUIDE:	ADVANCED	SIGNAL	PROCESSING

1003

		

CONVOLUTION
		

		

	
		

		

pconvolve	performs	convolution	based	on	a	uniformly	
partitioned	overlap-save	algorithm.
				

		

ftconv	is	similar	to	pconvolve,	but	you	can	also	use	parts	of	the	
impulse	response	file,	instead	of	reading	the	whole	file.	It	also	
permits	the	use	of	multichannel	impulse	files	(up	to	8-
channels)	to	create	multichannel	outputs.
				

	dconv	performs	direct	convolution.	

		

FFT	AND	SPECTRAL	PROCESSING
		

		



OPCODE	GUIDE:	ADVANCED	SIGNAL	PROCESSING

1004

				

REALTIME	ANALYSIS	AND	RESYNTHESIS
				

				

	
				

				

pvsanal	performs	a	Fast	Fourier	Transformation	of	an	
audio	stream	(a-signal)	and	stores	the	result	in	an	f-
variable.
				

				

pvstanal	creates	an	f-signal	directly	from	a	sound	file	
which	is	stored	in	a	function	table	(usually	via	GEN01).	
						

				

pvsynth	performs	an	Inverse	FFT	(takes	a	f-signal	and	
returns	an	audio-signal).
				

				

pvsadsyn	is	similar	to	pvsynth,	but	resynthesizes	with	a	
bank	of	oscillators,	instead	of	direct	IFFT.



OPCODE	GUIDE:	ADVANCED	SIGNAL	PROCESSING

1005

				

				

				

				

				

WRITING	FFT	DATA	TO	A	FILE	AND	
READING	FROM	IT
				

				

	
				

				

pvsfwrite	writes	an	f-signal	(=	the	FFT	data)	from	inside
Csound	to	a	file.	This	file	has	the	PVOCEX	format	and	
uses	the	file	extension	.pvx.
				

				

pvanal	actually	does	the	same	as	Csound	Utility	(a	
seperate	program	which	can	be	called	in	QuteCsound	or	
via	the	Terminal).	In	this	case,	the	input	is	an	audio	file.
				



OPCODE	GUIDE:	ADVANCED	SIGNAL	PROCESSING

1006

				

pvsfread	reads	the	FFT	data	from	an	existing	.pvx	file.	
This	file	can	be	generated	by	the	Csound	Utility	pvanal.	
Reading	of	the	file	is	carried	out	using	a	time	pointer.
				

				

pvsdiskin	is	similar	to	pvsfread,	but	reading	is	done	by	a	
speed	argument.
				

				

				

				

				

WRITING	FFT	DATA	TO	A	BUFFER	AND	
READING	FROM	IT	
				

				

	
				

				



OPCODE	GUIDE:	ADVANCED	SIGNAL	PROCESSING

1007

pvsbuffer	writes	an	f-signal	into	a	circular	buffer	that	it	
also	creates.
				

				

pvsbufread	reads	an	f-signal	from	a	buffer	which	was	
created	by	pvsbuffer.
				

				

pvsftw	writes	amplitude	and/or	frequency	data	from	a	f-
signal	to	a	function	table.
				

				

pvsftr	transforms	amplitude	and/or	frequency	data	from	
a	function	table	to	a	f-signal.
				

				

				

				

				

FFT	INFO	
				



OPCODE	GUIDE:	ADVANCED	SIGNAL	PROCESSING

1008

				

	
				

				

pvsinfo	gets	information,	either	from	a	realtime	f-signal	
or	from	a	.pvx	file.
				

				

pvsbin	gets	the	amplitude	and	frequency	values	from	a	
single	bin	of	an	f-signal.
				

				

pvscent	calculates	the	spectral	centroid	of	a	signal.
						

				

				

				

				



OPCODE	GUIDE:	ADVANCED	SIGNAL	PROCESSING

1009

				

				

MANIPULATING	FFT	SIGNALS	
				

				

	
				

				

pvscale	transposes	the	frequency	components	of	a	f-
stream	by	simple	multiplication.
				

				

pvshift	changes	the	frequency	components	of	a	f-stream	
by	adding	a	shift	value,	starting	at	a	certain	bin.
				

				

pvsbandp	and	pvsbandr	applies	a	band	pass	and	band	
reject	filter	to	the	frequency	components	of	a	f-signal.
				

				

pvsmix,	pvscross,	pvsfilter,	pvsvoc	and	pvsmorph	
perform	different	methods	of	cross	synthesis	between	



OPCODE	GUIDE:	ADVANCED	SIGNAL	PROCESSING

1010

two	f-signals.
				

				

pvsfreeze	freezes	the	amplitude	and/or	frequency	of	an	
f-signal	according	to	a	k-rate	trigger.
				

				

pvsmaska,	pvsblur,	pvstencil,	pvsarp,	pvsmooth	
perform	a	variety	of	other	manipulations	on	a	stream	of	
FFT	data.
				

				

				

		



OPCODE	GUIDE:	ADVANCED	SIGNAL	PROCESSING

1011

		

PHYSICAL	MODELS	AND	FM	
INSTRUMENTS
		

		

				

WAVEGUIDE	PHYSICAL	MODELLING
				

				

see	here		and	here	
						

				

				

FM	INSTRUMENT	MODELS
				

				

see	here
				

		



OPCODE	GUIDE:	ADVANCED	SIGNAL	PROCESSING

1012



OPCODE	GUIDE:	DATA

1013

OPCODE	GUIDE:	DATA

		

BUFFER	/	FUNCTION	TABLES
		

		

See	the	chapter	about	function	tables	for	more	detailed	
information.	
				

		



OPCODE	GUIDE:	DATA

1014

				

CREATING	FUNCTION	TABLES	(BUFFERS)
				

				

ftgen	can	generates	function	tables	from	within	the	
orchestra.	The	function	table	will	exist	until	the	end	of	
the	current	Csound	performance.	Different	GEN	
Routines	are	used	to	fill	a	function	table	with	different	
kinds	of	data.	This	could	be	waveforms,	sound	files,	
envelopes,	window	functions	and	so	on.
				

				

				

				

				

WRITING	TO	TABLES
				

tableiw	/	tablew:	Write	values	to	a	function	table	at	i-
rate	(tableiw),	k-rate	and	a-rate	(tablew).	These	opcodes	
provide	many	options	and	are	robust	in	use	as	they	
check	for	user	error	in	defining	table	reading	index	
values.	They	may	however	experience	problems	with	
non-power-of-two	table	sizes.
				



OPCODE	GUIDE:	DATA

1015

tabw_i	/	tabw:	Write	values	to	a	function	table	at	i-rate	
(tabw_i),	k-rate	or	a-rate	(tabw).	These	opcodes	offer	
fewer	options	than	tableiw	and	tablew	but	will	work	
consistently	with	non-power-of-two	table	sizes.	They	do	
not	provide	a	boundary	check	on	index	values	given	to	
them	which	makes	them	fast	but	also	then	demands	user	
responsibility	in	protecting	against	invalid	index	values.
				

				

				

				

				

				

				

				

				

READING	FROM	TABLES	
				

				



OPCODE	GUIDE:	DATA

1016

				

				

table	/	tablei	/	table3:	Read	values	from	a	function	table	
at	any	rate,	either	by	direct	indexing	(table),	or	by	linear	
interpolation	(tablei)	or	cubic	interpolation	(table3).	
These	opcodes	provide	many	options	and	are	robust	in	
use	as	they	check	for	user	error	in	defining	table	reading	
index	values.	They	may	however	experience	problems	
with	non-power-of-two	table	sizes.
				

				

tab_i	/	tab:	Read	values	from	a	function	table	at	i-rate	
(tab_i),	k-rate	or	a-rate	(tab).	They	offer	no	interpolation	
and	fewer	options	than	the	table	opcodes	but	they	will	
also	work	with	non-power-of-two	table	sizes.	They	do	
not	provide	a	boundary	check	which	makes	them	fast	
but	also	give	the	user	the	responsibility	not	to	read	any	
value	beyond	the	table	boundaries.
				

				

				

				



OPCODE	GUIDE:	DATA

1017

				

SAVING	TABLES	TO	FILES
						

				

				

				

ftsave	/	ftsavek:	Save	a	function	table	as	a	file,	at	i-time	
(ftsave)	or	at	k-rate	(ftsavek).	These	files	can	be	text	
files	or	binary	files	but	not	sound	files.	To	save	a	table	
as	a	sound	file	you	can	use	the	user	defined	opcode	
TableToSF.	
				

				

				

				



OPCODE	GUIDE:	DATA

1018

				

READING	TABLES	FROM	FILES
				

				

				

				

	ftload	/	ftloadk:	Load	a	function	table	which	has	
previously	been	saved	using	ftsave/ftsavek.
				

	GEN23	transfers	the	contents	of	a	text	file	into	a	
function	table.	
				

				

		

		

SIGNAL	INPUT/OUTPUT,	SAMPLE	AND	
LOOP	PLAYBACK,	SOUNDFONTS
		

		



OPCODE	GUIDE:	DATA

1019

				

SIGNAL	INPUT	AND	OUTPUT
				

				

inch	read	the	audio	input	from	any	channel	of	your	
audio	device.	Make	sure	you	have	the	nchnls	value	in	
the	orchestra	header	set	properly.
						

				

outch	writes	any	audio	signal(s)	to	any	output	
channel(s).	If	Csound	is	in	realtime	mode	(by	the	flag	'-o	
dac'	or	by	the	'Render	in	Realtime'	mode	of	a	frontend	
like	QuteCsound),	the	output	channels	are	the	channels	
of	your	output	device.	If	Csound	is	in	'Render	to	file'	
mode	(by	the	flag	'-o	mysoundfile.wav'	or	the	the	
frontend's	choice),	the	output	channels	are	the	channels	
of	the	soundfile	which	is	being	written.	Make	sure	you	
have	the	nchnls	value	in	the	orchestra	header	set	
properly	to	get	the	number	of	channels	you	wish	to	have.
				

				

out	and	outs	are	frequently	used	for	mono	and	stereo	
output.	They	always	write	to	channel	1	(out)	or	channels	
1	and	2	(outs).
						



OPCODE	GUIDE:	DATA

1020

				

monitor	can	be	used	(in	an	instrument	with	the	highest	
number)	to	gather	the	sum	of	all	audio	on	all	output	
channels.
				

				

				

				



OPCODE	GUIDE:	DATA

1021

				

SAMPLE	PLAYBACK	WITH	OPTIONAL	
LOOPING
				

				

flooper2	is	a	function	table	based	crossfading	looper.
						

				

	sndloop	records	input	audio	and	plays	it	back	in	a	loop	
with	user-defined	duration	and	crossfade	time.
						

				

	Note	that	there	are	additional	user	defined	opcodes	for	
the	playback	of	samples	stored	in	buffers	/	function	
tables.
				

				

				

				

				



OPCODE	GUIDE:	DATA

1022

SOUNDFONTS	AND	FLUID	OPCODES
				

				

	
				

				

fluidEngine	instantiates	a	FluidSynth	engine.
						

				

	fluidSetInterpMethod	sets	an	interpolation	method	for	
a	channel	in	a	FluidSynth	engine.
						

				

	fluidLoad	loads	SoundFonts.
						

				

	fluidProgramSelect	assigns	presets	from	a	SoundFont	
to	a	FluidSynth	engine's	MIDI	channel.
						

				

	fluidNote	plays	a	note	on	a	FluidSynth	engine's	MIDI	



OPCODE	GUIDE:	DATA

1023

channel.
						

				

	fluidCCi	sends	a	controller	message	at	i-time	to	a	
FluidSynth	engine's	MIDI	channel.
						

				

	fluidCCk	sends	a	controller	message	at	k-rate	to	a	
FluidSynth	engine's	MIDI	channel.
						

				

	fluidControl	plays	and	controls	loaded	Soundfonts	
(using	'raw'	MIDI	messages).
						

				

	fluidOut	receives	audio	from	a	single	FluidSynth	
engine.
						

	fluidAllOut	receives	audio	from	all	FluidSynth	
engines.
				

				



OPCODE	GUIDE:	DATA

1024

		

		

		

FILE	INPUT	AND	OUTPUT
		

		

				

SOUND	FILE	INPUT	
				

				

soundin	reads	from	a	sound	file	(up	to	24	channels).	It	is	
important	to	ensure	that	the	sr	value	in	the	orchestra	
header	matches	the	sample	rate	of	your	sound	file	
otherwise	the	sound	file	will	play	back	at	a	different	
speed	and	pitch.
						

				

diskin	is	like	soundin,	but	can	also	alter	the	speed	of	
reading	also	resulting	in	higher	or	lower	pitches.	There	
is	also	the	option	to	loop	the	file.
						



OPCODE	GUIDE:	DATA

1025

				

	diskin2	is	similar	to	diskin,	but	it	automatically	
converts	the	sample	rate	of	the	sound	file	if	it	does	not	
match	the	sample	rate	of	the	orchestra.	It	also	offers	
different	interpolation	methods	to	implement	different	
levels	of	sound	quality	when	sound	files	are	read	at	
altered	speeds.
				

				

GEN01	loads	a	sound	file	into	a	function	table	(buffer).
				

	mp3in	facilitates	the	playing	of	mp3	sound	files.
				

				

				

SOUND	FILE	QUERIES	
				

				

				

				

	filelen	returns	the	length	of	a	sound	file	in	seconds.
				



OPCODE	GUIDE:	DATA

1026

				

filesr	returns	the	sample	rate	of	a	sound	file.
				

				

filenchnls	returns	the	number	of	channels	of	a	sound	
file.
				

				

filepeak	returns	the	peak	absolute	value	of	a	sound	file,	
either	of	one	specified	channel,	or	from	all	channels.	
Make	sure	you	have	set	0dbfs	to	1;	otherwise	you	will	
get	values	relative	to	Csound's	default	0dbfs	value	of	
32768.
				

	filebit	returns	the	bit	depth	of	a	sound	file.
				

				

				



OPCODE	GUIDE:	DATA

1027

				

SOUND	FILE	OUTPUT	
				

				

	
				

				

Keep	in	mind	that	Csound	always	writes	output	to	a	file	
if	you	have	set	the	'-o'	flag	to	the	name	of	a	sound	file	
(or	if	you	choose	'render	to	file'	in	a	front-end	like	
QuteCound).
						

				

fout	writes	any	audio	signal(s)	to	a	file,	regardless	of	
whether	Csound	is	in	realtime	or	non-realtime	mode.	
This	opcode	is	recommended	for	rendering	a	realtime	
performance	as	a	sound	file	on	disc.
				

				

				

				



OPCODE	GUIDE:	DATA

1028

				

NON-SOUNDFILE	INPUT	AND	OUTPUT	
				

				

	
				

				

readk	can	read	data	from	external	files	(for	instance	a	
text	file)	and	transform	them	to	k-rate	values.
						

				

GEN23	transfers	a	text	file	into	a	function	table.
				

				

dumpk	writes	k-rate	signals	to	a	text	file.
				

				

fprints	/	fprintks	write	any	formatted	string	to	a	file.	If	
you	call	this	opcode	several	times	during	one	
performance,	the	strings	are	appended.	If	you	write	to	an	
pre-existing	file,	the	file	will	be	overwritten.
						



OPCODE	GUIDE:	DATA

1029

				

ftsave	/	ftsavek:	Save	a	function	table	as	a	binary	or	text	
file,	in	a	specific	format.
				

				

	ftload	/	ftloadk:	Load	a	function	table	which	has	been	
written	by	ftsave/ftsavek.
				

				

				

		

		

CONVERTERS	OF	DATA	TYPES
				

		



OPCODE	GUIDE:	DATA

1030

				

I	<-	K	
				

				

	i(k)	returns	the	value	of	a	k-variable	at	init-time.	This	
can	be	useful	to	get	the	value	of	GUI	controllers,	or	
when	using	the	reinit	feature.
				

				

				

K	<-	A	
				

				

	downsamp	converts	an	a-rate	signal	to	a	k-rate	signal,	
with	optional	averaging.
						

	max_k	returns	the	maximum	of	an	k-rate	signal	in	a	
certain	time	span,	with	different	options	of	calculation
				

				



OPCODE	GUIDE:	DATA

1031

				

A	<-	K
				

				

upsamp	converts	a	k-rate	signal	to	an	a-rate	signal	by	
simple	repetitions.	It	is	the	same	as	the	statement	
asig=ksig.
						

	interp	converts	a	k-rate	signal	to	an	a-rate	signal	by	
interpolation.
				

				

		

		

PRINTING	AND	STRINGS
				

		

				

SIMPLE	PRINTING	
				



OPCODE	GUIDE:	DATA

1032

				

	
				

				

print	is	a	simple	opcode	for	printing	i-variables.	Note	
that	the	printed	numbers	are	rounded	to	3	decimal	
places.
				

				

printk	is	its	counterpart	for	k-variables.	The	itime	
argument	specifies	the	time	in	seconds	between	
printings	(itime=0	means	one	printout	in	each	k-cycle	
which	is	usually	some	thousand	printings	per	second).
				

				

printk2	prints	a	k-variable	whenever	it	changes.
				

	puts	prints	S-variables.	The	ktrig	argument	lets	you	
print	either	at	i-time	or	at	k-rate.
				

				

				



OPCODE	GUIDE:	DATA

1033

				

FORMATTED	PRINTING	
				

				

	
				

				

prints	lets	you	print	a	format	string	at	i-time.	The	
format	is	similar	to	the	C-style	syntax	but	there	is	no	%s	
format,	therefore	string	variables	cannot	can	be	printed.
				

				

printf_i	is	very	similar	to	prints.	It	also	works	at	init-
time.	The	advantage	in	comparision	to	prints	is	the	
ability	of	printing	string	variables.	On	the	other	hand,		
you	need	a	trigger	and	at	least	one	input	argument.
				

				

printks	is	like	prints,	but	takes	k-variables,	and	like	
printk,	you	must	specify	a	time	between	printing.
				

	printf	is	like	printf_i,	but	works	at	k-rate.
				



OPCODE	GUIDE:	DATA

1034

				

				



OPCODE	GUIDE:	DATA

1035

				

STRING	VARIABLES	
				

				

	
				

				

sprintf	works	like	printf_i,	but	stores	the	output	in	a	
string	variable,	instead	of	printing	it	out.
				

				

sprintfk	is	the	same	for	k-rate	arguments.
				

				

strset	links	any	string	with	a	numeric	value.
				

	strget	transforms	a	strset	number	back	to	a	string.
				

				

				



OPCODE	GUIDE:	DATA

1036

				

STRING	MANIPULATION	AND	
CONVERSION
				

				

There	are	many	opcodes	for	analysing,	manipulating	and
converting	strings.	There	is	a	good	overview	in	the	
Canonical	Csound	Manual	on	this	and	that	page.
				

		

	



OPCODE	GUIDE:	REALTIME	INTERACTION

1037

OPCODE	GUIDE:	REALTIME	INTERACTION

		

MIDI
		

		

				

OPCODES	FOR	USE	IN	MIDI-TRIGGERED	
INSTRUMENTS	
				

				

	
				

				

massign	assigns	specified	midi	channels	to	instrument	
numbers.	See	the	Triggering	Instrument	Instances	
chapter	for	more	information.
				

				

pgmassign	assigns	midi	program	changes	to	specified	
instrument	numbers.
						



OPCODE	GUIDE:	REALTIME	INTERACTION

1038

				

notnum	retrieves	the	midi	number	of	the	key	which	has	
been	pressed	and	activated	this	instrument	instance.	
				

				

cpsmidi	converts	this	note	number	to	the	frequency	in	
cycles	per	second	(Hertz).
				

				

veloc	and	ampmidi	get	the	velocity	of	the	key	which	
has	been	pressed	and	activated	this	instrument	instance.
				

				

midichn	returns	the	midi	channel	number	from	which	
the	note	was	activated.
				

				

pchbend	reads	pitch	bend	information.
				

	aftouch	and	polyaft	read	the	monophonic	aftertouch	
(afttouch)	and	polyphonic	aftertouch	(polyaft)	
information.
				



OPCODE	GUIDE:	REALTIME	INTERACTION

1039

				

				

				

OPCODES	FOR	USE	IN	ALL	INSTRUMENTS
				

				

		
				

				

	ctrl7	reads	the	values	of	a	usual	(7	bit)	controller	and	
scales	it.	ctrl14	and	ctrl21	can	be	used	for	high	
definition	controllers.
				

				

initc7	or	ctrlinit	set	the	initial	value	of	7	bit	controllers.	
Use	initc14	and	initc21	for	high	definition	devices.
						

				

midiin	reads	all	incoming	midi	events.	
				



OPCODE	GUIDE:	REALTIME	INTERACTION

1040

				

midiout	writes	any	type	of	midi	message	to	the	midi	out	
port.
				

				

				

		

		

OPEN	SOUND	CONTROL	AND	
NETWORK
		

		



OPCODE	GUIDE:	REALTIME	INTERACTION

1041

				

OPEN	SOUND	CONTROL
				

				

	
				

				

OSCinit	initialises	a	port	for	later	use	of	the	OSClisten	
opcode.
				

				

	OSClisten	receives	messages	of	the	port	which	was	
initialised	by	OSCinit.
				

				

OSCsend	sends	messages	to	a	port.
				

				

				



OPCODE	GUIDE:	REALTIME	INTERACTION

1042

				

				

REMOTE	INSTRUMENTS
				

				

	
				

				

remoteport	defines	the	port	for	use	with	the	remote	
system.
						

				

insremot	will	send	note	events	from	a	source	machine	
to	one	destination.
						

				

insglobal	will	send	note	events	from	a	source	machine	
to	many	destinations.
						

				

midiremot	will	send	midi	events	from	a	source	machine	
to	one	destination.



OPCODE	GUIDE:	REALTIME	INTERACTION

1043

						

	midiglobal	will	broadcast	the	midi	events	to	all	the	
machines	involved	in	the	remote	concert.
				

				

				

				

NETWORK	AUDIO
				

				

	
				

				

socksend	sends	audio	data	to	other	processes	using	the	
low-level	UDP	or	TCP	protocols.
						

	sockrecv	receives	audio	data	from	other	processes	
using	the	low-level	UDP	or	TCP	protocols.
				

				

		



OPCODE	GUIDE:	REALTIME	INTERACTION

1044

		

HUMAN	INTERFACES
		

		

				

WIDGETS
				

				

The	FLTK	Widgets	are	integrated	in	Csound.	
Information	and	examples	can	be	found	here.
				

				

QuteCsound	implements	a	more	modern	and	easy-to-use	
system	for	widgets.	The	communication	between	the	
widgets	and	Csound	is	done	via	invalue	(or	chnget)	and	
outvalue	(or	chnset).
				

				

				

				



OPCODE	GUIDE:	REALTIME	INTERACTION

1045

				

KEYS
				

				

	sensekey	reads	the	input	of	the	computer	keyboard.
				

				

				

MOUSE
				

				

	
				

				

xyin	reads	the	current	mouse	position.	This	should	be	
used	if	your	frontend	does	not	provide	any	other	means	
of	reading	mouse	information.
				

				

				



OPCODE	GUIDE:	REALTIME	INTERACTION

1046

				



OPCODE	GUIDE:	REALTIME	INTERACTION

1047

				

WII
				

				

	
				

				

wiiconnect		reads	data	from	a	number	of	external	
Nintendo	Wiimote	controllers.
						

				

	wiidata	reads	data	fields	from	a	number	of	external	
Nintendo	Wiimote	controllers.
						

				

wiirange	sets	scaling	and	range	limits	for	certain	
Wiimote	fields.
						

	wiisend	sends	data	to	one	of	a	number	of	external	Wii	
controllers.
				

				



OPCODE	GUIDE:	REALTIME	INTERACTION

1048

				

				

P5	GLOVE
				

				

	
				

				

p5gconnect	reads	data	from	an	external	P5	glove	
controller.
						

	p5gdata		reads	data	fields	from	an	external	P5	glove	
controller.
				

				

		



OPCODE	GUIDE:	INSTRUMENT	CONTROL

1049

OPCODE	GUIDE:	INSTRUMENT	CONTROL

		

SCORE	PARAMETER	ACCESS
		

		

	
		

		

p(x)	gets	the	value	of	a	specified	p-field.	(So,	'p(5)'	and	'p5'	
both	return	the	value	of	the	fifth	parameter	in	a	certain	score	
line,	but	in	the	former	case	you	can	insert	a	variable	to	specify	
the	p-field.
				

		

pindex	does	actually	the	same,	but	as	an	opcode	instead	of	an	
expression.
				

		

pset	sets	p-field	values	in	case	there	is	no	value	from	a	
scoreline.
				



OPCODE	GUIDE:	INSTRUMENT	CONTROL

1050

		

passign	assigns	a	range	of	p-fields	to	i-variables.
				

	pcount	returns	the	number	of	p-fields	belonging	to	a	note	
event.
		

		

		

TIME	AND	TEMPO
		

		

				

TIME	READING
				

				

	
				

				

times	/	timek	return	the	time	in	seconds	(times)	or	in	
control	cycles	(timek)	since	the	start	of	the	current	
Csound	performance.



OPCODE	GUIDE:	INSTRUMENT	CONTROL

1051

						

				

	timeinsts	/	timeinstk	return	the	time	in	seconds	
(timeinsts)	or	in	control	cycles	(timeinstk)	since	the	start	
of	the	instrument	in	which	they	are	defined.
						

				

date	/	dates	return	the	number	of	seconds	since	1	
January	1970,	using	the	operating	system's	clock,	either	
as	a	number	(date)	or	as	a	string	(dates).
						

	setscorepos	sets	the	playback	position	of	the	current	
score	performance	to	a	given	position.
				

				

				



OPCODE	GUIDE:	INSTRUMENT	CONTROL

1052

				

TEMPO	READING
				

				

	
				

				

tempo	allows	the	performance	speed	of	Csound	scored	
events	to	be	controlled	from	within	an	orchestra.
						

				

miditempo	returns	the	current	tempo	at	k-rate,	of	either	
the	midi	file	(if	available)	or	the	score.
				

				

	tempoval	reads	the	current	value	of	the	tempo.
				

				

				



OPCODE	GUIDE:	INSTRUMENT	CONTROL

1053

				

				

DURATION	MODIFICATIONS
				

				

	
				

				

ihold	forces	a	finite-duration	note	to	become	a	'held'	
note.
						

				

				

	xtratim	extend	the	duration	of	the	current	instrument	
instance	by	a	specified	time	duration.
				

				

				

				



OPCODE	GUIDE:	INSTRUMENT	CONTROL

1054

				

				

TIME	SIGNAL	GENERATORS
				

				

	
				

				

metro	outputs	a	metronome-like	control	signal	(1	value	
impulses	separated	by	zeroes).	Rate	of	impulses	can	be	
specified	as	impulses	per	second
				

	mpulse	generates	an	impulse	for	one	sample	of	user	
definable	amplitude,	followed	by	a	user-definable	time	
gap.
				

				

		

		

		



OPCODE	GUIDE:	INSTRUMENT	CONTROL

1055

		

CONDITIONS	AND	LOOPS
		

		

	
		

		

changed	reports	whether	any	of	its	k-rate	variable	inputs	has	
changed.
		

		

trigger	informs	whether	a	k-rate	signal	crosses	a	certain	
threshold,	either	in	an	upward	direction,	in	a	downward	
direction	or	both.
				

		

if	branches	conditionally	at	initialisation	or	during	
performance	time.
		

	loop_lt,	loop_le,	loop_gt	and	loop_ge	perform	loops	either	at	
i-time	or	at	k-rate.
		



OPCODE	GUIDE:	INSTRUMENT	CONTROL

1056

		

		

PROGRAM	FLOW
		

		

init	initializes	a	k-	or	a-variable	(assigns	a	value	to	a	k-	or	a-
variable	which	is	valid	at	i-time).
				

		

	igoto	jumps	to	a	label	at	i-time.
				

		

kgoto	jumps	to	a	label	at	k-rate.
				

		

timout	jumps	to	a	label	for	a	given	time.	Can	be	used	in	
conjunction	with	reinit	to	perform	time	loops	(see	the	chapter	
about	Control	Structures	for	more	information).
				

	reinit	/	rigoto	/	rireturn	forces	a	certain	section	of	code	to	be	
reinitialised	(i.e.	i-rate	variables	will	be	refreshed).



OPCODE	GUIDE:	INSTRUMENT	CONTROL

1057

		

EVENT	TRIGGERING
		

		

		

		

event_i	/	event:	Generate	an	instrument	event	at	i-time	
(event_i)	or	at	k-time	(event).	Easy	to	use,	but	you	cannot	send	
a	string	to	the	subinstrument.
		

		

scoreline_i	/	scoreline:	Generate	an	instrument	at	i-time	
(scoreline_i)	or	at	k-time	(scoreline).	Like	event_i/event,	but	
you	can	send	to	more	than	one	instrument	but	unlike	
event_i/event	you	can	send	strings.	On	the	other	hand,	you	
must	usually	pre-format	your	scoreline-string	using	sprintf.
		

		

schedkwhen	triggers	an	instrument	event	at	k-time	if	a	certain	
condition	is	given.
				



OPCODE	GUIDE:	INSTRUMENT	CONTROL

1058

		

seqtime	/	seqtime2	can	be	used	to	generate	a	trigger	signal	
according	to	time	values	in	a	function	table.
		

		

	timedseq	is	an	event-sequencer	in	which	time	can	be	
controlled	by	a	time-pointer.	Sequence	data	is	stored	in	a	
function	table	or	text	file.
		

		

		

		

INSTRUMENT	SUPERVISION
		

		



OPCODE	GUIDE:	INSTRUMENT	CONTROL

1059

				

INSTANCES	AND	ALLOCATION
				

				

				

				

	active	returns	the	number	of	active	instances	of	an	
instrument.
						

				

maxalloc	limits	the	number	of	allocations	(instances)	of	
an	instrument.
						

	prealloc	creates	space	for	instruments	but	does	not	run	
them.
				

				

		

				

TURNING	ON	AND	OFF



OPCODE	GUIDE:	INSTRUMENT	CONTROL

1060

				

				

				

				

	turnon	activates	an	instrument	for	an	indefinite	time.
						

				

turnoff	/	turnoff2	enables	an	instrument	to	turn	itself,	or	
another	instrument,	off.
						

				

mute	mutes/unmutes	new	instances	of	a	given	
instrument.
						

				

remove	removes	the	definition	of	an	instrument	as	long	
as	it	is	not	in	use.
						

	exitnow	causes	Csound	to	exit	as	fast	as	possible	and	
with	no	cleaning	up.
				



OPCODE	GUIDE:	INSTRUMENT	CONTROL

1061

				

				

				

NAMED	INSTRUMENTS
				

				

	nstrnum	returns	the	number	of	a	named	instrument.
				

		

		

SIGNAL	EXCHANGE	AND	MIXING
		

		



OPCODE	GUIDE:	INSTRUMENT	CONTROL

1062

				

CHN	OPCODES
				

				

chn_k,	chn_a,	and	chn_S	declare	a	control,	audio,	or	
string	channel.	Note	that	this	can	be	done	implicitly	in	
most	cases	by	chnset/chnget.
				

				

chnset	writes	a	value	(i,	k,	S	or	a)	to	a	software	channel	
(which	is	identified	by	a	string	as	its	name).
				

				

	chnget	gets	the	value	of	a	named	software	channel.
				

				

chnmix	writes	audio	data	to	an	named	audio	channel,	
mixing	to	the	previous	output.
						

	chnclear	clears	an	audio	channel	of	the	named	software	
bus	to	zero.

				



OPCODE	GUIDE:	INSTRUMENT	CONTROL

1063

				

ZAK		
				

				

zakinit	initialised	zak	space	for	the	storage	of	zak	
variables.
				

				

zaw,	zkw	and	ziw	write	to	(or	overwrite)	a-rate,	k-rate	
or	i-rate	zak	variables	respectively.
				

				

zawm,	zkwm	and	ziwm	mix	(accumulate)	a-rate,	k-rate	
or	i-rate	zak	variables	respectively.
						

				

zar,	zkr	and	zir	read	from	a-rate,	k-rate	or	i-rate	zak	
variables	respectively.
						

				

zacl	and	zkcl	clears	a	range	of	a-rate	or	k-rate	zak	
variables	respectively.
						



OPCODE	GUIDE:	INSTRUMENT	CONTROL

1064

		



OPCODE	GUIDE:	MATH,	PYTHON/	SYSTEM,	PLUGINS

1065

OPCODE	GUIDE:	MATH,	PYTHON/	SYSTEM,
PLUGINS

MATHS

		

MATHEMATICAL	CALCULATIONS
		

		

				

ARITHMETIC	OPERATIONS
						

				

+,	-,	*,	/,	^,	%	are	the	usual	signs	for	addition,	
subtraction,	multiplication,	division,	raising	to	a	power	
and	modulo.	The	precedence	is	like	that	used	in	
common	mathematics	(*	binds	stronger	than	+	etc.),	but	
you	can	change	this	behaviour	with	parentheses:	
2^(1/12)	returns	2	raised	by	1/12	(=	the	12st	root	of	2),	
while	2^1/12	returns	2	raised	by	1,	and	the	result	divided	
by	12.
				

				

exp(x),	log(x),	log10(x)	and	sqrt(x)	return	e	raised	to	the	



OPCODE	GUIDE:	MATH,	PYTHON/	SYSTEM,	PLUGINS

1066

xth	power,	the	natural	log	of	x,	the	base	10	log	of	x,	and	
the	square	root	of	x.
						

				

	abs(x)	returns	the	absolute	value	of	a	number.
						

				

int(x)	and	frac(x)	return	the	integer	respective	the	
fractional	part	of	a	number.
						

	round(x),	ceil(x),	floor(x)	round	a	number	to	the	
nearest,	the	next	higher	or	the	next	lower	integer.

				



OPCODE	GUIDE:	MATH,	PYTHON/	SYSTEM,	PLUGINS

1067

				

TRIGONOMETRIC	FUNCTIONS
				

				

sin(x),	cos(x),	tan(x)	perform	a	sine,	cosine	or	tangent	
function.
						

				

sinh(x),	cosh(x),	tanh(x)	perform	a	hyperbolic	sine,	
cosine	or	tangent	function.
						

	sininv(x),	cosinv(x),	taninv(x)	and	taninv2(x)	perform	
the	arcsine,	arccosine	and	arctangent	functions.

				



OPCODE	GUIDE:	MATH,	PYTHON/	SYSTEM,	PLUGINS

1068

				

LOGIC	OPERATORS
				

				

	&&	and	||		are	the	symbols	for	a	logical	"and"	and	"or".	
Note	that	you	can	use	here	parentheses	for	defining	the	
precedence,	too,	for	instance:	if	(ival1	<	10	&&	ival2	>	
5)	||	(ival1	>	20	&&	ival2	<	0)	then	...
				

				

!	is	the	symbol	for	logical	"not".	For	example:	if	(kx	!=	
2)	then	...	would	serve	a	conditional	branch	if	variable	
kx	was	not	equal	to	'2'.
						

		

		

CONVERTERS
		

		



OPCODE	GUIDE:	MATH,	PYTHON/	SYSTEM,	PLUGINS

1069

				

MIDI	TO	FREQUENCY	
				

				

	
				

				

cpsmidi	converts	a	MIDI	note	number	from	a	triggered	
instrument	to	the	frequency	in	Hertz.
				

				

cpsmidinn	does	the	same	for	any	input	values	(i-	or	k-
rate).
				

				

Other	opcodes	convert	to	Csound's	pitch-	or	octave-class	
system.	They	can	be	found	here.
				

				

				



OPCODE	GUIDE:	MATH,	PYTHON/	SYSTEM,	PLUGINS

1070

		

				

FREQUENCY	TO	MIDI
				

				

Csound	has	no	own	opcode	for	the	conversion	of	a	
frequency	to	a	midi	note	number,	because	this	is	a	rather	
simple	calculation.	You	can	find	a	User	Defined	Opcode	
for	rounding	to	the	next	possible	midi	note	number	or	
for	the	exact	translation	to	a	midi	note	number	and	a	
cent	value	as	fractional	part.
				

				

				

				

				

				

				



OPCODE	GUIDE:	MATH,	PYTHON/	SYSTEM,	PLUGINS

1071

				

				

CENT	VALUES	TO	FREQUENCY	
				

				

	cent	converts	a	cent	value	to	a	multiplier.	For	instance,	
cent(1200)	returns	2,	cent(100)	returns	1.059403.	If	you	
multiply	this	with	the	frequency	you	reference	to,	you	
get	frequency	of	the	note	which	corresponds	to	the	cent	
interval.
				

				

				

				

				

AMPLITUDE	CONVERTERS
				

				

	
				



OPCODE	GUIDE:	MATH,	PYTHON/	SYSTEM,	PLUGINS

1072

				

ampdb	returns	the	amplitude	equivalent	of	the	dB	value.
ampdb(0)	returns	1,	ampdb(-6)	returns	0.501187,	and	so	
on.
				

				

ampdbfs	returns	the	amplitude	equivalent	of	the	dB	
value,	according	to	what	has	been	set	as	0dbfs	(1	is	
recommended,	the	default	is	15bit	=	32768).	So	
ampdbfs(-6)	returns	0.501187	for	0dbfs=1,	but	
16422.904297	for	0dbfs=32768.
				

				

dbamp	returns	the	decibel	equivalent	of	the	amplitude	
value,	where	an	amplitude	of	1	is	the	maximum.	So	
dbamp(1)	->	0	and	dbamp(0.5)	->	-6.020600.
				

	dbfsamp	returns	the	decibel	equivalent	of	the	
amplitude	value	set	by	the	0dbfs	statement.	So	
dbfsamp(10)	is	20.000002	for	0dbfs=0	but	-70.308998	
for	0dbfs=32768.
				

				

				



OPCODE	GUIDE:	MATH,	PYTHON/	SYSTEM,	PLUGINS

1073

				

				

				

SCALING	
				

				

Scaling	of	signals	from	an	input	range	to	an	output	
range,	like	the	"scale"	object	in	Max/MSP,	is	not	
implemented	in	Csound,	because	it	is	a	rather	simple	
calculation.	It	is	available	as	User	Defined	Opcode:	
Scali	(i-rate),	Scalk	(k-rate)	or	Scala	(a-rate).
						

				

				

		

PYTHON	AND	SYSTEM

		

PYTHON	OPCODES
		



OPCODE	GUIDE:	MATH,	PYTHON/	SYSTEM,	PLUGINS

1074

		

		

		

	
		

		

pyinit	initializes	the	Python	interpreter.
				

		

pyrun	runs	a	Python	statement	or	block	of	statements.
		

		

	pyexec	executes	a	script	from	a	file	at	k-time,	i-time	or	if	a	
trigger	has	been	received.
		

		

pycall	invokes	the	specified	Python	callable	at	k-time	or	i-
time.
		



OPCODE	GUIDE:	MATH,	PYTHON/	SYSTEM,	PLUGINS

1075

		

pyeval	evaluates	a	generic	Python	expression	and	stores	the	
result	in	a	Csound	k-	or	i-variable,	with	optional	trigger.
		

		

pyassign	assigns	the	value	of	the	given	Csound	variable	to	a	
Python	variable	possibly	destroying	its	previous	content.
		

		

		



OPCODE	GUIDE:	MATH,	PYTHON/	SYSTEM,	PLUGINS

1076

		

SYSTEM	OPCODES
		

		

	
		

		

getcfg	returns	various	Csound	configuration	settings	as	a	string	
at	init	time.
		

		

system	/	system_i	call	an	external	program	via	the	system	call.
		

		

		

PLUGINS	

		

PLUGIN	HOSTING
		



OPCODE	GUIDE:	MATH,	PYTHON/	SYSTEM,	PLUGINS

1077

		

				

LADSPA
				

				

	
				

				

dssiinit	loads	a	plugin.
				

				

	dssiactivate	activates	or	deactivates	a	plugin	if	it	has	
this	facility.
				

				

dssilist	lists	all	available	plugins	found	in	the	
LADSPA_PATH	and	DSSI_PATH	global	variables.
				

				

dssiaudio	processes	audio	using	a	plugin.
				



OPCODE	GUIDE:	MATH,	PYTHON/	SYSTEM,	PLUGINS

1078

				

dssictls	sends	control	information	to	a	plugin's	control	
port.
				

				

				

				

				

VST
				

				

		
				

				

	vstinit	loads	a	plugin.
				

				

vstaudio	/	vstaudiog	return	a	plugin's	output.
				



OPCODE	GUIDE:	MATH,	PYTHON/	SYSTEM,	PLUGINS

1079

				

vstmidiout	sends	midi	data	to	a	plugin.
				

				

vstparamset	/	vstparamget	sends	and	receives	
automation	data	to	and	from	the	plugin.
				

				

vstnote	sends	a	midi	note	with	a	definite	duration.
				

				

vstinfo	outputs	the	parameter	and	program	names	for	a	
plugin.
				

				

vstbankload	loads	an	.fxb	bank.
				

				

vstprogset	sets	the	program	in	a	.fxb	bank.
				

	vstedit	opens	the	GUI	editor	for	the	plugin,	when	



OPCODE	GUIDE:	MATH,	PYTHON/	SYSTEM,	PLUGINS

1080

available.
				

				

		



METHODS	OF	WRITING	CSOUND	SCORES

1081

METHODS	OF	WRITING	CSOUND	SCORES

Although	the	use	of	Csound	real-time	has	become	more	prevalent	and	
arguably	more	important	whilst	the	use	if	the	score	has	diminished	
and	become	less	important,	composing	using	score	events	within	the	
Csound	score	remains	an	important	bedrock	to	working	with	Csound.	
There	are	many	methods	for	writing	Csound	score	several	of	which	
are	covered	here;	starting	with	the	classical	method	of	writing	scores	
by	hand,	then	with	the	definition	of	a	user-defined	score	language,	
and	concluding	several	external	Csound	score	generating	programs.

WRITING	SCORE	BY	HAND	

In	Csound's	original	incarnation	the	orchestra	and	score	existed	as	
separate	text	files.	This	arrangement	existed	partly	in	an	attempt	to	
appeal	to	composers	who	had	come	from	a	background	of	writing	for	
conventional	instruments	by	providing	a	more	familiar	paradigm.	The	
three	unavoidable	attributes	of	a	note	event	-	which	instrument	plays	
it,	when,	and	for	how	long	-	were	hardwired	into	the	structure	of	a	
note	event	through	its	first	three	attributes	or	'p-fields'.	All	additional	
attributes	(p4	and	beyond),	for	example:	dynamic,	pitch,	timbre,	were	
left	to	the	discretion	of	the	composer,	much	as	they	would	be	when	
writing	for	conventional	instruments.	It	is	often	overlooked	that	when	
writing	score	events	in	Csound	we	define	start	times	and	durations	in	
'beats'.	It	just	so	happens	that	1	beat	defaults	to	a	duration	of	1	second	
leading	to	the	consequence	that	many	Csound	users	spend	years	
thinking	that	they	are	specifying	note	events	in	terms	of	seconds	
rather	than	beats.	This	default	setting	can	easily	be	modified	and	
manipulated	as	shown	later	on.

The	most	basic	score	event	as	described	above	might	be	something	
like	this:

	i	1	0	5

which	would	demand	that	instrument	number	'1'	play	a	note	at	time	



METHODS	OF	WRITING	CSOUND	SCORES

1082

zero	(beats)	for	5	beats.	After	time	of	constructing	a	score	in	this	
manner	it	quickly	becomes	apparent	that	certain	patterns	and	
repetitions	recur.	Frequently	a	single		instrument	will	be	called	
repeatedly	to	play	the	notes	that	form	a	longer	phrase	therefore	
diminishing	the	worth	of	repeatedly	typing	the	same	instrument	
number	for	p1,	an	instrument	may	play	a	long	sequence	of	notes	of	
the	same	duration	as	in	a	phrase	of	running	semiquavers	rendering	the	
task	of	inputting	the	same	value	for	p3	over	and	over	again	slightly	
tedious	and	often	a	note	will	follow	on	immediately	after	the	previous	
one	as	in	a	legato	phrase	intimating	that	the	p2	start-time	of	that	note	
might	better	be	derived	from	the	duration	and	start-time	of	the	
previous	note	by	the	computer	than	to	be	figured	out	by	the	
composer.	Inevitably	short-cuts	were	added	to	the	syntax	to	simplify	
these	kinds	of	tasks:

i	1	0	1	60
i	1	1	1	61
i	1	2	1	62
i	1	3	1	63
i	1	4	1	64

	could	now	be	expressed	as:
		

i	1	0	1	60
i	.	+	1	>
i	.	+	1	>
i	.	+	1	>
i	.	+	1	64

where	'.'	would	indicate	that	that	p-field	would	reuse	the	same	p-field	
value	from	the	previous	score	event,	where	'+',	unique	for	p2,	would	
indicate	that	the	start	time	would	follow	on	immediately	after	the	
previous	note	had	ended	and	'>'	would	create	a	linear	ramp	from	the	
first	explicitly	defined	value	(60)	to	the	next	explicitly	defined	value	
(64)	in	that	p-field	column	(p4).

A	more	recent	refinement	of	the	p2	shortcut	allows	for	staccato	notes	
where	the	rhythm	and	timing	remain	unaffected.	Each	note	lasts	for	
1/10	of	a	beat	and	each	follows	one	second	after	the	previous.
		



METHODS	OF	WRITING	CSOUND	SCORES

1083

i	1	0			.1	60
i	.	^+1	.		>
i	.	^+1	.		>
i	.	^+1	.		>
i	.	^+1	.		64

The	benefits	offered	by	these	short	cuts	quickly	becomes	apparent	
when	working	on	longer	scores.	In	particular	the	editing	of	critical	
values	once,	rather	than	many	times	is	soon	appreciated.

Taking	a	step	further	back,	a	myriad	of	score	tools,	mostly	also	
identified	by	a	single	letter,	exist	to	manipulate	entire	sections	of	
score.	As	previously	mentioned	Csound	defaults	to	giving	each	beat	a	
duration	of	1	second	which	corresponds	to	this	't'	statement	at	the	
beginning	of	a	score:

t	0	60

"At	time	(beat)	zero	set	tempo	to	60	beats	per	minute";	but	this	could	
easily	be	anything	else	or	evena	string	of	tempo	change	events	
following	the	format	of	a	linsegb	statement.

t	0	120	5	120	5	90	10	60

This	time	tempo	begins	at	120bpm	and	remains	steady	until	the	5th	
beat,	whereupon	there	is	an	immediate	change	to	90bpm;	thereafter	
the	tempo	declines	in	linear	fashion	until	the	10th	beat	when	the	
tempo	has	reached	60bpm.

'm'	statements	allow	us	to	define	sections	of	the	score	that	might	be	
repeated	('s'	statements	marking	the	end	of	that	section).	'n'	statements	
referencing	the	name	given	to	the	original	'm'	statement	via	their	first	
parameter	field	will	call	for	a	repetition	of	that	section.

m	verse
i	1	0			1	60
i	.	^+1	.		>
i	.	^+1	.		>
i	.	^+1	.		>
i	.	^+1	.	64
s
n	verse
n	verse
n	verse

Here	a	'verse'	section	is	first	defined	using	an	'm'	section	(the	section	



METHODS	OF	WRITING	CSOUND	SCORES

1084

is	also	played	at	this	stage).	's'	marks	the	end	of	the	section	definition	
and	'n'	recalls	this	section	three	more	times.

Just	a	selection	of	the	techniques	and	shortcuts	available	for	hand-
writing	scores	have	been	introduced	here	(refer	to	the	Csound	
Reference	Manual	for	a	more	encyclopedic	overview).	It	has	
hopefully	become	clear	however	that	with	a	full	knowledge	and	
implementation	of	these	techniques	the	user	can	adeptly	and	
efficiently	write	and	manipulate	scores	by	hand.
		

EXTENSION	OF	THE	SCORE	LANGUAGE:
BIN="..."		

It	is	possible	to	pass	the	score	as	written	through	a	pre-processor	
before	it	is	used	by	Csound	to	play	notes.	instead	it	can	be	first	
interpretted	by	a	binary	(application),	which	produces	a	usual	csound	
score	as	a	result.	This	is	done	by	the	statement	bin="..."	in	the	
<CsScore>	tag.	What	happens?

1.	 	If	just	a	binary	is	specified,	this	binary	is	called	and	two	files	
are	passed	to	it:
a.	 A	copy	of	the	user	written	score.	This	file	has	the	suffix	

.ext	
b.	 An	empty	file	which	will	be	read	after	the	interpretation	by	

Csound.	This	file	has	the	usual	score	suffix	.sco
2.	 If	a	binary	and	a	script	is	specified,	the	binary	calls	the	script	

and	passes	the	two	files	to	the	script.
		

If	you	have	Python		installed	on	your	computer,	you	should	be	able	to	
run	the	following	examples.	They	do	actually	nothing	but	print	the	
arguments	(=	file	names).

CALLING	A	BINARY	WITHOUT	A	SCRIPT		

EXAMPLE	Score_methods_01.csd



METHODS	OF	WRITING	CSOUND	SCORES

1085

		

<CsoundSynthesizer>
<CsInstruments>
instr	1	
endin
</CsInstruments>
<CsScore	bin="python">
from	sys	import	argv
print	"File	to	read	=	'%s'"	%	argv[0]
print	"File	to	write	=	'%s'"	%	argv[1]
</CsScore>
</CsoundSynthesizer>

When	you	execute	this	.csd	file	in	the	terminal,	your	output	should	
include	something	like	this:	

			File	to	read	=	'/tmp/csound-idWDwO.ext'
		
			File	to	write	=	'/tmp/csound-EdvgYC.sco'

And	there	should	be	a	complaint	because	the	empty	.sco	file	has	not	
been	written:

			cannot	open	scorefile	/tmp/csound-EdvgYC.sco	
		

CALLING	A	BINARY	AND	A	SCRIPT	

To	test	this,	first	save	this	file	as	print.py	in	the	same	folder	where	
your	.csd	examples	are:

from	sys	import	argv
print	"Script	=	'%s'"	%	argv[0]
print	"File	to	read	=	'%s'"	%	argv[1]
print	"File	to	write	=	'%s'"	%	argv[2]

Then	run	this	csd:



METHODS	OF	WRITING	CSOUND	SCORES

1086

EXAMPLE	Score_methods_02.csd
		

<CsoundSynthesizer>
<CsInstruments>
instr	1	
endin
</CsInstruments>
<CsScore	bin="python	print.py">
</CsScore>
</CsoundSynthesizer>

The	output	should	include	these	lines:

			Script	=	'print.py'
		
			File	to	read	=	'/tmp/csound-jwZ9Uy.ext'
		
			File	to	write	=	'/tmp/csound-NbMTfJ.sco'
		

And	again	a	complaint	about	the	invalid	score	file:

			cannot	open	scorefile	/tmp/csound-NbMTfJ.sco	
		

Csbeats

As	an	alternative	to	the	classical	Csound	score,	Csbeats	is	included	
with	Csound.	This	is	a	domain	specific	language	tailored	to	the	
concepts	of	beats,	rhythm	and	standard	western	notation.	To	use	
Csbeat,	specify	"csbeats"	as	the	CsScore	bin	option	in	a	Csound	
unified	score	file.

<CsScore	bin="csbeats">	

For	more	information,	refer	to	the	Csound	Manual.	Csbeats	is	written	
by	Brian	Baugn.	

SCRIPTING	LANGUAGE	EXAMPLES

The	following	script	uses	a	perl	script	to	allow	seeding	options	in	the	



METHODS	OF	WRITING	CSOUND	SCORES

1087

score.	A	random	seed	can	be	set	as	a	comment;	like	";;SEED	123".	If	
no	seed	has	been	set,	the	current	system	clock	is	used.	So	there	will	
be	a	different	value	for	the	first	three	random	statements,	while	the	
last	two	statements	will	always	generate	the	same	values.

EXAMPLE	Score_methods_03.csd	
		

<CsoundSynthesizer>
<CsInstruments>
;example	by	tito	latini

instr	1
		prints	"amp	=	%f,	freq	=	%f\n",	p4,	p5;
endin

</CsInstruments>
<CsScore	bin="perl	cs_sco_rand.pl">

i1		0		.01		rand()			[200	+	rand(30)]
i1		+		.				rand()			[400	+	rand(80)]
i1		+		.				rand()			[600	+	rand(160)]
;;	SEED	123
i1		+		.				rand()			[750	+	rand(200)]
i1		+		.				rand()			[210	+	rand(20)]
e

</CsScore>
</CsoundSynthesizer>

#	cs_sco_rand.pl
my	($in,	$out)	=	@ARGV;
open(EXT,	"<",	$in);
open(SCO,	">",	$out);

while	(<EXT>)	{
		s/SEED\s+(\d+)/srand($1);$&/e;
		s/rand\(\d*\)/eval	$&/ge;
		print	SCO;
}

PYSCO

Pysco	is	a	modular	Csound	score	environment	for	event	generation,	
event	processing,	and	the	fashioning	musical	structures	in	time.	Pysco	
is	non-imposing	and	does	not	force	composers	into	any	one	particular	
compositional	model;	Composers	design	their	own	score	frameworks	
by	importing	from	existing	Python	libraries,	or	fabricate	their	own	
functions	as	needed.	It	fully	supports	the	existing	classical	Csound	
score,	and	runs	inside	a	unified	CSD	file.

Pysco	is	designed	to	be	a	giant	leap	forward	from	the	classical	
Csound	score	by	leveraging	Python,	a	highly	extensible	general-



METHODS	OF	WRITING	CSOUND	SCORES

1088

purpose	scripting	language.	While	the	classical	Csound	score	does	
feature	a	small	handful	of	score	tricks,	it	lacks	common	computer	
programming	paradigms,	offering	little	in	terms	of	alleviating	the	
tedious	process	of	writing	scores	by	hand.	Python	plus	the	Pysco	
interface	transforms	the	limited	classical	score	into	highly	flexible	
and	modular	text-based	compositional	environment.

Transitioning	away	from	the	Classical	Csound	Score

Composers	concerned	about	transitioning	from	the	classical	Csound	
score	into	this	new	environment	should	fear	not.	Only	two	changes	
are	necessary	to	get	started.	First,	the	optional	bin	argument	for	the	
CsScore	tag	needs	to	specify	"python	pysco.py"	.	Second,	all	existing	
classical	Csound	score	code	works	when	placed	inside	the	score()	
function.

<CsScore	bin="python	pysco.py">

score('''
f	1	0	8192	10	1
t	0	144
i	1	0.0	1.0	0.7	8.02
i	1	1.0	1.5	0.4	8.05
i	1	2.5	0.5	0.3	8.09
i	1	3.0	1.0	0.4	9.00
''')

</CsScore>	

Boiler	plate	code	that	is	often	associated	with	scripting	and	scoring,	
such	as	file	management	and	string	concatenation,	has	been	
conveniently	factored	out.

The	last	step	in	transitioning	is	to	learn	a	few	of	Python	or	Pysco	
features.	While	Pysco	and	Python	offers	an	incredibly	vast	set	of	tools	
and	features,	one	can	supercharge	their	scores	with	only	a	small	
handful.

Managing	Time	with	the	cue()

The	cue()	object	is	Pysco	context	manager	for	controlling	and	
manipulating	time	in	a	score.	Time	is	a	fundamental	concept	in	
music,	and	the	cue()	object	elevates	the	role	of	time	to	that	of	other	



METHODS	OF	WRITING	CSOUND	SCORES

1089

control	such	as	if	and	for	statements,	synthesizing	time	into	the	form	
of	the	code.

In	the	classical	Csound	score	model,	there	is	only	the	concept	of	
beats.	This	forces	composers	to	place	events	into	the	global	timeline,	
which	requires	an	extra	added	incovenience	of	calculating	start	times	
for	individual	events.	Consider	the	following	code	in	which	measure	
1	starts	at	time	0.0	and	measure	2	starts	at	time	4.0.

;	Measure	1
i	1	0.0	1.0	0.7	8.02
i	1	1.0	1.5	0.4	8.05
i	1	2.5	0.5	0.3	8.09
i	1	3.0	1.0	0.4	9.00

;	Measure	2
i	1	4.0	1.0	0.7	8.07
i	1	5.0	1.5	0.4	8.10
i	1	6.5	0.5	0.3	9.02
i	1	7.0	1.0	0.4	9.07

In	an	ideal	situation,	the	start	times	for	each	measure	would	be	
normalized	to	zero,	allowing	composers	to	think	local	to	the	current	
measure	rather	than	the	global	timeline.	This	is	the	role	of	Pysco's	
cue()	context	manager.	The	same	two	measures	in	Pysco	are	rewritten	
as	follows:

#	Measure	1
with	cue(0):
				score('''
				i	1	0.0	1.0	0.7	8.02
				i	1	1.0	1.5	0.4	8.05
				i	1	2.5	0.5	0.3	8.09
				i	1	3.0	1.0	0.4	9.00
				''')

#	Measure	2
with	cue(4):
				score('''
				i	1	0.0	1.0	0.7	8.07
				i	1	1.0	1.5	0.4	8.10
				i	1	2.5	0.5	0.3	9.02
				i	1	3.0	1.0	0.4	9.07
				''')	

The	start	of	measure	2	is	now	0.0,	as	opposed	to	4.0	in	the	classical	
score	environment.	The	physical	layout	of	these	time-based	block	
structure	also	adds	visual	cues	for	the	composer,	as	indentation	and	
"with	cue()"	statements	adds	clarity	when	scanning	a	score	for	a	
particular	event.



METHODS	OF	WRITING	CSOUND	SCORES

1090

Moving	events	in	time,	regardless	of	how	many	there	are,	is	nearly	
effortless.	In	the	classical	score,	this	often	involves	manually	
recalculating	entire	columns	of	start	times.	Since	the	cue()	supports	
nesting,	it's	possible	and	rather	quite	easy,	to	move	these	two	
measures	any	where	in	the	score	with	a	new	"with	cue()"	statement.	

#	Movement	2
with	cue(330):
				#	Measure	1
				with	cue(0):
								i	1	0.0	1.0	0.7	8.02
								i	1	1.0	1.5	0.4	8.05
								i	1	2.5	0.5	0.3	8.09
								i	1	3.0	1.0	0.4	9.00

				#Measure	2
				with	cue(4):
								i	1	0.0	1.0	0.7	8.07
								i	1	1.0	1.5	0.4	8.10
								i	1	2.5	0.5	0.3	9.02
								i	1	3.0	1.0	0.4	9.07

These	two	measures	now	start	at	beat	330	in	the	piece.	With	the	
exception	of	adding	an	extra	level	of	indentation,	the	score	code	for	
these	two	measures	are	unchanged.	

Generating	Events	

Pysco	includes	two	functions	for	generating	a	Csound	score	event.	
The	score()	function	simply	accepts	any	and	all	classical	Csound	
score	events	as	a	string.	The	second	is	event_i(),	which	generates	a	
properly	formatted	Csound	score	event.	Take	the	following	Pysco	
event	for	example:

event_i(1,	0,	1.5,	0.707	8.02)

The	event_i()	function	transforms	the	input,	outputting	the	following	
Csound	score	code:	

i	1	0	1.5	0.707	8.02	

These	event	score	functions	combined	with	Python's	extensive	set	of	
features	aid	in	generating	multiple	events.	The	following	example	
uses	three	of	these	features:	the	for	statement,	range(),	and	random().

from	random	import	random



METHODS	OF	WRITING	CSOUND	SCORES

1091

score('t	0	160')

for	time	in	range(8):
				with	cue(time):
								frequency	=	100	+	random()	*	900
								event_i(1,	0,	1,	0.707,	frequency)

Python's	for	statement	combined	with	range()	loops	through	the	
proceeding	code	block	eight	times	by	iterating	through	the	list	of	
values	created	with	the	range()	function.	The	list	generated	by	
range(8)	is:
[0,	1,	2,	3,	4,	5,	6,	7]	

As	the	script	iterates	through	the	list,	variable	time	assumes	the	next	
value	in	the	list;	The	time	variable	is	also	the	start	time	of	each	
event.	A	hint	of	algorithmic	flair	is	added	by	importing	the	
random()	function	from	Python's	random	library	and	using	it	to	create	
a	random	frequency	between	100	and	1000	Hz.	The	script	produces	
this	classical	Csound	score:

t	0	160
i	1	0	1	0.707	211.936363038
i	1	1	1	0.707	206.021046104
i	1	2	1	0.707	587.07781543
i	1	3	1	0.707	265.13585797
i	1	4	1	0.707	124.548796225
i	1	5	1	0.707	288.184408335
i	1	6	1	0.707	396.36805871
i	1	7	1	0.707	859.030151952	

Processing	Events

Pysco	includes	two	functions	for	processing	score	event	data	called	
p_callback()	and	pmap().	The	p_callback()	is	a	pre-processor	that	
changes	event	data	before	it's	inserted	into	the	score	object	while	
pmap()	is	a	post-processor	that	transforms	event	data	that	already	
exists	in	the	score.

p_callback(event_type,	instr_number,	pfield,	function,	*args)
pmap(event_type,	instr_number,	pfield,	function,	*args)

The	following	examples	demonstrates	a	use	case	for	both	functions.	
The	p_callback()	function	pre-processes	all	the	values	in	the	pfield	5	
column	for	instrument	1	from	conventional	notation	(D5,	G4,	A4,	etc)	
to	hertz.	The	pmap()	post-processes	all	pfield	4	values	for	instrument	



METHODS	OF	WRITING	CSOUND	SCORES

1092

1,	converting	from	decibels	to	standard	amplitudes.

p_callback('i',	1,	5,	conv_to_hz)

score('''
t	0	120
i	1	0	0.5	-3	D5
i	1	+	.			.		G4
i	1	+	.			.		A4
i	1	+	.			.		B4
i	1	+	.			.		C5
i	1	+	.			.		A4
i	1	+	.			.		B4
i	1	+	.			.		G5
''')

pmap('i',	1,	4,	dB)	

	The	final	output	is:

f	1	0	8192	10	1
t	0	120
i	1	0	0.5	0.707945784384	587.329535835
i	1	+	.			.		391.995435982
i	1	+	.			.		440.0
i	1	+	.			.		493.883301256
i	1	+	.			.		523.251130601
i	1	+	.			.		440.0
i	1	+	.			.		493.883301256
i	1	+	.			.		783.990871963	

1.	 www.python.org
2.	 	In	some	linux	distributions	(archlinux	for	example),	the	

default	python	is	python3.	In	that	case,	one	should	explicitly	
call	python2	with	the	line:	"python2	pysco"

CMASK

CMask	is	an	application	that	produces	score	files	for	Csound,	i.e.	lists	
of	notes	or	rather	events.	Its	main	application	is	the	generation	of	
events	to	create	a	texture	or	granular	sounds.	The	program	takes	a	
parameter	file	as	input	and	makes	a	score	file	that	can	be	used	
immediately	with	Csound.

The	basic	concept	in	CMask	is	the	tendency	mask.	This	is	an	area	that
is	limited	by	2	time	variant	boundaries.	These	area	describes	a	space	
of	possible	values	for	a	score	parameter,	for	example	amplitude,	
pitch,	pan,	duration	etc.	For	every	parameter	of	an	event	(a	note	
statement	pfield	in	Csound)	a	random	value	will	be	selected	from	the	
range	that	is	valid	at	this	time.



METHODS	OF	WRITING	CSOUND	SCORES

1093

There	are	also	other	means	in	CMask	for	the	parameter	generation,	
for	example	cyclic	lists,	oscillators,	polygons	and	random	walks.	
Each	parameter	of	an	event	can	be	generated	by	a	different	method.	
A	set	of	notes	/	events	generated	by	a	set	of	methods	lasting	for	a	
certain	time	span	is	called	a	field.

A	CMask	example:	creation	of	a	dynamic	texture

{
f1	0	8193	10	1												;sine	wave
}
	
f	0	20																				;field	duration:	20	secs
	
p1	const	1
	
p2																								;decreasing	density
rnd	uni																			;from	.03	-	.08	sec	to	.5	-	1	sec
mask	[.03	.5	ipl	3]	[.08	1	ipl	3]	map	1
prec	2
	
p3																								;increasing	duration
rnd	uni
mask	[.2	3	ipl	1]	[.4	5	ipl	1]
prec	2
	
p4																								;narrowing	frequency	grid
rnd	uni
mask	[3000	90	ipl	1]	[5000	150	ipl	1]	map	1
quant	[400	50]	.95
prec	2
	
p5																								;FM	index	gets	higher	from	2-4	to	4-7
rnd	uni
mask	[2	4]	[4	7]
prec	2
	
p6	range	0	1														;panorama	position	uniform	distributed
prec	2																				;between	left	and	right

	

	The	output	is:

f1	0	8193	10	1												;sine	wave

;	-------	begin	of	field	1	---	seconds:	0.00	-	20.00	--------
;ins	 time	 dur	 p4	 p5	 p6

i1	 0	 0.37	 3205.55	3.57	 0.8	
i1	 0.07	 0.24	 3190.83	3.55	 0.28	
i1	 0.12	 0.3	 3589.39	2.74	 0.51	
i1	 0.2	 0.38	 3576.81	3.46	 0.14



METHODS	OF	WRITING	CSOUND	SCORES

1094

i1	 0.25	 0.2	 3158.89	2.3	 0.8	
i1	 0.28	 0.28	 2775.01	2.25	 1	
........
........
........
i1	 18.71	 4.32	 145.64	 5.75	 0.27	
i1	 19.12	 3.27	 129.68	 5.27	 0.3	
i1	 19.69	 4.62	 110.64	 6.87	 0.65	

;	-------	end	of	field	1	---	number	of	events:	241	-------	

Cmask	can	be	downloaded	for	MacOS9,	Win,	Linux	(by	André
Bartetzki)	and	is	ported	to	OSX	(by	Anthony	Kozar).

NGEN	

nGen	is	a	free	multi-platform	generation	tool	for	creating	Csound	
event-lists	(score	files)	and	standard	MIDI	files.	It	is	written	in	C	and	
runs	on	a	variety	of	platforms	(version	2.0	is	currently	available	for	
Macintosh	OS	10.5	and	above,	and	Linux	Intel).	All	versions,	run	in	
the	UNIX	command-line	style	(at	a	command-line	shell	prompt).	
nGen	was	designed	and	written	by	composer	Mikel	Kuehn	and	was	
inspired	in	part	by	the	basic	syntax	of	Aleck	Brinkman's	Score11	note	
list	preprocessor	(Score11	is	available	for	Linux	Intel	from	the	
Eastman	Computer	Music	Center)	and	Leland	Smith's	Score	program.

nGen	will	allow	you	to	do	several	things	with	ease	that	are	either	
difficult	or	not	possible	using	Csound	and/or	MIDI	sequencing	
programs;	nGen	is	a	powerful	front-end	for	creating	Csound	score-
files	and	basic	standard	MIDI	files.	Some	of	the	basic	strengths	of	
nGen	are:

	Event-based	granular	textures	can	be	generated	quickly.	Huge	
streams	of	values	can	be	generated	with	specific	random-
number	distributions	(e.g.,	Gaussian,	flat,	beta,	exponential,	
etc.).
		
Note-names	and	rhythms	can	be	entered	in	intuitive	formats	
(e.g.,	pitches:	C4,	Df3;	rhythms:	4,	8,	16,	32).
		



METHODS	OF	WRITING	CSOUND	SCORES

1095

"Chords"	can	be	specified	as	a	single	unit	(e.g.,	C4:Df:E:Fs).	
Textual	and	numeric	macros	are	available.

Additionally,	nGen	supplies	a	host	of	conversion	routines	that	allow	
p-field	data	to	be	converted	to	different	formats	in	the	resulting	
Csound	score	file	(e.g.,	octave.pitch-class	can	be	formatted	to	Hz	
values,	etc.).	A	variety	of	formatting	routines	are	also	supplied	(such	
as	the	ability	to	output	floating-point	numbers	with	a	certain	precision
width).

nGen	is	a	portable	text-based	application.	It	runs	on	most	platforms	
(Windows,	Mac,	Linux,	Irix,	UNIX,	etc.)	and	allows	for	macro-	and	
micro-level	generation	of	event-list	data	by	providing	many	dynamic	
functions	for	dealing	with	statistical	generation	(such	as	interpolation	
between	values	over	the	course	of	many	events,	varieties	of	pseudo-
random	data	generation,	p-field	extraction	and	filtering,	1/f	data,	the	
use	of	"sets"	of	values,	etc.)	as	well	as	special	modes	of	input	(such	as	
note-name/octave-number,	reciprocal	duration	code,	etc.).	Its	
memory	allocation	is	dynamic,	making	it	useful	for	macro-level	
control	over	huge	score-files.	In	addition,	nGen	contains	a	flexible	
text-based	macro	pre-processor	(identical	to	that	found	in	recent	
versions	of	Csound),	numeric	macros	and	expressions,	and	also	allows
for	many	varieties	of	data	conversion	and	special	output	formatting.	
nGen	is	command-line	based	and	accepts	an	ASCII	formatted	text-
file	which	is	expanded	into	a	Csound	score-file	or	a	standard	MIDI	
file.	It	is	easy	to	use	and	is	extremely	flexible	making	it	suitable	for	
use	by	those	not	experienced	with	high-level	computer	programming	
languages.

An	example	of	simple	granular	synthesis	with	wave	forms

	
;These	lines	go	directly	to	the	output	file
>f1				0			16384			10			1																											;sine	wave
>f2				0			16384			10			1	0	.5	0	.25	0	.125	0	.0625	;odd	partials	(dec.)
>f3				0			16384			10			1	.5	.25	.125	.0625									;all	w/	decreasing	strength
>f4				0			16384			10			1	1	1	1	1																			;pulse
>f5				0			16384			10			1	0	1	0	1																			;odd
>f82			0			16385			20			2			1																							;grain	envelope

#define	MAX	#16000#												;a	macro	for	the	maximum	amplitude



METHODS	OF	WRITING	CSOUND	SCORES

1096

i1	=	7	0	10	{
		p2	.01																							;intervalic	start	time

		/*	The	duration	of	each	event	slowly	changes	over	time	starting	at	20x	the
		initial	start	time	interval	to	1x	the	ending	start-time	interval.	The	"T"
		variable	is	used	to	control	the	duration	of	both	move	statements	(50%	of	the
		entire	i-block	duration).	*/
		p3	mo(T*.5	1.	20	1)			mo(T*.5	1.	1	10)

		/*	Amplitude	gets	greater	in	the	center	to	compensate	for	shorter	grains	the
		MAX	macro	(see	above)	is	used	to	set	the	high	range	anchor.	*/
		p4	rd(.1)	mo(T*.5,	1.	E	0	$MAX)		mo(T*.5	1.	E	$MAX	0)

		/*	Frequency:	moves	logarithmically	from	3000	to	a	range	between	100	and	200
		then	exponentially	up	to	a	range	between	1000	and	4000.	The	"T"	variable
		is	again	used	to	specify	a	percentage	of	the	iblock's	total	duration.		If
		you	try	to	compile	this	as	a	MIDI	file,	all	of	the	Herz	values	will	turn
		into	MIDI	note	numbers	through	VALUE	%	128	--	rapidly	skimming	over	the
		entire	keyboard...	*/
		p5	rd	(0)	mo(T*.4		1.	l	3000	[100	200])	mo(T*.6	1.	e	[100	200]	[1000	4000])

		/*	Spatial	placement:	25%	hard-left	25%	hard-right	50%	a	Gaussian	value
		(near	the	middle).	*/
		p6(re2)	ra(10	.25	0	.25	1	.5	[g	0	1])
		p7(in)		se(T	1.	[1	2	3	4	5])		;select	different	wave-form	function	#s
}
	

	The	output	is:

f1				0			16384			10			1																											;sine	wave
f2				0			16384			10			1	0	.5	0	.25	0	.125	0	.0625	;odd	partials	(dec.)
f3				0			16384			10			1	.5	.25	.125	.0625									;all	w/	decreasing	strength
f4				0			16384			10			1	1	1	1	1																			;pulse
f5				0			16384			10			1	0	1	0	1																			;odd
f82			0			16385			20			2			1																							;grain	envelope
;I-block	#1	(i1):
i1				0.000		0.200					0.000		3000.000					0.00					3
i1				0.010		0.200					0.063		2673.011					0.79					3
i1				0.020		0.199					0.253		2468.545					1.00					2
i1				0.030		0.199					0.553		2329.545					1.00					5
i1				0.040		0.198					1.033		2223.527					1.00					2
i1				0.050		0.198					1.550		2160.397					0.50					4
........
........
........
i1				9.970		0.100			127.785		2342.706					0.48					1
i1				9.980		0.100				64.851		3200.637					1.00					1
i1				9.990		0.100					0.000		3847.285					1.00					2

e

	nGen	for	Mac,	Windows	and	Linux	can	be	downloaded	here

ATHENACL	

The	athenaCL	system	is	a	software	tool	for	creating	musical	
structures.	Music	is	rendered	as	a	polyphonic	event	list,	or	an	
EventSequence	object.	This	EventSequence	can	be	converted	into	
diverse	forms,	or	OutputFormats,	including	scores	for	the	Csound	
synthesis	language,	Musical	Instrument	Digital	Interface	(MIDI)	files,	



METHODS	OF	WRITING	CSOUND	SCORES

1097

and	other	specialized	formats.	Within	athenaCL,	Orchestra	and	
Instrument	models	provide	control	of	and	integration	with	diverse	
OutputFormats.	Orchestra	models	may	include	complete	
specification,	at	the	code	level,	of	external	sound	sources	that	are	
created	in	the	process	of	OutputFormat	generation.	

The	athenaCL	system	features	specialized	objects	for	creating	and	
manipulating	pitch	structures,	including	the	Pitch,	the	Multiset	(a	
collection	of	Pitches),	and	the	Path	(a	collection	of	Multisets).	Paths	
define	reusable	pitch	groups.	When	used	as	a	compositional	resource,	
a	Path	is	interpreted	by	a	Texture	object	(described	below).

The	athenaCL	system	features	three	levels	of	algorithmic	design.	The	
first	two	levels	are	provided	by	the	ParameterObject	and	the	Texture.	
The	ParameterObject	is	a	model	of	a	low-level	one-dimensional	
parameter	generator	and	transformer.	The	Texture	is	a	model	of	a	
multi-dimensional	generative	musical	part.	A	Texture	is	controlled	
and	configured	by	numerous	embedded	ParameterObjects.	Each	
ParameterObject	is	assigned	to	either	event	parameters,	such	as	
amplitude	and	rhythm,	or	Texture	configuration	parameters.	The	
Texture	interprets	ParameterObject	values	to	create	EventSequences.	
The	number	of	ParameterObjects	in	a	Texture,	as	well	as	their	
function	and	interaction,	is	determined	by	the	Texture's	parent	type	
(TextureModule)	and	Instrument	model.	Each	Texture	is	an	instance	
of	a	TextureModule.	TextureModules	encode	diverse	approaches	to	



METHODS	OF	WRITING	CSOUND	SCORES

1098

multi-dimensional	algorithmic	generation.	The	TextureModule	
manages	the	deployment	and	interaction	of	lower	level	
ParameterObjects,	as	well	as	linear	or	non-linear	event	generation.	
Specialized	TextureModules	may	be	designed	to	create	a	wide	
variety	of	musical	structures.

The	third	layer	of	algorithmic	design	is	provided	by	the	Clone,	a	
model	of	the	multi-dimensional	transformative	part.	The	Clone	
transforms	EventSequences	generated	by	a	Texture.	Similar	to	
Textures,	Clones	are	controlled	and	configured	by	numerous	
embedded	ParameterObjects.

Each	Texture	and	Clone	creates	a	collection	of	Events.	Each	Event	is	
a	rich	data	representation	that	includes	detailed	timing,	pitch,	rhythm,	
and	parameter	data.	Events	are	stored	in	EventSequence	objects.	The	
collection	all	Texture	and	Clone	EventSequences	is	the	complete	
output	of	athenaCL.	These	EventSequences	are	transformed	into	
various	OutputFormats	for	compositional	deployment.

AthenaCL	can	be	downloaded	here.

COMMON	MUSIC	

	Common	Music	is	a	music	composition	system	that	transforms	high-
level	algorithmic	representations	of	musical	processes	and	structure	
into	a	variety	of	control	protocols	for	sound	synthesis	and	display.	It	
generates	musical	output	via	MIDI,	OSC,	CLM,	FOMUS	and	
CSOUND.	Its	main	user	application	is	Grace	(Graphical	Realtime	
Algorithmic	Composition	Environment)	a	drag-and-drop,	cross-
platform	app	implemented	in	JUCE	(C++)	and	S7	Scheme.	In	Grace	
musical	algorithms	can	run	in	real	time,	or	faster-than-real	time	when	
doing	file-based	composition.	Grace	provides	two	coding	languages	
for	designing	musical	algorithms:	S7	Scheme,	and	SAL,	an	easy-to-
learn	but	expressive	algol-like	language.	



METHODS	OF	WRITING	CSOUND	SCORES

1099

	

Some	of	the	features:

Runs	on	Mac,	Windows	and	Linux

Two	coding	languages	for	designing	algorithms:	S7	Scheme	
and	SAL	(an	easy-to-learn	alternate)

Data	visualization

Common	Music	3	can	be	downloaded	here.	



METHODS	OF	WRITING	CSOUND	SCORES

1100



GLOSSARY

1101

GLOSSARY

	

control	cycle,	control	period	or	k-loop	is	a	pass	during	the	
performance	of	an	instrument,	in	which	all	k-	and	a-variables	are	
renewed.	The	time	for	one	control	cycle	is	measured	in	samples	and	
determined	by	the	ksmps	constant	in	the	orchestra	header.	If	your	
sample	rate	is	44100	and	your	ksmps	value	is	10,	the	time	for	one	
control	cycle	is	1/4410	=	0.000227	seconds.	See	the	chapter	about	
Initialization	And	Performance	Pass	for	more	information.

	

control	rate	or	k-rate	(kr)	is	the	number	of	control	cycles	per	second.
It	can	be	calculated	as	the	relationship	of	the	sample	rate	sr	and	the	
number	of	samples	in	one	control	period	ksmps.	If	your	sample	rate	is	
44100	and	your	ksmps	value	is	10,	your	control	rate	is	4410,	so	you	
have	4410	control	cycles	per	second.
		

	

dummy	f-statement	see	f-statement

		

f-statement	or	function	table	statement	is	a	score	line	which	starts	
with	a	"f"	and	generates	a	function	table.	See	the	chapter	about	
function	tables	for	more	information.	A	dummy	f-statement	is	a	
statement	like	"f	0	3600"	which	looks	like	a	function	table	statement,	
but	instead	of	generating	any	table,	it	serves	just	for	running	Csound	
for	a	certain	time	(here	3600	seconds	=	1	hour).		
		



GLOSSARY

1102

	

		

FFT	Fast	Fourier	Transform	is	a	system	whereby	audio	data	is	stored	
or	represented	in	the	frequency	domain	as	opposed	to	the	time	
domain	as	amplitude	values	as	is	more	typical.	Working	with	FFT	
data	facilitates	transformations	and	manipulations	that	are	not	
possible,	or	are	at	least	more	difficult,	with	audio	data	stored	in	other	
formats.		
		

	

GEN	rountine	a	GEN	(generation)	routine	is	a	mechanism	within	
Csound	used	to	create	function	tables	of	data	that	will	be	held	in	
RAM	for	all	or	part	of	the	performance.	A	GEN	routine	could	be	a	
waveform,	a	stored	sound	sample,	a	list	of	explicitly	defined	number	
such	as	tunings	for	a	special	musical	scale	or	an	amplitude	envelope.	
In	the	past	function	tables	could	only	be	created	only	in	the	Csound	
score	but	now	they	can	also	be	created	(and	deleted	and	over-written)	
within	the	orchestra.		
		

	

GUI	Graphical	User	Interface	refers	to	a	system	of	on-screen	sliders,	
buttons	etc.	used	to	interact	with	Csound,	normally	in	realtime.		
		

	

i-time	or	init-time	or	i-rate	signify	the	time	in	which	all	the	variables
starting	with	an	"i"	get	their	values.	These	values	are	just	given	once	
for	an	instrument	call.	See	the	chapter	about	Initialization	And	



GLOSSARY

1103

Performance	Pass	for	more	information.

	

k-loop	see	control	cycle	
		

	

k-time	is	the	time	during	the	performance	of	an	instrument,	after	the	
initialization.	Variables	starting	with	a	"k"	can	alter	their	values	in	
each	->control	cycle.	See	the	chapter	about	Initialization	And	
Performance	Pass	for	more	information.

	

k-rate	see	control	rate		
		

	

opcode	the	code	word	of	a	basic	building	block	with	which	Csound	
code	is	written.	As	well	as	the	opcode	code	word	an	opcode	will	
commonly	provide	output	arguments	(variables),	listed	to	the	left	of	
the	opcode,	and	input	arguments	(variables).	listed	to	the	right	of	the	
opcode.	An	opcode	is	equivalent	to	a	'ugen'	(unit	generator)	in	other	
languages.

			
		

orchestra	as	in	the	Csound	orchestra,	is	the	section	of	Csound	code	
where	traditionally	the	instruments	are	written.	In	the	past	the	
'orchestra'	was	one	of	two	text	files	along	with	the	'score'	that	were	
needed	to	run	Csound.	Most	people	nowadays	combine	these	two	
sections,	along	with	other	optional	sections	in	a	.csd	(unified)	Csound	



GLOSSARY

1104

file.	The	orchestra	will	also	normally	contain	header	statements	
which	will	define	global	aspects	of	the	Csound	performance	such	as	
sampling	rate.

	

p-field	a	'p'	(parameter)	field	normally	refers	to	a	value	contained	
within	the	list	of	values	after	an	event	item	with	the	Csound	score.

	

performance	pass	see	control	cycle	
		

	

score	as	in	the	Csound	score,	is	the	section	of	Csound	code	where	
note	events	are	written	that	will	instruct	instruments	within	the	
Csound	orchestra	to	play.	The	score	can	also	contain	function	tables.	
In	the	past	the	'score'	was	one	of	two	text	files	along	with	the	
'orchestra'	that	were	needed	to	run	Csound.	Most	people	nowadays	
combine	these	two	sections,	along	with	other	optional	sections	in	a	
.csd	(unified)	Csound	file.
		

	

time	stretching	can	be	done	in	various	ways	in	Csound.	See	sndwarp,	
waveset,	pvstanal	mincer,	pvsfread,	pvsdiskin	and	the	Granular	
Synthesis	opcodes.
		

	

widget	normally	refers	to	some	sort	of	standard	GUI	element	such	as	
a	slider	or	a	button.	GUI	widgets	normally	permit	some	user	



GLOSSARY

1105

modifications	such	as	size,	positioning	colours	etc.	A	variety	options	
are	available	for	the	creation	of	widgets	usable	by	Csound,	from	it	
own	built-in	FLTK	widgets	to	those	provided	by	front-ends	such	as	
CsoundQT,	Cabbage	and	Blue.
		

	



GLOSSARY

1106



LINKS

1107

LINKS

DOWNLOADS

Csound	FLOSS	Manual	Files:	http://files.csound-
tutorial.net/floss_manual/
		

Csound:	http://sourceforge.net/projects/csound/files/

Csound	source	code:	http://github.com/csound/csound	
		

Csound's	User	Defined	Opcodes:	http://www.csounds.com/udo/		and	
http://github.com/csudo/csudo
		

CsoundQt:	http://sourceforge.net/projects/qutecsound/files/

WinXound:http://winxound.codeplex.com

Blue:	http://blue.kunstmusik.com/	

Cabbage:	http://www.thecabbagefoundation.org/

COMMUNITY

Csound's	info	page	on	github	is	a	good	collection	of	links	and	basic	
infos.
		

csounds.com	is	the	main	page	for	the	Csound	community,	including	
news,	online	tutorial,	forums	and	many	links.

The	Csound	Journal	is	a	main	source	for	different	aspects	of	working	
with	Csound.



LINKS

1108

MAILING	LISTS	AND	BUG	TRACKER	

To	subscribe	to	the	Csound	User	Discussion	List,	go	to	
https://lists.sourceforge.net/lists/listinfo/csound-users.	You	can	search	
in	the	list	archive	at	nabble.com.

To	subscribe	to	the	CsoundQt	User	Discussion	List,	go	to	
https://lists.sourceforge.net/lists/listinfo/qutecsound-users.	You	can	
browse	the	list	archive	here.
		

Csound	Developer	Discussions:	
https://lists.sourceforge.net/lists/listinfo/csound-devel
		

Blue:	http://sourceforge.net/mail/?group_id=74382

Please	report	any	bug	you	experienced	in	Csound	at	
http://github.com/csound/csound/issues,	and	a	CsoundQt	related	bug	
at	http://sourceforge.net/tracker/?
func=browse&group_id=227265&atid=1070588.	Every	bug	report	is	
an	important	contribution.
		

TUTORIALS

A	Beginning	Tutorial	is	a	short	introduction	from	Barry	Vercoe,	the	
"father	of	Csound".

An	Instrument	Design	TOOTorial	by	Richard	Boulanger	(1991)	is	
another	classical	introduction,	still	very	worth	to	read.

Introduction	to	Sound	Design	in	Csound	also	by	Richard	Boulanger,	
is	the	first	chapter	of	the	famous	Csound	Book	(2000).
		

Virtual	Sound	by	Alessandro	Cipriani	and	Maurizio	Giri	(2000)



LINKS

1109

A	Csound	Tutorial	by	Michael	Gogins	(2009),	one	of	the	main	
Csound	Developers.

	

VIDEO	TUTORIALS

A	playlist	as	overview	by	Alex	Hofmann:

http://www.youtube.com/view_play_list?p=3EE3219702D17FD3

CSOUNDQT	(QUTECSOUND)

QuteCsound:	Where	to	start?
		
http://www.youtube.com/watch?v=0XcQ3ReqJTM

First	instrument:
		
http://www.youtube.com/watch?v=P5OOyFyNaCA

Using	MIDI:
		
http://www.youtube.com/watch?v=8zszIN_N3bQ

About	configuration:
		
http://www.youtube.com/watch?v=KgYea5s8tFs

Presets	tutorial:
		
http://www.youtube.com/watch?v=KKlCTxmzcS0
		
http://www.youtube.com/watch?v=aES-ZfanF3c

Live	Events	tutorial:
		



LINKS

1110

http://www.youtube.com/watch?v=O9WU7DzdUmE
		
http://www.youtube.com/watch?v=Hs3eO7o349k
		
http://www.youtube.com/watch?v=yUMzp6556Kw

New	editing	features	in	0.6.0:
		
http://www.youtube.com/watch?v=Hk1qPlnyv88
		

New	features	in	0.7.0:
		
https://www.youtube.com/watch?v=iytVlxMILyw

CSOUNDO	(CSOUND	AND	PROCESSING)

	http://csoundblog.com/2010/08/csound-processing-experiment-i/

OPEN	SOUND	CONTROL	IN	CSOUND

	http://www.youtube.com/watch?v=JX1C3TqP_9Y	

CSOUND	AND	INSCORE

http://vimeo.com/54160283	(installation)
		
http://vimeo.com/54160405	(examples)
		
german	versions:
		
http://vimeo.com/54159567	(installation)
		
http://vimeo.com/54159964	(beispiele)	
		

	



LINKS

1111

THE	CSOUND	CONFERENCE	IN	HANNOVER
(2011)

Web	page	with	papers	and	program.

All	Videos	can	be	found	via	the	YoutTube	channel	csconf2011.
		

	

EXAMPLE	COLLECTIONS

Csound	Realtime	Examples	by	Iain	McCurdy	is	one	of	the	most	
inspiring	and	up-to-date	collections.

The	Amsterdam	Catalog	by	John-Philipp	Gather	is	particularily	
interesting	because	of	the	adaption	of	Jean-Claude	Risset's	famous	
"Introductory	Catalogue	of	Computer	Synthesized	Sounds"	from	
1969.

BOOKS

The	Csound	Book	(2000)	edited	by	Richard	Boulanger	is	still	the	
compendium	for	anyone	who	really	wants	to	go	in	depth	with	
Csound.

Virtual	Sound	by	Alessandro	Cipriani	and	Maurizio	Giri	(2000)

Signale,	Systeme,	und	Klangsysteme	by	Martin	Neukom	(2003,	
german)	has	many	interesting	examples	in	Csound.
		

The	Audio	Programming	Book	edited	by	Richard	Boulanger	and	



LINKS

1112

Victor	Lazzarini	(2011)	is	a	major	source	with	many	references	to	
Csound.

Csound	Power!	by	Jim	Aikin	(2012)	is	a	perfect	up-to-date	
introduction	for	beginners.
		




